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RESEARCH ARTICLE Open Access

Comparison of genomic and proteomic data in
recurrent airway obstruction affected horses
using ingenuity pathway analysis®

Julien Racine1, Vinzenz Gerber1, Marybeth Miskovic Feutz2, C Paige Riley3, Jiri Adamec3, June E Swinburne4 and
Laurent L Couetil2*

Abstract

Background: Recurrent airway obstruction (RAO) is a severe chronic respiratory disease affecting horses worldwide,
though mostly in the Northern hemisphere. Environmental as well as genetic factors strongly influence the course
and prognosis of the disease. Research has been focused on characterization of immunologic factors contributing
to inflammatory responses, on genetic linkage analysis, and, more recently, on proteomic analysis of airway
secretions from affected horses. The goal of this study was to investigate the interactions between eight candidate
genes previously identified in a genetic linkage study and proteins expressed in bronchoalveolar lavage fluid (BALF)
collected from healthy and RAO-affected horses. The analysis was carried out with Ingenuity Pathway Analysis®

bioinformatics software.

Results: The gene with the greatest number of indirect interactions with the set of proteins identified is Interleukin
4 Receptor (IL-4R), whose protein has also been detected in BALF. Interleukin 21 receptor and chemokine (C-C motif)
ligand 24 also showed a large number of interactions with the group of detected proteins. Protein products of
other genes like that of SOCS5, revealed direct interactions with the IL-4R protein. The interacting proteins NOD2,
RPS6KA5 and FOXP3 found in several pathways are reported regulators of the NF�B pathway.

Conclusions: The pathways generated with IL-4R highlight possible important intracellular signaling cascades
implicating, for instance, NF�B. Furthermore, the proposed interaction between SOCS5 and IL-4R could explain
how different genes can lead to identical clinical RAO phenotypes, as observed in two Swiss Warmblood half
sibling families because these proteins interact upstream of an important cascade where they may act as a
functional unit.

Background
Recurrent airway obstruction (RAO) is a respiratory
disease characterized by periods of airway obstruction
caused by hyperresponsiveness to inhaled organic molds
and endotoxins [1,2]. Clinically, affected horses exhibit
a chronic, spontaneous cough, nasal discharge, and
increased respiratory efforts associated with an elevation
in maximal transpulmonary pressure change compared to
healthy horses or horses with inflammatory airway disease
(IAD) [3]. Diagnosis is based on history, clinical signs, and
diagnostic tests. Endoscopic evaluation of RAO-affected

horses reveals excessive mucopurulent exudate in the tra-
cheobronchial tree [4]. Cytological analysis of bronchoal-
veolar lavage fluid (BALF) is characterized by non-septic
inflammation with increase in mucus and neutrophils
(> 25% of the total nucleated cell count) [2]. Various pul-
monary function tests allow quantification of the degree of
airway obstruction [3].
The immunological basis for RAO is controversial. A

number of studies found that cytokine profiles are consis-
tent with TH2 type response (e.g. interleukin (IL)-4, IL-13)
[5-9]. Other studies, however, suggest that a TH1 response
and cytokines (e.g. IL-8, IL-17) are responsible for neutro-
phil recruitment in RAO [10-16]. A study performed with
horses affected by summer pasture-associated obstructive
pulmonary disease (SPAOPD) revealed that the expression
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of TH1 and TH2 cytokines varies throughout the year [17].
The type and amount of key cytokines and other intracel-
lular regulatory and transcription factors that are
expressed upon contact with an antigen modulate the
inflammatory response. Characterization of key interac-
tions and pathways would be helpful in understanding the
inflammatory response in RAO horses and whether it fits
the rodent derived TH1/TH2 paradigm.
Several studies suggest a strong genetic basis with a

complex mode of inheritance for RAO. Segregation and
genomic analyses performed on two Swiss Warmblood
families have led to the conclusion that the mode of
inheritance of RAO is characterized by major gene
effects, and that these genes differ between families. In
the first of these families, RAO was transmitted in an
autosomal recessive mode and the major association was
found on equine chromosome 13 (ECA13), whereas in
the second, it was transmitted in an autosomal dominant
mode and the major association was found on ECA15
[18-20]. Interestingly, horses from both families showed
no phenotypical differences in the expression of RAO,
including clinical scores, endoscopic mucus scores, BALF
and tracheo-bronchial secretion cytology, response to
methacholine challenge and values of arterial oxygena-
tion [21]. These results suggest genetic heterogeneity for
the clinical phenotype RAO.
Proteomic and peptidomic analyses shed light on the

