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The emerging class of biologic drugs, including proteins, peptides, and gene 

therapies, are widely administered by injection, despite potential systemic side effects. 

Rational design of targeted carriers that can be delivered non-invasively, with reduced 

side effects, is essential for the success of these therapies, as well as for the improvement 

of patient compliance and quality of life.  

One potential approach is to take advantage of specific physiological cues, such 

as enzymes, which would trigger drug release from a drug carrier. Enzymatic cleavage is 

highly specific and could be tailored for certain diseased tissues where specific enzymes 

are up regulated. Enzymatically-degradable hydrogels, which incorporate an enzyme-

cleavable peptide into the network structure, have been extensively reported for releasing 

drugs for tissue engineering applications. These studies showed that a rapid response and 

corresponding drug release occurs upon enzyme exposure, whereas minimal degradation 

occurs without enzyme. Recently, Michael addition reactions have been developed for 

the synthesis of such enzymatically-degradable hydrogels. Michael addition reactions 

occur under mild physiological conditions, making them ideally suited for polymerizing 

hydrogels with encapsulated biologic drugs without affecting its bioactivity, as in 

traditional polymerization and particle synthesis. The focus of my research was to create 
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enzymatically-degradable hydrogel microparticles, using Michael addition chemistry, to 

evaluate for use as an inhalable, disease-responsive delivery system for biologic drugs 

and nanoparticles.  

 In this dissertation, I utilize bioconjugation and Michael addition chemistries in 

the design and development of enzymatically-degradable hydrogels, which may be 

tailored to a multitude of disease applications. I then introduce a new method of hydrogel 

microparticle, or microgel, synthesis known as the Michael Addition During Emulsion 

(MADE) method. These microgel carriers were evaluated in vitro, and found to exhibit 

triggered release of encapsulated biologic drugs in response to enzyme, no significant 

cytotoxic effects, and the ability the avoid rapid clearance by macrophages. Lastly, in 

vivo studies in mice were conducted, and microgels were found to exhibit successful 

delivery to the deep lung, as well as prolonged pulmonary retention after intratracheal 

aerosol delivery. In conclusion, a new class of enzymatically-degradable microgels were 

successfully developed and characterized as a versatile and promising new system for 

pulmonary, disease-responsive delivery of biologic drugs. 
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Chapter 1:  Introduction, Specific Aims, and Overview 

 

1.1  INTRODUCTION 

In recent years, a series of highly sophisticated drugs, rationally designed to target 

various cellular pathways (e.g. signal transduction cascades, transcription factors, 

apoptosis etc.) have emerged [1-3]. They range from proteins and peptides designed to 

interfere with specific cell functions to DNA, siRNA, oligonucleotides, and aptamers that 

produce therapeutic proteins or block transcription/translation. Even though these drugs 

are very specific in their effect, most of them interfere with key cellular processes and 

therefore are highly cytotoxic. Moreover, the majority of these sophisticated drugs, 

especially those that target chronic and advanced diseases are primarily given via 

systemic administration and often through multiple, regular doses. Needless to say this 

severely interferes with the quality of life of these patients while leading to major 

systemic side effects. Rational design of targeted therapies that enhance patient 

compliance, improve quality of life while still being highly effective in treating the 

disease, is therefore essential [1-8].  

It is well appreciated that delivery of therapeutic agents through the pulmonary 

route could provide significant improvement in patient compliance and reduce systemic 

toxicity [9-13] for a variety of diseases. This is particularly relevant for chronic 

pulmonary disorders like airway allergy, asthma, and pulmonary fibrosis, as well as for 

lung cancers. Traditional drugs for inhalation suffer from low respirable fractions and 

high emitted (exhaled) fractions, clearance by alveolar macrophages, and target non-

specificity. Therefore, the design of effective pulmonary drug carriers must possess the 

following attributes: (i) optimal aerodynamic properties for respirable efficiency, (ii) 
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avoidance of alveolar macrophage clearance, (iii) site-specific delivery at diseased tissue 

to avoid local bystander and systemic side effects, and (iv) enhanced intra-cellular 

delivery of drugs.  

These criteria pose several unique engineering and biomaterial challenges. The 

established range for optimal aerodynamic particle diameter to achieve efficient deep 

lung deposition following inhalation ranges between 1-5 μm [9]. However, avoidance of 

phagocytosis and clearance by alveloar macrophages requires particle sizes that are 

significantly larger (larger than 10μm). Even then, drugs that are targeted to intracellular 

pathways and molecules, e.g. siRNA, DNA or intracellularly targeted proteins or 

peptides, require nanoscale carriers, on the order of 50-300 nm which can undergo 

efficient endocytosis or macropinocytosis by epithelial cells. This is a complex design 

space where the carrier should be (a) 1-3 μm during inhalation (b) >10 μm following lung 

deposition and (c) 50-300 nm to deliver the drug intracellularly. Moreover, it is also 

beneficial to incorporate disease-triggered release of the drug following lung deposition, 

in order to minimize non-specific side effects on normal cells.  

The body of research described in this treatise proposes an innovative solution to 

this problem through design and use of a nanoparticle-in-microparticle formulation, 

comprised of swellable, peptide-crosslinked microgel-carriers encapsulating therapeutic 

nanoparticles and/or free biologic drugs. Specifically, the focus of this work has been on 

the development of the platform hydrogel microparticle (microgel) carrier system that 

could be used for multiple applications. These inhalable microgel carriers were designed 

with the following criteria in mind:  

• patient-friendly method of administration by achieving efficient aerodynamic 

delivery to airway epithelial cells with uniform lung distribution, 
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• prolonged residence time in the lungs by avoiding alveolar macrophage 

uptake, due to in situ swelling (large geometric size) and stealth properties,  

• reduced side effects and toxicity by incorporating disease-triggered release of 

nanoparticles/drugs from microgels, specifically, degradation of the 

microcarriers by up regulated enzymes, only at the site of diseased tissue, 

• mild and easily scalable manufacturing process, suitable for use with biologic 

drugs, a relatively new class of pharmaceuticals, and 

• applicability to multiple disease indications, as well as the option to include 

enhanced intracellular drug delivery mechanisms using nanoparticles.  

Through the design and realization of such a system, several engineering and 

biomaterials topics were studied and incorporated. The overarching themes with more 

detail on the specific innovations are summarized in the following sub-sections, along 

with a table provided on page 5 (Table 1.1). The step-by-step specific aims are then laid 

out in the next section. 

 

1.1.1 Disease-triggered drug release 

A potential approach for site-specific or disease-specific therapy is to take 

advantage of specific physiological and pathological cues, such as enzymes, which could 

trigger drug release from the carrier. Enzymatic cleavage is highly specific and could be 

tailored for certain up regulated enzymes in diseased tissues. Enzymatically-degradable 

hydrogels, which incorporate an enzyme-cleavable peptide into the network structure, 

have been extensively reported for tissue engineering applications [14-18], along with 

limited work in drug delivery applications [19-22]. These studies showed that rapid 

degradation of the hydrogels occur upon enzyme exposure, whereas minimal degradation 
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occurs without enzyme. Collectively, they demonstrate the possibility that similar 

peptide-based hydrogels could be used to control drug release from micro- and 

nanoparticle carriers. Previous students in the research advisor’s group have worked on 

the fabrication of nanoparticles, using top-down nanoimprinting techniques, that are 

degraded in the presence of enzymes [23]. However, such enzymatically degradable 

microparticulate carriers for pulmonary delivery drugs are yet to be reported.  

 

1.1.2 Enzyme-responsive microgels for improved pulmonary delivery 

Hydrogel microparticles (microgels) in the dry state are collapsed in comparison 

to their swollen or relaxed state. When hydrated, for example, upon contact with 

physiological fluids or in high humidity airways, the particles should begin to swell, 

increasing in diameter and density. The combination of the initial dry powder state and 

“in-transit” density change could provide optimal aerodynamic properties for pulmonary 

delivery leading to increased particle deposition within the lungs [9,10,12]. A hydrogel 

microparticle carrier system has recently been reported for sustained drug release by 

biodegradation, however, particle morphology was non-uniform and more mild 

fabrication conditions would be necessary for biological drugs [10]. To our knowledge, 

specific disease-responsive microgels designed for efficient pulmonary delivery of 

nanoparticles and biologic drugs are yet to be reported. 

 

1.1.3 Michael addition during emulsion (MADE) microgel synthesis method 

In this body of work, a new method of synthesizing fairly uniform, spherical, 

enzyme-responsive microgels was developed. The method involves using a simple 

Michael addition-type reaction within a water-in-oil emulsion, using low homogenization  
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Table 1.1 Summary of engineered material and method innovations to address design 
criteria and challenges 

Design Criteria/Challenge Material and/or Method Innovation 
Optimal aerodynamic 
properties for efficient, 
non-invasive, patient-
compliant delivery by 
inhalation 

Aerosolized dry microgels of appropriate aerodynamic diameter undergo in-
transit swelling to increase both diameter and density, thus increasing 
particle impaction and minimizing exhaled fraction 

Enzyme-triggered drug release mechanism from microgels in response to 
enzymes secreted extracellularly at site of diseased tissue 

Normal Airway Epithelial Cells 

 

Diseased Epithelial Cells with 
Extracellular Enzyme Secretions 

 

Delivery of cellular-
pathway-interfering siRNA 
to the site of diseased tissue 
only in non-homogeneous 
pulmonary diseases 

 
Avoid rapid clearance of 
drug-containing particles 
by alveolar macrophages 

“Stealth” microgels that avoid uptake and clearance by alveolar 
macrophages – due to hydrophilicity, stealth, and swelling capacity of 
poly(ethylene glycol) 

Eventual clearance of 
particles over the long term 

Primarily, the mucociliary escalator will clear any un-triggered microgels 
after more than two days. Additionally, as microgels undergo hydrolysis 
over a 2-week time period, softening of the gel improves clearance with 
mucosal turnover. Microgels are designed with hydrolytic linkages as a 
“fail-safe” to prevent accumulation over the long term. 

Encapsulation of biologic 
drugs, avoiding degradative 
conditions (such as UV 
light, high temperatures, 
and organic solvents) 

Newly-developed method of Michael addition during emulsion at low shear 
homogenization and physiological conditions eliminates need for photo-
initiators or UV cross-linking, used in traditional hydrogel cross-linking. 
Encapsulation is achieved by simply incorporating the therapeutic with the 
aqueous pre-cursor polymer solution prior to emulsion. 

Applicable to multiple 
disease indications and 
ability to incorporate 
enhanced intracellular 
delivery mechanisms using 
nanoparticles 

Peptide cross-linker may be easily interchanged to tailor 
the system for multiple disease indications. 
The ability to encapsulate nanoparticles allows for a 
second delivery stage to improve intracellular delivery 
and endosomal escape for intracellularly-targeted drugs, 
such as siRNA. 
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energy input and mild aqueous conditions under physiological pH and temperature. This 

method is shown to produce particles within the desired particle size distribution for 

optimal aerodynamic diameter for delivery to the airways by inhalation. Overall, these 

microgel particles exhibit enzyme-triggered degradation and drug release, a mild 

manufacturing process, as well as stealth and swelling for avoidance of macrophage 

clearance. 

 

1.2 SPECIFIC AIMS 

The specific aims of this exploratory and development research treatise are as 

follows. 

 

1.2.1 Aim 1A: To rationally design and optimize Michael addition and 
bioconjugation chemistries to create enzyme-degradable hydrogels 

In this aim, enzyme-degradable hydrogels will be created by cross-linking 

enzyme-degradable peptides with multi-armed poly(ethylene glycol) acrylates (PEG-

acrylates) or multi-acrylated chitosan using a Michael addition-type reaction. This aim 

will include work in developing a library of optimal enzyme-specific peptide sequences 

for various disease applications, bioconjugation chemistry to add functional groups to the 

peptide, polymers, and polysaccharides to enable the Michael addition reaction, and 

optimizing the Michael addition reaction. I hypothesize that these hydrogels would 

exhibit triggered degradation and drug release in response to specific enzymes. 
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1.2.2 Aim 1B: To rationally design, develop, and optimize a method to produce 
enzyme-degradable hydrogel microparticles, using chemistries developed in Aim 
1A, that are suitable for pulmonary delivery via inhalation 

In this aim, the chemistries developed in Aim 1A will be incorporated into a 

method to produce hydrogel microparticles, or microgels, in a suitable size range for 

pulmonary delivery via inhalation. Work in this aim will include exploration of various 

particle manufacturing techniques, and determining feasibility for use with the chemistry 

developed and end goals. I hypothesize that these microgels will exhibit optimal 

aerodynamic properties for efficient pulmonary delivery, and retain the material 

properties, designed in Aim 1A, of exhibiting enzyme-triggered degradation. The final 

method will be easily scalable, use mild fabrication conditions, and be tailorable for 

multiple disease indications. 

 

1.2.3 Aim 2: To perform in vitro characterization and evaluation of the microgels in 
terms of drug release and cellular interactions 

In this aim, microgels developed in Aim 1 will be evaluated and characterized for 

their performance in vitro. This will include the study of drug and nanoparticle release 

from enzymatic degradation, hydrolytic degradation, and diffusion. The microgels will 

also be evaluated for cytotoxic effects on multiple cell lines, and the extent of phagocytic 

uptake by macrophages will be studied. I hypothesize that the microgels will exhibit 

rapidly triggered release of drug in response to enzyme, in stark contrast to drug release 

by diffusion and hydrolytic degradation. Furthermore, I hypothesize that the swelling 

capacity of the microgels, and in one formulation, the PEG composition, will contribute 

to the reduced uptake and clearance of the microgels by macrophages. 

 



 8 

1.2.4 Aim 3: To evaluate the in vivo pulmonary distribution and clearance of 
microgels after delivery to murine lungs by an intratracheal aerosolizer 

The objective of this aim is to evaluate the pulmonary distribution and clearance 

of the microgels in mouse lungs over a two-week time period. Microgels will be 

simultaneously aerosolized and delivered intratracheally to mice using a Penn-Century 

microsprayer device. The distribution will be evaluated using fluorescent IVIS imaging 

and fluorescent quantification from lung homogenates over a two-week time course. I 

hypothesize that the microgels will exhibit uniform distribution throughout the lungs 

following delivery, and show improved retention (as compared to non-swellable polymer 

particles) over the course of the study. 

 

1.3 OVERVIEW 

The following chapter, Chapter 2, will discuss background material in the field 

of Drug Delivery and its applications, especially for delivery of proteins and other 

biologic drugs. Chapter 3 then focuses on the background and significance of the 

concept of Disease-Responsive Drug Delivery, providing greater context for this 

dissertation work within the greater field of Drug Delivery. Chapter 4 describes the 

bioconjugation and Michael addition chemistry used to create enzymatically-degradable 

hydrogel networks from different biopolymers, including the design and incorporation of 

peptide sequences to create the disease-specific trigger. Chapter 5 then details the 

numerous particle synthesis methods that were attempted before developing and 

optimizing the Michael Addition During Emulsion (MADE) method for synthesizing 

microgels. Chapter 6 describes the in vitro characterization of the microgels in terms of 

material properties, drug release, and interactions with cell. Chapter 7 then discusses the 

performance, distribution, and clearance patterns of microgels from the lungs after 
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simultaneous aerosolization and intratracheal delivery to mice, in vivo. Lastly, Chapter 8 

will discuss the implications of the research, as well as potential future studies and 

development. 
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Chapter 2: Drug Delivery Strategies for Eliciting Cellular Responses in 
Tissue Engineering and Drug Therapy 

 

[This chapter has been adapted, with permission*, from P. Wanakule & K. Roy† (2012). 

Chapter 17: Drug Delivery. In J. P. Fisher, et al, (Eds.), Tissue Engineering: Principles 

and Practices. CRC Press, Taylor & Francis Group.] 

 

2.1  INTRODUCTION 

Drug delivery has proven to be an integral part in manipulating cellular responses 

in various diseases, and directing the development and differentiation of cells into 

functional tissues, specifically, the controlled delivery of pharmacologically active or 

bioactive agents, such as cytokines, growth factors, and morphogens. By controlling the 

delivery of these drugs at different time points and concentrations, a direct effect is 

exerted on the cell proliferation, differentiation, or migration, with the potential for 

controlling the phenotype and functionality of cells and tissues [1-8]. 

The goals of drug delivery are manifold, and include (1) the targeting of drug to 

specific cells or sites in the body, (2) overcoming tissue barriers associated with delivery 

routes, including the epithelial layers of the skin, lungs, and intestine, (3) overcoming 

cellular barriers which control cellular uptake, and (4) controlled release. 

Controlled release concepts encompass the ability to control release of bioactive 

molecules at target sites, the effective concentration of drug in the body, as well as its 

                                                 
* Copyright 2012 From Tissue Engineering: Principles and Practices, Section 2: Enabling Technologies, 
Chapter 17: Drug Delivery by J.P. Fisher, A.G. Mikos, J.D. Bronzino, & D.R. Peterson (Editors). 
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc. 
† Statement of co-author contribution: This chapter was written by Prinda Wanakule, with editorial and 
content assistance by Krishnendu Roy (research supervisor). 
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duration of activity [9]. The use of controlled drug delivery, more so than the other goals 

of drug delivery, has come into greater use in recent years [1,3,8]. While it is possible to 

directly infuse drugs directly into culture flasks and plates (in vitro) or by injection (in 

vivo), this may be undesirable for several reasons. For example, many proteins and 

peptides have short half-lives in serum or media due to inactivation by proteases and 

enzymes, and thus, need continual replenishment to maintain a certain minimum effective 

concentration (see Figure 2.1). Additionally, unconstrained repeated doses may result in 

toxic effects. The controlled temporal and spatial release of these drugs may then reduce 

the amount of expensive drug and chemical signals required, as well as the potential toxic 

effects [1-3,6,8-10]. This temporal and spatial control has also given rise to new 

possibilities and advances in tissue engineering, for example, the use of three-

dimensional scaffolds to spatially differentiate cells into various “zones” consisting of 

different cell types [1-8,11]. 

 

 

Figure 2.1 In classical drug delivery, controlled release systems aim to achieve a 
constant minimum effective concentration of bioactive drug. 
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This section will encompass the basics of drug delivery, an overview of controlled 

drug delivery technologies, as well as their applicability to and significance in eliciting 

cellular responses for tissue engineering and drug therapies. We first begin by providing a 

brief review on the modes of drug delivery, or drug release, from drug delivery systems. 

Next, we move on to discuss some biological drugs of interest in cell therapy 

applications, as well as their properties that affect the design of the delivery system. We 

then explore the methods used to control the release of drugs, with special emphasis on 

the release of drugs from scaffolds, matrices, and particulates.  

 

2.2 MECHANISMS OF DRUG DELIVERY 

There are myriad mechanisms from which we may choose to drive the release of 

drugs in a controlled manner. We can classify the drug delivery mechanisms of special 

interest in cellular therapies into three main categories: diffusion from non-degradable 

systems, bioerodible systems, and stimuli-responsive systems.  

 

2.2.1 Diffusion from Non-Degradable Systems 

Diffusion is one of the most kinetically well-defined concepts of transport 

phenomena, and is especially applicable in the diffusion of drug molecules from some of 

the early non-degradable drug delivery systems [9,12,13]. Thermodynamically driven, it 

is the result of the random walk of submicron particles, called Brownian motion. 

Although movement may seem random at the microscopic level, at the macroscopic 

level, movement of particles along a concentration gradient is observed. Fick’s second 

law of diffusion describes the temporal and spatial net movement of particles by 

diffusion: 
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Numerous solutions for this equation have been derived in order to describe the 

diffusion of drug molecules from several types of drug delivery devices under several 

conditions; for details, we refer the reader to an excellent text by Truskey, et al. 

[1,3,8,12]. However, the two main diffusive conditions of special interest in drug delivery 

for tissue engineering are the diffusion of drug from a polymer matrix and the diffusion 

of drug from a reservoir through a membrane (see Figure 2.2), both of which are 

predictably well-defined. The solutions to the problem are highly dependent on the initial 

drug concentration and the geometry of the device, and as such, the diffusion of drug out 

of the system may be changed by altering the device geometry, and prolonged by 

increasing the initial concentration [1-3,6,8-10,12,13].   

Along the same lines, however, the disadvantage of this system lies in its 

dependence on drug concentration to define the flux of drug out of the system. As the 

drug concentration decreases over time and there is less of a concentration gradient, the 

release rate also decreases over time. This is especially pronounced in the diffusion of 

drug from a polymer matrix. However, by using a highly saturated drug reservoir with 

diffusion of drug driven through a membrane, a constant release of drug may be achieved 

over an extended period of time – longer than may be typically achieved through use of a 

matrix alone[9,12,13]. 
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Figure 2.2 (A) Diffusion-driven release of drug from a matrix. (B) Diffusion-driven 
release of drug from a saturated reservoir through a membrane. 

 

2.2.1.2 Diffusion from Swellable Polymers 

Diffusion of drugs may also be controlled by the use of swellable polymers, 

including swellable cross-linked hydrogels. In this case, there is an increase in polymer 

chain mobility due to the uptake of a solvent, such as water, that decreases the glass 

transition of the polymer (Tg). Drugs that are entrapped and immobilized by the non-

swollen polymer matrix may then begin to diffuse out due to the increased flexibility, 

resulting in a heightened release rate. In order to achieve this, the pore size of the 

polymer matrix must be sufficiently small so as to restrict a drug of known hydrodynamic 

radius. Upon swelling, the pore size increases, thus allowing movement and diffusion of  
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Figure 2.3 Diffusion of drug from a swellable polymer matrix. In the pre-swollen state, 
drug molecules are entrapped within the network structure. Swelling of the 
polymer network results in increased polymer chain mobility or pore size, 
allowing diffusion of the drug out of the network. 

the drug out from the matrix (see Figure 2.3) [9,13,14]. The diffusion of drugs from 

swellable polymer matrices has been well studied for macroporous (pore size between 

0.1-1.0μm), microporous (100-1000Å), and nonporous (10-100Å) hydrogels by several 

groups, and tunable drug release profiles from swellable polymers have been achieved 

[9,15]. 

 

2.2.2 Bioerosion 

By definition, bioerosion refers to the erosion of a polymer into water-soluble 

products under physiological conditions, including both physical and chemical processes 

(according to the European Society for Biomaterials Consensus Conference in 1986) 

[16]. As a side note, biodegradation refers to the degradation by biological molecules, 

such as enzymes, which will be covered in the following section on stimuli-responsive  
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Figure 2.4 Surface erosion (left) and bulk erosion (right) of polymeric devices, 
resulting in differing release kinetics. 

systems. The most common mechanism of bioerosion is by hydrolysis of a 

polymer backbone by neutral water, however, accelerated hydrolysis may occur in the 

presence of ion catalysts and acidic pH. Erosion may proceed by either surface erosion or 

bulk erosion (see Figure 4). In surface erosion, the rate at which water is able to penetrate 

the device is slower than the erosion rate. On the other hand, bulk erosion occurs when 

the rate of water penetration into the device is greater than the rate of erosion [17-19]. 

Bioerodible drug delivery systems have been designed to both provide a 

mechanism of controlled drug release, as well as to eliminate the need for device 

extraction after the lifetime of the system. As the device erodes, drug that has been 

solubilized or suspended within the device are slowly released. In general, surface 

eroding systems (heterogeneous) have a release rate proportional to the surface erosion 
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rate, are driven primarily driven by erosion rather than diffusion, and can be varied 

according to device geometry. Bulk eroding systems (homogeneous) are driven by a 

combination of erosion and diffusion kinetics, with first order kinetics for the rate of 

erosion, as well as the permeability of the device. Several parameters affect the rate of 

hydrolysis, and thus, release rate, including lability of the polymer backbone, 

hydrophobicity or hydrophilicity of the polymer, morphology, and molecular weight [17-

21]. 

 

2.2.3 Stimuli-Responsive Systems 

In recent decades, a greater interest in the stimuli-responsive subfield in 

controlled drug delivery has been developing as a means to deliver drug only when or 

where it is needed. These stimuli-responsive types of systems often rely on 

physicochemical changes due to disease pathology or the cell microenvironment. 

Common stimuli include pH, temperature, ions, enzymes, light, and biomolecules, all of 

which have been designed it elicit a response in drug carriers to trigger drug release 

[3,10,22-26].  

 

2.2.3.1 pH-Responsive Systems 

Several hydrogel-based drug delivery systems with the ability to swell or shrink in 

response to pH changes have been developed as triggered-release delivery systems. The 

pH triggered swelling and shrinking mechanisms are primarily due to the properties of 

the side chain pendant group, which are cationic or anionic [10,27,28]. Anionic hydrogels 

are ionized at pHs above their pKa, and thus exhibit high swelling at these higher pHs 
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due to repulsion of the ionized groups [28]. In contrast, cationic hydrogels are ionized at 

pHs below their pKa, exhibiting high swelling below their pKa [27].  

