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This study compares engineering expert problem-solving on a highly constrained routine 
problem and an ill-defined complex problem. The participants (n=7) were recruited from 
two large public Research I institutions. Using a think aloud methodology, the experts 
solved both routine and non-routine problems. The protocols were transcribed and coded 
in Atlas ti. The first round of coding followed a grounded theory methodology, yielding 
interesting findings. Unprompted, the experts revealed a strong belief that the ill-defined 
problems are developmentally appropriate for PhD students while routine problems are 
more appropriate for undergraduate students. Additional rounds of coding were informed 
by previous problem solving studies in math and engineering. In general, this study 
confirmed the 5 Step Problem Solving Method used in previous challenged based 
instruction studies. There were observed differences based on problem type and 
background knowledge. The routine problem was more automatic and took significantly 
less time. The experts with higher amounts of background knowledge and experience 
were more likely to categorize the problems. The level of background knowledge was 
most apparent in the steps between conducting an overall energy balance and writing 
more problem specific relationships between the variables. These results are discussed in 
terms of their implications for improving undergraduate engineering education. 
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Chapter 1:  Introduction 

 

Today‘s engineering graduates are faced with a more global and rapidly evolving 

world. Numerous reports, such as the Engineer of 2020 and Gathering Above the Rising 

Storm, call for a transformation of engineering education that fosters the development of 

innovation while still maintaining high levels of technical proficiency (Augustine, 2005; 

Clough, 2005). Practicing engineers must constantly strengthen their knowledge base and 

become more efficient in applying it. As processes and industries rapidly evolve, they 

must use new and existing knowledge to solve novel and innovative problems. 

Traditional teaching methods in engineering education have focused on training students 

to efficiently solve routine, textbook-like problems but fail to prepare students to use their 

knowledge flexibly in novel situations. While these typical routine problems are common 

in the curriculum, they are not representative of the problems that they will encounter as 

practicing engineers. In a qualitative study of workplace engineering, Jonassen, Strobel, 

& Lee (2006) found that nearly all workplace problems are complex and ill-structured. 

Students often only encounter complex ill-defined problems at the end of their four year 

engineering program and enter the workforce without these critical skills requiring more 

on the job training.  

How can we prepare students to solve these ill-defined complex problems that 

they will encounter as working engineers? The Vanderbilt-Northwestern-Texas-

Harvard/MIT (VaNTH) Engineering Research Center attempted to answer this question 
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in a Biomedical Engineering context. The VaNTH project designed a biotransport 

engineering curriculum to help students develop innovation and efficiency. Innovation 

was operationalized as the adaptive ability to perform well in novel and fluid situations, 

and efficiency was operationalized as the ability to appropriately apply their taxonomic 

knowledge in a timely manner. Schwartz, Bransford, and Sears (2005) have hypothesized 

that instruction that develops innovation and efficiency together will lead students to 

progress further along a trajectory toward adaptive expertise than instruction that teaches 

for efficiency first. This theory was tested explicitly in previous VaNTH projects 

conducted to explore the development of these two constructs. From these studies 

questions arose about what the endpoint looks like. How do experts solve these complex 

ill-defined problems? 

There is a large body of literature on expertise and expert performance (reviewed 

in more detail in the following chapter). However, nearly all this research used routine 

problems and situations to quantify differences in novice and expert performances. These 

studies of expert performance on routine problems found that in addition to having a 

more complete knowledge base, experts are typically more adaptive and flexible in their 

thinking than most students. Experts‘ knowledge is organized around the big ideas of the 

field, whereas novices tend to think of domain knowledge as a large collection of 

equations. Experts differ in knowledge representation, general problem solving skills and 

approaches, and how and what details are perceived (Chi, Feltovich, & Glaser, 1981; 

Larkin, McDermott, Simon, & Simon, 1980). In problem solving, experts spend more 

time on understanding the problem and finding a useful representation based on key 
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principles in the domain. Novices typically start by trying to find the correct equation 

based on surface features. While most expertise research was conducted using routine 

problems and situations, only limited research exists on expert performance in innovative 

situations (Raufaste, Eyrolle, & Marine, 1998; Schraagen, 1993; Schunn & Anderson, 

1999).  

This study will help fill this gap by addressing the following two research 

questions: (1) How do engineering experts solve non-routine complex problems? (2) 

Does an experts‘ process solving these types of non-routine engineering problems differ 

from the processes found in classic expertise research using routine textbook-like 

problems? Although the study was motivated by the desire to improve engineering 

education, it directly compares expert performance on two different types of problems. 

Engineering experts were asked to solve two heat transfer problems: a highly constrained 

textbook problem and a complex novel ill-constrained problem.  

The previous VaNTH studies included both types of problems; the students 

solved a series of complex ill-constrained challenges, but routine problems were given as 

homework. During multiple iterations of the CBI Biotransport course, the working 

definition of innovation evolved. At the beginning of each challenge, students worked in 

groups to generate their own ideas about how to solve the challenge. Initially, students 

were producing lists or written explanations about their ideas of how to get started on the 

problem. This prompted the instructor, the domain expert on the project, to reflect on his 

own problem solving process. Students were then given explicit instruction a 5 step 

process adapted from the collaborating experts process: define the system, determine how 
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this system interacts with the environment, identify the governing principles, identify the 

appropriate constitutive relationships and then solve the challenge.  First, this method 

encouraged students to define the system or boundary for calculating inputs and outputs. 

After determining what aspects of the problem were included in the system, the next step 

they were instructed to identify how this system interacts with the surrounding 

environment. Since students often only see surface conditions of the problem and then 

jump straight to looking for the appropriate equations, they were required to identify what 

governing principles, such as the conservation of energy, apply to the problem and then 

identify the correct constitutive equations, such as the rate equations for conduction or 

convection. The final step is solving the problem using the identified constitutive 

equations and governing principles. 

This 5 step expert problem solving was generated by one expert‘s process for 

solving both routine and ill-constrained problems. Will the engineering experts in this 

study use a similar process? Expert studies in mathematics have elicited a more general 

problem solving cycle (reviewed in more detail in the following chapter) that can be 

broken down into 4 cyclic steps: orienting, planning, executing and checking. (Carlson & 

Bloom, 2005) In addition to comparing expert performance on the different types of 

problems, the problem solving processes used by the experts will be analyzed and 

compared to those used in previous expert studies. 

 Classic expertise research studied two groups, experts and novice. More recent 

studies have included different kinds or groups of experts (Hmelo-Silver & Pfeffer, 2004; 

Raufaste, et al., 1998; Schraagen, 1993; Schunn & Anderson, 1999; Wineburg, 1997) 
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Study designs have included both task-experts and domain experts (Hmelo-Silver & 

Pfeffer, 2004; Raufaste, et al., 1998; Schraagen, 1993; Schunn & Anderson, 1999; 

Wineburg, 1997) This experimental design has helped to differentiate how experts use 

domain specific knowledge and general scientific reasoning skills and heuristics.  

Similarly, the experts in this study were selected to explore differences in engineering 

specialization and background knowledge. The two problems used in the study rely on 

heat transfer domain knowledge. The experts in this study have various levels of 

experience teaching and conducting research in heat transfer and its related transport 

domains. 

In this study, seven engineering experts were asked to solve two different heat 

transfer problems: a routine problem and a more complex ill-defined problem. They were 

audio taped using a think aloud methodology. (Ericsson & Simon, 1993) These 

interviews were then transcribed and analyzed using a combination of grounded theory 

and protocol analysis to better understand the nature of expert engineering problem 

solving and whether the type of problem or experience/specialization of the expert will 

significantly affect the problem solving performance or process. 

The following chapter reviews the literature on expertise and the verbal reporting 

methodologies used in other studies. Chapter 3 describes in more detail the participants, 

the problems used in the study, and the coding and analysis process. Chapter 4 explains 

the results from both the grounded theory analysis and the analysis informed from 

previous problem solving studies. Chapter 5 discusses the significance of the results 
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found in this study and how these results can inform engineering education and 

curriculum reform. 
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Chapter 2:  Literature Review 

 

 Modern expertise research began with the study of chess masters. Over a hundred 

years ago, Alfred Binet conducted the first blindfolded chess experiments to investigate 

the intellectual superiority of chess masters (Binet, 1893/1966; Ericsson, 2006b). In his 

doctoral thesis, de Groot (1965) continued the study of expertise using think aloud 

methods to study chess performance. The translation of his research and the artificial 

intelligence movement sparked many expert-novice studies in numerous domains. 

However in problem solving domains, most of this research used textbook-like problems 

to study expert and novice performance in routine situations. The recent emphasis on the 

development of innovation has sparked research focused on performance in innovative 

non-routine settings. In this chapter, I first review the classic research in expertise 

followed by more recent work in expertise in complex systems and adaptive novel 

situations. Then I explore the different methodologies used in previous expert studies.  

Then I review the problem solving literature that is relevant to this study. 

CLASSIC EXPERTISE RESEARCH 

 

Classic expertise research has made numerous contributions to our current 

understanding of how people learn. Experts‘ knowledge is organized around the big 

ideas, whereas novices tend to think of domain knowledge as a large collection of 

equations. (Chi, et al., 1981) In addition to having a more complete knowledge base, 
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experts are typically more adaptive and flexible in their thinking than most novices. 

Experts differ in knowledge representation, general problem solving skills and 

approaches, and how and what details are perceived (Chi, et al., 1981; Larkin, et al., 

1980). In problem solving, experts spend more time on understanding the problem and 

finding a useful representation based on key principles in the domain. Novices typically 

start by trying to find the correct equation based on surface features (Chi, et al., 1981). 

Table 2.1 summarizes what we have learned from classic expertise research. The 

following section expands on these key contributions. 
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Table 2.1: Summary of Classic Expertise Research 

Attributes of 
Expertise 

Reason References 
Reference 

Domain 
Excel mainly in 
their own domains 

Large amount of 
domain knowledge 

Minsky & Papert (1974) 
Voss & Post (1988) 

AI 
Political science 
problems by 
chemists 

Perceive large 
meaningful 
patterns in their 
domain 

Organization of 
knowledge 
(chunking) not 
superior ability 

Reiter (1976) 
Egan & Schwartz (1979) 
Akin (1980) 
Lesgold et al. (1988) 

GO 
Circuit Diagrams 
Architectural Plans 
X-rays 

Fast and efficient Practice and 
experience leads to 
automation and less 
cognitive effort 

deGroot (1965) 
Klein (1993) 
Gentner (1988) 
Voss et al. (1983) 

Chess 
Decision Making 
Typing 
Social science 

Superior short-
term and long-
term memory 

Chunking not innate 
capacity 

Chase & Ericsson (1982) Digit recall 

Represent 
problem in a 
deeper (more 
principled) way 

Organization of 
knowledge 

Chi et al. (1981) 
Weiser & Shertz (1983) 

Physics 
Programming 

Spend time 
analyzing problem 
qualitatively 

Time spent 
understanding and 
representing the 
problem 

Paige & Simon (1966) 
Voss & Post (1988) 

Algebra problem 

Strong self-
monitoring skills 

More aware of what 
they know and what 
they need to know, 
check themselves 

Simon & Simon (1978) 
Larkin (1983) 
Chi et al. (1981) 
Chi (1978) 
Miyake & Norman (1979) 

Physics 
Physics 
Physics 
Chess 
Text recall 

 

  

Chi et al.‘s (1981) landmark expert novice study is the most cited publication in 

the field of cognitive science. This paper reported four experiments that used 

categorization methods to elicit differences in knowledge and problem solving. In the 
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first experiment, both novices and experts were asked to sort 24 physics textbook 

problems each written on an index card. The novices were undergraduate students (n = 

8), and the experts were advanced graduate students. The subjects first sorted the cards 

into categories. They were asked to re-sort the cards for consistency. Then the subjects 

were asked to explain why they categorized the problems what they did. The first and 

second sorts were consistent in both experts and novices, implying that the sort was based 

on some meaningful pattern or structure. The groups did differ in the time that they took 

to sort the problems; the experts took longer (18 minutes or 45 seconds per problem) than 

novices (12 minutes or 30 seconds per problem) in the first sort. However, experts took 

less time (4.6 minutes) than novices (5.5 minutes) on the second problem sort. Using 

cluster analysis they found that experts grouped problems based on underlying principles 

(even when surface features were different), and novices grouped solely on surface 

features. Examples of surface features are the actual physics vocabulary in problem, the 

look of the problem, or the relation between objects in a problem (block on inclined 

plane). 

The second experiment examined the results of Study 1 more carefully. The 

researchers constructed a subset of the problems into pairs of problems that differed in 

deep structure (physics principles) but matched on surface structure (objects to be acted 

upon). Each problem pair contained the same surface feature such as an inclined plane, 

but differed in the general principle that governed the correct solution to the problem 

such as Newton‘s Force Laws or the general conservation principles. Novices and experts 

sorted the problems following the hypothesized explanation of Study 1. 
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In the third experiment, experts (n=2) and novices (n=2) received 20 terms 

generated by previous categorizations studies - a combination of terms generated by both 

novices and experts. They were asked to describe everything they could think of in 3 

minutes about that term and about solving problems linked to that term. The authors 

created concept maps from these explanations. Experts‘ networks were centered on 

physics principles, such as Newton‘s Laws, and how these principles applied to the 

problems. Novices' networks focused on surface features, comparing and contrasting the 

different surface features in the problems. 

In the fourth experiment, experts (n=2) and novices (n=2) were asked to give their 

"basic approach" to solving the 20 problems categorized in Study 2. The experts agreed 

most of the time. They stated the physics principle as the basic approach. The novices‘ 

responses varied more than the experts‘ responses. They either gave general get-going 

statements or they began solving the problem by explaining what equations they would 

use. Next the authors examined these basic approaches and how participants arrived at 

them. In a side study, they found that while novices and experts identified the same actual 

keywords in the problem as important to defining a basic approach, experts did different 

things with these features.  

Personally, I think students learn the importance of these key terms from their 

experiences observing professors solve example problems during class lectures and doing 

many similar types of problems as homework. Although they have learned that these 

terms signify something important, they often do not really know what they mean, and if 

they do, the meaning is not connected to what they are doing. Engineering examples of 
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these key terms are adiabatic, fully developed flow, heterogeneous, and steady state. In 

my pilot studies, students often identified the steady state assumption given in the 

problem statement. Many of them even correctly stated that this meant that nothing was 

changing with time, but none of the students connected this to the overall energy balance 

to solve the problem correctly. In the Chi study, the experts derived a second-order 

interpretation (involving features that were not explicitly stated in the problem) from 

these 1st order features, and then developed general solution plans from these. Novices 

only noticed the first order features and chose equations based on those features. Experts 

hypothesized about the physics principle that could be involved. Then they used the 1st 

and 2nd order features of the problem to choose between potential hypotheses. Novices 

immediately started talking about the equations involved in a potential solution. 

In their classic study of chess masters, Chase & Simon (1973) found that experts 

do not have superior memory capacity; they are able to remember more information 

because they chunk related information together. Saariluoma and Kalakoski (1997)  

found no differences between visual and auditory presentation in blindfolded chess. 