metabolic status of biological systems and represent new
approaches in the study of complex diseases like asthma
and lung cancer in humans [22] and animal models of
human diseases [23]. Recent research in proteomics
improved disease phenotype characterization based on
peripheral blood biomarkers or BALF cytokines in
human suffering from asthma and chronic obstructive
pulmonary disease [24,25]. One of the major challenges
in proteomic analysis is the large amount of data gener-
ated, which makes bioinformatics software capable of
processing the information indispensable [22].
For the present study, we used genomic and proteomic

data previously collected from healthy and RAO-affected
horses, and performed a comparison using bioinformatics
software (Ingenuity Pathway Analysis [IPA®]). The tool
“Path Explorer” was used to search for documented mole-
cular interactions based on the Ingenuity® Knowledge
Base. This database contains millions of documented and
published molecular interactions (Ingenuity® Systems,
http://www.ingenuity.com). Proteins present in BALF
from RAO-affected horses and controls were identified by
mass spectrometry [26] and these data were imported into
IPA®. Information about eight candidate genes for RAO
identified in a family-based whole-genome scan study [20]
was also imported into IPA® to identify documented path-
ways linking these candidate genes to the BALF proteins
identified with proteomics. Thus, this study compares

genomic and proteomic data within the framework of
IPA® in order to 1) identify the number of interactions
between candidate genes for RAO and proteins detected
by proteomic analyses and 2) characterize the interacting
proteins and pathways involved.

Results
The following candidate genes [20] were investigated for
interactions with the set of proteins detected in BALF:
Interleukin 4 receptor (IL-4R), IL-21R, chemokine (C-C
motif) ligand 24 (CCL24), IL-27, prostaglandin E receptor
4 (PTGER4), phosphodiesterase 4D (PDE4D), suppressor
of cytokine signaling 5 (SOCS5) and IL-7R.
IPA® identified only a few direct interactions between

the eight candidate genes and BALF proteins. Products of
the following four gene candidates, SOCS5, IL-7R,
PTGER4, and PDE4D, were predicted to directly interact
with proteins identified in BALF. Direct interactions
between protein products of candidate genes and detected
proteins were the following: SOCS5 interacts with IL-4R,
IL-7R with forkhead box P3 (FOXP3), and PTGER4 as
well as PDE4D with arrestin beta 1 (ARRB1). ARRB1 and
IL-4R are downregulated and FOXP3 is upregulated in
RAO horses according to proteomic analysis. No other
interactions were identified.
From a total of 277 proteins identified in the proteomics

study, 56 (20.2%) were reported to have indirect interac-
tions with IL-4R, 33 (11.9%) with IL-21R, 18 (6.5%) with
CCL24, and 3 (1.1%) with IL-27.
To identify the maximum number of possible interac-

tions affiliated with IL-4R, IPA® proposed 6 “connecting
proteins” based on known pathways: tumor necrosis factor
(TNF), interferon gamma (IFNG), interleukin 4 (IL-4),
guanine nucleotide binding protein (G protein), beta poly-
peptide 2-like 1 (GNB2L1), signal-regulatory protein alpha
(SIRPA), and phosphatase and tensin homolog (PTEN)
(Table 1). According to proteomics results, 26 (46.4%) of
the 56 interacting proteins are downregulated in RAO
horses, while 24 (42.9%) are upregulated. Six proteins
(10.7%) show controversial expression from the proteo-
mics results (some peptides up- as well as downregulated
in RAO). Twenty (35.7%) interacting proteins are located
in the extracellular space, 8 (14.3%) in the cell membrane,
19 (33.9%) in the cytoplasm, and 9 (16.1%) in the nucleus
(Figure 1). Extracellular proteins are involved in lungs’
innate immunity (SERPINA1; SFTPD, TF, CFB, C3, C5)
and in acquired immunity (IGHG1, IGJ, IGKC), amongst
other functions (Table 2). One extracellular protein in par-
ticular, lymphotoxin beta (LTB), also operates as a mem-
ber of the Tumor Necrosis Factor family. The majority of
cell-membrane proteins participate in immune processes
such as adhesive interactions of granulocytes (ITGAM),
while others are immunoglobulins (IGHM) or proteins
of the Major Histocompatibility Complex class II
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Table 1 Indirect interactions between genes IL-4R, IL-21R, CCL24, IL-27 and proteins

Gene, (abbreviation) and
[number of interactions]

Indirect Interactions Connecting proteins

interleukin 4 receptor
(IL-4R)
[56]

