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Abstract 

Hypothesis: Dietary polyphenols can overcome the deleterious effects of 

hyperglycaemic or inflammatory conditions on the vascular endothelium by 

modulating endothelial cell metabolism. 

Results:  First, the effects of high-glucose concentrations, inflammatory cytokines 

and polyphenols on markers of endothelial cell function in HUVECs were explored. 

Hyperglycaemic conditions did not significantly affect cell proliferation or cell 

adhesion molecule expression (CAM), whereas TNF-α and IL1-β caused 

significant increases in cell adhesion molecule expression by HUVECs. Different 

polyphenols induced different responses, pro- and anti-inflammatory, depending 

on the concentration and period of exposure. Pre-treatment with the flavonol 

quercetin significantly reduced CAM expression in HUVECs.  

Next, the ability of quercetin to overcome the pro-inflammatory effects of 

hyperglycaemia and cytokine treatments in HUVECs was investigated using a 

metabolomics approach with a view to understand the effects at a mechanistic 

level. As a result, significant changes in HUVEC metabolome in response to 

treatment with high-glucose concentrations or TNF-α have been demonstrated. 

Increases in lactate concentrations occurred under inflammatory conditions. 

Further, it was shown that quercetin could shift the lactate concentrations back 

towards that of the resting cells and also increase inosine concentrations, which is 

in keeping with an anti-inflammatory action. Quercetin treatments alone were 

shown to reduce concentrations of the pro-inflammatory metabolites ATP and ADP 

and, in parallel, increase concentrations of the anti-inflammatory metabolites 

adenosine and inosine. 

Subsequently, quercetin metabolites inside the cells and in the culture medium 

after quercetin treatments were identified, and their effects on the activities of 

enzymes involved in purine metabolism enzymes were investigated. The inhibition 

of adenosine deaminase and CD73 activities with physiological cellular 

concentrations of quercetin was consistent with the elevations observed in 

adenosine and AMP levels.  

Conclusions: Quercetin treatments reversed the effects of high-glucose and    

TNF-α on energy metabolite profiles. Quercetin was shown to enter the cells, and 

quercetin and its metabolites inhibited enzymes involved in purine metabolism, 

which is likely the underlying mechanism.  
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CHAPTER 1: General Introduction 

1.1 Scope of the Project and Structure of the Thesis 

The research project described in this thesis was an investigation of the ability of 

selected dietary polyphenols to overcome the deleterious effects of 

hyperglycaemia and inflammatory cytokines on vascular endothelial cells, with a 

particular focus on elucidating underlying mechanisms. At the beginning of the 

project, the effects of hyperglycaemic conditions and inflammatory cytokines on 

established physiological markers of endothelial function and the ability of selected 

polyphenols to prevent these negative changes were assessed (Chapter 2). In the 

subsequent results chapters (Chapters 3-5) the research followed a logical path 

but the approaches were quite distinct. As a result, the thesis is presented with a 

general introduction that explains the relationship between diabetes/metabolic 

syndrome and atherosclerosis, and to introduce polyphenols (Chapter 1) and then 

a series of four results chapters that each contains an ‘Introduction’ section (to 

describe the state of the art and develop a hypothesis) and a ‘Materials and 

Methods’ section detailing the distinct methods used in the research. The thesis is 

completed with a ‘General Discussion’ chapter. 

 

1.2 Diabetes, Metabolic Syndrome and Atherosclerosis 

Many people around the world suffer from morbidity and mortality caused by 

cardiovascular disease (CVD). According to the World Health Organization (WHO) 

statistics, ≈17.3 million people died from CVDs in 2008 (Causes of death 2008, 

WHO). Coronary heart disease (heart attack) and cerebrovascular disease 

(stroke) were responsible for the 7.3 million and 6.2 million of the deaths, 

respectively. However, the key fact underlying these two diseases is the 

atherosclerotic disease.  

 

1.2.1 Atherosclerosis 

Atherosclerosis is the disease of large- and medium-sized arteries which involves 

the formation of atherosclerotic plaques in the arterial vessel walls over many 



                                                  C h a p t e r  1   | 2 

 

years as a result of complex pathological processes. These plaques contain 

endothelial cells, smooth muscle cells, leukocytes, foam cells, connective tissue 

elements, cholesterol, calcium and cell debris, which gradually leads to the focal 

thickening of the intima (innermost layer of the artery) disturbing the blood flow 

(Stary et al., 1994, Steinberg, 2002, Bobryshev, 2006, Ross, 1993, Ross, 1999). 

The atherosclerotic plaque bears the risk to break down forming blood clots that 

may enter coronary artery or brain leading to a heart attack or a stroke, 

respectively. The metabolic risk factors of atherosclerosis include hypertension, 

diabetes, high-cholesterol and obesity (Steinberger and Daniels, 2003, Selvin et 

al., 2005).  

The complex nature of atherosclerosis indicates that the components of the 

vascular, metabolic and immune systems work in a harmony to modulate the 

development and progression of the disease. Atherosclerosis was originally 

considered as an ordinary lipid storage disorder (Libby et al., 2002). However, the 

studies that have been carried out in the last decade have underlined the 

promoting role of inflammation on the development and progression of 

atherosclerosis (Ross, 1999, Mannarino and Pirro, 2008). The initiation of 

atherosclerosis involves the accumulation of low-density lipoproteins (LDL) in the 

intima of the arteries which leads to the activation of the endothelium initiating an 

inflammation cascade that recruits circulating leukocytes and induces production 

of growth factors augmenting cell migration and proliferation (Berliner et al., 1995). 

The activation of endothelial cells stimulates the expression of cell adhesion 

molecules on the cell surface that favours the adhesion of circulating leukocytes to 

the site of activation. The attachment follows migration of the cells into the 

subendothelial space due to the increased chemokine production. Once the 

monocytes are in the intima, they differentiate into machorphages which express 

high levels of scavenger and Toll-like receptors. Scavenger receptors are 

responsible for the uptake of oxidized-LDL (oxLDL) into the macrophages together 

with apoptotic cell fragments that leads to foam cell formation. At the same time, 

Toll-like receptors modulate macrophage activation and production of pro-

inflammatory cytokines, proteases and radical molecules. T lymphocytes (T cells) 

also accumulate in the atherosclerotic plaques, and they differentiate mainly into 

T-helper 1 cells. T-helper 1 cells produce interferon-Ƴ (IFN-γ) that in turn 

stimulates pro-inflammatory cytokine production such as tumor necrosis factor-α 
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(TNF-α) and interleukin-1β (IL-1β). Therefore, all these processes contribute to the 

progression of the inflammatory state, and they are triggered by damage to the 

endothelial layer. Both diabetes and insulin resistance bear the potential to impair 

endothelial function.  

 

1.2.2 Diabetes Mellitus and/or Metabolic Syndrome Are Risk Factors for 

CVD 

Diabetes mellitus and metabolic syndrome patients are particularly at high risk to 

experience morbidity and mortality due to atherosclerosis and CVD (Haffner et al., 

1998, Beckman et al., 2002, Lakka et al., 2002).  

The characteristic feature of diabetes is hyperglycaemia. Insulin is a hormone that 

is produced by β-cells in pancreas, and it regulates blood glucose levels. 

Consequently, a defect in insulin production, action or both leads to diabetes 

mellitus. Danaei and co-workers estimated that overall 347 million people 

worldwide have diabetes according to the data obtained from health examination 

surveys and epidemiological studies (370 country-years and 2.7 million 

participants) (Danaei et al., 2011). WHO estimated that 3.4 million people died 

from consequences of fasting high blood glucose in 2004 (Global health risks, 

2009), and anticipated that diabetes will be the 7th leading cause of death in 2030 

(Global status report on noncommunicable diseases, 2010).  

On the other hand, metabolic syndrome signifies a group of metabolic disorders 

including obesity, microalbuminuria, dyslipidemia, glucose intolerance and 

hypertension in addition to insulin resistance that is remarked as the main 

component of the disease (Roche et al., 2005, Cersosimo and DeFronzo, 2006). 

The metabolic syndrome is frequently observed also in people with type 2 diabetes 

(Navar et al, 2012), and it contributes to the risk of CVD (Alexander et al., 2003). 

Interestingly, the CVD risk with diabetes type 2 is greater than metabolic syndrome 

alone (Alexander et al., 2003). Furhermore, the existence of CVD risk with 

diabetes type 1 (Mangar et al., 2001) which lacks the additional risk factors of 

metabolic syndrome indicated that the hyperglycaemia is responsible for the CVD 

risk.   
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Therefore, the remarkable point is that the pathogenesis of atherosclerosis and 

CVD is the same regardless of the presence of hyperglycaemia and/or insulin 

resistance in individuals. Nevertheless, diabetes and metabolic syndrome 

effectively accelerate the pathogenesis of atherosclerosis and thus elevate the 

rate at which underlying atherosclerosis leads to cardiovascular events such as 

heart attacks and strokes (Reusch and Draznin, 2007, Ginsberg, 2000). In 

consequence, this provides a strong rationale for undertaking research concerned 

with determining the molecular/biochemical processes by which metabolic 

disorders (diabetes and metabolic syndrome) affect the development and 

progression of atherosclerosis to be able to develop suitable drugs or natural 

products that are capable of preventing atherosclerosis or diabetes/metabolic 

syndrome induced increases in the rate of disease development.   

  

1.2.3 Endothelial Dysfunction Initiates Atherosclerotic Plaque Formation 

The endothelium is a barrier lining all the blood vessels in the body and it plays 

essential roles in regulating vascular tone and structure by controlling the 

interaction between the blood and tissues (Landmesser et al., 2004). The 

endothelium lines a number of different types of vessels each with distinct 

functions and, accordingly, the functions of the endothelium vary according to 

which type of vessels it is lining. The aorta and the   

carotid/coronary/brachial/femoral arteries represent conduit arteries where the 

endothelium is required to maintain a limited activation of clotting and pro-

inflammatory factors to inhibit the release of chemokines/cytokines/ growth factors 

and to prevent the adhesion of platelets and monocytes to the vascular 

endothelium (Cersosimo and DeFronzo, 2006). Furthermore, the endothelium 

contributes to the regulation of blood flow and the systemic blood pressure in the 

resistant arteries and to the transport and distribution of nutrients and hormones in 

the precapillary arterioles. Therefore, significant endothelial dysfunction may lead 

to the development and progression of the atherosclerosis at any levels in the 

arterial system (Cersosimo and DeFronzo, 2006). 

Diabetes and metabolic syndrome are two disorders which have the capacity to 

damage the endothelium leading to the development and progression of 

atherosclerosis. The hyperglycaemic conditions experienced during diabetes 
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mellitus induce vascular endothelial cell apoptosis and this is thought to disrupt the 

integrity and functions of the endothelium and lead to vascular endothelial 

dysfunction. Vascular endothelial dysfunction is associated with atherosclerosis 

and is an independent risk factor for CVD (Hansson, 2005). The vascular 

endothelium is a dynamic structure that modulates vasodilation through 

endothelium derived relaxation factors nitric oxide (NO), prostacyclin and 

endothelium derived hyperpolarization factor (EDHF) under normal circumstances, 

and endothelial dysfunction is often reflected as the reduced bioavailability and 

therefore impaired vasodilator effect of these endothelium-derived relaxation 

factors together with increased endothelin-1 which is a potent vasoconstrictor 

known with pro-inflammatory effects (Böhm and Pernow, 2007). 

Vascular endothelial dysfunction is believed to be modulated and enhanced by the 

reactive oxygen species (ROS), and it is therefore likely that the negative effects of 

hyperglycaemia on the endothelium are at least in part due to its effect of 

increasing free radical production (Tesfamariam, 1994). Progressive oxidation of 

glucose under physiological conditions yields hydrogen peroxide (H2O2) together 

with several reactive intermediates including hydroxyl-free radicals (Wolff and 

Dean, 1987). Thus, oxidative stress provides a link between diabetes and 

endothelial cell dysfunction (Cosentino et al., 1997, Son, 2007). Hyperglycaemia 

leads to alterations in several biochemical pathways such as glucose oxidation, 

generation of advanced glycation end-products (AGE), and activation of polyol 

pathways that all may be linked to the gradually elevated ROS generation; this 

eventually appears as an increased oxidative stress leading to endothelial 

dysfunction due to the triggering of the stress-sensitive intracellular pathways 

unless the endogenous antioxidants are able to balance the condition (Hink et al., 

2001, Son, 2007, Ceriello, 2003).  

The potent vasodilator, nitric oxide, is produced by nitric oxide synthase (NOS) 

enzymes, and it is essential for maintaining vascular function and structure (Son, 

2007). According to published clinical studies, diabetes has an adverse effect on 

endothelium-dependent vasodilation (Williams et al., 1996). Superoxide is an 

effective enhancer of endothelial oxidative stress, and is produced by NAD(P)H 

oxidases  and uncoupled endothelial nitric oxide synthase (eNOS) (Son, 2007). 