Differences in performance resulted from differences in knowledge, not imagery ability 

(Gobet & Charness, 2006). In chess, experts use their visual-spatial working memory 

more than verbal working memory. Campelli and Gobet (2005) found that chess masters 

are able to filter out constant irrelevant information. When irrelevant information changes 

throughout the game, chess masters ability to recall the game sequence is reduced. This 

has implications in understanding how expert perception affects performance.  
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Although the bulk of expertise research was conducted using routine problems 

and situations, more recent research has started to focus on how experts perform in 

innovative situations. In the next section, I discuss the research conducted on adaptive 

expertise and expertise in novel situations. 

ADAPTIVE EXPERTISE 

Hatano & Inagaki (1986)introduced the theoretical concept of adaptive expertise 

based on definition of routine and adaptive experts (Hatano & Inagaki, 1986). Since then, 

the construct has been further defined (Schwartz, et al., 2005) and tested by numerous 

empirical studies (Crawford, Schlager, Toyama, Riel, & Vahey, 2005; Martin, Petrosino, 

Rivale, & Diller, 2006a; Martin, Pierson, Rivale, & Diller, in press; Martin, Rayne, 

Kemp, & Diller, 2005; Martin, Rivale, & Diller, in press; Pandy, Petrosino, Austin, & 

Barr, 2004; Rayne, Martin, Brophy, & Diller, 2006; Rivale, Martin, & Diller, 2006). 

Most of these studies have focused on learning and learning trajectories and not experts. 

However, a few studies have investigated experts working on novel problems and rare 

cases (see Table 2.2) (Alberdi, Sleeman, & Korpi, 2000; Carlson & Bloom, 2005; 

Feltovich, Spiro, & Coulson, 1997; Schraagen, 1993; Schunn & Anderson, 1999). 
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Table 2.2: Experts in Novel Situations 

Reference Results/Contribution Methodology 
Expert-Novice 

Categories 
Theoretical 
Framework 

Domain 

(Feltovich, 
Spiro, & 
Coulson, 
1997) 

Introduce “reductive 
bias” and 
complexity/complex 
systems  explicitly into 
theories of expertise  

Theoretical 
Review 
Case study 
Protocol 
Analysis 

Qualitative 
expert case 

Complex 
Systems 

Medicine 

(Alberdi, 
Sleeman, & 
Korpi, 
2000) 
 

When confronted with 
a surprising data, 
experts revert to more 
abstract domain 
knowledge to revise 
hypothesis. 

Protocol 
Analysis 
Compared to 
previous 
model 

Expert 
Taxonomist 
(n=5) 

Concept 
acquisition 
 
Scientific 
reasoning 

Taxonomic 
Botany 

(Hmelo-
Silver & 
Pfeffer, 
2004) 

In complex systems 
novices focused on 
perceptually available 
structures, where 
experts focused on 
behaviors and 
functions. 
 
There was a difference 
between academic 
experts and hobbyists 
in the type of 
knowledge used: 
biologists more 
abstract and hobbyists 
more contextualized. 

Protocol 
Analysis 
Structured 
Interviews 

7
th

 graders 
(n=11)  
pre-service 
teachers (n=11) 
Experts (n=8) 
academic 
biologists & 
aquatic 
hobbyists 

Structure-
Behavior-
Function 
Theory 

Aquatic 
systems 

(Schraagen, 
1993) 

When confronted with 
a novel task experts 
without sufficient 
domain knowledge 
retain their general 
strategies, but the 
content suffers from 
lack of domain 
knowledge 

Task Analysis 
Categorization 
Protocol 
Analysis 

undergraduates 
(n=9), graduate 
students (n=3), 
design experts 
(n=3), and 
domain experts 
(n=4). 

Problem 
Solving 

Experimental 
Design 
(Psychology) 
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Table 2.2 (cont). Experts in Novel Situations 

Reference Results/Contribution Methodology 
Expert-Novice 

Categories 
Theoretical 
Framework 

Domain 

(Schunn & 
Anderson, 
1999) 

Experts have both domain 
specific skills that are 
dependent on their 
content knowledge and 
domain general skills (that 
transfer across expertise 
specialties that 
undergraduates do not 
have) 

Protocol 
Analysis 
Evaluation of 
computer 
simulation 
tracking 

Undergraduates 
(n=30) 
Task experts 
(n=6) 
Domain experts 
(n=4) 

Scientific 
reasoning 

Experimental 
Design 
(Psychology) 

(Carlson & 
Bloom, 
2005) 

4 phase cyclic framework: 
orienting, planning, 
executing, checking 
 
Experimentally validate 
expert problem solving 
behavior on novel 
problem -verify and 
expand (Schoenfeld, 1985) 

Protocol 
Analysis 
Grounded 
Theory 

n=12 (8 research 
mathematicians, 
4 adv PhD.) 

Problem 
Solving, 
Heuristics 

Mathematics 

 

Although there have been numerous studies characterizing experts and comparing 

experts to novices, there has been less longitudinal research to explain how these 

important aspects of AE develop. (Lajoie, 2003) Schwartz, Bransford, and Sears (2005) 

have proposed a theoretical model of AE development (See Figure 1). This model 

assumes that AE development is a continuous process that includes axes for growth along 

two dimensions: (a) innovation and (b) efficiency. Schwartz, Bransford, and Sears (2005) 

have hypothesized that these two dimensions co-evolve in what they have called the 

―optimal adaptability corridor‖ (OAC). The OAC hypothesis is that instruction that 

develops innovation and efficiency together will lead students to progress further along a 

trajectory toward AE than instruction that teaches for either efficiency or innovation first. 
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Figure 2.1:  Developmental Model for Adaptive Expertise.  

 

 Classic studies tended to study two groups, experts and novice. More recent 

studies have also had a more developmental approach, including both intermediates and 

different kinds or groups of experts (Hmelo-Silver & Pfeffer, 2004; Raufaste, et al., 1998; 

Schraagen, 1993; Schunn & Anderson, 1999; Wineburg, 1997). Study designs have 

included both task-experts and domain experts (Hmelo-Silver & Pfeffer, 2004; Raufaste, 

et al., 1998; Schraagen, 1993; Schunn & Anderson, 1999; Wineburg, 1997). This 

experimental design has helped to differentiate how experts use domain specific 

knowledge and general scientific reasoning skills and heuristics. Two studies investigated 

expertise in experimental design. This eliminated the need for knowledge elicitation of 
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experts in defining the domain tasks since they were able to use expertise within the 

cognitive science domain. 

In the Schraagen (1993) study, participants were asked to design a cola taste test. 

The study contrasted performance of beginners (undergraduate students), intermediates 

(graduate students), task experts (psychology professors with experience in experimental 

design), and domain experts (gustatory researchers.) Task experts and domain experts 

were matched on everything but specific knowledge about taste and other experimental 

results in the field. The experts came up with more designs and spent more time on task. 

Although design experts scored higher than the novices, this difference was not 

significant. The design and domain expert scores were significantly different. Design 

experts used a more controlled general strategy but their lack of domain knowledge 

affected the quality of their solutions. The authors found when experts are confronted 

with novel problems, as compared with familiar problems, their form of reasoning 

remains intact, but the content of their reasoning suffers due to lack of domain 

knowledge. Design experts and intermediates used mental simulation strategies but the 

domain experts and the beginners did not. However, this should not be interpreted as 

beginners being more expert-like; the domain experts more than likely did not need to use 

this process because their domain knowledge and experience allowed them ―to know‖ the 

answer. 

Schunn and Anderson (1999) used a computer model, Simulated Psychology Lab, 

which allowed the participants to see the results of the experiments that they designed. 

Subject were asked to design and interpret experiments to test two theories that explain 
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memory spacing effect so the domain experts were cognitive psychologists who 

specialized in memory and the task experts were developmental to social psychologists. 

They found that the domain specialists outperformed the task experts, but that there were 

many design process skills that were similar in both groups. They also compared the 

experts to both high ability and average undergraduate students; the design process skills 

were lacking in both student groups. 

Carlson and Bloom (2005) studied 12 mathematics experts solving problems. 

Each of the experts solved four novel problems that were challenging, required math 

content accessible to all mathematicians (were not specialty restricted), a variety of 

solution paths were possible, and were complex enough to lead to dead ends to study 

affective components. Originally, the verbal solutions were coded using a framework 

constructed from previous work in problem solving. This was not comprehensive so the 

authors used grounded theory methods to create a "Multidimensional Problem-Solving 

Framework". The cyclic framework included 4 phases: orienting, planning, executing, 

and checking. Initially, the experts oriented themselves with the problem, similar to 

representation or problem definition. Then, in the last three iterative phases, the experts 

would plan, execute and check again. 

Alberdi et al. (2000) investigated categorization strategies used by expert botany 

taxonomists. The study used the Korpi (1988) model of categorization. Korpi‘s study 

relied on common sense knowledge, whereas this study explicitly tested subjects with 

significant domain knowledge. This study tested how scientists use their domain 

knowledge in categorization. The study was also designed to test how scientists respond 
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to surprising information or data. Subjects were presented with an illustration of a plant 

what initialed seemed to fit a particular classification. However, the plant illustration 

would have one inconsistent characteristic that would invalidate the initial categorization 

hypothesis. This design strategy was used to mimic how scientists consider analogous 

data. The study found that experts often revert back to their domain knowledge to 

generate new hypotheses when they encounter inconsistent data or information.  

As a collection, these studies (Alberdi, et al., 2000; Carlson & Bloom, 2005; 

Schraagen, 1993; Schunn & Anderson, 1999; Wineburg, 1997) revealed some important 

characteristics of expertise. They have all looked at experts in novel situations. They 

represent various domains: botany, mathematics, experimental design, and history. 

Together they test differences in two general types of expert, domain experts/specialists 

and task experts. The Lincoln specialists (Wineburg, 1997), gustatory experts (Schraagen, 

1993), memory experts (Schunn & Anderson, 1999), mathematicians (Carlson & Bloom, 

2005) and botany taxonomists (Alberdi, et al., 2000) are all domain experts, and the 

American history specialists (Wineburg, 1997) and experimental design experts 

(Schraagen, 1993; Schunn & Anderson, 1999) are task experts. As a collection, they 

speak to the interaction of declarative (know what) and procedural (know how) 

knowledge in experts. That domain experts utilize their background knowledge in novel 

situations is not a surprising result. These studies also show that task-experts are able to 

transfer procedural knowledge, general approaches and heuristics to novel situations. 

These studies showed fairly consistent results across fairly different types of tasks, 

namely, design, categorization and problem solving, with a few minor differences. In 
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both experimental design studies, the overall design quality of the task experts was more 

similar to novices than the domain experts, but their general approach (heuristics) was 

similar to the domain experts. In the Wineburg (1997) study, the American history 

specialists started at a level similar to pre-service teachers but were able to use their 

procedural knowledge to end up at the same place that the Lincoln experts started. These 

results are not inconsistent. The task constraints differed across studies. In the 

experimental design studies, the participants were not given outside resources or 

opportunities to learn or find the missing background knowledge, whereas, the nature of 

the Wineburg study allowed the American history specialists to gain more knowledge 

from the actual documents that they were analyzing in the experiment.  

These studies can guide our understanding of expertise in engineering. There are 

many similarities to problem solving in mathematics and physics, especially at the 

introductory level. Although the problems in Carlson study were not textbook-like 

problems, they were constrained problems with an analytical solution. Some of the 

problems were actually simple once you figured out the trick to solving them. For 

example in the ladder problem, the solution become simple if the solver realized the there 

is a proportional relationship between the height of the ladder and the distance to the wall 

that can be treated as a first order derivative. However, it is important to note the 

differences between the domains. In general, the goal of most scientific studies is to 

understand and explain natural phenomenon and add to our collective knowledge base. 

Whereas in engineering, the goal is to add to the state of the art and create things that 

have never existed before. So while novel solutions are desirable in most fields, it is 
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essential in engineering, especially engineering design. Engineers do many things, but 

most often they are designers who optimize under constraints.  Therefore, although it can 

be argued that innovation is a desirable skill/quality in any domain, innovation drives 

engineering design. 

There have been numerous studies using the construct of adaptive expertise (see 

Table 2.) Schwartz, Bransford and Sears (2005) proposed that adaptive expertise is 

comprised of two dimensions: efficiency and innovation. They defined efficiency as the 

ability to "rapidly retrieve and accurately apply appropriate knowledge and skills to solve 

a problem or understand and explanation". Practice and experience are good ways to 

promote efficiency. A big part of efficiency is problem elimination rather than deep 

problem solving. Efficiency can be seen as near transfer, putting the present state very 

near the goal state. Innovation had a less precise definition. Innovation is often preceded 

by a sense of disequilibrium, often requires a movement away from what is momentarily 

most efficient. Sometimes there is a need to resist initial ideas that initially seem most 

efficient. Reframing the problem is also important, as discoveries are often the result of 

looking at something from a new perspective. Schwartz et al. (2005) give the example of 

experts trying to design a picking machine that would not bruise tomatoes. However, the 

innovative solution was to produce a new strain of tomatoes that are less easily bruised. 



 

 

Table 2.3: Adaptive Expertise Studies 

Reference Results/Contribution Methodology Expert-Novice Categories 
Theoretical 
Framework 

Domain 

(Hatano & 
Inagaki, 
1986) 

Two different types of expertise: routine and 
adaptive 
 
Introduction of adaptive expertise 

Theoretical Theoretical Adaptive 
expertise 

Sushi experts 

(Raufaste, 
Eyrolle, & 
Marine, 
1998) 

Contrasted experts and super-experts 
(teaching and research experience) 
 
Observed U-curve (more knowledge less 
flexibility in intermediates) 

Protocol Analysis 
Dictation 

novices ( n=8), 
intermediates (n=8), 
basic experts (n=4) and 
super experts (n=4).  

