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Abstract

Although each statistical unit on which measurements are taken is unique typically

there is not enough information available to account totally for its uniqueness.

Therefore heterogeneity among units has to be limited by structural assumptions.

One classical approach is to use random effects models, which assume that hetero-

geneity can be described by distributional assumptions. However, inference may

depend on the assumed mixing distribution and it is assumed that the random ef-

fects and the observed covariates are independent. An alternative considered here,

are fixed effect models, which let each unit have its own parameter. They are quite

flexible but suffer from the large number of parameters. The structural assumption

made here is that there are clusters of units that share the same effects. It is shown

how clusters can be identified by tailored regularized estimators. Moreover, it is

shown that the regularized estimates compete well with estimates for the random

effects model, even if the latter is the data generating model. They dominate if

clusters are present.

Keywords: Fixed effects, random effects, mixture modeling, heterogeneity.

1 Introduction

The modeling of heterogeneity is an important topic when observations are grouped or

clustered. The clustering can be due to repeated measurements over time, as in longi-

tudinal studies, or due to sub sampling of the primary sampling units in cross-sectional

studies. The assumption that units behave the same is usually much too restrictive and

strategies have to be found that take the heterogeneity of effects into account.
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Repeated measurements can be represented by (yij,xij), i = 1, . . . , n, j = 1, . . . , ni, where

yij denotes the response of unit i at measurement occasion j, and xij is a vector of

covariates that potentially varies across measurements. Data have the same form in

cross-sectional studies if they are collected in clusters or groups. For example, in a multi-

center treatment study, yij may denote the response of patient j in study center i. In the

terminology of multilevel models, the patients are the so-called first level units and the

study centers the second level units.

An application that will be considered in more detail later, deals with the effect of

beta blockers on the mortality after myocardial infarction, see also Aitkin (1999), Grün

and Leisch (2008a). In a 22-center clinical trial, for each center, the number of de-

ceased/successfully treated patients in control/test groups was observed. The binary

response (1 = deceased/0 = not deceased) suggests a logit model, which in its simplest

form is given by

logit P (yij = 1) = β0 + βT ⋅Treatmentij, i = 1, . . . ,22 Centers, (1)

where Treatmentij ∈ {−1,1} codes the treatment in hospital i for patient j (1: Treatment,

−1: Control). Model (1) does not account for the heterogeneity among the hospitals. The

treatment effect βT as well as the basic risk captured in β0 are assumed to be the same

for all hospitals. Of course, this is a very strong assumption that hardly holds.

The most popular model that incorporates heterogeneity is the random effects model. It

replaces the intercept β0 by β0 + bi0, yielding

logit P (yij = 1) = β0 + bi0 + βT ⋅Treatmentij, i = 1, . . . ,22 Centers, (2)

where bi0 is a random effect, for which a distribution is assumed, typically a normal

distribution, bi0 ∼ N(0, σ2
b). Implicitly, the hospitals are considered as a random sample

and the inference concerning the treatment effect should hold for the whole underlying

set of hospitals. One can go one step further and replace the treatment effect βT by

βT + biT , allowing for heterogeneity of treatments over hospitals. Random effects models

are a strong tool to model heterogeneity and a wide body of literature is available (see, for

example, Verbeke and Molenberghs, 2000; Molenberghs and Verbeke, 2005; Tutz, 2012).

However, the approach has several drawbacks. One is that inference on the unknown

distributional assumption is hard to obtain and the choice of the distribution may affect

the results, see, for example, Heagerty and Kurland (2001), Agresti et al. (2004), Litière

et al. (2007). In a more recent paper, McCulloch and Neuhaus (2011) give an overview

on results and discuss the impact of the random effects distribution. Another drawback

of the random effects model is that it is assumed that random effects and covariates

are uncorrelated with the effect that estimation accuracy suffers. In special cases, one

can use alternative estimators that are consistent, for example, conditional likelihood

methods (Diggle et al., 2002, Section 9.2.1) can be used for for canonical links. Also mixed
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effects models that decompose covariates into between- and within-cluster components

(Neuhaus and McCulloch, 2006; Grilli and Rampichini, 2011) can alleviate the problem

of poor estimates in specific settings.

Moreover, the widely used assumption of normally distributed random effects implicitly

assumes that all hospitals differ with respect to the basic risk and/or treatment effect.

In other words: hospitals with the same basic risk are not designated and the hospitals

themselves are not clustered. If one wants to investigate which hospitals show the same

characteristics concerning the risk of mortality while accounting for heterogeneity, random

effects models are not the best choice. Of course one can fit a random effects model, then

look for similar effects and refit, but this involves several steps of model fitting. If one

intends to detect clusters, this can be obtained more elegantly by allowing clusters from

the beginning.

An alternative that is considered here, are group-specific models which belong to the class

of fixed effects models. In this class of models, the effects are considered as unknown but

fixed. In the beta blocker data, the intercept β0 is replaced by the parameter βi0 and the

treatment effect is (potentially) replaced by βiT . The obvious disadvantage is that the

number of parameters increases. But, as will be shown, carefully tailored regularization

methods allow to reduce the number of parameters and to identify clusters of hospitals

with identical performance. In contrast to random effects models, in fixed effects models,

the inference refers to the given sample; that is, to the hospitals in the data set. The

second level units are not considered as representatives of an underlying population.

Thus, fixed effects models are especially useful when one is interested in the performance

of specific units.

The objective of the paper is to show that group-specific approaches in combination with

regularized estimates are an attractive alternative to existing approaches, in particular

in cases where the units themselves are of interest. They allow to identify clusters with

identical effects on the response, which is one of the major topics considered.

The paper is organized as follows: in Section 2, three approaches to model heterogeneity

are shortly sketched. In Section 3, we propose regularized estimates for group-specific

models. In Section 4, the performance of penalized group-specific models is investigated.

Section 5 gives some extensions on the simultaneous fusion of group-specific effects re-

lated to several covariates. In Section 6 and 7, data on beta blockers and on the math

performance of pupils in ten different schools in the U.S. are analyzed.

2 Modeling Heterogeneity

In the following, we consider methods that model heterogeneity. We start with methods

that are based on random effects; afterwards, we consider group-specific models, which

are most flexible but call for regularized estimation procedures.
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2.1 Random Effects Models

Let the observations be given as yij, where j denotes an observation in the second level

unit i, i = 1, . . . , n, j = 1, . . . , ni. In addition, let xTij = (1, xij1, . . . , xijp) be a covariate vec-

tor associated with fixed effects and zTij = (zij1, . . . , zijq) be a covariate vector associated

with random effects.

The structural assumption in a generalized linear mixed effects model (GLMM), specifies

that the conditional means µij = E(yij ∣bi,xij,zij) have the form

g(µij) = xTijβ + zTijbi = ηparij + ηrandij , (3)

where g is a monotonic and continuously differentiable link function and ηparij = xTijβ is

a linear parametric term with parameter vector βT = (β0, β1, . . . , βp), which includes an

intercept. The second term, ηrandij = zTijbi, contains the random effects that model the

heterogeneity of the second level units. For the random effects, one assumes a distribu-

tional form, typically a normal distribution, bi ∼ N(0,Q), with covariance matrix Q.

In a GLMM, the distributional assumption for yij ∣bi,xij,zij is of the exponential family

type f(yij ∣xij,bi) = exp{(yijθij − κ(θij))/φ+c(yij, φ)}, where θij = θ(µij) denotes the nat-

ural parameter, κ(θij) is a specific function corresponding to the type of the exponential

family, c(⋅) is the log-normalization constant and φ the dispersion parameter (compare

Fahrmeir and Tutz, 2001). Moreover, it is assumed that the observations yij are condition-

ally independent with means µij = E(yij ∣bi,xij,zij) and variances var(yij ∣bi) = φυ(µij),
where υ(⋅) is a known variance function.

The focus of the random effects models is on the fixed effects; the distribution of the

random effects is mainly used to account for the heterogeneity of the second level units.

Although it is the most popular model that accounts for heterogeneity, it has some draw-

backs. The assumption of a specific distribution for the random effects may affect the

inference. In particular, if the distributional assumption is far from the data generating

distribution, inference can be strongly biased. Moreover, assuming a continuous distri-

bution prevents that the effects of units can be the same. Therefore, by assumption, no

clustering of units is available. One further aspect is that it is assumed that the random

effects and the covariates observed per second level unit are independent; a criticism

that has a long tradition, in particular in the econometric literature, see, for example,

Mundlak (1978).

2.2 Group-Specific Models

An alternative to random effects models are fixed effects model. They model heterogeneity

by using a parameter βi instead of the random effect. In repeated measurements studies,

they are also called subject-specific models; in cross-sectional studies, one might prefer

the term group-specific, which is used in the following. For the link between explanatory
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variables and the mean µij = E(yij ∣xij,zij), the group-specific model assumes

g(µij) = xTijβ + zTijβi. (4)

The model specifies that each group or second-level unit has its own vector of coef-

ficients βTi = (βi0, . . . , βiq), i = 1, . . . , n, which represents weights on the vector zTij =
(1, zij1, . . . , zijq). The problem with these models is that the large number of param-

eters can render the estimates unstable and encourage overfitting. Typically, there is

not enough information available to distinguish among all the units; but under the as-

sumption that observations form clusters with respect to their effect on the response, the

number of parameters can be reduced and estimates are available. In contrast to com-

mon approaches, we assume that zij is not a subset of xij in order to avoid identifiability

problems.

