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Abstract 

 

Assessing Cotton Maturity from Fiber Cross-section Measurements 

 

 

 

 

Xiaowen Guo, M.S.T.A.T. 

The University of Texas at Austin, 2013 

 

Supervisor:  Bugao Xu 

 
The previous Fiber Image Analysis System (FIAS-I) is not reliable enough to 

detect fibers, especially for the immature fibers. It yields a systematic bias in the maturity 

distribution. Furthermore, the maturity distributions are often assumed to be normal 

without any normality tests in many previous studies, and those distributions are 

commonly measured by a sole parameter, e.g., the mean maturity value. In fact, those 

statistical inferences on cotton maturity may not be valid when cotton maturity does not 

follow a normal distribution. In light of the complexity of maturity distributions, the sole-

parameter approach does not appear to be reliable and rational to rank the maturity 

among different samples.  

In this thesis, modified algorithms are made in the previous Fiber Image Analysis 

System (FIAS-I) to improve the number and accuracy of detected cross-sections and 



 v 

reduce the bias on immature fiber. The normality of cotton maturity distributions are 

analyzed through multiple parameters and patterns of cotton maturity distributions, and 

the experimental results on the cross section images selected from seven cotton varieties 

are displayed. Finally, several normality tests are introduced, and the Box-Cox 

transformation is applied to the maturity distribution, which makes the comparisons 

among the mean maturity feasible.  
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Chapter 1: Introduction 

1.1 MOTIVATION AND GOALS 

Cotton cross sectional analysis provides fundamental and measurable information 

(such as cell wall thickness, area and perimeter, etc.) which are directly related to the 

maturity of cottons. Accurate and unbiased cross-section data are crucial, because it can 

be regarded as the reference for other indirect methods. In 1995, USDA Southern 

Regional Research Center (SSRC) published a quick embedding method [1] of cross-

sectioning fiber samples sponsored by Cotton, Inc. In 2004, the cross-section images of 

over 100 cotton bales were analyzed by the first version of Fiber Image Analysis System 

(FIAS-I) developed at the University of Texas at Austin [2].  

The accuracy of the FIAS-I analysis was challenged in a study by Krifa and 

Padmaraj [3] on 14 cotton samples with 3 cross-sections and approximately 2800 fibers 

per sample. The study showed an overestimation of maturity of nearly 10% due to 10-

40% of undetected or eliminated immature fibers [3]. The FIAS-I contains several 

unsolved problems, which cause the inexactness of cotton maturity level. Even though 

some supplementary image editing tools were added to the FIAS to assist the operator to 

re-portray (manual-editing) or delete (manual-removal) wrongly detected fibers, their 

weaknesses limit the further use of those manual tools. The major goal of this thesis is to 

develop a research on the modifications of the FIAS-I to improve not only the number 

but also the accuracy of detected cross-sections and reduce the bias on immature fibers.   
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1.2 BACKGROUND OF COTTON CROSS-SECTIONS 

1.2.1 Cross Section 

The cross-sectional image of a cotton fiber is displayed in Figure 1.1. It consists 

of two parts: cell wall and lumen. The enclosed contour located in the middle of the 

whole cross-section is the lumen, and the part that envelops the lumen is the fiber’s cell 

wall. 

The measurements of a cross-section can be expressed using four parameters: the 

perimeter of the cross-section (Pc), the area of the cross-section (Ac), the perimeter of the 

lumen (Pl), and the area of the lumen (Al). The values of the two perimeters are obtained 

by tracing their boundaries, and the areas are calculated by counting the pixels within 

their corresponding boundaries.   

 

Figure 1.1 Measurements of the cross-section. 

 

1.2.2 Cotton Maturity 

In the cross-sectional analysis, the maturity of individual fibers is often 

represented by a shape factor called circularity or  value.  is the ratio of the cell wall 

area (Aw) over the area of a circle having the same perimeter (Pc).  
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 24 /w cA P =  (1.1) 

in which,  

 w c lA A A= -   (1.2) 

Thus, increasing accuracy of locating fiber boundaries and lumens is paramount 

for obtaining reliable maturity distributions. 

 

1.3 TRADITIONAL METHODS FOR COTTON MATURITY 

The overall development of cotton maturity measurement can be briefly described 

by a few milestones. In 1956, Lord established 100 cottons to calibrate micronaire [4]. In 

1980’s, the ITMF in cooperation with other organizations developed a set of nine 

calibration cottons for use in large-scale maturity round trials [5]. In 1999, Thibodeaux et 

al. used a commercial image analysis system to measure the cross-sectional images of 

approximately 50 cotton varieties representing a wide range of genetic finenesses grown 

and hand-harvested in the U.S. [6]. In 2000s, Hequet and Thibodeaux’s groups performed 

a multi-year project to create a larger-scale cotton maturity reference by analyzing images 

of 104 cotton bales [7] collected worldwide using a new fiber cross-sectioning protocol 

[1] and the customized software (FIAS) [2].  

Acquiring the maturity information through the analysis of longitudinal direction 

of cotton fiber was commonly used several years ago. In 1986, Thibodeaux and Evans [8] 

measured the fiber maturity by a longitudinal width ratio value, and they found that the 

average maximum widths along the length direction to the average minimum widths 

could reflect the secondary wall of the cotton fiber. A longitudinal analysis for fibers’ 

fineness and maturity was reported by Xu and Huang [9]. Firstly, a valid scan of 

longitudinal shape should be obtained, then maturity information is derived through the 
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analysis of the fibers convolutions. The reliability of the fiber maturity information in [9] 

was ensured through comparison with other methods. The maturity of cotton fiber can 

also be measured through automated polarized light microscopy [10][11] applied onto the 

longitudinal direction of test fibers. Through the color difference of “yellow” and 

“green”, the thickness of fiber wall can be obtained, and the maturity can be captured 

from it.   