Perception Medicine 
(Radiology) 
 

(Schwartz, 
Bransford, & 
Sears, 2005) 

Introduced innovation and efficiency 
dimensions of adaptive expertise 

Theoretical Theoretical Adaptive 
expertise 

Learning 
sciences 

(Pandy, 
Petrosino, 
Austin, & 
Barr, 2004) 

Differentiated adaptive expertise into factual, 
conceptual and transfer components 

Problem solving 
Pre/Post-test 

Undergraduates (n=25) Adaptive 
expertise,  
HPL 

Biomedical 
Engineering 
(Biomechanics
) 

(Crawford, 
Schlager, 
Toyama, 
Riel, & 
Vahey, 
2005) 

Definition  of "adaptive" teacher behavior: 
slow to draw conclusions, build models 
(mental) from evidence,  systematic 
exploration of data, attentiveness in drawing 
conclusions, build understanding through 
data, high interest and curiosity, anticipate 
novel content, disposition to learn novel 
information 

Protocol Analysis High school biology 
teachers (n=11) 

Adaptive 
expertise 

Teaching 

 
 
 



 

 

Table 2.3 (cont). Adaptive Expertise Studies 

Reference Results/Contribution Methodology 
Expert-Novice 

Categories 
Theoretical 
Framework 

Domain 

(Martin, 
Rivale, & 
Diller, in 
press) 

HPL methods promotes more expert-like and 
adaptive performance than traditional 
teaching methods 
 
More specifically students were able to learn 
and apply expert problem solving methods 
when type of learning was integrated with 
knowledge instruction 

Problem solving 
Pre/Post-test 

Undergraduates (n=106; 
HPL=54 & trad=52) 

Adaptive 
expertise,  
HPL  

Biomedical 
Engineering 
(Biotransport) 

(Martin, 
Pierson, 
Rivale, & 
Diller, in 
press) 

Generate Ideas helped students develop 
multiple perspectives and metacognition,  
 
Engaging in an open Generate Ideas followed 
by a more directed Generate Ideas activity 
promoted adaptive expertise better than 
directed alone 

Problem solving 
Self-report 
surveys 
Pre/Post-test 
 

Undergraduates Adaptive 
expertise, 
HPL 

Biomedical 
Engineering 
(Biotransport 
and Ethics) 

(Rayne, 
Martin, 
Brophy, & 
Diller, 2006) 

Undergraduate students less flexible (U-curve 
observed by (Lesgold et al., 1988) and 
(Raufaste et al., 1998)) 

Pre/Post-test 
 

High school students 
(n=11) 
 
Undergraduates (n=102) 

Adaptive 
expertise, 
HPL 

Biomedical 
Engineering 
(Ethics) 

(Martin, 
Rayne, 
Kemp, & 
Diller, 2005) 

HPL and traditional instruction result in 
similar learning of factual information 
 
HPL prepared students to be more adaptive in 
a novel situation 

Pre/Post-test Undergraduates (n=35) Adaptive 
expertise, 
HPL 

Biomedical 
Engineering 
(Ethics) 

(Rivale, 
Martin, & 
Diller, 2006) 

There were gender differences in 
performance, but not in beliefs.  
 
Females had lower initial 
performance, but showed more improvement 
at end they performed similarly on all 
measures 

Problem solving 
Self-report 
surveys 

Undergraduates (n=54) Adaptive 
expertise, 
HPL 

Biomedical 
Engineering 
(Biotransport) 
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Crawford et al. (2005) attempted to define adaptive expertise within the context of 

high school biology teaching and to relate discerning student understanding to problem 

solving. The study was designed to contrast both novice and experienced teachers, but in 

this report only experienced teachers‘ performance (n=9) had been analyzed. In a two-

hour laboratory session, teachers were asked to analyze student work and diagnose 

student understanding. The researchers used think aloud protocol and cognitive task 

analysis to discern teacher thinking. The teachers were given the scenario that they were 

taking over a 10th grade biology class of 22 students that just completed a genetics unit. 

The teachers were given scored end-of-the-unit practice tests, consisting of multiple 

choice and open-ended questions, a test key, a spreadsheet summary of individual 

students' performance on each test question, a grade book, lesson plans, and a textbook. 

The student test results were designed with common misconceptions embedded in them. 

In addition, novel content (non-ribosomal peptide synthesis) was embedded as part of the 

test questions to test adaptive-ness, curiosity and disposition for lifelong learning. The 

primary contribution of this study was the definition of "adaptive" teacher behavior. 

―Adaptive‖ teachers are slow to draw conclusions and do so attentively. They build 

mental models from evidence and understanding through systematically explored data. 

With a disposition to learn novel information, they anticipate novel content with high 

interest and curiosity. The primary limitation of this study results from the preliminary 

nature of the report, they only analyzed experienced teachers. Since the novice teachers 

were not observed or analyzed for this report, a comparison between novice and 
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experienced teachers cannot be made. Future results comparing these two groups will be 

interesting. 

The Vanderbilt Northwestern Texas Harvard-MIT Engineering Research Center 

(VaNTH) project has produced numerous studies of the development of adaptive 

expertise in biomedical engineering undergraduates (Martin, Petrosino, Rivale, & Diller, 

2007; Martin, Pierson, et al., in press; Martin, et al., 2005; Martin, Rivale, et al., in press; 

Pandy, et al., 2004; Rayne, et al., 2006; Rivale, et al., 2006; Roselli & Brophy, 2006). 

Pandy et al. (2004) explained adaptive expertise in biomechanics as a linear combination 

of factual, conceptual knowledge and transfer. In a biotransport class using HPL 

methods, students‘ abilities to solve novel problems improved throughout the semester 

(Martin, Petrosino, et al., 2007). Large gains were linked to modeling and teaching an 

expert-like problem solving approach (Martin, Petrosino, et al., 2007; Martin, Pierson, et 

al., in press). This problem solving approach is the engineering equivalent to the general 

approach that task-experts used in the experimental design studies (Schraagen, 1993; 

Schunn & Anderson, 1999). In a direct comparison, students taught using HPL methods 

approached open-ended novel biotransport problems more adaptively and expert-like 

than students taught using traditional lecture methods (Martin, Rivale, & Diller, 2007). 

Roselli and Brophy (2006) reported similar results in biomechanics. Rayne et al. (2006) 

implemented an ethics module about stem cells in both high school and university 

classrooms. They found that undergraduate students, who had more knowledge about the 

subject at the pre-test, were less adaptive on the posttest problem. This might be 

consistent with the U-curve results observed by Lesgold et al. (1988) and Raufaste et al. 
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(1998). Undergraduates are normally thought of as novices, not intermediates, in expert 

research. However, since, less background knowledge is necessary to solve the ethics 

module than in other engineering and physics domains, they could arguably be 

considered intermediates in this experiment. Overall, these studies show promising 

results that HPL methods improve student performance on novel tasks. If this is simply a 

result of more deliberate practice (Ericsson, 2006a) or is actually speeding up the 

development of expertise remains to be seen. The 10-year rule has been shown to be 

fairly robust across domains (Ericsson, 2006a). 

Several researchers have investigated differences in the understanding and use of 

complex systems in experts and novices (Hmelo-Silver & Azevedo, 2006; Hmelo-Silver 

& Pfeffer, 2004; Hmelo, Holton, & Kolodner, 2000; Jacobson & Wilensky, 2006) and 

student misconceptions (Chi, 2005; Hmelo-Silver & Azevedo, April 2006; Resnick & 

Wilensky, 1998; Wilensky & Reisman, 2006; Wilensky & Resnick, 1999). In general 

these studies have found that experts are more likely to explain complex systems in terms 

of interactions and emerging phenomena, where novices and naïve adults tend to 

oversimplify systems into direct causal events. 

 Hemlo-Silver and Pfeffer (2004) conducted an expert-novice study using an 

aquarium as a complex system. There were two groups of novices, suburban 7
th

 graders 

and pre-service teachers, and two types of experts, academic biologists and aquarium 

hobbyists with at least 10 years of experience. They used a think aloud method as each 

subject drew an aquatic system. Then after the drawing task was complete, they used a 

structural interview to elicit further understanding of subjects‘ knowledge of aquatic 
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systems. They analyzed the results using Structure-Behavior-Function (SBF) Theory: 

structures are individual components, behaviors are the mechanisms, and functions are 

the more abstract processes. Expert protocols differed from novices‘ in the number of 

behaviors and functions they contained. There were no differences between 7
th

 graders 

and pre-service teachers. At a qualitative level there were differences between the 

biologists‘ and the hobbyists‘ responses. Biologists‘ knowledge was more abstracted and 

hobbyists‘ knowledge was more situated. 

Alberdi et al. (2000) found that when expert taxonomists encountered surprising 

plant features that were not consistent with their categorization schema, they proceeded 

to think about plant features more abstractly. If you assume that their knowledge is 

organized hierarchically, they accessed the category more broadly. For example they 

tried to classify the plants general fruit or flower type of the group of items. Hmelo-Silver 

and Pfeffer (2004) also noticed differences in the type of knowledge and reasoning of 

aquatic biologists and hobbyist. Biologists‘ knowledge was more abstract (mention basic 

functions and behaviors), and hobbyists‘ knowledge was more situated. Feltovich et al. 

(1997) also discuss abstraction, ―there have been demonstrations that experts retain a 

capacity to override schema-driven processing, to engage in a deeper, more basic kind of 

reasoning from first principles when they need to, particularly in difficult cases.‖ They 

also argue that novices comprehend complex systems by over-simplifying them, calling 

this ―reductive bias.‖ Zietz (2006) has proposed that abstract representation ―may be a 

necessary precursor to integration of information and perception of coherent patterns.‖ 
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Political science experts also gave more abstract representation of problems than novices 

(Voss, Tyler, & Yengo, 1983).  

In summary, level of expertise affects knowledge organization and abstraction. 

Other researchers have found performance differences based on level of specialization in 

the task and field. Since these results are consistent across numerous domains, I expect 

similar results in engineering experts. This study will contribute to more refined answer 

in engineering. Are there common heuristics that are followed by most engineering 

experts? Where does knowledge specialization impact performance?  

METHODOLOGIES USED IN THE STUDY OF EXPERTISE 

Traditionally, four different methods have been used to examine expertise and 

expert-novice differences: categorization, perception, recall, and verbal reporting (Chi, 

2006). Categorization methods have been used to examine how an expert‘s knowledge is 

organized. Perception methods are primarily in domains like medicine and chess where 

visual perception is a more required skill. Recall methods are most commonly used to test 

and understand the role of memory in expertise. Verbal reporting methods have been 

used to understand problem solving behaviors.  

Most studies have used two different types of verbal reporting methods: 

concurrent and retrospective reporting. The validity and reliability of these two verbal 

reporting methodologies have sparked considerable controversy. Some studies have 

shown that verbal reporting improves performance on problem solving tasks (Gagne & 

Smith, 1962) and that retrospective explanations are often inconsistent with observations 
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(Nisbett & Wilson, 1977). Ericsson and Simon (1980, 1984, and 1993) found that validity 

depends on the amount of time between the occurrence of a thought and verbal report of 

the thought. Experimental results showed that intervals between 5-10 seconds and 10-30 

seconds are valid. However, intervals longer than 30 seconds increase the likelihood of 

differences between the actual thought and what is verbally reported by the subject 

(Ericsson, 2006b). 

Ericsson and Simon have reviewed both the validity and reliability of concurrent 

and retrospective reporting methodologies (Ericsson, 2006b; Ericsson & Simon, 1984, 

1993). They classify verbal reporting methods into three categories. Type 1 (talk aloud), 

Type 2 (think aloud), and Type 3 (explanation). Talk aloud and think aloud verbalizations 

are concurrent methods; the subjects are asked to verbalize their thoughts as they are 

performing the cognitive task. The difference between the two types depends on whether 

or not the information being processed in the task is already in verbal form. In the talk 

aloud method (Type 1), information is already in verbal form. An example of this would 

be recalling numbers or letters to an interviewer. The think aloud method (Type 2) 

requires an additional process, as subjects need to encode each thought into verbal form 

before they can actually verbalize it. Most problem solving studies have used the think 

aloud method since they require verbal encoding. In both of these concurrent methods, 

each individual thought is verbalized before progressing to the next thought. Type 3 

(explanation) is a retrospective process where subjects are asked for explanations or 

reasons for their behavior. Subjects cognitively process a string of thoughts, then encode 

and verbalize them. They typically report back to the interviewer after the task, or subset 
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of the task is completed. This study uses both Type 2 and Type 3 methods. Experts were 

instructed to think aloud as they are solving the problem. Then after they completed the 

problem, they gave a retrospective explanation of the process they used to solve the 

problem. 

DIFFERENCE IN SPECIALIZATION 

Some previous studies have used two different types of experts: domain experts 

and task experts (Schraagen, 1993; Schunn & Anderson, 1999; Wineburg, 1997). This 

study design capitalizes on the specialized knowledge differences between domain 

experts and task experts while limiting the differences in the amount of practice time 

inherent in expert-novice studies. Using think aloud protocol methodology, Wineburg 

(1997) studied two history experts‘ interpretations of primary history documents about 

Abraham Lincoln and his view of race. Both historians were American history professors 

of equal recognition. However, the first historian specialized in the Civil War era and was 

very familiar with Lincoln and the era, and the second historian had domain knowledge 

which was not as specialized as Civil War expert‘s knowledge. In the Schraagen (1993) 

study, experts were asked to design a taste test. She used two types of experts: design 

experts (experimental psychology experts) and domain experts (gustatory specialists). 

The design experts were experimental psychology experts with design expertise but they 

lacked the gustatory expertise relevant for the design task they were given. I used a 

similar study design. Three of the experts have expertise in heat transfer (domain 
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experts).  The task experts in this study are engineers with less heat transfer research and 

teaching experience.  

PROBLEM SOLVING 

 Problem solving has been extensively studied (refs). In this section I will 

discuss the highlights of this literature and the studies that directly influence this study. In 

mathematics problem solving, Polya (1945) broke the problem solving process down into 

four general phases: (1) understand the problem, (2) devise a plan, (3) carry-out the plan, 

and (4) examine the solution. Schoenfeld (1985) built on Polya‘s by expanding the 

problem solving steps into an alternative framework that consists of four categories: (1) 

resources, (2) heuristics, (3) control, and (4) belief systems. He defines resources as the 

mathematical knowledge that the problems solver brings to the process. Examples of 

resources are facts, algorithms, intuition and informal knowledge. Heuristics are the 

general ―strategies and techniques for making progress on unfamiliar or nonstandard 

problems; rules of thumb for effective problem solving.‖ Some common heuristics are 

drawing figures, working backwards, and exploiting related problems. He defines control 

as the ―global decisions regarding the selection and implementation of resources and 

strategies‖ like planning, monitoring, assessment and other metacognitive acts. An 

individual‘s beliefs about her or himself, the environment, the topic and mathematics 

itself make a person‘s belief system or ―mathematical world view.‖ 

Carlson and Bloom‘s (2005) conducted an expert study of mathematical problem 

solving. Originally, the verbal solutions in this expert study were coded using a 
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framework constructed from Shoenfeld‘s (1985) problem solving framework. However, 

the authors found that, ―t his framework did not fully explain the reasoning patterns 

and interactions that they were observing. In particular, they noticed that their framework 

was limited in its ability to characterize specific interactions between the problem-solving 

process and aspects of the subjects‘ cognitive processes, metacognitive behaviors, and 

affective responses (Carlson & Bloom, 2005).‖ So they completed a second analysis 

using grounded theory methods to create a "Multidimensional Problem-Solving 

Framework.‖ That included 4 phases: orienting, planning, executing, and checking.  

In previous studies of the development of adaptive expertise in biomedical 

engineering studies, our research group coded student solutions to open-ended novel 

problems similar to the one used in this study using a rubric of 5 categories. This rubric 

was based on the instructor‘s, an expert in the field, own problem solving method. First, 

this method encouraged students to define the system. After determining what aspects of 

the problem were included in the system, the next step is to identify how this system 

interacts with the surrounding environment. Then, students should think about what 

governing principles, such as the conservation of energy, apply to the problem and 

identify the correct constitutive equations, such as the rate equations for conduction or 

convection. In the final step students solve the problem (Martin, Pierson, et al., in press; 

Martin, Rivale, et al., 2007). The rubrics in these studies were based on the problem 

solving process of one expert. This study can shed light on the whether this process is 

common of most engineering experts or if there are significant variation among 

engineering experts. 
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This study is informed by the expertise and problem solving literature. The 

following chapter explains the methods used in this expert study. The participants, 

problems and procedures used in this study will be explained. Then the coding and 

analysis is explained in more detail
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Chapter 3:  Methodology 

 

According to the Engineer of 2020, future engineers need to be innovative 

problems solvers; creative, flexible, resilient with a passion for lifelong learning(Clough, 

2004). To further clarify what this looks like in an educational context, this study 

examined experts‘ performance on both routine and non-routine heat transfer problems. 