Changes in pH exist throughout the body at the organ, tissue, and cellular level, 

and even due to various disease states. For example, pH triggered drug delivery systems 

have been developed that are capable of triggering drug release when moving from the 

acidic gastric cavity to the more neutral small intestine [29,30], where much drug 

absorption occurs, as well as from the neutral extracellular environment to the slightly 

more acidic early endosome (intracellular) [31,32]. Thus, pH-responsive systems offer a 

versatile way in which to trigger drug release in response to environmental cues. 

 

2.2.3.2 Enzyme-Responsive Systems 

A relatively new strategy in drug delivery is to incorporate enzyme sensitive 

components into the drug carriers, which are primarily hydrogel-based. Enzyme-

degradable hydrogels have been shown to exhibit minimal release without the presence of 

enzyme, and triggered release in the presence of enzyme [10,26,33-36]. This strategy has 

been used extensively in tissue engineering applications [37,38], however, it also 

provides an effective means of physiologically controlled release of drugs [36,39]. 

Enzyme-responsive systems are suitable for site-specific delivery because enzymatic 

cleavage is highly specific, and many enzymes are upregulated in several diseases, such 

various cancers and inflammatory diseases [10,22,25,36,39,40]. In most cases, enzyme-

cleavable proteins, peptides, or extracellular matrix (ECM) components are incorporated 

into the hydrogel cross-links [26,33,34,38]. In another set-up, enzyme-degradable 

components are used as covalent linkers to conjugate drugs as pendant groups off the 
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polymer backbone [10,41]. Upon encountering the enzyme, the cross-links are broken, 

releasing any encapsulated drug.  

 

2.2.4 Overall Release Profiles 

Oftentimes, the overall drug release mechanism may be due to a combination of 

the aforementioned modes. For example, diffusion plays a role in each of these 

mechanisms in that the drug must diffuse out of eroding scaffolds, or swollen matrices. 

Stimuli-responsive carriers may also release drug by stimuli-induced erosion or swelling. 

In choosing a release mechanism, the temporal requirements of drug in the system, as 

well as drug pharmacokinetics, must be considered.  

 

 

Figure 2.5 Release profiles of various delivery mechanisms.  See Figure 2.2 for 
diffusion-driven release profiles. 
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There are several release profiles that may be achieved by the delivery systems 

described here (see Figure 2.5). Several classical drug delivery systems were designed 

with the aim of achieving a zero order, or linear, release rate, which results in a constant 

level of drug in the tissues. However, newer drug delivery systems are designed to release 

drug when and where it is needed, thereby reducing side effects [1,9,12,13]. Since spatial 

and temporal control over drug release is often required to guide the differentiation of 

cells into their appropriate niches, highly ordered systems with a combination of 

mechanisms may be required. 

 

2.3 BIOLOGICAL DRUGS OF INTEREST IN CELLULAR AND DRUG THERAPIES 

The primary drugs of interest for eliciting cellular responses and next generation 

drug therapies include biologic drugs, or biologics. These include nucleotides, proteins, 

and peptides, such as siRNA, DNA, cytokines, growth factors, and adhesion factors. 

Growth factors are cell signaling proteins or hormones that have an effect on cell 

differentiation, proliferation, and maturation through a process of ligand-receptor 

binding. Some examples of growth factors include bone morphogenetic proteins, vascular 

endothelial growth factors, and some cytokines. Adhesion factors are proteins and 

peptides that are typically bound to the extracellular matrix and relay mechanical stress 

feedback to the cell. Adhesion factors include vitronectin and fibronectin, as well as the 

fibronectin-derived peptide sequence, RGD. Some common biologics used in cell-based 

therapies, as well as the intended function or purpose, are summarized in Table 2.1 

[7,9,13,38,42]. 
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2.3.1  Drug Properties and Design Considerations 

Given that the majority of growth factors and adhesion factors are composed of 

bioactive proteins, or derivatives thereof, there are many considerations that must be 

made in order to design suitable systems for the delivery of these proteins in active forms. 

The most prominent consideration is the need to deliver the proteins in their native forms, 

that is, with their tertiary structure intact. Several methods of drug incorporation into 

delivery systems may cause proteins to denature from processing and encapsulation 

conditions, such as the application of heat, high shear forces, pH changes, UV, and 

exposure to organic solvents. Also considering that the majority of these proteins are 

hydrophilic, the choice of delivery materials is important in that exposure to hydrophobic 

materials may cause protein denaturation [43-45]. Lastly, the conditions that lead to drug 

release must also be evaluated to verify that they do not damage the protein. For example, 

in the case of hydrolytically degradable polyester drug carriers, a slightly acidic 

microenvironment is often created, which could affect protein activity [46]. The final 

conformation of the protein must be such that its bioactivity is not affected, and there are 

no forms present that may elicit ill effects or immunogenicity [9].  

Along the same lines, the biological environment that the protein drugs are 

exposed to, whether in vitro or in vivo, may affect the protein conformation and activity. 

Several components in serum, including enzymes and peptidases, cause protein 

degradation often within minutes, decreasing the half-life dramatically. Glomerular, or 

renal, filtration also plays a key role in decreasing the half-life of proteins. For example, 

in vivo, the half-lives of PDGF, bFGF, and VEGF are approximately 2, 3 and 50 minutes 

respectively. A common strategy to improve the circulating half-lives of these proteins is 

to encapsulate them within polymers, however, care must be taken to ensure that the 

encapsulating material does not cause protein agglomeration or activate clotting factors  
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Table 2.1 Common biologic drugs used in cell-based therapies 

Abbreviation Bioactive Agent Application 
BMP Bone morphogenetic protein Osteogenesis 
PTH Human parathyroid hormone Osteogeneisis 
TGF-β Transforming growth factor beta Differentiation, anti-

proliferation 
HGF Hepatocyte growth factor Proliferation  
G-CSF Granulocyte colony-stimulating factor Proliferation 
GM-CSF Granulocyte-macrophage colony-

stimulating factor 
Proliferation 

VEGF Vascular endothelial growth factor Angiogenesis 
FGF Fibroblast growth factor Angiogenesis 
EPO Erythropoietin Angiogenesis 
OPG Osteoprotegerin Angiogenesis 
Ang1 Angiopoietin-1 Angiogenesis, vessel 

maturation 
PDGF Platelet-derived growth factor Angiogenesis, vessel 

maturation 
NGF Nerve growth factor Nerve regeneration 
GDNF Glial-derived neurotrophic factor Nerve regeneration 
 Fibronectin Adhesion, cell substrate 
 Vitronectin Adhesion, cell substrate 
 Fibrinogen Adhesion, cell substrate 
 Laminin Adhesion, cell substrate 
RGD Arginine-Glycine-Asparagine Adhesion 
S1P Sphingosine 1-phosphate Chemoattractant 
MIP3α Macrophage inflammatory protein 3 

alpha 
Chemoattractant 

 

[43-45]. Another common strategy is the conjugation of poly(ethylene glycol), or PEG, 

referred to as PEGylation [47-50]. PEGylation of proteins has been shown to increase 

circulation time in vivo and decrease the rate of protein degradation by enzymes [51,52]. 

Aside from classical cell culture flasks and dishes, there has recently been an 

increased usage of ECM-mimicking gel matrices to serve both as a cell scaffold and a 

controlled drug delivery device [33,53]. These bio-inspired matrices may be either a 

hybrid of synthetic and biomaterial or biomaterial alone, offer improved compatibility 
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and stability with proteins, and have been designed to mimic the ways in which growth 

factors are released in the body [53-56]. In the body, growth factors are either stored 

within the extracellular matrix or secreted by cells for short-term signaling. The ECM 

serves as a responsive delivery system for these growth factors, which may be controlled 

dynamically by cell movement and secretion of enzymes that degrade the matrix [9,33]. 

Adhesion factors in the ECM also relay mechanical feedback to the cells, and help the 

cells migrate as controlled by cellular signals [23,57,58]. These ECM-mimicking systems 

offer several advantages over classical systems, as we will discuss in the following 

section. 

 

2.4 DRUG DELIVERY AT THE CELLULAR LEVEL 

Given the complex temporal and spatial control of drug delivery required at the 

local cellular level, several strategies have been developed to meet the needs of this 

growing field. The strategies may be roughly classified into four major categories: 

• Classical drug delivery systems for use in cell culture or in vivo at local sites 

• Drug delivery from tissue engineering scaffolds and matrices 

• Cells (genetically altered or otherwise) to produce drugs in the system 

• Biomimetic systems with conjugated drugs. 

The primary focus of this chapter will be to discuss in greater detail the first two 

strategies, the use of classical drug delivery systems, and especially the delivery of drugs 

from the cell scaffolds and matrices. The third strategy is beyond the scope of this work, 

and will not be discussed. The final strategy will be covered in the following chapter on 

disease-responsive drug delivery. 
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2.4.1 Classical Drug Delivery Systems 

Several classical drug delivery systems for tissue engineering are still in use for a 

wide variety of applications. The majority of these systems are employed to provide a 

means of long term, controlled release of drugs into the local environment, whether in 

vitro or in vivo. The required release profile may be chosen based on several factors, 

including the rate of drug clearance from the system, pharmacokinetics, and stability. 

Thereafter, a system will be designed or chosen based on these requirements, considering 

parameters such as material properties, degradation rate, and device geometry. Generally, 

the major types of classical systems used include monolithic or slab-type systems, 

particulate systems, and gel-like systems.  

 

2.4.1.1 Monolithic Systems 

Monolithic polymer systems have a long history in drug delivery in that they were 

the first types of systems to be used for the controlled release of bioactive proteins and 

peptides. Among the first systems reported for controlled release was the polymeric 

membrane system composed of poly(ethylene-co-vinyl acetate) or EVAc, as described by 

Folkman and Langer in 1976 [59]. Although these systems were not biodegradable, the 

excellent controlled release profiles set the stage for an entirely new strategy of 

controlled release. In the following decade, several new biodegradable or bioerodible 

materials were developed with the aim of achieving sustained release in vivo without the 

need for removal after transplantation. Some of the materials included polyanhydrides 

[21], poly(ortho esters) [20], and poly(α-hydroxyesters) [60], with several more 

described in the literature. However, with the advent of these erodible systems came new 

unforeseen challenges due to the new intricacies of the system, including pH changes and 

side reactions with encapsulated drug due to the degraded products [46,61,62]. 
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These early delivery systems were made in the form of monolithic devices 

because of their ease of manufacture by solvent casting, extrusion, and injection molding. 

These bulk devices were also able to carry a large payload of drug, and could be tailored 

for different release rates by changing material composition, drug loading, or including 

dispersants. As discussed in the previous section on the mechanisms of drug release, 

release from non-degradable systems is controlled primarily by diffusion. Erosion 

controlled release provided more control over the release rate, which could be changed by 

the degradation rate, or by choosing between surface or bulk erosion. Monolithic devices 

based on the poly(lactic-co-glycolic acid) copolymer, PLGA, were and still are 

commonly used in the erodible systems because erosion may be well-controlled by 

changing crystallinity, copolymer composition, and molecular weight [46,62-66]. Other 

monolithic devices have been based on cross-linked hydrogels, and will be discussed in 

more detail in following sections. 

 

2.4.1.2 Particulate Systems 

Following the progress made in monolithic and erodible devices, microparticulate 

systems began to surface in the field. Whereas monolithic systems required surgical 

implantation in vivo and are associated with a strong drug gradient, particulate systems 

offered the possibility of an injectable system and more even distribution in the tissue in 

vivo, or in cell culture. Microparticles also provided the flexibility for cell 

microencapsulation, or combinatorial delivery from microparticle distribution within 

monolithic systems or gels [12,13,67]. Aside from microparticles, nanoparticles, 

liposomes, and other similar particulate technologies have also been explored; however, 
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microparticles have been most widely applied to tissue engineering, and are the focus of 

this dissertation. 

Microparticulate systems have been widely used for the delivery of growth factors 

for directing cell differentiation and proliferation. One application that has been 

extensively studied is the use of both EVAc and PLGA microparticles to deliver nerve 

growth factor (NGF) for supporting cellular therapy in neurodegenerative diseases [68]. 

PLGA microparticles are also still in use for delivery of several other proteins, including 

BMP-2 [69] and interferon-α [65]. Poly(phosphoester) microspheres with encapsulated 

NGF loaded within silicone nerve conduits showed greater peripheral nerve regeneration 

as compared to conduits with free NGF loaded [70]. Pfister et al [71] has reviewed other 

similar systems of NGF loaded microspheres for nerve regeneration. Excellent reviews 

may be found in the contemporary literature on the important considerations with protein 

encapsulation within polymer systems [62,64]. 

Hydrogel microparticles have also been used extensively to encapsulate proteins 

for drug delivery in tissue engineering. Some of the earliest hydrogel microparticle, or 

microgel, systems were the alginate beads, easily formed by dropping or spraying into 

cationic solutions, such as calcium [54,72]. Alginate microbeads are still widely used for 

delivery of FGF and osteogenic proteins [73-75], as well as for microencapsulation of 

chondrocytes for co-culture with bone marrow stem cells for osteogenic differentiation 

[76]. Along with alginate, microgels based on collagen [77], gelatin  [78], and hyaluronan 

and its derivatives [79] are all used to deliver a variety of proteins. 

Aside from encapsulation of proteins, much work has been done on the surface 

functionalization of microparticles for cellular interaction and proliferative effects. 

Surface modification of PLGA microspheres with an amine-terminated dendrimer 

improved long-term proliferation of chondrocytes without observed changes in the cell 
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phenotype, as compared to monolayer culture systems [66]. Additionally, surface 

functionalization of polystyrene magnetic microbeads with the DLL4 notch ligand used 

in co-culture has been shown to efficiently generate T cells from mouse bone marrow 

hematopoietic stem cells [80]. 

 

2.4.1.3 Gel-Based and Gel-Like Systems 

Several gel-based and gel-like systems also offer the advantage of being 

injectable in vivo, taking on the shape of the tissue cavity. Additionally, the hydrophilic 

matrix structures of gels offer the advantage of high compatibility with the majority of 

proteins and peptides of interest in tissue engineering. Gelation occurs by several 

methods including thermally- or pH-induced cross-linking [38,81], sol-gel transitions, 

and physical gelation. Early injectable gel-like systems include those composed of 

alginate, gelatin, and collagen [54-56]. Although gel systems for protein delivery are a 

classical form of drug delivery, they have in recent decades gained much significance as 

a combinatorial tissue engineering substrate and drug delivery medium. As such, much 

attention will be directed towards these systems in the following section. 

 

2.4.2 Drug Delivery from Scaffolds and Matrices 

As the previous section focused on controlled delivery strategies separate from a 

cellular substrate, herein referred to as the substrate, much work has been done in using 

the substrate itself as a controlled release medium. The use of both scaffolds and matrices 

have been used to achieve desirable release strategies, where scaffolds refer to macro- or 

microporous substrates to provide structural support, and matrices refer to more or less 

continuous nanoporous substrates, such as gels. Several strategies may be used to achieve 
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the desired effect, including the admixing of drugs within matrices, entrapment of drugs 

within matrices, covalent binding of drugs to the matrix, affinity binding of drugs to the 

matrix, and microparticles embedded in matrices for delivery of drug.  

 

2.4.2.1 Drugs Admixed with Cell Substrate 

A common form of drug delivery from the cell substrate is by simply admixing 

the drug with the cell substrate. As previously discussed, various mechanisms may be 

used to control the release, with the desired effect usually being prolongation of the 

release. In the case of prolongation, even a small degree of affinity between the substrate 

materials may serve to slow the release rate. Additionally, poorly soluble drugs may 

dissolve over time and provide a sustained release profile. The cell substrate may also 

serve as a diffusion-limiting factor, providing drug release in a localized area of the 

scaffold, also known as zonal release.  

Several examples of drugs admixed within a cell substrate have already resulted 

in commercial products, especially the release of bone morphogenetic proteins from 

collagen sponges and matrices [82]. Aside from the collagen sponge, other substrates for 

BMP delivery have included calcium phosphate cement, both of which have shown 

excellent orthopedic tissue regeneration in vivo [82-85].  Gelatin, a form of denatured 

collagen, has also been used in both its native self-assembled gel form and as a cross-

linked gel to deliver growth factors. During fabrication, gelatin may be modified into 

either negatively or positively charged gels at physiological pH in order to create low-

affinity electrostatic interactions with a protein drug [56,86,87]. These low affinity 

electrostatic interactions of proteins with gelatin have been shown to prolong release rates 

as compared to non-electrostatic gelatin [86,88-90]. 
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2.4.2.2 Drugs Entrapped within Cell Substrate 

It is also possible to engineer hydrogel cell carriers with structures capable of 

physically trapping drug molecules within the cell carrier’s molecular structure, most 

commonly, with hydrogels. Hydrogels form somewhat of a 3-dimensional network 

structure, where the molecular weight and structure of the cross-linking molecule 

determines the pore size.  If the pore size of the hydrogel is sufficiently close to the size 

of the drug of interest, then the release of the drug from the matrix could then be inhibited 

by the network structure [14]. In this case, drug release would be driven either by 

polymer swelling or degradation of cross-links. Commonly, the drug is loaded with the 

polymer precursor solutions, and the hydrogel network is then reacted to form around the 

drug [23,91,92]. 

Common materials used for these systems include PEG, fibrin, collagen, and 

hyaluronic acid [23,53,91,93,94]. A study by van de Wettering et al. illustrated the ability 

to tune the release of human growth hormone (hGH) from various PEG-based hydrogels 

using different cross-linked network architectures. Tighter cross-linked networks were 

able to significantly prolong the release of hGH over loosely-formed networks [95]. In 

addition to single-component hydrogel networks, hybrid hydrogels of interpenetrated 

networks or semi-interpenetrated networks are similarly able to form diverse network 

structures of varying pore sizes and cross-linking densities [93].  

Due to the tight nanoporous properties of these hydrogels, which may prevent cell 

inter-growth, these systems are often employed as particulate systems within a scaffold. 

Scott et al. created PEG-based scaffolds using a modular assembly system of hydrogel 

microspheres with encapsulated sphingosine 1-phosphate (S1P), microspheres for 
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structural support, and porogen particles. The resulting macro-porous scaffolds with 

incorporated S1P-loaded microspheres showed an approximate two-fold increase in rate 

of cell migration into the scaffold as compared to scaffolds without S1P-loaded 

microspheres [96]. Alternatively, cell ingrowth into such nanoporous hydrogels may be 

achieved by incorporating enzyme-cleavable moieties into the network structure, thus 

allowing a cell to easily infiltrate the hydrogel by secreting ECM-degrading enzymes. 

Examples of these ingrowth matrices with entrapped drug include fibrin-based matrices 

for controlled release of NGF [94] and PEG-based matrices with matrix 

metalloproteinase substrates as cross-linkers with entrapped rhBMP [53]. 

 

2.4.2.3 Covalent Binding of Drugs to Cell Substrate 

It is oftentimes advantageous, if not required, to covalently bind drugs to the cell 

substrate itself. For example, adhesion peptides must be bound to the substrate in order to 

elicit the correct response in the cell for migration. Although adhesion sites are already 

present in naturally derived materials, such as collagen and fibrin, cell substrates 

composed of synthetic components (such as PEG) must include adhesion peptides to 

effectively promote cell adhesion and signaling. Scaffolds of naturally derived materials 

may also benefit from adhesion peptide or growth factor incorporation to provide a 

higher degree of control over cell migration and differentiation. 

In a study by Hern and Hubbell, the cell adhesion peptide RGD (Arg-Gly-Asp) 

was covalently bound to PEG-based hydrogels either directly, or using a PEG spacer arm, 

and compared to a non-adhesive control peptide [97]. Due to the greater steric availability 

of the adhesion peptide bound to the PEG spacer arm, specific mediation of cell 

spreading was observed in contrast to non-specific cell spreading observed in direct 
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conjugation of the peptide to the scaffold. Wacker, et al. compared S1P-induced 

endothelial cell migration in PEG hydrogels with either linear or cyclic RGD peptide 

sequences for implications in implant endothelialization speed following implantation 

[57]. Although linear RGD produced greater adhesion strength and long-term adhesion 

on exposure to shear stress from fluid flow, cyclic RGD produced a faster rate of 

endothelial cell migration. These studies illustrate the complexity in the incorporation of 

adhesion peptides into scaffolds, from determining the optimal conformation for steric 

availability, and finding the balance between high adhesion strength and higher migration 

rates for tissue regeneration. 

In addition to covalent binding of adhesion peptides into cell substrates, drugs 

may also be covalently bound to the substrates in order to achieve directed 

differentiation, interaction, or promote migration of a specific cell phenotype. For 

example, vascularization of regenerated tissues is necessary for nutrient delivery in vivo, 

and requires high order cell and tissue arrangement controlled by growth factors. Leslie-

Barbick et al. were able to achieve endothelial cell tubulogenesis in 2D and 3D PEG-

based scaffolds by covalently attaching VEGF and an RGD adhesion peptide, in 

comparison to RGD-immobilized scaffolds alone [98]. Similarly, a study by Chiu and 

Radisic showed enhanced vascularization of endothelial cells in collagen scaffolds with 

immobilized VEGF and Angiopoietin-1 over collagen scaffolds alone and soluble factor 

in collagen scaffolds alone [99]. 

Furthermore, some drugs require binding to the substrate such that they are 

released only in response to cell-ingrowth, for example by enzymatic cleavage, providing 

on-demand delivery of the drug. In the case of bone regeneration, high concentrations of 

drug may result in overactivation of cells locally, and thus, abnormal tissue regeneration. 

By incorporating an enzyme-cleavable prodrug of a parathyroid hormone fragment into a 
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cell-ingrowth matrix, Arrighi et al. were able to circumvent osteoclast overactivation and 

show dose-dependent bone healing in vivo [100].  

 

2.4.2.4 Affinity Binding of Drugs to Cell Substrate 

Another strategy for binding drugs to a cell substrate involves the use of affinity 

binding molecules that have strong interactions with several growth factors and other 

proteins. A comprehensive review of the myriad molecules is outside the scope of this 

chapter, and we refer the reader to excellent reviews in the literature [8,101]. Instead, we 

will focus on two groups of common affinity binding molecules: heparin/heparan sulfate 

and fibrin/fibrinogen. Other molecules of interest include laminins, collagens, 

glycosaminoglycans, DNA, poly(amino acids), avidin-biotin [102-104], and other 

polysaccharides. 

Heparan sulfate and heparin are glycosaminoglycans (GAGs) that are present in a 

variety of tissues throughout the body, regulate many processes, and bind a variety of 

proteins or growth factors. There are several growth factors that bind to both heparan 

sulfate and heparin, and are known as heparin binding growth factors (HBGFs). 

Commonly noted HBGFs include members of the families of FGF, HGF, and VEGFs. 

Heparan sulfate has been used in micropatterned PEG-based scaffolds for spatiotemporal 

release of growth factors and multilineage differentiation [105], and widely in other 

applications [106-108]. However, due to lower costs, heparin is more widely used in cell 

substrates for HBGFs, and has been incorporated into gels for osteogenic differentiation 

[109,110], endothelialization [111,112], nerve regeneration [113,114], and a variety of 

other applications [8,115-117].  
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Fibrin and fibrinogen are proteins found in the blood that are critical in the 

clotting and wound sealing process; cleavage of fibrinogen by thrombin yields fibrin 

[8,118,119]. Fibrinogen is used primarily in fibrin glue systems, where a mixture of 

fibrinogen solution and calcium-rich thrombin solution are co-delivered for surgical use 

as a sealant or hemostatic agent [118,119], but has recently gained more interest as a cell 

substrate with protein immobilization capabilities [118]. Fibrin is widely used for its 

affinity binding characteristics with other proteins to slowly release growth factors, 

particularly VEGF and FGF, to loaded cells within the gel [120,121]. Work by the Swartz 

group used VEGF bound to fibrin-based matrices along with interstitial fluid flow in 

order to direct blood and lymphatic capillary morphogenesis, resulting in organized 

tubular structures [122,123]. Hybrid PEG and fibrin matrices have also been used to 

create cell substrates with the ability to entrap, covalently conjugate, and affinity bind 

growth factors, and have tunable mechanical properties for directed differentiation 

[124,125]. PEG-based materials that mimic the fibrin clotting cascade, known as fibrin 

analogs, have also been created for tissue engineering applications [126].  

 

2.4.2.5 Particulate Systems within Cell Substrate 

Microparticles, and to a lesser extent, nanoparticles, may often be incorporated 

into cell substrates to provide another mechanism of controlled drug release to the cells. 

The complexities in these systems are vast when considering the combinations of 

material properties, release profiles, release mechanisms, or substrate construct. In some 

cases, the particles may be hydrophobic and rely on hydrolysis to control the release of 

growth factors, as in the release of BMPs from PLGA microspheres in scaffolds and 

matrices [127-130]. In other cases, the particles provide a facile means in which to 
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provide controlled delivery of growth factors in vivo, for example, by injection 

[129,131,132] or intratracheally [133]. Particles may also serve as cell carriers 

themselves, or assemble into a cell substrate at a later stage [96]. 

