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How well do mean field theories of spiking quadratic-integrate-and-fire
networks work in realistic parameter regimes?

Agnieszka Grabska-Barwińska · Peter E. Latham
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Abstract We use mean field techniques to compute the dis-
tribution of excitatory and inhibitory firing rates in large
networks of randomly connected spiking quadratic integrate
and fire neurons. These techniques are based on the assump-
tion that activity is asynchronous and Poisson. For most pa-
rameter settings these assumptions are strongly violated; nev-
ertheless, so long as the networks are not too synchronous,
we find good agreement between mean field prediction and
network simulations. Thus, much of the intuition developed
for randomly connected networks in the asynchronous regime
applies to mildly synchronous networks.

Keywords recurrent network · synchronization · quadratic
integrate and fire neuron · theta neuron · random networks ·
mean field theory

1 Introduction

A long term goal in computational neuroscience is to under-
stand the relationship between network parameters – espe-
cially connectivity – and network behavior. This relation-
ship has been studied extensively in randomly connected
networks of excitatory and inhibitory neurons
(Amit and Brunel, 1997b,a; van Vreeswijk and Sompolin-
sky, 1998; Brunel, 2000; Latham et al, 2000a; Hansel and
Mato, 2001; Lerchner et al, 2006a,b; Renart et al, 2010;
Hertz, 2010), for which the following picture has emerged:
randomly connected networks can operate in a relatively
small variety of regimes, with the regime characterized mainly
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by the degree and type of synchrony (Brunel, 2000; Hansel
and Mato, 2001). Of these, only the completely asynchronous
regime (in which the cross-correlograms are vanishingly small)
is well understood quantitatively. This regime, however, is
hard to access in realistic networks: parameters have to be
carefully adjusted to reduce synchrony among neurons, and
it is next to impossible to eliminate synchrony altogether.
Therefore, here we ask: how well does analysis designed to
work in the asynchronous regime apply to synchronous net-
works? The answer, not surprisingly, depends on the degree
of synchrony. Somewhat more surprisingly, even when net-
works are reasonably highly synchronous, the asynchronous
analysis makes accurate quantitative predictions of the mean
firing rates of the excitatory and inhibitory populations, and
makes good qualitative predictions of the distribution of fir-
ing rates. Thus, even in the relatively synchronous regime,
we can rely on these models to provide intuition about the
dynamics of randomly connected excitatory and inhibitory
networks.

Our analysis is based on the quadratic integrate and fire
neuron (Ermentrout and Kopell, 1986; Ermentrout, 1996;
Gutkin and Ermentrout, 1998; Brunel and Latham, 2003),
chosen because it provides a very good description of the
spiking dynamics of type I neurons at low firing rate (Er-
mentrout and Kopell, 1986), and because there is a reason-
ably accurate analytic expression for the firing rate of these
neurons as a function of synaptic drive (Brunel and Latham,
2003). The analytic expression is available for essentially
arbitrary synaptic time constant; we took advantage of this
to test a range of synaptic time constants, and so broaden
the validity of our conclusions. Although we focus on the
quadratic integrate and fire neuron, our approach can be ex-
tended, at least in principle, to any single neuron model.
However, in most cases – especially those with conductance
based synapses – approximate schemes must be used to char-
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acterize the relationship between synaptic drive and firing
rate (Shriki et al, 2003).

Consistent with our goal of testing the validity of the
asynchronous assumption, when carrying out our analysis
we assume that spike trains emitted by any two neurons are
uncorrelated. With this assumption, the network equilibria
are fully described by a set of algebraic equations that re-
late the firing rate of each neuron to the firing rates of all
other neurons in the network. We solve them using a mean
field approach based on the self-consistent signal to noise
analysis of Shiino and Fukai (1992, 1993), and compare this
solution to simulations in a regime in which our assumptions
are violated, and the neurons are not asynchronous.

2 Mean field analysis of a network of quadratic
integrate and fire neurons

Our goal is to compute the distribution of firing rates in a
recurrently connected network of excitatory and inhibitory
neurons. Our starting point is a set of equations describing
the time evolution of the membrane potential of each neuron
in the network. We then proceeded in two steps. First, we re-
duce the time-dependent membrane potential equations to a
set of algebraic firing rate equations. Second, we solve them
using mean field techniques.

The first step depends critically on both the single neu-
ron model and the synaptic coupling. For the former we
use the quadratic integrate and fire neuron (Ermentrout and
Kopell, 1986; Ermentrout, 1996; Gutkin and Ermentrout,
1998). For the latter we use current-based synapses, and as-
sume that each spike produces an instantaneous rise in mem-
brane potential followed by an exponential decay (Koch,
1998). In the limit that the network is large – the limit of
interest here – this input is reasonably well approximated by
filtered white noise. Thus, to compute the firing rate of our
model neurons we simply need to compute the firing rate of
a quadratic integrate and fire neuron receiving filtered white
noise. Fortunately, the firing rate of such a neuron (or at least
an approximation to it) has been computed as a function of
the mean and variance of the fluctuating input (Brunel and
Latham, 2003).

The remainder of this section proceeds as follows: in
Sec. 2.1 we write down the equations describing the single
neuron dynamics, and provide an expression for the firing
rate; in Sec. 2.2 we write down the full network equations;
and in Sec. 2.3 we derive the mean field equations. Then, in
Sec. 3, we compare the predictions of our mean field model
to numerical simulations of the network equations.