Downregulated in RAO: FGA; APOA1; PLG; SERPINC1; WNT7A; GNL1; VWF; LTB; PDGFRA;
THBD; GSTT1; ABCB1; STK17B; CPOX; CLIP2; CNN1; RPL23A; BRPF1; RBL1; UACA; RPS6KA5;
HSPA1L; IER3; ATP50; ZBTB16; SERPINB10;
Upregulated in RAO: IGKC; CFB; LAMB3; C3; SERPINA1; C5; MUC20; ITGAM; IGHM;
HLADQB1; RPS6KA4; SNX9; ACTB; NOD2; GLS; THOP1; FTL; ALD7H7A1; GZMB; IGJ;
HNRNPA3; RB1; FOXP3; PRKDC;
Controversial findings: TF; SFTPD; SCGB1A1; ALB; IGHG1; PIGR;

SIRPA; TNF; IFNG; IL-4;
GNB2L1; PTEN

interleukin 21 receptor
(IL-21R)
[33]

Downregulated in RAO:VWF; IL-4R; IER3; ZBTB16; APOA1; CLIP2;RPL23A; RBL1; FGA;
HSPA1L; SERPINC1; ATP50, ABCB1;
Upregulated in RAO: C5;SERPINA1; CFB; ITGAM; HNRNPA3; RB1; ACTB; NOD2; FOXP3;
ALDH7A1; FTL; GLS; GZMB; THOP1; HLA-DQB1; ITGAM
Controversial findings :ALB; SFTPD; PIGR;

IFNG; TNF; CD40LG

chemokine (C-C motif) ligand
24

(CCL24)
[18]

Downregulated in RAO:STK17B; IER3; IL-4-R; LTB; CPOX;
Upregulated in RAO: C5; IGJ; C3; IGHM; GZMB; THOP1; RB1; PRKDC; FOXP3;
Controversial findings : PIGR; SCGB1A1; IGHG1;

IL-4

interleukin 27
(IL-27)
[3]

Upregulated in RAO: HLA-DQB1; C5; FOXP3

Figure 1 interactions between IL-4R and proteins. Red: downregulated in RAO, green: upregulated in RAO, magenta: controversial results,
arrow: acts on, line: binds to, continuous line: direct interaction, dotted line: indirect interaction.
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(HLA-DQB1). Such heterogeneity of functions can also be
seen in cytoplasmic proteins. These proteins are involved
in the induction of NF-�B (NOD2), protection of cells
from oxidative stress (ALDH7A1, GSTT1), or participate
in cell lysis and in cell-mediated immune responses
(GZMB). Proteins present in the nucleus, on the other
hand, are assumed to play a role in the regulatory mechan-
isms of apoptosis, cancerogenesis (RBL1, RB1), immune-
regulation (FOXP3) and regulation of NF-�B activity
(Table 2). Figure 1 illustrates the different types of interac-
tions between IL-4R and other proteins.

Apart from CD40 ligand (CD40LG), which is only pre-
sent in the IL-21R pathway, “connecting proteins” pro-
posed by IPA and indirectly interacting proteins present in
these two pathways always appear in the IL-4R pathway.
Protein product of IL-27 was found in three indirect inter-
actions, namely HLA-DQB1, C5, and FOXP3 (Table 1).

Discussion
The main conclusions drawn from this comparative ana-
lysis of genomic and proteomic data are as follows: 1)
four of the eight candidate genes, namely SOCS5, IL-7R,

Table 2 Interaction summary of IL-4R with proteins (source of protein functions: Uniprot: http://www.uniprot.org

Compartment Function Proteins

Extracellular Lung’s innate immunity SERPINA1; surfactant protein D (SFTPD), transferrin (TF), complement factor B (CFB),
complement component 3 (C3), complement component 5 (C5)

Immunoglobulins immunoglobulin heavy constant gamma 1 (IGHG1), immunoglobulin J polypeptide, linker
protein for immunoglobulin alpha and mu polypeptides (IGJ); immunoglobulin kappa

constant (IGKC)

Tumor Necrosis Factor family lymphotoxin beta (TNF superfamily, member 3) (LTB)

Other proteins apolipoprotein A-I (APOA1), wingless-type MMTV integration site family member 7A
(WNT7A), laminin beta 3 (LAMB3), Albumin (ALB) and secretoglobin, family 1A, member 1
(SCGB1A1) fibrinogen alpha chain (FGA); Plasminogen (PLG); serpin peptidase inhibitor

clade C (antithrombin) member 1 (SERPINC1); von Willebrand factor (VWF); serpin
peptidase inhibitor clade A (alpha-1 antiproteinase antitrypsin), member 1 (SERPINA1)

Cell
membrane

Immunoglobulin immunoglobulin heavy constant mu (IGHM)

Immunoglobulins-receptor polymeric immunoglobulin receptor (PIGR)