Categorization, perception, recall, and verbal reporting, the four traditional methods used 

to examine expertise and expert-novice differences, were discussed in more depth in the 

previous chapter. This study used a combination of concurrent and retrospective verbal 

reporting methods because they are more conducive to understanding problem solving 

behaviors.  The controversy about the validity and reliability of verbal reporting 

methodologies was also discussed in more length in the previous review of the literature. 

Since validity is increased when the subject verbalizes each thought within 30 of the 

occurrence of the thought, I used the think aloud protocol methodology developed by 

Ericsson and Simon (1984).  

In this chapter, I first describe the experts that participated in the study. Then, I 

explain the two problems and how they were selected. In the procedure section, I present 

a chronological description of how the study was executed. I then discuss the coding and 

analysis of the transcripts. 
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PARTICIPANTS 

Seven engineering experts participated in the study (5 men and 2 women). They 

averaged over 28 years of teaching and research experience. I initially used a relative 

perspective to classify university professors who teach or conduct research in engineering 

as experts. With the assistance of the domain expert on my committee, I identified and 

solicited heat transfer experts from two Research I universities. Originally, I tried to 

solicit half the expert pool as domain experts with specialized knowledge of heat transfer 

in porous media and the other half heat transfer experts less familiar with heat transfer in 

porous media. However, only one of the experts had significant experience porous media 

heat transfer. He had conducted research in this area for many years. Another expert had 

worked on these types a problem in a job in industry many years ago, but no longer 

considered herself an expert in the area; a third expert said he was familiar with porous 

media problems. The rest of the experts had no experience solving or conducting research 

in porous media heat transfer. Among the experts that volunteered for this study two 

different expert groups emerged. One group had both heat transfer and general 

engineering expertise. The second group, had been exposed to heat transfer principles in 

both their graduate and undergraduate education, but they never taught transport or 

conducted research in the area (See Figure 3.1 and Figure 3.2).  
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Figure 3.1:   Engineering Teaching Experience 

 

Figure 3.2:   Transport Teaching Experience 
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This study design parallels previous work done in history (Wineburg, 1997) and 

experimental design (Schraagen, 1993; Schunn & Anderson, 1999) that used two 

different types of experts: domain experts and task experts. These two studies were 

described in more detail in the previous chapter. However, the experts‘ experiences in 

this study are not as clearly delineated into domain experts and task expert categories. 

Five of the seven experts in this study had over 30 years of engineering teaching 

experience, and the additional two experts both had over 10 years experience. Expert 7 is 

the only non-tenure track professor. She worked in industry in for over 10 years as well 

on projects with significant heat transfer components. In terms of specific transport 

teaching experience, the experts fell into three categories of experience:  having taught 

over 80 different transport courses (3), having taught over 10 transport courses (3), and 

never having taught a transport course (1). This expert actually had not taken a heat 

transfer course since his he was an undergraduate over 30 years ago. Five of the seven 

experts have conducted research in heat transfer. Although one of these was only in PhD 

work and one was in industry as significantly smaller portion of the expert‘s job 

responsibilities. Only one of the experts had very much experience solving or researching 

porous media problems. This is important because this is one of the ideal solution paths 

for the complex problem. It is also worth noting that Expert 6‘s research specialty is 

biomaterials and cell biology. This is significant because the bee‘s metabolism and 

physiology add complexity to the ill-structured problem. In comparison to the prior 

expert-expert study designs, Expert 1, Expert 2 and Expert 3 could be classified as task 

experts and Expert 5 could consistently be classified as a domain expert. The remaining 
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experts would fall somewhere in the middle. Although considering the 10 year rule there 

might not be much difference between the high and medium levels teaching and 

researching in the heat transfer domain. Since this study was initially proposed as a 

novice-expert study, it was designed under Chi‘s (2006) relative approach. Since we had 

limited access to the experts in this study, no additional knowledge assessments were 

given. However, since the routine problem covers the same taxonomy as the complex 

problem. The routine problem will be used as heat transfer expertise validation. Tables 

3.1 and 3.2 summarize the different relevant teaching and experiences of the experts in 

this study. Although not ideal, the varying specialization differences lend themselves to 

the study of adaptive expertise.  
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Table 3.1:  Expert Experience 

  
Task Experts 

Domain 

  Expert 

  Expert #3 Expert #1 Expert #2 Expert #5 

          

Engineering Teaching 
High High High High 

> 30 years > 30 years > 30 years > 30 years 

          

Transport Classes 
High High High 

None 
> 80  > 80  > 80  

          

Heat Transfer 
Research 

Yes Yes Yes None 

          

Porous Media High None None None 

          

Physiology None None None None 
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Table 3.2: Expert Experience 

  Mixed Experience 

  Mixed Specialization 

  Expert #4 Expert #6 Expert #7 

        

Engineering Teaching 
High Medium Medium 

> 30 years 10-15 years 10-15 years 

        

Transport Classes 
Medium Medium Medium 

10-15 classes 10-15 classes 10-15 classes 

        

Heat Transfer 
Research 

Some None Some 

        

Porous Media Some None Some 

        

Physiology None High None 

 

MATERIALS 

PROBLEMS 

 Study participants were asked to solve two problems – a non-routine complex 

problem and a routine textbook-like problem. The non-routine problem was chosen to 

access innovation and efficiency. To aide in the comparison to previous expertise 

research, the second problem is a general textbook-like problem. This is a problem a 

student completing a transport or heat transfer class would be expected to be able to 
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solve. The non-routine problem needed to be novel and complex enough to push the 

limits of the experts‘ knowledge. Using these criteria, I surveyed the test bank for 

VaNTH biotransport course. On every exam, students were given an open-ended far 

transfer problem that tested their ability to apply the knowledge they were learning in the 

course in a complex novel problem situation. From this test bank of problems, I selected 

three potential problems and discussed them with our research team multiple times. I then 

piloted these three problems with a colleague who completed a PhD in chemical 

engineering and teaches the introductory material and energy balances course at her 

institution.  

From the pilot study, I selected the Bee Hive Problem for this study (See 

Appendix A). This problem piloted well. It was complex enough to push the pilot 

expert‘s knowledge. The two other problems that I piloted were too easy from an 

engineering perspective and were not as assessable to engineering experts because they 

lack necessary biological knowledge critical to the problem solution. The selected non-

routine Bee Hive Problem is based on a 2004 Science article about genetic diversity and 

temperature regulation in bee colonies (Jones, Myercough, Graham, & Oldroyd, 2004). 

This problem asks participants how they would quantify transient hive temperature to 

determine whether genetic diversity helps stabilize hive temperature by analyzing and 

modeling the process. 

Once non-routine problem was chosen, I selected a routine problem that required 

a similar knowledge base to solve but was simpler and more straightforward. The 

problem is a simple steady state energy balance problem (see Appendix A) taken out of a 
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standard introductory heat transfer textbook (Incropera & DeWitt, 2002) The problem 

asks participants to solve for the inside temperature of a brick wall given all the necessary 

variables.  

Table 3.3 compares the knowledge base required for both problems. Both 

problems are solved using Conservation of Energy; the solutions require participants to 

conduct an energy balance. In addition, both problems involve all three modes of heat 

transfer: conduction, convection and radiation. However, the routine problem is simpler 

than the non-routine problem because it assumes that the system is at steady state, 

reducing a differential equation to a simple algebraic manipulation. The routine problem 

is also a one dimensional problem, whereas the non-routine problem involves a complex 

three dimensional geometry. And finally, all of the thermal properties necessary to solve 

the problem are given in the routine problem. In the non-routine problem, the thermal 

properties are complex, requiring additional assumptions or a plan to obtain them 

experimentally. 
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Table 3.3:  Transport Taxonomy Comparison 

 
 

PROCEDURE 

This study was conducted with IRB approval. Participants were solicited without 

compensation to volunteer to solve two heat transfer problems and interviews set up by 

email. At the beginning of the interview, they were asked to read and sign a consent form 

and to fill out brief demographic information. 

 At the beginning of the interview, I briefly explained the purpose of the 

experiment and the think aloud process (see Appendix B for the interview protocol). 

Then I modeled the think aloud process using a simple addition problem. I gave them a 

different simple addition problem to solve while thinking aloud as a warm-up exercise. 

At the end of the warm-up exercise, students are asked to explain what they remember 

thinking about the problem (to summarize their problem-solving process). After the 
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warm-up, I gave participants the first non-routine Bee Hive Problem. While they were 

solving the problems, I did not interact with the participants except to remind them to 

keep talking out loud. After they have completed their solution, I asked them to give a 

retrospective report of their process – what they remembered thinking in sequential order 

as they were solving the problem. This process was then repeated for the non-routine 

problem. Participants solve the problem aloud and then report back on their process.  

After solving the two problems, participants were asked a couple of quick 

questions about their teaching and research experiences in the transport domain. All 

participants were also asked what systems they thought could be solved analogously to 

the Bee Hive problem. This question was designed to uncover whether they have thought 

about the problem based on deep principles or more on surface features as Chi et al. 

(1984) have found. They were also asked about their experiences with heat transfer in 

porous media since that is the taxonomic knowledge base associated with the solution to 

the Bee Hive Problem. In an attempted to refine the definitions of innovation and 

efficiency in an educational context; participants were asked what their personal 

definition of innovation and efficiency are.  

These audio taped interviews were then transcribed. The transcriptions were 

coded using Altas ti software. They were coded in multiple rounds. In the first round, a 

grounded theory open coding technique was used. In subsequent rounds, protocol 

analysis methods were used (Ericsson & Simon, Chi). Chi (1997) recommends that the 

analysis should be broken down into the following eight steps: 

1. Reducing or sampling the protocols. 
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2. Segmenting the reduced or sampled protocols (sometimes optional). 
3. Developing or choosing a coding scheme or formalism. 
4. Operationalizing evidence in the coded protocols that constitutes a mapping to 
some chosen formalism. 
5. Depicting the mapped formalism (optional). 
6. Seeking pattern(s) in the mapped formalism. 
7. Interpreting the pattern(s). 
8. Repeating the whole process, perhaps coding at a different grain size (optional). 

 

Since this study only used seven experts and two problems, there was no need to reduce 

the data corpus. As a triangulated approach, the transcribed protocols, field notes, and 

written solutions were all used in the coding process. The following section explains the 

coding process used in this study in more detail. 

CODING  

First Round Coding – Grounded Theory  

 Initially, the entire corpus was reviewed and coded using an open coding technique 

consistent with grounded theory. (Strauss & Corbin, 1998) This was done to stay open-

minded and reduce bias as much as possible. Although I am familiar with the literature in 

this area, I did not match the coding to any specific framework during this round.  Several 

themes emerged, but none of them directly answered research questions posed in this 

study. A couple of unexpected themes emerged related to the professors‘ beliefs about 

student development and what types of problems are appropriate for undergraduate and 

graduate students. They also commented on student performance on these types of 

problems without being prompted. There were distinct differences in the way the experts 

approached the challenging problem. Some welcomed it, while others were focused on 
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why it was not a good problem. They were not commenting on flaws in the problem 

statement, but associating too high of difficulty with a poor problem. Nearly all the 

experts classified the problem or matched it to analogous problems within the domain. 

The different backgrounds and experiences of the group impacted solution and the 

approach they took to the novel complex problem. As a whole, this group verified the 

expert process used in the Biotransport course and prior innovation coding. The biggest 

differences in progress to a final solution occurred in the moving from a global energy 

balance to more detailed analysis, moving between steps 3 and 4 (governing principles to 

constitutive equations) in this expert process. 

Additional Coding – Protocol Analysis 

Since the goal of this study is to compare the process that experts use on two 

different types of problems, the protocols were first segmented by problem type and 

recall method. The experts both talked aloud while they were solving the problem 

(concurrent) and then they were asked to recall the process that they use (retrospective). 

The validity differences in these two methods were discussed in more detail in the 

previous chapter. Once these portions of the protocol were segmented at this level, each 

segment was summarized into general process steps (see Table 3.4 as an example). The 

transcripts were not officially segmented at this finer grain at this point in the coding 

process. The retrospective portions of the protocols were summarized first in an attempt 

to reduce the need for interpretation, coding what they said they were doing opposed to 

what I interpreted them doing from their discourse and written artifacts. However, since it 
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has been shown that delayed recall decreases reliability, the retrospective protocol 

segments were then compared to the concurrent protocol segments, the field notes, and 

the written solutions to increase consistency. Table 3.4 is an example of the results of the 

initial summarization from the retrospective and concurrent segments for one expert.  

 

Table 3.4:  Summary Generated from Expert #3 
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The collection of segment summaries from all the experts was then reviewed to 

generate an initial coding scheme (see Table 3.5). As experts read through the problem, 

they picked out the relevant information from the problem statement. These actions were 

coded as Identify Givens. The Identify Givens category included the identification of 

variables like the initial and ambient temperature, coefficients like emissivity and given 

constants like the Stephen-Boltzmann constant. These givens were identified in numerous 

ways: underlining, identifying them verbally, writing them in a list and labeling a 

diagram with the necessary parameters. Identifying assumptions like whether or not the 

heat transfer was static or dynamic was also included in the givens. Identifying the 

question they were trying to answer was coded as Identify Goals. Vocalizing that their 

solution method was determined by the amount of time they had to solve the problem 

was coded as identify constraints.  

After identifying the givens, goals and constraints, the experts typically 

categorized the problem and planned a general approach. These actions were coded as 

actions guided by prior experience. Generally, the initial approach was stated as a global 

energy balance or control volume approach. However, a couple of experts approached the 

problem as more of a scientific experiment. Explicitly matching the problem to an 

analogous problem was also coded in this category. When they categorized the problem, 

they often reiterated the relevant givens for problem, for example, “this is a one 

dimensional steady state combined heat transfer problem”. If this action occurred as they 

were reading the problem it was coded as identifying the givens, but when happened later 

in the process and as a string of observations it was coded as categorizing the problem. 