2.1 Single neuron dynamics

Using V and h to denote the membrane potential of a neu-
ron and its synaptic drive, respectively, the single neuron
dynamics of a quadratic integrate and fire neuron receiving
fluctuating input can be written

τm

Vth −Vr

dV
dt

=
(V −V )2

(Vth −Vr)2 + µ + h(t) (2.1a)

τs
dh
dt

=−h+στ1/2
m ξ (t) . (2.1b)

Here τm and τs are the membrane and synaptic time con-
stants, respectively, Vr, Vth and µ are parameters that set
the neuron firing rate in the absence of the synaptic drive
(h(t) = 0), V is the voltage midway between the resting
membrane potential, Vr, and the threshold, Vth,

V ≡ Vr +Vth

2
, (2.2)

ξ (t) corresponds to Gaussian white noise,

ξ (t)ξ (t ′) = δ (t − t ′) , (2.3)

and σ sets the overall level of the noise. Here and in what
follows, an overline indicates an average over time. Because
of the quadratic dependence on V , the voltage can reach +∞
in finite time; when that happens, a spike is emitted, and
the voltage is reset to −∞. (To handle the infinities in our
numerical simulations, we change to angular variables; see
Appendix B.)

Poisson spikes at a sufficiently high firing rate produce
synaptic drive that corresponds approximately to white noise
(Walsh, 1981; Tuckwell, 1988). Thus, a neuron embedded in
a network in which each neuron receives a large number of
inputs, as is the case in our networks, with spike statistics
that are approximately Poisson would receive synaptic drive
that looks like white noise (as in Eq. (2.1b)). If we simply
assume that neurons are Poisson, we can compute both the
mean drive, µ , and the fluctuations in the drive, σ2, to any
particular post-synaptic neuron as a function of the firing
rates of its pre-synaptic neurons. Then, if we could compute
the firing rate of the postsynaptic neuron as a function of µ
and σ2, we could derive a set of algebraic equations whose
solution tells us the firing rate of every neuron in the net-
work. Unfortunately, it is not, as far as we know, possible to
compute the single neuron firing rate exactly. However, an
approximate expression for the firing rate exists (Brunel and
Latham, 2003). That approximate rate, denoted νQIF(µ ,σ2),
is given by

νQIF(µ ,σ2) =
ν0S +(τs/τm)

2ν0Lρ2S/ρ2L

1+(τs/τm)ρ2S +(τs/τm)2ρ2S/ρ2L

. (2.4)
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Fig. 1. Comparison of mean field predictions and simulated firing rates for a quadratic integrate and fire neuron. a. Firing rate versus µ and σ for
τm = 10 ms and τs = 1,10 and 100 ms. The left panel is from 10000 seconds of simulation of Eq. (2.1); the right panel from Eq. (2.4). b. Absolute
(left panel) and relative (right panel) error between the simulations and analytic expression. The relative error is thresholded at ±100%, to prevent
exposure of the least interesting errors, which were due to division by nearly zero firing rates. Superimposed on all images are thick horizontal
lines indicating the working range of our simulations – every line indicates the range of inputs to an excitatory (red) or inhibitory (blue) population
(hL ±3∆hL , see Eq. (2.13b)). The three pairs of lines correspond to the three networks we tested: the disconnected network (Fig. 5), exhibiting the
lowest σ ; the “default” network (Fig. 6), exhibiting intermediate σ ; and the strongly connected network (Fig. 7), exhibiting the highest σ .

The various quantities that appear in this expression depend
on µ and σ2 (a dependence that is suppressed for clarity) via

ν0S =
1

πτm

[∫ ∞

−∞

dξ
π1/2 exp

[
−µξ 2 −σ4ξ 6/48

]]−1

(2.5a)

ρ2S = πσ2 τmν0S

2

∫ ∞

−∞

dξ
π1/2 ξ 2 exp

[
−µξ 2 −σ4ξ 6/48

]
(2.5b)

ν0L =
µ1/2

πτm
(2.5c)

ρ2L =
σ2

16µ2 . (2.5d)

With a small amount of algebra, Eq. (2.4) reduces exactly to
Eq. (5.2) of Brunel and Latham (2003).

To determine how well the approximate expression given
in Eq. (2.4) captures the true firing rate, we performed sim-
ulations with a range of µ and σ2. The results are shown in
Fig. 1. Agreement is best when τs is small; deviations were
less than 1 Hz and, except at very low firing rates, relative
deviations were a few percent. Agreement got worse as τs

increased, with deviations up to 5 Hz for τs = 100 ms. How-
ever, as can be seen from the solid lines in Fig. 1, our net-
works mainly operate where the approximation is good. As
a result, even the largest inaccuracies (τs = 100 ms) have a
minor effect on firing rate distributions. Thus, we do not ex-
pect the fact that we have an approximate firing rate to have
much effect on the accuracy of our mean field theory.

2.2 Network equations

We now turn to a network of excitatory (E) and inhibitory
(I) neurons, which, in addition to recurrent interactions, re-
ceives excitatory input from an external population (X); see
Fig. 2. The network equations are very similar to Eq. (2.1);
the main difference (besides an explosion of subscripts) is
that the white noise term in Eq. (2.1b) is replaced by synap-
tic drive and an offset,
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Fig. 2. Network architecture. Red indicates excitatory connections,
blue indicates inhibitory connections. As in the main text, E, I and X
correspond to excitatory, inhibitory and external connections, respec-
tively.

τm

Vth −Vr

dVLi

dt
=

(VLi −V)2

(Vth −Vr)2 + µL + hLi(t) (2.6a)

τs
dhLi

dt
=−hLi + δ µLi (2.6b)

+ ∑
M=E,I,X

τm

K1/2
M

NM

∑
j=1

∑
l

Ji j
LM δ (t − tl

M j) .