MHC class II major histocompatibility complex, class II, DQ beta 1 (HLA-DQB1)

Adhesive interactions (e.g.
granulocytes)

integrin, alpha M (complement component 3 receptor 3 subunit) [ITGAM]

Hemostasis thrombomodulin (THBD)

Other proteins ATP-binding cassette, sub-family B (MDR/TAP), member 1 (ABCB1)
mucin 20, cell surface associated (MUC20);

platelet-derived growth factor receptor, alpha polypeptide (PDGFRA)

Cytoplasm Respiratory chain enzyme ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit (ATP5O);

Induction of NF-kappa-B nucleotide-binding oligomerization domain containing 2 (NOD2)

Protection from oxidative stress aldehyde dehydrogenase 7 family, member A1(ALDH7A1); glutathione S-transferase theta 1
(GSTT1)

necessary for target cell lysis in cell-
mediated immune responses

granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1) (GZMB)

Other Proteins calponin 1, basic, smooth muscle (CNN1); serpin peptidase inhibitor, clade B (ovalbumin),
member 10 (SERPINB10); uveal autoantigen with coiled-coil domains and ankyrin repeats
(UACA); ribosomal protein S6 kinase, 90 kDa, polypeptide 4 (RPS6KA4); sorting nexin 9
(SNX9); heat shock 70 kDa protein 1-like (HSPA1L); actin, beta (ACTB); Glutaminase (GLS);
ribosomal protein L23a (RPL23A); immediate early response 3 (IER3); thimet oligopeptidase

1 (THOP1); ferritin, light polypeptide (FTL);
coproporphyrinogen oxidase (CPOX)

Nucleus Tumor suppressors retinoblastoma-like 1 (p107) (RBL1); retinoblastoma 1 (RB1)

Represses transcription of NF-kappa-B
in response to TNF

ribosomal protein S6 kinase, 90 kDa, polypeptide 5 (RPS6KA5); forkhead box P3 (FOXP3)

Probable transcription factor forkhead box P3 (FOXP3)

positive regulator of apoptosis serine/threonine kinase 17b (STK17B)

Involved in DNA repair mechanism protein kinase, DNA-activated, catalytic polypeptide (PRKDC);

Other Proteins bromodomain and PHD finger containing, 1 (BRPF1); heterogeneous nuclear
ribonucleoprotein A3 (HNRNPA3); zinc finger and BTB domain containing 16 (ZBTB16)
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PTGER4, and PDE4D, are implicated in direct interac-
tions with proteins identified in BALF; 2) IL-4R, IL-21R
and CCL24 are related to the identified BALF proteins
by a large number of indirect interactions; 3) these
indirect interactions highlight intracellular regulatory
mechanisms that might play central roles in RAO
pathophysiology (e.g. NF-�B); 4) the interaction of
SOCS5 with IL-4R might explain how genomic hetero-
geneity in RAO-affected horses results in the same
phenotype.
SOCS5 encodes for a protein which directly interacts

with IL-4R. This gene is one of the main RAO-candidates
in Swiss Warmblood family 2 [20] and is located in a
region of ECA15 associated with the disease. SOCS5
downregulates the cytokine signal transduction by termi-
nating intracellular signaling in a variety of ways. This
can happen with the ubiquitination and subsequent
degradation of the Janus kinase [JAK] and signal transdu-
cers and activators of transcription [STAT] receptors.
SOCS5 is predominantly produced in TH1 cells and inhi-
bits differentiation toward the TH2 cell type. In humans,
its role has been implicated in the pathogenesis of allergic
asthma [27,28]. Interestingly, the fact that SOCS5 and
IL-4R directly interact might give a molecular explana-
tion as to why the disease is clinically indistinguishable in
both families [21]. Genetic variations in IL4R and SOCS5
may have various effects during RNA replication or spli-
cing, or may influence protein function and stability. A
molecular explanation for disease expression might be
that a SOCS5 variant could lead to a protein with a differ-
ent biological activity that could modulate IL-4R function
and lead to the same effect as an IL-4R mutation. As
IL-4R and SOCS5 are located upstream in the signaling
cascades, genetic mutations of the coding genes might
lead to the same phenotype, thus explaining genetic het-
erogeneity in RAO.
PTGER4 and PDE4D are located in a region of ECA21