 



 

 49 

Table 3.5: Initial Codes Generated from Segmented Summaries 

 
 

 

The original protocols were then coded using the codes defined in Table 3.6. This 

initial list of codes was expanded to include more explicit definitions within each of the 

codes. At this point in the coding process, I attempted to collapse the codes into more 

general steps. I was able to collapse all of the generated codes into the four phases of 

Carlson and Bloom‘s (2005) Multidimensional Problem-Solving Framework: orienting, 

planning, executing, and checking.  The additional codes were left as other.  
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Table 3.6: Orienting Phase Codes 

 
 

Table 3.7: Planning Phase Codes 
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 Table 3.8: Executing Phase Codes 

 
 

Table 3.9:  Miscellaneous Codes 

 
 

 In the process of re-coding the transcripts and trying to make sense of the 

collapsed codes, I realized that on a more general collapsed level with the exception of 

the orienting category the transcripts were more accurately described by the 5 Step 
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Engineering Expert Problem Solving Model. In the subsequent rounds of coding, the 

Orienting category codes were left remained unchanged. However, the three categories of 

codes were re-categorized based on the 5 Step Process. Additional codes were added as 

necessary. Chapter 4 explains the results found in the both grounded theory and 

additional rounds of coding. Examples of the codes are also provided.
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Chapter 4:  Results 

 

 As explained in the previous chapter, the transcripts were first coded using 

grounded theory methods (Strauss & Corbin, 1998) followed by rounds of coding based 

on previous problem solving studies. In this chapter, the results from the grounded theory 

coding are presented first. The next section presents the experts‘ results on both 

problems. These results are then followed by differences observed between the two 

problem types. The final section presents results similar to previous expert-expert studies 

based on differences in experience with the heat transfer domain knowledge tested in the 

two problems 

GROUNDED THEORY RESULTS  

 
 A grounded theory methodology was used in the first round of coding. This 

means that the transcript was read and coded without trying to apply theoretical 

framework from previous studies or data outside the study. During this round of coding, 

three general themes were observed. Professor beliefs about student development and 

problem solving abilities emerged as unexpected themes early in the coding process. 

These unexpected themes are discussed first. During the grounded theory coding, 

different approaches to the complex problem were observed based on differences in 

expert specialization. These differences in general approach are presented in the 

grounded theory results section. However, the more nuanced differences that resulted 

from differences in background knowledge are discussed in the following section with 
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the rest of the second round coding results. The final grounded theory theme is adaptive 

expertise characteristics. Although these characteristics are consistent with previous work 

on adaptive experts, this framework was not intentionally applied to the transcripts. 

Unexpected Themes 

While solving these problems, many of the experts revealed their beliefs about 

what types of problems are developmentally appropriate for students. The experts were 

not prompted for this information in either the think-aloud instructions or the subsequent 

structured interview. Unprompted, most of the experts freely associated their beliefs 

about problem solving and the types of problems that are appropriate for the typical 

undergraduate student. They identified the ill-defined complex problem as a good PhD 

qualifying exam question. For example one expert said: 

 
So, we‘re going to give this problem on the next doctoral qualifying exam. 
 
It‘s probably… It may have appeared on your -- one of your doctoral 
qualifying exams. 
 

And another said:  

Expert #2:  I think it‘s a problem that…  It‘s a kind…  I would say it‘s a 
problem that would be interesting to give on a PhD qualifying exam for as 
a thought -- more as a thought problem than a calculation problem. In 
other words, you know, ―How would you approach this problem?‖ Not, 
―How would you solve the problem?‖ But, ―How would you approach the 
problem? Or, what are the things that are…? What would you have to take 
into account in order to solve the problem?‖ As opposed to, ―Solve the 
problem.‖ 

 

None of the experts referred to students while solving the complex problem 

except to mention that it was appropriate on PhD exam or that the problem was not a 



 

 55 

good problem for students. However, the experts routinely referred to students while they 

were solving the textbook problem. They often talked about what was hard for students 

and where the problem would fall in the sequence of a course on heat transfer. They often 

revealed what Shulman (1986) calls ‗pedagogical content knowledge‘ (PCK), for 

example: 

Okay. So, this is kind of a standard heat transfer problem for--for an 
undergraduate course but toward the end, where we are doing combined 
mode heat transfer and worrying about what happens. ….  
 
So, uh, everything is there to solve the problem, and I guess my thought 
process is, gee, I‘ve done a lot of these. [Both laugh.] So, I should be able 
to work that out. But, um, yeah, it‘s, uh, it‘s a fairly standard or 
straightforward problem; although, it does involve the parallel heat 
transfer on the outer surface, which is what usually hangs up the 
students… 
 

One expert pointed out why the routine problem was a good problem and 

repeatedly emphasized the difficulty of the first problem and that it was just a think 

problem. The following exchange illustrates the beliefs of the same expert. Throughout 

the interview he repeatedly explicitly and implicitly communicated his belief that the 

second problem was too difficult for students (undergraduates) and that the textbook 

problem was a good ―accurate‖ problem. While solving the complex problem Expert 2 

said: 

Expert #2:  Okay. Let me ask you, what level -- what level of -- what level 
of expertise or understanding of transport properties would this problem 
[the complex problem] be given -- would this be given to? Or just would it 
just be given to a researcher? 

Interviewer:  It‘s been given to students, but for right now for 
understanding it, like, to a researcher or, you know, to an expert. 

Expert #2:  Yeah. 
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Interviewer:  Obviously, when we give it to students, their level of -- their 
level of understanding the system is different.  

Expert #2:  Yeah. I mean, I immediately see -- I immediately see it as a 
really pretty complex problem -- 

Interviewer:  Okay. 

Expert #2:  -- you know, to me. And to me, to me, I would say it‘s, I 
guess, I would prefer…  I guess, if I -- if I were…  I would prefer to come 
up with a problem that was a little less complex in geometry. 

Interviewer:  Mm-hmm. 

Expert #2:   Whereby, that the students could probably come closer to 
solving it … than this one [complex bee problem]. 

Interviewer:  [laughs] Okay. Yeah.  

Expert #2:  I see it as, you know, a great problem. I mean, because it‘s a 
problem that needs to be solved if you‘re going to solve, if you‘re going to 
look at bee colonies and things like that, study bee colonies. But I‘d say -- 
I‘d say it‘s a fairly difficult problem. 
 

 

And in other exchanges Expert #2 said: 

Well, first of all, I would say it -- those kind -- well, when students start 
out -- when students start out, they have to have, you know, simple 
problems, and I would say the second problem was. Even some might be 
simpler than that, but that‘s a really good problem. The second one is a 
really good problem, because it really, you know, it allows them to 
separate out and not make the problem too complex. So that‘s a good 
problem. But at the same time, the beehive problem is really good, 
because students need to learn that things are not simple. I mean, that‘s a 
complicated problem. I don‘t know. But that‘s a complicated problem. 

 

The other thing about this problem, which is different from the other one 
you gave me is that this one is straightforward and within the accuracy of 
the information given. It‘s accurate. 
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The expert was bothered by the complexity of the problem. Because of the format of the 

interview, I believe he was classifying these problems as school problems (as opposed to 

a real-world or a research problem). He clearly articulated the highly prescribed problems 

are good problems – they are simple and provide all the necessary information. Good 

problems are not too complicated or complex. 

 Collectively these statements indicate a belief system that is consistent with the 

traditional model of science and engineering education that teaches the fundamentals first 

with an emphasis and practice solving routine problems. Only after the students have a 

handle on the fundamentals will they be given the opportunity tackle more complex novel 

problems. Sometimes these complex problems are reserved for a capstone course at the 

end of their program.  The traditional model makes three assumptions about the 

development of complex problem solving abilities. First, understanding the math, science 

and engineering content is a necessary prerequisite to be able to solve more complex 

problems. Second, it is necessary to learn to solve routine problems first.  Third, the 

ability to solve routine problems will transfer to more complex ill-constrained problems. 

The educational implications of the observed teacher beliefs and the traditional model 

will be discussed in Chapter 5. 

Confirmation of 5 Step Problem Solving Process 

 
 During grounded theory coding, the experts confirmed 5 Step Expert Problem 

Solving Process used in previous VaNTH studies of adaptive expertise (Martin, 

Petrosino, Rivale, & Diller, 2006b; Martin, Rivale, et al., 2007). Figure 4.1 graphically 

depicts the five steps of this process previously explained in more detail in Chapter 2: 
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define the system, determine how this system interacts with the environment, identify the 

governing principles, identify the appropriate constitutive relationships and then solve. 

The five step process was also confirmed in the both the steps the experts took to solve 

both problems and the expert discourse. One of the experts re-iterated this process in the 

think aloud recall portion of the routine problem: 

the energy balance is the key to the problem. And that‘s, you know… 
And--and energy balances are my stock and trade, so, I mean, that‘s -- I 
always -- I always go immediately to the energy balance. You know, well, 
let me -- let me rephrase that. What I do in any problem, irrespective of 
whether it‘s that one or this one or any other problem, is I ask myself, 
what are the controlling physical -- what are the relevant physical 
processes that are happening? In this case, obviously, it‘s energy, it‘s heat 
transfer. If it‘s a flow problem, the relevant physical processes might be 
the conservation of mass or the conservation of momentum. Conservation 
of energy may not be necessary, but what I look for are, what are the 
relevant physical processes for which we have to categorize, for which we 
have to write the pertinent conservation relations, or non-conservation if 
that‘s appropriate? So, uh, that‘s the first thing I look at is, what is the 
character of the problem? And the character of the problem in this case is 
it‘s steady state. It‘s, um… There‘s heat conduction, convection, and 
radiation. And at a given surface, at the outer surface, those things have to 
match up. So there, it‘s easy enough to write then the energy balance 
equation.  
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Figure 4.1:   Five Step Expert Engineering Solution Process 

 

 In general, experts followed this process in both types of problems. Figures 4.1-

4.3 are representative of the problem solving process used by two of the experts on the 

complex problem. Although the general process was confirmed the order of the process 

was not always sequential. The 5 Step Process was also missing one key step that was 

observed in the complex problem. There was an orienting/understanding the problem 

phase that proceeded the define the system phase in the complex problem. This difference 

was not observed in the routine problem. In the routine problem, the first step for all 

seven of the experts was to draw diagram of the system. Although the experts drew 

diagrams in the complex problem as well, it was not the first step. It was preceded with 

efforts trying to understand the problem. 
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Figure 4.2:   Expert 1 (Iteration 1) 

  

 

Figure 4.2:   Expert 1 (Iteration 2) 
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Figure 4.4:  Expert 2 Complex Solution 

 
 Another major difference is the fact that the define the system phase was not 

trivial in the complex problem. A more cyclic process was observed especially with 

Expert 1 and Expert 2 who both ranked high in related experience and background 

knowledge. The process was more automatic in the routine problem. All but one of the 

experts in the high experience and high specialization category (see Table 4.1 for a 

review of the categories) immediately recognized the routine problem and its solution 

path. For example: 

Okay. Ah, good, furnaces. Oh, all right. Now I can…I can identify now. 
…  
 
Okay. Well, this is, uh, it‘s not unlike the previous problem, except much 
simpler…. 
 
…this is a straightforward, steady state, heat conduction problem with a 
boundary condition that essentially the whole problem should be solvable 
by, uh… I don‘t even really have to write a differential equation for this. 
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Specialization Differences 

Table 4.1: Expert Experiences 

  High Experience High Experience Medium Experience 

  High Specialization Mixed Specialization Mixed Specialization 

  
Expert #3 Expert #1 Expert #2 Expert #4 Expert #5 Expert #7 

Expert 
#6 

                

Years 
Teaching 

High High High High High Medium Medium 

> 30  > 30  > 30  > 30  > 30  10-15 10-15  

                

Transport 
Classes 

High High High Medium 
None 

Medium Medium 

> 80  > 80  > 80  10-15  10-15  10-15  

                

Heat 
Transfer 

Research 
Yes Yes Yes Some None Some None 

                

Porous 
Media 

High None None Some None Some None 

 

 

 There were significant differences in the overall general approaches taken on the 

complex beehive problem. The problem is ill-defined which increases the number of 

approaches that can be taken to correctly solve the problem. Most of the experts took a 

global more macroscopic approach to the problem which is more typical in engineering 

problem solving – defining the system in terms of global inputs and outputs. However, 

two experts solution started from the prospective of the bee – a more microscopic 

approach. It is interesting to note that one of these experts was the only biomedical 

engineering in the sample and thus the only expert with significant knowledge of 

physiology and metabolic processes. The other expert that started from the perspective of 
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the bee took a finite element approach which is a numerical method that breaks the 

system into a grid with neighboring grids interacting with each other. 

 The other five experts started from more of a global perspective, looking at the 

general energy inputs to and from the hive. However, the two experts in the sample who 

conduct experimental research eventually took a more experimental approach to the 

problem. They planned to use strategically placed thermocouples and get an experimental 

answer to whether genetics played a role in thermal hive stability. There was only one 

expert with experience in heat transfer through porous media. The expert who wrote this 

problem classified the problem as a heat generation through porous media problem. (See 

next section for the complete porous media solution generated by the expert that wrote 

this complex problem.) This expert‘s solution was the most routine-like of the all the 

experts in the sample. 

 Thus, specialization and past experience had a significant impact on the experts‘ 

problem solving process. The approaches each expert took were highly dependent on 

their own experiences and knowledge base, and significantly paralleled the methods each 

expert took in their own research.   

Adaptive Expertise 

 Most of the experts displayed characteristics associated with adaptive expertise 

like welcoming challenges and being metacognitive. There was only one expert who 

voiced affective resistance to the complex problem; since this was discussed at length in 

the Unexpected Themes section it is omitted here. Examples of the welcoming challenges 

were voiced in their excitement about the problem: 
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I‘d want to do some research on that. In fact, you may -- I may end up 
doing that just because I‘m kind of intrigued with it. 
 
Wow! That‘s an interesting [article].  
Okay. I may have to read that five times to understand what it says  
 
oh, my gosh-―the process by which bees are able to regulate the 
temperature of their hive.‖ Um…[mumbling] Okay. This is an interesting 
problem. [both laugh] I‘ve never thought of this before. Okay. Yeah, I 
mean, I would actually…  I mean, I would be interested in knowing, um… 
You know, I‘d love to go study the diverse colonies versus uniform 
colonies. 

 
These were the experts that took the most time in solving the complex problem. One 

expert even followed up to get the complete article so he could think about it more 

because he was so intrigued by the challenge. 

 All of the experts exhibited examples of metacognition. The recorded transcripts 

showed more evidence of metacognition when the experts were solving the complex 

problem. Two of the three experts who were unfamiliar with the routine problem also 

showed evidence of metacognition. These experts had to generate the solution compared 

to the experts who were able to rely on prior knowledge and teaching experience with the 

problem. This makes sense because the experts familiar with the problem had little reason 

to check there own understanding or problem solving process in the routine problem. 

 Expert 1 showed the most evidence of metacognition. First, he completed two 

iterations of the first problem because he realized his assumptions were not validated and 

he was not answering the question posed. This is what he said as he was deciding tahat 

his first attempt was incorrect. 

Yeah. I‘m beginning… Now, the more I look at the -- the more that I look 

at it, the more I’m beginning to question whether or not you really can 
treat this as a -- as a lumped system, because if the idea is that you can 
warm the hive up by congregating more bees in the -- in the area that you 
are trying to regulate,  
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then maybe you have to really treat this as if it were an object that could 
have a temperature distribution in it. Kind of, for example, like a sphere 
with, uh, -- a sphere with a temperature gradient along it, where bees can -
- bees can move from region to region within the sphere, uh, and thereby 
change the rate of heat generation.[Time:  0:15:00]Yeah. I think, I think I 
really would have to do that. Because if I treat it as a lump parameter, then 
that really doesn‘t… If I treat it as a lump parameter and I don‘t allow 
bees to flow in and out of the hive, then it, um, it masks that--that issue. 
Okay. So, am I allowed to back up? 