The activity of NAD(P)H oxidases is enhanced by hyperglycaemia, AGE, and 
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oxidized LDL (oxLDL); protein kinase C (PKC) is involved in the activation of 

NAD(P)H oxidases by hyperglycaemia and non-esterified free fatty acids (FFA) 

(Chisolm and Steinberg, 2000, Evans et al., 2002). Also, it has previously been 

reported that superoxide generation is elevated in vessels isolated from diabetic 

patients compared to non-diabetic control subjects, and at the same time 

increased expression of several NAD(P)H oxidase protein subunits were detected 

supporting the observation that NAD(P)H oxidases are more active in diabetes 

(Guzik et al., 2002). Beside leading to oxidative stress by itself, superoxide, is also 

capable of reacting with nitric oxide (NO•) yielding peroxynitrite (Milstien and 

Katusic, 1999). This may appear as reduced tetrahydrobiopterin (BH4) 

concentrations if peroxynitrite reacts with BH4 causing its oxidation. As a 

consequence, this would limit availability of BH4 for eNOS coupling and lead to 

superoxide generation because eNOS would transfer electrons to molecular 

oxygen instead of generating NO• by transferring electrons to L-arginine (Milstien 

and Katusic, 1999, Guzik et al., 2002). There are several literature reports of the 

presence of uncoupled eNOS in diabetic subjects and also decreased BH4 

availability in diabetic rats.  Guzik and co -workers demonstrated the presence of 

uncoupled eNOS in diabetic vessels by incubating the vessels with the eNOS 

inhibitor; NG-nitro-L-arginine methyl ester (L-NAME) (Guzik et al., 2002). After 

incubation, the observed reduction in superoxide generation supported the notion 

that eNOS was uncoupled in the diabetic vessels. Further, supplementation of 

diabetic patients with BH4 was shown to maintain endothelial function (prevent 

diabetes-induced endothelial dysfunction), thus supporting a role for uncoupled 

eNOS in endothelial dysfunction (Vásquez-Vivar et al., 1998, Milstien and Katusic, 

1999, Guzik et al., 2002). In another study which compared normal mice with 

transgenic mice over-expressing GTP-cyclohydrolase I (GTPCH), which is the rate 

limiting enzyme for BH4 synthesis, showed that endothelial function was 

maintained after treating mice with streptozotocin (STZ) to induce diabetes 

whereas endothelial function was not maintained in the diabetic rats that had low 

BH4 availability (Vásquez-Vivar et al., 1998). Kim and co-workers further 

investigated the effects of high-glucose on the replication of large-vessel 

endothelium and showed a glucose-induced delay that could be overcome by 

superoxide dismutase, catalase and reduced glutathione, indicating the 

significance of oxidative stress in diabetes (Kim et al., 2002). 
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1.3 Polyphenol Consumption and CVD Risk 

CVDs reduce the quality of life and the life span of individuals, and also have 

negative impacts on the national economies. According to the European 

Cardiovascular Disease Statistics 2012, over 1.9 million people per year die due to 

CVD in the European Union (EU), which accounts for the 40% of all deaths in the 

EU. The total burden of CVD for the EU economy was estimated as €196 billion a 

year, which was distributed as 54% to health care costs, 24% to productivity 

losses and 22% to the informal care of people with ongoing CVD (Nichols M, 

2012). The report also indicated that fruit and vegetable consumption has 

increased across Europe in recent decades, while overall fat consumption has 

remained stable. Although fat consumption remained the same, increased fruit 

consumption was an optimistic observation that may lead to beneficial 

consequences since the epidemiological studies reported in the literature indicated 

that there is an association between diets rich in fruit and vegetables and a 

reduction in the incidence of CVD (Knekt et al., 2002, Bendinelli et al., 2011, 

Buijsse et al., 2010). For example, Buijsse and co-workers investigated the 

association of chocolate consumption with measured blood pressure and the 

incidence of CVD (Buijsse et al., 2010). Chocolate is a rich source of flavonoids 

(Corti et al., 2009), and the study has shown that low amounts of chocolate is 

associated with a lower risk of CVD that is reflected by a lower blood pressure. In 

another recent study, McCullough and co-workers investigated the association 

between flavonoid intake and CVD in a large, prospective cohort where a total of 

38180 men and 60289 women were drawn from the subject population. 1589 CVD 

deaths in men and 1182 CVD deaths in women were observed during 7 years of 

follow up period. The authors concluded that the subjects with higher flavonoid 

intake possessed a lower risk of experiencing fatal CVD (McCullough et al., 2012).  

Also another prospective study which used postmenopausal women indicated that 

dietary intake of food rich in flavone, anthocyanidins and other flavonoids such as 

apples, bears, grapefruit, strawberries, chocolate and bran is associated with 

lower coronary heart disease and CVD risk (Mink et al., 2007).  

Although the epidemiological studies indicated that there is an association 

between diets rich in fruit and vegetables and a reduction in the incidence of CVD, 

the degree of contribution and mechanisms of the individual fruit and vegetable 
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constituents with cardioprotective activities such as fibre, folate, potassium, 

antioxidants and phytochemicals such as carotenoids and polyphenols to the 

reduction in the incidence of CVD are not fully elucidated. Daily polyphenol intake 

is ~1 g, and that represents the highest intake value among all the phytochemicals 

(Scalbert and Williamson, 2000), and the human intervention studies further 

supported that increased polyphenol consumption is associated with reduced 

biomarkers of CVD such as blood pressure, platelet, function and blood lipid 

profiles (Hooper et al., 2008, Chong et al., 2010).  For example, Erlund and co-

workers investigated the effects of berry consumption which are rich in polyphenol 

content on hemostatic function, serum lipids, and blood pressure in middle-aged 

subjects with cardiovascular risk factors (Erlund et al., 2008). The subjects 

consumed 2 portions of berries daily for 8 weeks. According to the results, 

reduced blood pressure, increased HDL and prolonged PFA-100 CTs (inhibited 

platelet funtion) were observed indicating that regular berry consumption may 

improve vascular function preventing CVD. In, human intervention studies where 

the subjects were given tea and polyphenol rich extracts that contained mainly 

catechins, enhanced plasma antioxidant capacity and altered energy metabolism 

were observed (Gomikawa and Ishikawa, 2002, Dulloo et al., 1999). Similarly, in 

the human intervention studies where catechin and olimeric catechin rich food or 

extracts were given to subjects, increases in plasma antioxidant capacity together 

with other cardioprotective effects such as decreases in platelet aggregation, 

increases in nitric oxide (NO) production, decreased cell adhesion molecule 

expression and decreased LDL oxidation were observed (Pearson et al., 2002, 

Rein et al., 2000, Hollands et al., 2013).  

Beside the intervention studies, there are numerous reports of in vitro studies 

concerned with the literature assessing the effects of polyphenols. In general, 

these provide some evidence that polyphenols have biological activities that are 

relevant in terms of preventing CVD. Nevertheless, the reported results need to be 

treated with some caution because most of these studies did not take 

bioavailability and metabolism factors into account (Kroon et al., 2004) and 

therefore the results may not reflect what occurs in vivo. The range of polyphenol 

concentrations reported to induce biological effects in vitro are across the range of 

10-100 µM (Williamson and Manach, 2005). On the other hand, the physiological 

polyphenol concentration in plasma after a polyphenol-rich meal is unlikely to 
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reach 10 µM indicating that the concentrations used in the in vitro studies may be 

supraphysiological concentrations (Kroon et al., 2004). Therefore, bioavailability 

and metabolism of the polyphenol of interest should be carefully considered when 

devising in vitro studies and when interpreting the data arising from them.  

 

1.4 Dietary Polyphenols 

The plant kingdom members synthesize extensive amount of organic compounds.  

The compounds which aid the fundamental processes such as photosynthesis, 

respiration, growth and development fall into the group of plant primary 

metabolites (e.g. phytosterols, nucleotides and amino acids). On the other hand, 

plant secondary metabolites function in different manners such as protecting the 

plants from UV, acting as allelopathic agents and signalling molecules and also 

attracting attention which is particularly important for the plant protection and 

pollination (Crozier et al., 2006). The phytochemicals of particular interest in the 

studies reported here are the polyphenols. These are a very complex group of 

molecules that are ubiquitous secondary metabolites of plants (Scalbert et al., 

2002, Shoji et al., 2005). They are synthesized in plants via shikimic acid pathway 

with an aromatic structure containing two or more hydroxyl groups (Arts and 

Hollman, 2005). This complex group of molecules are commonly consumed as 

part of the human diet since there are <100 polyphenols that have been identified 

in the plant food (Manach et al., 2004, Scalbert et al., 2005). Phenol-explorer 

(www.phenol-explorer.eu) is a comprehensive database on polyphenol content in 

foods, and Perez-Jimenez and co-workers used Phenol-explorer to estimate the 

individual polyphenol consumption of French adults in the diet of a cohort reporting 

a total number of 337 polyphenols consumed by the subjects (Pérez-Jiménez et 

al., 2011). Their carbon skeletons (number of phenol rings) and the structural 

elements involved in the binding of the phenol rings together are used to classify 

this group of molecules (D’Archivio et al., 2007). Phenolic acids, phenolic alcohols, 

flavonoids, stilbenes and lignans are the main classes of polyphenols (Figure 1.1).  
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Figure 1.1: Chemical structures of main polyphenol classes. 
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Among these classes, flavonoids are the most abundant polyphenols in the plant 

kingdom (Crozier et al., 2006). Their structure involves a linear three-carbon chain 

binding two benzene rings (rings A and B) together (Figure 1.1). The three-carbon 

chain yields an oxygenated heterocycle (ring C), and according to its oxidation 

state flavonoids are divided into subclasses which are flavones, flavanones, 

isoflavones, flavonols, flavanols, and anthocyanidins (Figure 1.2) (Manach et al., 

2004, D’Archivio et al., 2007).  

Naringenin

Flavonols Flavanones

Flavones Isoflavones

Flavanols
Anthocyanidins

Cyanidin Catechin

Genistein

Quercetin

Luteolin

 

Figure 1.2: Flavonoid classes with example structures. 
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1.4.1 Bioavailablity, Absorption and Metabolism of Polyphenols 

The generally acknowledged definition for bioavailability is simply the proportion of 

the polyphenol consumed that reaches the target tissue (D’Archivio et al., 2007). 

Dietary polyphenols are found in different chemical forms, and both their structures 

and chemical forms in the food affect the rate and extent of their absorption, 

metabolism and bioavailability in the circulation (Scalbert et al., 2005). They mostly 

exist in the form of esters, glycosides or polymers in the food. For example, all 

flavonoids (except flavanols) are found in the diet as glycosides. The glycosides 

that reach the small intestine are hydrolysed by lactase phloridzin hydrolase (LPH) 

in the brush border of intestinal epithelial cells which allows lipophilic aglycones to 

passively diffuse into the cells (Day et al., 1998, Day et al., 2000, Németh et al., 

2003) or by the cytosolic β-glucosidase (CBG), depending on the nature of the 

sugar moiety attached to the polyphenol (Gee et al., 2000). It has been postulated 

that flavonoid glycosides could enter the cells via the sodium dependent glucose 

transporter-1 (SLGT1) (Hollman et al., 1995, Gee et al., 2000). Nevertheless, not 

all the flavonoids are absorbed in the small intestine. For example, flavonol 

glycosides such as rutin (a rhamnose group attached to quercetin) are not 

absorbed from the small intestine and pass the colon where they are hydrolysed 

by the colonic microbiota prior to absorption (Del Rio et al., 2013).  

The newly formed aglycones are further modified as a result of the activities of 

sulfotransferases, catechol-O-methyl transferases and UDP-glucuronosyl 

transferases in the small intestine or liver before entering into the systemic 

circulation (Mullen et al., 2006). The sulfotransferases (SULT) are responsible for 

the addition of a sulfate moiety by substituting a hydroxyl group on the polyphenol 

to form a flavonoid-O-sulfate. The catechol-O-methyl transferases (COMT) are 

responsible for the addition of methyl groups to the polyphenols, but are only able 

to methylate catechol functional groups (adjacent hydroxyl groups on a benzene 

ring).  Finally, UDP-glucuronosyl transferases (UGT) are responsible for catalysing 

the O-substitution of glucuronic acid to polyphenols. All three of the enzymes have 

been reported to be active in the small intestine (Murota and Terao, 2003, Chen et 

al., 2003). After conjugation in the small intestine, polyphenols are either released 

back to the intestinal lumen or enter into the portal circulation and are transported 

to the liver where they are further metabolized (Olthof et al., 2003, Crozier et al., 

2006, Del Rio et al., 2013). Finally, the conjugated polyphenols enter the systemic 
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circulation. In addition, the liver can secrete flavonoid conjugates via bile which 

may result in further deconjugation in the small intestine or metabolization in the 

colon by the colonic microflora. The metabolized polyphenols are then reabsorbed 

or excreted in the faeces or urine (Crozier et al., 2006, D’Archivio et al., 2007).  