associated with RAO in both Swiss Warmblood family
1 and 2. They directly interact with an important intra-
cellular molecule that was detected during proteomic
analysis, namely ARRB1. ARRB1 not only inhibits G
protein-coupled receptor signaling, but also upregulates
gene transcription of B-cell CLL/lymphoma 2. This anti-
apoptotic factor enhances the survival of CD4+ T cells
and might be one explanation for autoimmunity in
humans suffering from multiple sclerosis [29]. Finally,
IL-7R, a candidate gene from ECA21, directly interacts
with FOXP3 which is a regulatory T-cell transcription
factor implicated in the pathophysiology of human
asthma.
IL-4R was examined in this study both as an RAO-gene

candidate and as one of the proteins detected by proteo-
mic evaluation of BALF. IL-4R was previously identified as
an RAO candidate gene on ECA13 in Swiss Warmblood

family 1 [19,20]. Also, IL-4R was found to have the great-
est number of indirect interactions with the proteins
detected in the BALF according to the pathways suggested
by IPA®.
Another RAO-gene candidate from the same chromoso-

mal region, IL-21R, shares homologies with the IL-4R
alpha chain, and functions along a similar pathway. Since
these two genes might be the most promising of all RAO-
candidate genes, focusing on the IL-4R-pathway is likely to
produce valuable insights into the signaling cascades
ultimately leading to the disease. The three most crucial
“connecting proteins” to this pathway are the TNF-family,
IFN-g, and IL-4, and thus deserve special attention.
The TNF-family consists of three members: TNF-a,

lymphotoxin-a (LTA), and lymphotoxin-b (LTB). A large
number of proteins identified by proteomic analysis of
BALF (39) interact with the TNF-family in the IL-4R
pathway and it is noteworthy that LTB was also identified
in BALF. These cytokines are mostly membrane-bound,
produced by macrophages and T cells, and fulfill multiple
functions within immune response mechanisms. Mast
cells can also produce large amounts of TNF-a [30] and
interactions between these cells may be involved in neu-
trophil recruitment to the airway mucosa. Important
functions of TNF-a that may play a role in the pathophy-
siology of RAO, are neutrophil recruitment and induc-
tion of proinflammatory cytokines via activation of the
NF�B pathway. The proteins ITGAM, NOD2, RPS6KA5,
and FOXP3 that were detected in the proteomic analysis
substantiate the importance of the TNF-family and NF�B
pathways. TNF-proteins interact with receptors of the
tumor necrosis factor receptor family (TNFR), which in
turn communicate with an intracellular signaling path-
way known as Tumor Necrosis Factors Receptor Asso-
ciated Factors (TRAFs). Upregulation of TNF-a leads to
a rapid externalization of granules containing P-selectin
(Weibel-Palade bodies), to an increased expression of
E-selectin, and to a strong expression of the intercellular
adhesion molecule 1 (ICAM-1) in endothelial cells.
ITGAM is located on the surface of neutrophils and
interacts with ICAM-1. These mechanisms are critical
events in neutrophil extravasation. On an intracellular
level, TNF-receptor activation leads to apoptosis or to
signals that promote new gene expression through activa-
tion of NF�B. NOD2 is a cytoplasmic protein that recog-
nizes bacterial proteoglycans and then activates NF�B.
Both nuclear factors RPS6KA5 and FOXP3 repress tran-
scription of NF�B. FOXP3 is a transcription factor
expressed by regulatory T cells. These cells are able to
modulate the activation of other T cells (i.e. TH1 and
TH2) and play a key role in immune homeostasis [28]. In
humans affected by asthma, FOXP3 protein expression
within CD4+CD25high T-cells is significantly decreased
compared to controls [31]. Cytokines like IL-8 and
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TNF-a are induced by NF�B activation [32,33] and may
play a role in neutrophil recruitment during an RAO cri-
sis. This is illustrated by a study that detected high levels
of NF�B activity in bronchial cells of RAO-affected
horses in comparison to healthy horses [34]. Therefore,
our data highlight several factors that all deserve further
investigations in order to evaluate their impact in RAO-
pathophysiology, especially regarding the neutrophils
recruitment, one of the key mechanisms leading to this
disease.
The IPA® platform generates pathways based on