 
He verbalized twelve metacognitive instances. The following instances are the most 

illustrative: 

 
The part of this that’s still bothering me is, when I go back and I read the 
introduction to this thing, it says, “It has been shown that different genetic 
lines of bees have varying capacities for fanning action with their wings 
and may also have varying thresholds for turning on and off the fanning 
activity to change local hive environment.” [Time:  0:30:00] Um…  How I 

would actually incorporate that -- those specific things into this model 
that I’ve envisioned, uh, that’s an interesting question that I haven’t got 
a good answer to….  
 
Let’s see. So, let me make another note here. Question: How to 
incorporate the fanning action and control thresholds of the bees? 
 
Now, the question about the threshold, that’s a trickier question, 
because that’s non-linear. Well, the whole damn thing is non-linear, to be 
perfectly honest, but the threshold question says that the -- that the change 
isn’t -- doesn’t happen. That is, the H varies with temperature. I’m going 

to make a note here. That’s another thing that you’d have to figure out. 
H varies with temperature, because higher T goes to faster bees, faster 
fanning. 
 
You know, what are the things that we know and don’t know? It looks like 
we could, you know, figure [that] out. I mean, those are all parameters we 
can definitely find out or measure. 

 
 

 Expert 5 was able to generate a solution to the routine problem although he had 

little experience in heat transfer. Like Expert 1’s second iteration in the complex 

problem, Expert 5 drew two diagrams in the routine problem. He drew one diagram as he 
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was reading the problem. Once he realized his diagram was not really helpful at 

representing what was really going on he drew a second diagram as well. (This is 

explained further in the following section.) Expert 5 was focused on figuring out what 

was going on in the routine problem:  

So, I tend to always start off problems as soon as I have any idea. Drawing 
a figure helps tremendously in visualizing. 
 
Here’s what we don’t know. Call that t-2. Tend to always want to make 
sure. So, maybe the figure is the most critical thing in understanding 
what’s happening. 
 
You know, what are the things that we know and don’t know? It looks like 
we could, you know, figure [that] out. I mean, those are all parameters we 
can definitely find out or measure. 
 

RESULTS BY PROBLEM TYPE 

Complex Problem 

 The complex problem is interesting for a couple of reasons. First, it is ill-defined 

with complex geometry and numerous dynamic and undefined properties. Second, the 

nature of the problem lends itself to both top-down aggregate and bottom-up more agent-

based solutions. The expert who wrote the problem took a top-down aggregate (finite 

difference) solution path. The following section describes author‘s expert solution to the 

complex bee problem given in this study (Diller, 2006).  

 

Define the System: The system of interest consists of a solid hive with a 
porous passageway structure through which bees and air can pass. 
Undoubtedly, the passageways are quite tortuous, so the geometry is quite 
complex. Apparently, there is a localized nest area, or areas, wherein the 
temperature regulation is most critical. There are likely bees within the 
nest area that do not leave during the process to be analyzed, so they can 
be included in the system mass.  



 

 67 

 

Environmental Interactions: The system has various interactions with the 
environment. Internally, when the temperature is higher than the target the 
bees flap their wings to create convective air flow within the passageways 
to provide cooling of the hive structure. Conversely, when the temperature 
is lover then the target, the bees congregate in the nest area to provide a 
collective metabolic energy source of het which is transmitted to the nest. 
Another physical boundary of the system is the external surface of the hive 
where it is exposed to the atmosphere. At the exterior surface there may be 
convection and/or radiation depending on environmental conditions and 
the location of the hive with respect to surrounding structures. In 
conjunction with these external conditions there may be a significant 
overall temperature gradient imposed on the hive between the surface and 
the nest, which is presumed to be located toward an interior site. A sketch 
of the system and environmental interactions is shown below. (Figure 4.5 
is the author‘s diagram of this system.) 

 

 

Figure 4.5:  Author Solution Diagram 
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Governing Principles and Constitutive Equations: The governing law for 
describing the thermal behavior of the hive and nest is the conservation of 
energy. As a first approximation this system can be modeled using the 
Pennes equation that describes blood flow through tissue that produces a 
distributed metabolism within. The Pennes equation assumes that there is 
full thermal equilibration between the blood and the local tissue. This 
assumption may not be valid for the air flow through the hive however. An 
alternative approach is to modify the Pennes equation so that incomplete 
convective exchange occurs between the flowing air and the hive. The 
conservation of energy equation with appropriate constitutive components 
might look like this: 

 

Solution Plan: It would very helpful to get some added information about 
the size of the passageways in a hive and what kind of air flow velocities 
bees can generate to make an estimate of the convective heat transfer 
coefficient for air flow therein. The boundary conditions are convection 
and radiation on the external surface of the hive and convective and heat 
generation distributed internally within the nest volume of the hive. It is 
difficult to say what the initial conditions should be since the hive is in 
existence on an ongoing basis and there will continually be an internal 
gradient. Probably the best approach would be to find out what the 
optimum thermal distribution is and use that for the starting point. The 
hive variation form the optimum in response to defined perturbations 
could be evaluated.  

Added information that should be obtained includes data on the solar 
radiation constant for the geographic location of the hive, typical wind 
velocities for that region, and how much metabolic energy bees can 
generate per unit volume and time. Further, the thermal properties of the 
hive are needed, and it will be necessary to determine if the porosity of the 
hive is large enough to compromise an assumption of conduction through 
a homogeneous medium. If it is necessary to include conduction around 
the hive passageway structure the geometry becomes horrendous, and a 
finite element model would have to be implemented with a lot of detail 
about the passageway geometry. The differential equation that results from 
this model is likely to be nonlinear due to Pennes convection term and 
possibly due to hive geometry, requiring a numerical technique to solve. 

 

The experts in this study took three general approaches to this problem: the global 

macroscopic approach taken by the expert who wrote the problem, a microscopic 
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approach that focused on the perspective of an individual bee first, and an experimental 

approach. The diagrams drawn by these two experts help illustrate the differences. Figure 

4.6 shows diagrams drawn by experts who took the global macroscopic approach and 

Figure 4.5 shows the diagrams drawn by the two experts who start from the microscopic 

perspective of the bee. Two experts took an experimental approach that set up an 

experiment to test how the two different groups of bees (a genetically diverse population 

of bee and genetically homogeneous population of bees) affected internal hive 

temperatures using thermocouples and an experimental method. The experts who took the 

experimental approach took a macroscopic approach to modeling energy flow in their 

experimental set-up. 

 

 

 

Figure 4.6:   Diagrams from Global Macroscopic Approach 
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Figure 4.7:  Diagrams from Microscopic Agent-based Approach 

 

Of the three experts that took the macroscopic approach, Expert 3‘s solution most 

resembled the solution given presented earlier. He was not familiar with the Penne 

relationship and set up a finite element solution path. Expert 1 initially took a control 

volume approach and categorized the problem as a lumped capacity problem. After 

generating the appropriate constitutive equations he questioned the lumped capacity 

assumptions and started a second iteration of the problem eventually deciding that a 

numerical solution was necessary. Both Expert 1 and Expert 2 ran into difficulty when 

they tried to do a mass balance on the bees. This is illustrated in the following think aloud 

passage: 

So first of all, I would try to characterize it as kind of a classical heat 
transfer problem. And then, um, now, the question … the question that I‘m 
asking myself in my mind is, what, um… I‘ve got to tie this back to the 
original question, which is, ―How would you quantify the transient hive 
temperature to ultimately determine whether or not genetic diversity 
among bees helps stabilize hive temperature. Your job is to determine an 
approach to analyzing and modeling a process by which bees are able to 
regulate the temperature of their hive.‖ ~~ Yeah. I‘m beginning… Now, 
the more I look at the -- the more that I look at it, the more I‘m beginning 
to question whether or not you really can treat this as a -- as a lumped 
system, because if the idea is that you can warm the hive up by 
congregating more bees in the -- in the area that you are trying to regulate, 
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then maybe you have to really treat this as if it were an object that could 
have a temperature distribution in it. Kind of, for example, like a sphere 
with, uh, -- a sphere with a temperature gradient along it, where bees can -
- bees can move from region to region within the sphere, uh, and thereby 
change the rate of heat generation. 

The Diller solution avoided this complexity by assuming that there were some bees that 

did not leave the system, thus including them in the system. 

The other two experts started from the perspective of an individual bee and then 

thought about how individual bees would influence heat transfer and thermal stability. 

They got stuck at the intersection of trying take go from the agent based perspective they 

started with to a more global energy balance. 

So we have the conduction from the bees to the air inside, radiation, or we 
can neglect that, conduction from the bees to the inside air, um, which 
depends on the physiology of the bee, which is going to vary depending on 
genetically alike or genetically dislike bees, in terms of wing span, flap 
velocity, etc., and then you‘re going to have conduction from the outside 
as well, depending on the temperature outside, thickness of the beehive, 
and so forth. So yeah, I just - I couldn‘t - I couldn‘t put it all together into 
an actual equation, but those are the most important components. 

So all four of the five experts (excluding the two that took the experimental approach) 

struggled at the intersection of the aggregate and agent based approach.  

Routine Problem 

 The expert solutions to the routine problem were quite similar with only minor 

differences in approach, time to solution, and final solutions. Although, most of the 

experts (6) set up the problem correctly, none of them carried the solution out to a 

numerical answer. All six of them stopped once they set up an algebraic solution with one 

unknown. They all started drawing a diagram as they were reading the problem and 

recording the givens.  
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 Expert 7 was not able to remember or generate the constitutive equations (Table 

4.3 summarizes the process but see the next section for further elaboration). Two of the 

experts recognized the problem immediately and two of them recognized it quickly after 

they started reading the problem. Table 4.2 summarizes the approach taken by these four 

experts (3 task experts and the one expert with less transport teaching experience). Table 

4.3 summarizes the approach taken by the other three experts. The only difference 

between these groups was that the domain expert (Expert 5) and the biomaterials 

engineering expert (Expert 6) had to generate the constitutive equations and the solution, 

they did not recognize it. The next section validates this claim in more detail. Only these 

two domain experts mentioned units as a checking strategy. They all started drawing a 

diagram as they were reading the problem and recording the givens. Many of them (4) 

took queues from given variables and constants for example: 

Known brick thermal conductivity and surface emissivity, which 
immediately tells me that the person who put the problem together wants 
me to worry about radiation from the outer surface as well as conduction. 

Stefan-Boltzmann constant, which I have no idea how that enters, because 
that‘s -- that‘s for radiation heat transfer, I guess, but I don‘t remember, 
because I literally have never had a course. 

―The brick has a thermal conductivity of 1.2 W/m•K and a surface 
emissivity…‖ Ugh. That means they want us to do radiation. [chuckles] 
Um, of 0.8. Oh, my gosh, it‘s been so long. 
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Table 4.2: Domain Expert Routine Solution Summary 

 

  Expert #3 Expert #1 Expert #2 Expert #4 

Recognize 
Problem 

Immediately Immediately As solving As solving 

        

Orienting 

Read Skim Read Read 

Assumptions from 
givens 

  Assumptions from 
givens 

  

Relates to ugrad       

System & 
Interactions 

** Diagram Diagram Diagram 

Planning & 
Sense 

making 

List givens verbally Label givens Label & check givens Label givens 

Categorize: 1D & SS Categorize: S.S.   S.S. 

**Diagram Determine  
     given/unknown temps 

Resistance diagram   

Rad & Conv in parallel   Rad & Conv in parallel   

Governing 
Principles 

Implicit Overall energy balance Implicit Implicit 

        

Constitutive 
Equations 

Constitutive equation Constitutive equation Constitutive equation Constitutive 
equations 

conduction only      radiation      radiation      radiation 

       convection      convection      convection 

       conduction      conduction      conduction 

Solution 

Sets up correct solution Sets up correct solution Sets up correct solution Sets up correct 
solution 
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Table 4.3:  Routine Summary 

  Expert #5 Expert #6 Expert #7 

Recognize 
Problem 

Generates solution Generates solution Does not solve 

      

Orienting 

Read Read Read 

    Re-read 

      

System & 
Interactions 

Diagram Diagram Diagram 

      

Planning & 
Sense 

making 

Label givens Label givens Label givens 

Queued by S.S. Checks to see S.S. Not queued by S.S. 

Stephen-Boltzmann -> rad Emissivity queues rad Can't remember emissivity 

What happening?     

Governing 
Principles 

Diagram  energy flows Labels heat flows No energy balance 

Global energy balance Rad & conv in parallel   

Constitutive 
Equations 

Generates constitutive eqn Constitutive eqn Attempts constitutive eqn 

     radiation      radiation correct conduction 

     convection      convection sets equal to heat capacity 

     conduction      conduction Attempts to generate rad eqn  

Solution 

Checks units Cancels units Stuck at constitutive eqn 

Generates correct solution Sets up correct 
solution 

Does not solve 

  

 

  

The Domain Expert Example 

 Expert 5 is the domain expert with over 30 years of engineering teaching 

experience, but little experience with heat transfer. He had not even taken a heat transfer 

course in graduate school. Thus, even in the case with the routine problem, he is an 

expert solving an unfamiliar problem. Table 4.4 explains in further detail his problem 

solving process from his think-aloud transcript.  

 Even though Expert 5 had little heat transfer experience, he was almost able to 

generate the correct solution. Table 4.4 gives his segmented transcript and a description 
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of his solution steps in the routine problem, he had to generate the conduction, convection 

and radiation constitutive equations. He was obviously familiar the transfer constants 

coefficients because he was able associate them with the conventional variables (i.e. 

thermal conductivity is represented by k). The fact that he was generating as opposed to 

recalling these equations is most apparent in his discourse as he was writing the 

conduction rate equation:  

It‘s going to allow me to hopefully determine that, because…  I think just 
a K change in temperature [in] respect to distance is going to be related to 
what‘s the…  I don‘t what the right terminology is for, what‘s the energy 
moving at any point? Because it‘s got to be the same everywhere. What‘s 
coming here, has to be here, here, and here. So, linear gradient, that‘s K.   
 
 

He did not know the terminology but he knew the energy difference was driven by a 

temperature gradient. The Stephen-Boltzmann constant queued him that radiation should 

be considered. He also thought he remembered that radiation had a fourth order power 

relationship but he was uncertain and crossed it out. He nearly generated the correct 

equation. However, he did not realize that all three of the rate equations were per unit 

area. Since the problem was at steady state, the cross sectional area could be dropped 

since it canceled out. 

  

  

 



 

 76 

Table 4.4: Expert 5 Routine Problem Transcript 

Expert 5 Routine Problem Transcript Action Description 

So, I tend to always start off problems as soon as I have 
any idea. Drawing a figure helps tremendously in 
visualizing. 

Draw diagram 

So, ambient air is at 25˚. I don’t know if this is significant, but 
this is a brick wall that’s .15 centimeters. The brick has a 
thermal conductivity, so I tend to want to, as much as I can, 
assign symbols to things to make it easy to -- rather than 
words. And a surface emissivity of 0.8. 

Givens 

Now’s when I wish I had taken a heat transfer course, because 
I never took one and I never taught it. 

Affective 

Using steady state conditions, so that sort of makes a big 
difference. A much easier problem to solve when I see that. 