Here Ji j
LM is the connection strength from neuron j of type

M to neuron i of type L (note that Ji j
LI is negative), NM is

the number of neurons of type M, KM is the average num-
ber of connections from neurons of type M, tl

M j is the time
of the lth spike emitted by neuron j of type M, and δ (·) is
the Dirac δ -function. The external neurons are taken to be
Poisson with constant firing rate νX. The factor K−1/2

M that
appears in Eq. (2.6b) ensures that for sufficiently large net-
works, the distribution of firing rates is independent of net-
work size (van Vreeswijk and Sompolinsky, 1998).

We take the connectivity matrix to be random and sparse,

Ji j
LM =

{
JLM(1+∆ ζ i j

LM) with probability ε
0 with probability 1− ε

(2.7)

where ∆ is the standard deviation of the nonzero synaptic
weights, and the ζ i j

LM are a set of uncorrelated, zero mean,
unit variance random variables, chosen so that the random-
ness does not cause the connection strength to change sign;
i.e., chosen so that 1+∆ ζ i j

LM ≥ 0. Note that the connection
probability, ε , is independent of neuron type, so KM = εNM .
Finally, we let δ µLi be a Gaussian random variable with vari-
ance ∆ 2

µL
,

δ µLi ∼ N (0,∆ 2
µL
) . (2.8)

A list of parameters for our default network is given in Ta-
ble 1. For some sets of simulations (Figs. 5-7), we varied
connections strengths; for others (Fig. 9), we varied network
size.

2.3 Mean field analysis

The first step in analyzing the network equations is to break
the synaptic drive in Eq. (2.6b) into time-independent and
temporally fluctuating pieces; the former contributes to the
mean synaptic drive (µ in Eq. (2.1a)), the latter to the fluc-
tuations in the synaptic drive (σ in Eq. (2.1b)). This gives
us

hLi(t) = hLi + δhLi(t) (2.9)

where, recall, an overline represents a time average. Averag-
ing Eq. (2.6b) over time, and noting that dhLi/dt = 0, we see
that

hLi = δ µLi + ∑
M=I,E,X

τm

K1/2
M

∑
j,l

Ji j
LM δ (t − tl

M j) . (2.10)

Computing the time average of the δ -functions is straight-
forward,

δ (t − tl
M j) = lim

T→∞

1
T

∫ T

0
dt ∑

l
δ (t − tl

M j) = νM j (2.11)

where νM j is the firing rate of neuron j of type M. The sec-
ond equality follows from the fact that the integral over time
counts spikes, and by definition firing rate is the number of
spikes divided by time. Inserting this expression into Eq. (2.10)
leads to

hLi = δ µLi + ∑
M=E,I,X

τm

K1/2
M

∑
j

Ji j
LM νM j . (2.12)

The dependence on index appears nontrivial. To deal
with it analytically, we make one of our main mean field ap-
proximations, which is that the term ∑ j Ji j

LM νM j can be treated
as a Gaussian random variable with respect to index i. Ac-
cording to the central limit theorem, this approximation is
valid if the terms in the sum, Ji j

LM νM j, are sufficiently weakly
correlated. We assume that they are; the extent to which our
results are consistent with simulations is a partial measure of
the validity of this approximation (it is only a partial mea-
sure because we make other approximations).

With the Gaussian approximation, Eq. (2.12) becomes

hLi = hL +∆hLηLi (2.13a)

hL ≡ ∑
M=I,E,X

K1/2
M JLMτmνM (2.13b)

where νM is the average firing rate of population M (see
Eq. (2.15a) below) and the ηLi are zero mean, unit variance
Gaussian random variables with respect to index i. We show
in Appendix A that the total variance, ∆ 2

hL
, can be expressed

in terms of network parameters as

∆ 2
hL
= ∆ 2

µL
+ ∑

M=E,I,X

J2
LM

(
1+∆ 2 − ε

)
τ2

mν2
M . (2.14)
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Parameter Value Description

τm 10 ms Membrane time constant
τs 1, 10 or 100 ms Synaptic time constant
µE, µI -0.25 Mean synaptic drive
∆ µE, ∆ µI 0.2 Standard deviation of synaptic drive
ε (=K/N) 0.1 Connection probability
∆ 0.2 Standard deviation of non-zero connection strengths
NE 16,000 Number of excitatory neurons
NI 4,000 Number of inhibitory neurons
NX 2,000 Number of external neurons
νX 15 Hz Mean firing rate of external neurons
JEE ,JEI ,JEX 0.25, -0.6, 1.2 Mean synaptic weights onto excitatory neurons
JIE ,JII ,JIX 0.35, -0.9, 1.5 Mean synaptic weights onto inhibitory neurons

Table 1. Default parameters used in the mean field calculations and simulations. Typical EPSPs for the default network range from 0.07 to 0.10
mV, and typical IPSPs from −0.35 to −0.52 mV. For our model, average PSP size from a cell of type L to a cell of type M is approximately equal
to (Vth −Vr)(τs/τm)

τm/(τm−τs)JLM/K1/2; see Eq. (14) of Latham et al (2000a) with E j replaced by Vth, Wi j replaced by JLM/K1/2, and r j set to 1.
For some sets of simulations, we changed the recurrent connections strengths (Figs. 5-7) and the number of neurons (Fig. 9).

The population averaged firing rate, νM, and the second mo-
ment of the firing rate, ν2

M , have natural definitions,

νM ≡ N−1
M ∑

j
νM j (2.15a)

ν2
M ≡ N−1

M ∑
j

ν2
M j . (2.15b)

We now turn to the second term in Eq. (2.9), δhLi(t).
Inserting Eq. (2.9) into (2.6b) and using Eq. (2.12) for hLi,
we find that δhLi(t) evolves according to

τs
dδhLi

dt
+ δhLi = ∑

M=E,I,X

τm

K1/2
M

∑
j

Ji j
LM

(
∑

l
δ (t − tl

M j)−νM j

)
.