 

 

Figure 1.3: Absorption and metabolism of polyphenols. Sugar moieties are 

removed from the polyphenol glycosides in the small intestine or colon. The 

aglycones are conjugated by the enzymes SULT, UGT and COMT in the small 

intestine or hydrolysed by colon microbiota into smaller molecules. The conjugates 

from the small intestine pass into the liver for further conjugation. After being 

modified further in the liver, polyphenol conjugates are either secreted into 

systemic circulation or excreted by the kidneys via urine. SULT: sulfotransferase, 

UGT: UDP-glucuronosyl transferase, COMT: catechol-O-methyl transferases 
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1.4.2 Flavanols 

The three-carbon chain is saturated in flavanols, and a hydroxyl group is attached 

to the 3-position (Figure 1.2). They are the most complex group of flavonoids, 

which are found both as monomers and polymers. The monomers are (+)-catechin 

and its isomer (−)-epicatechin. These monomers can be further hydroxylated in the 

B-ring yielding gallocatectins or esterified with gallic acid through the 3-position 

yielding a catechin gallate. The polymeric forms of flavonols are called 

proanthocyanidins (condensed tannins) which can be found as dimers, oligomers 

and polymers of the various flavanol monomer types which gives rise to different 

types of proanthocyanidins including procyanidins (polymers of catechin and 

epicatechin) and prodelphinidins (polymers of gallocatechin and epigallocatechin) 

according to the flavanol units present (BartolomÈ et al., 1996, Shoji et al., 2005, 

Gabetta et al., 2000).  

In this project, the main interest was in the grape seed extracts. Grape seeds 

contain mainly catechin, epicatechin, procyanidins and their polymers and 

galloylated and gallated derivatives, which is equivalent to approximately 5% to 

8% of the total grape seed weight (Ricardo da Silva et al., 1991, Prieur et al., 

1994). The monomers catechin, epicatechin and epicatechin-3-O-gallate favour 

the formation of oligomeric procyanidins and higher polymers (Shi et al., 2003, 

Shoji et al., 2005). Procyanidin dimers and trimers are usually defined as B-series 

(procyanidin B1, B2, B3, B4 and B5) and C-series (procyanidin C1 and C2) 

respectively (Shi et. al., 2003). Several studies have shown that the degree of 

polymerization (dp) in procyanidins may reach quite high numbers. For example, 

procyanidins of up to a dp of 16 units were revealed using gel permeation 

chromatography and normal-phase HPLC by Prieur and co-workers (Prieur et al., 

1994). However, the higher polymers may also be the products of the oxidative 

polymerization due to the extraction process (Shi et al., 2003). The higher the dp 

of procyanidins, the harder it becomes to separate, detect and identify the 

structure of the longer polymers (Robbins et al., 2009).  

Polyhenols are antioxidants and reducing agents largely because their hydroxyl 

(OH-) groups are capable of donating hydrogen and they can gain an oxygen atom 

as they are singlet oxygen quenchers (Yao et al., 2004, Shi et al., 2003). At the 

same time, the antioxidant capacity of these free radical scavenger molecules is 
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also dependent on their solubilities (Rice-Evans et al., 1996) of which catechins 

are more lipid-soluble and procyanidins are more water-soluble (Shi et al., 2003). 

The bioavailability of the polyphenols may be correlated with the antioxidant 

capacity of the plasma as an indirect measurement of the degree of bioavailability 

(Scalbert and Williamson, 2000). Several studies showed the increased 

antioxidant capacity in the plasma following the intake of polyphenol-rich food 

(Duthie et al., 1998, Young et al., 1999, Rietveld et al. 2003). However more 

accurate investigation of the bioavailability of polyphenols involves the direct 

measurement of their concentrations in plasma and in urine (Scalbert and 

Williamson, 2000).  

The absorption and metabolism of proanthocyanidins are not yet fully understood. 

Nevertheless, there is conflicting data on the absorption and metabolism of the 

flavonols and their polymers obtained by animal and human studies (Tsang et al., 

2005).  It has been shown that monomers and procyanidin dimers have much 

higher absorption efficiency through the gut whereas oligomers with higher dp are 

substantially less well absorbed (Sano et al., 2003, Baba et al., 2002, BladÈ et al., 

2010). Kahle and co-workers investigated the metabolism of apple juice 

polyphenols in healthy ileostomy subjects (Kahle et al., 2007). Procyanidin profile 

in the content of ileostomy effluent represented the expected content that would be 

accumulated in the colon under physiological conditions. According to their 

observations, 90.3% of the procyanidins in the apple juice were recovered. The 

average dp of procyanidins was reduced compared to the procyanidins in the 

apple juice (dp 3.4 compared to dp 5.7, 2 hours after consumption). Also, a further 

study by the same group indicated that none of the dimeric procyanidins could be 

detected in the ileostomy content (Kahle et al., 2005). Therefore these 

observations alongside the study carried out by (Deprez et al., 2001) in which 

intestinal epithelial Caco-2 cells were used showing the retention of the 

procyanidin polymers (>dp3) on the Caco-2 cell layer whereas the monomers and 

dp2 and dp3 procyanidins were transferred across the monolayers of human 

intestinal epithelial Caco-2 cells, may indicate that the procyanidin polymers are 

cleaved to smaller oligomers and monomers and they are either absorbed through 

the small intestine or directed to the colon. Caco-2 cells form a monolayer, which 

mimics the function of the normal ileal enterocytes (Deprez et al., 2001).  
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Human microbiata have important functions in procyanidin metabolism. The higher 

dp procyanidins which are accumulated in the colon are subject to digestion by the 

colon microorganisms (Appledorn et al., 2009). Although the microbial action in 

procyanidin metabolism has not been fully revealed yet, the degradation of the 

monomers (catechin and epicatechin) into phenolic acids which have been 

observed in the urine samples of people that consumed food containing high 

amounts of procyanidins signifies the importance of microbial digestion of 

procyanidins in the colon since the biological activities of procyanidins might be 

exerted via these metabolites (Gonthier et al., 2003, Appeldoorn et al., 2009). 2-

(3,4-dihydroxyphenyl)acetic acid and 5-(3,4-dihydroxyphenyl)-γ-valerolactone 

represent the major metabolites produced by the digestion of procyanidins by gut 

microbiota (Appeldoorn et al., 2009). 

The fraction of procyanidins that is not absorbed through the gut is also found to 

be effective in several aspects. Gulgun and co-workers administrated 100 mg/kg 

proanthocyanidin until the animals were intraperitoneally injected with 

methotrexate (20 mg/kg) to induce damage to the guts of the rats (Gulgun et al., 

2010). The results revealed the possible antioxidant capacity of the 

proanthocyanidins in the gut as decreased jejunal damage and malondialdehyde 

levels, which may indicate an injury in the small intestine, were observed. Beside 

their antioxidant and anti-carcinogenic roles, proanthocyanidins which were not 

absorbed efficiently from the gut, were found to be effective immunomodualtors 

and anti-inflammatory agents (Ramiro-Puig and Castell, 2009, Romier et al., 2009) 

and to have antibacterial properties (Mayer et al., 2008).  

 

1.4.3 Flavonols 

Flavonols are the biggest contributor to flavonoid intake. The onions, curly kale, 

leeks, broccoli, and blueberries are rich sources for flavonols. Perez-Jimenez and 

co-workers reported that total polyphenol content of tea is 89-102 mg /100 ml 

according to the study where they determined the 100 richest sources of dietary 

polyphenols using Phenol-Explorer database (www.phenol-explorer.eu) (Perez-

Jimenez et al., 2010). The authors referred black and green tea as the 52nd and 

54th richest food, respectively. Generally the levels of flavonols in tea are up to 45 

mg flavanols/L (Manach et al., 2004), and it has been reported that it is the main 
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source of flavonols in countries such as the UK and Netherlands where tea 

consumption is very high, tea is a major source of flavonols in the diet (Hertog et 

al., 1993). Red wine has been reported to contain up to 30 mg flavonols/L and is 

another important contributor to flavonol intakes (Manach et al., 2004). The 

flavonols are present in glycosylated forms (mainly with a glucose and/or 

rhamnose sugar attached). There is variation in flavonol contents of fruits from the 

same tree and even in the different sides of the same fruit since flavonol 

biosynthesis is stimulated by light (Manach et al., 2004, Crozier et al., 2006, 

D’Archivio et al., 2007). The main dietary flanovols (in order of abundance) 

quercetin, kaempferol, isorhamnetin and myricetin, and among these flavonols, 

quercetin is the flavonol of interest in the present study.  

There are a very large number of published reports describing investigations of the 

potential physiological effects of quercetin. These range from chemical studies 

concerned with its ability to act as an antioxidant in aqueous and lipidic 

environments, through cell culture based experiments to determine its ability to 

affect cellular biomarkers that are thought to be related to disease risk or 

maintenance of healthy function, and feeding studies using animal models of 

human diseases, to human intervention studies where the impact of consuming 

quercetin on established disease risk factors/biomarkers has been assessed. 

(Egert et al., 2009, Tribolo et al., 2008, Galindo et al., 2012). These studies have 

shown that quercetin has the potential to induce a very large number of biological 

effects. For example, Dias and co-workers worked with streptozotocin-induced 

diabetic rats, and they observed decreases in oxidative stress, NF-κB activation, 

and also iNOS overexpression in liver after treating the rats with quercetin (150 

μmol/kg, daily intraperitoneal injection) for 8 weeks (Dias et al., 2005). Nair and co-

workers had observed a dose dependent inhibition of TNF-α production and gene 

expression in normal peripheral blood nuclear cells by preventing NF-κB 

activation, therefore, revealing anti-inflamatory properties of quercetin (Nair et al., 

2006). Davis and co-workers demonstrated anti-pathogenic activities of quercetin. 

They assessed the effect of quercetin on exercise stress associated upper 

respiratory tract infection by feeding mice daily with 12.5 mg/kg quercetin for 7 

days prior to infecting them with influenza. The results have shown that quercetin 

fed animals were less prone to respiratory infection (Davis et al., 2008). Erk and 

co-workers explored the alterations in the gene expression of Caco-2 cells after 
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quercetin treatments (5 µM). The results revealed alterations in the expression of 

genes involved in cell cycle and differentiation, apoptosis, tumor suppressor genes 

and oncogenes, cell adhesion and cell-cell interaction, transcription, signal 

transduction and energy metabolism. Furthermore, quercetin treatment 

downregulated cell proliferation and induced apoptosis in Caco-2 cells exposing 

the anti-carcicogenic potential of quercetin (Erk et al., 2005). Finally, several 

studies reported in the literature indicated the cardioprotective potential of 

quercetin. Chen and co-workers demonstrated that quercetin treatment protected 

cardiomyocytes (H9C2 cells) against the effects of ischemia/reperfusion injury. 

Quercetin achieved this by regulating Src kinase, FAK (focal adhesion kinase), 

and STAT3 (signal transducer and activator of transcription 2) that led to inhibition 

of inflammatory responses and maintaining cell physiology, including morphology, 

redox status, and metabolism (Chen et al., 2013). 

All the studies mentioned above have tested the effects of quercetin aglycone. 

Nevertheless, quercetin is present in glycosylated forms in plants and food. 

Furthermore quercetin glycosides are modified upon absorption and then they are 

efficiently conjugated before entering the peripheral blood. There are several 

reports of the pharmacokinetics of quercetin in humans, and to date quercetin 

aglycone has not been detected in human plasma.  Mullen and co-workers fed 

healthy human subjects lightly fried onions with a total polyphenol content of 275 

µM (mainly quercetin 4’-glucoside and quercetin 3,4’-diglucoside) and collected 

plasma and urine samples over 24 h (Mullen et al., 2006). HPLC-MS analysis of 

plasma samples revealed that quercetin was metabolized to a number of quercetin 

conjugates with the three most abundant being quercetin 3’-O-sulfate (Q 3’-O-S), 

quercetin 3-O-glucuronide (Q 3-O-GlcA), isorhamnetin 3-O-glucuronide (IsoR 3-O-

GlcA). A quercetin O-diglucuronide and a quercetin O-glucuronide-O-sulfate were 

also detected in the plasma samples, but their molecular structures were not 

identified. The metabolites were present in the circulatory system within 30 min of 

ingestion. Therefore, that indicated the removal of the glucose moieties in the 

gastrointestinal tract which was followed by the conjugations in the enterocytes 

with the activities of sulfotransferase, catechol O-methyl transferase and uridine-

5‘-diphosphate glucuronosyl-transferases prior to the release into the circulatory 

system. Another short-term human study, Egert and co-workers compared the 

effectiveness of quercetin enriched cereal bars and quercetin powder-filled hard 
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capsules in increasing plasma quercetin concentrations (Egert et al., 2012). 