Queued by steady state 

An outer surface temperature of 100˚, so I’d assume it means 
you’re right here. It’s 100˚C. Inside, it’s hotter. This is a 
furnace. Okay. 

Label given temperature 

Free convection heat transfer to the air is adjoining the 
surface, so there’s a heat transfer coefficient there flowing by. 
And h equals 20. Okay 

Write given heat transfer 
coefficient 

Stefan-Boltzmann constant, which I have no idea how that 
enters, because that’s -- that’s for radiation heat transfer, I 
guess, but I don’t remember, because I literally have never had 
a course. That’s from a different undergraduate program. 

Stephan-Boltzmann queues  
radiation 
Affective 

Okay. So, I don’t know if I’ll need that. Metacognition 

So, what is the brick inner surface temperature? Okay. Okay. 
So, we’re talking about… Here’s what we don’t know. Call 
that t-2. Tend to always want to make sure. 

Identify question asked 

So, maybe the figure is the most critical thing in understanding 
what’s happening. 

Draw another diagram  
(Define system) 
Metacogniton 

So, there’s some temperature gradient. 

Draw temperature gradient 

So, really, the figure that’s really important is that this is 100˚, 
this is a t-2. Out here the air is 25˚. 

Label Diagram 
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Expert 5 Routine Problem Transcript Cont. Action Description 

Now, we’ve got some heat transfer due to that. 
Identify energy transfer: 
convection 

And then I’ve got some radiation, I guess, though, it’s 100˚C. I 
don’t know how significant that is.  

Identify energy transfer: 
radiation 

And I have thermal conduction through the wall. So, the idea 
is that there would be some temperature gradient through the 
wall. Whatever heat goes here. And…and so what… So, this 
is 100, what the heat loss here.  

Identify energy transfer: 
conduction 

Then, I’d do an energy balance across the wall. 
Governing Principle:  
Global energy balance 

It’s going to allow me to hopefully determine that, because…  
I think just a K change in temperature [in] respect to distance 
is going to be related to what’s the…  I don’t what the right 
terminology is for, what’s the energy moving at any point? 
Because it’s got to be the same everywhere. What’s coming 
here, has to be here, here, and here. So, linear gradient, that’s 
K.  

Constitutive equation:  
Generate conduction 
equation 

And so that energy at any point, including here, has to be 
related to the 100 minus 25. Some heat transfer coefficient. 

Constitutive equation: 
 Generate convection 
equation 

And then there may be some 100 minus…  Well, I think it’s 
got to be absolute temperature. Don’t worry about that. I’m 
going to erase to a power. So, you know, so, 378[?] minus 
298, because I think it’s to the fourth, times emissivity. And 
that’s probably where this constant comes in, this s constant 
on both. 

Constitutive equation: 
Generate radiation equation 

If I was trying to get a number, I’d probably look at units to 
see if that makes sense. So, I tend to use units a lot to see if the 
terms make sense. And I’m doing this per unit area. Right? 
That would be my basis. On the outside putting numbers in, I 
guess, to me, that’s the best I can remember heat transfer. 

Metacognition 
Checking Units 

 

 Expert 5 drew two different diagrams as he was solving the problem (see Figure 

4.8). He immediately started to draw the first one as he read the problem and after he 

finished reading the problem and identified the question and the unknown he was solving 
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for, he started drawing a second diagram that helped him make sense of the problem. He 

identified the figure as the critical step in the problem. It is interesting to note that his first 

diagram was almost identical to the diagram drawn by Expert 7 (see Figure 4.9.) who was 

also unfamiliar with the problem. The second diagram he drew in as he was trying to 

understand the problem was almost identical to the diagram drawn by Expert 3 (see 

Figure 4.10). Expert 3 was the only expert familiar with both problems who even solved 

the complex problem as if it were routine. 

 
 

 

  

 



 

 79 

 

Figure 4.8:  Expert 5 Routine Problem Solution 

 

 

Figure 4.9:   Expert 7 Routine Problem Solution 
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Figure 4.10:    Expert 3 Routine Problem Solution 

DIFFERENCES BASED ON PROBLEM TYPE 

This problem was challenging for all of the experts with one exception. The 

problem was much more straightforward to the expert with significant experience heat 

transfer in porous media systems. The expert who generated the complex problem 

classified the problem as a heat transfer in porous media problem. After solving the 

problem, all of the experts were asked if they thought the problem was hard, and if so, 

what was hard about it. They found it difficult because it was unfamiliar. Many of them 

had never thought about transport in “living stuff” before. They all found it hard to link 

the bees to the transport model. They also found it hard to determine the geometries, the 

properties and the spatial distribution of those properties. Initially, most of the experts 

tried to make simplifying assumptions about the geometry and the properties in order to 

simplify the solution. However, then they questioned these simplifying assumptions when 

they returned tried driving question about the influence of genetic diversity in bee hives.  

One expert commented that, “it’s hard to set up a model when everything is a variable”. 
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The engineering experts with less heat transfer experience mentioned that they (like 

students) always found transient problems difficult. Another expert captured the essence 

of the problem selection well when he said; 

Well, I think the beehive problem is a good problem to understand how 
somebody attacks or sets up a problem, because you‘re not asking for a 
numerical answer. You‘re asking for a strategy. And you‘re asking for 
someone to take a word problem and reduce it down to something that now 
is amenable to being solved. And I know from what I learned about 
problem solving is that it‘s hard for students. You have to take a word 
problem, and then you have to reduce it to its elements. And it‘s also a 
good problem, because you have to figure out what part to read. 

 
Time 
 
 On average, the experts spent significantly more time (p = .019) solving the 

complex problem than they did on the routine problem, an average of 16 minutes 

compared to 5 minutes respectively, see Figure 4.11. Expert 1 completed two iterations 

when trying to solve the beehive problem. He was the only one to do this. The red line 

indicates the time break between the two iterations.  



 

 82 

 

* The read line indicates the iteration split for Expert 1. 

Figure 4.11:   Solution Time 

 

 There are two additional limitations that must be considered. Individual 

differences based on loquaciousness are common in verbal report data, and the complex 

problem statement is much longer than the routine problem statement (448 words 

compared to 92 words). Since there were differences in whether the expert read aloud or 

read silently and the fact that some experts started solving the problem as they were 

reading it, the average time to read the problem could not be subtracted from the total 

time on each problem. As a proxy, I timed myself as I read each problem at a 

conservative pace and subtracted this time from the total time on each problem. There 

was a difference of about 2 minutes in the time it took to read the problems out loud.  
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Table 4.5:  Adjusted Time by Problem Type 

     

   

  Beehive Beehive* Textbook Textbook** 

Expert 1 36:27.5 33:49.5 04:50.8 04:12.8 

Expert 2 17:11.4 14:33.4 06:45.2 06:07.2 

Expert 3 07:13.6 04:35.6 03:32.8 02:54.8 

Expert 4 05:29.5 02:51.5 04:16.8 03:38.8 

Expert 5 08:50.6 06:12.6 05:11.9 04:33.9 

Expert 6 27:37.2 24:59.2 06:56.1 06:18.1 

Expert 7 10:19.2 07:41.2 05:29.7 04:51.7 

Average 16:09.9 13:31.9 05:17.6 04:39.6 

Median 10:19.2 07:41.2 05:11.9 04:33.9 

 * Adjusted by 2:38 minutes  

 **Adjusted by 38 seconds  

 

DIFFERENCES BASED ON RELATED EXPERIENCE AND BACKGROUND KNOWLEDGE 

 The largest difference between the two knowledge groups was whether they 

categorized the problem or not. Three of the four task experts categorized the routine 

problem and talked about trying to categorize the complex problem (see Table 4.6). The 

rest of the experts did not do this. They recognized similar problem conditions like 

whether it was steady state or transient, but they did not try to categorize the problem. In 

the routine problem they categorization quickly queued the solution path. They knew the 

problem would eliminate the need to set up a differential equation. In the complex 

problem they were categorizing the problem in the as they were generating the 

appropriate model or the appropriate solution. 
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Table 4.6: Task Expert Categorization 

Complex Problem Routine Problem 

So first of all, I would try to characterize it as 
kind of a classical heat transfer problem. And 
then, um, now, the question 

Uh, I know that in a one-dimensional heat 
transfer problem that’s steady state that 
the amount of heat transfer per unit area 
on the inner surface is equal to the amount 
of heat transfer on the outer surface, and 
that sort of gives you the clue of how to 
handle this 

I see this as analogous to a problem, a kind of a 
classical problem in heat transfer of the heating 
or cooling of a lumped object in which there is 
some internal heat generation 

…this is a straightforward, steady state, 
heat conduction problem with a boundary 
condition that essentially the whole 
problem should be solvable by, uh… I don’t 
even really have to write a differential 
equation for this. 

You know, in the summary, I think I would set 
up a… As I said, I would assume at least for this 
point for this to be a quasi steady state problem 
with long-term variations and long-term…  

Okay. So, this is kind of a standard heat 
transfer problem for--for an undergraduate 
course but toward the end, where we are 
doing combined mode heat transfer and 
worrying about what happens 
 

Other than the fact that there is some sort of 
activity going on inside that generates heat, it is 
not something that regulates itself or is 
regulated. It’s just going on. Okay. So, I started 
this by saying, how do we model problems like 
that, and what would be the analogous model 
here? So, the first thing that occurred to me is 
that I could characterize this as a spherical 
particle, spherical object, and go through the 
usual energy balance type stuff with boundary 
conditions and some initial condition  

Okay. Sure. Uh, well, uh, I looked at it, and 
first of all, I paid special note to the fact that 
it said “under steady state conditions.” So 
again, I’m trying to categorize the problem. 
Because there is a wall, there is heat 
conduction through the wall, and as always, 
the energy balance is the key to the 
problem. And that’s, you know… And--and 
energy balances are my stock and trade, so, 
I mean, that’s -- I always -- I always go 
immediately to the energy balance. 

I was thinking about it in terms of a standard 
sort of heat transfer fluid mechanics problem, 
where you want to look at the heat trans- -- 
heat balance, mass balance on the entire 
system. And so, it gets down to analyzing it in 
the same way you do most problems like this 
for porous media heat transfer. 
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 The experts were asked about is they could think of another problem that would 

be analogous to the bee hive problem after they solved the problem. Table 4.7 gives the 

expert answers to this analogous problem question (Expert 2 did not answer the 

question.) The domain experts gave more general analogies: a heat exchanger, a house, 

and a cup of coffee. The task experts gave more all focused on the fact that the problem 

involved a heat generation component and porous media. 

 

 



 

 86 

Table 4.7: Analogous Problems 

 Analogous Problems 

Expert 1 Here’s one that I can conceive of: possible problem, like, for example, of 
solidification of, uh, castings for crystallization of materials that are where there’s 
crystallization occurring from a continuous phase, because the--the rate of heat 
generation, if--if--if… I can think of this in crystallization. There’s heat generation -- 
there could be -- there could be heat generation occurring as a result of exothermic 
processes that are going on. And typically when something crystallizes, often, in 
many instances, it’s exothermic. So, there’s a problem in which the rate of internal 
heat generation in the volume has to be represented functionally as a function of the 
population of crystals, which might be expressed in terms of the density of--of the 
solid phase versus the liquid phase, something like that. So, I could see some analogy 
there. Probably less so in metallic materials, because the thermal conductivities are 
so high it probably doesn’t -- the solidification energy probably doesn’t affect those 
things very much. Now the question of where there is some sort of active control 
mechanism going on, that’s … that’s a very interesting one. I have no idea where I 
would find other problems. 

Expert 3 Mm-hmm. I’ve worked on a lot of porous media problems with internal combustion 
inside a plug of porous material, so it’s called submerged combustion. And we’ve 
had to model those, and there are a lot of similarities, because you have heat 
generation by the combustion process, you’ve got flow in and out, you’ve got 
changes in the properties due mostly to the temperature differences in that case. 
Although, we’ve done some with varying material properties in the porous material 
itself. So, you know, that’s an analogous sort of problem. I mentioned the nuclear 
reactor core. Similar sort of problem with heat generation and flow through the 
system. In some ways, those are simpler systems, because the flow is not dependent 
on the ambient temperature the way these are, but--but they are similar. 

Expert 4 Well, if…  Uh, if I was thinking of the bees, you know, and if I was thinking of a mass 
transfer analogy, you would think of a catalyst. In other words, I have a packed bed 
with catalysts, and so if I was doing reaction, uh, then, you know, and so that would 
be the, uh, the analog of generating mass. Although, yeah, in other words, the 
catalyst would be part of it. You still have to have the mass source or sink, so you’d 
also have to have some mass. So maybe a better analog would be, like, a sorbent. So 
if I have a sorbent in a packed bed and I pass mass to it, it takes the mass out of the 
fluid phase. Then that would act like a sink or a source depending on which one you 
were looking at.  
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 Analogous Problems 

Expert 5 Well, in some ways, it’s not a lot different from a chemical reactor. You’re 
generating heat by a reaction, for example. You remove heat by flow in and out and 
heat transfer through walls, so you could say it’s probably analogous to that kind of 
problem, which is the kind of problems that I would teach, you know 

Expert 6 Well, I mean, I think of it somewhat similar to shell and tube heat exchanger, 
because you have a lot of little internal tubes which are like your little internal bees. I 
mean, except there you would have, I mean, I guess you would have forced 
convection, um, which you have forced convection with the wings. You can have 
forced convection through the tubes. And then you’d have each one having, you 
know, conduction and so forth. So it’s – it could be somewhat analogous to that if 
you looked at it as an unsteady state or transient problem. But, um, other problems 
in engineering? Nothing that I deal with, so… [laughs] 

Expert 7 Any systems like the bee hive problem. Well, I think a house. ... Yeah, a house is a lot 
like that. We bring in air and take out heat. Let’s see, so anything with a shell, that 
would be important. How about a coffee cup? A cup of coffee. .... That would 
definitely…  You know, why does it cool at a certain rate? And does it stay warmer if 
you don’t ever take a sip from it? [both laugh] And then, what would be the point?  
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Chapter 5:  Conclusions 

 

This study addressed the following two research questions: (1) How do 

engineering experts solve non-routine complex problems? (2) Does an experts‘ process 

solving these types of non-routine engineering problems differ from the processes found 

in classic expertise research using routine textbook-like problems? This chapter first 

summarizes the results that address the research questions and the unexpected themes 

uncovered with grounded theory methods. Then the educational implications of these 

findings are discussed.  

(1) How do engineering experts solve non-routine complex problems?  

 In general, this study confirmed the 5 Step Problem Solving Method as an 

expert engineering problem solving method.  

 The experts in this study also solved routine engineering problems outside 

their expertise or familiarity using this same method focusing on applying 

general principles prior to addressing constitutive equations and a solution 

path. 

 

(2) Does an experts‘ process solving these types of non-routine engineering 

problems differ from the processes found in classic expertise research using 

routine textbook-like problems?  

 There were observed differences based on problem type and background 

knowledge.  
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 The routine problem was more automatic and took significantly less time.  

 The experts with higher amounts of background knowledge and 

experience categorized the problems.  