(2.16)

To solve this equation, we need the temporal statistics of the
the right hand side. Consistent with our mean field approx-
imation, we assume that it is a Gaussian process, so all we
need is its covariance (by construction the time average is
zero). To compute that, we make two approximations: the
neurons are independent, and they fire with Poisson statis-
tics. Neither of these are totally accurate; spike times across
different neurons are correlated, and quadratic integrate and
fire neurons (like all realistic neurons) exhibit a refractory
period. Fortunately, though, the refractory period produces
relatively small errors in firing rates – so long as the rates
aren’t too high, the error is on the order of 10% (Deger
et al, 2012). And, because of almost complete cancellation
between excitatory and inhibitory synaptic drives, neurons
are only weakly correlated (Renart et al, 2010; Hertz, 2010).
Thus, while our mean field analysis won’t perfectly describe
the network, it should not be far off. Note that the alterna-
tive, computing the covariance structure self-consistently, is
hard, and typically requires network simulations (Lerchner
et al, 2006a,b).

With the independent Poisson assumption, the terms on
the right hand side of Eq. (2.16) consist of sums of Poisson
processes, each of which is δ -correlated. Thus, the sums are
δ -correlated, and, after a small amount of algebra (carried
out in Appendix A), we find that δhLi evolves according to

τs
dδhLi

dt
=−δhLi +σLτ

1/2
m ξLi(t) (2.17)

where ξLi(t) is δ -correlated white noise (see Eq. (2.3)), and
σ2

L is given by

σ2
L = ∑

M=E,I,X
J2

LM(1+∆ 2)τmνM (2.18)

(see Eq. (A.9)).
We can now rewrite Eq. (2.6) as a stochastic differen-

tial equation. Using Eq. (2.9) for hLi, Eq. (2.13b) for hLi and
Eq. (2.17) for the time evolution of δhLi(t), Eq. (2.6) be-
comes

τm

Vth −Vr

dVLi

dt
=

(VLi −V)2

(Vth −Vr)2 + µL + hL +∆hLηLi + δhLi(t)

(2.19a)

τs
dδhLi

dt
=− δhLi +σLτ

1/2
m ξLi(t) . (2.19b)

These equations are identical in form to the single neuron
dynamics given in Eq (2.1). Thus, we can use Eq. (2.4) to
write down the firing rate of any particular neuron,

νLi = νQIF

(
µL + hL +∆hLηLi,σ2

L

)
. (2.20)

Equation (2.20) gives us a set of equations for the firing
rates of the neurons. As such, it can give us the distribution
of firing rates, but it cannot tell us which neuron has which
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rate. However, for a randomly connected network the distri-
bution is all we need, since there is nothing to distinguish
one neuron from another.

Our approach to finding the firing rate distribution is il-
lustrated schematically in Fig. 3. For a given network, the
mean synaptic drive to the population of neurons is modeled
as a Gaussian distribution (bottom panel), with mean µL +hL

and variance ∆ 2
hL

. Assume for the moment that we knew hL

and ∆ 2
hL

, as well as the variance associated with the tempo-
ral fluctuations, σ2

L . We could, then, translate any particular
mean input to a firing rate via ν(µ) = νQIF (µ ,σ2

L ); more im-
portantly, we could translate the distribution of means (bot-
tom panel in Fig. 3) to the distribution of firing rates (left
panel).

We don’t, though, know hL, ∆ 2
hL

and σ2
L , as they depend

on the firing rate distribution. Fortunately, this dependence
is only via the first two moments: hL and σ2

L depend on the
first moments via Eqs. (2.13b) and (2.18), respectively, and
∆ 2

hL
depends on the second moments via Eq. (2.14). Thus, νE,

νI, ν2
E , and ν2

I , which constitute our order parameters, fully
determine hL, ∆ 2

hL
and σ2

L , and so they fully determine the
distribution of firing rates. To determine the values of νE, νI,
ν2

E , and ν2
I , we simply average over index. Fortunately, the

only dependence on index in Eq. (2.20) is through ηLi, which
is a zero mean, unit variance Gaussian random variable. In
the large N limit, we may, therefore, replace averages over
indices by integrals over continuous Gaussian variables; this
leads to

νk
L =

∫
dη

e−η2/2
√

2π
[
νQIF

(
µL + hL +∆hLη ,σ2

L

)]k
(2.21)

where k is either 1 or 2; k = 1 captures the first moment and
k = 2 captures the second. Once we know the moments of
the firing rate distribution, the second step – computing the
entire distribution – amounts to computing (numerically) the
integral

p(νL) =
∫

dη
e−η2/2
√

2π
δ
(
νL −νQIF

(
µL + hL +∆hLη ,σ2

L

))
.

(2.22)

Equation (2.21) constitutes our mean field equations for
the network; once solved, Eq. (2.22) gives us the distribu-
tion of firing rates. In the next section we compare the mean
field predictions of the the firing rate distributions with sim-
ulations. To help visualize the operating regime, we also
show nullclines in average firing rate space. These are con-
structed as follows. First we solve (numerically) Eq. (2.21)
with k = 2; that is, we solve for ν2

E and ν2
I in terms of νE and

νI. Once we do that we are left with mean field equations
for only the first moments, νE and νI. These correspond to
Eq. (2.21) with k = 1 and L set to either E or I. Because we
know how ν2

E and ν2
I depend on νE and νI, we can express
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Fig. 3. Computing the distribution of firing rates from the distribu-
tion of neuronal inputs. Bottom: (Gaussian) probability distribution
of mean input in a network of neurons. Middle: Firing rate of our
quadratic integrate and fire neuron, νQIF(µ ,σ 2) (Eq. (2.4)) as a func-
tion of input, µ , with σ 2 fixed at σ 2

L . Left: The probability distribution
over firing rate, p(ν), derived by mapping p(µ) through the nonlin-
earity ν = νQIF(µ ,σ 2

L ). The resulting distribution of firing rates, here
binned at 1 Hz, is non-Gaussian, The parameters µL, hL, ∆hL and σ 2

L

were set to the the mean field values for the excitatory neurons of the
default network; the resulting firing rate distribution is thus identical to
the top left plot in Fig. 6.