Compared with the longitudinal direction, the cross-section direction [12] could 

provide much more direct and accurate maturity information. However preparing the 

cross-section fiber slides [13] without scratches and shape distortions seems to be a 

challenge. Due to the consistence of longitudinal and cross-sectioning directions, Petkar 

et al. [14] and Barker et al. [15] investigated reference methods, from which cross-

section information can be projected from the longitudinal viewer. The initial attempt of 

direct cross-sectioning measurement [16] used image analysis system and computer 

program to get the parameters from cross sections, which covers wall thickness, ribbon 

width, maturity factor and maturity ratio. A detailed image processing for cotton fiber’s 

cross-sectioning analysis can be obtained in [12]. Fourier transform infrared spectroscopy  

[17] was utilized for the discrimination of cotton maturity due to the large difference of 

spectral features in cross-sectional analysis.  

 

1.4 STRUCTURES OF THE THESIS 

This thesis will cover four parts. From Chapter 2 to Chapter 5, the modified 

algorithms of the FIAS-I will be introduced, and data analysis between the FIAS-I and 

FIAS-II software will be compared to demonstrate the improvements of the performance.  
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Chapter 2: the major image processing routines of the FIAS-I will be introduced 

firstly, and then followed by several modified algorithms applied to it, which is improved 

as the FIAS-II software.  

Chapter 3: maturity distributions obtained from the FIAS results are discussed. If 

the distribution is not normal, the characteristics, classifications and patterns of the 

distribution are analyzed. 

Chapter 4: results from the previous (FIAS-I) and current (FIAS-II) software are 

compared through the aspects of: detected numbers of fibers, distribution parameters, 

distribution classifications, and distribution patterns.  

Chapter 5: the normality of each distribution should be tested. In order to allow 

the comparisons among maturity means from non-normal distributions, the Box-Cox 

transformation is complemented to make such comparisons feasible among the 

transformed mean values. 

Chapter 6: conclusions and future work for this study are presented. 
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Chapter 2: Modifications of the FIAS System 

2.1 INTRODUCTION 

The major processing routines of the FIAS-I software can be described in four 

steps: dynamic thresholding, background flooding, skeletonizing and lumen 

identification. These routines appear to be effective when image illumination is uniform 

and image contrast is sufficient, but not robust enough for fibers that have low contrast, 

broken edges, or distorted cross-sections due to self rolling and tangling with others. 

Modifications of the FIAS-I software are necessary. 

 

2.2 MODIFICATIONS IN THE FIAS-II 

2.2.1 Adaptive Thresholding 

Illumination intensity in a captured 8-bit grayscale image can vary drastically. 

There is no omnipotent thresholding method that can generate consistent results across 

the entire image. The dynamic threshold method with adaptive parameters is a reasonable 

way to convert an 8-bit gray scaled image into a binary one. In the FIAS-I, a sub-window 

of a given size was used to calculate the threshold (Ti) based on the mean Mi and the 

standard deviation SDi of pixel intensities in the window: 

 i i iT M c SD= -   (2.1) 

where c was a coefficient which was set as 0.2 in the program.  

The window size was also fixed at 7 7  pixels. Since c and the window size 

were not changeable despite differences in intensity variability, Ti calculated using Eq. 

2.1 might not always be optimal for generating binary images. Figure 2.1a displays an 

image with non-uniform illumination, and Figure 2.1b is the resultant image with this 
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threshold method. The high level of noise in Figure 2.1b makes the tracing of fiber 

boundaries extremely difficult. It seems that in Figure 2.1a darker regions are more 

sensitive to background noise than brighter regions. The coefficient c should be adaptive 

to the mean intensity (Mi) of the current window to adjust the sensitivity of thresholding. 

Based on the observations on many images, it is found that a brighter region normally has 

a lower noise level than a darker region, and thus c for a brighter window should be 

increased to lower Ti. The location-dependent c is denoted as ci. By the trial and error 

with a wide range of images, we established the following empirical equation for 

calculating ci based on Mi: 

 0.014 2.694i ic M= - (R2=0.9857) (2.2) 

The binary images of Figure 2.1a with the aid of dynamic coefficient ci is 

displayed in Figure 2.1c, in which the large proportion of the noisy image (Figure 2.1b) 

was reduced. Fiber boundaries in this image were also more complete than those in 

Figure 2.1b.   
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(a) The original input image.  

 

 

(b) The previous binary output. 

 

 

(c) The improved binary output. 

Figure 2.1 Adaptive thresholding comparison. 
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2.2.2 Amending Broken Edges 

After the grayscale images are converted into the binary images using the 

adaptive threshold, background noise, small solid objects including broken edges of 

fibers need to be removed to let only enclosed fibers remained. This can be done by 

“Background Flooding”, which fills the white background with black pixels. Broken 

fibers are also absorbed by the “flooding” when their inner white regions (fiber walls) are 

occupied by black pixels. In order to keep those narrowly broken fibers from being 

eliminated, a step to amend almost connected edges needs to be added.  