The group-specific term in the model (4) can also be seen as a varying-coefficient term.

It represents the interaction between the variables in zij and the groups. Let us consider

the model with group-specific intercepts,

g(µij) = xTijβ + βi0,
where zij = 1, in more detail. Let the groups in {1, . . . , n} be coded by the dummy

variables xC(1), . . . , xC(n), where xC(i) = 1 if C = i, xC(i) = 0, otherwise. Then the model

can be written as

g(µij) = xTijβ + xC(1)β10 + . . . + xC(n)βn0.
Since the intercept depends on the groups, it is a model where the effect modifier is a

factor. In this case, only the variable zij = 1 is modified. In the general case, the model

has the form

g(µij) = xTijβ + xC(1)zTi1β1 + ⋅ ⋅ ⋅ + xC(n)zTinβn,
where the products of z-variables and the dummies for the groups represent the interaction

terms. Then, the factor “group” modifies the effects of all the the z-variables. It should

be noted that the dummy variables used to denote the group are given as 0-1 variables

without a reference category.

2.3 Random Effects Models Versus Group-Specific Models

The comparison of random effects models and group-specific model, which are also called

fixed effects models, has a long tradition. More recently, Townsend et al. (2013) sum-

marized much of the work that has been done concerning the choice between random

and fixed effects. There are various criteria that can be used when comparing the two

approaches.

One advantage of fixed effects models refers to the underlying assumptions. The assump-

tions in fixed effects models are weaker because in contrast to random effects models,
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conditional independence between the covariates and the groups has not to be postu-

lated. Although this does not mean that the model is more robust to other violations of

the model (see Townsend et al., 2013), it should suffer less from the violation of condi-

tional independence between the covariates and the groups.

What is often considered as a drawback of fixed effects models is the reduced efficiency

of estimates. The problem is that for a large number of groups, the number of degrees of

freedom is consumed by the fixed effects. With 60 groups, the fixed effects model with

a group-specific intercept and one explanatory variable has 61 parameters, whereas the

random intercept model contains one intercept, one slope parameter and requires only

one parameter for the heterogeneity, namely σb = var(bi). But the effective degrees of

freedom is typically larger. Ruppert et al. (2003) considered the linear random effects

model

yij = β0 + bi + βxij + εij,
with σb = var(bi) and σε = var(εij). Then, the vector of fitted values can be written as

ŷ =H0y +Hby +Hxy, where H0 refers to the intercept, Hb to the random effects and

Hx to the predictors xij. The hat matrices yield the effective degrees of freedom for

the components of the model as df0 = tr(H0), dfb = tr(Hb), dfx = tr(Hx). One obtains

df0 = dfx = 1; for balanced designs with ni =m for all i, it holds that

dfb = (n − 1)m
m + σ2

ε/σ2
b

.

Thus, the effective number of parameters depends on the ration σ2
ε/σ2

b . In the extreme

case σ2
b = 0, one obtains a model with two parameters, namely the intercept and the

slope; in the case σ2
b → ∞, one obtains the fixed effects model with n + 1 parameters.

Therefore, the random effects model can be seen as a compromise between these extreme

cases and the fixed model itself represents an extreme case of the random effects model.

The closeness to the fixed effects model is determined by the ratio of within-group and

between-group variance components. The possibly large number of parameters of the

fixed effects model has led to several recommendations to use the fixed effects model, in

particular when there are few groups and moderately large numbers of observations in

each, see, for example, Goldstein (2011). However, this restriction does not hold for the

approach advocated here. An advantage of the approach is that the number of parameters

of the fixed model is implicitly reduced by assuming that the groups form clusters. With

the methods considered in Section 3, the cluster-effects can be efficiently estimated.

Moreover, the potential loss of efficiency has to be weighted against the bias reduction

obtained by the fixed effects model. By adding group-specific indicators as explanatory

variables, the fixed effects model controls for all sorts of confounders. That means, in the

clinical trial example, it controls for all the confounding variables such as different sizes

and different patient populations of the centers.
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One further issue in the comparison of fixed effects and random effects models is that the

former postulate that the x-variables have to vary across first-level units. If the x-variables

are split into (xTi ,xTij) with the first component representing explanatory variables on the

group level, in the corresponding model g(µij) = βi0+xTi β1+xTijβ2+zTijβi the term xTi β1

can be absorbed in the fixed effect βi0. Thus, in the classical fixed effects model, group-

specific explanatory variables cannot be included. This is considered a disadvantage of

fixed effects models. However, if regularized estimates as considered in Section 3 are

used, also the effects of group-specific explanatory variables can be estimated. We will

not consider this in detail here, but refer to Tutz and Schauberger (2014) for an example.

2.4 Finite Mixture Models

An alternative approach to identify clusters in multilevel models is based on finite mix-

tures. As a competing approach, it is sketched briefly and will be included in our sim-

ulation settings. In finite mixtures of generalized linear models, it is assumed that the

density or mass function of observation y given x is a mixture

f(y∣x) = K∑
k=1πkfk(y∣x,βk, φk), (5)

where fk(y∣x,βk, φk) represents the k-th component of the mixture that follows a sim-

ple exponential family parameterized by the parameter vector from the model µk =
E(y∣x, k) = h(xTβk) with response function h(⋅) and the dispersion parameter φk. The

unknown component weights follow ∑Kk=1 πk = 1, πk > 0, k = 1, . . . ,K.

For hierarchical settings, the components can be linked to the second level units. Let

C = {1, . . . , n} denote the set of units that are observed. Then, one specifies one model

for the k-th component

g(µij) = βk(i) +xTijβ,
where βk(i) denotes that the component membership is fixed for each second level unit,

that is, βk(i) = βk for all i ∈ Ck, where C1, . . . ,CK is a disjunct partition of C. Therefore,

the units are clustered into subsets with identical intercepts with the total vector of

coefficients being given by αT = (β1, . . . , βK ,βT ).
Mixture models were, for example, considered by Follmann and Lambert (1989), and

Aitkin (1999). An extensive treatment was given by Fruehwirth-Schnatter (2006). Foll-

mann and Lambert (1989) investigated the identifiability of finite mixtures of binomial

regression models and gave sufficient identifiability conditions for mixing at the binary

and the binomial level. Grün and Leisch (2008b) consider identifiability for mixtures of

multinomial logit models and provide the R package flexmix with various applications

(Grün and Leisch, 2008a).

For the estimation of mixture models with a fixed number of mixture components, typ-

ically, the EM-algorithm is employed. The number of mixture components is chosen in
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a second step, for example, by information criteria. Regularization methods for mixture

models are in its infancy and focus on the selection of variables (Khalili and Chen, 2007;

Städler et al., 2010). However, regularization techniques for the selection of the mixture

components and therefore the clustering of second level units with respect to their effects,

seem not yet available.

3 Regularized Estimation for Group-Specific Models

The basic concept to enforce the clustering of second-level units according to their effect

strengths, is penalized maximum likelihood (ML) estimation. Let all the parameters

be collected in αT = (βT ,βT1 , . . . ,βTn), with βi, i = 1, . . . , n, denoting the group-specific

parameters. Instead of maximizing the log-likelihood, one maximizes the penalized log-

likelihood

lp(α) = l(α) − λJ(α),
where l(α) denotes the familiar unpenalized log-likelihood, the parameter λ is a tuning

parameter, and J(α) is a penalty term that enforces clustering of second-level units. The

choice of the penalty is crucial because it determines the clusters to be found.

For simplicity, we first assume group-specific intercepts only; that is, the model is given

by g(µij) = xTijβ + βi0, i = 1, . . . , n. Then, a specific penalty term that enforces clustering

is given by the pairwise differences of group-specific coefficients:

J(α) = ∑
r>m ∣βr0 − βm0∣. (6)

The effect of the penalty is seen by looking at the extreme values of the tuning parameter

λ. If λ = 0, one obtains the unpenalized estimates of α and each second-level unit has

its own intercept. If λ →∞, the penalty enforces that the estimates of all group-specific

intercepts are the same. Then, the second level units form one cluster with the same

intercept. Penalty (6) is a specific version of the fused lasso, which has been considered

by Tibshirani et al. (2005) for ordered predictors. The use for categorical predictors has

been propagated by Bondell and Reich (2009) for factorial designs and as a selection tool

by Gertheiss and Tutz (2010).

In the general case with q covariates zTij = (1, zij1, . . . , zijq), one uses the pairwise differ-

ences of all group-specific coefficients

J(α) = q∑
s=0∑r>m ∣βrs − βms∣. (7)

The penalty enforces that for λ → ∞, all the estimated group-specific parameters of a

covariate s are the same, that is, β1s = . . . = βns = βs. Hence, for λ → ∞, there is one

global parameter βs per covariate.

If zij is a subset of xij, the model is not identifiable. For this reason in our representation

zij is not a subset of xij. A representation of this form can always be obtained. Let xij be
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partitioned into xTij = (zTij,wT
ij) and accordingly β into βT = (βTz ,βTw). Then the model

with group-specific effect on zij only is

g(µij) = zijβz +wT
ijβw + zTijβ̃i,

where, for identifiability, some constraint on the vectors β̃i is needed, for example, ∑i β̃i =
0. But the model can also be given as

g(µij) =wT
ijβw + zTij(βz + β̃i) =wT

ijβw + zTijβi,
where zij is not a subset of wij and the parameters βi = βz + β̃i are not restricted.