 

2.5 PERSPECTIVE 

Drug delivery, and especially controlled drug delivery with engineered 

biomaterials, has proven to be an essential means for eliciting desired cellular responses 

in tissue engineering and drug therapy. The complexity of these biological systems, and 

the response to the concentration and pattern of drug introduced into the system, warrants 

further study to improve future therapies. The following chapter will further discuss the 

concept of disease-responsive drug delivery, previously introduced here as a part of the 

stimuli-responsive release modality.  
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Chapter 3: Disease-Responsive Drug Delivery 

[This chapter was adapted, with permission‡, from P. Wanakule, K. Roy§, Disease-

responsive drug delivery: the next generation of smart delivery devices, Curr Drug 

Metab. 13 (2012) 42–49.] 

 

3.1  INTRODUCTION 

As more effective and sophisticated drugs begin to emerge, greater emphasis must 

be placed on the specificity and accuracy by which they are delivered to diseased cells in 

the body. These new classes of drugs include biological molecules, such as proteins, 

peptides, DNA, and siRNA, which are designed to target specific cellular pathways (such 

as signal transduction cascades, transcription factors, and apoptosis). Although these 

drugs are very specific in their action, many of them interfere with key cellular processes, 

and are therefore highly cytotoxic. When delivered to physiologically normal cells or 

tissue, the side effects are potentially damaging and debilitating. Moreover, the majority 

of these sophisticated drugs, especially those for chronic and advanced diseases, are 

primarily given via systemic administration, often through multiple, regular doses. The 

continued endurance of these side effects interferes with the quality of life of these 

patients, and may further lead to the development of other acute and chronic diseases. 

Therefore, rational design of targeted therapies that enhance patient compliance and 

improve quality of life while maintaining efficacy of treatment is essential [1-3]. 

                                                 
‡ Copyright 2012 From Disease-responsive drug delivery: the next generation of smart delivery devices, by 
P. Wanakule & K. Roy (Authors). Reproduced by permission of Bentham Science Publishers. Bentham 
Science Publishers retain the rights for all text, figures, and tables reproduced here. 
§ Statement of co-author contribution: This chapter was written by Prinda Wanakule, with editorial and 
content assistance by Krishnendu Roy (research supervisor). 
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Research to improve the mechanisms of controlled drug delivery has seen much 

success in recent decades, achieving long-lasting zero-order drug release, and reducing 

issues such as toxic plasma concentrations, short half-lives, and the need for multiple 

administrations. However, as their underlying mechanisms are uncovered, many diseases 

are found to follow biological rhythms or aberrant regulatory feedback cycles. Hence, 

ideal drug delivery systems should be designed to respond and modulate their release 

profiles to synchronize with the changing physiologic and pathophysiologic condition, 

both temporally and spatially [1,3]. 

In response to this, a growing interest in controlled drug delivery has been 

developing as a means to deliver bioactive agents (drugs) only when or where it is 

needed, primarily in response to specific stimuli. These stimuli-responsive types of 

systems often rely on local physicochemical changes arising from disease pathology or 

the cell microenvironment as well as on external stimuli that could be provided by a 

device. Common stimuli include pH, temperature, ions, enzymes and other biomolecules 

as well as light and mechanical forces, all of which have been designed to illicit a 

response in drug carriers to trigger drug release [1,2,4-11]. Stimuli-responsive systems 

are also referred to as “smart,” “environment-sensitive,” and “intelligent” systems, 

among others.  

In this chapter, we focus on systems that respond to local, disease-specific stimuli 

– pH, ions, and biomolecules. The overwhelming majority of these delivery strategies are 

based on both natural and synthetic polymers, including biopolymers such as proteins, 

peptides, nucleic acids, and carbohydrates. We first begin with a detailed description of 

the disease-triggered drug release mechanisms, as well as advantages and disadvantages. 

We then move on to provide enabling applications and examples of these disease-specific 

delivery systems for various pathologies. Finally, we conclude the chapter with future 
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outlooks. External stimuli like light, magnetic field, ultrasound, electrical, and thermal 

triggers are not discussed extensively. Instead, we refer the reader to excellent reviews in 

the literature [2,5,8] that covers these aspects. It is also beyond the scope of this review to 

thoroughly discuss systems that respond to intracellular pH changes and reductive 

environments, although a few examples are provided. We again refer the reader to 

excellent articles in the literature [7,9,12-15] describing such systems. 

 

3.2 DISEASE-RESPONSIVE DRUG RELEASE MECHANISMS 

First, we will begin with a discussion of the various disease cues that may be used 

to create disease-responsive drug delivery systems.  These include pH responsiveness and 

biomolecule sensitivity, such as enzymes, antibodies, and metabolic products. An 

illustration of the many types of disease-responsive systems discussed here is shown in 

Figure 3.1 (page 55). A table is also provided at the end of the chapter, which gives an 

overview of the mechanisms discussed, a brief description of the mechanism, and a cross-

listing of general references and disease-specific references (Table 3.1, page 67). 

 

3.2.1 pH-Responsive 

Variations in pH exist throughout the body at the organ, tissue, and cellular level, 

as well as in the local microenvironment of disease-affected tissues. pH-triggered drug 

delivery systems have been especially used in oral drug delivery to protect drugs from the 

acidic gastric cavity, triggering release in the more neutral small intestine [16,17], where 

much drug absorption occurs. More recently, as gene delivery systems have been gaining 

increasing significance, pH-responsive carriers have been developed to take advantage of 

the pH gradient from the extracellular environment through the early and late endosomes  
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Figure 3.1 Illustrations of select disease-responsive release mechanisms. 
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[18]. pH variations within the microenvironment of disease-affected tissues have also 

been observed, including tumors, infarctions [19], and several other conditions connected 

with acidosis and alkalosis. Thus, pH-responsive systems offer a versatile way in which 

to trigger drug release in response to physiological or pathological cues. 

Several hydrogel-based drug delivery systems with the ability to swell or shrink in 

response to pH changes have been developed as triggered-release delivery systems. The 

pH triggered swelling and shrinking mechanisms are primarily due to the properties of 

the side chain pendant group, which are cationic or anionic [2,6,20,21]. Anionic 

hydrogels are ionized at pHs above their pKa, and thus exhibit high swelling at these 

higher pHs due to repulsion of the ionized groups [20]. In contrast, cationic hydrogels are 

ionized at pHs below their pKa, exhibiting high swelling below their pKa [6]. pH-

triggered swelling systems have been developed to be sensitive to minor pH changes, as 

low as 0.2-0.6 pH [22].  

Other pH-responsive delivery systems have been designed to undergo hydrophilic 

to hydrophobic transitions, based on incorporated acid-degradable linkers, such as acetal 

[23,24], hydrazone [19], and pH-hydrolysable protecting groups [25]. Some materials 

with pH-dependent solubility also exhibit pH-dependant drug release, and have also been 

used [26]. Related to pH-responsive delivery, ionically driven drug release systems have 

also been developed [27,28].  

 

3.2.2 Biomolecularly-Responsive 

Systems that incorporate biomolecular recognition are some of the most relevant 

stimuli-responsive systems for disease-triggered drug release. Several different types of 

biomolecules could be used as drug release triggers, including high affinity binding of 
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proteins and peptides, enzyme-substrate recognition, and metabolically reactive systems. 

The incorporation of biomolecular recognition often involves the addition of 

complementary proteins, peptides, ligands, enzymes, substrates, antibodies, antigens, and 

metabolic products within a polymer system [1-5,8]. Polymer systems with incorporated 

biomolecules are often referred to as biopolymers or bio-inspired materials. These 

biomolecules could also be incorporated with non-polymeric delivery systems, for 

example, gold nanoparticles [29,30] or other theranostic systems [31-35]. 

Protein and ligand interactions have been used for years as a way to target drugs 

to certain cells. In the classical system, the drug is tethered to a protein, which binds to a 

receptor that is over expressed in the target cell type. Due to the higher accumulation of 

drug at these target cells and the process of receptor-mediated endocytosis, these systems 

are able to preferentially deliver drugs to the diseased tissue. These protein-ligand 

systems have also been incorporated into micro- and nanoparticles by conjugating 

proteins to the particle surfaces [36-39].  Common receptors targeted in cancer include 

CD44 [40-43], HER2 [37,44], transferrin [45,46], and folate [47,48].  

Aside from usage as targeting molecules, affinity binding has also been used to 

create reversibly swelling hydrogel systems based on antigen-antibody binding [49]. In 

this system, both antibody and antigen are grafted onto polymer chains, and in 

combination, the antibody-antigen binding induces hydrogel formation. When the 

hydrogel is then exposed to free antigen, competitive binding disrupts the hydrogel 

network, resulting in swelling. When free antigen is removed, the original binding 

between the grafted antibody-antigen are re-formed, demonstrating a memory-like 

property. This early system paved the way for extensive work on molecular imprinting in 

hydrogel systems, which continue to be explored for disease-responsive release [50,51], 

targeting, and biosensors [2,3,52,53]. 
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Another class of biomolecularly-responsive systems involves incorporation of 

enzyme-sensitive components into drug carriers, usually peptides, proteins, or 

polysaccharides. Several of these biomolecules have been integrated into enzyme-

degradable hydrogels, either as a cross-linker (short peptide sequences) or as the matrix 

material, e.g. polysaccharides (chitosan, hyaluronic acid) and protein-based gels 

(collagen, gelatin). These hydrogels have shown minimal release in the absence of the 

stimulating enzyme, and triggered release in the presence of the enzyme [2,3,54,55]. This 

strategy has been used extensively in tissue engineering applications [56,57], however, it 

could also provide an effective means of disease-responsive drug delivery [58-60]. 

Enzyme-responsive systems are suitable for site-specific and disease-specific delivery 

because of the high specificity of enzymatic cleavage, and the up regulation of enzymes 

in several diseases, such as various cancers and inflammatory diseases [46,55,58,59,61-

63]. Aside from enzyme-sensitive hydrogels, enzyme-degradable components are often 

used as covalent linkers to conjugate drugs as pendant groups off a polymer backbone. 

Upon encountering the enzyme, the pendant chains are broken, releasing the tethered 

drug [2,60,64]. Yet another set-up incorporates an enzyme-sensitive peptide-based 

coating on a porous particle. Drug molecules are loaded within the pores of a particle and 

encased with a peptide coating such that the coating prevents drug release until it is 

removed via enzymatic degradation [65]. 

Common metabolic products and pathways may also be used as stimuli for 

polymer systems, an exemplary example of which includes the glucose oxidase-

containing cationic hydrogels created by Podual and colleagues [66,67] (described in 

detail under the Diabetes section). Other examples include a carbon dioxide-responsive 

cationic hydrogel developed as a feedback-regulated drug delivery vehicle [68], as well 

as a metabolism-mimicking glutathione-triggered drug release system [69]. In normal 
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cells, glutathione neutralizes reactive oxygen species, preventing free-radical damage to 

nucleic acids. However, glutathione is elevated in tumor cells, and contributes to 

chemotherapy drug resistance [70]. 

With recent advances in computing and bioinformatics, a number of protein and 

enzyme databases with detailed binding and specificity information are available for 

researchers to carefully choose appropriate molecules for incorporation into their systems 

as the stimulus, or stimulus-responsive component. Just to name a few, these databases 

include the Protein Data Bank (PDB) [71], Braunschweig Enzyme Database (BRENDA) 

[72], Expert Protein Analysis System (ExPASy) [73], and Universal PBM Resource for 

Oligonucleotide Binding Evaluation (UniPROBE) [74]. 

 

3.2.3 Other Notable Stimuli 

Several other common stimuli within the field of stimuli-responsive drug delivery 

include temperature, light, magnetic field, and ultrasound [1,5,15,75]. Although these 

stimuli are not specifically disease-responsive, many of these have been incorporated into 

drug release systems as a means of externally controlling drug release, with the 

possibility of dosing according to a regimented schedule. These types of stimuli are 

especially applicable in the newly emerging area of theranostics, in which diagnostics 

and therapy are combined into one delivery system, and delivered to the patient in a 

single, combined dosage form. In this way, theranostics allows for simultaneous 

monitoring of disease progression or regression in response to a prescribed therapy. 

Combined with imaging-based diagnostics, the accumulation of the theranostic treatment 

could be monitored until significant levels are achieved at a known disease site, and then 

triggered for drug release in response to applied stimuli. Several opportunities exist, all of 
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which we invite the reader to explore in several exceptional reviews in the literature 

[34,35,76-81]. 

 

3.3 DISEASE APPLICATIONS 

3.3.1 Cancer 

Physiological differences found within the tumor microenvironment, or stroma, 

may be exploited by drug delivery systems in order to trigger drug release. Aside from 

the leaky vasculature that results in the enhanced permeation and retention (EPR) effect, 

the tumor-stroma exhibits a slightly acidic pH, around 6.5-7.2. This acidic environment 

stems from poor perfusion rates and increased glycolysis in tumor cells, which results in 

a local accumulation of acidic waste products [46,82,83].  Although this low pH slows 

the uptake of weakly basic drugs like doxorubicin (DOX), several strategies have been 

employed to improve the uptake and efficacy of DOX [84]. For example, pH-sensitive 

micelles composed of poly(L-histidine)-poly(ethylene glycol) block copolymers were 

developed by Bae and coworkers [85,86] that destabilize at the slightly acidic tumor 

microenvironment. When loaded with DOX and subjected to decreasing pH, a marked 

increase in release of DOX and corresponding decrease in A2780 cell viability was 

observed between pH 7.4 and 6.8. Further in vivo studies also demonstrated increased 

tumor suppression using the pH-sensitive micellar formulation versus free DOX. Similar 

results were obtained with another acidic pH-destabilizing micelle formulation of methyl 

ether poly(ethylene glycol)-poly(β-amino ester), developed by Kwon and colleagues 

[87]. Whereas both of these micellar systems utilized the acidic microenvironment to 

increase the tumor-localized concentration of DOX for increased uptake and efficacy, 

another system devised by Stayton et al. improved overall DOX efficacy by using pH 
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responsive polymers to co-deliver siRNA [88]. In this system, pH-responsive 

poly(styrene-alt-maleic-anhydride) was complexed with siRNA to improve endosomal 

escape within the tumor cell, and packaged inside a micelle to be co-delivered with DOX. 

The siRNA used was shown to sensitize multidrug resistant tumor cells to DOX by 

silencing the gene polo-like kinase 1, demonstrating a potent combinatorial treatment 

system. Aside from buffering-induced endosomal disruption, pH triggered expansion of 

hydrogel nanoparticles within the endosome, and thus a bursting of the endosome, has 

also been conceived as means of cytosolic anti-cancer drug delivery [25]. 

Enzyme-triggered release is an especially noteworthy method of achieving 

disease-responsive delivery for tumors and cancer cells. Several enzymes are up 

regulated in various cancers, both intracellularly and extracellularly, including secretory 

phospholipase A2 (sPLA2) [89], cathepsins [4,59], Src family kinases [90], and MMPs 

[60,63,91]. sPLA2 is an extracellularly up regulated lipid hydrolyzing enzyme, and is 

primarily used as a trigger for liposome-based delivery systems [89]. Several variations 

of these sPLA2-sensitive liposomal formulations are possible, such as incorporating the 

enzyme-sensitivity to activate a phospholipid prodrug, or triggering release of anti-cancer 

drugs encapsulated within a liposome. Kaasgaard and co-workers demonstrated 

promising cytotoxicity of a novel methotrexate analogue encapsulated within sPLA2-

degradable liposomes in KATO III and HT-29 cancer cell lines. However, the 

cytotoxicity was independent of the enzyme degradation, indicating leakage of the anti-

cancer drug from the system, and illustrating the difficulty in ensuring anchoring stability 

of such drugs in liposomal formulations [92]. Pederson and colleagues demonstrated the 

sPLA2-mediated cytotoxicity of several retinoid phospholipid prodrugs toward HT-29 

and Colo205 colon cancer cells (no significant cell death observed in the absence of 

enzyme). Furthermore, the phospholipid prodrugs were able to form ~100nm particles 
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suitable for intravenous administration, demonstrating a marked improvement over 

previous liposomal formulation strategies that often result in leakage of the drug from the 

carrier [93].  

Our group has recently demonstrated the incorporation of an enzyme-triggered 

release mechanism within size- and shape-specific hydrogel nanoparticles for cancer 

treatment [4,59]. Specifically, disease-responsive release is mediated by cathepsin B 

activity on a di-acrylated peptide sequence, GFLGK, which is incorporated into a PEG 

hydrogel via UV cross-linking of acrylate groups. The nanoparticles are fabricated using 

step and flash imprint lithography (S-FIL), allowing precise control over size (down to 

50nm), shape, composition, and ease of harvest and recovery. Specific enzyme triggered 

release from these nanostructures was demonstrated with plasmid DNA and IgG 

antibodies, with minimal release of both model drugs in the absence of enzyme.  

The family of matrix metalloproteinases has perhaps received the most attention 

of all the up-regulated enzymes in cancer. This is largely due to early interest in the 

therapeutic potential of down-regulating MMP activity. However, significant work by 

Gemeinhart and colleagues established MMPs as an effective target for disease-specific 

triggered drug release [55,60,63,91].  In these systems [60,63,91], cisplatin is used as a 

model chemotherapeutic drug, and is incorporated within a PEG hydrogel via MMP-

sensitive peptide tether. Collectively, the work demonstrates the enzyme-dependant 

release of drugs from the system, with a PEG chain length of 4000 kDa being sufficient 

to allow MMP activity within and throughout the hydrogel, and a PEG chain length of 

574 Da being insufficient. Cytotoxicity studies of the cisplatin-loaded system using U-87 

malignant glioma cells and the 4000 kDa PEG chain showed 0% cell survival in the 

presence of MMP versus ~50% cell survival in the absence of MMP. This early work has 
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paved the way for the development of other MMP-responsive systems for localized 

treatment of cancer and other diseases [64,94-97].  

 

3.3.2 Diabetes 

Feedback-regulated control of insulin release, required to maintain optimal blood-

glucose levels is of utmost importance in controlling diabetes, preventing diabetic coma, 

and reducing the risk of developing more serious pathologies as a result of glucose 

imbalance [98]. Peppas and colleagues developed one of the most significant insulin 

delivery systems capable of achieving this feedback-regulated control [66,67]. In this 

system, glucose oxidase and catalase was incorporated into cationic hydrogel 

microparticles, employing hybrid disease-responsive triggers: biomolecule-sensitivity 

and pH-responsive swelling. As glucose interacts with glucose oxidase in the hydrogel, it 

is enzymatically digested into gluconic acid, thereby shifting towards a slightly acidic pH 

in the hydrogel microenvironment. The cationic hydrogel then swells in response to the 

acidic pH, releasing insulin, and reversibly shrinks once glucose is removed and local pH 

returns to the neutral physiological norm.  

 

3.3.3 Inflammatory Diseases 

Prolonged inflammation after acute injury or in chronic diseases, such as asthma 

and arthritis, can severely debilitate a patient and lead to development of more serious 

conditions, including fibrosis and cancer [23,58,99,100]. Since inflammation is an 

essential part of the normal immune response, it is undesirable to non-specifically deliver 

anti-inflammatory or immune-suppressive drugs over the long term. Disease-responsive 
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drug delivery is therefore needed to treat only the tissue affected with prolonged 

inflammation.  

One strategy to achieve such inflammation-responsive drug delivery involves an 

enzyme-degradable PEG hydrogel, sensitive to human neutrophil elastase, an enzyme 

secreted during inflammation [58]. The authors were able to demonstrate enzyme-

dependent release of a model protein from the system, and effective retention of the 

protein without enzyme, by creating hydrogels with sufficiently restrictive mesh size so 

as to drive the mechanism towards enzyme-mediated surface erosion. 

In another system, an intracellular protein kinase that is constantly activated in 

inflammatory cells was used as a cell-specific stimulus to cleave a transcription-

inhibiting polymer complexed with plasmid DNA [99]. This system was able to 

effectively demonstrate gene activation only in cells exposed to an inflammatory stimulus 

(lipopolysaccharide), as compared to normal cells, showing potential in targeting only the 

inflammatory cell types.  

 

3.3.4 Infection 

There are many benefits for applying disease-responsive drug delivery to 

infections, including bacterial, fungal, or viral. In the case of bacterial infection, the rise 

of antibiotic resistant bacterial strains has created a tangible need to limit and control the 

improper and/or prophylactic usage of antibiotics. Although antibiotic-treated bandages 

have been available for years, in vitro studies have shown that most antibiotics exert 

somewhat cytotoxic effects on human fibroblasts. To address these issues, an antibiotic 

delivery system based on PVA with peptide tethered-gentamicin was created to release 

the antibiotic only in the presence of infection by Pseudomonas aeruginosa. Gentamicin 
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release was clearly observed from infected samples as compared to negligible release of 

gentamicin from non-infected control samples [101]. Another system for enzyme-

mediated gentamicin release was designed using poly(trimethylene carbonate) for the 

treatment of osteomyelitis, via lipase degradation [102]. 

Enzymatic activity due to viral infection has also been used to target and treat 

only those cells that are infected with the virus. For example, an anti-HIV transgene was 

coupled with an intelligent gene delivery carrier using enzyme specificity to achieve 

HIV-infected cell specificity. The authors fabricated an HIV-1 protease sensitive polymer 

known as CPCHIVtat (cationic polymer possessing a cleavage site for HIV-1 protease), 

which formed a polyplex with the transgene, suppressing transcription. The presence of 

the HIV-1 protease caused the cleavage of the CPCHIVtat polymer, releasing the 

transgene to be expressed in activated HIV-infected cells, whereas other uninfected cells 

remained intact [103]. 

 

3.4 CONCLUSIONS AND FUTURE PERSPECTIVES 

Drug release from nano to macroscale delivery systems in response to 

physiological or disease-specific signals holds significant promise in reducing side effects 

and increasing efficacy of a variety of therapeutic agents. New particle and device 

fabrication methods have enabled incorporation of a variety of stimuli-responsiveness 

within delivery systems.  The field is expanding rapidly with more and more new systems 

being reported. However, a few areas need to be studied more carefully before such 

systems can find clinical usage. For example, most of the systems developed so far must 

rely on a threshold level of stimuli signal to “trigger” the drug release. This is critical for 

distinguishing disease-specific signals from normal physiological levels of the stimulus. 
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However, inter patient variability and variability between different phenotypes of the 

disease could significantly complicate the design of such systems. As in the case of pH or 

enzyme-responsive devices, the threshold of pH or enzyme concentration would dictate 

drug release, both in terms of when drug is released and at what rate. Variability in 

enzyme levels or pH levels from tumor to tumor or patient to patient could provide 

significant differences in those variables. Another critical issue is that of scale up and 

cost. Drug carriers involving biological molecules (peptides, proteins, nucleic acids) in 

addition to the drug itself could drive up cost significantly. Therefore, it is necessary to 

study cost-benefit issues when developing such systems for clinical use. Nevertheless, the 

recent developments in this area are exciting, and open up new directions in treating 

complex diseases with reduced side effects and improved efficacy. 
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Table 3.1 Summary of disease-responsive release mechanisms, with cited references 
(in-chapter reference list). 

Mechanism Description References 
pH-Responsive 
Materials 

Includes hydrogels with the ability to swell or shrink in 
response to minor changes in pH, and micelles that 
destabilize according to pH, triggering release of 
encapsulated drug. 

[2,6,20-22] 
Cancer: [85-88] 
Diabetes: [66,67] 

pH-Dependent 
Hydrophilic to 
Hydrophobic 
Conversions 

Systems release drug after undergoing conversion, using 
acid-degradable linkages, hydrolysable protecting groups, 
or pH-dependent solubility. 

[19,23,24,26]  
Cancer: [25] 

Ionically-Driven 
Drug Release 
Systems 

Changes in ion concentration trigger release of drug. [27,28] 

Protein-Ligand 
Interactions 

Addition of a specific protein that binds with an over 
expressed receptor increases drug accumulation at 
diseased tissue. 

[36-39] 
Cancer: [37,40-48]  

Hydrogels based on 
Antigen-Antibody 
Binding 

A hydrogel network is formed by affinity binding 
between conjugated antigens and antibody. Introduction 
of free antigen disrupts the network, causing release of 
drug. 

[50] 

Enzyme Responsive 
Hydrogels 

Hydrogel networks are formed with a cross-linker that is 
sensitive to an enzyme. The enzyme is either up-
regulated in diseased tissue, or may be location-specific. 
Exposure to the enzyme causes network degradation and 
release of drug. 

[2,3,46,54,55,59-
63,96]  
Cancer: [4,59] 
Inflammatory 
Diseases: [58,99] 

Enzyme Responsive 
Linkages 

Enzyme sensitive linkages are used to tether drug to a 
polymer backbone or to a particle. The enzyme is either 
up-regulated in diseased tissue, or may be location-
specific. Exposure to the enzyme causes release of the 
tethered drug. 

[2,60,64,97] 
Infection: [99,101-
103] 

Enzyme Responsive 
Coatings or 
Membrane Structures 

An enzyme sensitive coating is used to cover the surface 
of a porous particle with embedded drug, or solid drug 
particle. Upon enzyme exposure, the coating is degraded, 
triggering drug release. Also realized in micellar and 
liposomal formulations. 