There is no generic algorithm for detecting the ends of broken boundaries. The 

edge amending routine had to be developed on a case-by-case basis after fiber outer 

boundaries were traced. It mainly involved three steps: (1) Check if a fiber boundary has 

a “dead-end” pixel by counting the number of its neighboring pixels. A dead-end pixel is 

the one that has one neighbor in the boundary chain. (2) Search for another “dead end” in 

the same chain. (3) Check if the open distance between the two is within an allowable 

limit and the boundary length between the two exceeds the threshold on fiber perimeter. 

The last step was to prevent a connection between two dead-ends that were not on the 

same boundary or too far apart. The connection distance was limited to 5 pixels in the 

new program, and was simply made by drawing a straight line between the two identified 

dead ends. 

Figure 2.2a shows a few examples of typical broken boundaries, and Figure 2.2b 

shows the connections made. The connection lines don’t alter fibers’ original shapes, 

while preventing these fibers from being immersed with the background flooding. 
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(a) Cottons with broken boundaries. 

 

 

(b) Amended connections. 

Figure 2.2 Broken boundaries and their amended connections. 

 

2.2.3 Skeletons and Lumens Identification 

In a cross-section image, some fibers often do not possess visible lumens. As seen 

in Figure 2.3a, fibers 1, 3 and 4 are immature fibers whose lumens are totally collapsed, 

fibers 2, 8 and 5 do not exhibit clear lumens because of low contrasts, and fibers 6, 9 and 

7 show partial lumens. Lumen areas in these fibers can be readily overestimated or 

underestimated.  

Once a fiber boundary is located, another threshold is calculated by using only the 

pixels within the boundary so that the lumen can be more precisely segmented with 

localized parameters (the mean and standard deviation of the pixel intensities). Since a 

lumen should be situated in the fiber center, the skeleton of the fiber, i.e., the middle axis 

of the fiber, can be used to locate the lumen if multiple black areas are present inside the 

boundary. For fibers whose lumens are not detected after the thresholding, their skeletons 
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(one-pixel thick line segment) are placed as lumens. This localized thresholding and 

skeletonizing enhance the accuracy of lumen size and location (Figure 3b). 

 

 

(a) The original input image.  

 

 

(b) The detected cross sections. 

Figure 2.3 Lumen identification. 
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Table 2.1 displays the examples of improved results in fiber detection using the 

current modification methods (FIAS-II) compared to those of the previous methods 

(FIAS-I). Figure 2.4 gives a comparison of a whole image when being processed with 

these two methods. 

 

Table 2.1 Comparison of fiber detection results 

 

 

 Original Previous Current 

 
 
 

Missed fiber 

   

   

   

 
 
 
 

Underestimated 

lumen 

 

   

   

   
Overestimated 

lumen    
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(a) The original input image 

 

 

(b) Fiber detection of the FIAS-I. 

 

 

(c) Fiber detection of the FIAS-II. 

Figure 2.4 An overall comparison of fiber detection. 
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2.3 CONCLUSION AND DISCUSSION 

The background flooding and skeletonizing steps are more standardized 

procedures with fewer adjustable parameters. Therefore, we focused on improving 

dynamic thresholding and lumen identification, which are responsible for locating 

accurate fiber boundaries and lumens. An edge-amending routine was also added to 

connect narrowly broken boundaries to prevent them from disappearing in the 

background flooding. The modified methods in the FIAS-II are able to detect more fibers 

(mainly immature fibers), and more accurately locate lumens than those in the previous 

system. 
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Chapter 3: Maturity Distributions 

3.1 INTRODUCTION 

Maturity distributions are often assumed to be normal without any normality tests, 

so the maturity level of a sample is indicated in almost all maturity testing devices (e.g., 

AFIS, HVI) with a single parameter, i.e., the mean maturity value of all tested fibers in 

the sample. In fact, many statistical inferences on cotton maturity may not be valid when 

cotton maturity does not follow a normal distribution. 

In light of complexity of non-normal maturity distributions, the sole-parameter 

approach does not appear to be reliable and rational to rank the maturity among different 

samples. Multi-parameter and other discrimination methods should be taken into 

consideration. 

 

3.2 CHARACTERISTICS OF MATURITY DISTRIBUTIONS 

After a sufficient number of fiber cross sections are measured from multiple 

images, the descriptive statistics of fiber maturity data (), including mean, standard 

deviation, skewness and kurtosis, can be used to examine the features of maturity 

distribution without normality.  

3.2.1 Mean and Standard Deviation 

For a unimodal distribution, mean and stand deviation (SD) describe the central 

tendency and the variability of the distribution. 

Mean (arithmetic average) is calculated by the sum of the observations and then 

divided by the number of observations. It is the most common way to describe the central 

tendency when compared with mode and median values. 
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Standard deviation (SD) or variance indicates how the observations deviate from 

the mean value. Standard deviation is the positive square root of the variance, and it is 

taken as “the distance of each observation from the mean, square that distance, find the 

average of those squares, and take its positive square root.” [18] 

 

3.2.2 Skewness and Kurtosis 

Skewness indicates the “symmetry” of the distribution. According to the 

imbalance in a frequency distribution, skewness can be negative, positive or zero. A 

negative skew indicates that the distribution has a long tail on the left side (Figure 3.1a), 

i.e., the data concentrate more on the right side of the mean. A positive skew corresponds 

to the opposite case with a right-sided long tail (Figure 3.1b). A zero skew indicates that 

the tails on both sides of the mean balance out, which attributes to the symmetry or the 

even-out asymmetries. 

 

 

(a) Negative skew.              (b) Positive skew. 