experimentally identified genes or proteins reported in
the literature. In this study, for each pathway, 277 BALF
proteins identified using proteomics and one candidate
gene were specified so that IPA® could indentify interac-
tions. Furthermore, “connecting proteins” were added by
the software in order to expand pathways. This approach
presupposes that the likelihood of a candidate gene play-
ing a pivotal role in the pathophysiology of RAO
increases if that gene stands in multiple interactions with
proteins detected in the proteomic analysis. The “con-
necting proteins” TNF, IFN-g, and IL-4 act at the origin
of signaling cascades and display pleiotropic effects.
Hence their effective concentrations may be low or unde-
tectable, which would explain why they were not detected
in the proteomic analysis. Protein expression might also
differ depending on whether tissue samples (i.e. biopsies)
or BALF were examined. Furthermore, the heterogeneity
and dynamic nature of RAO suggest that additional pro-
teomic analysis of BALF from a wide range of naturally-
occurring cases of RAO is warranted before results from
this study may be generalized and the implicated proteins
and their effects on the lower airways of horses can be
confirmed. Another issue is that IPA® builds connections
based on literature from humans, mice, rats and cell cul-
tures. Although fundamental immune and inflammatory
pathways are conserved, there may be some important
interspecies differences. Furthermore, transcriptomic and
metabolomic analyses might provide much-needed infor-
mation about smaller molecules (e.g. cytokines, metabo-
lites) and their regulatory effects on the pathophysiology
of RAO, and thus constitute another important research
target. For instance, microarray assays and differential
display polymerase chain reaction (DD PCR) have already
been used to explore differential gene expression in RAO
[35,36]. Ultimately, integration of information gained
from all of these approaches may be needed to better
understand the complex molecular pathogenesis of RAO.

Conclusion
The integration of proteomic and genomic data on
RAO, collected by two independent approaches, has
produced a new set of data that identifies novel interac-
tions which emphasize a central role for IL-4R and

SOCS5 and implicate downstream intracellular signaling
cascades. Indeed, these insights formulate the first mole-
cular hypotheses on a proteomic level to explain the
observation of genetic heterogeneity in RAO. This study
thus illustrates the value of bioinformatics software for
the analysis of large and complex sets of data and offers
new approaches for the study of complex immunological
diseases such as RAO.

Methods
Whole genome scan study
For the genetic studies, phenotypes were classified using
HOARSI (Horse Owner Assessed Respiratory Signs
Index), as described in detail elsewhere [37]. Briefly, horse
owners were contacted by phone and informed consent
obtained. Only horses with clinical signs that had persisted
for at least 2 months were included in the study. All
horses were 5 years or older with a history of hay feeding.
A standardized questionnaire was used to gather informa-
tion from the horse owners on the animals’ history of
chronic coughing, increased breathing effort at rest, and
nasal discharge. This information was combined into a
HOARSI 1-4. The classification refers to the period when
the horses were exhibiting the most severe clinical signs.
While HOARSI 1 comprises unaffected individuals (sever-
ity class 1) RAO in this study is represented in severity
class 3, which comprises HOARSI 3 and 4 individuals
[37]. Validation on 33 offsprings of sire 1 and 36 offsprings
of sire 2 using comprehensive clinical examination showed
that HOARSI 3 and 4 individuals in exacerbation are fully
consistent with the RAO phenotype [21].
Horses selected for genetic linkage analyses arose from

two Warmblood sire half sibling families exhibiting high
RAO prevalence. The two Warmblood sires showed
obvious clinical signs of respiratory distress (nostril flare,
increased abdominal lift, or increased respiratory rate) and
airway obstruction when stabled in stalls with straw bed-
ding and fed hay, and showed remission of these signs
when stabled in a barn complex especially adapted to the
requirement of RAO patients (bedding of dust-free shav-
ings; haylage feeding). A total of 248 horses were included
in a whole-genome linkage analysis study using microsa-
tellite markers. The study was approved by the animal use
committee of the canton of Berne, Switzerland. These two
families and the genetic analyses have been described in
detail elsewhere [20,37]. Briefly, a total of 286 microsatel-
lite markers covering the 31 horse autosomes and ECAX
were used for this study. Fragment amplification using
PCR was followed by fragment-length measurement on an
ABI 3100 (Applied Biosystems), and genotypes were called
using GeneMapper ver. 4.0 (Applied Biosystems). The
genotyping data were analyzed using QTL Express [38],
GRID QTL (http://www.gridqtl.org.uk/)[39] and FAS-
TLINK [20,40].
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Proteomics study
Horses
Five horses previously diagnosed with Recurrent Airway
Obstruction (RAO) and six age-matched healthy horses
with no history of respiratory disease were used in this
study. A diagnosis of RAO was made based on maximum
change in transpulmonary pressure (ΔPLmax) > 15 cmH2O,
and > 25% neutrophils in BALF cytology during disease
exacerbation. Horses also had reversible airway obstruc-
tion documented by pulmonary function tests following
bronchodilator administration or environmental change
[2]. The control horses had no clinical signs attributable to
chronic respiratory disease when housed indoors and fed
hay and no history of infectious respiratory disease (fever,
nasal discharge, and cough) in the past 3 months. All pro-
cedures were approved by the Purdue University Animal
Care and Use Committee.
All horses were maintained on pasture for at least two