[65,94] 
Cancer: 
[55,60,63,89,91-
93,95,104] 

Systems Responding 
to Metabolic Products 

Systems are designed to respond to metabolic products, 
usually via chemical reactions, including glucose, carbon 
dioxide, and glutathione. 

[68] 
Diabetes: [66,67] 
Cancer: [69,70] 
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3.5 LIST OF ABBREVIATIONS 

BRENDA = Braunschweig Enzyme Database 

CPCHIVtat = cationic polymer possessing a cleavage site for HIV-1 protease 

DDS = drug delivery system 

DOX = doxorubicin 

ECM = extracellular matrix 

EPR = enhanced permeation and retention 

ExPASy = Expert Protein Analysis System 

MMP = matrix metalloproteinase 

PDB = Protein Data Bank 

PEG = poly(ethylene glycol) 

S-FIL = step and flash imprint lithography 

sPLA2 = secretory phospholipase A2 

UniPROBE = Universal PBM Resource for Oligonucleotide Binding Evaluation 
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Chapter 4: Development of Enzyme-Responsive Hydrogel Networks 
using Michael Addition Reactions 

 

4.1  INTRODUCTION 

This chapter focuses on the development of enzyme-responsive hydrogel 

networks that have been formed using Michael addition reactions (Specific Aim 1A). 

Hydrogel compositions were designed to consist of a combination of multi-armed or 

multi-branched polymer cross-linked with an enzyme-specific peptide sequence, as 

popularized by the Hubbell group [1-6]. For this specific Michael addition chemistry, the 

reactive groups were chosen to be acrylates and sulfhydryls [7]. Polymers explored were 

poly(ethylene glycol), or PEG, and chitosan. Peptides were designed to be sensitive to 

trypsin for cost-efficient proof-of-concept studies. The approach to the design of 

components and the feasibility studies carried out are laid out in Figure 4.1. 

 

4.1.1 Stimuli-Responsive Hydrogel Networks 

4.1.1.1 Currently available stimuli-responsive networks 

Stimuli sensitive hydrogels have been developed as ‘smart’ drug delivery systems 

and biomimetic tissue engineering scaffolds to sense environmental changes and induce a 

structural change or degradation [2,8-17]. Temperature and pH sensitive hydrogels can be 

used for site-specific delivery. Biomolecule-sensitive hydrogels have been used to deliver 

drugs when in contact with glucose or specific antigens [11,13]. There are also hydrogels 

that are sensitive to light, magnetic field, and ultrasound [12,13]. However, 

physiologically site-specific responsive gels have not been incorporated for pulmonary 

drug delivery.  
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Figure 4.1 Approach to component design and feasibility studies in development of 
enzyme-responsive hydrogel networks 

 

4.1.1.2 Enzyme-responsive networks 

For a bolus dose at a target location, an enzymatically degradable polymer carrier 

could be advantageous. This is because enzymatic cleavage is highly specific and could 

be tailored for certain diseased tissues where specific enzymes are up regulated. A series 

of enzymatically degradable hydrogels, specifically designed to mimic the extracellular 

matrix (ECM) in tissue engineering applications, have been extensively reported 

[9,10,14]. These designs contain a peptide linkage either in the backbone of the polymer 

or as a cross-linking agent that is degraded by the presence of tissue-specific enzymes 

(e.g. collagenase, elastase or MMPs). A key relevant finding in these studies, reported by 

Hubbell and colleagues [1] was the highly specific enzyme-controlled release of 

recombinant human bone morphogenetic protein (rhBMP). West and co-workers [10] 

showed the differential degradation kinetics of these gels in the presence of various 
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concentrations of the peptide-specific enzymes (collagenase or elastase). Their results 

indicated that the hydrogels do not degrade in the absence of enzymes, while rapid 

degradation can be achieved by optimizing the enzyme concentrations. These studies 

demonstrate the possibility that similar peptide-based hydrogels could be used to control 

drug release from micro- and nanoparticle carriers.  

 

4.1.2 Michael addition reactions 

Polymeric delivery systems have exhibited the potential for controlled release and 

protection of protein therapeutics; however, ideal polymer systems for broad use with a 

wide variety of proteins are yet to be developed. Although the classic poly(lactide-co-

glycolide) (PLGA) or polyanhydride-based systems have demonstrated suitable delivery 

characteristics, these systems may often cause protein denaturation due to the fabrication 

conditions, degradation characteristics or hydrophobicity [18-20]. A number of hydrogel 

materials have also been characterized as hydrophilic delivery systems, which greatly 

decreases the foreign body response as compared to hydrophobic materials. Typically, 

the protein and polymer are in the same solution, allowing the polymer network to form 

around the proteins. However, many of the proposed hydrogel networks are formed in a 

way such that the polymer reacts with the protein, or network formation requires 

initiation by radiation, UV light, or high temperatures that may also denature the protein 

[1-6,19,21].  

Michael addition reactions for the formation of hydrogel networks with 

encapsulated proteins have been recently developed using reactions between acrylate and 

thiol groups on a number of different synthetic and natural polymers, including PEG, 

PVA, dextrans, hyaluronic acid, and chitosan [7,22]. This allows rapid initiation of 
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polymerization or cross-linking at physiological temperature and pH, and under aqueous 

conditions.  Reactions between acrylate and thiol groups on the polymers occur much 

more quickly than with the chemical groups found on proteins, thus eliminating possible 

covalent modification of protein, which may hinder its release rate or bioactivity.  

Hydrogel swelling and degradation typically drive the release of protein, with variations 

in cross-linking density and molecular weights between cross-links offering tailor-ability 

in protein release rates [2,8-17,19-24]. 

As previously mentioned, the Michael addition reaction proceeds under mild 

conditions; it occurs in aqueous conditions at physiological temperature and pH, although 

a slightly basic pH will accelerate the reaction. Reactions are between a Michael donor, 

the nucleophile, and a Michael acceptor, the electrophile. Some other common Michael 

reactions occur with amines, vinyl-sulfones, and maleimides [7,11,13,21,25]. 

The Michael reaction used in this work is between a sulfhydryl and acrylate 

group. The slightly basic buffer creates a thiolate anion, which then reacts with the 

acrylate. For example, using a multi-armed polymer acrylate and a di-sulfhydryl peptide, 

this reaction yields a cross-linked network structure, or hydrogel network. In this case, 

the sulfhydryl group acts as the Michael donor, and the acrylate group is the Michael 

acceptor. The specific reaction scheme, as well as an illustration of the hydrogel cross-

linking reaction, is shown in Figure 4.2.  

 

4.1.3 Choice of Biocompatible Polymers 

Two different polymers were chosen to evaluate in feasibility studies to form 

these enzyme-degradable hydrogel networks: chitosan and poly(ethylene glycol). 

Chitosan is a polysaccharide, and functional groups would need to be added as side  
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Figure 4.2 Michael addition reaction scheme and illustration of hydrogel network 
cross-linking 

 

functional groups to the monomer units (“multi-branched” or “multi-functionalized”). 

Poly(ethylene glycol), or PEG, is commercially available in multi-armed, dendrimer-like 

configurations. The terminal groups of these multi-armed PEGs can be functionalized 

with a variety of reactive moieties. Figure 4.3 shows an illustrated schematic of the 

Michael addition cross-linking for the different types of polymers (multi-branched or 

multi-armed) used. 

 

4.1.3.2 Chitosan 

Chitosan is a biodegradable and biocompatible polysaccharide that is inexpensive and 

readily available. It is currently FDA approved for use as a haemostatic bandage due to 

rapid blood clotting capabilities. Chitosan has also been widely studied as a drug and 

gene delivery vehicle due to its mucoadhesive and cationic properties. It is comprised of 

β 1-4 linked units of glucosamine and N-acetyl glucosamine and has been shown to have  
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Figure 4.3 Schematic representing Michael addition based crosslinking of polymers 
and enzymatic degradation of the peptide 
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minimal cytotoxicity. Chitosan has been crosslinked into a number of hybrid hydrogels 

for encapsulation of various macromolecular drugs for oral, intranasal, and intravenous 

delivery. For the purposes of mucosal delivery, mucoadhesive and enhanced paracellular 

permeability properties of chitosan have been well established that could increase 

bioavailability of various drugs, while maintaining low cytotoxicity [12,13,22,26-37].  

 

4.1.3.3 Poly(ethylene glycol) 

Poly(ethylene glycol) has long been a staple biomaterial in drug delivery 

applications, both as a covalently-attached molecule, and as a hydrogel-based protective 

drug carrier. PEG is non-toxic, non-immunogenic, non-antigenic, hydrophilic, and FDA-

approved [9,10,14,38,39]. Due to its widespread use in a number of biomaterial 

applications, it is widely available in a variety of molecular weights and a number of 

functionalized forms, including multi-armed PEGs, and acrylate or thiol-containing 

groups. PEG has been used in numerous hydrogels, especially with hybrid components, 

for applications in drug and contrast agent delivery and tissue engineering scaffolds 

[1,19,21,38,39]. 

 

4.2 MATERIALS AND METHODS 

4.2.1 Materials 

Four-armed poly(ethylene glycol) acrylate with a molecular weight of 

approximately 10,000 kDa or 20,000 kDa was purchased from Laysan Bio (Arab, AL). 

Protasan (chitosan salt) was purchased from Novamatrix (Sandvika, Norway). Chitosan 

oligosaccharide lactate, trypsin from bovine pancreas (USP grade, >2500 USP units per 

mg), 2-carboxyethyl acrylate, acrylic acid, glycidyl methacrylate, and triethylamine were 
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purchased from Sigma-Aldrich (St. Louis, MO). EDC, Sulfo-NHS, and snakeskin 

dialysis tubing were purchased from Pierce/Thermo Fisher Scientific (Rockford, IL). 

Float-a-Lyzer dialysis tubes were purchased from Spectrum Labs (Rancho Dominguez, 

CA). 

 

4.2.2 Design of enzyme-responsive peptide cross-linker 

For this body of work, as a proof-of-concept, peptides that are sensitive to the 

enzyme trypsin were used for cost-efficiency. Trypsin cleaves non-specifically at the 

terminal carbon of the amino acids lysine and arginine, either of which may be 

incorporated into the peptide sequence in to provide specificity for degradation and 

release in response to trypsin. Varying sequence lengths may be used to vary the pore 

size of the resulting hydrogel, thus giving the option to tailor for different molecular 

weight peptide and protein drugs. In general, however, sequences were kept below 10 

amino acids. 

Two approaches were taken for the design of these peptide cross-linkers: (1) 

naturally-inspired peptide sequences, or (2) rationally-designed synthetic sequences. 

Naturally-inspired peptide sequences may offer improved biocompatibility, whereas 

rationally-designed sequences may be intelligently designed using the wealth of 

knowledge in enzyme/substrate bioinformatics databases.  

 

4.2.2.1 Design of naturally-derived peptide sequences 

For naturally-inspired peptide sequences, the human protein hemoglobin A (HbA) 

was used as the peptide design base. The protein was plotted on a Kyte-Doolittle/Hopp-

Woods scale to determine regions of hydrophobicity and hydrophilicity. All hydrophobic 
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regions were removed from consideration, as hydrophobic sequences would be unlikely 

to easily incorporate into a hydrophilic hydrogel. Sequences were then run through a 

model protein cutter for trypsin [10,40], and those with the least specificity removed from 

consideration. Top candidates with a size range of 5-7 amino acids were then run through 

careful NCBI BLAST (National Center for Biotechnology Information Basic Local 

Alignment Search Tool) sequence analysis for exclusion of those bearing similarity to 

toxic and/or apoptotic peptide sequences. Remaining sequences were evaluated for 

primary amines (arginine, glutamine, lysine, and asparagine) for further bioconjugation 

of acrylate groups, or cysteine residues, which contain a sulfhydryl group. 

 

4.2.2.2 Design of rationally-designed synthetic peptides 

For rationally designed sequences, data was collected on trypsin activity and 

preferential cleavage sites using the BRaunshweig ENzyme Database (BRENDA) [18-

20,41]. As previously mentioned, trypsin cleaves terminal to either arginine or lysine 

residues in a peptide/protein sequence. Glycine was used as spacer amino acids, due to its 

minimal steric hindrance, surrounding the trypsin cleavage site. Cysteine residues were 

added at the alpha and terminal residue sites to provide sulfhydryl reactive groups for the 

Michael addition cross-linking. Sequences were checked for hydrophilicity, using the 

Hopp-Woods and Kyte-Doolittle scales. Other optimization considerations could include 

(1) the use of arginine over lysine, because arginine is more effective at lowering the pKa 

of sulfhydryl groups, accelerating the cross-linking reaction, and (2) use of glutamic acid, 

which inhibits disulfide bond formation, maintaining stoichiometric ratios required for 

the reaction [7]. 
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4.2.3 Synthesis of the peptide cross-linker 

Peptide synthesis was performed at The University of Texas at Austin Institute for 

Cellular and Molecular Biology in the Protein Microanalysis Facility (Austin, TX) by 

custom peptide order. Following initial studies, custom peptide orders (up to one gram) 

were then obtained from CHI Scientific (Maynard, MA) at 95% purity, verified by mass 

spectrometry. 

 

4.2.4 Confirmation of peptide cross-linker degradability 

Trypsin digestion of the designed peptide sequences was confirmed by liquid 

chromatography-mass spectrometry (LC-MS) using an in-solution trypsin digestion 

protocol. Briefly, a 50 μl sample of 50 picomole/μl peptide in 100 mM ammonium 

bicarbonate at pH 8.5 was prepared for digestion. 0.1 μl of trypsin was dissolved in 1 mM 

HCl to a concentration of 1 mg/ml and added to the peptide solution. The mixture was 

then placed in an incubator on a rotator at 37°C, and samples were collected for HPLC 

and MALDI analysis at 2, 4, 6, and 12 hours to quantify digested fragments. A control 

group (without trypsin) was also analyzed for comparison.   

 

4.2.5 Modification of peptide cross-linker with acrylate groups 

Peptides for crosslinking with thiol polymers were QVRAHGK and KGHGKK.  

The di-acrylation of these peptides at the α-amine and terminal lysine amine was 

accomplished using EDC/Sulfo-NHS (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide 

hydrochloride; N-hydroxysulfosuccinimide) chemistry. First, 25mg of peptide was 

dissolved into 2mL de-ionized water. A four to eight molar excess of acrylic acid, EDC, 

and Sulfo-NHS was reacted to create an amine reactive NHS-ester-acrylate. The reaction  
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Figure 4.4 Reaction scheme for acrylation of amine-containing peptide (QVRAHGK) 
using EDC/NHS chemistry (top half of image courtesy of Mary Caldorera-
Moore) 

 

was run for 2 hrs at room temperature while stirring, then titrated up to the pKa of the 

target amine, added to the peptide solution, and reacted for 2 hrs at room temperature 

while stirring.  The solution was subsequently dialyzed for 48 hours in de-ionized water 

using a 500 MW cutoff Float-a-Lyzer dialysis tube, followed by snap freezing, 

lyophilization, and 1H NMR analysis to evaluate degree of acrylation.  

 

4.2.6 Modification of chitosan with acrylate groups by EDC/NHS chemistry 

The grafting of acrylate groups to chitosan was carried out using EDC and Sulfo-

NHS (1-Ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride; N-

hydroxysulfosuccinimide) chemistry with acrylic acid and/or 2-carboxyethyl acrylate. 

Acrylic Acid Amine-reactive NHS-ester Sulfo-NHS Reactive O-acylisourea ester EDC 
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Both acrylic acid and 2-carboxyethyl acrylate contain carboxyl groups, which may be 

grafted onto the primary amine groups of chitosan (de-acetylated). Briefly, chitosan was 

dissolved in 80-100 ml deionized water and pH adjusted to 4.75. Acrylic acid or 

Carboxyethyl acrylate (1.5 mL) was added to EDC and Sulfo-NHS to create an amine 

reactive NHS-ester with an acrylate group. Reaction components were mixed at varying 

molar ratios. The reaction was run for 2 hours at room temperature while stirring, added 

to the chitosan, and allowed to react for 4-8 hours at room temperature (in the dark) while 

stirring. Finally, dialysis was performed using snakeskin dialysis tubing for 24 hours with 

the following cycles: 3 times for 2 hours against 5 mM HCl buffer, followed by 3 cycles 

of 6 hours in length against de-ionized water. Dialyzed product was lyophilized to 

remove water. Acrylate substitution was confirmed and percent degree of substitution 

(DS) was determined using NMR [22].  

 

4.2.7 Modification of chitosan with acrylate groups using glycidyl methacrylate 

Chitosan was modified with methacrylate groups by reaction with glycidyl 

methacrylate and triethylamine, in which the hydroxyl group on the chitosan monomer 

units are reacted (both acetylated and de-acetylated monomer). Figure 4.5 shows the 

reaction scheme and procedure. Briefly, chitosan was dissolved into a solution of up to 

40% acetone at a concentration of 10 mg/mL by high-speed vortexing, and allowed to stir 

for an additional hour. A 20 M excess of triethylamine was then added to the solution and 

allowed to react for two hours while stirring, followed by addition of 20 M excess of 

glycidyl methacylate, which was reacted for 24 hours with stirring. The resulting solution 

was then placed on dialysis (snakeskin dialysis tubing) over 48 hours against three 

washes of 5mM HCl and three washes of de-ionized water. The sample was then snap 



 93 

frozen in liquid nitrogen, lyophilized for 48 hours, and then analyzed by 1H NMR to 

confirm the degree of substitution.  

 

 

Figure 4.5 Reaction scheme for conjugation of methacrylate groups to chitosan by 
reaction with triethylamine and glycidyl methacrylate 
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4.2.8 Michael addition cross-linking of polymer with enzymatically-responsive 
peptides 

In order to crosslink the polymer with the enzymatically-responsive peptide, a 

Michael’s addition reaction between acrylate and sulfhydryl groups was employed.  

Multi-armed polymers with acrylate groups and peptides with sulfhydryl groups were 

dissolved separately in 0.3 molar triethanolamine (TEA) buffers, or 1X phosphate 

buffered saline (PBS), ranging from pH 7.4 to 8.15. Solutions were then combined in a 

1:1 acrylate to sulfhydryl ratio in varying concentrations and incubated at 37°C to react. 

Varying concentrations of polymer and peptide were explored, and expressed as a total 

combined percent weight by volume: 

 

€ 

Hydrogel % wv =
weight of polymer, grams( ) + weight of peptide, grams( )

milliliter of solution
×100%  

 

4.3 RESULTS AND DISCUSSION 

4.3.1 Design of enzyme-responsive peptide cross-linker 

4.3.1.1 Design of naturally-derived peptides 

Peptide sequences derived from human hemoglobin subunits were analyzed for 

trypsin responsiveness, hydrophillicity, and functional groups on terminal amino acids.  

The sequences were then subjected to BLAST analysis for detrimental physiological 

impacts. The sequences found to suit all these requirements were QVRAHGK 

(glutamine-valine-arginine-alanine-histidine-glycine-lysine) and KGHGKK (lysine-

glycine-histidine-glycine-lysine-lysine). These peptides have amine terminal groups that 

may be modified with acrylate groups, as described earlier, such that they may be used to 

cross-link sulfhydryl-containing polymers into hydrogels.  
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Figure 4.6 Chemical structure of CGRGGC peptide 

 

4.3.1.2 Design of rationally-designed synthetic peptides 

A second set of peptide sequences, containing terminal cysteine residues (for 

sulfhydryl groups) for Michael-addition cross-linking, were also designed for trypsin 

responsiveness, least steric hindrance surrounding the trypsin cleavage site, 

hydrophillicity, functional groups on terminal amino acids, and BLAST analysis. The 

sequences that met all the conditions were CGRGGC (cysteine-glycine-arginine-glycine-

glycine-cysteine, Figure 4.6) and CGKGGC (cysteine-glycine-lysine-glycine-glycine-

cysteine). 

 

4.3.2 Confirmation of peptide cross-linker degradability 

Results for the digestion of the QVRAHGK sequence after 12 hours are shown in 

Figure 4.7. Analysis of the control group shows the peak fractions are primarily 

composed of the un-digested peptide (795 Da and 398 x 2 = 796 Da for doubly-charged 

peptide). The trypsin-digested group exhibits peak fractions primarily composed of 

QVRA, QVR, and K fragments (429 Da, 355 Da, and 149 Da, respectively), confirming 

predicted degradation. 
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Figure 4.7 Digestion of QVRAHGK peptide by trypsin confirmed by HPLC. 

 

4.3.3 Modification of peptide cross-linkers with acrylate groups 

Di-acrylation of both peptides was achieved, as indicated by the 1H NMR spectra 

shown in Figure 4.8. However, despite pH-based optimization (towards pKa of targeted 

amines) and varying molar ratios, the highest di-acrylation achieved was a degree of 

substitution (average) up to 1.75. This indicates that a significant portion of peptide had 

only one acrylate substitution, which would affect hydrogel cross-linking. Another 

possible reaction scheme would involve the side chain primary amines on the center 

arginine/lysine (trypsin cleavage site) being modified with acrylate groups. This is 

problematic in that it may prevent full cleavage of the hydrogel by trypsin. 
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 With these results, it became apparent that the most feasible pathway to continue 

was to use cysteine-containing peptides (with sulfhydryl groups) to react with acrylated 

polymers. Thus, successful peptide synthesis would result in two readily available 

sulfhydryl groups per peptide, without the need for further modification (as well as 

peptide loss through modification and purification). 

 

 

Figure 4.8 NMR spectra for di-acrylated QVRAHGK peptide (acrylate groups 
magnified within the inset figure) 
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4.3.4 Modification of chitosan with acrylate groups by EDC/NHS chemistry 

Addition of acrylate groups to chitosan, carried out using EDC/NHS chemistry, 

was successful, as verified by a sample 1H NMR shown in Figure 4.9. However, the 

presence of several other unexplained peaks, despite careful dialysis and methodically 

varying molar ratios in the reaction, indicated the presence of other side reactions and 

polymerizations. This method was therefore not continued, and other methods (namely, 

glycidyl methacrylation of chitosan) were explored. 

 

Figure 4.9 1H NMR spectra for chitosan modified with acrylate groups by EDC/NHS 
chemistry (magnified spectra shown in inset window) 
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Figure 4.10 1H NMR spectra for chitosan modified with methacrylate groups by reaction 
with triethylamine and glycidyl methacrylate 

 

4.3.5 Modification of chitosan with glycidyl methacrylate 

As discussed above, another method for modification of chitosan with acrylate 

groups, to produce cleaner products, was desired. A new modification scheme for the 

methacrylation of chitosan, using triethylamine and glycidyl methacrylate, was developed 

based on methacrylation schmes for hyaluronic acid [42]. With this reaction, the 

methacrylate group is added onto the hydroxyl group, rather than amine groups. This 

Unmodified  
Chitosan 

Methacrylated  
Chitosan 

Acrylate 
Peaks 

New Methyl 
Peak 



 100 

allows for the possibility of greater degrees of substitution, as every chitosan monomer 

subunit contains a hydroxyl group. In contrast, the presence of primary amines on 

chitosan (for EDC/NHS reaction) depends on the degree of deacetylation of the chitosan 

(from chitin). 

Using this protocol, degrees of substitution up to 21% were achieved, as was 

confirmed by 1H NMR. Figure 4.10 displays the NMR spectra of unmodified chitosan in 

contrast with the methacrylated chitosan spectra below. Methacrylate peaks are clearly 

visible in the 5.5-6.5 ppm range. 

 

4.3.6 Michael addition cross-linking of polymer with enzymatically-responsive 
peptides 

Gel formation between CGRGGC and 4-arm-PEG-acrylate was observed within 

15 minutes in all samples in TEA buffer. TEA buffered samples in the range of pH 7.6 

and higher began forming gels at room temperature, prior to putting into the incubator. 

However, the samples remained incubated overnight to ensure complete reaction. 

Samples in PBS primarily formed loose or inconsistent gels, and were not used. Figure 

4.11 shows a sample of these hydrogels formed in 0.3M TEA buffer at pH 8.15. Little to 

no gel was formed in 2-8% w/v, loose gels formed in 10-12% w/v, and stiffer gels formed 

at 14-20% w/v. 

Gel formation between CGRGGC and methacrylated chitosan was wholly 

unsuccessful, with only loose and inconsistent gels being formed. In large part, the issue 

was that the methacrylated chitosan proved difficult to dissolve into solution. Chitosan is 

already quite viscous and difficult to work with, and the addition of methyl groups likely 

resulted in even greater hydrophobicity. The chitosan portion of this project was therefore 

not continued. 
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Preliminary characterization studies of 20, 40, 60, and 80% (w/v) gels composed 

of PEG-4-Acr (MW 20kDa) and CGRGGC peptide showed that the gels did not 

completely hydrolytically degrade until days 5, 9, 9, and 11, respectively, when left in 

PBS pH 7.4 at 37°C (Figure 4.12). 

Higher percent composition gels displayed the greatest structural integrity, longest 

time before hydrolytic degradation, and tightest theoretical network (to maintain drug 

encapsulation), while still displaying high swelling behavior. Gels of 80% composition, 

though possible to make, had practical issues in handling and synthesis, due to the high 

viscosity of precursor solutions. Therefore, moving forward, 60% w/v composition 

hydrogels were chosen to move forward into the particle synthesis phase of Aim 1.  