Figure 3.1 Skewed distributions [19]. 
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Kurtosis indicates the “peakedness” of the distribution. A high kurtosis 

corresponds to a distribution with a sharp peak and long tails, while a low kurtosis 

indicates a distribution with a round peak and short, thinner tails.  

When either skewness or kurtosis significantly deviates from the value 

corresponding to the normal distribution, the distribution loses the normality. For a non-

normal distribution, many classical statistical tests, such as t tests, F tests and chi-squared 

tests may not be applied.  

 

3.2.3 Distribution Example 

Figure 3.2 displays the maturity () distributions of two cotton samples (sample 

codes are “3044” and “3055”), in which the x-axis represents the fiber maturity, and the 

y-axis represents the percentage of total detected fibers.  

 

 

Figure 3.2 Maturity Distributions of Cottons “3044”and “3055”. 
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The  of cotton “3044” and cotton “3055” have almost the same mean value 

(around 0.48), but different skewness values (0.37 and 0.23, respectively). Obviously, 

one cannot tend to use the mean  to differentiate the maturity levels of these two cottons, 

which have distinctive  distributions shown in Figure 3.2. Cotton “3044” contains more 

immature fibers than cotton “3055” although they have almost the same mean . Thus, 

distributional information must be taken into account when comparing or ranking 

maturities of different cottons. 

 

3.3 CLASSIFICATIONS OF MATURITY DISTRIBUTIONS 

In order to well describe the distribution of fibers’ maturity in a comprehensive 

but precise manner, the maturities of fibers from each cotton variety can be classified into 

three representative levels according to the maturation standards. Dead fibers, as shown 

in Figure 3.3(a), are extremely narrow strips whose lumens are tender or even haven’t 

been grown out with the maturity values less than 0.3. Half-mature fibers are those 

growing to a certain degree and having apparent fiber walls and lumens inside. The 

maturity value of half-mature fiber covers the range from 0.3 to 0.6, as displayed in 

Figure 3.3(b). Mature fibers have the circular shapes, with fiber walls significantly 

greater than lumens (Figure 3.3(c)), and maturity higher than 0.6. 

Immature fibers, especially dead fibers, have thinner walls, and thus are easier to 

be scratched/shredded by the cutting blade. They are also likely to be folded up 

transversely when the lumens collapse, increasing the difficulty of edge detection. 
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(a) Dead fibers. 

 

 

(b) Half-mature fibers. 

 

 

(c) Mature fibers. 

Figure 3.3 Classifications of fibers. 

 

3.4 PATTERNS OF MATURITY DISTRIBUTIONS 

The main purpose of the Fiber Image Analysis System is to provide the most 

direct information to quantify the maturity extents of cottons. Except for the classification 

of maturity mentioned above to describe different proportions of fiber maturity within a 

cotton variety, maturity distribution pattern is another descriptor that clusters the maturity 

distributions into several major types.  
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Among the parameters used to depict the shape of distribution, skewness is the 

first principal component that can distinguish the distribution patterns notably. Four 

patterns can be defined to categorize maturity distributions based on skewness values. 

Type I: Skewness>0.3, the remarkably positive (leftward) skewed pattern reflects a large 

number of dead or immature fibers are detected. Type II: 0.1<Skewness<0.3, the slightly 

positive (leftward) skewed pattern denotes moderately more dead or immature fibers. 

Type III: -0.1<Skewness<0.1, the near zero skewness value indicates a symmetrical 

distribution. Type IV: -0.3<Skewness<-0.1, the slightly negative (rightward) skewed 

pattern indicates moderately more mature fibers exist. Figure 3.4 demonstrates these four 

pattern types. The x-axis represents the fiber maturity, and y-axis represents the 

percentage of total detected fibers. The detailed descriptions of these four types are listed 

in Table 3.1. 

 

(a) Type I. 

Figure 3.4 Patterns of maturity. 
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(b)Type II. 

 

 

(c) Type III. 

Figure 3.4, cont.   
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(d)Type IV. 

 

 

(e) Four maturity types. 

Figure 3.4, cont.   
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Table 3.1 Maturity Patterns 

Type Skewness (S) Characteristics Fiber Content 

I 0.3 S Severely leftward skewed Many dead fiber 

II 0.1 S< 0.3 Moderately leftward skewed 
Moderately leftward 

skewed 

III -0.1 S< 0.1 Approximately normal Approximately normal 

IV -0.3 S< -0.1 Moderately rightward skewed 
Moderately rightward 

skewed 

 

3.5 CONCLUSION AND DISCUSSION 

When a distribution is strongly skewed, statistic inference with a single parameter 

on maturity becomes invalid. Cotton maturity distributions should be described by 

multiple parameters, like: mean, standard deviation, skewness, and kurtosis.  

Most cotton varieties exhibit positively skewed distributions, indicating more 

immature fiber contents than the mature ones. According to the maturation standards, the 

distribution can be classified into three representative levels: dead, half-mature and 

mature. Relying on the value of skewness, the distributions can be classified into 4 

maturity patterns.  
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Chapter 4: Data Analysis 

4.1 INTRODUCTION 

The images of fiber cross sections used for the experiment were provided by the 

Fiber and Biopolymer Research Institute (FBRI) of Texas Tech University. A total of 

15473 images from seven cotton varieties were processed with the previous and current 

FIAS software to examine the differences in the number of detected fibers, the maturity 

correlation with the data obtained from the Advanced Fiber Information System (AFIS) 

and High Volume Instrument (HVI), and the distributional parameters. Each of the seven 

varieties was assigned a unique 4-digit symbol (e.g., 2996, 2999…). 