months with no dry hay supplementation before the
beginning of this study. On Day 1, horses were transported
from the pasture to the laboratory and allowed at least 30
minutes to acclimate to the lab environment. The evalua-
tion consisted of a complete physical examination and cal-
culation of a clinical score, standard pulmonary function
testing (PFT), and BALF cytology. After the horses recov-
ered from sedation, each pair (one RAO and one control)
were stalled in adjacent stalls for the exposure trial.
In order to induce signs of acute airway obstruction in

the RAO-affected horses, all horses were fed moldy hay
and pelleted feed and were bedded on straw. The moldy
hay was shaken in the breathing zone of each horse for
two minutes twice a day until the clinical score of the
RAO-affected horse reached 10 (out of 21 possible; Tesar-
owski et al. 1996). When the RAO-affected horse had a
clinical score of ≥ 10, PFT were performed as previously
described [41]. When the RAO-affected horse had a
ΔPLmax > 15 cmH2O, the tests performed on Day 1 were
repeated on the RAO-affected horse and its age-matched
control. Upon completion of the second set of tests, all
horses were returned to pasture with no access to dry hay.
Collection of BALF was performed after all lung function
measurements were obtained [3].
Proteomics sample preparation
The BALF supernatant was filtered through sterile gauze
and stored at -80°C in 1 mL aliquots until further analysis.
Protein concentration in the BALF supernatant was mea-
sured with a BCA Assay (Thermo Scientific Pierce BCA
Protein Assay Kit, Thermo Fisher Scientific, Inc., Rock-
ford, IL, USA). For each sample, 100 μg of protein was
incubated with three volumes of cold acetone at -20°C for
30 minutes to precipitate proteins. The samples were cen-
trifuged for two minutes to concentrate the protein pellet,
and the supernatant was discarded. The samples were lyo-
philized to complete dryness (approximately 15 minutes).

Denaturation solution (8 M urea + 10 mM Dithiothreitol,
10 μL) was added to each sample and incubated for
90 minutes at 37°C. Ammonium bicarbonate (2 μL, 100
mM) and reducing cocktail (10 μL of a solution of 195 μL
acetonitrile, 1 μL triethylphosphine, and 4 μL 2-iodoetha-
nol) were added to each sample and incubated at 37°C for
90 minutes. The samples were lyophilized overnight. The
following day, each sample was resuspended in 80 μL of
100 mM ammonium bicarbonate. Trypsin was added at a
ratio of 1 gram trypsin to 50 grams protein (2 μg of
0.5 μg/μL trypsin) to each sample, and incubated over-
night at 37°C. On the final day, 1 μL of 10% trifluoroacetic
acid (TFA) was added to each sample to stop the diges-
tion. Each sample was run on a C18 column (C-18 Vydac,
300 A, The Nest Group, Southborough, MA, USA) to
remove the majority of the salt from the sample, according
to standard laboratory procedure. After the final column
wash, the samples were lyophilized overnight. Samples
were processed in batches, and the peptide pellets were
stored at -80°C until all samples were processed. All sam-
ples were reconstituted in 100 μL of 0.01% TFA (final con-
centration 1 μg/μL) before mass spectrophometric
analysis.
LC-MS Analysis
The peptides were separated on a nanoLC-Chip system
(1100 Series LC equipped with HPLC Chip interface, Agi-
lent, Santa Clara, CA, USA). After injection of 1 μg of
sample, the peptides were concentrated in the on-chip
300SB-C18 enrichment column and washed with buffer A
(5% acetonitrile, ACN/0.01% TFA) at flow rate of 4 μl/min
for 5 minutes. The enrichment column was switched into
the nano flow path and further separated with the on-chip
C-18 reversed phase ZORBAX 300SB-C18 analytical col-
umn (0.075 μm × 43 mm; Agilent, Santa Clara, CA, USA)
coupled to the electrospray ionization (ESI) source of the
ion trap mass spectrometer (XCT Plus; Agilent, Santa
Clara, CA, USA). The column was eluted with a 55 minute
linear gradient from 5%-35% buffer B (100% acetonitrile,
0.01% TFA) at a rate of 600 nl/min, followed by a 10 min-
ute gradient from 35%-100% buffer B. The column was re-
equilibrated with an isocratic flow (5% buffer B) at 600 nl/
min. ChemStation software was used to control the system
(Agilent, Santa Clara, CA, USA). LC-MS chromatograms
were acquired in positive ion mode under the following
conditions: a capillary voltage of 1850 V and an end plate
offset of 500 V. The dry temperature was set at 300°C. Dry
gas flow was maintained at 4 L/min. Acquisition range
was 350-2200 m/z with 0.15 second maximum accumula-
tion time and scan speed of 8100 m/z per second.
Statistical Analysis
The raw data from the LC-MS were pre-processed before
analysis to eliminate artifacts such as noise, peak broad-
ening, instrument distortion, etc. [42]. Briefly, spectral
deconvolution was performed to filter noise in the
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spectra and to separate overlapping peptide peaks. Peak
alignment was used to adjust for retention time drift
between samples over the time course of the LC-MS data
acquisition. After the pre-processing was complete, the
mean intensity of each peak was calculated for each
group (RAO-affected and control) and the fold change of
each peptide between groups was calculated. All statisti-
cal analysis was performed with the Purdue Discovery
Pipeline (PDP) (Purdue University, West Lafayette, IN).
LC-MS/MS Analysis
MS/MS analysis was performed on one RAO-affected
horse and one control horse. To identify differentially
expressed peptides, automated MS/MS spectra were
acquired during the run in the data-dependent acquisition
mode with the selection of the three most abundant pre-
cursor ions (0.5 min active exclusion; 2+ ions preferred).
The MS/MS files acquired on the ion trap mass spectro-
meter were uploaded to Spectrum Mill protein identifica-
tion software (Agilent, Santa Clara, CA) and searches were
performed using Spectrum Mill and the NCBI database.
The parameters were as follows: no more than two tryptic
miscleavages allowed, cysteine searched as ethanol
cysteine, variable oxidized methionine, 2.5 Da peptide tol-
erance and 0.7 Da mass tolerance. Only peptides with a
score of 5 or higher were considered true positives.
Peak identification
Peak identification was performed for one RAO-affected
horse and one control horse. The output files from the
PDP statistical analysis and Spectrum Mill peptide identifi-
cation were merged into one file. The PDP mass to charge
ratio (m/z) and retention time (RT) data (peaks) for one
horse was matched with the Spectrum Mill identification
data (peptide and protein names) for the same horse. First,
peaks were matched with peptides within 3 m/z units and
3 minutes RT. Then, for peptides matched to multiple
peaks, a single peak was selected based on charge (from
SM data and manual review of spectra), closest m/z, and
closest RT. For peaks matched to multiple peptides, a sin-
gle peptide was selected based on the highest Spectrum
Mill score and percent scored peak intensity (% SPI) and
the lowest Spectrum Mill reverse score.