Similarly, they observed an increase in plasma quercetin concentration in the first 

30 min. However, they measured only the quercetin aglycone and methylquercetin 

aglycone levels since they treated the samples with a mixture of β-

glucuronidase/sulfatese in order to hydrolyse any glucuronidated or sulfated 

conjugates prior to the HPLC analysis. Quercetin, isorhamnetin (3’ O-

methylquercetin) and tamarixetin (4’ O-methyquercetin) were identified in the 

extracted plasma samples. On the other hand, a long-term study by Cialdella-Kam 

and co-workers assessed the dose-response to 3 months of quercetin-containing 

supplements on quercetin conjugation in adults (Cialdella-Kam et al., 2013). The 

supplements containing quercetin, vitamin C and niacin were given to the healthy 

adults as a soft chew to ingest twice a day for 3 months. Isorhamnetin 3’-O-

glucuronide, quercetin 3’-O-glucuronide, quercetin 3’-O-sulfate and quercetin 

diglucuronide were the conjugates present in the plasma of the subjects 

supplemented with quercetin for 3 months. 

Beside the effects of quercetin aglycone, its metabolites were also demonstrated 

to have beneficial effects. Day and co-workers assessed the effects of quercetin 

glucuronides on the xanthine oxidase and lipoxygenase activities (Day et al., 

2000). Quercetin 4’-O-glucuronide was found to be a potent inhibitor of xanthine 

oxidase which was followed by quercetin 3’-O-glucuronide, quercetin 7-O-

glucuronide and quercetin 3-O-glucuronide. Therefore, quercetin glucuronides 

may be effective in diminishing reactive oxygen species (ROS) production. 

Quercetin aglycone is a potent antioxidant, and also quercetin metabolites were 

observed to possess antioxidant activities. Shiari and co-workers showed that 

quercetin 3-O-glucuronide pre-treatment inhibited H2O2-induced production of 

intracellular ROS in mouse fibroblast 3T3 cultured cells (Shirai et al., 2002). 

Similarly, Loke and co-workers showed that quercetin and its metabolites (3’-O-

methylquercetin and quercetin 3-glucuronide) had antioxidant activities at 

physiologically relevant concentrations (Loke et al., 2008). Neutrophil-mediated 

peroxidation of LDL was inhibited by quercetin (IC50=1 µM) and its metabolites 

(IC50= 2 to 4 µM). Therefore, a reduction in the inhibitory activity was observed 

when quercetin was conjugated. Lotito and co-workers investigated whether 

quercetin metabolites retain anti-inflammatory properties of the quercetin aglycone 

(Lotito et al., 2011). They measured the effects of quercetin metabolites on the 
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TNF-α-induced cell adhesion molecule expression in human aortic endothelial 

cells (HAECs). 3’-O-methyquercetin and 4’-O-methylquercetin were shown to 

inhibit expression of ICAM-1 at physiological concentrations. On the other hand, E-

selectin expression was inhibited weakly and VCAM-1 expression was not 

affected. The other metabolites tested (quercetin 3-O-glucuronide and quercetin 

3’-O-sulfate) did not retain the anti-inflammatory properties of quercetin. Similarly, 

Tribolo and co-workers showed that quercetin and its metabolites (Q 3’-O-S, Q 3-

O-GlcA, IsoR 3-O-GlcA and the mixture of all metabolites) inhibited VCAM-1 at 

physiological concentrations (2 µM) in LPS/TNF-α stimulated HUVECs (Tribolo et 

al., 2008). However, ICAM-1 expression was inhibited only by quercetin (2 µM) 

and the mixture of all metabolites (10 µM). In contrast, quercetin metabolites (Q 3’-

O-S, Q 3-O-GlcA and IsoR 3-O-GlcA) did not affect cell adhesion molecule 

expression in TNF-α activated human artery smooth muscle cells (Winterbone et 

al., 2009). 

 

1.4.4 Stilbenes 

In contrast to flavonols, stilbenes are present in relatively small quantities in the 

human diet and are only found in a very restricted number of foods. They are 

phytoalexins (self-defence agents) which are synthesised by plants in response to 

various infections (e.g. fungal, bacterial and viral) and also in response to several 

stress conditions (Crozier et al., 2006). Resveratrol is the most extensively studied 

stilbene which exists as both cis and trans isomers, and it appears mostly as trans 

resveratrol 3-O-glucoside (piceid) in plant tissues.  

According to Burkon and Somoza, the resveratrol human metabolites identified in 

human plasma after feeding human subjects with a polyphenol-rich diet for 48 h 

were resveratrol 3-O-sulfate, resveratrol 3-O-glucuronide, resveratrol 4’-O-

glucuronide, resveratrol diglucuronides and resveratrol disulfates (Burkon and 

Somoza, 2008). Furthermore, Bode and co-workers showed that after feeding 

human subjects with an oral dose of 0.5 mg trans-resveratrol/kg body weight, a 

portion of the unabsorbed trans-resveratrol was metabolized by colon microbiota 

(Bode et al., 2013). The identified metabolites were dihydroresveratrol, 3,4’-

dihydroxy-trans-stilbene and 3,4’-dihydroxybibenzyl (lunularin). However, they 

observed that there were interindividual differences in metabolite production.  
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There are various in vitro studies demonstrating antioxidant, anti-carcinogenic and 

anti-inflammatory properties of resveratrol. Gulcin (2010) showed the in vitro 

antioxidant and radical scavenging power of resveratrol by employing several in 

vitro antioxidant assays including H2O2 scavenging activities, total antioxidant 

activity, reducing abilities, and Fe2+ chelating activities. Tang and co-workers 

demonstrated anti-carcinogenic effects of resveratrol on esophageal squamous 

cell carcinoma (ESCC) (Tang et al., 2013). They showed that 100 µM resveratrol 

treatments for 24 h significantly diminished ESCC cell growth and induced 

apoptosis. Furthermore, Storniolo and Moreno showed that resveratrol human 

metabolites retain the anti-carcinogenic effects of resveratrol aglycone. 

Resveratrol 3-O-sulfate, resveratrol 3-O-glucuronide and resveratrol 4’-O-

glucuronide reduced Caco-2 proliferation dose-dependently (1-50 µM), and also 

induced apoptosis (Storniolo and Moreno, 2012). Wakabayashi and Takeda 

demonstrated anti-inflammatory effects of resveratrol using human coronary artery 

smooth muscle cells (HCASMCs) (Wakabayashi and Takeda, 2013). Resveratrol 

(1-50 µM) treatments dose-dependently diminished basal levels of monocyte 

chemoattractant prorein-1 (MCP-1), interleukin-6 (IL-6) and IL-8 which are 

important in the initiation of atherosclerotic plaque formation. Furthermore, the 

resveratrol treatments decreased the production of MCP-1, IL-6 and IL-8 also in 

the IFN-γ-stimulated HCASMCs.  

There are several reported in vivo animal and human studies indicating the 

potential beneficial health effects of resveratrol. Baur and co-workers showed that 

resveratrol improves health and survival of mice on a high-calorie diet by inducing 

alterations such as increased insulin sensitivity, reduced insulin-like growth factor-

1 (IGF-1) levels, increased AMP-activated protein kinase (AMPK) and peroxisome 

proliferator-activated receptor-Ƴ coactivator 1α (PGC-1α) activity, increased 

mitochondrial number, and improved motor function (Baur et al., 2006). Brasnyo 

and co-workers assessed the effects of resveratrol on human type 2 diabetic 

patients. Patients were supplemented with 5 mg resveratrol twice daily for 4 

weeks. The final assessments revealed a decrease in insulin resistance and 

urinary ortho-tyrosine excretion, and at the same time elevated the pAkt:Akt ratio 

in platelets. The authors concluded that resveratrol enhances insulin sensitivity in 

humans by regulating insulin signalling via Akt pathway as a consequence of a 

possible decrease in oxidative stress (Brasnyó et al., 2011). 
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1.5 The Potential of Polyphenols in the Prevention and Treatment 

of Diabetes and Metabolic Syndrome 

A limited number of pre-clinical research studies using cell culture and animal 

models and clinical studies have reported the potential effects of the polyphenols 

in the prevention and treatment of diabetes and metabolic syndrome. 

For example, Basu and co-workers investigated the effects of pomegranate 

polyphenols on both healthy and type 2 diabetic volunteers. The study involved 

consumption of 2 pomegranate capsules rich in ellagic acid (743 mg polyphenols 

each) daily for 4 weeks. Interestingly, pomegranate capsule supplementation 

caused a reduction in lipid peroxidation in diabetic subjects whereas there were no 

significant alterations in healthy subjects (Basu et al., 2013). In another study, 

Rizza and co-workers supplemented subjects with metabolic syndrome with 

flavonone hesperitin (500 mg/d orally for 3 weeks), and they observed that 

hesperetin caused anti-inflammatory effects reflected as reductions in circulating 

high-sensitivity C-reactive protein, serum amyloid A protein, soluble E-selectin 

(Rizza et al., 2011). Furthermore, hesperetin supplementation increased flow-

mediated dilation in the patients indicating the anti-atherogenic effects of the 

polyphenol.  

El-Alfy and co-workers focused on the protective effects of red grape seed 

proanthocyanidins against the oxidative stress which is assumed to be a 

promoting factor in the induction of diabetes due to pancreatic β-cell destruction by 

reactive oxygen species (ROS) (El-Alfy et al., 2005). Alloxan induced diabetic rats 

were given grape seed proanthocyanidins in normal saline by oral gavage. The 

grape seed proanthocyanidins treatment yielded a significant reduction in 

hyperglycaemia. Beside the decline in hyperglycaemia, an elevation in pancreatic 

glutathione levels and a reduction in lipid peroxidation that is the rate-limiting step 

in atherosclerosis implied that the anti-diabetic properties of the grape seed 

proanthocyanidins might be due to its antioxidant properties. Another study was 

focused on the insulomimetic properties of the grape seed proanthocyanidins. 

Feeding diabetic rats with grape seed procyanidins revealed a decrease in the 

level of glycaemia. Glucose uptake was shown to be enhanced by procyanidins in 

two insulin-sensitive cell lines, L6E9 (myoblasts) and 3T3-L1 (adipocyte like cells), 
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demonstrating that procyanidins may affect insulin-sensitive tissues. At the same 

time, the phosphoinoside 3-kinase (PI3K) inhibition by wortmannin treatment of 

cultured cells eliminated the anti-glycaemic effects of the procyanidins, indicating 

the insulomimetic property of the grape seed procyanidins (Pinent et al., 2004). 

Culturing HUVECs in media with high-glucose concentrations is a widely used 

model for investigating the effects of hyperglycaemia on endothelial cell apoptosis. 

HUVECs experience increased apoptosis in hyperglycaemic conditions and this is 

associated with variety of changes in the cells that are important in the initiation 

and development of atherosclerosis. Generation of advanced glycation end 

products (AGE) (Goldin et al., 2006) and reactive oxygen species (ROS), 

increased cell adhesion molecules (CAMs) expression (Altannavch T. S., 2004), 

decreased eNOS and NO production (Eckel et al., 2002), increased matrix 

metalloproteinase production (Lee et al., 2008b) together with the activation of 

JNK (Kaneto Hideaki, 2004) and MAPK pathways (Hsieh et al., 2007, Yang et al., 

2008) have all been observed in high-glucose treated HUVECs. Several plant 

natural products are found to be effective in reversing some of the effects of 

hyperglycaemia in HUVECs (Choi et al., 2008, Lee et al., 2008a, Hsieh et al., 

2007). There are a number of reports indicating that polyphenol-rich extracts such 

as those from tea, bamboo, Buddleja officinalis, and guava leaves can reduce the 

high-glucose-induced increases in apoptosis and protect endothelial cells from 

damage (Lee et al., 2008a, Lee et al., 2008b, Choi et al., 2008). Sasa borealis 

bamboo extract (SBwE) is believed to have an effect on the pathways involving 

the activation of protein kinase C β2 (PKCβ2) and NAD(P)H oxidase. PKCβ2 and 

NAD(P)H are affected by high glucose leading to the production of ROS including 

superoxide and hence oxidative stress in the endothelial cells (Li and Shah, 2003). 