∆hL (the only term that depends on the second moments
of the firing rates) in terms of νE and νI. The two result-
ing equations for νE and νI represent curves in νE-νI space,
those curves are the excitatory (L=E) and inhibitory (L= I)
nullclines; see Wilson and Cowan (1972) and Latham et al
(2000a) for details on how they are constructed. For strongly
coupled networks operating in the balanced regime – pre-
sumably the regime of interest for the brain – they should
intersect where the slope of the excitatory nullcline is posi-
tive (van Vreeswijk and Sompolinsky, 1998).

3 Numerical results

When deriving our mean field equations, we assumed uncor-
related and Poisson spikes, constant firing rates, and white
noise synaptic drive, and we used an approximate expres-
sion for the firing rate. To determine the effect of these as-
sumptions and approximations, we performed network sim-
ulations. For all simulations we integrated Eq. (2.6), with the
added condition that a spike was emitted when the voltage
reached +∞, at which point it was reset to −∞. To avoid nu-
merical issues with the infinities, we made the change of
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Fig. 4. Activity of the default network. Top: Population averaged fir-
ing rate of excitatory (red) and inhibitory (blue) neurons. Note that the
network was not perfectly asynchronous (oscillations are visible). Mid-
dle: Spike rasters from sample neurons. There are four times as many
excitatory neurons as inhibitory ones, consistent with our network ar-
chitecture. Bottom: Membrane potential of a sample neuron.

variables V = V + (Vth −Vr) tanθ/2; see Appendix B. In
these variables, a spike is emitted when θ passes through
π . In addition, to speed up the simulations, we replaced the
external input (M = X in Eq. (2.6b)) with white noise; see
Appendix C.

We typically performed simulations with a set of three
“default” networks. These networks differed only in their
synaptic time constants, which were either 1, 10 or 100 ms;
in all cases the membrane time constant was 10 ms (see Ta-
ble 1). Figure 4 shows activity for the default network with
τs = 1 ms. The top plot shows the time-dependent popu-
lation averaged firing rate for the excitatory and inhibitory
neurons, with firing rate computed in 1 ms bins; the center
plot shows spike rasters from a subset of the neurons (with
blue for inhibitory neurons and red for excitatory ones); and
the bottom plot shows the membrane potential of a sample
neuron; it resembles spike trains recorded in vivo.

As an initial test of our mean field predictions, we con-
sidered networks of non-interacting neurons driven by ex-
ternal input approximated by white noise (see Eq. (C.1)).
These simulations test the approximate expression for the
firing rate given in Eq. (2.4). The results are shown in Fig. 5,
where we plot the predicted and observed distributions of
firing rates for the excitatory (left column) and inhibitory
(center column) neurons for a range of synaptic time con-
stants. The predicted firing rate distributions (thick lines in

the left and center panels) are close to the simulated ones,
as are the predicted and simulated mean firing rates (vertical
lines). In the right column, we plot the excitatory and in-
hibitory nullclines (the solutions to Eq. (2.21) with k = 1
and L = E and I, respectively) along with a 100 ms tra-
jectory of the population averaged excitatory and inhibitory
firing rates (binned at 1 ms). Consistent with the fact that
the populations are decoupled, the excitatory and inhibitory
nullclines are vertical and horizontal, respectively, and the
excitatory and inhibitory firing rates are uncorrelated. Over-
all, the close match between the predictions and simulations
indicates that the approximate firing rate (Fig. 1) will not be
a limiting factor in the accuracy of our mean field models.

Next we tested mean field predictions in a coupled net-
work – the default network given in Table 1. The results are
shown in Fig. 6. Unlike in our uncoupled networks, the exci-
tatory and inhibitory populations now interact, and the inter-
actions are strong enough that the firing rates are correlated
(right column). Nevertheless, the theoretical and simulated
firing rate histograms match reasonably well, with the best
matches at the shortest (τs = 1 ms, first row), and the longest
(τs = 100 ms, third row) synaptic time constants. The largest
mismatch between theory and simulation happens at τs = 10
ms, and mainly for the inhibitory neurons. The mismatch is
not so surprising given the average trajectory of firing rates
(right column), which – in violation of the asynchronous as-
sumption – exhibit strong synchronization. For all networks,
the theoretical prediction for the average firing rate is almost
identical to the value we get from simulations. This is true
even for τs = 10 ms, where the network exhibits strong syn-
chronization. This is a hint that, at least when it comes to
mean firing rates, our mean field theory is very robust.

How do our mean field equations hold up when the neu-
rons become synchronized? To address this question, we in-
creased the connection strengths, a manipulation that tends
to make the network more synchronous. In particular, we
doubled all recurrent connections; that is, we increased JLE

and JLI by a factor of two compared to what we used for
the default network. As can be see in Fig. 7, when τs = 1
and 10 ms, the networks became synchronized, as indicated
by the strong correlations in excitatory and inhibitory firing
rates (right panels). Not surprisingly, the theoretical and sim-
ulated firing rate distributions are now very different (about
as different as they were for τs = 10 ms in Fig. 6, which
was also fairly synchronized). Note, though, that again the
predicted and simulated population averaged firing rates are
very similar. For the long time constant network, τs = 100
ms, there was very little synchronization (the excitatory and
inhibitory rates were weakly correlated). Consistent with this,
there is a good match between theory and simulations.