Besides the basically automated function in FIAS, it also possesses several 

supplementary functions. Manual editing is an optional tool for users to re-portray the 

unclear boundary of cross sections by their hands, and achieving the most exact results. 

Manual removal is another option for users to eliminate non-satisfactory fiber results. 

When the mouse is double clicked on a fiber, the cross section will be marked and the 

measurement will be deleted from the output. It saves much time with the cost of lost 

accuracy and number reduction.  

 

4.2 DETECTED NUMBERS 

The maturity measurements from the previous and current FIAS analyses are 

denoted as PA and CA, respectively. The PA data after the manual removal is symbolized 

as PAM. The PAM data used in this research were provided by FBRI. 
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Table 4.1 displays the numbers of detected fibers from CA, PA and PAM among 

seven cotton varieties. The “Difference Percentage” column is calculated by the number 

difference between CA and PA (or PAM), then over the number of PA (or PAM). 

The difference percentages of Table 4.1 are varied from -0.58% to -5.61% and -

145.96% to -257.77% in PA and PAM individually. Such number variations can be 

interpreted into two ways: 1) High accuracy in CA. Because of the automated deleting 

function owned by CA, far more correct cross sections are detected by CA compared 

with both PA and PAM. 2) High error rate in PA. A large number of wrongly detected 

cross sections exist in PA results, and they are eliminated manually in PAM, which leads 

to huge number reductions in PAM. 

 

Table 4.1 Number Comparisons 

Variety 
CA PA PAM 

Number Number 
Difference 

Percentage (%) 
Number 

Difference 
Percentage (%) 

2996 135695 131630 -3.09 41844 -224.29 

2999 149891 142548 -5.15 42237 -254.88 

3008 155373 147121 -5.61 43428 -257.77 

3009 151644 146263 -3.68 43785 -246.34 

3016 134392 131319 -2.34 41165 -226.47 

3074 98521 97955 -0.58 40055 -145.96 

3075 141392 140240 -0.82 40312 -250.74 
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4.3 MEAN OF MATURITY 

Maturity is a ratio number measuring the relative thickness of the cotton cell wall. 

Table 4.2 displays the average maturity values under PA, PAM and CA, as well as the 

average maturity data obtained from the Advanced Fiber Information System (AFIS) and 

High Volume Instrument (HVI). The correlations among PA, PAM and CA with AFIS 

and HVI data are also calculated in Table 4.2. 

 

Table 4.2 Maturity Comparisons in Mean 

Variety PA PAM CA AFIS HVI 

2996 0.54 0.52 0.51 0.90 4.60 

2999 0.48 0.45 0.45 0.80 3.30 

3008 0.50 0.47 0.46 0.84 3.20 

3009 0.55 0.52 0.51 0.91 3.90 

3016 0.52 0.5 0.49 0.86 4.38 

3074 0.58 0.57 0.57 0.95 5.65 

3075 0.44 0.42 0.42 0.80 3.09 

Correlation with AFIS 0.93 0.95 0.94   

Correlation with MIC 0.74 0.85 0.88   

 

The correlation differences among PA, PAM and CA results are not significant 

because of their less distinguished mean values. It is common to understand that different 

populations, with different distributions, still have a large chance to get the same mean 

values. So the mean value is not a sensible parameter to stand for the whole population, 

especially when the population lacks normality. 
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4.4 PARAMETERS OF MATURITY DISTRIBUTIONS 

Table 4.3 indicates four distribution parameters (mean, standard deviation, 

skewness, and kurtosis) of maturity in PA, PAM and CA. The central tendency and value 

spread among these three methods are almost the same. While, CA shows more positive 

skewness, which indicates that its maturity values concentrate to the left side of the mean, 

so more immature fibers can be found in CA results. In most cases, the kurtosis of CA is 

the smallest, which demonstrates a more rounded peak with shorter and thinner tails of 

the distribution compared with both PA and PAM.  
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Table 4.3 Distribution Parameters of Maturity 

Variety 
Mean SD 

PA PAM CA PA PAM CA 

2996 0.54 0.52 0.51 0.16 0.15 0.17 

2999 0.48 0.45 0.45 0.17 0.15 0.17 

3008 0.50 0.47 0.46 0.17 0.15 0.17 

3009 0.55 0.52 0.51 0.16 0.14 0.17 

3016 0.52 0.5 0.49 0.17 0.15 0.17 

3074 0.58 0.57 0.57 0.17 0.15 0.17 

3075 0.44 0.42 0.42 0.17 0.16 0.17 

Variety 
Skewness Kurtosis 

PA PAM CA PA PAM CA 

2996 0.04 0.10 0.20 -0.28 -0.52 -0.53 

2999 0.20 0.34 0.47 -0.39 -0.34 -0.42 

3008 0.20 0.33 0.48 -0.40 -0.42 -0.45 

3009 -0.02 0.10 0.21 -0.22 -0.42 -0.53 

3016 0.05 0.15 0.25 -0.40 -0.53 -0.60 

3074 -0.13 -0.11 -0.03 -0.20 -0.49 -0.48 

3075 0.33 0.44 0.61 -0.38 -0.29 -0.26 

 

Figure 4.1 shows the maturity distributions of Cotton “2999” using PA, PAM and 

CA. The x-axis represents the maturity value, and the y-axis represents the number of 

detected fibers. 
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(a) Distribution of PA. 