Adaptive versions of Lasso-type penalties have been shown to have better properties in

terms of variable selection. For the basic Lasso, this has been demonstrated by Zou

(2006); for categorical predictors, similar results were obtained by Bondell and Reich

(2009) and Gertheiss and Tutz (2010). With wrms = ∣β̃rs − β̃ms∣−1 where β̃rs denotes

an
√
n-consistent estimate as the ML estimate, one obtains an adaptive version of the

penalty given by

J(α) = q∑
s=0∑r>mwrms∣βrs − βms∣. (8)

The effect of the adaptive weights wrms is that for a very small value ∣β̃rs − β̃ms∣, the

weights become very large, such that estimates of βrs and βms have to be similar because

otherwise the penalty term itself becomes huge. As group-specific models can be seen as

varying coefficient models, the adaptive weighting allows to prove asymptotically normal

estimates and asymptotically consistent variable selection (for details, see, Oelker et al.,

2014). It should be noted that asymptotic properties are available for a fixed number of

second level units whereas for mixed models, large sample theory requires an increasing

number of second level units.

3.1 Computational Issues

The proposed penalties are L1-type penalties on differences of parameters. A general

scheme to obtain penalized estimates that are built from linear combinations of parame-

ters was proposed by Oelker and Tutz (2013). It is based on a quadratic approximation

of the penalty as proposed earlier by Fan and Li (2001). The basic idea is to approx-

imate the absolute values such that the approximated objective is differentiable. Then

for the approximated penalty a penalized iteratively re-weighted least squares (PIRLS)

is derived. Penalty (7) does perfectly fit into this framework. The results presented here

are obtained with the corresponding R package gvcm.cat (Oelker, 2013).

3.2 Choice of Tuning Parameters

A common way to obtain data driven tuning parameters is cross-validation. However,

cross-validation based on omitting vectors of observations yTi = (yi1, . . . , yini
), will not
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work as excluding second level observations changes the model. Assume, for example,

a simple model with group-specific intercepts, g(µij) = βi0 + xTijβ. If the vector yi is

excluded from the data set, the parameters βi0 change their values, and, more severe, when

predicting the outcome for the omitted observation yi, no estimate of βi0 is available.

Therefore, it is preferable to use cross-validation methods that allow to estimate the

group-specific effects of all observations. One strategy is to exclude only parts of the

measurements observed for unit i. When using the observation yi for validation, one

randomly selects components from the vector yTi = (yi1, . . . , yini
) to obtain sub-vectors

yi1 and yi2 . The first one is kept in the learning sample while the last one is used in

the validation sample. In k-fold cross-validation, all the observations that are used for

validation are split into sub vectors, and only the first one is used in the learning sample.

In order to obtain stable estimates, the first sub vectors to be used in the learning sample

have to be sufficiently long.

Alternatively, the tuning parameters can be estimated by a generalized cross-validation

(GCV) criterion, as proposed, for example, by O’Sullivan et al. (1986). The criterion

avoids that the data have to be split into a learning and a test data set. However, it

requires to estimate the degrees of freedom of the model.

4 Numerical Experiments

There are basically two situations in which the proposed fixed effects approach is of special

interest: when one can assume that the second level units build clusters that shall be

detected or when the assumptions for the random effects model are not fulfilled. Hence,

in this section, there are two basic distinctions: whether the assumptions for a mixed

model do hold and whether there are clusters or not.

Data with Correlation Between Predictor and Group-Specific Effects

To break the mixed model assumptions, we consider data with so-called level 2 endo-

geneity, which means that a correlation between the group-specific effect βi0, the random

effects bi0 respectively, and the coefficients xij is present. Correlations of this type cause

biased estimates when the mixed model is fitted; see Grilli and Rampichini (2011), for

examples with Gaussian responses.

To generate the data, we consider the joint distribution of (βi0,xTi ). Assume a multi-

variate normal distribution for (βi0,xTi ) with ρ = corr(β0i, xij) ≠ 0. Unfortunately, the

covariance matrix of this distribution is not necessarily positive definite for arbitrary

values of corr(xij, xik), j ≠ k. Therefore, we apply a sequential procedure that is based

on two-dimensional distributions: In a first step, βi0 is generated by βi0 ∼ N(µ0, σ2
0). In

a second step, ni univariate standard normal variables xij are drawn and transformed

according to the bivariate normal distribution of βi0 and xij. In an exemplary setting
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K = 5, intercepts
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K = 5, slope
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Figure 1: Squared errors for the settings with Gaussian response and βi0 ∼ N(1,4) (GN).

The number of clusters K varies with the rows. The left panel relates to the intercepts,

the right panel to the slopes. ρ = 0.0, ni = 10.

for ρ = 0.8, the average empirical correlation of βi0, xij based on 1000 replications was

0.8016 (n = 30, ni = 10, µ0 = 1, σ2
0 = 4, µx = 0, σ2

x = 1). The average range of corr(xij, xik),
j ≠ k, was (0.4255,0.8105). In an alternative setting, we consider skewed distributions

for βi0. In this case, the joint distribution of (βi0,xTi ) is not multivariate normal but the

sequential procedure can be applied with small modifications. Let, for example, βi0 be

drawn from a χ2-distribution. The transformations to obtain xij are the same as before

but refer to the empirical counterparts of µ0 and σ2
0. With βi0 ∼ χ2

3, βi0 centered such

that µ0 = 1, and the same parameters as in the exemplary setting above, the average

empirical correlations behave the same as for βi0 ∼ N(1,4).
Clustered Second Level Units

To construct clustered second level units, the group-specific intercepts βi0 are ordered

by size and assigned to clusters C1, . . . ,CK . If one considers n = 30 second level units
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K = 30, intercepts

●

●●●

●

●
●●●●●●

●
●

●

●

●
●●●
●●●

●

●

●●

●

●

●●
●

50
10

0
15

0
20

0

V30E, mse.int

sq
ua

re
d 

er
ro

rs

F

FL1
, C

V

FL1
, G

CV

FL1
a,

 C
V

FL1
a,

 G
CV

FL1
a,

 C
V,

 R

FL1
a,

 G
CV,

 R M
AIC BIC
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K = 15, intercepts
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K = 15, slope
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K = 5, intercepts
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K = 5, slope
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Figure 2: Squared errors for the settings with Gaussian response and βi0 ∼ N(1,4) (GN).

The number of clusters K varies with the rows. The left panel relates to the intercepts,

the right panel to the slopes. ρ = 0.8, ni = 10.

in which K = 5 clusters are to be generated, each cluster contains six group-specific

intercepts; the six smallest in the first cluster, and so forth. Then, the mean of a cluster

yields the cluster specific intercept βk0, k = 1, . . . ,K. If one wants level 2 endogeneity as

well as clustered second level units, the second level units are generated as described and

clustered afterwards.

4.1 Settings

To illustrate that the proposed method works well, simulation settings are varied system-

atically. In the first set of settings, the response is Gaussian. The model contains the

group-specific intercepts βi0 or random intercepts bi0, respectively, and only one covariate

xij ∼ N(0,1) with impact β1 = 2. The distribution of the subject specific intercepts is ei-

ther symmetric or skewed: βi0 ∼ N(1,4) or βi0 ∼ χ2
3, where the χ2-distribution is centered

such that µb = 1. In all settings, n = 30; the number of clusters K in the second level
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Random

Intercepts F FL1,
C
V

FL1,
G
C
V

FL1a
, C

V

FL1a
, G

C
V

FL1a
, C

V
, R

FL1a
, G

C
V
, R

M A
IC

B
IC

Gaussian K = 30 ρ = 0 FP - - - - - - - - - -

FN 0.00 0.06 0.04 0.12 0.11 0.23 0.25 0.00 0.60 0.81

ρ = 0.8 FP - - - - - - - - - -

FN 0.00 0.73 0.07 0.22 0.14 0.40 0.29 0.00 0.95 1.00

K = 15 ρ = 0 FP 1.00 0.52 0.93 0.79 0.83 0.61 0.62 1.00 0.11 0.02

FN 0.00 0.47 0.05 0.17 0.13 0.35 0.31 0.00 0.84 0.98

ρ = 0.8 FP 1.00 0.25 0.92 0.74 0.83 0.55 0.61 1.00 0.04 0.00

FN 0.00 0.74 0.07 0.21 0.14 0.39 0.30 0.00 0.95 1.00

K = 5 ρ = 0 FP 1.00 0.70 0.94 0.80 0.84 0.64 0.61 1.00 0.19 0.04

FN 0.00 0.27 0.04 0.13 0.11 0.27 0.27 0.00 0.68 0.92

ρ = 0.8 FP 1.00 0.27 0.93 0.79 0.82 0.56 0.61 1.00 0.05 0.00

FN 0.00 0.73 0.06 0.15 0.12 0.37 0.27 0.00 0.93 1.00

χ2
3 K = 30 ρ = 0 FP - - - - - - - - - -

FN 0.00 0.13 0.04 0.17 0.13 0.32 0.29 0.00 0.71 0.87

ρ = 0.8 FP - - - - - - - - - -

FN 0.00 0.60 0.06 0.15 0.12 0.36 0.29 0.00 0.93 1.00

K = 15 ρ = 0 FP 1.00 0.73 0.94 0.81 0.84 0.61 0.63 1.00 0.15 0.04

FN 0.00 0.25 0.05 0.15 0.13 0.31 0.27 0.00 0.75 0.93

ρ = 0.8 FP 1.00 0.47 0.94 0.79 0.82 0.59 0.62 1.00 0.07 0.00

FN 0.00 0.52 0.05 0.15 0.12 0.33 0.27 0.00 0.90 1.00

K = 5 ρ = 0 FP 1.00 0.75 0.93 0.79 0.83 0.63 0.61 1.00 0.16 0.04

FN 0.00 0.23 0.04 0.15 0.11 0.28 0.28 0.00 0.70 0.91

ρ = 0.8 FP 1.00 0.39 0.93 0.78 0.83 0.59 0.62 1.00 0.09 0.00

FN 0.00 0.61 0.06 0.18 0.12 0.35 0.29 0.00 0.88 1.00

Table 1: Estimates of FP and FN rates for the settings with Gaussian response, ni = 10.