The inhibition of NAD(P)H oxidase induced PKC-dependent peroxynitrite formation  

by SBwE is believed to be responsible for the observed reduction in HUVEC 

apoptosis (Choi et. al., 2008). On the other hand, together with its anti-apoptotic 

effects, guava leaf sap has a high polyphenol content which was shown to be 

effective in the inhibition of glycative and autoxidative reactions yielding glyoxal 

and methylglyoxal that induce ROS production (Hsieh et. al., 2007). Another report 

indicated that quercetin metabolites (a mixture of quercetin sulfates and 

glucuronides from rat plasma) effectively and dose-dependently inhibited the high-
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glucose-induced increase in apoptosis in HUVECs by inhibiting JNK and caspase-

3 activity (Chao et al., 2009). 

 

1.6 Rationale and Aims of the Research Project 

The anti-inflammatory, anti-atherogenic, anti-apoptotic and antioxidant effects of 

polyphenols mentioned above indicated that polyphenols have the potential to 

attenuate the deleterious effects of high-glucose conditions, which are associated 

with diabetes (and metabolic syndrome). However, the current data concerned 

with mechanisms is scarce and rather fragmented, and the reports concerned with                  

determining the effects of polyphenols on high-glucose-stressed endothelial cells 

have all taken a selective / targeted approach. Since (1) the effects of increased 

glucose concentrations on endothelial cells is multifaceted, and (2) polyphenols 

have been shown to work through multiple mechanisms and elicit a variety of 

changes in the functions of cells to which they are exposed, non-targeted holistic 

approaches such as transcriptomics, proteomics and metabolomics are likely to be 

effective approaches for determining the full range of responses and providing 

insights into the underlying mechanisms of action. Considering that the most 

important direct consequence of diabetic and metabolic syndrome states is 

hyperglycaemia, it seems likely that the negative effects of hyperglycaemia in the 

endothelium may be mediated through changes in cell metabolism. 

Furthermore, apart from the one report that concerned an investigation into the 

potential for quercetin conjugates (physiological metabolites of this dietary 

flavonoid) to counter the deleterious effects of high-glucose on vascular 

endothelial cells (Chao et al., 2009), nothing is known of how the metabolism of 

polyphenols (that occurs during the first pass) influences their ability to protect 

endothelial cells from the effects of high-glucose. 

Therefore, the overall aim in the study was to determine the ability of quercetin to 

overcome the pro-inflammatory effects of hyperglycaemia and cytokine treatments 

in HUVECs, with a view to understand the effects at a mechanistic level on the 

entire system. In order to achieve this, the effects of high-glucose concentrations, 

inflammatory cytokines and polyphenols on markers of endothelial function in 

HUVECs were explored (Chapter 2).  That was followed by optimizing a protocol, 
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which facilitated quick and effective freezing of cellular metabolism, extraction of 

metabolites and analysis of extracted metabolites by employing the global analysis 

approach using 1H NMR (proton nuclear magnetic spectroscopy) to produce non-

biased and reproducible results (Chapter 3). The optimized 1H NMR protocol was 

then used to investigate the effects of hyperglycaemia, inflammatory cytokines and 

polyphenol treatments on HUVEC metabolite profiles, and HILIC mode LC-MS/MS 

analysis was used to provide supplementary data (Chapter 4). The final results 

chapter (Chapter 5) describes the identification of quercetin metabolites inside the 

cells and in the culture medium after quercetin treatments, and reports their effects 

on  the activities of enzymes involved in purine metabolism, in tubo and using 

intact HUVECs, which provided a plausible explanation of the polyphenol-induced 

alterations in HUVEC metabolite profile identified in Chapter 4. 
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CHAPTER 2: Effects of high-glucose, pro-inflammatory 

cytokines and polyphenols on endothelial cell function: 

Targeted experiments to test effects of polyphenols on 

inflamed HUVECs 

2.1 Abstract 

Background: Chronic exposure of the vascular endothelium to high-glucose 

conditions and/or inflammatory cytokines decreases endothelial function and leads 

to damage which eventually manifests as atherosclerosis. There is some evidence 

that dietary polyphenols can protect against cardiovascular disease, but the 

mechanisms are not well understood. 

Aim: To explore the effects of high-glucose concentrations, inflammatory cytokines 

and polyphenols on markers of endothelial function in HUVECs. 

Approach/methods: Cultured HUVECs were used as a model, and the medium 

was supplemented with high-glucose concentrations, cytokines and/or with 

polyphenols in order to investigate the effects of hyperglycaemia and inflammation 

on vascular endothelial cell function, and the potentially protective effects of 

polyphenols. Cell proliferation and cell adhesion molecule (CAM) expression were 

assessed as markers of endothelial cell function.  

Results: Hyperglycaemic conditions did not significantly affect cell proliferation or 

CAM expression, whereas the inflammatory cytokines TNF-α and IL1-β caused 

significant increases in ICAM-1 and VCAM-1 expression (all p<0.001). Three 

different classes of polyphenols were assessed for their ability to alter cell 

proliferation and CAM expression in resting and stimulated (hyperglycaemia, 

inflammatory cytokines) HUVECs; flavanols from grape, the flavonol quercetin and 

the stilbene resveratrol. A grape skin extract containing (+)-catechin,                     

(-)-epicatechin and procyanidin oligomers and polymers significantly increased 

bromodeoxyuridine (BrdU) incorporation at lower concentrations and decreased it 

at higher concentrations compared to the control (all p<0.05), whereas a grape 

seed extract containing mainly flavanol monomers, dimers and trimers was 

ineffective. Interestingly, the grape seed and skin extracts had no effects alone, 
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but worked in synergy with IL1-β to induce significant increases in ICAM-1 and 

VCAM-1 expression, respectively; synergistic increases in ICAM-1 were also 

observed for the grape seed extract with IL1-β (p<0.01). Pre-treatments with 

quercetin (10 & 25 μM) for 2 h and 6 h (but not 45 min) significantly decreased 

TNF-α-induced VCAM-1 (p<0.05) but not ICAM-1 expression. Resveratrol had no 

significant effect on ICAM-1 or VCAM-1 expression alone, but acted in synergy 

with TNF-α to significantly increase expression of both CAMs (p<0.05). In contrast, 

two human resveratrol metabolites (3-O-sulfate,3,5-di-O-sulfate) had no effect on 

ICAM-1 expression. 

Conclusion: The inflammatory cytokines TNF-α and IL1-β induced significant 

changes in CAM surface expression, and the different polyphenols induced 

different responses, pro- and anti-inflammatory, depending on concentration and 

period of exposure. 
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2.2 Introduction 

Several studies have provided evidence to show that high-glucose concentrations 

can affect endothelial cell proliferation. This effect of high-glucose may be the 

outcome of changes in several metabolic pathways. Varma and co-workers 

reported the effects of incubation of the HUVECs with 20 mM or 40 mM glucose 

containing media (Varma et al., 2005). These high-glucose concentrations in the 

media reduced cell proliferation significantly according to the results obtained on 

culture day 8 which showed log-phase growth possibly due to an alteration in the 

phosphoinositide 3-kinase (PI3K) and Akt signalling pathways. The authors 

proposed that the inhibition of tyrosine phosphorylation of PI3K and threonine 308-

phosphorylation of Akt by high-glucose might be responsible for the uncoupling of 

PI3K-Akt signalling leading to proliferative dysfunction in the HUVECs (Varma et 

al., 2005). On the other hand, Chen and co-workers reported the effects of the 

incubation of HUVECs for 24 hours in media containing 28.5 mM glucose (high-

glucose conditions) (Chen et al., 2007). Also, they investigated the effects of high 

glucose concentrations on the expression of p15INK4 which is a member of INK4 

family of cyclin-dependent kinase inhibitors. The reduction in cell proliferation with 

the increased expression of p15INK4 protein due to high-glucose and also the 

attenuation of the reduction in the cell proliferation by the antisense p15INK4 

oligonucleotide indicated that the high glucose-induced reduction in HUVEC 

proliferation might be dependent on the p15INK4 expression (Chen et al., 2007). 

Both of these studies revealed a significant reduction in cell proliferation with the 

incubation of cells with high-glucose containing media. This is important since a 

possible reduction in endothelial cell proliferation may gradually lead to vascular 

endothelial dysfunction and initiation of atherosclerotic plaque formation. 

Therefore, cell proliferation was chosen as a parameter to test the potential anti-

atherogenic effects of polyphenols on HUVECs under high-glucose concentrations 

in this project.  

Atherosclerosis was originally and for quite some time considered as an 

unremarkable lipid storage disorder (Libby et al., 2002). However the studies that 

have been carried out in the last decade have underlined the promoting role of 

inflammation which has helped to the identification of a number of possible cellular 

and molecular mechanisms affecting the development and progression of 
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atherosclerosis (Ross, 1999). For example, binding of leukocytes to healthy 

endothelium is not favoured whereas an atherogenic diet initiates expression of 

cell adhesion molecules that enables binding of leukocytes to the endothelium, 

which is an important initial step in the inflammation process in the vasculature 

(Libby et al., 2002). Therefore, another important parameter is the expression of 

cell adhesion molecules (CAM) since these “sticky” proteins are vital for the 

initiation of atherosclerosis. This is because the formation of atherosclerotic 

plaques requires the recruitment of leukocytes, which are the mediators of host 

defences and inflammation at these sites (Libby et. al., 2002). VCAM-1, ICAM-1 

and E-selectin are the three cellular adhesion molecules that are expressed on 

endothelial cells and leukocytes in response to inflammatory factors during 

atherosclerotic plaque formation (Davies et al., 1993, Blankenberg et al., 2003). 

VCAM-1 is the most important cell adhesion molecule involved in atherosclerotic 

plaque formation. Its affinity for leukocytes, particularly monocytes and T-

lymphocytes, which are present in the emerging atherosclerotic plaques, reveals 

the importance of this molecule in the initiation of atherosclerosis (Liyama et al., 

1999). Also, Cybulsky and co-workers showed that reduced VCAM-1 expression is 

effective in reducing atherosclerotic plaque formation in mice (Cybulsky et al., 

2001). Beside VCAM-1, two other molecules, ICAM-1 and E-selectin, have 

important roles in the initiation of atherosclerotic plaque formation (Davies et. al., 

1993).  

Several studies reported increased CAM expression in the cells grown in high-

glucose medium (Piconi et al., 2004, Baumgartner-Parzer et al., 1995, Altannavch 

T. S., 2004). Therefore, in this chapter the objective was to explore the effect of 

high-glucose, pro-inflammatory cytokines and polyphenols on endothelial function 

markers in HUVECs using targeted experiments to test the hypothesis that the 

polyphenols can overcome the deleterious effects of hyperglycaemic or 

inflammatory conditions on the vascular endothelium. 
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2.3 Materials & Methods 

2.3.1 Materials 

The Cell Proliferation ELISA (chemiluminescent) was purchased from Roche 

Applied Science (West Sussex, UK). Propidium iodide solution (PI), 

lipopolysaccharide (LPS), paraformaldehyde, phosphate buffered saline (PBS), 

ethylenediaminetetraacetic acid (EDTA), sodium azide, bovine serum albumin 

(BSA), dimethylsulfoxide (DMSO), D-glucose, D-mannitol, quercetin and 

epicatechin were purchased from Sigma-Aldrich® (Poole, UK). Dichloromethane, 

methanol, acetic acid were all HPLC grade and obtained from Fisher Scientific 

(Loughborough, UK). The grape skin extract was a crude extract used in the Kroon 

lab for method development and as a standard. Grape seed extracts were 

Leucoselect® Phytosome® from Indena® (France) and exGrape® from Groupe 

Grap’sud® (France). Monoclonal antibodies used for flow cytometry analysis were: 

phycoerythrin (PE)-anti-human ICAM-1 (clone HA58), PE-anti-human VCAM-1 

(clone 51-10C9) and PE-anti-mouse IgG1 (isotype control; clone MOPC21), from 

BD Bioscience (Erembodegem, Belgium). FITC mouse anti-human CD62E 

antibody was purchased from Immunostep Research (Salamanca, Spain). TNF-α 

and IL1-β were purchased from R&D Systems (Abingdon, UK);, they were 

dissolved in PBS containing 1% BSA. Luna® 5-Silica(2) and Luna® 5-C18(2) 

columns were obtained from Phenomenex®. Clonetics® Trypsin (0.025%)/EDTA 

(0.01%) was obtained from Cambrex Bio Science (Cambrex, Wokingham, UK).  

Trans-resveratrol-O-sulfates were synthesized in the Kroon lab by Dr Paul Needs 

(Yu et al., 2002, Kawai et al., 2000). Resveratol was purchased from AK Scientific, 

Inc (USA). 