To quantify how synchronization affects the accuracy
of our mean field model, we randomly varied the strengths
of the recurrent connections and plotted the match between
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Fig. 5. Histograms of firing rates in two populations of neurons of disconnected neurons. Parameters are from the default network, Table 1, except
that JLM = 0. Firing rates derived from the simulation are represented by the shaded region (population average ±1 standard deviation, nE = 16000,
nI = 4000); these were computed from 5 seconds of simulations and binned at 1 Hz. The gray area indicates the count error, n1/2

k /NL where nk is
the number of neurons with firing rates falling into the k-th bin. The solid lines are the histograms predicted by the mean field theory. Vertical lines
represent νE,νI; the dashed line is estimated from the simulations and the solid line from mean field theory. The right column shows the excitatory
and inhibitory nullclines, along with a 100 ms trajectory. Because the populations are uncoupled, the nullclines are orthogonal and the firing rates
are independent.

theory and simulations versus degree of synchrony. Specif-
ically, we let JKL → JKL(1 + 0.2ηKL), where ηKL is zero
mean, unit variance Gaussian noise. Similar to Brunel and
Hakim (1999), network synchrony, denoted S, was defined
to be the maximum cross-covariance between the instanta-
neous population averaged excitatory and inhibitory firing
rates, normalized by the population averaged firing rates,

S ≡ max
τ

∫ T

0

dt
T

(νE(t)−νE)(νI(t + τ)−νI)

νEνI

. (3.1)

Note that we have slightly abused notation: νE(t) and νI(t)
are the instantaneous population averaged excitatory and in-
hibitory firing rates, whereas νE and νI are the population
averaged firing rates with an additional average over time.
We compute the above integral by discretizing time into 1
ms bins.

In Fig. 8 we plot error versus synchrony (left column),
with colors corresponding to different synaptic time con-
stants (black for τs = 1 ms, red for τs = 10 ms, yellow for
τs = 100 ms). As predicted, the smaller the synchrony, the
better the match of theory to simulations. For large synaptic

time constants, all networks exhibited negligible synchrony,
and the theory worked very well. In the right column we plot
error versus firing rate. This plot shows two things: we ex-
plored a relatively large range of firing rates, and firing rate
alone is not a good predictors of error.

Finally, we investigate the effect of changing the size of
the network. We varied network size from 500 to 60,000
neurons, keeping all other parameters fixed to those of the
default network (see Table 1). In Fig. 9 we plot, in the top
panel, the degree of synchrony, S (Eq. (3.1)), versus network
size. Up to networks of around 4,000 neurons, synchrony
dropped steadily and consistently for the three synaptic time
constants tested (1, 10 and 100 ms). However, above 4,000
neurons, synchrony rose for the intermediate synaptic time
constant, τs = 10 ms. The initial decrease in synchrony is
probably associated with the decrease in fluctuations that
comes with a larger networks, as fluctuations tend to drive
oscillations around the fixed point. The subsequent rise for
larger networks is harder to explain. However, based on pre-
vious work (Brunel and Hakim, 1999; Rappel and Karma,
1996), we suspect it’s because fluctuations are a two-edges
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Fig. 6. Histograms of firing rates in two populations of neurons in a coupled network. Same as Fig. 5, except that the default network, Table 1,
is used with connections intact. Because the excitatory and inhibitory populations are now coupled, the nullclines are no longer orthogonal, and,
at least for τs = 1 ms and τs = 10 ms, the excitatory and inhibitory firing rates are correlated. Not surprisingly, the mean field predictions do not
match the simulations as well as in Fig. 5. For τs = 100 ms, however, excitatory and inhibitory rates are uncorrelated; consequently, the mean field
theory and simulations match better. This is a general trend in our data (see Figs. 7 and 8).

sword. On the one hand, they drive oscillations; on the other
hand, they act as a noise source which tends to decorrelate
neurons. At the intermediate synaptic time constant, τs = 10
ms, the asymptotic network state is probably an oscillatory
one, and those oscillations were being masked by the fluc-
tuations associated with finite size effects. As the size of the
network, and thus the size of the fluctuations, dropped, the
oscillations were uncovered.

In the middle and bottom panels of Fig 9 we plot the L1
norm of the firing rate distributions (described in the cap-
tion of Fig. 8). For synaptic time constants, τs, of 1 and 100
ms, the L1 norm decreases (implying our mean field predic-
tions are better) as the number of neurons increases (mid-
dle panel). When τs = 10 ms, however, our mean field pre-
dictions get worse at larger network sizes; this is consistent
with the increase in synchrony seen in the top panel. When
the L1 norm is plotted versus synchrony (bottom panel), the
story is simpler: the larger the synchrony, the larger the L1
norm, and the worse our mean field predictions. This plot
suggest that the degree of synchrony has a larger effect on
our mean field predictions than the network size. Similar,
though slightly more noisy, results are achieved for the mean
population activity (not shown).

4 Discussion

Using what are by now relatively standard mean field meth-
ods (Shiino and Fukai, 1992, 1993; Amit and Brunel, 1997a,b;
van Vreeswijk and Sompolinsky, 1998; Roudi and Latham,
2007), we computed the distribution of excitatory and in-
hibitory firing rates in large networks of recurrently con-
nected spiking neurons. Our main result is that we could as-
sume that activity was asynchronous and Poisson (assump-
tions that are clearly violated), and still get relatively good
agreement with network simulations – so long as the net-
work is not too synchronous; see Fig. 8. This indicates that
much of the intuition developed for these kinds of networks
– see in particular the seminal work of van Vreeswijk and
Sompolinsky (1998) – applies even in the mildly synchronous
regime. It should be noted, though, that all our analysis was
based on the quadratic integrate and fire neuron with current
based synapses. Whether our results apply to other single
neuron and synaptic models is an open – and, we believe,
interesting – question.