units varies: K ∈ {30,15,5}. Settings with and without level 2 endogeneity are considered

(ρ = 0.8 vs. ρ = 0.0). Moreover, the number of first level observations is varied; it is either

ni = 10 or ni = 5. Since the variance of the responses determines the effective degrees

of freedom, it has to be chosen carefully. We used the standard deviation σε = 6, which

yields effective degrees of freedom equal to 15.20 in the mixed model with ni = 10, and

equal to 10.35 in the mixed model with ni = 5. Thus, one is not too close to the fixed

model (σ2
0 →∞) but far away from the case without variation of the intercept.

As discrete distribution, we use the binomial distribution. The generation of the pre-

dictors is roughly the same, but some parameters are changed. The slope parameter is

chosen as β1 = 0.3 and βi0 ∼ N(µ0 = −0.3, σ2
0 = 4) or bi0 ∼ χ2

3; in the latter case, βi0 is

centered such that µ0 = 1. Because for a binomial model, n = 30 is huge, estimates for

the unrestricted fixed effects model are quite unstable or do not exist; therefore, they are
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K = 30, slope
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K = 15, intercepts
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K = 15, slope
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K = 5, intercepts
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K = 5, slope
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Figure 3: Squared errors for the settings with binomial response and βi0 ∼ χ2
3 (Bχ2).

The number of clusters K varies with the rows. The left panel relates to the intercepts,

the right panel to the slopes. ρ = 0.0, ni = 10.

omitted. Accordingly, if adaptive weights are used, they do not rely on the unrestricted

estimates but on an estimate obtained with a small ridge penalty.

For each setting, the mixed model approach, the finite mixture approach of Section 2.4

and the proposed penalized group-specific models are compared. For the penalized ap-

proaches, the tuning parameter λ is chosen by 5-fold cross-validation with the deviance

(dev) as loss criterion. As binomial settings are usually more sensitive to the selection of

folds, the GCV criterion is considered as an alternative. The random effects model are

estimated by a restricted maximum likelihood approach (REML) implemented in the R

package lme4 (function lmer; R Core Team, 2014; Bates et al., 2013). The finite mixture

models are estimated by R package flexmix (Grün and Leisch, 2008a).

Accuracy of the estimation of parameters is measured in terms of the mean squared error

(MSE) of coefficients of all nrep = 100 replications. In the case of mixed models, the MSEs

relate to the sum of fixed and random intercepts. If second level units are clustered, the

14
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K = 30, slope
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K = 15, intercepts
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K = 5, intercepts
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K = 5, slope
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Figure 4: Squared errors for the settings with binomial response and βi0 ∼ χ2
3 (Bχ2).

The number of clusters K varies with the rows. The left panel relates to the intercepts,

the right panel to the slopes. ρ = 0.8, ni = 10.

“right” units should be merged; that is, the rate of falsely fused units should be low

(false negatives/FN). The rate of units that should be in one cluster but are not (false

positives/FP) should be small likewise; however, high FP are assessed less severe than

FN. Of course, when the second level units are not clustered, FP rates are not defined.

4.2 Results

In this section, we present the results of selected scenarios; the results of other scenarios

are available in the Appendix. In the Figures to follow, “F” stands for the fixed effects

model, “FL1” denotes the L1-penalized estimates and “FL1a” the adaptive L1-penalized

estimates. “M” stands for the mixed model, “AIC” and “BIC” for the finite mixture

models with the respective model selection criterion. “CV” indicates that the penalty

parameter is chosen by the 5-fold cross-validation; “GCV” denotes the use of the GCV

criterion. If there is an additional “R”, the penalty parameter is chosen with an additional
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Random

Intercepts FL1,
C
V

FL1,
G
C
V

FL1a
, C

V

FL1a
, G

C
V

FL1a
, C

V
, R

FL1a
, G

C
V
, R

M A
IC

B
IC

Gaussian K = 30 ρ = 0 FP - - - - - - - - -

FN 0.04 0.04 0.08 0.08 0.17 0.13 0.00 0.39 0.47

ρ = 0.8 FP - - - - - - - - -

FN 0.14 0.03 0.15 0.15 0.47 0.22 0.00 0.71 0.88

K = 15 ρ = 0 FP 0.75 0.77 0.65 0.65 0.49 0.60 1.00 0.19 0.13

FN 0.08 0.07 0.11 0.11 0.22 0.14 0.00 0.39 0.48

ρ = 0.8 FP 0.87 0.89 0.67 0.67 0.44 0.58 1.00 0.20 0.12

FN 0.04 0.02 0.13 0.13 0.32 0.18 0.00 0.49 0.66

K = 5 ρ = 0 FP 0.82 0.83 0.70 0.71 0.57 0.65 1.00 0.21 0.12

FN 0.03 0.02 0.05 0.05 0.10 0.06 0.00 0.27 0.36

ρ = 0.8 FP 0.88 0.88 0.68 0.68 0.45 0.61 1.00 0.18 0.14

FN 0.02 0.02 0.12 0.12 0.25 0.14 0.00 0.37 0.45

χ2
3 K = 30 ρ = 0 FP - - - - - - - - -

FN 0.07 0.06 0.11 0.11 0.23 0.14 0.00 0.46 0.56

ρ = 0.8 FP - - - - - - - - -

FN 0.03 0.03 0.14 0.14 0.33 0.20 0.00 0.50 0.59

K = 15 ρ = 0 FP 0.83 0.85 0.72 0.72 0.56 0.66 1.00 0.19 0.14

FN 0.06 0.05 0.10 0.10 0.20 0.13 0.00 0.42 0.50

ρ = 0.8 FP 0.87 0.87 0.67 0.67 0.46 0.60 1.00 0.19 0.13

FN 0.03 0.02 0.13 0.13 0.32 0.17 0.00 0.48 0.61

K = 5 ρ = 0 FP 0.82 0.85 0.74 0.74 0.53 0.67 1.00 0.19 0.14

FN 0.05 0.04 0.07 0.07 0.20 0.10 0.00 0.38 0.46

ρ = 0.8 FP 0.89 0.89 0.71 0.71 0.51 0.64 1.00 0.19 0.13

FN 0.02 0.02 0.11 0.11 0.26 0.16 0.00 0.45 0.58

Table 2: Estimates of FP and FN rates for the settings with binomial response, ni = 10.

refit in the cross-validation procedure. When evaluating the accuracy of estimation it is

important to distinguish between the parameters βi0, which represent the heterogeneity,

and the coefficients on covariates. The first ones are referred to as “intercepts” whereas

the second ones are referred to as “slope”.

Figures 1 and 2 show the boxplots of the mean squared errors for Gaussian response and

symmetrically distributed group-specific effects βi0 with ni = 10 (GN). In Figure 1 no

correlation between the covariates and the heterogeneity parameters is assumed whereas

in Figure 2 the correlation is 0.8. It is immediately seen from the right column of Figure 1

that in the case of no correlation all the methods show comparable results as far as the

estimation of the slope parameter is concerned. However, there is some variation in the

MSEs for the heterogeneity parameters (left column). It is remarkable that the mixed

model performs very well, also in the case where clusters of parameters are present (sec-
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ond and third row). The fixed model without regularization performs poorly but with

regularization the performance is comparable to the mixed model; in particular the ap-

proaches without adaptive weights perform rather well. Moreover, the mixed model is not

affected by truly skew distributed random intercepts (for illustration, see, Appendix A).

In contrast the finite mixture model performs badly for all settings.

The picture changes dramatically if correlation is present. It is seen from Figure 2 that

in this case, the performance varies strongly over methods in terms of the MSEs for

the slope (right column). Now, the mixed model performs as bad as the finite mixture

models whereas the fixed effects model and the regularized versions perform very well. A

similar picture results for the intercepts (left column). The mixed model and the finite

mixture models show poor performance, but the regularized fixed effects model perform

well. The simple fixed model without regularization, although being competitive for the

slopes, does not perform well for the intercepts.

The FP and the FN rates for all settings with Gaussian responses with ni = 10 are

shown in Table 1. By construction the mixed model and the fixed effects model without

regularization have false positive rate 1 and false negative rate 0 when clusters are present.

Regularized estimates without refit tend to relatively large false positive rates and very

small false negative rates. The methods with refit aim at a different compromise with

smaller false positive rates and larger false negative rates. The mixed model (AIC and

BIC) tends to build very few but large clusters entailing very small positive rates but

very large false negative rates.