Generation of pathways with IPA®

The functional analysis of a network identified the biologi-
cal functions and/or diseases that were most significant to
the molecules in the network. The network molecules asso-
ciated with biological functions and/or diseases in Ingenu-
ity’s Knowledge Base were considered for the analysis.
Right-tailed Fisher’s exact test was used to calculate the
probability that each biological function and/or disease
assigned to that network is due to chance alone (Ingenuity®

Systems, http://www.ingenuity.com).
All proteins identified in proteomic analyses of BALF

from RAO and control horses were included. The reason

was that we first intended to explore their global interac-
tion with the candidate genes (i.e. their protein products).
A total of 8 candidate genes (IL-4R, IL-21R, CCL24,
IL-27, PTGER4, PDE4D, SOCS5, IL-7R) from the genetic
linkage analysis and 277 proteins identified in the proteo-
mics studies of RAO horses were uploaded into the IPA
software (Ingenuity® Systems, http://www.ingenuity.com)
to generate pathways. IL-4R, IL-21R, CCL24, IL-27 are
located on ECA13 and are associated with disease in
Swiss Warmblood family 1; SOCS5 is located in a region
of ECA15 and is associated with disease in family 2;
IL-7R, PTGER4 and PDE4D are on ECA21 and are asso-
ciated with disease in both family 1 and 2, although less
significantly [20]. Search results were restricted to mole-
cular interactions described in lung tissues, immune
cells, BALF and sputum, genetic disorders, hypersensitiv-
ity, immunological diseases, infectious diseases, and
inflammatory diseases in humans, mice, rats and cell
cultures. Possible types of interaction were “binds to”,
“inhibits”, “acts on”, “leads to” and “translocates to”.
Interactions can also be direct or indirect. Direct interac-
tions were defined as two molecules making direct physi-
cal contact with each other with no intermediate step.
Direct interactions also included chemical modifications
such as phosphorylations, provided that there was evi-
dence that the two factors involved interact directly
rather than through an intermediate. Indirect interactions
are genetic or molecular relationships explicitly reported
in the literature and not inferred. For instance, up-regula-
tion of TNF-a leads to a strong expression of the inter-
cellular adhesion molecule 1 (ICAM-1) in endothelial
cells without direct physical contact between TNF-a and
ICAM-1.
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