 

2.3.2 Human Umbilical Vein Endothelial Cells (HUVECs) 

2.3.2.1 Source  

Human umbilical vein endothelial cells (HUVECs) were obtained from Cambrex 

Bio Science (Wokingham, England) and grown in EGM2 Bullet Kit (Lonza).  

 

http://www.indena.com/pdf/leucoselect.pdf
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2.3.2.2 EGM2 Bullet Kit Medium  

Supplements and growth factors (hydrocortisone, hEGF, FBS, VEGF, hFGF-B, 

R3-IGF-1, heparin and gentamicin/amphotericin-B).  

 

2.3.2.3 Storage  

The cells were kept in a liquid nitrogen tank in vials containing up to 106 cells in 1 

ml of growth media with 10% DMSO. These vials were used to seed cells for 

experiments.  

 

2.3.2.4 Freezing cells  

When a plate of cells had reached confluence (single-layer of cells covering whole 

surface of the growth area), the cells were either sub-cultured onto another plate 

or frozen into vials to be stored in liquid nitrogen tank. These vials contained cells 

in 10% DMSO which was necessary for protecting cells from the formation of ice 

crystals that may disrupt the cell membrane.  

 

2.3.2.5 Thawing and seeding cells  

The number of vials containing the required amount of cells were removed from 

the liquid nitrogen tank. The cells were thawed and added into the growth medium. 

Then cells were seeded with a density of 2800-3000 cells/cm2. All the experiments 

were carried out between passage number 4 and 5 (doubling population≤10). 

Cultures were maintained at 37°C and 5% CO2. 

 

2.3.3 HUVEC Proliferation Measurement 

Cell proliferation was measured by using a bromodeoxyuridine (BrdU) 

incorporation type assay. A kit obtained from ROCHE® was used for the 

measurement. BrdU is a thymidine analogue. The dye incorporates into the cells 

and binds to the DNA during DNA replication. Hence the amount of proliferating 
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cells can be measured by an ELISA assay probing the dye with a 

chemiluminescent labelled anti-BrdU antibody.  

HUVEC proliferation was investigated by using EGM® media with three different 

glucose concentrations of 5.5 mM (basal medium), 10 mM and 20 mM. HUVECs 

were cultured in black 96-well plates with clear bottom at 3500 cell/cm2 by using 

basal medium in a final volume of 100 µl. Cultures were maintained at 37°C and 

5% CO2. After 24 hours of the seeding, the media were changed either to 10 or 20 

mM glucose containing experimental media with/without polyphenol treatments. At 

the same time, EGM® media that contain equimolar concentrations of mannitol 

were used as controls against hyperosmolarity. HUVEC proliferation was 

measured at 24, 48 and 72 hours. The effects of grape skin and grape seed 

extracts (Leucoselect® Phytosome®) on the proliferation of high-glucose treated 

HUVECs were assessed. Grape seed and grape skin extract solutions were 

prepared in dimethylsulfoxide (DMSO) at concentrations such that the final 

concentration of the solvent in cell suspension did not exceed 0.1% (v/v). 0.1% 

(v/v) DMSO was added into control treatments. At the end of the treatment 

periods, BrdU incorporation was allowed either for 4 h or 12 h by adding 10 µl 

BrdU labelling solution to each well (final concentration 10 µM BrdU). This was 

followed by fixing the cells with the FixDenat solution (200 µl/well, 30 min at room 

temperature) provided in the kit. The fixed cells were incubated with 100 µl anti-

BrdU-POD/well for 1.5 h at room temperature. The chemiluminescence was then 

measured using a microplate luminometer (Luminoskan Ascent, Thermo 

Labsystems, Helsinki, FL). 

 

2.3.4 High Performance Liquid Chromatography (HPLC) 

HPLC was used for the qualitative analysis of grape skin extract and grape seed 

extract samples. The grape skin extract was initially analyzed by two different 

HPLC methods to obtain a favourable method; normal phase HPLC with 

fluorescence detection and reverse phase HPLC with UV diode array detection, 

whereas only normal phase HPLC with fluorescence detection was used for the 

analysis of grape seed extract samples.  

Samples (40 mg, in triplicate) were extracted using 950 µl 70% aqueous ethanol at 

70°C for 20 minutes. Each sample was then split between two HPLC vials ready 
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for analysis in normal and reverse phase HPLC by using 250 х 4.60 mm internal 

diameter 5 µm “Luna® 5-Silica(2)” and “Luna® 5-C18(2)” columns with pore sizes 

of 100Å respectively. Standard curves were prepared by injecting the instruments 

with different volumes of 0.1mg/ml epicatechin standard for each method to be 

able to determine the amount of epicatechin in grape skin/seed extract samples. 

Samples were eluted at a rate of 1 ml/min. Catechin and procyanidins were 

identified by comparing the retention times with the retention times of previously 

analysed standards and higher-chain length procyanidins in the Kroon Lab 

respectively. A mobile phase consisting of dichloromethane, 100% methanol and 

50% acetic acid was used for normal phase analysis, whereas 0.1% trifluoro-

aceticacid (TFA)/water and 0.1% TFA/acetonitrile were used in reverse phase 

HPLC over 65 min long analysis (Table 2.1 and 2.2).  The injection volumes were 

10 l and 20 l for normal phase and reverse phase analyses respectively.  

 

2.3.4.1 Gradient Profiles 

Table 2.1: Gradient profile of mobile phase in normal phase HPLC analysis over 

65 minutes. 

B: Dichloromethane  C: Methanol  D: 50% Acetic Acid  

 
Time (min) B % C % D % 

30 82 14 4 

45 67.5 28.4 4 

50 56.8 39.2 4 

55 10 86 8 

65 82 14 4 
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Table 2.2: Gradient profile of mobile phase in reverse phase HPLC analysis over 65 

minutes. 

 
A: 0.1% TFA/Water   B: 0.1% TFA/Acetonitrile 

 
Time (min) A % B % 

0 3 97 

5 3 97 

15 17 83 

17 17 83 

22 25 75 

30 35 65 

35 50 50 

40 100 0 

50 100 0 

55 3 97 

65 3 97 

 

 

2.3.5 Cell Adhesion Molecule Expression in HUVECs 

Effects of experimental conditions on CAM expression were assessed by a flow 

cytometry based method using antibodies specific for VCAM-1 and ICAM-1 which 

are conjugated with two different fluorophores, one for each antibody. 

Phycoerythrin (PE) labelled antibody is used for VCAM-1 detection whereas 

allophycocyanin (APC) labelled antibody is used for ICAM-1 detection. The cell 

adhesion molecule (CAM) detection protocol was optimized prior to the 

experiments (Figure 2.1).  

HUVECs were cultured in 6-well plates at 3500 cell/cm2 by using basal medium 

(5.5 mM glucose). The experiments were performed with HUVECs in both an 
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unstimulated state and under inflammatory conditions induced by a mixture of LPS 

10 µg/ml (Sigma-Aldrich®) and TNF-α 10 ng/ml (Sigma-Aldrich®), only by TNF-α 5 

ng/ml (R&D Systems) or only by IL1-β 5 ng/ml (R&D Systems). All experiments 

were carried out between passage number 4 and 5 (doubling population ≤10) 

cells. Cultures were maintained at 37°C and 5% CO2. The basal media were 

changed with experimental high-glucose media with or without polyphenol 

treatments for 18, 24 or 48 hours in each experiment when 90-95% confluency 

was reached to test the effect of high-glucose on cellular adhesion molecule 

expression.  

After the treatments, confluent monolayers were washed with PBS and harvested 

using Clonetics® Trypsin (0.025%)/EDTA (0.01%) (Cambrex). Cells were re-

suspended in PBS (pH 7.4) containing 0.1% BSA and 0.02 mmol/L NaN3. 

Monoclonal antibodies were added to the cells and incubated in the dark at 4◦C for 

30 min. After washing in PBS containing 0.1% BSA, 4 mmol/L EDTA and 0.02 

mmol/L NaN3, cells were fixed with paraformaldehyde at 1% final concentration or 

stained with propidium iodide (PI) (Invitrogen®) just before the flow cytometry 

analysis. Propidium iodide is a membrane impermeant nucleic acid dye and 

generally excluded from viable cells. In membrane permeable/dead cells, PI will 

bind to nucleic acid upon entering the cells brightly fluorescent enabling the 

exclusion of dead or dying cells from the flow cytometry analysis. 

The cell surface expression of the adhesion molecules (ICAM-1 and   VCAM-1) 

was quantified using a Beckman Coulter Cytomics FC500 MPL flow cytometer 

with a 488nm and 635nm excitation laser.  High-flow mode was obtained with a 

flow rate of 60 μl/min. A total of 15000 events were acquired for each sample. 

Appropriate APC-labeled mouse IgG1 isotypic control used for background 

fluorescence alongside with the ICAM-1 or VCAM-1 antibodies.  Fluorescent 

detectors varied between fluorophores. FITC was detected using the FL1 detector 

and a 525/20nm bandpass filter.  PE was detected using the FL2 detector using a 

575/15nm bandpass filter. PI was detected using PMT FL3 quantifying light 

between 615-620nm, while APC was quantified using PMT FL4 and a 675/30nm 

bandpass filter. FlowJo® v.7.6.5 was used for data analysis. A forward scatter 

threshold was used. 
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Figure 2.1: Cell adhesion molecule detection protocol optimization and 

experiments. CAM detection work began with antibody titration experiments, which 

were followed by the experiments to optimize the protocol. Trypsin/EDTA 

treatment was chosen as the detachment method of the cells. PI was used to stain 

dead cells in order to exclude them from analysis. 

 

2.3.6 Statistical Analysis 

Means and standard deviation values for the means were calculated using 

conventional methods. The differences in the cell proliferation and cell adhesion 

molecule measurements after particular treatments were statistically analyzed 

using 1 way analysis of variance (1-Way ANOVA) followed by Tukey post hoc test 

with the aid of GraphPad Prism 5.01 software. Significant differences in 

measurements were reflected with a p value less than 0.05 (* p<0.05, ** p<0.01, 

*** p<0.001). 
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Extracts 
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TNF-α IL1-β 

High-glucose treatments 
5.5 mM 10 mM 20 mM 28.5 mM 

Dead/Alive Cells 
1% Paraformaldehyde Propidium Iodide 

LIVE/DEAD® Fixable Dead Cell 
Stain Kit 

Cell Harvesting Method 
PBS/EDTA Trypsin/EDTA 

Stimulant Selection 
LPS  LPS/TNF-α TNF-α IL1-β 

Antibody Titration 
ICAM-1 APC VCAM-1 PE E-Selectin FITC 
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2.4 Results 

2.4.1 Procyanidin Content of Grape Seed and Grape Skin Extracts 

The amount of epicatechin in the crude grape skin extract was estimated as 31.25 

mg/g (3.13% w/w) using normal phase HPLC with fluorescence detection (Figure 

2.2) and 32.75 mg/g (3.28% w/w) by using reverse phase HPLC with UV diode 

array detection (Figure 2.3). These two values obtained by using two different 

HPLC methods for the amount of epicatechin in the grape skin extract are very 

similar and indeed were not significantly different (p>0.05).  

There were two commercial grape seed extract samples, Leucoselect® 

Phytosome® and exGrape®, with “guaranteed” procyanidin contents. Both of the 

samples were analyzed qualitatively using normal phase HPLC with fluorescence 

detection (Figure 2.4 and 2.5). The results revealed a profile of catechin, 

epicatechin, dimers (dp2) and a low amount of trimers (dp3) in both of the extracts. 

On the other hand, crude grape skin extract, which was chosen for the preliminary 

analysis, was shown to contain tetramers, pentamers and higher polymers as well 

as the monomers and smaller oligomers that were found in the grape seed 

extracts.  

 

 

 

 

Figure 2.2: Chromatogram of crude grape skin extract sample obtained by using 

normal phase HPLC with fluorescence detection. Amount of epicatechin in the 

grape skin extract sample was determined as 32.75 mg/g (3.28% w/w). 

Epicatechin 
Catecin 

Dimers (DP2) 

Trimers DP3 

Tetramers (DP4) 

Pentamers (DP5) 

Polymers (DP10 and higher) 

Grape Skin Extract (40 mg/ml), 5µl injection 

http://www.indena.com/pdf/leucoselect.pdf
http://www.indena.com/pdf/leucoselect.pdf
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Figure 2.3: Chromatogram of crude grape skin extract obtained by using reverse 

phase HPLC with UV diode array detection (270 nm). Amount of epicatechin in the 

grape skin extract samples was determined as 31.25 mg/g (3.13% w/w). 

 

 

 

 

 

 

 

Figure 2.4: Chromatogram of grape seed extract sample (Leucoselect® 

Phytosome®) obtained by using normal phase HPLC with fluorescence detection. 