The results for the settings with binomial responses are shown in Figures 3–4 and in

Table 2. We focus on the setting with ni = 10 and skew random effects (Bχ2). In Figure 3,

no correlation between the covariates and the heterogeneity parameters is assumed. As

in the case of a metric response the slopes are estimated equally well by all approaches

and the best estimates of intercepts are found for the adaptively penalized approaches.

The simple fixed effects model is not given because it performs too poorly. The results

with correlation are shown in Figure 4. In contrast to the case of metric responses, for

binary responses the L1 penalized approaches without weights and refit perform best

– followed by the adaptively weighted penalized approaches, the random effects models

and the finite mixture models. The same pattern is observed for the slopes. Overall the

differences between methods are less distinct than for metric responses.. The results for

the settings with symmetrically distributed random intercepts are given in the Appendix:

The results are similar but in contrast to the settings with Gaussian responses, the results

for binomial responses seem to be affected by both, correlations and skewly distributed

random intercepts.

Table 2 shows the FP and the FN rates for symmetric and skew random intercepts,

ni = 10. Again, the adaptively weighted approaches perform best in the sense that both

the FN and the FP rates are relatively low. Overall, the clustering performance is better
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than for Gaussian responses.

If one is especially interested in the detection of second level units, the clustering per-

formance for both Gaussian and binomial responses is considerably improved by an ad-

ditional refit in the cross-validation procedure. However, with an additional refit, the

estimation accuracy may suffer – it is only recommended in combination with adaptive

weights and when the focus is on the clustering performance. Detailed results for all

settings can be found in the Appendix.

5 Extension: Group Specific Models with Vector Fused Penalties

Before looking at applications, an extended version of fusion penalties is considered that

is helpful if more than one parameter is expected to be group-specific. The penalty

for group-specific models allows for different clusters of second level units in different

components of the predictor zij. Thus, for each component of the predictor, one obtains

a disjunct partition C
(s)
1 , . . . ,C

(s)
K , where s refers to the component in zij. It depends on

the application, if this is desirable. If one wants one consistent partition that is based on

the whole vector zij, a modified penalty has to be used. Let again variables that are in

zij, be excluded in xij. Then, a penalty that fuses the second level units simultaneously

is

J(α) = ∑
r>m ∥βr −βm∥2 , (9)

where ∥ξ∥2 = {ξ21 + ⋅ ⋅ ⋅ + ξ2q}1/2 denotes the L2-norm of a q-dimensional vector ξ.

The penalty enforces that the whole vectors of parameters βr and βm are fused. In

contrast to the componentwise penalty (7), the penalty yields uniform clusters. The

effect of the penalty is that the group-specific coefficients βr are shrunk towards each

other and one obtains only one partition C1, . . . ,CK of C that is based on the whole

vector zij. The approach works in a similar way as the group Lasso proposed by Yuan

and Lin (2006). However, the group Lasso refers to the simultaneous selection of a group

of parameters, whereas penalty (9) refers to the fusion of a set of coefficients.

As for componentwise fusion penalties, one can use an adaptive version of the penalty,

see, for example Wang and Leng (2008). It is given by J(α) = ∑r>mwrm ∥βr −βm∥2,
where wrm = ∣∣β̃r − β̃m∣∣−12 with

√
n-consistent estimates β̃r, β̃m.

Interestingly, the component-wise fusion penalty (7) can be written as

J(α) = ∑
r>m ∥βr −βm∥1 ,

where ∥ξ∥1 = ∣ξ1∣ + ⋅ ⋅ ⋅ + ∣ξq ∣ denotes the L1-norm of a q-dimensional vector ξ. Thus,

penalties (7) and (9) basically differ in the applied norm. Of course, it is possible to

combine the penalties in specific applications. In the simplest case, let βi be partitioned
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Fixed Random Fixed Discrete Mixture

Coefficients Effects Intercept Effects Model

Model Pen. (8) AIC BIC

Center- β15,0 -1.4782 -1.5520

specific β12,0 -1.5644 -1.6053

Intercept β16,0 -1.5999 -1.6494
-1.70 -1.5688

-1.7388

β20,0 -1.6038 -1.6524

β7,0 -1.8832 -1.8917 -1.92 -1.9171

β17,0 -2.0801 -2.1065

β9,0 -2.0910 -2.1079
-2.35

β8,0 -2.2083 -2.2133 -2.36

β3,0 -2.2370 -2.2575

β21,0 -2.2832 -2.2859

β2,0 -2.3059 -2.3097

β6,0 -2.3113 -2.3162
-2.37 -2.3873 -2.3793

β10,0 -2.3840 -2.3832

β11,0 -2.4278 -2.4239

β1,0 -2.4798 -2.4144

β5,0 -2.5015 -2.4881 -2.38

β4,0 -2.5189 -2.5151

β14,0 -2.7862 -2.7670 -2.72

β18,0 -3.0433 -2.8803

β22,0 -3.0610 -3.0122 -2.87 -2.9626 -2.9628

β13,0 -3.1155 -3.0020

β19,0 -3.4942 -3.1536 -2.89

Treatment βT -0.1305 -0.1305 -0.13 -0.1292 -0.1291

Table 3: Estimates for the beta blocker data. Intercept-coefficients are ordered such

that their structure becomes obvious. Presented intercept-coefficients of the mixed model

are the sum of the fixed and the random effects. Horizontal lines denote clusters of

coefficients.

into βTi = (βTi1,βTi2) and use

J(α) = ∑
r>m ∥βr1 −βm1∥s + ∥βr2 −βm2∥t ,

where s, t ∈ {1,2}. One can, for example, employ the L1-norm (or equivalently the

L2-norm) for the intercept and the L2-norm for the remaining predictors. Again, com-

putational issues are met by local quadratic approximations as proposed by Oelker and

Tutz (2013).

6 Mortality after Myocardial Infarction

In the beta blocker example considered in the introduction, one models the mortality

rate after myocardial infarction depending on the study center and the treatment group
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Figure 5: Coefficient paths for the beta blocker data. The very right end of the figure

relates to ML estimates; that is, to λ = 0. The left end relates to the minimal value of λ

giving maximal penalization; in this case λ = 4.

assigned to a patient. A classical model that has been used on this data set is the random

intercept model, which has the form logit P(yij = 1) = β0+bi0+βT ⋅Treatmentij, where the

random effects bi0 follow a normal distribution, and where Treatmentij ∈ {−1,1} codes

the treatment in hospital i for patient j. The model with group-specific intercepts has

the form

logit P(yij = 1) = βi0 + βT ⋅Treatmentij, i = 1, . . . ,22 Centers, (10)

where βi0 are fixed unknown parameters. Table 3 shows the results for the random

intercept model, the ML estimates of the (unpenalized) group-specific model and the

estimates of the group-specific model with the adaptively weighted penalty (8). One can

see that the estimates of the random effects model and the fixed effects model are quite

similar. The assumption of a normal distribution does not strongly affect the estimates.

Figure 5 shows the corresponding coefficient build-ups of the penalized approach that

enforces clustering of hospitals; the dotted line denotes the tuning parameter selected

by the GCV criterion with an additional refit (λCV = 0.65). There are basically five

clusters of hospitals that are to be distinguished in terms of the basic risk captured by

the intercepts, although numerically one obtains more clusters. But clusters with effects

-2.35 and -2.36 can hardly be considered as having different effects.

The finite mixture model of Grün and Leisch (2008b), which in the simulation study had

a tendency to identify a too small number of clusters, found three (BIC) and four (AIC)

clusters. The last two columns of Table 3 present the respective estimates and clusters.

The estimates are similar and the structure found in the hospitals, corresponds to those
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Figure 6: Coefficient paths for the NELS:88 data with group-specific intercepts and

group-specific covariate homework; left panel: componentwise penalty (8); right panel:

simultaneous clusters penalty (9) with adaptive weights.

of the penalized fixed effects model.

The fitted treatment effect has approximately the same size in all models. But only the

regularization approach combines data driven clustering with stable results.

Note that the predictor in model (10) corresponds to a generalized linear model with the

nominal covariates Center and Treatment. However, when the Centers are coded as a

nominal covariate, the choice of the reference category affects the estimate of a penalized

nominal predictor crucially. With group-specific intercepts for the hospitals, there is no

need for a reference category; all hospitals are penalized in the same way. Moreover,

there is an intrinsic interpretation for the group-specific intercepts, whereas a nominal

predictor always draws comparisons with the reference category which is arbitrary.

7 Analysis of Selected Schools in the National Education Longitu-

dinal Study of 1988

In a second example, we analyze n = 10 selected schools out of the National Education

Longitudinal Study of 1988 (NELS:88, Curtin et al. (2002)). The data contains infor-

mation on eighth-graders surveyed in 1988 in different schools in the United States and

is a subsample of a nation-wide longitudinal study. The number of pupils per school

varies. We use the standardized mathematics score (yij, measured between 0 and 100,

the higher the better), the time in hours spent on math homework weekly (hw) and the

school (id) of 260 pupils. We investigate if the math skills and the impact of the duration

of the homework do differ over the schools when explaining the mathematics score. The

mathematics score is assumed to be Gaussian and we fit the linear model

yij = βi0 + βi1 ⋅ hwij + εij, i = 1, . . . ,10 Schools. (11)
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School (id)

Penalty Coeff. 1 2 3 4 5 6 7 8 9 10

none βi0 49.66 48.36 38.49 35.70 52.17 48.91 58.78 34.81 38.09 37.59

βi1 -2.80 -2.60 7.99 5.38 -3.60 -2.37 1.45 6.80 6.68 6.54

(8) βi0 48.98 48.97 38.47 36.44 50.92 48.98 58.43 36.44 38.47 38.47

βi1 -2.59 -2.59 7.79 5.27 -2.59 -2.59 1.54 6.21 6.21 6.21

(9) βi0 49.24 49.24 38.71 37.11 50.26 49.24 58.05 37.43 38.14 38.14

βi1 -2.69 -2.69 7.59 5.13 -2.38 -2.69 1.62 5.81 6.43 6.43

Table 4: Estimated coefficients for the NELS:88 data obtained with model (11) and

different penalization strategies.