 

 

Figure 4.11 Bulk enzymatically-degradable microgels formed by Michael addition 
between PEG-4-Acr and CGRGGC peptide of various percent weight by 
volume composition 
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Figure 4.12 Swelling and degradation behavior of PEG-4-Acr and CGRGGC peptide 
hydrogels formed via Michael addition 

 

4.4 CONCLUSIONS 

Through the series of experiments shown here, it was concluded that the 

optimized hydrogel composition moving forward into Aim 1B would consist of the 

following: 

• 4-arm Poly(ethylene glycol) acrylate 

• CGRGGC peptide 

• 60% w/v gel composition 

• 0.3M triethanolamine buffer at pH 7.6 or higher 
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Chapter 5: Development of the Michael Addition During Emulsion 
(MADE) Method for Fabricating Enzyme-Responsive Microgels 

 

5.1  INTRODUCTION 

As described in the preceding chapters, enzymatically-degradable hydrogels offer 

several engineered material advantages over other types of polymers used in drug 

delivery today. Furthermore, the ability to perform polymerization cross-linking of these 

types of hydrogels under mild conditions, using a Michael addition cross-linking 

reaction, makes these materials ideal candidates for next generation drug vehicles. The 

ability to scale this hydrogel synthesis method down to create microgels would be a 

significant step forward in the development of disease-responsive carriers for biologic 

drugs delivered via non-invasive routes. 

This chapter consists of a collection of preliminary data from feasibility and 

optimization studies on several particle synthesis methods, from cryomilling to molding, 

before arriving at the optimized Michael Addition During Emulsion (MADE) synthesis 

method. In-depth characterization of the microgels is discussed in the following chapter. 

 

5.1.1 Design Criteria 

Taking several of the same criteria from the previous chapter, the design criteria 

for the microgel synthesis method included: 

• optimum Michael addition reaction conditions (physiological pH and 

temperature) 

• maintain bioactivity of biologic drugs using mild manufacturing techniques. 
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However, several new criteria were also considered in order to create the ideal 

particle synthesis method: 

• size range of approximately 1-5 μm 

• efficient recovery after synthesis 

• low residual volume or material loss during synthesis 

• stability and shelf life 

• high-throughput 

• high encapsulation efficiency 

• low cost for start-up and continuous operation. 

 

5.1.2  Context and Perspective 

When work on this portion of the project began, it was not clear that the ultimate 

use of these particles would be for pulmonary drug delivery. It was first determined that 

feasibility studies should be done to see if hydrogel microparticles could be formed using 

Michael addition chemistry, and in what size range. Other primary uses considered, 

besides pulmonary delivery, included oral delivery of proteins and responsive release of 

growth factors in tissue engineering systems. Therefore, many of the methods for forming 

particles discussed throughout this chapter were not ideal methods to fabricate particles in 

the 1-5 micron range (optimal aerodynamic range). Additionally, many of these methods 

were developed and tested concurrently, until one clear “winner” began to emerge. At 

that point, all time and resources were diverted to development in that area. 
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5.2 MATERIALS AND METHODS 

5.2.1 Materials 

Peptide sequence QVRAHGK was custom synthesized by the University of Texas 

at Austin, Institute for Cellular and Molecular Biology, Protein Microanalysis Facility 

(Austin, TX). Peptide sequence CGRGGC was custom synthesized by CHI Scientific 

(Maynard, MA). All 4-arm PEG products were purchased from Laysan Bio (Arab, AL). 

Trypsin from bovine pancreas and paraffin oil was purchased from Sigma Aldrich (St. 

Louis, MO). All other reagents were of at least USP or biological grade, and were 

purchased from either Sigma Aldrich (St. Louis, MO) or Thermo Fisher Scientific 

(Waltham, MA). 

 

5.2.2 Trial and Error: Other Particle Synthesis Methods 

5.2.2.1 Micron Mesh Molding 

Hydrogel pre-cursor solution consisting of 20% total w/v of 4-arm poly(ethylene 

glycol) sulfhydryl (PEG-4-SH, 20kDa molecular weight) and di-acrylated QVRAHGK 

(or PEG di-acrylate, 3400 Da molecular weight) peptide was spread onto a glass slide 

into a thin layer. A nylon mesh screen with a 64 μm pore size was then pressed onto the 

thin polymer solution. The set-up was placed inside a humidity chamber at 37°C for 4 

hours or overnight. The resulting patterned hydrogel particles, affixed to the slide, were 

then viewed under the microscope. Particles were removed from the slide by scraping, 

and any leftover residual layer was broken up to release the particles by stirring in de-

ionized water for several hours. 
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5.2.2.2 Mortar and Pestle Grinding Under Liquid Nitrogen 

Hydrogels were made by combining 4-arm poly(ethylene glycol) acrylate (PEG-

4-Acr, 20 kDa molecular weight) with CGRGGC peptide in 0.3M TEA buffer at pH 8.15 

at a 20% w/v composition. The mixture was incubated at 37°C for four hours. The 

resulting hydrogel was then removed from the reaction vessel, placed in a mortar, and 

submerged in liquid nitrogen until frozen through (about 1 minute). A pestle was used to 

crush the hydrogel for approximately 3 minutes, replenishing liquid nitrogen about once 

per minute. The resulting crushed hydrogel particles were recovered from the mortar 

using 3ml of 1% poly(vinyl alcohol), or PVA, in de-ionized water. The use of liquid 

nitrogen was required make the hydrogel brittle enough to break apart. 

 

5.2.2.3 Cryogenic Milling 

Hydrogels (500 mg each) were pre-prepared as above in section 5.2.2.2 . The 

resulting gels were cut into ¼ inch pieces, snap frozen in liquid nitrogen, and lyophilized 

for 48 hours. Using a SPEX Sample Prep (Metuchen, NJ) 6870 Freezer/Mill, the 

following cycles were programmed and run: 

• 10 minute pre-cooling in liquid nitrogen 

• 2 minute milling at a rate of 10 cycles per second (20 impacts per second) 

• 2 minute re-cooling 

• Repeated for 8 cycles 

The chamber and impactor were then placed in a 37°C water bath for 1 hour to 

equilibrate in temperature, avoiding condensation when opening the chamber. Resulting 

particles were then collected from the milling chamber. One additional optional step was 

to place the sample on an orbital shaker for 48 hours to break up clumps. 
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5.2.2.4 Reactive Spray Drying 

Peptide-crosslinked microparticles will be obtained by spraying the macromer 

precursor solutions through the nozzle (0.7 mm diameter) of a spray dryer (co-current 

flow type) model Mini Spray Dryer Büchi B-191 (Büchi Labortechnik AG, Flawil, 

Switzerland) as mentioned elsewhere62,63. In spray drying, the inlet air temperature with 

the polymer spray is usually around 100°C, which is intended to quickly evaporate off all 

water in the particles.  However, we want to ensure protection of the peptide and model 

drug IFN-β from high temperature denaturation; thus a cooler injection temperature of 

60°C is proposed and will be optimized. The conditions of the spray-drying process will 

involve following parameters: inlet air temperature 60°C; outlet air temperature 60°C; 

pump ratio 13%; aspirator ratio 73%; flow control 400/600 l/h and spray rate of feed 

about 8 ml/min. Following parameters will be extensively optimized in the process: 

crosslinking density (% w/v), effect of solution pH (7-8.5), air flow speed, and 

temperature. We hypothesize that Spray dryer temperature at 60°C should allow for quick 

formation of microparticles and also quickly dry them to prevent any aggregation in the 

collection chamber. The dried (or semi-dried) microparticles will be harvested from the 

apparatus collector and kept under vacuum for 24-48 hours at room temperature for 

complete drying.  

 

5.2.2.5 Handheld Nebulization 

As a proof-of-concept, microparticle fabrication, using the 4 arm PEG-SH and the 

acrylated peptide was performed using a Valois handheld nasal-spray type nebulizer.  

Briefly, 200μl of polymer and peptide in 0.3M TEA buffer at pH 8.15 was fed into the 

nebulizer inlet. The solution was sprayed onto a clean hydrophobic surface at 37°C, or a 
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shallow bath of warm paraffin oil, allowed to react for 3 hours, vacuum-dried overnight, 

and harvested using a scraper.   

 

5.2.3 Michael Addition During Emulsion (MADE) Method for Microgel Synthesis 

5.2.3.1 Choice of Surfactants 

Several surfactants were tested out in the course of this study to determine which 

worked best with different types of emulsions. Surfactants included poly(vinyl alcohol) 

and several in the Brij, Tween, and Span family.  

Several surfactant combination recipes were also used. For the water-in-paraffin 

oil emulsion, a hydrophilic-lipophilic balance (HLB) ranging from four to six was desired 

[1,2]. To determine concentrations of each component surfactant, the following equation 

was solved for each combination: 

 

HLB of surfactant mixture = Σχs × HLBs 

 

where χs is the weight fraction of each surfactant, and HLBs is its corresponding HLB. 

Apart from varying the HLB and surfactant combinations, different percent compositions 

of surfactant in the emulsion were also considered, ranging from 0.01% to 3%. 

Surfactant mixtures were eliminated using a method adopted by Fisher and 

Peppas [3]. Briefly, the stability of test emulsions, consisting of 0.3M TEA buffer and 

paraffin oil, were observed under light microscopy (40x). Following homogenization, a 

sample of the emulsion was placed on a glass slide with a coverslip and observed. If a 

high incidence of droplet coalescence was observed within 1 minute, the emulsion was 

considered unstable. 
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5.2.3.2 Choice of Emulsion Oil 

Two types of “oil,” or organic, solvents were considered for the emulsion process: 

(1) evaporative, or (2) viscous, non-evaporative. Namely, dichloromethane (DCM) was 

chosen as an evaporative “oil” to facilitate the removal of the oil phase after the 

emulsion. On the other hand, evaporative organic solvents tend to have low viscosities, 

and it was postulated that a viscous oil could contribute towards stabilizing the emulsion. 

Therefore, paraffin oil was chosen as the viscous, non-evaporative oil. A ratio of 15 mL 

oil to 100 μL water/aqeous phase was set and maintained for all experiments (15 mL is 

the minimum operating volume for a 50 mL Corning® centrifuge tube with the particular 

homogenizer used).  

 

5.2.3.3 Other Optimization Parameters 

Aside from varying the surfactant composition and emulsion oil, other parameters 

for optimization included the pH of reaction buffer (0.3M TEA), homogenization speed, 

and washing steps. 

 

5.2.3.4 MADE Basic Protocol 

Equimolar amounts (sulfhydryl:acrylate) of peptide and PEG-4-acr were 

dissolved separately into 0.3 M triethanolamine buffer to a total combined concentration 

of 60% (w/v), in a total volume of 100 μL. The two solutions were combined, mixed, and 

added to 15 mL of paraffin oil with varying surfactant combinations and concentrations. 

The entire mixture was then immersed in a hot water bath at 40–45 °C and homogenized 

for 3 min at 3000-5000 rpm using a Polytron PT 3100 homogenizer. The resulting 
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surfactant-stabilized water-in-oil emulsion was incubated for at least 2 hours at 37 °C to 

allow the cross-linking reaction to complete, forming solid, cross-linked, micro-sized 

hydrogels (microgels). Thus, as the reaction proceeds, the mixture becomes a suspension 

of solid microgels in oil, rather than an emulsion. These microgels were removed from 

oil, residual surfactant, and un-reacted material by a series of centrifugal washes with 

fresh oil and water. Briefly, microgels were centrifuged at 10,000×g for 20 min, 

supernatant discarded, re-suspended in de-ionized water, and vortexed. The process was 

repeated three times, with the final re-suspension in either de-ionized water, phosphate 

buffered saline, or 100 mM ammonium bicarbonate (depending on the buffer required for 

various assays). 

 

5.2.4 Microgel Degradation 

Hydrogel microparticles were allowed to re-hydrate in 40mM ammonium 

bicarbonate in a 37°C incubator for one hour (if previously dried). 100 μL of 1 mg/mL 

Trypsin (in 1mM hydrochloric acid) was added to hydrogel particles in 900 μL 

ammonium bicarbonate for a final solution of 90% 40mM ammonium bicarbonate and 

10% hydrochloric acid (final concentration of 0.1 mg/mL Trypsin), and placed in a 37°C 

incubator with shaking. Control samples without enzyme contained the same ratio of 

ammonium bicarbonate/hydrocholoric acid solution. Samples were observed at various 

time points for particle degradation.  
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5.3 RESULTS AND DISCUSSION 

5.3.1 Trial and Error: Other Methods 

5.3.1.1 Micron Mesh Molding 

Hydrogels were successfully molded into micron-scale features, as shown in 

Figure 5.1. Figure 5.2 displays the trypsin-mediated degradation of these microparticle 

features on the slides after only two hours. Particles remain affixed to the slide surface in 

these images. Using this method, the particles would often remain interconnected due to a  

 

 

Figure 5.1 PEG hydrogel microparticles formed by the micron mesh patterning press 
method 
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Figure 5.2 Trypsin-mediated degradation of PEG-QVRAHGK hydrogel microparticles 
formed by the micron mesh patterning press method 

 

residual polymer layer, which could be somewhat broken up through high-speed 

vortexing or stirring, though not entirely. 

 

5.3.1.2 Mortar and Pestle Grinding Under Liquid Nitrogen 

Particles were observed via light microscropy of the recovered samples, as shown 

in Figure 5.3. The method, however, proved to be quite variable, difficult to work with, 

and posed a significant safety hazard (even with cryo gloves). Moreover, when the 

particles collected were subject to trypsin degradation, there was no observable change 

after 24 hours exposure. This method was, therefore, not pursued any further. 
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Figure 5.3 Particles formed by mortar and pestle grinding of frozen PEG-CGRGGC 
hydrogel 

 

5.3.1.3 Cryogenic Milling 

As was mentioned in section 5.2.2.2 , shattering of the hydrogel required low 

temperatures, as the hydrogel material was quite soft and pliable at room temperature 

(low Tg). Therefore, cryogenic milling (cryomilling) was explored rather than other 

traditional milling methods. The cryomilling technique was able to produce a fine, free 

flowing powder, as can be seen in Figure 5.4. These particles, however, faced the same 

difficulty observed with the mortar and pestle grinding; the particles were not observed to 

degrade by trypsin within 24 hours. This method was, therefore, not explored further. 
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Figure 5.4 Scanning electron microscope images of cryomilled PEG-CGRGGC 
hydrogel particles 

 

5.3.1.4 Handheld Nebulization 

The particles sprayed onto a hydrophobic surface were on the scale of 500-1000 

μm, were flat and discoidal in shape, and had air-pocket features. Visual observation of 

particles in solution by optical microscope revealed complete particle degradation by 40 

minutes.  Figure 5.5 shows particle degradation at 0 and 30 minutes. 
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Figure 5.5 Trypsin-driven degradation of enzymatically-responsive hydrogel particles 
formed by nebulization.  Control group remains intact, whereas Trypsin 
group is degraded after 30 minutes. 

 

5.3.1.5 Other Methods 

Other ideas and set-ups explored for feasibility included set-up of a microfluidic 

syringe pump system and preliminary studies into reactive spray drying [4]. The 

microfluidic syringe pump system consisted of a double-barreled syringe, individually 

loaded with precursor polymer solution, which would mix together in the mixing tip. 

Another line was introduced into the system to maintain a flow of paraffin oil. The 
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syringe pump would slowly pump micro-droplets of polymer solution into the oil, which 

would collect in a heated vessel with paraffin oil. Ultimately, the system proved to be too 

slow and low-throughput to continue developing in comparison to other methods. 

An attempt at “reactive spray drying” [4] was carried out using PEG-4-Acr and 

PEG-DA, suspended in 70% ethanol/30% 0.3M TEA pH 8.15. Using a Mini Spray Dryer 

Büchi B-191 (Büchi Labortechnik AG, Flawil, Switzerland), the following conditions 

were attempted in order to achieve an outlet temperature near the optimum reaction 

temperature: 

• Rate 2 mL/min, Inlet 70°C, Outlet 40°C 

• Rate 2 mL/min, Inlet 100°C, Outlet 55°C 

• Rate 5 mL/min, Inlet 100°C, Outlet 50°C 

All of these runs resulted in a sprayed coating of PEG film in the collection 

chamber, which may have been a reacted PEG hydrogel film, or simply a PEG film, as 

the melting point of PEG is approximately between 45-50°C (depending on molecular 

weight). No further runs were attempted. 

 

5.3.2 Michael Addition During Emulsion (MADE) Method for Microgel Synthesis 

Microgels were successfully formed using a variety of conditions, as described in 

section 5.2.3 . A sampling of microgel images formed using various emulsion oils and 

surfactants is shown in Figure 5.6. When using DCM as the emulsion oil, it was observed 

that the microgels did not seem to be fully formed, and there was an abundance of 

leftover unreacted monomer. This likely was due to the evaporative cooling of DCM after 

the emulsion process. Emulsions carried out using viscous, non-evaporative paraffin oil 

were all well-formed, discrete particles. Furthermore, these microgels (PEG-CGRGGC 
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microgels with 0.01% Brij 30 with paraffin oil) were verified to undergo trypsin-

mediated degradation, depicted in Figure 5.7. This preliminary work indicated that the 

Michael Addition During Emulsion (MADE) method for microgel synthesis could be 

further optimized and fine-tuned to produce enzymatically-degradable microgels within 

the desired range of 1-5 μm. 

 

 

Figure 5.6 Light microscrope images of microgels formed under varying conditions by 
the MADE method 
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Figure 5.7 Trypsin-mediated degradation of PEG-CGRGGC microgels synthesized 
using the MADE method 

 

5.3.2.2 Emulsion Optimization to Tune Microgel Size 

Parameters to optimize microgel size included homogenization speed, time, and 

surfactant concentration. Homogenization time beyond three minutes was not observed to 

affect microgel size. Immersion of the vessel in a 40-45°C hot water bath, rather than at 

room temperature, during the emulsion process was visually observed under light 

microscopy to minimize microgel agglomerates (microgels that cross-linked together), 
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although this point was not further studied beyond visual observation. Homogenization 

speeds up to 5000 RPM did not appear to significantly affect microgel size as compared 

to 3000 RPM (Figure 5.8).   

The surfactant cocktail was found to be the most critical parameter in changing 

microgel size.  Several surfactants and combinations were evaluated to identify those that 

provided the longest droplet stability time, as previously described [3]. Out of the many 

surfactant combinations adopted here, an HLB value of five using a combination of Span 

80 and Tween 80 was deemed the most stable and uniform. Although other combinations 

in the HLB range from five to six were also fairly stable, those with an HLB value of five 

were the most uniform. Furthermore, although use of Brij 30 also was successful in 

creating stabilized emulsions, groups of agglomerated droplets were observed in Brij 30 

samples, which were not observed in others. Varying the percent concentration of 

surfactant in emulsion did produce the expected shift in particle size distribution, as seen 

in Figure 5.8. However, microgel batches with 3% surfactant required more extensive 

washing than those of lower percentages. The final optimized surfactant cocktail was 

found to be a combination of Span 80 and Tween 80, in a mixture ratio to achieve an 

HLB of five, at a concentration of 1% volume by volume of surfactant in paraffin oil. The 

final optimized homogenization conditions were a three minute homogenization time at 

3000 RPM while immersed in a 40-45°C hot water bath. 

Parameters to optimize Michael addition cross-linking included buffer, pH, and 

reaction temperature. PEG-4-acr and peptide were combined in equimolar concentrations, 

adjusted for PEG-4-acr degree of acrylate substitution and the percent purity of PEG and 

peptide. The chosen buffer was 0.3M triethanolamine, as previously reported in the 

literature [5-7], although a pH of 7.8 was used, rather than a pH of 8.0. Gelation is 

observed to occur within seconds, even at room temperature, and a more basic pH 
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increases the reaction rate [8]. Using a slightly less basic pH 7.8 buffer allowed for more 

time to uniformly mix the combined polymer/peptide solution, using pipette aspiration, 

and transfer to the emulsion vessel before gelation prohibited pipetting of the solution. 

PBS from pH 7.0 to 8.4 was also evaluated for suitability, but it was observed that the 

triethanolamine buffer yielded an overall faster reaction time. The incubation temperature 

after emulsion was kept at 37°C in order to minimize any temperature-related denaturing 

of encapsulated biologics. Lastly, in order to minimize disulfide bond formation, the 

reaction buffer was not added to the peptide until immediately before mixing with the 

PEG-4-acr solution. 

 

 

Figure 5.8 The effect of surfactant concentration and homogenization speed on MADE-
fabricated microgel particle sizes 
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5.3.2.3 Final Adopted Protocol for MADE Method 

An illustration depicting the basic steps in the MADE method is shown in Figure 

5.9. Adapted from P. Wanakule, et. al. [9]: Equimolar amounts (sulfhydryl:acrylate) of 

di-sulfhydryl peptide and PEG-4-acr (10 kDa) were dissolved separately into 0.3 M 

triethanolamine buffer at pH 7.8 to a total combined concentration of 60% (w/v), in a 

total volume of 100 μL. The two solutions were combined, mixed, and added to 15 mL of 

paraffin oil with 1% (v/v) surfactant (Span 80/Tween 80 combination to achieve an 

HLB=5). The entire mixture was then immersed in a hot water bath at 40–45 °C and 

homogenized for 3 min at 3000 rpm using a Polytron PT 3100 homogenizer. The 

resulting surfactant-stabilized water-in-oil emulsion was incubated for at least 2 h at 37 

°C to allow the cross-linking reaction to complete, forming solid, cross-linked, micro-

sized hydrogels (microgels). Thus, as the reaction proceeds, the mixture becomes a 

suspension of solid microgels in oil, rather than an emulsion. These microgels were 

removed from oil, residual surfactant, and un-reacted material by a series of centrifugal 

washes with fresh oil and water. Briefly, microgels were centrifuged at 10,000×g for 20 

min, supernatant discarded, re-suspended in de-ionized water, and vortexed. The process 

was repeated three times, with the final re-suspension in either deionized water, 

phosphate buffered saline, or 100 mM ammonium bicarbonate (depending on the buffer 

required for various assays). 

 



 127 

 

Figure 5.9 Illustration depicting basic steps in the MADE method 

 

5.4 CONCLUSIONS 

In this chapter, a variety of particle synthesis methods, using Michael addition 

cross-linked hydrogels, were explored in order to develop the most high-throughput and 

cost-effective fabrication method, while maintaining mild fabrication conditions. Out of 

all methods explored, the MADE synthesis method emerged as the clear choice for 

continued study and use. Preliminary data demonstrated that the microgels could be 

formed in the desired size range of 1-5 μm, and also maintain enzyme-responsiveness. 

Further characterization of these microgels is discussed in the following chapters. 
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Chapter 6: In Vitro Characterization of Microgels Fabricated using the 
MADE Method 

 

[This chapter was adapted, with permission**, from P. Wanakule, G.W. Liu, A.T. Fleury, 

K. Roy††, Nano-inside-micro: Disease-responsive microgels with encapsulated 

nanoparticles for intracellular drug delivery to the deep lung, J Control Release. 162 

(2012) 429–437.] 

 

6.1 INTRODUCTION 

In recent years, there has been increasing interest in developing systems for the 

controlled delivery of therapeutic molecules to the lungs, especially to intracellular 

targets in the deep lung.  Pulmonary drug delivery has great potential for both local and 

systemic treatments, especially with newly emerging biologic drugs, such as proteins, 

peptides and nucleic acids. Aside from its attractiveness as a non-invasive route of 

administration, delivery via pulmonary inhalation offers several advantages, including a 

large surface area with high vascularization for drug absorption, thin epithelial layer, low 

enzymatic activity, and avoidance of first-pass metabolism [1-3].   

Despite the many advantages, there exists several design challenges to achieve 

efficient and effective delivery of biologic drugs inside cells of the deep lung.  The 

                                                 
** Copyright 2012 From Nano-inside-micro: Disesase-responsive microgels with encapsulated 
nanoparticles for intracellular drug delivery to the deep lung, by P. Wanakule et al. Reproduced by 
permission of Elsevier Limited. Elsevier Limited retains the copyright for all text, figures, and tables 
reproduced here. 
†† Statement of co-author contribution: This chapter was written by Prinda Wanakule, with editorial and 
content assistance by Krishnendu Roy (research supervisor). All results, methods, and ideas described in 
this chapter are original works by Prinda Wanakule, with assistance in the laboratory by undergraduate 
student Gary W. Liu and Masters student Asha T. Fleury. 
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established range for optimal aerodynamic particle diameter to achieve efficient deep 

lung deposition (following inhalation) is between 0.5-5μm [1,2,4].  Significant fractions 

of particles with aerodynamic diameters (da) <0.5μm may fail to deposit, and are exhaled, 

whereas particles >5μm tend to deposit in the mouth and throat [1,2,4].  However, the 

rate of particle clearance by alveolar macrophages is especially high in this optimum 

aerodynamic diameter range [5-7].  To avoid this rapid clearance, particles must typically 

have a geometric diameter (dg) >6μm [4,6], and have hydrophilic, rather than 

hydrophobic, surface chemistry [5,7].  In addition, drugs that are targeted to intracellular 

pathways and molecules, such as siRNA, DNA or intracellularly-targeted proteins or 

peptides, often require nanoscale carriers <0.2μm to improve mucus penetration [8] and 

cellular uptake in airway epithelial cells [9,10].  These conflicting requirements make for 

a complex design space where the ideal carrier should be 0.5<da<5μm during inhalation, 

have a dg >6μm following lung deposition, and dg<0.2μm to penetrate the mucus and 

deliver drugs intracellularly.  Additionally, due to the non-uniform distribution and 

presentation of pathologies in the lungs, it should also be beneficial for pulmonary drug 

carriers to incorporate pathophysiologically-triggered drug release mechanisms to 

minimize non-specific side effects on normal cells [11,12].  