 The level of background knowledge was most apparent in the steps 

between conducting an overall energy balance (Governing Principles) and 

writing more problem specific relationships between the variables 

(Constitutive Equations). 

 

However, the most interesting findings of this study are the unsolicited themes 

uncovered using grounded theory methodology with the collective qualitative data 

corpus. The experts in this study unexpectedly revealed strong beliefs about problem 

solving ability and development in students. They associated the complex problem with 

PhD students and the routine problem with undergraduates. The educational implications 

of these findings are discussed in the following section. 

EDUCATIONAL IMPLICATIONS 

The traditional engineering education system makes the assumption that 

experience solving routine problems will transfer to ill-structured problems. It also 

assumes that it is necessary to learn to solve routine problems first. However, it isn‘t 

completely understood how different types of problems affect this development. These 

assumptions are not explicitly tested in this study. However, this study was motivated by 

the desire to improve engineering instruction by characterizing the desired endpoint.   
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How do engineering experts attempt these types of problems? How can their solutions 

inform educational practices? 

In the current system, students practice solving lots of routine problems. For a 

selective few, this method leads to expert-like understanding. Only those that persist are 

given the opportunity to work on more interesting complex problems. The expert beliefs 

are consistent with the traditional way engineering education is structured. Students are 

taught the fundamental principles first by direct instruction lecturing and solving lots of 

highly constrained problems on exams and homework sets. After they have ―mastered‖ 

the core content, they are then allowed to attempt novel complex problems. The experts‘ 

beliefs found in this study are consistent with the hierarchy of problem types in the 

mathematics curriculum described by Stanic and Kilpatrick (1988): 

Putting problem solving in a hierarchy of skills to be acquired by students 
leads to certain consequences for the role of problem solving in 
curriculum. One consequence is that within the general skill of problem 
solving, hierarchical distinctions are made between solving routine and 
nonroutine problems. That is, nonroutine problem solving is characterized 
as a higher level skill to be acquired after skill at solving routine problems 
(which, in turn, is to be acquired after students learn basic mathematical 
concepts and skills). This view postpones attention to nonroutine problem 
solving, and, as a result, only certain students, because they have 
accomplished pre-requisites, are ever exposed to such problems. 
Nonroutine problem solving becomes, then, an activity for the especially 
capable students rather than for all students (page 15). 

 

The expert beliefs about student development and the appropriateness of problems falls 

outside of the theoretical ‗optimal adaptability corridor‘ proposed by Schwartz et al. 

(2005) (See Figure 5.1). The experts in this study exhibited strong beliefs consistent with 

the traditional educational model that it‘s necessary to focus on efficiency before students 

can tackle more innovative problems. 
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Figure 5.1: Expert Beliefs Trajectory 

The expert beliefs are inconsistent with their performance on both types of 

problems. Even on the routine problem, none of the experts carried out their solutions to 

a final mathematical solution. They merely set up the problem following processes 

similar to the 5 Step Problem Solving Method. Even the experts with less specialized 

knowledge were able to attempt the problems. The experts in this study attempted the 

problems from general principles first. Only secondarily did they attempt to apply 

constitutive equations and set up a solution path. None of the experts carried either 

problem out to a mathematical solution. If this is how experts solve these types of 

engineering problems, is it necessary for students to have mastered basic math skills and 

physics equations before taking on more complex problems? 
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One of the experts in the study articulated this when he gave his ideas about what 

innovative student performance looks like. 

 
one of the things that really catches my attention is when I have a 
student come in and explain to me physically what he thinks is going on, 
and then we talk about, now how do I capture that in terms of writing 
equations and formulas, so you get a number for an answer? … our 
students today have much less of an intuitive sense of how physical things 
happen. They are more oriented toward, “Let’s cut to the chase. You tell 

me which formulas I have to plug numbers into in order to get an 
answer.” So, what I view as innovative is a student who looks first at the 
problem before they look for, “Where do I plug and chug in order to get an 
answer?” … But the idea was to put more hands-on really looking at real 
things and saying to yourself, “How does what I’m studying apply to this 
thing here?” Okay. And so, if I try to characterize the quality that I think 

is going to -- is going to be observable in a student that’s going to 
become something special as an engineer, I would say I would put that 
right at the top of my list. This intuitive sense of what’s really happening 
before you start trying to just plug numbers into it. 

 
 
In the engineering workplace, Jonassen et.al (2005) found that nearly all problems 

are complex and ill-structured. If we are going to prepare students to be innovative and 

technically proficient they program need more practice solving complex ill-structured 

problems. Students often only encounter these complex ill-defined problems at the end of 

their four year engineering program because of an under-current belief that they need to 

have mastered basic math and science concepts first.  

Ericsson (2006) has shown expertise is often the result many hours of deliberate 

practice. He has found that expertise in many domains like music, sports, chess, and 

problem solving require at least 10,000 hours (approximately 10 years) of practice. The 

10-year rule has been shown to be fairly robust across domains (Ericsson, 2006a). 

Solving engineering problems takes ―deliberate practice‖ just like playing basketball or 
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the piano (Ericsson, 2006).  For students, the hours they spend doing homework and 

studying is practice. A good coach facilitates this practice to maximize performance. 

Using a basketball analogy, nearly all teams practice shooting layups but they also 

practice putting it all together in the real time scrimmages. Coaches make their players 

practice both in pieces and putting it all together. Routine problems can be seen as 

analogous to a layup and complex real-world problems analogous to a scrimmage. In a 

previous study one student highlighted this difference when he asked, ―you mean you 

want me to solve this like a real problem in the lab or something, not like homework or a 

problem on an exam.‖ Our students have learned how to ―play school‖ well, but we need 

to make school more applicable to the careers we are preparing them to enter. Students 

need more practice solving complex real-world problems. It seems unnecessary to make 

students wait to start this practice only after they have mastered basic math and science 

concepts. As Schwartz et al. (2005) propose, they should be practicing both types of 

problems at the same time. 

In previous studies, students given practice with both complex and routine 

problems in challenge-based engineering courses performed higher on innovation 

measures than students taught using traditional methods.(Martin, Rivale, et al., 2007) The 

results of these studies combined with the unexpected themes identified in this study 

indicate that professor beliefs about problems and problem solving need to be factored 

into reform efforts in engineering education. Future research needs to explore these 

beliefs more rigorously. If these findings are verified, they do hold promise. Obviously, 

the engineering professorate is highly skilled in writing PhD qualifying exam questions. 

They also have experience with problem based learning: the model is very similar to 
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mentoring new graduate students in their research labs. The logical next step is to help 

direct these skills into their undergraduate classrooms. Prior research shows that teacher 

beliefs are robust and hard to change. Thus, the challenge is finding optimal avenues to 

influence these beliefs to help address the national call for engineering education reform.  
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Appendix A: Problems 

 

 
 

 

Honey bee colonies need to maintain their brood 

normally (19). Workers regulate temperature by 
fanning hot air out of the nest when the 
temperature is perceived as being too high and 
clustering together and generating metabolic 
heat when the temperature is perceived to be too 
low (19-21). Clearly, a graded rather than 
precipitous response is required, so that the 
colony does not constantly oscillate between 
heating and cooling responses. Does genetic 
variation among patrilines help colonies to 
produce an appropriate, graded response to 
temperature changes? 
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The preceding article from Science (Science, 305, 16 July, 2004, 402-404) describes how 
heat transfer plays a key role in the biological function of a bee hive, and how the bees 
affect this process by regulating the temperature by flapping their wings or huddling 
together. 
 
The bees‘ ability to maintain the optimal brood nest temperature of around 35 ºC is 
especially interesting to consider when there are fluctuations in the surrounding 
environmental temperature.  In some honey bee environments the ambient temperature 
can fluctuate between 15ºC and 40ºC over a period as small as two days, putting a great 
thermal load on the hive.  It has been shown that different genetic lines of bees have 
varying capacities for fanning action with their wings and may also have varying 
thresholds for turning on and off the fanning activity to change local hive temperature.   
 
Nearly all of the research in this area has focused on analysis of bee behavior and its 
determinants.  However, there is potentially useful information to be learned about how 
the thermal properties of a hive and the mechanisms of energy transport within it can 
influence the ability of bees to function in transient environmental conditions.  Therefore, 
please think about and explain how you would quantify transient hive temperature to 
ultimately determine whether or not genetic diversity among bees helps stabilize hive 
temperature. 
 
Your job is to determine an approach to analyzing and modeling the process by which 
bees are able to regulate the temperature of their hive. 
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Problem 2 
 
The hot combustion gases of a furnace are separated from the ambient air and its 
su
conductivity of 1.2 W/m•K and a surface emissivity of 0.8. Under steady state conditions 

to the 
air adjoining the surface is characterized by a convection coefficient of h = 20 W/ m

2
•K. 

The Stefan-Boltzmann constant is 5.67 x 10
-8

 W/ m
2
•K

4
. What is the brick inner surface 

temperature?  
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Appendix B: Interview Protocol 

Biotransport Interviews, Dissertation Pilot –Boulder October 2007 
Think Aloud and Retrospective Report Protocol 
 
• In this experiment we are interested in what you think about when you find solutions to 
biotransport problems.  
• So, I am going to ask you to think aloud as you work on a problem.  
• What I mean by think aloud is that I want you to verbalize everything you are thinking 
from the time you first see the question until you give an answer.  
• Try to talk aloud constantly, explaining what you‘re thinking about while working on 
the problem. You can say anything that is on your mind such as, ―Well at this point I‘m 
going to . . . ― or ―Now I‘m drawing such and such.―  
• Pretend that you are taking an exam. If you get stuck, try to unravel the problem on 
your own, and try not to ask me questions. Just act as if you are alone in the room 
speaking to yourself.  
• It is important that you keep talking. Talking aloud may not seem natural, and you may 
feel strange doing it. That is a normal reaction, just try to continue talking.  
• If you are silent for a long period of time I will remind you to talk.  
• Verbalizing how you solve a problem takes more time than just solving the problem.  
• Don‘t worry if it seems you are taking a long time.  
• This is not an evaluation of you, and we are not concerned with whether you get a right 
answer.  
• Instead, we are interested in how you think about complex problems.  
• Now I‘ll demonstrate with an example and then we‘ll begin with some practice 
problems.  
 
Think Aloud Examples 
 
Simple Example 
I’ll talk aloud while solving an addition problem to give you an example. 
(GET PAPER)  34 + 27 
 
So, I have to add the 4 and the 7 and I get 11. so, I put a 1 down here and a 1 up here 
because this is the ones column and this is the tens column. Then I’ll add the tens column. 
1 + 3 + 2 = 6, so I’ll write six down here and the answer is 61. 
 
 
Warm-up Exercise 
 
First, I want you to add these two numbers on paper and tell me what you are thinking as 
you get an answer. What is the result of adding 381 and 728?  
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Give student a hard copy of the addition problem with a pencil to work it out (see back 
pages of protocol).  
 
Retrospective Instructions 
• Good, now I want to see you much you can remember about what you were thinking 
from the time you read the question until you gave the answer.  
• I‘m interested in what you actually remember rather than what you think you must have 
thought.  
• If possible I would like you to tell about your memories in the sequence in which they 
occurred while working on the problem.  
• Please tell me if you are uncertain about any of your memories.  
• I don‘t want you to work on solving the problem again, just report all that you can 
remember thinking about when answering the question.  
 
• Now tell me what you remember.  
THEY KEEP PAPER 
 
 
 
****START TAPE, SAY NAME AND DATE 
Biotransport Problem 
• Good. Now I will give a biotransport problem to solve.  
• I want you to do the same thing for this problem as you did on the previous one.  
• Think aloud as solve the problem.  
• After you answer it I will ask you to tell me all that you can remember about your 
thinking.  
• Do you have any questions?  
• Here is the problem (problem is also at the end of the protocol). 
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The Bee Hive Problem 

 

 
 

 

Honey bee colonies need to maintain their brood 
nest 

normally (19). Workers regulate temperature by 
fanning hot air out of the nest when the 
temperature is perceived as being too high and 
clustering together and generating metabolic 
heat when the temperature is perceived to be too 
low (19-21). Clearly, a graded rather than 
precipitous response is required, so that the 
colony does not constantly oscillate between 
heating and cooling responses. Does genetic 
variation among patrilines help colonies to 
produce an appropriate, graded response to 
temperature changes? 
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The preceding article from Science (Science, 305, 16 July, 2004, 402-404) describes how 
heat transfer plays a key role in the biological function of a bee hive, and how the bees 
affect this process by regulating the temperature by flapping their wings or huddling 
together. 
 
The bees‘ ability to maintain the optimal brood nest temperature of around 35 ºC is 
especially interesting to consider when there are fluctuations in the surrounding 
environmental temperature.  In some honey bee environments the ambient temperature 
can fluctuate between 15ºC and 40ºC over a period as small as two days, putting a great 
thermal load on the hive.  It has been shown that different genetic lines of bees have 
varying capacities for fanning action with their wings and may also have varying 
thresholds for turning on and off the fanning activity to change local hive temperature.   
 
Nearly all of the research in this area has focused on analysis of bee behavior and its 
determinants.  However, there is potentially useful information to be learned about how 
the thermal properties of a hive and the mechanisms of energy transport within it can 
influence the ability of bees to function in transient environmental conditions.  Therefore, 
please think about and explain how you would quantify transient hive temperature to 
ultimately determine whether or not genetic diversity among bees helps stabilize hive 
temperature. 
 
Your job is to determine an approach to analyzing and modeling the process by which 
bees are able to regulate the temperature of their hive. 
 
 

Retrospective Report 
 
Now tell me all that you can remember about your thinking. 
 
THEY KEEP PAPER 
 

Problem 2 
 
The hot combustion gases of a furnace are separated from the ambient air and its 

conductivity of 1.2 W/m•K and a surface emissivity of 0.8. Under steady state conditions 
C is measured. Free convection heat transfer to the 

air adjoining the surface is characterized by a convection coefficient of h = 20 W/ m
2
•K. 

The Stefan-Boltzmann constant is 5.67 x 10
-8

 W/ m
2
•K

4
. What is the brick inner surface 

temperature?  
 

Retrospective Report 
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Now tell me all that you can remember about your thinking. 
 
THEY KEEP PAPER 
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Potential questions/prompts 
 
Think Aloud 
Keep talking.  
What are you thinking right now? 
So now you are . . .  
What are you doing now? 
Why did you do that? 
Describe the steps you are going through. 
So this is . . .  
Is there anything special you‘re looking for? 
 
 

Retrospective 
What was your goal? 
What did you expect when you did that? 
Repeat their own words/phrases back to them as a question. For example, ―So that‘s 
confusing?‖ 
Can you tell me what you were thinking? 
What did you want to accomplish here? 
How did you feel about that process? 
Can you tell me why you did X? 
You seemed surprised/puzzled/frustrated, were you?  
 
 
 
 
 
 
 
 
 
 
 
TA and Retrospective Report adapted from Protocol Analysis (Ericsson & Simon, 1984) 
and ―Methods for successful ‗Thinking-Out-Loud‘ procedures‖ developed by Judy 
Ramey, Univ. of Washington, with additions by Usability Analysis & Design, Xerox 
Corporation (Pieratti, 1995).  
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