 

 

(b) Distribution of PAM. 

Figure 4.1 Distributions of cotton maturity in “2999”. 
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(c) Distribution of CA. 

 

 

(d) Distribution comparison among PA, PAM and CA. 

Figure 4.1, cont. 
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Through the distribution comparison in Figure 4.1(d), a number of mature fibers 

detected by PA are eliminated manually by PAM method due to their incorrectness, and 

leads to the shift of skewness from type II of PA to type I of PAM. Although both of CA 

and PAM have incorrectness removal function, a remarkable distribution difference still 

can be distinguished from CA and PAM results. 

 

4.5 AGREEMENT OF CA METHOD 

In order to tell which result is more accurate between PAM and CA, cotton 

“2996” is selected to accomplish the manual editing work (ME). During the ME, users 

need to manually re-portray the unclear boundary of cross sections to save more fibers.  

Four maturity parameters of PAM, CA and ME are listed in Table 4.4, and their 

maturity distributions are drawn in Figure 4.2. The x-axis represents the circularity value, 

and the y-axis represents the percentage of total detected fibers in Figure 4.2(a) and the 

number of detected fibers in Figure 4.2(b). 

 

Table 4.4 Distribution Parameters of Maturity in “2996” 

Method Mean SD Skewness Kurtosis 

ME 0.52 0.17 0.19 -0.52 

CA 0.51 0.17 0.20 -0.53 

PAM 0.52 0.15 0.10 -0.52 
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(a) Distributions of PAM, CA and ME. 

 

 

(b) Distributions of CA and ME. 

Figure 4.2 Distributions of cotton maturity in “2996”. 
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Through the comparisons from Table 4.4, the parameters between CA and ME are 

almost the same. While, PAM and ME show a sizeable skewness difference, about 50%. 

The inconsistencies between PAM and ME parameters attribute to their absolutely 

deviated distributions in Figure 4.2(a).  

As for the distributions between CA and ME in Figure 4.2(b), there is almost no 

discrepancy in the measurement results, as well as their total detected numbers. Although 

slight discrepancies in fiber frequency can be observed near =, the agreement of the 

two distributions is extremely high (R2=0.999), and the two sets of the descriptive 

statistics are approximately identical. This proves that the CA test is able to produce 

reliable fiber detections, except for irreparable immature cross sections. Because of the 

high agreement between the CA and ME data, there is no need to perform the manual 

editing after the CA test. 

 

4.6 DISTRIBUTION CLASSIFICATIONS  

The proportions of maturity classifications among dead fibers, half-mature fibers, 

and mature fibers for these seven cotton varieties using PA, PAM and CA are calculated 

in Table 4.5. Analyzing the results obtained from PA and PAM, the proportions of dead 

fibers are almost the same, and they are sharply less than those in CA results. It is 

reasonable to believe that PA has a large difficulty in detecting dead fibers because of 

their narrow, small or folded shapes. Relying on the modifications realized in CA 

algorithm, more dead fibers are detected.  
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Table 4.5 Proportions of Maturity Classifications 

Variety 
PA 

Dead Half- Mature Mature 

2996 7.98% 56.90% 35.12% 

2999 15.45% 60.92% 23.63% 

3008 13.11% 59.63% 27.26% 

3009 6.71% 56.14% 37.15% 

3016 10.50% 57.02% 32.48% 

3074 5.72% 47.97% 46.31% 

3075 23.02% 58.21% 18.77% 

Variety 
PAM 

Dead Half- Mature Mature 

2996 6.94% 62.80% 30.26% 

2999 16.38% 66.44% 17.18% 

3008 13.97% 65.83% 20.20% 

3009 5.84% 65.15% 29.01% 

3016 10.65% 63.48% 25.87% 

3074 3.54% 52.42% 44.04% 

3075 23.28% 62.25% 14.47% 
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Table 4.5 continued    

Variety 
CA 

Dead Half- Mature Mature 

2996 11.76% 57.41% 30.83% 

2999 23.06% 57.92% 19.02% 

3008 20.07% 57.69% 22.24% 

3009 10.87% 58.76% 30.37% 

3016 15.80% 56.64% 27.56% 

3074 6.59% 49.23% 44.17% 

3075 29.91% 54.78% 15.31% 

 

Half-mature fibers are the major bodies in the three distributions across the seven 

cottons, taking more than 50% of the total identified fibers, except in cotton 3074. Mature 

proportions in PA are largely higher than those in PAM, which mean a number of mature 

fibers in PA results are eliminated from PAM only because of their inexactness. Such 

kind of inexactness can be caused by mistaking dead or half-mature fibers as mature 

fibers (fiber 5 in Figure 2.3b, due to its incomplete lumen contour).  

 

4.7 CONCLUSION AND DISCUSSION 

Owing to the algorithm modifications and the automatic incorrectness removal 

function applied to the FIAS-II, its latest version CA has been upgraded from the number 

and accuracy of detected cross-sections as well as the bias reduction on immature fibers. 

Consequently, the currently improved FIAS generates much fewer unreasonable fiber 
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detections and has an automatic function of deleting wrong cross sections. No manual 

revision is needed after the CA.  

 

 



37 
 

Chapter 5: Transformation for Normality Analysis 

During the dataset analysis, the normality of the distribution should be tested 

firstly. In this chapter, several common normality tests are introduced briefly [20]. Then, 

if the normality result can’t be guaranteed, an effective transformation can be made to 

validate the assumption of normality. For example, Box-Cox Transformation is a known 

choice. Finally valid parameters and comparisons can be made through the interpretation 

after transformation. 