To address these challenges, we have developed an innovative nanoparticle-in-

microgel delivery system comprised of swellable, peptide-cross-linked microgel-carriers 

encapsulating therapeutic drugs and nanoparticles.  These carriers were fabricated using a 

novel method of Michael addition during (water-in-oil) emulsion (MADE).  This new 

method avoids exposure to UV, high temperatures, or organic solvents, all of which could 

potentially denature biologic drugs [13].  Here we report the potential of this 

nanoparticle-in-microgel system as inhalable carriers with (a) optimal aerodynamic 

diameter, (b) ability to avoid rapid clearance by alveolar macrophages (c) high 
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drug/nanoparticle loading efficiency and (d) efficient triggered release in response to 

disease-specific enzymes.  In this study, we use trypsin as a convenient model enzyme to 

trigger the drug release, although the system could be tailored in the future for various 

disease-specific enzymes, including matrix metalloproteinases, cathepsins, etc. [11].  

The Amiji group has previously reported a gelatin-poly(caprolactone)-based 

nanoparticle-in-microparticle system for oral delivery of plasmid DNA [14].  Edwards 

and colleagues have reported porous, micron-sized structures assembled from 

nanoparticles for pulmonary delivery [15].  Bawendi, Fukumura and co-workers have 

also reported a 10nm-QD-in-100nm-gelatin particle construct for efficient penetration 

into tumor tissue, which releases the QDs (quantum dots) upon exposure to matrix 

metalloproteinases [16].  In addition, a swellable hydrogel particle for pulmonary 

delivery has been recently described [4], and peptide-containing hydrogels have long 

been used for extracellular matrix mimicking scaffolds [17,18], with few reports on their 

application in drug delivery [19,20].  However, a swellable, multi-tiered two-stage 

system that incorporates all the design barriers for intracellular deep lung delivery for 

biologic drugs has not been introduced.  The nanoparticle-in-microgel system described 

here could have a significant impact in pulmonary delivery of biologics by increasing 

deep lung deposition, avoiding clearance by alveolar macrophages and delivering 

therapeutics intracellularly in response to disease-specific stimuli. 

 

6.2 MATERIALS AND METHODS 

6.2.1 Materials 

Four-arm-poly(ethylene glycol)-acrylate-10kDa (PEG-4-acr) was obtained from 

Laysan Bio (Arab, AL).  The peptide sequence, CGRGGC (cysteine-glycine-arginine-
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glycine-glycine-cysteine), was specifically designed in lab to have high specificity for 

trypsin [21,22], then custom synthesized by CHI Scientific (Maynard, MA).  All other 

chemicals and reagents were purchased from Sigma Aldrich (St. Louis, MO) unless 

otherwise specified.  Cell lines used in this study were purchased from ATCC® 

(Manassas, VA), and included A549 human lung epithelial cells (CCL-185™), HEK 293 

human embryonic kidney cells (CRL-1573™), and RAW 264.7 mouse 

monocytes/macrophages (TIB-71™).  Cells were cultured according to recommendations 

by ATCC® for each cell line. 

 

6.2.2 Synthesis of enzymatically-degradable microgels 

Enzymatically-degradable microgels were synthesized using a newly developed 

method of Michael addition cross-linking during water-in-oil emulsion (MADE), wherein 

the cross-linking occurs through a Michael-addition reaction within surfactant stabilized 

aqueous droplets to form microgels.  Equimolar amounts (sulfhydryl:acrylate) of the 

trypsin sensitive di-sulfhydryl peptide (CGRGGC) and PEG-4-acr were dissolved 

separately into 0.3M triethanolamine buffer at pH 7.8 to a total combined concentration 

of 60% (w/v), in a total volume of 100μl.  The two solutions were combined, mixed, and 

added to 15mL of paraffin oil with 1% (v/v) surfactant (Span 80/Tween 80 combination 

to achieve an HLB=5).  The entire mixture was then immersed in a hot water bath at 40-

45°C and homogenized for three minutes at 3000 RPM using a Polytron PT 3100 

homogenizer.  The resulting surfactant-stabilized water-in-oil emulsion was incubated for 

at least two hours at 37°C to allow the cross-linking reaction to complete, forming solid, 

cross-linked, micro-sized hydrogels (microgels).  Thus, as the reaction proceeds, the 

mixture becomes a suspension of solid microgels in oil, rather than an emulsion.  The 
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microgels were removed from oil, residual surfactant, and un-reacted material by a series 

of centrifugal washes with fresh oil and water.  Briefly, microgels were centrifuged at 

10,000xg for 20 minutes, supernatant discarded, re-suspended in deionized water, and 

vortexed.  The process was repeated three times, with the final re-suspension in either 

deionized water, phosphate buffered saline or 100mM ammonium bicarbonate 

(depending on the buffer required for various assays).   

 

6.2.3 Encapsulation of nanoparticles and biologics within microgels 

Nanoparticles and biologics were simply mixed into the PEG-4-acr in 0.3M 

triethanolamine buffer solution to achieve encapsulation within microgels.  All other 

steps were as described in the previous section.  Encapsulated nanoparticles included 

20nm and 40nm FluoSpheres (Invitrogen, Carlsbad, CA), and 200nm PEI-modified 

PLGA nanoparticles (produced in lab [23-27]).  Encapsulated biologics included Alexa 

Fluor® 594 labeled IgG and Lambda DNA (Invitrogen, Carlsbad, CA). 

 

6.2.4 Microgel sizing and characterization 

6.2.4.1 Size and morphology  

Microgels were sized using a Malvern Zen1600 Zetasizer (Malvern Instruments 

Ltd., Worcestershire, United Kingdom) in water (swollen state) or paraffin oil (relaxed 

state).  Particle size and distribution were obtained from the accompanying instrument 

software. 

To observe morphology, the microgels were dried at low vacuum for 48 hours, or 

lyophilized for 24 hours, and analyzed via SEM.  They were also imaged under light 

microscopy during the hydrolytic degradation studies (detailed in section 6.3.2 ) and 
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analyzed using the ImageJ particle analysis toolkit (public domain image processing and 

analysis software from the National Institutes of Health) for sizing.   

Cryo SEM was used to analyze the internal porous structure of the microgels.  A 

drop of microgel suspension in water was added onto the sample holder, flash frozen in 

liquid nitrogen, and fractured open to reveal cross-section using a scalpel.  The sample 

was transferred (EM VCT-100 vacuum cryo transfer system, Leica Microsystems, 

Weitzlar, Germany), sputter coated (Bal-Tec/Leica Med 20), and imaged (Zeiss Supra 40 

VP Scanning Electron Microscope with cryo stage) at low temperature and high vacuum.  

Three batches of microgels were prepared and analyzed. 

 

6.2.4.2 Density and aerodynamic diameter 

Microgel density was determined by centrifugation into discrete sucrose gradients 

of known density, based on the premise that the microgels will come to rest in a solution 

of matching density after adequate centrifugation time.  40%, 30%, 20%, and 10% (w/v) 

sucrose solutions were prepared, and 2mL of each solution was carefully layered (highest 

to lowest density) in a centrifuge tube in order to maintain a discrete interface between 

each.  2mL of microgel suspension in water was then carefully added to the top of the 

gradient, and the set-up was centrifuged at 10,000xg for 20 minutes.  Each gradient layer 

was then collected from the base of the tube using 2mL serological pipets, and sized 

using a Malvern Zen1600 Zetasizer.  Refractive indices were adjusted accordingly for 

each sucrose layer.  The microgel density and z-average size was then used to calculate 

the aerodynamic diameter of the microgels as detailed in the results section. 
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6.2.4.3 Swelling properties 

The extent of particle crosslinking (which determines degradation and release rate 

of encapsulated drugs or nanoparticles) was assessed through swelling studies in PBS 

(pH 7.4).  Specifically, 100mg of microgels were allowed to swell for 24 hours in 15 ml 

PBS with continuous rocking in a 37°C incubator. After 24 hours, swollen microgels 

were collected on filter paper (0.47μm pore) to remove surface water and placed in a pre-

weighed vial (Wv). The weight of the swollen microgels and vial were recorded (Ws,v). 

Microgels were then lyophilized for 24 hours and dry weight was recorded (Wd,v). 

Accordingly, the fold swelling ratio (S) was calculated as:  

 

€ 

S =
Ws,v −Wd ,v

Wd ,v −Wv

 

 

6.2.5 Verification of enzyme-triggered degradation 

CGRGGC-peptide-crosslinked, trypsin-sensitive microgels were studied in the 

presence or absence of trypsin using time-lapse video from a Zeiss Axiovert microscope 

fitted with a Ti:S laser optical trap. A dilute microgel suspension was prepared in trypsin 

digestion buffer (10% 1mM HCl, 90% 100mM NH4HCO3) and a single microgel was 

optically trapped and held stationary in the focal plane for the duration of the study. 

Trypsin (325 U/mL; high concentration to reduce required trapping time) was added and 

the sample was observed for 10 minutes while comparing to control particles without 

enzyme.  
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6.2.6 Enzyme-triggered release of nanoparticles and biologics 

Microgels with encapsulated nanoparticles or biologics were allowed to swell for 

24 hours in trypsin digestion buffer and exposed to physiologically relevant levels of 

enzyme (10-16.5 USP U/mL; no enzyme in control samples) [28].  At each time point, 

the samples were centrifuged at 10,000xg for 20 minutes, and the supernatant was 

collected for analysis in a BioTek Synergy SIAFRTD plate reader (BioTek Instruments, 

Inc., Winooski, VT).  New samples, which were all aliquotted at the beginning of the 

study, were used for each time point.  One aliquot was quickly degraded by trypsin at 0.1 

mg/mL and read in a plate reader to determine encapsulation level, which was set as the 

100% release value to compare with experimental samples. All experiments were 

conducted using commercially available fluorescently labeled molecules or nanoparticles, 

with the exception of lambda DNA, which was fluorescently labeled post-release using 

the Quant-iTTM PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA), following 

manufacturer protocols.   

 

6.2.7 Hydrolysis-mediated release of nanoparticles 

Microgels with encapsulated 40nm Dark Red (ex/em 660/680) FluoSpheres® or 

Alexa Fluor® 594 labeled IgG were loaded into hanging cell culture inserts with a 0.4μm 

filter size (EMD Millipore Millicell, Billerica, MA), then placed into 24-well ultra low 

attachment cell culture plates (Corning® Costar®, Corning, NY).  Approximately 3mg of 

microgels were loaded per well in a total volume of 1.5mL PBS (inside and outside of 

insert).  The entire set-up was wrapped in parafilm and plastic wrap, and placed on a 

rocker in a 37°C incubator for 20 days, or until readings reached a plateau, after which 

the experiment was terminated.  Using this setup, intact microgels remain inside of the 

cell culture inserts, whereas released nanoparticles are free to diffuse out of the insert, 
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and into the well plate.  At various time points, fluid from the well (outside of the insert) 

was sampled for fluorescence measurements using a BioTek plate reader, to measure 

cumulative release of nanoparticles from microgels.  Wells were replenished to maintain 

a volume of 1.5mL PBS. 

 

6.2.8 Cytotoxicity 

Using the MTS Assay (Promega, Fitchburg, WI), cytotoxicity of intact microgels, 

trypsin-degraded microgels, and un-reacted PEG-4-acr and CGRGGC peptide were tested 

on A549 human lung epithelial cells and HEK 293 human embryonic kidney cells.  High 

polymer doses of 0.5 mg/mL or 1.0 mg/mL were used for these studies (approximately 

4350 and 8700 microgels per cell, respectively). The un-reacted condition contained 

PEG-4-acr and peptide in equivalent amounts that would be used to synthesize microgels 

to a total weight of 0.5 and 1.0 mg/mL. 8000 cells were seeded into a 96 well plate with 

100μL of media and incubated at 37°C for 24 hours prior to the addition of the microgels 

and various component conditions.  After 6, 24, and 48 hours exposure, media was 

discarded, 100μL of fresh media and 20μL of MTS reagent was added to each well, 

incubated for 25 minutes, and the absorbance was read at 490nm using a BioTek plate 

reader.  

 

6.2.9 In vitro microgel uptake studies 

The potential for clearance by alveolar macrophages was evaluated though 

macrophage uptake studies both qualitatively by confocal microscopy, and quantitatively 

using flow cytometry analysis.  20nm-sized Dark Red (ex/em 660/680) FluoSpheres® 

were encapsulated within the microgels for use as a fluorescent tracer.  Uptake of 
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microgels was compared relative to uptake of 1μm-sized Orange (ex/em 540/560) 

FluoSpheres (Invitrogen, Carlsbad, CA) as a positive control.  

For confocal microscopy, 2 x 106 RAW 264.7 mouse monocytes/macrophages 

were seeded into a 6-well plate with a poly-L-lysine coated microscope coverslip at the 

base.  At various time points after particle incubation (15, 30 minutes, 1, 2, 12, and 24 

hours), the cells were fixed and stained according to the manufacturer instructions using 

DAPI nucleic acid stain and Texas Red-X labeled phalloidin (Invitrogen, Carlsbad, CA).  

The coverslips were then mounted onto glass slides and imaged on a Leica SP2 AOBS 

Confocal Microscope (Leica Microsystems). 

For flow cytometry analysis, 5 x 104 macrophages were seeded per well in a 24-

well plate.  Along with an untreated control sample, cells were treated with 1μm Orange 

FluoSpheres, 20nm Dark Red encapsulated FluoSpheres encapsulated inside microgels, 

and 20nm Dark Red FluoSpheres alone (for a signal comparison).  After 2 hours, cells 

were washed and agitated six times with PBS to remove free particles, gently removed 

using a cell scraper, and re-suspended in PBS.  Analysis was carried out on an Accuri C6 

flow cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ) using FL2 for 

1μm Orange FluoSpheres and FL4 for both 20nm Dark Red FluoSpheres encapsulated in 

microgels and naked 20nm Dark Red FluoSpheres.  An untreated control was used to 

establish baseline autofluorescence. 

 

6.3 RESULTS AND DISCUSSION 

6.3.1 PEG-peptide microgels can be efficiently synthesized using the MADE method 

Microgels were formed by the newly developed Michael addition during (water-

in-oil) emulsion (MADE) process, which offers the advantages of large batch size and 
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simple manufacturing under mild conditions.  Typical batches studied here consisted of 

60mg combined total weight of PEG-4-acr and CGRGGC peptide in 100µl of reaction 

buffer, giving a final 60% weight by volume percent hydrogel (w/v).  Weight percentages 

higher than 60% were difficult to solubilize, and thus, were not explored further.  Lower 

polymer weight percentages were also achieved using the MADE method, but were not 

explored in this study.  After washing, typical microgel recovery was ~75% of the initial 

polymer weight. 

Parameters to optimize microgel size included homogenization speed, time, and 

surfactant concentration.  Homogenization time beyond three minutes was not observed 

to affect microgel size.  Immersion of the vessel in a 40-45°C hot water bath, rather than 

at room temperature, during the emulsion process was observed (under light microscopy) 

to minimize microgel aggregation.  Homogenization speeds up to 5000 RPM did not 

affect microgel size as compared to 3000 RPM (data not shown).  The surfactant cocktail 

was found to be the most critical parameter in changing microgel size.  Several 

surfactants and combinations were evaluated to identify those that provided the longest 

droplet stability time, as previously described [29].  The final optimized surfactant 

cocktail was found to be a combination of Span 80 and Tween 80, in a mixture ratio to 

achieve a hydrophile lipophile balance (HLB) of 5, at a concentration of 1% v/v of 

surfactant in paraffin oil.  The final optimized condition for synthesis involved a three 

minute homogenization time at 3000 RPM while immersed in a 40-45°C water bath. 

Parameters to optimize Michael addition cross-linking included buffer, pH, and 

reaction temperature.  PEG-4-acr and peptide were combined in equimolar 

concentrations, adjusted for degree of acrylate substitution and the percent purity of PEG 

and peptide.  The chosen buffer was 0.3M triethanolamine, as previously reported in the 

literature [27,30,31], although a pH of 7.8 was used, rather than a pH of 8.0.  Gelation 
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was observed to occur within seconds, even at room temperature, and a more basic pH 

increased the reaction rate [32].  Using a slightly less basic pH of 7.8 allowed for more 

time to uniformly mix the combined polymer/peptide solution, using pipette aspiration, 

and transfer to the emulsion vessel before gelation prohibited pipetting of the solution.  

PBS from pH 7.0 to 8.4 was also evaluated for suitability, but it was observed that the 

triethanolamine buffer yielded an overall faster reaction time.  The incubation 

temperature after emulsion was kept at 37°C in order to minimize any temperature-

related denaturing of encapsulated biologics.  Lastly, in order to minimize inter-peptide 

disulfide bond formation, the reaction buffer was not added to the peptide until 

immediately before mixing with the PEG-4-acr solution. 

Microgel morphologies in different hydration states were observed under SEM 

(dry), cryo SEM (wet, frozen) and light microscopy (wet), as shown in Figure 6.1 (page 

142).  In contrast to the smooth and spherical morphology observed under wet conditions, 

lyophilized microgels (Figure 6.1A), although mostly spherical, had a wrinkled surface.  

This was likely due to the high vacuum collapsing the internal porous structure, 

consistent with hydrogel microstructure.  When drying the samples under low pressure 

with a bench top Nalgene vacuum chamber, microgels retained their smooth spherical 

surface (Figure 6.1B).  Cryo SEM was performed on a swollen suspension of microgels 

in water to observe the surface architecture, internal morphology, as well as size in the 

wet, swollen state.  As shown in Figure 6.1C, cryo SEM revealed a porous internal 

network structure, indicating successful Michael addition-type cross-linking to form 

hydrogel microparticles within an emulsion droplet.  This is further evidenced by the 

swelling and hydrolytic degradation behavior observed over time.  The fold swelling ratio 

of the microgels across three separate batches was found to be 17.683±4.8394 (average ± 
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standard deviation), indicating the microgels are able to absorb approximately 18 times 

their dry weight in water. 

 

6.3.2 Microgel sizes are within the optimum range for deep lung delivery by 
inhalation 

In order to achieve effective delivery via pulmonary inhalation, the aerodynamic 

diameter of a particle should be in the range of 0.5-5µm [1,2,4]. The aerodynamic 

diameter (da) is dependent on the physical diameter, shape, and density of the particle.  

For a spherical particle, this is given by the equation 

 

€ 

da = ρ0.5dg  

where ρ is the density and dg is the geometric diameter [1].  Previous groups have shown 

success in pulmonary delivery using large porous particles, with larger geometric 

diameters, but low densities [15,33,34].  Given the highly porous nature of hydrogels, we 

theorized that microgels would have a low density while maintaining a larger geometric 

diameter, capable of carrying a higher drug payload.   

Due to the dynamic changes in microgel sizes based on states of hydration, 

microgels were sized while still in oil (relaxed state), immediately after washing into 

water, and at various time points afterwards to observe swelling and degradation 

behavior.  Microgels had an average geometric diameter of 1.660±1.362µm in the relaxed 

state (in oil, Malvern Zetasizer).  Immediately after washing into water, the average 

geometric diameter was 1.893±2.729µm (in water, Malvern Zetasizer).   

Michael addition reactions between PEG-4-acrylate and sulfhydryl groups result 

in the formation of a hydrolytically degradable ester bond [13,32].  Slow hydrolytic  
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Figure 6.1 Microscopy of microgels in different states of hydration, swelling, and 
degradation.   
(A) SEM image of microgels after 24 hours lyophilization, scale bar = 
10µm.   
(B) SEM image of microgels after 48 hours in a low-pressure vacuum 
chamber, scale bar = 20µm.   
(C) Cryo SEM image of a single microgel frozen in water and fractured 
open under liquid nitrogen to reveal porous cross-section, scale bar = 5µm.   
(D) Light microscope images of microgels in water, showing swelling and 
degradation changes over 19 days in PBS at 37°C, scale bars = 30µm. 
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degradation of the particles was desired to provide an eventual clearance mechanism 

(further discussed in section 6.3.5 ).   

To determine rates of hydrolytic degradation, microgels were kept in PBS in a 

37°C incubator on a rotator.  During the hydrolytic degradation process, microgels 

exhibited increasing transparency, and thus, changes in refractive index (RI).  RI is a key 

parameter in dynamic light scattering (DLS) methods [35] and thus DLS could not be 

used to monitor particle size over time. Instead geometric measurements were taken 

using microscopy images and analyzed using the ImageJ particle analysis software.  The 

gels were sampled and observed out to day 19 (Figure 6.1D), however, geometric 

diameters were measured only to day 13.  Past this time point, microgels became too 

transparent to apply an accurate contrast threshold for the analysis function.  From day 15 

through experiment termination at day 19 only debris (<0.1µm) could be found in the 

samples.  The geometric diameters are summarized in Table 6.1 (page 144), and were 

taken as an average across three separate batches of microgels ± standard error.  For each 

time point, 30 images were analyzed (10 per batch), resulting in average of 

approximately 2250 particles analyzed per time point. 

Our data indicates that after the washing step, the microgels begin to swell and 

have slightly increased size.  By 24 hours after washing, the microgels have increased in 

size to >6µm, the size targeted to avoid macrophage uptake.  The time required to swell 

to >6µm may prove problematic in avoiding alveolar macrophage uptake.  Thus, to 

determine if this had an effect on uptake, we evaluated macrophage uptake at shorter time 

points (section 6.3.5 ). 
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Table 6.1  Microgel Characterization: Size, Swelling, and Degradation 

 Geometric Diameter  
(mean ± standard error) 

Suspension 
Medium 

Measurement 
Method 

Relaxed 1.660±1.362 µm  Paraffin oil DLS 

Washed 1.893±2.729 µm  D.I. water DLS  

Day 1 6.269±0.9148 µm PBS ImageJ 

Day 2 7.321±0.4725µm PBS ImageJ 

Day 3 8.179±2.872 µm PBS ImageJ 

Day 4 7.350±2.162 µm PBS ImageJ 

Day 5 7.816±1.883 µm PBS ImageJ 

Day 7 7.433±1.035 µm PBS ImageJ 

Day 9 10.76±3.165 µm PBS ImageJ 

Day 11 9.922±1.385 µm PBS ImageJ 

Day 13 9.604±3.139 µm PBS ImageJ 

 

In order to determine microgel densities in the hydrated state, microgels were 

centrifuged into discrete sucrose gradients [36].  Interestingly, the average geometric 

diameters of microgels varied across sucrose layers, although the majority of particles 

were visually observed to settle into the 0, 10, and 20% layers.  Theoretical aerodynamic 

diameters were calculated for each fraction, and ranged from 0.3146-5.824µm.  

Fractionated geometric diameters, densities, and aerodynamic diameters are summarized 

in Table 6.2 (page 145), taken as an average across three separate batches.   

The 10% sucrose fraction accumulated the majority of larger-sized microgels, 

resulting in an aerodynamic diameter of 5.824µm.  However, the microgels in the  
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Table 6.2 Microgel Characterization: Density and Theoretical Aerodynamic Diameter 

Sucrose 
Fraction 

Geometric 
Diameter 

Density Theoretical Aerodynamic 
Diameter 

40% 0.2901 µm 1.1764 g/cc 0.3146 µm 

30% 1.338 µm 1.1270 g/cc 1.420 µm 

20% 3.527 µm 1.0810 g/cc 3.667 µm 

10% 5.717 µm 1.0381 g/cc 5.824 µm 

0% 1.890 µm 0.9982 g/cc 1.889 µm 

Overall* 4.694 µm 1.0497 g/cc 4.809 µm 

*Corresponds to overall average normalized by the concentration of microgels in each 
fraction. 
 

remaining fractions had aerodynamic diameters well within the desired range, conferring 

their suitability for use as a pulmonary drug carrier system.  The overall values across the 

entire distribution were determined by normalizing to the concentration of microgels in 

each fraction.  This normalized theoretical aerodynamic diameter, 4.809µm over the 

entire population, is sufficiently within the desirable range for efficient deep lung 

delivery. 