Amount of epicatechin in the grape seed extract sample was determined as 98 

mg/g (9.8% w/w). 

 

 

 

 

Grape Skin Extract (40 mg/ml), 20 µl injection  Epicatechin 

 

Grape Seed Extract 40 mg/ml, 5 µl injection 

Epicatechin 
Catechin 

Dimers (DP2) 

Trimers (DP3) 

Polymers (DP10 and higher) 

http://www.indena.com/pdf/leucoselect.pdf
http://www.indena.com/pdf/leucoselect.pdf
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Figure 2.5: Chromatogram of grape seed extract sample (exGrape®) obtained by 

using normal phase HPLC with fluorescence detection. Amount of epicatechin in 

the grape seed extract sample was determined as 22.5 mg/g (2.25 % w/w). 

 

2.4.2 Effect of High-Glucose and Grape Seed/Skin Extracts on HUVEC 

Proliferation 

DNA synthesis was measured using BrdU incorporation assay to assess the effect 

of glucose and grape skin/seed extracts on HUVEC proliferation.  

High-glucose (10 mM and 20 mM) did not affect cell proliferation over the first 24 h 

(Figure 2.6A). On the other hand, increased HUVEC proliferation was observed 

with high-glucose treatments after 48 h and 72 h (Figures 2.6B and 2.6C 

respectively). Nevertheless, this effect of high-glucose concentrations was not 

consistent throughout the study. Figure 2.9 indicated that there was not an 

alteration in HUVEC proliferation after high-glucose treatments for 48 h. In the 

experimetns where increased cell proliferation was observed after 48 h of high-

glucose treatments, there was a threshold effect of high-glucose on cell 

proliferation rather than a dose-dependent effect since there was not a difference 

observed in proliferation of HUVECs treated with 10 mM and 20 mM glucose 

(Figure 2.6B). After 72 h treatment, 10 mM glucose did not affect cell proliferation, 

whereas 20 mM glucose moderately but significantly elevated the cell proliferation 

(Figure 2.6C). Mannitol (4.5 mM and 14.5 mM) treatments did not have an effect 

on cell proliferation at any time point (24h, 48h or 72h treatments; Figures 2.7A, 

2.7B & 2.7C respectively).  

 

Grape Seed Extract 40 mg/ml, 5 µl injection 

Epicatechin 
Catechin 

Dimers (DP2) 

Trimers (DP3) 

Tetramers (DP4) 
Polymers (DP10 and higher) 
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Strong effects of grape skin extract treatments were observed. Relatively low 

concentrations of grape skin extract increased BrdU incorporation in HUVECs 

grown in all 5.5 mM, 10 mM and 20 mM glucose containing media (Figure 2.8A, 

2.8B, 2.8C). BrdU incorporation started to decline in HUVECs grown under 5.5 

mM glucose with 2.5 μg/ml grape skin extract treatment which is followed by the 

strong inhibition of proliferation with the 5 μg/ml grape skin extract treatment 

(Figure 2.8A). It was observed that the increase in glucose concentration lowers 

the grape skin extract concentration needed for a reduction in cell proliferation. 2 

μg/ml grape skin extract decreased BrdU incorporation in HUVECs grown under 

10 mM glucose medium by 19.9%, whereas similar concentration of grape skin 

extract was enough to completely inhibit proliferation of HUVECs grown under 20 

mM glucose medium (Figure 2.8B and 2.8C).  

In contrast, grape seed extract (Leucoselect® Phytosome®) did not increase cell 

proliferation. However, a small but significant reduction in proliferation was 

observed in HUVECs grown under high-glucose (10 mM and 20 mM) conditions 

with 1 μg/ml grape seed extract treatment (Figure 2.9).  
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Figure 2.6: Measurement of proliferation of high-glucose treated HUVECs. BrdU 

incorporation was allowed for 4 h.  A. High-glucose treatment for 24h (n=12). B. 

High-glucose treatment for 48 h (n=6). C. High-glucose treatment for 72 h (n=6). 
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Figure 2.7: Measurement of proliferation of the mannitol treated HUVECs. BrdU 

incorporation was allowed for 4 h.  A. Manitol treatment for 24h (n=6). B. Mannitol 

treatment for 48h (n=6). C. Mannitol treatment for 72h (n=6). 
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Figure 2.8: Measurement of proliferation of grape skin extract treated HUVECs, 

which were grown under different glucose concentrations for 48 h. BrdU 

incorporation was allowed for 4 h. A. HUVECs grown under 5.5 mM glucose 

(basal medium) (n=6). B. HUVECs grown under 10 mM glucose (n=6).  C. 

HUVECs grown under 20 mM glucose (n=6).   

 

 

  

 

A. B. 

C. 
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Figure 2.9: Measurement of proliferation of grape seed extract (Leucoselect® 

Phytosome®) treated HUVECs, which were grown under different glucose 

concentrations for 48 h. BrdU incorporation was allowed for 12 h. A. HUVECs 

grown under 5.5 mM glucose (basal medium) (n=6). B. HUVECs grown under 10 

mM glucose (n=6).  C. HUVECs grown under 20 mM glucose (n=6).   

 

 

 

 

 

  

 

A. B. 

C. 
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2.4.3 Cell Adhesion Molecule Measurement Protocol Optimization 

The CAM quantification protocol involves harvesting cells, staining for the 

adhesion molecules and flow cytometry analysis. Preliminary development work 

was undertaken in order to test how several variable impacted on method, 

performance and to ensure that reliable results were obtained (Figure 2.1). First of 

all, three individual antibodies that were conjugated with different colours were 

tested. Phycoerythrin (PE) labelled antibody was used for VCAM-1 detection, 

allophycocyanin (APC) labelled antibody was used for ICAM-1 detection, and 

fluorescein isothiocyanate (FITC) labelled antibody was used for E-selectin 

detection. The antibodies used could detect VCAM-1 and ICAM-1 on LPS (10 

µg/ml) and TNF-α (10 ng/ml) (24h) stimulated HUVECs (Figures 2.10A and 

2.10B). However, E-selectin could not be detected neither after 4h nor 24h LPS 

(10 µg/ml) and TNF-α (10 ng/ml) stimulation (Figure 2.10C). 
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Figure 2.10: Antibody titration curves to 

determine the optimum concentration 

of the antibody to obtain the highest 

signal to noise ratio. A., B. and C. are 

LPS (10 µg/ml) and TNF-α (10 ng/ml) 

(24 h) stimulated cells. 
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After optimizing the use of the antibodies, several different stimulants were tested 

to activate CAM expression by HUVECs. The cells were stimulated by treating 

them with LPS (10 µg/ml), a mixture of LPS (10 µg/ml) and TNF-α (10 ng/ml), 

TNF-α (10 ng/ml) or IL1- β (10 ng/ml). E-selectin was not activated by any of the 

tested stimulants. LPS (10 µg/ml) was the only treatment that did not activate 

VCAM-1 and ICAM-1 expression. Also, no synergy was observed when the cells 

were treated with a mixture of LPS (10 µg/ml) and TNF-α (10 ng/ml) observed 

(data not shown). Therefore, TNF-α and IL1- β were chosen to stimulate HUVECs 

subsequent experiments. 

After the stimulation of the cells to express CAMs, they need to be detached by 

using a non-destructive method so as to not damage the CAM proteins. There are 

three options that are being widely used to harvest the cells prior to the CAM 

detection. These methods include the use of trypsin-EDTA, PBS-EDTA or 

mechanical detachment using a cell scraper. Preliminary experiments were 

performed of which both trypsin/EDTA and PBS/EDTA were used to harvest 

HUVECs. PBS/EDTA treatment for harvesting the cells yielded much lower cell 

counts and only ICAM-1 could be detected by flow cytometry. On the other hand, 

after trypsin-EDTA treatment much higher cell counts were achieved and ICAM-1 

and VCAM-1 could be detected by flow cytometry. E-selectin could not be 

detected with either of the methods (Figure 2.10). 

HUVECs were fixed with paraformaldehye at 1% final concentration after they 

were stained, just before running the flow cytometry analysis for the preliminary 

experiments. However, it was not possible to exclude dead cells from the analysis 

when using this fixing method (Figure 2.11A). Propidium iodide staining was used 

to allow separation of live cells from dead cells using gating during analysis of flow 

data (Figure 2.11B). When the expression of CAMs by dead and live cells were 

compared, it was observed that dead cells express higher levels of ICAM-1 and 

VCAM-1 on the cell surface (Figure 2.11C). Beside propidium iodide treatment, 

another method was tried to be able to analyse live cells separately. This method 

involved the use of a fixable green fluorescent reactive dye obtained from 

“LIVE/DEAD® Fixable Dead Cell Stain Kits, Invitrogen®”. This dye is capable of 

staining both intracellular and surface free amines in dead cells allowing the 

exclusion of live cells, as the dye is only capable of staining cell-surface amines of 
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live cells. The main difference between two methods is that the fixable dye allows 

the fixation of the cells with paraformaldhyde before the flow cytometry analysis 

giving flexibility in practical aspects prior flow cytometry analysis. The fixable stain 

was performed in parallel with propidium iodide treatment for a comparison. 

Although the green fluorescent reactive dye yielded stronger signals, the results 

obtained by these methods were similar (data not shown). Therefore, propidium 

iodide treatment was the chosen treatment to separate live cells for the analysis as 

it is a relatively cheaper method than the fixable dye method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Gating live cells. A. Paraformaldehyde fixed cell population. Whole cell 

population was included in the analysis. B.  Propidium iodide treated cell population. 

Propidium iodide negative cell population (live cells) was gated for further analysis. C. 

Median fluorescence intensities. Dead cells showed non-specific binding to antibodies. 
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2.4.4 Effect of High-Glucose Conditions on CAM Expression in HUVECs 

High-glucose experiments involved the incubation of confluent HUVECs with four 

different glucose concentrations (10 mM, 20 mM, 28.5 mM and 35 mM) with or 

without TNF-α for 24 and 48 hours. High-glucose incubations did not induce CAM 

expression after either 24 or 48 hours (Figure 2.12). 10 ng/ml TNF-α treatments    

(10 ng/ml) induced both VCAM-1 and ICAM-1 expression, however, high-glucose 

co-treatment did not enhance the pro-inflammatory effect of TNF-α (data not 

shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: High-glucose treated HUVECs. Control cells have very low levels of 

VCAM-1 and ICAM-1 expression. TNF-α (10 ng/ml) activated the expression of 

both VCAM-1 and ICAM-1. However, 20 mM glucose did not activate the cells. 
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2.4.5 Effect of Inflammatory Mediators on CAM Expression in HUVECs 

The pro-inflamatory cytokines, TNF-α and IL-1β, were used to activate HUVECs in 

order to be able to test the potential anti-inflammatory effects of selected 

polyphenols.   

ICAM-1 is constantly expressed on cells at low concentrations whereas VCAM-1 

and E-selectin expression requires activation by stimulants (Figure 2.13A). Both 

TNF-α and IL-1β effectively induced VCAM-1 and ICAM-1 expression in HUVECs 

(Figure 2.14). The cells were treated with these cytokines for a maximum of 18 

hours prior to CAM measurement as the expression of CAMs start to decline after 

18 hours according to reports in the existing literature (Lush et al., 2000, García-

Conesa et al., 2009) HUVECs were treated with different concentrations of these 

agents to generate calibration curves (Figures 2.14A, 2.14B, 2.14C and 2.14D).  
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Unstimulated 0.01 ng/ml IL1-ß 5 ng/ml IL1-ß 

 

Unstimulated Figure 2.13: HUVEC stimulation. A. 

VCAM-1 and ICAM-1 expression in 

unstimulated HUVECs. B. IL1-β 

titration. IL1-β dose dependently 

stimulated HUVECs to express 

VCAM-1 and ICAM-1. 
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Figure 2.14: TNF-α and IL-1β titration curves. Confluent HUVECs were stimulated  

with different concentrations of TNF-α or IL-1β for 18 h. The flow cytometry 

analysis of live cells revealed that both of the cytokines increased VCAM-1 and 

ICAM-1 expression dose dependently. 
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2.4.6 Grape Seed/Skin Extract Treatments 

Grape seed/skin extract treatments were applied to the cells either 45 minutes or 6 

hours prior to the stimulation by IL-1β. After the pre-incubation period of the cells 

with the extracts, they were activated for either 6h or 18h with IL-1β. 

Concentrations used were 2.5, 5, 10 and 30 μg/ml grape seed extract and 0.5, 1, 

2, 2.5, 10 and 30 μg/ml grape skin extract. 

Grape seed and skin extracts became toxic to the cells at 20 and 30 µg/ml 

concentrations respectively; it was observed that the cells started to detach from 

the culture plates at these concentrations. 