 

5.1 NORMALITY TESTS  

5.1.1 Moment Test 

Karl Pearson [21] proposed the test of normality firstly with the hypothesis that 

the standardized third ( 1 ) and fourth ( 2 ) moments of a distribution can be used to 

depict the normality of the distribution [22].  

The non-zero value of 1  describes an asymmetric distribution about its mean 

value, and 2  is the parameter to describe the peakness and the tail thickness of a 

distribution. So 1  equals to “skewness” and 2  equals to “kurtosis” as mentioned 

in Chapter 3. The definitions of these two can be expressed as: 

 3
1 3





=  (5.1) 

 4
2 4





=  (5.2) 

where 2  is the variance, and 

 ( )i
i E X = -  (5.3) 

 ( )E X =  (5.4) 
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5.1.2 Empirical Distribution Function Tests 

Another famous group of tests used to test the normality of distributions is 

empirical distribution function (EDF) tests. The main idea of this test is to get the 

difference D between ( : , )F x   , the theoretical cumulative distribution function of the 

normal distribution, and ( )nF x , the empirical distribution function. 

 
( )

( )n

X x
F x

n


=  (5.5) 

With the increase of difference D, the extent of the non-normality will be more and more 

considerable. 

The most famous and fundamental EDF test is Kolmogorov-Smirnov Test [23] 

with known parameters   and  : 

 sup ( ) ( , , )x nD F x F x  = -  (5.6) 

Based on such main idea, a group of EDF tests even with unknown parameters 

  and  , like: the Cramer-von Mises 2W  test [24], the Kuiper V  test [25], the 

Watson 2U  test [26], and the Amderspm-Darling A  test [27] are achieved. Their 

realization can be attributed to the simulations from Stephens [28]. 

 

5.1.3 Other Tests 

The application of Chi-square test [29] can also discriminate the normality of a 

distribution. Under the null hypothesis that: the tested distribution is normal distributed, 

the observed values Oi  and the expected values Ei  are compared together: 

 X 2 =
(O

i
- E

i
)2

E
i

å  (5.7) 
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In addition to the tests with the assistance of equation calculation as mentioned 

above, there is another special method called “Normal Probability Plots”. This method 

measures the normality situation through a direct visual effect. In Figure 5.1, the “+” 

symbols compose a straight line, which works as a reference to mimic a normal 

distribution, and the “*” symbols indicate the cumulative frequency distribution of the 

test sample, whose deviation from the reference line reveals the non-normality.  

 

 

Figure 5.1 Normal probability plot. 

 

5.2 BOX-COX TRANSFORMATION 

Through the Moment Test of the “skewness” and “kurtosis” data from Table 4.3, 

almost all the maturity distributions of cotton varieties obtained from the FIAS-II are 

non-normally distributed. In order to avoid the potentially misleading comparisons 

among maturity means from non-normal distributions, a transformation can be relied to 
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make such comparisons feasible. Box-Cox transformation [30] is a well-known and 

useful transformation method to realize this function.  

Box-Cox transformation can be expressed as: 

 

1
0

( )

log( ) 0

x

T x

x








 -


= 
 =

 (5.8) 

where x is the input variable, and  is the transformation parameter. Through the 

adjustment of parameter  , the transformation process (Eq. 5.8) yields the output result 

T(x).  

 

5.3 RESULTS ANALYSIS 

Table 5.1 gives three columns of maturity means using CA method. The 1st 

maturity column stands for the original mean value captured from CA results, which are 

distributed between “0” to “1” of each cotton variety. The 2nd column indicates the mean 

value of transformed results ( )T x  when CA results of each cotton variety are used as 

the input variable x in Box-Cox transformation. After the transformation, the transformed 

results ( )T x  are distributed normally in the negative axis range.  

The 3rd maturity column traces the second maturity column values back to the 

state before their Box-Cox transformation. Such kind of “Re-transformation” makes the 

normal-distributed mean values (2nd column) come back to the range from “0” to “1” and 

be named as “equivalent maturity”, which has the comparability among different cotton 

varieties with a sensible physical meaning. 
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Table 5.1 Mean of Maturity of CA 

Variety Before Transformation After Transformation Equivalent Maturity  

2996 0.51 -0.55 0.50 

2999 0.45 -0.75 0.42 

3008 0.46 -0.73 0.44 

3009 0.51 -0.56 0.50 

3016 0.49 -0.60 0.48 

3074 0.57 -0.43 0.57 

3075 0.42 -0.87 0.39 

2684 0.51 -0.56 0.50 

2792 0.57 -0.43 0.57 

2888 0.58 -0.41 0.59 

2952 0.53 -0.52 0.52 

2952rr 0.53 -0.52 0.52 

3004 0.55 -0.49 0.54 

3022 0.51 -0.56 0.50 

3029 0.50 -0.57 0.49 

3030 0.45 -0.72 0.43 

3033 0.49 -0.61 0.48 

3033rr 0.49 -0.60 0.48 

3035 0.43 -0.81 0.41 

3038 0.47 -0.65 0.46 

3039 0.49 -0.62 0.47 
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Table 5.1 continued 

3039rr 0.48 -0.63 0.47 

3042 0.51 -0.56 0.50 

3043 0.47 -0.69 0.45 

3044 0.48 -0.68 0.45 

3045 0.55 -0.47 0.55 

3046 0.53 -0.51 0.52 

3051 0.45 -0.75 0.42 

3051rr 0.44 -0.81 0.41 

3054 0.50 -0.59 0.48 

3055 0.48 -0.61 0.47 

3055rr 0.49 -0.61 0.47 

3056 0.46 -0.71 0.44 

3057 0.43 -0.82 0.40 

3068 0.50 -0.61 0.48 

 

Box-Cox transformation only plays an effect onto the distribution without the 

normality. Cotton “3074” is almost normally distributed due to its skewness (-0.03), so its 

re-transformed “equivalent maturity” value (0.57) has no difference to its original 

maturity mean value before the transformation (0.57).  