Microgel aerodynamic diameters were not characterized using the Next 

Generation Impactor or Anderson Cascade Impactor systems, as the primary purpose of 

this study was to show the development and characterization of this disease-responsive 

microgel system.  Future work will include formulation development of these microgels 

for use in existing pulmonary delivery devices, such as dry powder inhalers (DPIs), 

nebulizers, and pressurized metered dose inhalers (pMDIs).  Due to the potential of 

hydrolytic degradation of the microgels during wet storage and administration, we 

speculate that dry powder formulations would be most suitable for stability and shelf life.  
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The actual aerodynamic diameter will depend on the device and formulation, and will 

thus be the subject of future study.  

 

6.3.3 Microgels are a versatile therapeutic carrier system, capable of encapsulating 
various biologics and nanoparticles 

We were able to successfully encapsulate a wide variety of nanoparticles and 

biologics, including proteins and nucleotides, within the microgels (Figure 6.2, page 

147).  Encapsulation was achieved by simply adding the nanoparticle or biologic to the 

pre-cursor PEG-4-acr in 0.3M triethanolamine buffer solution, mixing uniformly using 

pipette aspiration, and combining with the peptide solution just prior to emulsion.  Up to 

20μg of IgG and 859μg of nanoparticles were encapsulated per mg of PEG/peptide.  An 

important consideration is the solubility of the biologic or dispersability of the 

nanoparticle in the polymer solution, including whether or not it is lipophilic, and thus, 

more likely to associate with the paraffin oil phase during the emulsion process. 

 

6.3.4 Microgels rapidly degrade and release biologics and nanoparticles in response 
to varying levels of enzyme while efficiently retaining encapsulants in the absence of 
the enzyme 

The use of optical trapping techniques [37] provided a means to capture, view, 

and track the same microgel as it is being exposed to enzyme over time.  Microgels that 

had settled onto the surface of a slide were captured and optically pulled up into 

suspension, such that the reaction would be isotropic, and unhindered by the surface of 

the slide.  Reviewing the time-lapse images, select time points of which are shown in 

Figure 6.3A (page 151), we were able to observe the various stages of enzyme-mediated 

degradation.  The entire time-lapse sequence is provided in the online version of the  
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Figure 6.2 Bright field and fluorescence images of microgels with various fluorescent 
compounds encapsulated, including IgG-labeled with Alexa Fluor® 594, 
200nm PLGA nanoparticles with surface loaded Cy3-labeled siRNA, 20nm 
and 40nm fluorescent polystyrene nanoparticles (FluoSpheres®). Top row 
to bottom row consecutively, scale bars = 10µm, 10µm, 20µm, 30µm.  Up to 
20µg of IgG and 859µg of nanoparticles were encapsulated per mg of 
PEG/peptide. 
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published article [38].  As the enzyme cleaves the peptide cross-links, the particle 

initially begins to swell, which is consistent with increased swelling capacity seen in 

similar hydrogels of lower cross-linking density [18].  At this point, we postulate that the 

enzyme is able to further penetrate into the microgel, resulting in rapid bulk-type erosion.  

Degradation is accelerated due to the nature of the network structure, and remaining 

fragmented components freely dissolve into solution.  

Enzyme-mediated release studies were demonstrated with the encapsulation and 

enzyme-triggered release of fluorescently labeled IgG antibody, lambda DNA, and 20nm 

fluorescent polystyrene nanoparticles (Dark Red FluoSpheres®) in separate experiments.  

Figure 6.3B (page 151) provides a visual confirmation of the release of encapsulated 

fluorescent IgG, correlating to microgel degradation, over time.   

Figure 6.4A (page 152) quantitatively shows the cumulative release of 20nm 

polystyrene nanoparticles, lambda DNA, and IgG over time in response to enzyme after 

an 18-24 hour swelling period at 37°C.  The time at which trypsin was added is denoted 

in the figure.  A trypsin concentration of 10-16.25 USP U/mL was used, a level well 

below normal physiological ranges [28].  A burst release for all encapsulated compounds 

was observed within 30 minutes of enzyme addition, demonstrating the ability to exhibit 

a rapid response to low levels of enzyme.  Anomalous decreases seen in cumulative 

release may be attributed to the experimental method, in which each of the time points 

collected are from different samples, although originating from the same batch.  In order 

to avoid a misleading multi-phase release in response to supplemented enzyme, the 

trypsin was not refreshed or supplemented for the duration of the experiment.  Thus, the 

study was terminated after eight hours, before the IgG sample could reach 100% release.  

The overall trend, however, is clear.   
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It appears that the nanoparticles are released at a higher rate than both the IgG and 

DNA in the trypsin-mediated release study.  This is likely an artifact of the assay method, 

in which the particles must be centrifuged in order to sample the supernatant.  The 

centrifugation process may deform soft materials, such as hydrogels, resulting in a force-

mediated release.  To test this, we also performed long-term diffusion/hydrolysis-

mediated release studies using cell culture insert filters, without the use of enzyme or 

centrifugation, as described in section 6.2.7 .  Figure 6.4B (page 152) shows the 

diffusion/hydrolysis-mediated release of nanoparticles and IgG over a period of 17-20 

days.  It is apparent that the IgG is released to a greater extent during this period, likely 

due to a combination of diffusion and hydrolysis.  It is also interesting to note that there is 

a spike in the release of both IgG and nanoparticles around day 12, which corresponds to 

the rapid change in hydrolytic degradation at this same time point, presented in Figure 

6.1D (page 142).   

Given that the hydrodynamic radius of the 20-40nm particles lies between the 

hydrodynamic radii of IgG (~5nm) [39] and lambda DNA (130-300nm, depending on 

conformation) [40,41], hydrodynamic size is not the only predictor of release.  It is 

possible that large macromolecules, such as DNA and IgG, can potentially entangle with 

the hydrogel network structure, which allows them to more easily be retained during 

centrifugation, but results in a diffusion-driven release during the first ten days.  

Nanoparticles, on the other hand, may be entrapped within the pores seen in Figure 6.1C 

(page 142).  When exposed to high centrifugal force (10,000xg), the microgel may be 

deformed such that the nanoparticles are released from these “pockets.”  Without any 

applied force, the nanoparticles are effectively retained by the microgels. 

The rate of diffusion-mediated release, of IgG for example, may be easily tuned 

by changing the cross-linking density, wherein a tighter cross-linking density (with a 
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higher % polymer weight by volume composition) will result in slower diffusion.  The 

four-armed PEG used in this study had a molecular weight of 10kDa per arm.  Increasing 

the number of branches on the polymer, using a 6- or 8-arm PEG for instance, and/or 

using a lower molecular weight polymer could also reduce the rate of diffusion. 

We do not expect there to be significant effects on bioactivity of the drug due to 

the mild fabrication conditions, as similar systems have been used to encapsulate cells 

and growth factors within bulk hydrogels for tissue engineering [42-44].  However, one 

important consideration that warrants discussion is the ability of the trigger enzyme to 

degrade not only the microgel, but also any encapsulated proteins or peptides.  For this 

study, we used trypsin as a cost-efficient model enzyme in these proof-of-concept studies.  

Trypsin is able to cleave amino acid sequences terminal to arginine and lysine residues 

[21], meaning that it may not be a viable trigger for delivery of many protein or peptide 

drugs.  However, there are a host of other enzymes that are up-regulated in diseases that 

require much more sequence specificity, including matrix metalloproteinases and 

cathepsins [11].  It may then be unlikely that the trigger enzyme could degrade an 

encapsulated protein.  This could be further improved by optimizing the cross-linker 

peptide sequence to have greater specificity and quicker degradation by the enzyme of 

interest (kcat) [42].  In moving towards a disease-specific system, the enzymatic activity of 

the trigger enzyme on any encapsulated protein or peptide must be considered, and a 

cross-linker peptide should be designed accordingly.  This does not pose a significant 

challenge, especially with the increasing prevalence and sophistication of bioinformatics 

tools and databases to predict enzyme-substrate activities [21,22].  Moreover, as we are 

specifically using protease triggers (enzymes that digest proteins), this is of less concern 

for other biologics (DNA, RNA) and nanoparticles. 
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Figure 6.3 Microgel degradation and release of encapsulated compounds in response to 
enzyme exposure by microscopy.   
(A) Light microscopy of a single microgel captured by optical trapping 
techniques, exposed to trypsin enzyme over time to view isotropic enzyme-
responsive degradation in comparison to a control sample; 325 U/mL 
trypsin. All scale bars = 10µm. A video of the time-lapse degradation is 
provided in the web version of [38].  
(B) Fluorescent microscopy of IgG releasing from microgels at 325 U/mL 
trypsin. All scale bars = 50µm.  
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Figure 6.4 Microgel degradation and release of encapsulated compounds in response to 
or absence of enzyme, by quantitative fluorometric assays.   
(A) Cumulative release of encapsulated 20nm Dark Red FluoSpheres®, 
lambda DNA, and Alexa Fluor® 594 IgG from microgels in response to 
enzyme exposure. Rapid release of all encapsulated compounds is observed 
at physiologically relevant concentrations of 10-16.25 U/mL trypsin. 
Trypsin was added after an 18-24 hour equilibrium swelling period.  All 
error bars are plotted, but may be obscured by data markers.   
(B) Cumulative release of encapsulated 40nm Dark Red FluoSpheres® and 
Alexa Fluor® 594 IgG from microgels due to hydrolysis and/or diffusion. 
Nanoparticles are more effectively retained within the microgels than IgG, 
which may be related to hydrodynamic radius and/or hydrogel network 
entanglement. An increase in release of both IgG and nanoparticles is seen 
around day 12, which correlates to the rapid hydrolytic degradation seen 
during the same time frame in Figure 6.1D. 
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6.3.5 Microgels exhibit minimal cytotoxicity and evade clearance by macrophages 

Microgel toxicity was tested on two epithelial cell lines, A549 human lung 

epithelial cells and HEK 293 human embryonic kidney epithelial cells, using the MTS 

assay.  Microgels, trypsin-degraded microgels, and un-reacted PEG-4-acr and CGRGGC 

peptide (equivalent levels to microgel condition) at doses of 0.5 and 1.0 mg/mL were 

tested at 6, 24, and 48 hours.  The doses correspond to approximately 4350 and 8700 

microgels per cell, respectively, which are high enough doses to completely blanket the 

cells.  Significant cytotoxicity was determined by an F-test for equal or unequal variances 

(p<0.05), followed by a two-tailed t-test (equal or unequal variances depending on F-test 

result, p<0.01).  There was no significant difference in A549 or HEK 293 cell viability at 

high doses of 0.5 and 1.0 mg/mL of microgels over all time points, as compared to 

untreated control samples.  At 48 hours and a dose of 0.5 mg/mL, there was a significant 

difference (p=0.005) between the untreated control and the degraded microgel condition.  

This may be attributed to the extended presence of trypsin in the culture, which was 

required to degrade the microgels.  This significance was not observed in the higher dose 

of 1.0 mg/mL of degraded microgels at any time point, nor was it observed in conditions 

with un-reacted PEG-4-acr and CGRGGC peptide at any time point.  Overall, the data 

indicates that the microgels, and their components, are not significantly cytotoxic at 

extremely high doses over several time points.  The complete data set is shown in Figure 

6.5 (page 154).  
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Figure 6.5 In vitro cytotoxicity of microgels on multiple cell lines. 
Percent viability of (A) A549 human lung epithelial and (B) HEK 293 
human embryonic kidney cells following exposure to microgels and 
microgel components for 6, 24, and 48 hours. Cell numbers are normalized 
to untreated control samples for each time point, with a dotted line denoting 
100% viability. *The only significant difference found in cell viability 
across all conditions and time points was for trypsin-degraded microgels 
after 48 hours exposure in A549 cells, denoted in (A), where p=0.005. 
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A potential issue with long-term controlled release particulate systems for 

pulmonary delivery is the rapid clearance of particles by alveolar macrophages.  

Macrophages begin taking up inhaled micron-sized particulates in a span of minutes, thus 

negating the effects of slow or controlled drug release particle formulations [4-7]. We 

theorized that the swelling behavior and hydrophilicity of the microgels, coupled with the 

stealth characteristics of PEG, would result in a decreased amount of microgel clearance 

as compared to 1µm fluorescent polystyrene microparticles (1µm-MP Positive Control), 

used as a positive control.  In order to fluorescently trace microgels, 20nm fluorescent 

polystyrene nanoparticles were encapsulated within the microgels (Microgel-with-20nm-

NP).  Due to the particle size differences between the 1µm-MP Positive Control and 

microgels, dosages were matched by weight (28µg per well, 50,000 cells per well).  Free 

fluorescent polystyrene nanoparticles were also delivered as a comparative control (Free-

20nm-NP), and were matched to microgels by number of nanoparticles-encapsulated-in-

microgels and number of nanoparticles per cell (2.12x105 nanoparticles per cell).  The 

amount of Free-20nm-NP and Microgels-with-20nm-NP were experimentally matched 

using standard curves of fluorescence versus concentration.  Flow cytometry data for 

1µm-MP Positive Control (ex/em 540/560) were collected in the FL2 channel, and data 

for Microgel-with-20nm-NP and Free-20nm-NP (ex/em 660/680) were collected in the 

FL4 channel.  Using the fluorescence intensity of the untreated cells, a very tight gate 

was applied (depicted as a vertical dotted line in Figure 6.6, page 157) as a threshold on 

fluorescence intensity for positive uptake of particles. 

As can be seen in Figure 6.6 (page 157) and Figure 6.7B (page 158), 94.1% of the 

cell population has already taken up the hydrophobic polystyrene 1µm-MP Positive 

Control sample after only 2 hours, and 99.7% after 24 hours.  In comparison, Microgel-
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with-20nm-NP uptake was quantified as only 12.1% after two hours, and 11.8% after 24 

hours.  This was also visually confirmed by confocal microscopy, shown in Figure 6.7 

(page 158).  Effectively, this data supports the conclusion that the hydrophilic and 

swellable microgels may offer improved retention over hydrophobic polymer particles for 

long-term controlled drug release in the lungs by avoiding macrophage uptake in the 

short- and long-term.  As shown in section 6.3.2 , microgels required up to 24 hours to 

reach the theoretical size to avoid macrophage uptake (>6μm).  Freshly synthesized, pre-

swollen microgels were used for this study, indicating that other factors than size, 

perhaps the hydrophilic and/or PEG “stealth” characteristic, are involved.  Whether the 

hydrophilicity, swelling, or PEG composition plays a greater role in this macrophage 

avoidance must be further studied to draw final conclusions, and will be used to improve 

future microgel design.   

With regards to long-term treatment with an un-clearable particle, it may be 

dangerous to receive repeat chronic dosages, thereby increasing particle accumulation in 

the lungs over time.  This proposed microgel system, however, contains a hydrolytically 

degradable ester bond in the cross-link, which was shown to degrade over a time period 

of approximately two weeks (section 6.3.2 ).   
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Figure 6.6 Microgels exhibit reduced uptake and clearance by macrophages in 
comparison to polystyrene particles, by flow cytometry. Flow cytometry 
histograms comparing fluorescence intensity of untreated cells to those that 
have taken up 1µm fluorescent polystyrene microparticles as a positive 
control (1µm-MP Positive Control), free 20nm fluorescent polystyrene 
nanoparticles (Free-20nm-NP), and 20nm fluorescent polystyrene 
nanoparticles encapsulated in microgels (Microgel-with-20nm-NP). Free-
20nm-NP and Microgel-with-20nm-NP have the same nanoparticle dosage 
by number of nanoparticles. The 1µm-MP Positive Control and Microgel-
with-20nm-NP groups have the same dosage by weight.  Typical results are 
shown representing three experimental repeats, and are taken from a gated 
population of at least 10,000 RAW 264.7 macrophages.   
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Figure 6.7 Microgels exhibit reduced uptake and clearance by macrophages in 
comparison to polystyrene particles, by microscopy and flow cytometry.  
(A) Confocal microscopy of RAW 264.7 macrophages after one hour of 
incubation with 1µm-MP Positive Control at left, and Microgel-with-20nm-
NP at right. Cell nuclei are stained with DAPI in blue, and actin cytoskeletal 
protein is stained with phalloidin in red; 1µm-MP Positive Control particles 
are shown in orange; Microgel-with-20nm-NP are shown in green at inset. 
No uptake of microgels was observed. Scale bars = 20µm.   
(B) Percentage of RAW 264.7 macrophage cell population positive for 
particle uptake after two and 24 hours, by flow cytometry analysis of at least 
10,000 cells representing three repeats. Cells were considered positive for 
uptake if their fluorescence intensity was increased and shifted past an 
applied gated threshold on the untreated population, depicted by a vertical 
dashed line in (A).  
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6.4 CONCLUSIONS 

Here, we have discussed the many challenges to achieving effective delivery of 

biologic drugs inside cells to the deep lung, and the design of a new platform drug 

delivery system to overcome them.  In considering these challenges, the following criteria 

were considered: 

a. Reduced exposure to fabrication conditions that may denature biologic drugs 

b. Aerodynamic diameter between 0.5 and 5μm to achieve deep lung deposition 

c. Geometric diameter greater than 6μm and hydrophilic surface chemistry to 

avoid rapid clearance by alveolar macrophages 

d. Nanoscale sizes, less than 0.2μm, for mucus penetration and intracellular 

delivery 

e. Disease-responsive drug release mechanism to improve targeting to diseased 

tissue for non-uniform lung diseases, thereby reducing side effects. 

Regarding (a), we have introduced a new MADE fabrication method, which 

produces aqueous microgels by employing a Michael addition cross-linking during water-

in-oil emulsion at physiological temperature and pH, without exposure to organic 

solvents.  The microgels were shown to have geometric and theoretical aerodynamic 

diameters within the required range to achieve deep lung deposition, 0.5-5μm (b).  As the 

microgels are inherently micro-sized hydrogels, they exhibit hydrogel swelling behavior.  

After 24 hours of swelling in PBS, the microgels swelled to a geometric diameter greater 

than 6μm.  It was noted, however, that the required swelling time was longer than 

expected, leaving a question of whether or not they could avoid macrophage clearance in 

the short term (c).  Nonetheless, macrophage uptake studies with freshly synthesized 
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microgels (pre-swelling) were able to effectively avoid macrophage uptake at both two 

and 24 hours, indicating greater potential for retention of this controlled release system in 

the lungs. 

Concerning (d), we demonstrated the versatility to encapsulate various types of 

biologics (DNA, siRNA, and proteins) and nanoparticles (20nm to 200nm).  In future 

work, encapsulated nanoparticles could be further engineered to have improved mucosal 

penetration, uptake, and endosomal escape, if desired.  Lastly, we successfully 

incorporated a disease-triggered release mechanism into the microgels, in the form of 

enzyme-specific peptide cross-linkers.  The microgels exhibited rapid release of biologics 

and nanoparticles in response to enzyme and the ability to retain drug in the absence of 

enzyme.  In future iterations of this microgel system, the peptide cross-linker may be 

easily interchanged for one customized to a highly specific, disease up-regulated 

protease, thus providing the disease-responsive drug release mechanism (e). 

Overall, the microgel delivery system has successfully met all design criteria laid 

out in (a-e), showing great potential as a versatile disease-responsive system for 

pulmonary delivery of biologic drugs.  Future work will involve formulation optimization 

for existing, non-invasive, pulmonary delivery devices, such as DPIs, pMDIs, or 

nebulizers.  Other future studies will include in vivo biodistribution, efficacy, and 

significance of disease-responsive drug release triggers in reducing side effects. 
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Chapter 7: In Vivo Pulmonary Distribution and Clearance of Microgels 

 

7.1  INTRODUCTION 

As discussed in the previous chapter (Chapter 6), in the development of controlled 

release systems for pulmonary delivery, an important design consideration is the ability 

of the system to avoid the rapid clearance by alveolar macrophages [1,2]. In other words, 

a controlled release particle must reside in the pulmonary space sufficiently long enough 

to allow for its controlled release mechanism to take place, whether it is sustained and 

long-term release of drug, or until an environmental trigger causes the release of drug; 

both of these release mechanisms are applicable to the work presented in this dissertation. 

The majority of polymer particles are cleared from the rodent pulmonary space within 1-

3 days [3-5]. The goal of the study presented here was to determine if the in vitro data  

 

 

Figure 7.1 In Vivo Pulmonary Distribution and Clearance of Microgels: Study Groups 
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Figure 7.2 In Vivo Pulmonary Distribution and Clearance of Microgels: Timeline and 
Sample Assays 

 

from Chapter 6, which indicated that the PEG-CGRGGC microgels are better able to 

avoid macrophage clearance than polystyrene particles, was significant enough to 

prolong the residence time of microgels in the murine lung in vivo. 

For the purposes of this study, microgels were directly introduced into mouse 

lungs using a Penn-Century MicroSprayer device, commonly used to deliver test 

formulations to rodents in vivo [3,6-9]. Polystyrene microparticles were also used as a 

positive control for comparison. The amount of particles remaining in the lungs at days 1, 

3, 6, 10, and 14 were determined using IVIS (In Vivo Imaging System) imaging, as well 
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fluorescence measurements from lung homogenates. The IVIS images also provided a 

means to view the distribution of particles in the lungs.  The study groups, timeline and 

assays performed are illustrated in Figure 7.1 and Figure 7.2, respectively. 

 

7.2  MATERIALS AND METHODS 

7.2.1 Materials 

Alexa Fluor ® 633 Carboxylic Acid Succinimidyl Ester (AF633-SE) and 1 μm 

Crimson (excitation/emission 625/645) FluoSpheres® were purchased from Life 

Technologies (Carlsbad, CA). Float-a-Lyzer dialysis tubes were purchased from 

Spectrum Labs (Rancho Dominguez, CA). The microsprayer assembly, including the 

FMJ-250 High Pressure Syringe and Model IA-1C (1.25 inch, for mouse) 

MicroSprayer® tip, was purchased from Penn-Century, Inc. (Wyndmoor, PA). The 

Model LS-2 Small Animal Laryngoscope and Mouse Intubation Platform were also 

purchased from Penn-Century, Inc. Nylon suture thread and 20 gauge x 1 inch 

intravenous catheters were purchased from Thermo Fisher Scientific (Hampton, New 

Hampshire). Paraformaldehyde (dry powder) was purchased from Sigma-Aldrich (St. 

Louis, MO).  

 

7.2.2 Conjugation of Fluorescent Probe to Microgels 

The direct and covalent incorporation of fluorescent probes on microgels was 

carried out by bioconjugation of AF633-SE, which contains a carboxylic acid group, onto 

the peptide sequence CGRGGC, which contains primary amines. The reaction was 

carried out according to manufacturer instructions at a pH favorable for conjugation at 

the alpha amine, rather than the side chain amines. Following the reaction, the product 



 169 

was dialyzed to remove side products and un-reacted materials for at least three dialysis 

changes in one liter of de-ionized water for four to six hours each. The product was snap 

frozen in liquid nitrogen and lyophilized for 48-72 hours, then stored under nitrogen gas 

at -20°C until used. Fluorescently labeled microgels were synthesized using the MADE 

method (as described in Chapter 5), substituting in a ratio of one fluorescently tagged 

peptide per five un-tagged peptides. 

 

7.2.3 Animal Strains, Care, and Use 

All experiments were approved by the University of Texas at Austin Institutional 

Animal Care and Usage Committee (IACUC), and all new procedures were developed 

with careful consultation with clinical veterinarians. All mice used in this study were 8-

10 week old female BALB/c mice from Jackson Laboratories (Bar Harbor, ME), 

weighing approximately 20 grams each. Prior to study assays, all animals were kept on a 

modified alfalfa-free diet for at least seven days to reduce tissue and food 

autofluorescence (Teklad Global Rodent Diet 2014, Harlan Laboratories, Indianapolis, 

IN) in IVIS images. 

 

7.2.4 Mouse Endotracheal Intubation and Intrapulmonary Aerosol Delivery of 
Particles using a Penn-Century MicroSprayer Device 

Both control fluorescent polystyrene particles and microgels were delivered using 

a Penn-Century MicroSprayer device designed for use in mice. This procedure has been 

significantly modified from the method given by Bivas-Benita, et. al. [8], through several 

practice administrations in mice post-mortem to reduce incidence of tracheal perforation 

and mortality. Primary deviations include the orientation of the mouse to improve 
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operator’s ergonomic posture, as well as introduction of a flexible intubation tube (20 

gauge catheter) to serve as a “guide” to insert the MicroSprayer needle tip, minimizing 

incidence of trauma. As such, a detailed protocol, including images, for this procedure is 

given in Appendix A. A procedure record and monitoring worksheet to facilitate 

recordkeeping for monitoring and recovery is also provided in Appendix B. Prior to 

loading into the MicroSprayer, all particle suspensions were filtered through a 36 μm 

mesh, to prevent the sprayer tip from clogging.  

Mice were anesthetized using an intraperitoneal (IP) injection of Ketamine (800-

100mg/kg) and Xylazine (10-20mg/kg). Anesthetized mice were kept on heating pads 

until recovery, except during intubation and dose delivery. The intubation platform was 

placed at a 20-degree angle, at eye level with the operator (seated). After approximately 

5-10 minutes, the depth of anesthesia was determined using a toe pinch to the back foot. 

When the mouse was no longer responsive to toe-pinch, it was placed on the intubation 

platform in the prone position (ventral side down), with the upper incisors hooked over 

the wire. The entire body of the mouse was then aligned and straightened. 