In contrast to the example in Section 6, we assume group-specific intercepts βi0 and

group-specific slopes βi1. Hence, we can compare the componentwise penalty (8) and

penalty (9) for simultaneous clusters, both adaptively weighted. Figure 6 shows the

resulting coefficient paths. The left panel refers to penalty (8); that is, the pairwise

differences of the group-specific intercepts are penalized by the adaptive Lasso and so are

the differences of the group-specific slopes. In the right panel, the pairwise difference of

the group-specific intercepts and slopes are penalized simultaneously by penalty (9) with

adaptive weights. In both panels, a dotted line marks the optimal results according to

5-fold cross-validation with the MSE as loss criterion. As the range of the coefficients

is large, in both panels, the minimal tuning parameter giving maximal penalization is

considerably higher as in Figure 5. However, for the optimal tuning parameters, with

both penalties, some schools are clustered. With penalty (8), one obtains two separate

partitions of schools. Regarding the intercepts, schools {4,8}, {3,9,10} and {1,6} are

merged to clusters; regarding the slopes, schools {1,2,5,6} and {8,9,10} are merged

while the other schools have individual effects. With penalty (9), one obtains one uniform

partition: schools {1,2,6} and {9,10} are found to have similar effects for the intercepts

and the slopes while the other schools form its own clusters. Table 4 gives the exact

results. With both penalties, an interesting effect is seen: schools with relatively low

intercepts tend to have larger effects regarding the homework and vice versa. The effect

is seen, for example for the schools 3 and 5. In school 3, the average math skills without

homework are relatively low while the effect of the homework is high. In school 5, the

group-specific intercept is high; the impact of the homework is actually negative. A

possible explanation is that in schools with higher average math skills, the time required

for the homework might be an indicator for inertial pupils; while in schools with lower

initial skills, the time spent on math homework might be a surrogate for the extent of

the homework. Comparing the two approaches by the residual deviances, the model with

penalty (8) performs slightly better.
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8 Concluding Remarks

We compared three different approaches that take the heterogeneity in hierarchical data

into account: random effects models, finite mixture models and fixed effects models with

regularization. We were especially interested in situations where the second level units

are clustered.

Mixed models do not allow for clustered second level units and the observed second

level units are assumed to be a sample of an underlying population. In particular when

the data show level 2 endogeneity the performance of the estimates suffers because the

estimates are biased. Finite mixture models assume that the effects of the second level

units are drawn from an unknown finite set of effects. The performance is acceptable

only for settings with very few clusters in the underlying data structure.

In contrast, fixed effects models rely only on the observed second level units. With

the proposed fused Lasso penalty on group-specific coefficients, one obtains clusters.

Although identification of clusters is not perfect, the estimation accuracy is much better

than for the maximum likelihood estimate – even when there are no clusters in the data.

In situations where the focus is on the second level units, the proposed Lasso-type penalty

has substantial advantages.
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A Numerical Results

The Appendix presents the detailed results of the numerical experiments conducted for

Section 4. Tables 5–8 show the results for Gaussian responses. Tables 9–12 the results

for binomial responses. If there is an additional “R”, the penalty parameter is chosen

with an additional refit in the cross-validation procedure.
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βi0 ∼ N(1,4) ρ = 0.0 ρ = 0.8
K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed 100.59 0.08 0.00 107.23 0.21 0.00
Fixed L1, CV 75.03 0.06 0.06 130.65 2.58 0.73
Fixed L1, GCV 70.21 0.06 0.04 96.00 1.09 0.07
Fixed L1, adapt., CV 81.42 0.07 0.12 87.83 0.40 0.22
Fixed L1, adapt., GCV 81.22 0.07 0.11 83.03 0.37 0.14
Fixed L1, adapt., CV, R 81.10 0.06 0.23 81.98 0.97 0.40
Fixed L1, adapt., GCV, R 99.54 0.06 0.25 95.49 1.49 0.29
Mixed 71.04 0.06 0.00 124.92 2.44 0.00
Finite AIC 124.80 0.07 0.60 132.84 2.66 0.95
Finite BIC 169.01 0.07 0.81 132.11 2.77 1.00

15 Fixed 100.60 0.08 1.00 0.00 106.59 0.21 1.00 0.00
Fixed L1, CV 63.19 0.06 0.52 0.47 103.97 1.86 0.25 0.74
Fixed L1, GCV 51.74 0.07 0.93 0.05 84.38 0.86 0.92 0.07
Fixed L1, adapt., CV 69.42 0.07 0.79 0.17 81.99 0.35 0.74 0.21
Fixed L1, adapt., GCV 70.21 0.07 0.83 0.13 77.95 0.31 0.83 0.14
Fixed L1, adapt., CV, R 56.22 0.06 0.61 0.35 77.14 0.87 0.55 0.39
Fixed L1, adapt., GCV, R 56.86 0.06 0.62 0.31 81.58 1.08 0.61 0.30
Mixed 48.51 0.07 1.00 0.00 101.27 1.91 1.00 0.00
Finite AIC 71.43 0.07 0.11 0.84 105.97 2.08 0.04 0.95
Finite BIC 67.90 0.06 0.02 0.98 105.06 2.16 0.00 1.00

5 Fixed 100.60 0.08 1.00 0.00 106.70 0.21 1.00 0.00
Fixed L1, CV 68.73 0.07 0.70 0.27 113.98 2.00 0.27 0.73
Fixed L1, GCV 61.54 0.07 0.94 0.04 88.91 0.98 0.93 0.06
Fixed L1, adapt., CV 75.39 0.07 0.80 0.13 83.09 0.35 0.79 0.15
Fixed L1, adapt., GCV 76.42 0.07 0.84 0.11 82.85 0.31 0.82 0.12
Fixed L1, adapt., CV, R 69.10 0.06 0.64 0.27 84.10 0.94 0.56 0.37
Fixed L1, adapt., GCV, R 79.37 0.06 0.61 0.27 90.09 1.33 0.61 0.27
Mixed 58.95 0.07 1.00 0.00 106.76 1.87 1.00 0.00
Finite AIC 99.80 0.06 0.19 0.68 116.29 2.02 0.05 0.93
Finite BIC 100.96 0.06 0.04 0.92 115.35 2.34 0.00 1.00

Table 5: Results for the settings with Gaussian response, βi0 ∼ N(1,4), ni = 10.

βi0 ∼ χ2
3 ρ = 0.0 ρ = 0.8

K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed 100.59 0.08 0.00 107.58 0.21 0.00
Fixed L1, CV 63.26 0.07 0.13 152.42 2.69 0.60
Fixed L1, GCV 61.28 0.06 0.04 104.45 1.10 0.06
Fixed L1, adapt., CV 70.25 0.07 0.17 84.49 0.40 0.15
Fixed L1, adapt., GCV 71.23 0.07 0.13 84.18 0.31 0.12
Fixed L1, adapt., CV, R 64.20 0.07 0.32 94.60 1.11 0.36
Fixed L1, adapt., GCV, R 67.74 0.06 0.29 103.27 1.56 0.29
Mixed 67.49 0.07 0.00 142.41 2.85 0.00
Finite AIC 95.60 0.07 0.71 154.66 3.09 0.93
Finite BIC 141.13 0.07 0.87 154.41 3.23 1.00

15 Fixed 100.59 0.08 1.00 0.00 107.47 0.21 1.00 0.00
Fixed L1, CV 59.45 0.07 0.73 0.25 182.86 3.28 0.47 0.52
Fixed L1, GCV 57.94 0.06 0.94 0.05 114.49 1.45 0.94 0.05
Fixed L1, adapt., CV 70.89 0.07 0.81 0.15 86.28 0.31 0.79 0.15
Fixed L1, adapt., GCV 72.59 0.06 0.84 0.13 86.71 0.29 0.82 0.12
Fixed L1, adapt., CV, R 62.93 0.06 0.61 0.31 91.39 0.99 0.59 0.33
Fixed L1, adapt., GCV, R 65.92 0.05 0.63 0.27 104.79 1.45 0.62 0.27
Mixed 59.48 0.07 1.00 0.00 172.74 3.54 1.00 0.00
Finite AIC 98.97 0.07 0.15 0.75 211.47 4.03 0.07 0.90
Finite BIC 100.45 0.07 0.04 0.93 211.69 4.48 0.00 1.00