In our analysis we used current-based quadratic integrate
and fire neurons, chosen both because they are a good model
of type I neurons (Ermentrout and Kopell, 1986) and be-
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Fig. 7. Histograms of firing rates in a strongly coupled network. Same as Fig. 6 except that the recurrent connections, JKE and JKI , are increased
by a factor of two. As a result, network activity becomes even more synchronous, at least at τs = 1 ms and τs = 10 ms. Not surprisingly, the match
between the firing rate distribution computed from our mean field theory and from the simulations is not as good as it was in Figs. 5 and 6, although
the population averaged firing rates are not far off. Note, though, that the network is still desynchronized for the longest time constants τs = 100
ms. Here the mean field model does good job predicting the firing rate distribution, except at low firing rate, where the mismatch is explained by
the inaccuracy of our approximation of firing rate model (see Fig. 1).

cause there is a good approximate expression for their firing
rate given colored noise input (Brunel and Latham, 2003),
which in turn is a reasonably good approximation to synap-
tic input (Walsh, 1981; Tuckwell, 1988). While an equiva-
lent analytic treatment would be difficult for conductance-
based models and more realistic neurons, we do not expect
any major surprises: the nullclines, which ultimately govern
the range of network behavior, should be similar (Latham,
2002), and, as we have shown, even for relatively synchronous
firing the mean field model still provides a good description,
at least at the level of population averaged firing rates.

Although the random connectivity used here is a major
idealization, it is important for two reasons. First, it forms
the substrate upon which computations are built, and has
been shown to play a major role in determining exactly how
those computations are carried out (Latham et al, 2000a,b;
Salinas, 2003; Latham and Nirenberg, 2004; Roudi and Latham,
2007). Second, it leads naturally to the next question: would
mean field theory apply to networks with structured con-
nectivity, which are just as prone to oscillations as randomly
connected ones? Mean field theory has been applied to struc-
tured networks in a limited number of cases, (Amit and Brunel,

1997b,a; Latham and Nirenberg, 2004; Roudi and Latham,
2007), but a thorough understanding of such networks awaits
development.

A Statistics of the synaptic drive

In the main text we approximated hLi as a Gaussian random variable
with respect to index, i, and the right hand side of Eq. (2.16) as Gaus-
sian white noise. With this approximation, all we need are the variance
of hLi and the covariance of the right hand side of Eq. (2.16). Here we
compute those quantities.

We start with the variance of hLi, Eq. (2.12). To isolate the index-
independent and index-dependent terms, we write

Ji j
LM = εJLM +δ Ji j

LM (A.1)

where εJLM is the population averaged value of Ji j
LM (see Eq. (2.7)) and

δ Ji j
LM ≡ Ji j

LM − εJLM represents the index-dependent fluctuations around
that average (sometimes referred to as the quenched noise). Making
this substitution, using Eq. (2.15a) for the mean firing rate, and recall-
ing that ε = KM/NM, Eq. (2.12) becomes

hLi = hL +δ µLi +∑
M, j

τm

K1/2
M

δ Ji j
LM νM j (A.2)



How well do mean field theories of spiking quadratic-integrate-and-fire networks work in realistic parameter regimes? 11

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−2

10
0

10
2

ab
s(
ν−

Φ
)

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

L1

Synchrony

 

 

E: 1 ms I: 1ms E: 10ms I: 10ms E: 100ms I: 100ms

1 5 10 20 40 80
10

−4

10
−2

10
0

10
2

ab
s(
ν−

Φ
)

1 5 10 20 40 80
10

−2

10
−1

10
0

L1
Mean frequency [Hz]

 

 

E: 1 ms I: 1ms E: 10ms I: 10ms E: 100ms I: 100ms

Fig. 8. The match between mean field predictions and simulation gets worse as synchrony increases. Mean field theory prediction error for
excitatory (dots) and inhibitory (squares) populations. Colors indicate different synaptic time constants, and the pluses come from the default
network (Fig. 6), with red corresponding to excitatory neurons, and blue to inhibitory ones. The synchrony measure plotted on the x-axis is the
peak covariance between νE(t) and νI(t) (normalized by firing rates; see Eq. (3.1)). Top left: absolute difference between the simulated and
predicted population averaged firing rates (νE and νI). Bottom left: sum over bins of the absolute differences between the simulated and predicted
firing rate probability distributions, theory vs experiment (L1 norm; maximum value = 2). Top right: absolute difference between the simulated and
predicted population averaged firing rates (νE and νI), this time versus firing rate. Bottom right: L1 norm versus firing rate. Note that the degree of
synchrony does a good job predicting the accuracy of the mean field model, while the firing rate by itself does not.

where hL is given in Eq. (2.13b) and the sum is over M = E, I and X .
The last term in this expression is the sum of a large number of vari-
ables. The weights inside the sum are truly random, so if the firing rates
and the weights are sufficiently weakly correlated, this sum is a Gaus-
sian random variable with respect to index, i. Here we assume they
are, although this is clearly an approximation: the firing rates, νM j , are
functions of the connection strengths, and so the variables inside the
sum are not quite independent. However, in practice this is a good ap-
proximation, especially if ε (which is a measure of the sparseness of
the connectivity; see Eq. (2.7)) is small, something that tends to reduce
correlations. Given this approximation, and the fact that, by construc-
tion, the mean is zero, all we need is the variance. This variance (plus
the variance of δ µLi, which, by construction, is ∆ 2

µL
(see Eq. (2.8)), is

given by

∆ 2
hL

= ∆ 2
µL

+ ∑
M,M′ , j, j′

τ2
m

(KMKM′ )1/2 νM jνM′ j′
1

NL
∑

i
δ Ji j

LMδ Ji j′
LM′ (A.3)

where, as in Eq. (2.13a), we use ∆ 2
hL

for the total variance. When j �= j′

or M �= M′, in the large K limit the sum is approximately zero; when
j = j′ and M = M′, the sum over i is just the variance of Ji j

LM . Thus,
using Eq. (2.7) for the variance of Ji j

LM, Eq. (A.3) becomes, after a small
amount of algebra,

∆ 2
hL

= ∆ 2
µL

+∑
M

J2
LM

(
1+∆ 2 − ε

)
τ2

mν2
M (A.4)

where ν2
M is the second moment of the firing rate (Eq. (2.15b)).