In order to display the Box-Cox transformation effect, another 28 more cotton 

varieties are processed. After searching the 1st maturity column in Table 5.1, both “3044” 

and “3055” have almost the same original maturity mean (0.48). Through Box-Cox 

transformation, two distributions gain their own normal-distributed means (-0.68 for 
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“3044” and -0.61 for “3055”), which makes their re-transformed “equivalent maturity” in 

the last column be different (0.45 for “3044” and 0.47 for “3055”). 

 As shown in Figure 3.2, the  distributions of Cotton “3044” and “3055” are 

different. Only relying on the mean maturity value cannot tell their difference. In addition 

to several methods mentioned in Chapter 4, like: multiple parameters (mean, standard 

deviation, skewness, and kurtosis), maturity classifications, and maturity patterns, the re-

transformed “equivalent maturity” value is another way to discriminate the maturity 

distributions. The equivalent maturity of Cotton “3044” is 0.45 and Cotton “3055” is 

0.47, which indicates fibers in “3044” have more immature fibers when compared with 

fibers in “3055”, so these two cotton varieties belong to disparate maturity distributions. 

This conclusion is in agreement with the analysis in Chapter 3. According to the 

maturity classifications, the proportions of dead and half-mature fibers in “3044” are 

higher than those in “3055”. According to the maturity distribution patterns, “3044” 

belongs to Type I and “3055” belongs to Type II. Thus, the point that more immature 

fibers exist in “3044” than those in “3055” is also supported by maturity classifications 

and maturity patterns methods.  

 

5.4 CONCLUSION AND DISCUSSION 

In this chapter, several tests to check the normal distributions are introduced: 

Moment Test, Empirical Distribution Function Tests, Chi-square Test and Normal 

Probability Plots. In order to make the comparisons among the non-normal distributions 

feasible, Box-Cox transformation is applied. The re-transformed “equivalent maturity” 

value after the Box-Cox transformation works as another effective representation to 

display the “real” maturity means of the distributions lacking normality. 
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Chapter 6: Conclusions and Future Work 

6.1 SUMMARY OF THE THESIS 

The algorithm changes made in the FIAS-II improved the consistency in detecting 

fibers of various maturities, and effectively reduced the bias on immature fibers in 

previous maturity distributions. The maturity distribution generated in the CA test was 

very similar to that of the manually traced fibers. The dramatic reduction in the number 

of wrong fiber detections eliminates the need for manual editing in a routine test. 

Cotton maturity of a large quantity of fibers should be evaluated with multiple 

distributional parameters (like: mean, standard deviation, skewness, and kurtosis) since 

any single parameter is insufficient in characterizing the whole maturity distribution and 

especially invalid when the distribution is not normal. The basic shapes of cotton 

maturity distributions can be categorized into four patterns, each representing a major 

class of cotton maturity. The skewness of a maturity distribution is the principal 

parameter to classify the distribution pattern. Most cotton varieties exhibit positively 

skewed distributions, indicating more immature fiber contents than mature ones. 

From a maturity distribution, the contents of dead, half-mature and mature fibers 

can be calculated by the cumulative probabilities in the specific  ranges. It seems that 

half-mature is the major body of the maturity distributions for most cotton samples, but 

only the dead and the mature fibers highly correlate with the overall maturity level. Since 

dead fibers lack strength and dyeability, the dead fibers should be a discount factor in 

maturity evaluation. On the other hand, the mature fibers should be used as a premium in 

the ultimate rating of fiber quality. 

 Before the data analysis, the normality of the distribution should be tested to 

ensure the validation of evaluation process. The normality of a distribution can be tested 
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by several methods, and the most traditional one is Moment Test. In order to make the 

comparisons among mean values of each distribution feasible when they are tested to be 

not normal, Box-Cox transformation is applied to correct the non-normal situation to a 

normal state. The equivalent maturity value works as another valid parameter to represent 

the maturity standard. The deviation of the equivalent maturity from its original maturity 

value is proportional to the extent of the distribution non-normality. 

 

6.2 SUGGESTED FUTURE WORK 

The room for current FIAS software to improve can be developed in the aspect of 

human-computer interaction. The software is expected to provide much more intelligent 

reaction to the operator. 

When using the manual editing tool, the operators no large need to re-portray the 

boundary pixel by pixel manually. The program could re-trace the wrongly detected 

period or self recover the missing part of the boundary relying on the “editing range” 

provided by the operator.  

As for the adherent fibers, there is still no accurate method to restore the 

individual ones due to the missing part hidden under the overlap. Using 3D microscopy is 

an effective way to disclose the hidden part when capturing the image of fibers through 

the depth adjustment. The operator only needs to match each adherent fiber with its 

hidden boundary, and then the restoring process would be fulfilled by the program 

automatically. After the restoring, operator could manually do some slight revisions to 

perfect the results. 
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