5 Fixed 100.59 0.08 1.00 0.00 106.72 0.21 1.00 0.00
Fixed L1, CV 63.66 0.07 0.75 0.23 81.90 0.76 0.39 0.61
Fixed L1, GCV 57.58 0.06 0.93 0.04 66.92 0.44 0.93 0.06
Fixed L1, adapt., CV 70.31 0.07 0.79 0.15 74.80 0.20 0.78 0.18
Fixed L1, adapt., GCV 73.07 0.06 0.83 0.11 77.55 0.16 0.83 0.12
Fixed L1, adapt., CV, R 62.05 0.07 0.63 0.28 63.62 0.43 0.59 0.35
Fixed L1, adapt., GCV, R 67.88 0.06 0.61 0.28 68.55 0.58 0.62 0.29
Mixed 59.78 0.07 1.00 0.00 69.25 0.70 1.00 0.00
Finite AIC 100.53 0.07 0.16 0.70 85.09 0.89 0.09 0.88
Finite BIC 101.74 0.07 0.04 0.91 83.34 0.98 0.00 1.00

Table 6: Results for the settings with Gaussian response, βi0 ∼ χ2
3, ni = 10.
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βi0 ∼ N(1,4) ρ = 0.0 ρ = 0.8
K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed 211.68 0.14 0.00 227.37 0.38 0.00
Fixed L1, CV 116.26 0.10 0.41 123.60 2.21 0.80
Fixed L1, GCV 110.70 0.11 0.05 138.87 1.16 0.07
Fixed L1, adapt., CV 140.18 0.11 0.18 135.57 0.50 0.23
Fixed L1, adapt., GCV 150.01 0.11 0.13 149.85 0.40 0.14
Fixed L1, adapt., CV, R 114.44 0.12 0.38 119.18 0.91 0.43
Fixed L1, adapt., GCV, R 111.48 0.10 0.31 116.53 1.31 0.34
Mixed 96.58 0.11 0.00 122.92 2.27 0.00
Finite AIC 135.56 0.12 0.85 125.04 2.35 0.96
Finite BIC 127.63 0.11 0.99 123.33 2.46 1.00

15 Fixed 211.68 0.14 1.00 0.00 227.55 0.38 1.00 0.00
Fixed L1, CV 125.50 0.12 0.59 0.40 121.54 2.13 0.19 0.81
Fixed L1, GCV 116.01 0.12 0.94 0.05 138.83 1.18 0.95 0.07
Fixed L1, adapt., CV 145.39 0.12 0.81 0.16 139.17 0.52 0.74 0.24
Fixed L1, adapt., GCV 149.66 0.12 0.85 0.13 149.10 0.43 0.85 0.14
Fixed L1, adapt., CV, R 121.62 0.10 0.66 0.31 118.65 1.16 0.49 0.48
Fixed L1, adapt., GCV, R 119.03 0.11 0.65 0.29 114.72 1.29 0.63 0.31
Mixed 99.81 0.13 1.00 0.00 120.46 2.14 1.00 0.00
Finite AIC 148.00 0.12 0.14 0.81 122.16 2.28 0.03 0.97
Finite BIC 140.59 0.12 0.01 0.99 120.83 2.33 0.00 1.00

5 Fixed 211.68 0.14 1.00 0.00 226.37 0.38 1.00 0.00
Fixed L1, CV 91.91 0.12 0.40 0.59 118.93 2.10 0.18 0.82
Fixed L1, GCV 103.26 0.11 0.94 0.06 134.74 1.08 0.94 0.07
Fixed L1, adapt., CV 134.73 0.12 0.78 0.19 141.33 0.45 0.76 0.21
Fixed L1, adapt., GCV 144.08 0.12 0.83 0.14 146.58 0.40 0.84 0.14
Fixed L1, adapt., , CVR 101.19 0.11 0.59 0.37 113.66 0.91 0.53 0.43
Fixed L1, adapt., GCV, R 97.70 0.11 0.65 0.30 113.06 1.25 0.63 0.31
Mixed 80.51 0.12 1.00 0.00 115.93 1.95 1.00 0.00
Finite AIC 98.20 0.12 0.09 0.88 119.91 2.25 0.04 0.96
Finite BIC 90.09 0.11 0.00 1.00 117.35 2.25 0.00 1.00

Table 7: Results for the settings with Gaussian response, βi0 ∼ N(1,4), ni = 5.

βi0 ∼ χ2
3 ρ = 0.0 ρ = 0.8

K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed 211.68 0.14 0.00 226.58 0.38 0.00
Fixed L1, CV 98.35 0.11 0.36 287.29 4.84 0.67
Fixed L1, GCV 106.86 0.11 0.05 203.37 2.24 0.05
Fixed L1, adapt., CV 136.76 0.09 0.18 160.75 0.72 0.18
Fixed L1, adapt., GCV 149.79 0.09 0.13 160.97 0.63 0.12
Fixed L1, adapt., CV, R 107.07 0.10 0.33 172.88 1.99 0.39
Fixed L1, adapt., GCV, R 104.50 0.10 0.33 181.41 2.76 0.28
Mixed 101.08 0.12 0.00 269.26 5.30 0.00
Finite AIC 158.18 0.12 0.83 291.85 5.72 0.93
Finite BIC 153.81 0.13 0.98 290.34 6.04 1.00

15 Fixed 211.67 0.14 1.00 0.00 225.78 0.38 1.00 0.00
Fixed L1, CV 101.66 0.11 0.66 0.30 305.92 4.75 0.42 0.58
Fixed L1, GCV 113.22 0.11 0.94 0.05 207.59 2.27 0.94 0.05
Fixed L1, adapt., CV 140.25 0.10 0.78 0.18 171.49 0.74 0.76 0.20
Fixed L1, adapt., GCV 150.37 0.10 0.85 0.13 169.86 0.70 0.84 0.12
Fixed L1, adapt., CV, R 113.10 0.09 0.58 0.38 166.74 1.73 0.56 0.37
Fixed L1, adapt., GCV, R 106.85 0.10 0.64 0.30 190.39 2.92 0.64 0.29
Mixed 113.89 0.12 1.00 0.00 272.15 4.95 1.00 0.00
Finite AIC 176.66 0.11 0.14 0.80 311.39 5.84 0.08 0.91
Finite BIC 176.88 0.14 0.02 0.96 310.41 6.02 0.00 1.00

5 Fixed 211.68 0.14 1.00 0.00 225.95 0.38 1.00 0.00
Fixed L1, CV 129.26 0.10 0.66 0.32 176.74 3.01 0.27 0.73
Fixed L1, GCV 118.10 0.11 0.94 0.04 163.23 1.51 0.94 0.06
Fixed L1, adapt., CV 146.52 0.12 0.81 0.15 154.50 0.69 0.76 0.19
Fixed L1, adapt., GCV 152.55 0.12 0.85 0.12 157.10 0.49 0.83 0.12
Fixed L1, adapt., CV, R 126.97 0.10 0.65 0.28 151.50 1.30 0.51 0.43
Fixed L1, adapt., GCV, R 131.66 0.11 0.64 0.28 153.66 1.78 0.63 0.29
Mixed 109.32 0.11 1.00 0.00 171.66 2.77 1.00 0.00
Finite AIC 156.39 0.10 0.14 0.79 181.35 3.12 0.05 0.95
Finite BIC 153.51 0.10 0.02 0.97 178.47 3.28 0.00 1.00

Table 8: Results for the settings with Gaussian response, βi0 ∼ χ2
3, ni = 5.
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βi0 ∼ N(−.3,4) ρ = 0.0 ρ = 0.8
K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed L1, CV 17.04 0.01 0.04 31.89 0.28 0.14
Fixed L1, GCV 16.98 0.01 0.04 32.26 0.27 0.03
Fixed L1, adapt., CV 16.18 0.01 0.08 39.64 0.37 0.15
Fixed L1, adapt., GCV 16.34 0.01 0.08 39.64 0.37 0.15
Fixed L1, adapt., CV, R 23.10 0.00 0.17 55.15 0.70 0.47
Fixed L1, adapt., GCV, R 24.23 0.01 0.13 49.32 0.60 0.22
Mixed 16.61 0.01 0.00 51.31 0.74 0.00
Finite AIC 32.54 0.01 0.39 63.88 0.80 0.71
Finite BIC 34.22 0.01 0.47 76.08 1.09 0.88

15 Fixed L1, CV 26.64 0.01 0.75 0.08 45.66 0.34 0.87 0.04
Fixed L1, GCV 23.15 0.01 0.77 0.07 44.85 0.34 0.89 0.02
Fixed L1, adapt., CV 25.85 0.01 0.65 0.11 71.92 0.61 0.67 0.13
Fixed L1, adapt., GCV 25.62 0.01 0.65 0.11 71.92 0.61 0.67 0.13
Fixed L1, adapt., CV, R 37.98 0.01 0.49 0.22 98.54 0.96 0.44 0.32
Fixed L1, adapt., GCV, R 35.74 0.01 0.60 0.14 92.54 0.91 0.58 0.18
Mixed 23.86 0.01 1.00 0.00 76.12 0.84 1.00 0.00
Finite AIC 45.20 0.01 0.19 0.39 84.88 0.83 0.20 0.49
Finite BIC 53.95 0.01 0.13 0.48 85.77 0.95 0.12 0.66

5 Fixed L1, CV 17.80 0.01 0.82 0.03 51.64 0.27 0.88 0.02
Fixed L1, GCV 17.51 0.01 0.83 0.02 51.64 0.27 0.88 0.02
Fixed L1, adapt., CV 17.30 0.01 0.70 0.05 78.55 0.61 0.68 0.12
Fixed L1, adapt., GCV 17.30 0.01 0.71 0.05 78.55 0.61 0.68 0.12
Fixed L1, adapt., CV, R 22.64 0.01 0.57 0.10 108.19 1.06 0.45 0.25
Fixed L1, adapt., GCV, R 23.80 0.01 0.65 0.06 95.01 0.84 0.61 0.14
Mixed 17.25 0.01 1.00 0.00 67.50 0.60 1.00 0.00
Finite AIC 32.43 0.01 0.21 0.27 93.57 0.71 0.18 0.37
Finite BIC 37.21 0.01 0.12 0.36 93.57 0.80 0.14 0.45

Table 9: Results for the settings with binomial response, βi0 ∼ N(−.3,4), ni = 10.