The mouth was gently opened using blunt forceps, held open with a lighted 

laryngoscope, and the tongue was pulled to the side. The epiglottis is opened to reveal the 

vocal cords, and the tapered end of a 20 gauge x 1 inch catheter is inserted into the 

trachea to intubate the mouse. The catheter should be initially angled downwards, then 

parallel to the intubation platform. With proper alignment, little to no resistance should 

be felt. To facilitate use with the Penn-Century MicroSprayer needle, accommodating the 

bend in the needle, a slit along the female Luer hub of the catheter must be cleanly cut 

prior to use (using a cut-off wheel of a Dremmel, or other similar device); see Appendix 

A for details and an image.  
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At this point, the laryngoscope can be removed and both hands may be dedicated 

to operation of the MicroSprayer. The needle tip of the MicroSprayer is then inserted into 

the catheter, until the bend of the needle reaches the opening of the mouth. The aerosol is 

then quickly delivered, and both catheter and MicroSprayer are quickly removed. Correct 

intubation and delivery will be signified by rapid breaths, which should return to baseline 

within 1-2 minutes. The mouse is allowed to recover to baseline normal breathing on the 

intubation platform before it is moved into a cage, on a heating pad, for recovery from 

anesthesia. 

 

7.2.5 IVIS Imaging of Mouse Lungs and Image Analysis 

Mice were euthanized at days 1, 3, 6, 10, and 14 after particle delivery with an 

intraperitoneal injection of sodium pentobarbital (200 mg/kg Euthasol), followed by 

cervical dislocation. Trachea, lungs, heart, and thymus were excised en block. The heart 

and thymus, along with any other remaining connective tissue, were then carefully 

removed from the lungs. The lungs and trachea were rinsed with PBS and then placed in 

a 12-well plate with 1 mL of PBS on ice. 

Lungs were placed on the flat underside of a black polypropylene 96-well plate 

(intended for fluorescence measurements) to facilitate later removal. It was found that 

lungs placed directly on black imaging paper tend to stick and are difficult to remove. 

The lungs were carefully arranged such that each lobe was layed out and visible. 

Fluorescent images of the lungs were then acquired using an IVIS Spectrum (Caliper Life 

Sciences, PerkinElmer, Waltham, MA) using the settings in Table 7.1.  
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Table 7.1 IVIS Imaging Settings 

Parameters Setting 

Pixel Width 1 

Pixel Height 1 

Binning Factor 4 (small) 

Image Units Counts 

f Number 2 

Field of View 13.2 (C) 

Excitation Filter 605 

Constant 

Emission Filter 660 

0.01 seconds 

0.05 seconds 

0.10 seconds 

0.25 seconds 

0.50 seconds 

0.75 seconds 

1.00 seconds 

1.50 seconds 

Varied (sequence) Exposure 

2.00 seconds 
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Quantitative data was collected using the IVIS Living Image software using the 

following steps: 

1. Set units to radiance (photons) 

2. Draw regions of interest (ROIs) around each lung 

3. Measure ROIs in radiance (photons) 

4. Export data into Microsoft Excel 

5. Data with saturated pixels cannot be used. 

The quantitative data was then analyzed and graphed in Microsoft Excel to 

determine if any trends or significant changes in clearance rates between particle groups 

could be established. The background fluorescence was determined from untreated lungs, 

and subtracted from the data set. 

 

7.2.6 Tissue Homogenization and Fluorescence Quantification 

7.2.6.1 FluoSpheres Fluorescent Polystyrene Particles 

Following IVIS imaging, the lungs were carefully trimmed to remove the trachea 

and any other remaining connective tissue, and then minced into small pieces (< 0.5 

centimeters) using dissection scissors. They were then suspended in 3 milliliters of tissue 

lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1% Triton-X 100) and homogenized for 

one minute, or until completely homogenized. To dissolve and extract fluorescence from 

the 1 μm Crimson FluoSpheres® polystyrene microparticles, three milliliters of xylene 

was added. The sample was then capped, parafilmed, and allowed to rotate at room 

temperature for three days (time point determined from preliminary studies for assay 

validation). After removing from the rotator, the sample was centrifuged at RCF 3220 at 

4°C for five minutes to allow separation of the xylene and aqueous phases. Sample 



 174 

aliquots of 100 μl were taken from the (top) xylene phase and read in a fluorescence plate 

reader at an excitation/emission of 645/680. Readings were quantified by comparison 

with standard curves. 

 

7.2.6.2 AF633-Conjugated Microgels 

The same protocol as above (section 7.2.6.1 ) was used to homogenize mouse 

lungs. However, to dissolve and extract fluorescence from the AF633-conjugated 

microgels, the (trypsin-degradable) microgels were digested in trypsin solution for 72 

hours at 37°C. After removing from the rotator, 1 mL aliquots were removed into 1.7 mL 

centrifuge tubes, and cell lysate was centrifuged out at 21,100xg. Sample aliquots of 100 

μl were taken and read in a fluorescence plate reader at an excitation/emission of 

645/680. Readings were quantified by comparison with standard curves. 

 

7.3 RESULTS AND DISCUSSION 

7.3.1 IVIS Imaging 

7.3.1.1 Troubleshooting 

The primary advantage to using an IVIS imaging system to track and quantify 

particle clearance and distribution was in the ability to perform live imaging on the 

experimental subjects, such that the same set of dosed mice could be followed throughout 

the time course of the study. In addition to being able to view the fluorescence 

distribution of particles, the IVIS Living Image software also contains analysis functions 

in which fluorescence intensity could be quantified.  

In practice, however, this system proved to be unrealistic for deep tissue 

fluorescence quantification (of the lung). Several preliminary studies were conducted in 
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an attempt to develop an experimental protocol that would follow the same set of dosed 

mice throughout the time course (live imaging). All recommended best practices from the 

manufacturer were followed, including: 

• Modification to an alfalfa-free diet, for at least seven days, to reduce gut and 

tissue autofluorescence 

• Use of near-infrared fluorescent probes 

• Removal of fur using a depilatory to reduce scattering 

• Imaging in various orientations 

• Trial with both epifluorescence (surface) and transillumination (deep) imaging 

settings. 

The variation of all these parameters produced no reliable fluorescent signal from 

the lungs under epifluorescence. Although transillumination would perhaps be more 

applicable, the in-practice imaging time was approximately one hour per mouse, which 

prevented its further use. One other option would have been to make use of specialized 

fluorescent probes for IVIS, but such probes were cost-prohibitive at the time of study. 

Therefore, different sets of mice were used for each time point, and the dosing and 

delivery was divided across multiple days for practicality and time limitations. 

 

7.3.1.2 Fluorescence Quantification from IVIS Images 

Raw data was originally collected in radiance, or photons, and the total flux 

(photons per second) from each region of interest was calculated and averaged as a total 

flux per lung. Background fluorescence was subtracted using the average from untreated 

control lungs. This data was then normalized as a percentage to the total flux at Day 1 in 

order to display the total remaining as a percentage of Day 1. Although IVIS imaging 
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settings were kept constant from day-to-day measurements (see Table 7.1), quantified 

data had anomalous changes in signal intensities. The data, from an exposure time of 0.5 

seconds, is plotted in Figure 7.3. Data cannot be quantified from images with saturated 

pixels, which was the case for Day 6 images at all exposure times, as well as for all 

FluoSpheres (polystyrene positive control). Therefore, those points are not plotted or 

shown.  

As can be seen in Figure 7.3, the Day 3 time point shows less microgel remaining 

as compared to Day 10, despite both of these time points having small error bars. The 

unexplainable low fluorescence at Day 3, followed by an increase at Day 10, was also 

seen in the FluoSphere data (not shown). Therefore, it was concluded that the quantified 

fluorescence was somewhat unreliable, and would not be determined by IVIS analysis. 

 

 

Figure 7.3 Percent of Microgels Remaining in Lungs Over Time by IVIS Fluorescence 
Quantification 
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7.3.1.3 Pulmonary Distribution 

Despite the unresolved issues with IVIS imaging discussed in sections 7.3.1.1 and 

7.3.1.2 , the use of IVIS imaging post mortem on extracted lung samples was still useful 

for visualizing the pulmonary distribution of both polystyrene particles and microgels 

throughout the time points. Figure 7.4 shows the IVIS images of the extracted mouse 

lungs from the polystyrene group at all time points (days 1, 3, 6, 10, 14), using an 

exposure of 0.01 seconds. Figure 7.5 shows the IVIS images of the extracted mouse lungs 

from the microgel group at all time points, using an exposure of 0.5 seconds. 

Observing the images, it may be seen that both polystyrene particles and 

microgels exhibit uniform distribution throughout the upper and lower airways.  Some 

allowance for directed delivery into one lobe over another may be attributed to the 

method of delivery, which would be a result of a delivery point past the carina (first 

bifurcation). The absence of fluorescence in one lung of the polystyrene group indicates 

an error in delivery method, which likely resulted from intubation into the esophagus 

rather than the trachea. None of these outliers were discounted from analysis, however, in 

order to account for the probability of mis-delivery into the esophagus for all time points. 

One final interesting trend, seen in the day 14 image of the microgel group 

(Figure 7.5), is that day 14 lungs are generally free of any fluorescent trace, save for one 

out of eight samples. This is of special significance when recalling that the microgels 

undergo hydrolytic degradation around day 11. It was postulated that the hydrolytic 

degradation would serve as a fail-safe mechanism to promote clearance of the microgels 

from the lungs, thereby preventing long-term accumulation from multiple and frequent 

doses. This data, though not conclusive, is enough to warrant further study of the exact 

clearance mechanism. 
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Figure 7.4 IVIS Images of Extracted Lungs from Mice Dosed with 1μm Fluorescent 
Polystyrene Particles 
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Figure 7.5 IVIS Images of Extracted Lungs from Mice Dosed with AF633 Microgels 
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7.3.2 Fluorescence Quantification from Tissue Homogenates 

In addition to IVIS imaging, the same lung samples from each group were 

homogenized and analyzed for total levels of fluorescence at each time point. These 

samples were compared as a percentage of the initial dose of 0.1 mg (both microgels and 

polystyrene particles). Standard curves were made using untreated homogenized lung 

tissue for background autofluorescence. 

Figure 7.6 displays both the dot plots (which shows the entire distribution of each 

data set) and average percent of particles remaining for each time point, for microgels 

(top) and FluoSpheres fluorescent polystyrene particles (bottom). Figure 7.7 displays the 

average of the data set for both microgels and polystyrene microparticles graphed 

together for comparison, as a percentage of the initial dose.  

The FluoSpheres polystyrene microparticles are cleared very rapidly from the 

lungs, as was seen in Chapter 6 in vitro data. By day 1, approximately 70% of 

FluoSpheres have already been cleared from the lungs, and continues to decrease over 

day 3 and day 6, when somewhat of a baseline level of 15% remaining has been reached. 

The initial rapid clearance over day 1 is likely primarily due to macrophage clearance, as 

has been observed in the literature [4,5]. The slower, secondary clearance mechanism is 

likely due to mucociliary clearance. Furthermore, the data from the polystyrene 

microparticles, as a positive control, agrees with that seen in the literature for polymer 

particles in general [3,4], validating the method of assay. 

In contrast to the polystyrene particles, the microgels exhibit significantly less 

clearance over the first day, with over 85% of microgels still remaining in the lungs at 

day 1. This again correlates very well with in vitro macrophage uptake data seen in 

Chapter 6. Again, like the FluoSpheres, levels of microgel remaining in the lungs 

continues to decrease over day 3 and day 6, down to approximately 45% remaining at day 
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6. In context, this is very significant in that the amount of microgels remaining at day 6 is 

greater than the amount of FluoSpheres remaining at day 1.  

However, the data at day 14 is greatly deviates from the trend seen in the other 

time points in that the fluorescent signal has actually increased to greater than the initial 

dose (~135%). When viewing the dot plot for that data set (Figure 7.6), the entire data set 

displays a marked increase in fluorescence, so it is not due to averaging with an included 

extreme outlier. Furthermore, this data does not agree with the IVIS images seen for 

microgels at day 14 (Figure 7.5). Several possible explanations exist, though none of 

which have been validated conclusively as of yet. It is possible that the microgel samples 

weighed out for dosing to the day 14 set of mice were weighed out incorrectly, at least 

twice as much as for other groups. The IVIS data does not support this, however, and it 

cannot be determined now, after the fact. This would also mean that the data from other 

time points must also be discounted from analysis. Another explanation is sample 

contamination during homogenization, which again, cannot be determined after the fact. 

Lastly, it may be possible that the Alexa Fluor 633, when conjugated to an intact 

microgel, exhibits some level of fluorescent signal quenching. However, due to the 

trypsin degradation step in the assay, it must mean that the fluorescent signal is quenched 

in trypsin-degraded microgels, as well, or that hydrolytically degraded microgels can 

somehow boost the fluorescent signal. This theory is not supported by any previous data, 

however, but should be tested in vitro at the very least. 

Despite the anomalous data from day 14, this data set hints towards a significant 

difference in microgel clearance as compared to polystyrene microparticle clearance. 

This study should be repeated in the future, with some minor changes in method to 

prevent any of the possible errors explained here. 
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Figure 7.6 Percent of Microgels and Polystyrene Microparticles Remaining in Lungs 
over Time by Fluorescence Quantification from Tissue Homogenates 
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Figure 7.7 Comparison of Percent of Particles Remaining in Lungs over Time by 
Fluorescence Quantification from Tissue Homogenates 

 

7.4 CONCLUSIONS 

In this chapter, the in vivo performance of the microgels was studied in 

comparison to fluorescent polystyrene microparticles in terms of pulmonary distribution 

and clearance patterns over a two week time period. In the realization of this study, a new 

method of intratracheal intubation and aerosol delivery was developed and modified from 

previously published methods [8] in order to minimize incidence of trauma or tracheal 

perforation. The pulmonary distribution of microgels and polystyrene particles was 

monitored via IVIS fluorescent images of extracted mouse lungs post mortem, indicating 

successful delivery to the deep lung. Unfortunately, quantification of particles remaining 
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using the IVIS analysis software was ultimately unreliable and unsuccessful. However, 

the clearance pattern of the particles was successfully quantified by measuring 

fluorescence from lung tissue homogenate. The clearance of fluorescent polystyrene 

particles measured was well in agreement with that published in the literature [4], 

showing approximately 70% of particles cleared from the lungs within the first day. In 

contrast, only about 15% of microgels were cleared from lungs at this same time point, 

and at day 6, 40% of microgels were still remaining in lungs in comparison to only 15% 

of polystyrene particles. Microgel data at day 14 could not be explained, however, but 

hinted towards significant differences in clearance mechanisms between microgels and 

polystyrene microparticles. Collectively, this data presents clues in understanding how to 

affect the particle clearance patterns from the lungs, and should be repeated in the future. 
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Chapter 8: Conclusions and Future Directions 

 

8.1  RESEARCH SUMMARY 

The objective of this dissertation work was to develop an enzyme-responsive 

platform drug delivery system for the delivery of biologic drugs through the pulmonary 

route. In the design of this system, the fragile nature of these biologic drugs was 

considered throughout the development of a hydrogel microparticle, or microgel, 

manufacturing process. The enzyme-responsiveness of the system was made easily 

adaptable through the incorporation of peptide sequences, although as a proof of concept, 

the trypsin-responsive pentapeptide CGRGGC was used throughout this work. These 

enzyme-responsive hydrogel microparticles were then evaluated in vitro, and preliminary 

in vivo studies were performed. 

In Chapter 1, the concept of a disease-responsive hydrogel microparticle for 

pulmonary delivery was introduced, as well as the many design challenges that are 

currently limiting the potential of polymer particle-based pulmonary vehicles for 

controlled drug release. Chief among them is that the ideal sizes for uniform and deep 

lung distribution are also the sizes which are most observed to be rapidly cleared by 

alveolar macrophages. The rationale for utilizing enzyme-responsive systems was also 

discussed, as well as the need for developing new carriers for the emerging class of 

biologic drugs. 

Chapter 4 extensively discussed the various biomaterials that were studied for 

incorporation into the microgel system. This chapter also included background material 

on the Michael addition reaction between sulfhydryl and acrylate groups, as well as the 

modification of polymers to incorporate these reactive groups. Work on peptide 
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bioconjugation chemistry was also covered in this chapter. Finally, optimal hydrogel 

ingredients, ratios, and reaction buffers were determined in this chapter. The final 

composition to move forward with was a 60% combined weight by volume hydrogel 

consisting of a four-arm poly(ethylene) glycol acrylate cross-linked with the CGRGGC 

peptide in 0.3 molar triethanolamine buffer. 

In the next chapter, Chapter 5, the newly developed PEG-CGRGGC hydrogel 

material was scaled down to microparticle scale through the trial of various particle 

synthesis methods. Various particle synthesis methods included mesh molding, grinding, 

cryomilling, emulsions, and more. The method that best preserved the desired material 

properties was an emulsion method. This chapter then details the development and 

optimization of the Michael Addition During water-in-oil Emulsion, or MADE, process 

to produce the microgels. 

Chapter 6 covers the extensive in vitro characterization of these PEG-CGRGGC 

microgels. These studies included hydrogel swelling and hydrolytic degradation studies, 

as well as enzyme-mediated degradation studies. Microgels were confirmed to undergo 

rapid trypsin-mediated degradation. In swelling studies, the microgels were shown to 

swell over the course of 10 days, and begin undergoing hydrolytic degradation thereafter. 

The density and aerodynamic diameter of the microgels was also determined to be within 

the appropriate range of inhalation and deep lung delivery. 

A number of biologic drug candidates were successfully encapsulated within the 

microgels, including proteins, DNA, siRNA, and nanoparticles of different sizes. The 

release of these encapsulated model drugs was also studied in the presence or absence of 

enzyme. The microgels exhibited a rapid release of drug upon enzyme exposure, while 

also displaying efficient retention of the drug without enzyme. In diffusion/hydrolysis-

driven release studies, proteins were shown to slowly diffuse out over the course of 11 
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days before undergoing rapid hydrolysis. Nanoparticles, however, were efficiently 

retained until the point of hydrolytic degradation, around day 12. 

The microgels were also evaluated for cellular interactions in vitro in this same 

chapter, and were found to exhibit no significant cytotoxicity with multiple cell lines. Of 

special interest was the interaction of microgels with RAW 264.7 macrophages in 

comparison to polystyrene particles. It was found that the microgels principally avoided 

uptake by macrophages over short (2 hours) and long (24 hours) time points, whereas 

polystyrene particles were rapidly taken up within both time courses. This avoidance of 

macrophage uptake implicated that the microgels may have improved residence time in 

the lungs, which may in turn improve its performance as a controlled release system for 

pulmonary delivery over other polymer particles. 

Given the promising in vitro performance of microgels, the pulmonary 

distribution and clearance of microgels were then studied with preliminary in vivo 

experiments using BALB/c mice, discussed in Chapter 7. Overall, the microgels 

exhibited on par performance in terms of pulmonary distribution to the lower airways as 

compared with 1 μm polystyrene particles, as confirmed by IVIS (In Vivo Imaging 

System) studies. The clearance of the microgels over the course of two weeks was also 

studied and quantified in comparison to the same polystyrene particles. Similar to the in 

vitro data, the polystyrene particles were rapidly cleared (~70%) within the first day, 

whereas only about 20% of microgels were cleared in the same time span. Following the 

study out to day 10, only ~15% of polystyrene particles remain in the pulmonary space, 

whereas just under 50% of microgels are still remaining. Although this study needs to be 

repeated with some modification, it provided compelling evidence for the improved 

retention and performance of the microgels as a pulmonary controlled release vehicle. 
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However, as mentioned, further study should be done, as will be described in the next 

section. 

 

8.2  FUTURE WORK 

8.2.1 Repeated Pulmonary Distribution, Clearance, and Toxicity 

As described in Chapter 7, promising preliminary data was presented that 

provided evidence for modified clearance patterns of microgels over other polymer 

particles. This study should be further repeated, and complementing data should be 

gathered both from IVIS studies, as well as homogenate-based fluorescent quantification. 

In addition to only the lung distribution being studied, full biodistribution and biokinetic 

studies should also be performed. Biokinetic analysis during microgel clearance should 

elucidate the primary mechanisms of microgel clearance as macrophage clearance, 

mucociliary clearance, or a combination of both. Along with biodistribution and 

biokinetics, the systemic toxicity and immunological response should be evaluated using 

cytokine-based assays and pulmonary edema. It may also be prudent to repeat studies in a 

rat model instead of a mouse model, as is commonly reported. 

 

8.2.2 In Vivo Disease-Triggered Drug Release 

One major theme of this work was the concept of disease-triggered drug release 

using enzyme-specific peptide sequences. Although the enzyme-triggered drug release 

was extensively characterized in vitro in Chapter 6, this concept was not tested in vivo. 

In order to test this system in vivo, a disease-model with up regulated enzyme expression 

in the lungs should be used for comparison of drug release with healthy control groups. 

Some viable candidates for disease models that are currently being considered include an 
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ovalbumin-based airway allergy model, in which levels of matrix metalloproteinase-9 

(MMP-9) are expressed by mast cells in the pulmonary epithelial space [1,2], and 

bleomycin-induced pulmonary fibrosis model, in which levels of matrix 

metalloproteinase-2 (MMP-2) are over expressed in the airways[3-6]. Peptide sequences 

for both of these enzymes have already been well studied and incorporated into similar 

Michael addition hydrogels [7,8], one of which has already been successfully 

incorporated into the system described in this work (data not shown). 

 

8.3 CONCLUSIONS 

The development of enzymatically-degradable hydrogel microparticles, as well as 

the development of methods to synthesize them, has provided the opportunity to make a 

significant impact on controlled release pulmonary drug delivery systems for biologic 

drugs. The Michael addition chemistry used here is especially suitable for biologic drugs, 

which may be denatured by traditional manufacturing methods, and is easily 

accomplished using cysteine-containing peptide sequences to cross-link commercially 

available biopolymers, without the need for bioconjugation or modification. This polymer 

chemistry was successfully scaled into microparticle synthesis via the newly developed 

MADE microgel synthesis method. Microgels synthesized using this method 

reproducibly exhibit enzyme-mediated degradation and release of encapsulated protein, 

DNA, and nanoparticles, and efficient retention without enzyme. Both in vitro and in vivo 

experiments provide evidence for modified retention and clearance of these microgels in 

the pulmonary space, with significant implications for design of future pulmonary 

controlled delivery systems. Collectively, the work in this dissertation has followed the 

conception, development, and evaluation of disease-triggered hydrogel microparticles for 
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pulmonary delivery, supporting the future realization of non-invasive, dynamic and 

disease-responsive delivery systems for the emerging class of biologic drugs. 
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Appendix A: Detailed Protocol and Visual Instructions for Mouse 
Endotracheal Intubation and Intrapulmonary Aerosol Delivery of 

Particles using a Penn-Century MicroSprayer Device 
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Appendix B: Pulmonary Procedure Record and Monitoring Worksheet 
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Glossary 

 

ABBREVIATIONS AND ACRONYMS 

1H NMR proton nuclear magnetic resonance 

Acr  acrylate 

BRENDA Braunschweig Enzyme Database 

CGKGGC cysteine-glycine-lysine-glycine-glycine-cysteine 

CGRGGC cysteine-glycine-arginine-glycine-glycine-cysteine 

CPCHIVtat cationic polymer possessing a cleavage site for HIV-1 protease 

Da  Dalton 

DDS  drug delivery system 

DI H2O de-ionized water 

DNA  deoxyribonucleic acid 

DOX  doxorubicin 

ECM  extracellular matrix 

EDC  1-Ethyl-3-[3-dimethylaminopropyl]carbodimide Hydrochloride 

EPR  enhanced permeation and retention 

ExPASy Expert Protein Analysis System 

FBS  fetal bovine serum 

FDA  Food and Drug Administration 

HEK  human embryonic kidney 

HLB  hydrophilic-lipophilic balance  

kDa  kilo Dalton 

KGHGKK lysine-glycine-histidine-glycine-lysine-lysine 
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MADE  Michael addition during emulsion 

MMP  matrix metalloproteinase 

MW  molecular weight 

NHS  N-hydroxysuccinimide 

NMR  nuclear magnetic resonance 

PBS  phosphate buffered saline 

PDB  Protein Data Bank 

PEG  poly(ethylene glycol) 

PEG-4-Acr four arm poly(ethylene glycol) acrylate 

PEG-DA poly(ethylene glycol) diacrylate 

PVA  poly(vinyl alcohol) 

QVRAHGK glutamine-valine-arginine-alanine-histidine-glycine-lysine 

RCF  relative centrifugal force 

S-FIL  step and flash imprint lithography 

SEM  scanning electron microscopy 

siRNA  short interfering ribonucleic acid 

sPLA2  secretory phospholipase A2 

Sulfo-NHS N-hydroxysulfosuccinimide 

TEA  triethanolamine 

UniPROBE Universal PBM Resource for Oligonucleotide Binding Evaluation 

UV  ultraviolet 

w/v  weight by volume, percent 
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