We next compute the covariance of the right hand side of Eq. (2.16).
Using Cii′

LL′ (τ) to denote the covariance between neuron i of type L and

neuron i′ of type L′ at times separated by τ , we have

Cii′
LL′(τ) = ∑

M,M′ , j, j′

τ2
m

(KMKM′ )1/2 Ji j
LMJi′ j′

L′M′ (A.5)

×
〈

∑
l,l′
[δ (t − t l

j)−νM j][δ (t + τ − t l
j′)−νM′ j′ ]

〉
.

The angle brackets represent an average over the distribution of spike
times. Real neurons have a nontrivial correlational structure; if nothing
else, there is a refractory period. However, we ignore that and make
the approximation that the neurons are Poisson. In that case, as shown
by Rice (1954), and as is relatively easy to derive, the average over the
distribution of spikes yields〈

∑
l,l′
[δ (t − t l

j)−νM j][δ (t + τ − t l′
j′)−νM′ j′ ]

〉
= νM jδ (τ)δ j j′δMM′ (A.6)

where δi j is the Kronecker delta (δi j=1 if i= j and 0 otherwise). Thus,
Eq. (A.5) becomes

Cii′
LL′(τ) = δ (τ)∑

M, j

τ2
m

KM
Ji j

LMJi′ j
L′MνM j . (A.7)

Assuming, as usual, that the connections strengths are approximately
independent of the firing rates, we may average the connection strengths
and firing rates separately. Using Eq. (2.7) for the distribution of con-
nection strengths, we have

Cii′
LL′(τ) = δ (τ)τ2

m ∑
M

NM

KM
νM ∑

j
Ji j

LMJi′ j
L′M (A.8)

= δ (τ)τ2
m ∑

M

J2
LM

[
ε(1−δii′δLL′ )+(1+∆ 2)δii′δLL′

]
νM .



12 Agnieszka Grabska-Barwińska, Peter E. Latham
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Fig. 9. Effect of network size on the match between mean-field and
simulations. Default network, except that we varied the number of neu-
rons from 500 to 60,000 (with, as usual, a factor of four more excita-
tory neurons than inhibitory ones). The default size (20,000) is marked
with a dashed line. Color conventions are the same as in Fig. 8. Top:
as network size increases, the degree of synchrony drops for τs = 1
and 100 ms, but not for τs = 10 ms; see text for an explanation. Mid-
dle: The quality of our prediction improves for larger networks, unless
their activity synchronizes (as for τs = 10 ms, see above). Bottom: net-
work sizes are pooled and the L1 norm of the firing rate distribution
(as in Fig. 8) is plotted versus synchrony. Not surprisingly, the higher
the synchrony, the worse the prediction. Pluses come from the default
network (Fig. 6).

An important observation is that Cii′
LL′ (τ) is nonzero even when

i �= i′ and/or L �= L′. Thus, the driving terms for different neurons are
correlated; this in turn implies that spike times are correlated across
neurons. This would seem to imply that our independence approxima-
tion is badly violated. However, as shown by (Renart et al, 2010; Hertz,
2010), for balanced networks operating in the asynchronous regime,
correlations between excitatory and inhibitory neurons largely cancel,
leaving the mean correlation on the order of 1/N. Thus, in large net-
works the independence approximation tends to work relatively well.
This means we can focus on the autocorrelation, Cii

LL, which is some-
what simpler than the full covariance,

Cii
LL(τ) = δ (τ)τ2

m ∑
M

J2
LM(1+∆ 2)νM . (A.9)

This expression leads to Eqs. (2.17) and (2.18).

B Transforming from the quadratic integrate and fire
neuron to the θ -neuron

For quadratic integrate and fire neurons, action potentials are emitted
when the voltage reaches +∞, at which point the voltage is reset to
−∞. Integrating to infinity, however, poses a problem numerically. To
get around this, we make the change of variables

VLi =V +(Vth −Vr) tan(θLi/2) . (B.1)

This moves the points at VLi = ±∞ to θLi = ±π , and also removes the
singularities at ±∞. Inserting this into Eq. (2.6a) we see that θLi evolves
according to

τm
dθLi

dt
= (1− cosθLi)+(1+ cosθLi)(µL +µLi +hLi) . (B.2)

A spike is emitted when θLi = π , at which point it is reset to −π .

C White noise approximation to external input

To speed up the simulations, we use Gaussian white noise instead
of actual spike trains for the external input (the term with M = X in
Eq. (2.6b)). To do that, we make the replacement

τm

K1/2
X

∑
j,l

Ji j
LX δ (t − t l

X j)→ (C.1)

JLXτmνX

(
K1/2

X +(1+∆ 2 − ε)1/2ηLXi +

[
1+∆ 2

τmνX

]1/2

ξLXi(t)

)

where ηLXi is a zero mean, unit variance Gaussian random variable with
respect to index, i, ξLXi(t) is Gaussian white noise, and we assumed that
all the external neurons have the same firing rate νX (which allowed us
to replace (ν2

X )
1/2 with νX); see Eqs. (2.13b), (2.14) and (2.18).
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