βi0 ∼ χ2
3 ρ = 0.0 ρ = 0.8

K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed L1, CV 40.34 0.01 0.07 81.59 0.29 0.03
Fixed L1, GCV 37.48 0.01 0.06 81.41 0.29 0.03
Fixed L1, adapt., CV 34.92 0.01 0.11 104.34 0.46 0.14
Fixed L1, adapt., GCV 34.92 0.01 0.11 104.34 0.46 0.14
Fixed L1, adapt., CV, R 42.24 0.01 0.23 132.70 0.90 0.33
Fixed L1, adapt., GCV, R 42.71 0.01 0.14 122.15 0.67 0.20
Mixed 42.28 0.01 0.00 108.48 0.64 0.00
Finite AIC 51.39 0.01 0.46 107.62 0.58 0.50
Finite BIC 58.52 0.01 0.56 108.26 0.65 0.59

15 Fixed L1, CV 16.84 0.01 0.83 0.06 60.17 0.28 0.87 0.03
Fixed L1, GCV 17.04 0.01 0.85 0.05 60.73 0.30 0.87 0.02
Fixed L1, adapt., CV 14.90 0.01 0.72 0.10 88.25 0.56 0.67 0.13
Fixed L1, adapt., GCV 14.87 0.01 0.72 0.10 88.25 0.56 0.67 0.13
Fixed L1, adapt., CV, R 18.79 0.01 0.56 0.20 116.55 1.02 0.46 0.32
Fixed L1, adapt., GCV, R 19.70 0.01 0.66 0.13 106.71 0.83 0.60 0.17
Mixed 17.81 0.01 1.00 0.00 91.84 0.78 1.00 0.00
Finite AIC 29.05 0.01 0.19 0.42 99.60 0.87 0.19 0.48
Finite BIC 35.04 0.01 0.14 0.50 98.93 1.00 0.13 0.61

5 Fixed L1, CV 15.96 0.01 0.82 0.05 28.61 0.19 0.89 0.02
Fixed L1, GCV 15.83 0.01 0.85 0.04 29.45 0.24 0.89 0.02
Fixed L1, adapt., CV 16.00 0.01 0.74 0.07 39.12 0.35 0.71 0.11
Fixed L1, adapt., GCV 15.91 0.01 0.74 0.07 39.12 0.35 0.71 0.11
Fixed L1, adapt., CV, R 21.02 0.01 0.53 0.20 60.72 0.69 0.51 0.26
Fixed L1, adapt., GCV, R 20.47 0.01 0.67 0.10 55.76 0.60 0.64 0.16
Mixed 14.98 0.01 1.00 0.00 46.50 0.52 1.00 0.00
Finite AIC 25.30 0.01 0.19 0.38 59.27 0.52 0.19 0.45
Finite BIC 26.94 0.01 0.14 0.46 58.48 0.59 0.13 0.58

Table 10: Results for the settings with binomial response, βi0 ∼ χ2
3, ni = 10.
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βi0 ∼ N(−.3,4) ρ = 0.0 ρ = 0.8
K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed L1, CV 43.14 0.03 0.11 75.43 1.21 0.50
Fixed L1, GCV 39.94 0.03 0.09 52.66 0.78 0.05
Fixed L1, adapt., CV 42.54 0.02 0.16 68.20 1.21 0.36
Fixed L1, adapt., GCV 42.54 0.02 0.16 68.22 1.22 0.37
Fixed L1, adapt., CV, R 49.83 0.01 0.19 82.89 1.39 0.68
Fixed L1, adapt., GCV, R 60.92 0.02 0.17 73.12 1.23 0.40
Mixed 44.03 0.03 0.00 75.26 1.48 0.00
Finite AIC 63.98 0.02 0.51 84.96 1.46 0.89
Finite BIC 63.02 0.03 0.52 84.71 1.52 0.98

15 Fixed L1, CV 22.83 0.01 0.80 0.10 97.05 1.07 0.57 0.37
Fixed L1, GCV 23.14 0.01 0.82 0.08 77.70 0.81 0.88 0.04
Fixed L1, adapt., CV 21.96 0.01 0.70 0.15 100.36 1.13 0.52 0.33
Fixed L1, adapt., GCV 21.96 0.01 0.70 0.15 99.77 1.14 0.52 0.32
Fixed L1, adapt., CV, R 23.48 0.01 0.62 0.21 122.43 1.40 0.24 0.67
Fixed L1, adapt., GCV, R 27.93 0.01 0.67 0.17 108.69 1.21 0.49 0.36
Mixed 23.41 0.01 1.00 0.00 106.91 1.51 1.00 0.00
Finite AIC 34.08 0.02 0.18 0.50 126.51 1.50 0.11 0.83
Finite BIC 34.59 0.02 0.16 0.54 126.96 1.55 0.02 0.97

5 Fixed L1, CV 36.35 0.02 0.71 0.07 53.08 0.80 0.64 0.30
Fixed L1, GCV 32.50 0.03 0.73 0.07 42.45 0.62 0.89 0.04
Fixed L1, adapt., CV 35.19 0.02 0.59 0.12 53.95 0.79 0.58 0.30
Fixed L1, adapt., GCV 35.19 0.02 0.59 0.12 53.27 0.79 0.58 0.30
Fixed L1, adapt., CV, R 45.18 0.02 0.51 0.17 67.98 1.02 0.29 0.64
Fixed L1, adapt., GCV, R 56.21 0.02 0.57 0.12 58.37 0.93 0.55 0.33
Mixed 36.61 0.03 1.00 0.00 58.37 1.10 1.00 0.00
Finite AIC 64.74 0.03 0.19 0.43 74.96 1.14 0.14 0.78
Finite BIC 60.74 0.03 0.17 0.48 74.84 1.20 0.02 0.96

Table 11: Results for the settings with binomial response, βi0 ∼ N(−.3,4), ni = 5.

βi0 ∼ χ2
3 ρ = 0.0 ρ = 0.8

K Method Intercepts Slope FP FN Intercepts Slope FP FN

30 Fixed L1, CV 35.13 0.02 0.11 144.52 1.20 0.17
Fixed L1, GCV 32.05 0.03 0.10 137.26 0.99 0.06
Fixed L1, adapt., CV 33.44 0.02 0.17 166.16 1.42 0.28
Fixed L1, adapt., GCV 33.44 0.02 0.17 166.16 1.42 0.28
Fixed L1, adapt., CV, R 41.92 0.02 0.27 191.15 1.90 0.48
Fixed L1, adapt., GCV, R 47.38 0.02 0.19 184.65 1.59 0.31
Mixed 36.84 0.03 0.00 172.23 1.93 0.00
Finite AIC 54.99 0.03 0.53 218.36 2.01 0.73
Finite BIC 54.71 0.03 0.55 218.69 2.11 0.85

15 Fixed L1, CV 86.90 0.03 0.71 0.11 200.60 1.35 0.74 0.13
Fixed L1, GCV 79.55 0.03 0.74 0.10 196.30 1.28 0.81 0.06
Fixed L1, adapt., CV 81.39 0.03 0.60 0.16 230.92 1.61 0.48 0.27
Fixed L1, adapt., GCV 81.39 0.03 0.60 0.16 231.56 1.72 0.47 0.28
Fixed L1, adapt., CV, R 97.63 0.02 0.48 0.26 273.13 2.19 0.25 0.57
Fixed L1, adapt., GCV, R 103.46 0.03 0.58 0.18 259.38 1.92 0.45 0.29
Mixed 88.96 0.03 1.00 0.00 238.12 2.52 1.00 0.00
Finite AIC 114.89 0.04 0.20 0.50 262.16 2.34 0.17 0.63
Finite BIC 114.76 0.04 0.18 0.53 311.54 2.41 0.08 0.76

5 Fixed L1, CV 23.64 0.02 0.71 0.13 93.98 1.09 0.71 0.17
Fixed L1, GCV 23.12 0.02 0.74 0.11 88.04 0.95 0.80 0.09
Fixed L1, adapt., CV 18.99 0.02 0.60 0.18 109.30 1.25 0.48 0.32
Fixed L1, adapt., GCV 18.99 0.02 0.60 0.18 109.30 1.23 0.49 0.31
Fixed L1, adapt., CV, R 23.27 0.01 0.47 0.30 137.24 1.59 0.28 0.58
Fixed L1, adapt., GCV, R 23.99 0.01 0.57 0.20 125.81 1.39 0.46 0.35
Mixed 26.68 0.02 1.00 0.00 126.30 1.88 1.00 0.00
Finite AIC 34.78 0.02 0.14 0.53 170.65 1.86 0.16 0.71
Finite BIC 33.58 0.02 0.11 0.55 172.05 1.94 0.05 0.89

Table 12: Results for the settings with binomial response, βi0 ∼ χ2
3, ni = 5.
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