The experiments carried out in this study showed that neither grape seed nor 

grape skin extracts were effective in inhibiting pro-inflammatory cytokine-induced 

cell adhesion molecule expression (Figures 2.15, 2.16, 2.17 and 2.18). Pre-

incubation with grape seed extract for 45 min and 6 h increased the expression of 

ICAM-1 and VCAM-1 respectively, (Figures 2.15 and 2.16). Interestingly, grape 

seed extract or grape skin extract treatments alone did not stimulate HUVECs to 

express CAMs (Figure 2.19). However, a synergistic increase in ICAM-1 

expression was observed with grape seed extract or grape skin extract and IL1- β 

co-treatments (Figure 2.19).  

 

 

 

 

 

 

 

 

Figure 2.15: The effects of grape seed extract on IL1-β stimulated HUVECs. Cells 

were pre-incubated for 45min with different concentrations of grape seed extracts 

which was followed by IL1-β (5 ng/ml) activation for 18 hours. 
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Figure 2.16: The effects of grape seed extract on IL1-β stimulated HUVECs. Cells 

were pre-incubated for 6 hours with different concentrations of grape seed extracts 

which was followed by IL1-β (5 ng/ml) activation for 18 h. 

 

 

 

 

 

 

 

 

 

Figure 2.17: The effects of grape skin extract on IL1-β stimulated HUVECs. Cells 

were pre-incubated for 45 min with different concentrations of grape seed extracts 

which was followed by IL1-β (5 ng/ml) activation for 18 h. 
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Figure 2.18:  The effects of grape skin extract on IL1-β stimulated HUVECs. Cells 

were pre-incubated for 6h with different concentrations of grape seed extracts 

which was followed by IL1-β (5 ng/ml) activation for 18 hours. 

 

 

 

 

 

 

 

 

 

Figure 2.19: Up-regulatory effect of grape seed and grape skin extracts on IL-1β 

induced ICAM-1 expression. Cells were pre-incubated for 6 hours with different 

concentrations of extracts which was followed by IL1-β (5 ng/ml) activation for 18 

hours. Grape seed (A.) or grape skin extract (B.) alone did not increase the 

expression of ICAM-1. However, a synergistic increase was observed with either 

grape seed or skin extract and IL-1β. 
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2.4.7 Quercetin Treatments 

In this study, HUVECs were pre-incubated with quercetin (0.1M, 1 M, 10 & 25 

M) for 45 min or 6 h, which was followed by the activation of the cells with either 

TNF- (5 ng/ml) or IL1- (5 ng/ml). 45 min pre-incubation with quercetin did not 

show any effects on TNF- (5 ng/ml) stimulated ICAM-1 or VCAM-1 expression in 

HUVECs (0.1M to 25M) (Figure 2.20). On the other hand, 6h pre-incubations 

with quercetin (10 and 25 M) resulted in significant reductions in VCAM-1 

expression compared to cells treated with TNF- alone (p<0.01 and p<0.001 

respectively) (Figure 2.21). Interestingly, quercetin (10 M & 25 M) was able to 

inhibit only TNF- induced expression of VCAM-1 (Figure 2.21). Nevertheless, the 

same concentrations of quercetin could inhibit the expression of IL-1-induced 

expression of VCAM-1 and ICAM-1 (Figure 2.22). Quercetin treatment alone did 

not induce CAM expression by HUVECs (data not shown).  

 

 

 

 

 

 

 

 

 

Figure 2.20: The effects of quercetin on TNF-α stimulated HUVECs. Cells were 

pre-incubated for 45 min with 10 µM and 25 µM quercetin which was followed by 

TNF-α (5 ng/ml) activation for 18 h. 
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Figure 2.21: The effects of quercetin on TNF-α stimulated HUVECs. Cells were 

pre-incubated for 6 hours with 10 µM and 25 µM quercetin which was followed by 

TNF-α (5 ng/ml) activation for 18 hours. Quercetin inhibited VCAM-1 expression 

dose dependently. 

 

 

 

 

 

 

 

 

 

Figure 2.22: Representative histogram for the effects of quercetin on IL1-β 

stimulated HUVECs. Cells were pre-incubated for 6 hours with 10 µM and 25 µM 

quercetin which was followed by IL1-β (5 ng/ml) activation for 18 hours. Quercetin 

inhibited both VCAM-1 and ICAM-1 expression dose dependently. 
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2.4.8 Resveratrol and Resveratrol Human Metabolite Treatments 

Effects of different resveratrol concentrations on HUVECs were tested after TNF-α 

or IL-1β stimulation. There were no significant changes in expression of VCAM-1 

or ICAM-1 after the 2 h pre-incubation of HUVECs with resveratrol which was 

followed by 6h TNF-α (5 ng/ml) stimulation (Figures 2.23A and 2.23B). Longer pre-

incubations (6h) with resveratrol followed by longer periods of stimulation with 

TNF-α (5 ng/ml) (18h) increased both VCAM-1 and ICAM-1 expression by 

HUVECs (Figures 2.23C and 2.23D). Quercetin was used as a positive control for 

CAM expression inhibition. Treatment with quercetin (10 µM) inhibited VCAM-1 

and ICAM-1 expression after a 2 h pre-incubation which was followed by 6 h of 

TNF-α (5 ng/ml) stimulation (Figures 2.23A and 2.23B). As expected, quercetin 

was only able to strongly inhibit VCAM-1 expression when applied to the cells for 6 

h pre-incubation before the 18 h TNF-α (5 ng/ml) stimulation (Figure 2.23C). 

Effects of resveratrol, resveratrol human metabolites and resveratrol human 

metabolites mixture were also tested on IL1-β stimulated HUVECs. 2 h pre-

incubation with these polyphenols was followed by 6 h stimulation with IL1-β (5 

ng/ml) (Figures 2.24A and 2.24B). Resveratrol increased ICAM-1 expression, 

whereas its human metabolites, resveratrol 3-O-sulfate (10 µM), resveratrol 3,5-O-

disulfate (10 µM) and mixtures (10 µM each metabolite) did not significantly alter 

CAM expression by HUVECs after IL1-β stimulation (Figure 2.24B). Resveratrol 3-

sulfate (10 µM) and resveratrol 3,5-disulfate (10 µM) mixture also did not have an 

effect on CAM expression by TNF-α (5 ng/ml) stimulated HUVECs (Figures 2.24 & 

2.25). 
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Figure 2.23: The effects of different resveratrol concentrations on TNF-α 

stimulated HUVECs. Cells were pre-incubated for 2 h or 6 h with 0.1 µM, 1 µM and 

10 µM resveratrol which was followed by TNF-α (5 ng/ml) activation for 6 h or 18 h 

respectively. 
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Figure 2.24: The effects of different resveratrol concentrations on IL1-β stimulated 

HUVECs. Cells were pre-incubated for 2 h with 10 µM resveratrol, resveratrol 3-

sulfate, resveratrol 3,5-disulfate and resveratrol 3-sulfate/resveratrol 3,5-disulfate 

mixture which was followed IL1-β (5 ng/ml) activation for 6 h. 
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Figure 2.25: Representative 

histogram for the effect of 

quercetin and resveratrol human 

metabolite mixture on ICAM-1 

expression.  Quercetin effectively 

reduced ICAM-1 expression 

whereas resveratrol human 

metabolite mixture was not 

effective. 
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2.5 Discussion 

In this study, the aim was to investigate the endothelial damaging and pro-

inflammatory activities of high-glucose conditions and inflammatory cytokines, and 

the potential for polyphenols to overcome the observed deleterious effects.  

Hyperglycaemic conditions did not significantly affect cell proliferation or CAM 

expression, whereas the inflammatory cytokines TNF-α and IL1-β caused 

significant increases in ICAM-1 and VCAM-1 expression (all p<0.001). Three 

different classes of polyphenols were assessed for their ability to alter cell 

proliferation and CAM expression in resting and stimulated (hyperglycaemia, 

inflamatory cytokines) HUVECS; flavan-3-ols from grape, the flavonol quercetin 

and the stilbene resveratrol. The different polyphenols induced different 

responses, pro- and anti-inflammatory, depending on concentration and period of 

exposure. 

In the literature, the effect of high-glucose on HUVEC proliferation is well 

established indicating that high-glucose inhibits HUVEC proliferation (Selva et al., 

1996, Chen et al., 2007, Varma et al., 2005, Chen et al., 2011b). Varma et al. 

(2005) and Chen et al. (2007) are key studies on the effect of glucose on HUVEC 

proliferation. Both of these studies revealed a significant reduction in cell 

proliferation with the incubation of cells with high-glucose containing media. 

However, Varma et. al. (2005), used trypan blue to measure cell proliferation. 

Tyrpan blue is a method more suitable for determining cell numbers, and it is not a 

direct measurement for the actively proliferating cells.  Consequently, in the letter 

to editor, Davidson and Yellon (2006) raised the question whether high-glucose 

decreases cell proliferation or increases apoptosis. Nevertheless, Chen et al. 

(2007) used a relatively more effective method for cell proliferation measurement; 

the 3H-thymidine incorporation assay that is capable of detecting actively 

proliferating cells by binding to the DNA during replication process. They have 

tested the effects of shorter glucose treatment (18.5-28.5 mM, 24 h) since the 

previous studies had shown that high-glucose start to induce HUVEC apoptosis 

after 48 h treatment (Baumgartner-Parzer et al., 1995, Ho et al., 2000). Previous 

studies also revealed that mannitol treatment induces vascular endothelial cell 

necrosis after 48-72 h (McGinn et al., 2003), and Chen et al. (2007) showed that  

24 h mannitol treatment did not have an effect on cell proliferation. Therefore, 
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previous studies together with the findings observed by Varma et al. (2005) and 

Chen et al. (2007) showed that the reduction in cell numbers were not due to 

increases in apoptosis or necrosis, but were due to decreases in the rate at which 

the cells proliferated, and this was a specific effect of glucose itself and not due to 

secondary effects of high-glucose concentrations (e.g. through increased 

osmolarity). 

In this study, the effects of high-glucose concentrations on HUVEC proliferation 

were not consistent.  24 h glucose treatment (10 mM and 20 mM) did not affect 

cell proliferation. 48 h and 72 h high-glucose treatments either did not affect or 

increased cell proliferation. Equimolar mannitol treatments did not have an effect 

on cell proliferation. Therefore, the potential increases in cell proliferation observed 

after high-glucose treatments in several experiments were not due to change in 

the osmolarity. Increased cell proliferation with high-glucose treatment was 

observed also in several other cell types, but the exact mechanism is not defined 

yet (Jeong et al., 2011, Sun et al., 2009, Han et al., 2011, Sun et al., 2010).  

Prior to the investigation of effects of grape seed and skin extracts on HUVECs 

grown under high-glucose concentrations, procyanidin profiles of the two extracts 

were determined using the optimized normal phase method. Reverse phase HPLC 

is a routinely used method for the quantification of phenolics and flavonoids. 

However, reverse phase HPLC did not provide a good resolution for polymeric 

procyanidins (Figure 2.3). On the other hand, optimized normal phase method 

enabled the separation of the oligomeric and polymeric procyanidins with a higher 

resolution as in studies using similar methods (Gu et al., 2002, Prior and Gu, 

2005). HPLC analysis of the extracts revealed that grape seed extract contains 

catechin, epicatechin and dimers only whereas grape skin extract contains trimers, 

tetramers, pentamers and higher polymers. 

Grape skin extract treatment increased cell proliferation at low concentrations 

(Figures 2.8A, 2.8B and 2.8C). However, it was observed that this proliferation-

inducing effect decreases under high-glucose conditions, and in parallel, anti-

proliferative effects started to be observed at lower concentrations (Figures 2.8B 

and 2.8C). On the other hand grape seed extract showed only anti-proliferative 

properties. The difference between grape skin and grape seed extract treatments 
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was almost certainly due to the difference between the procyanidin profiles of 

these two different extracts.  

Previous studies were mainly focused on the anti-proliferative effects of grape 

seed extracts on cancer cells (Cedó et al., 2013, Dinicola et al., 2012, Chatelain et 

al., 2011). Similarly, Agarwal and co-workers showed that 24 hours treatment with 

10, 20, 50 μg/ml grape seed extract caused 65-76% inhibition in BrdU 

incorporation in HUVECs grown in basal media (5.5 mM glucose) (Agarwal C., 

2004). The grape seed extract (Traco Labs Inc., IL, USA) by Agarwal and co-

workers comprised mainly catechin and epicatechin together with small quantities 

of procyanidins of various chain lengths. 

Therefore, the data presented here are important as it was shown that a grape 

skin extract containing a relatively small portion of monomers (3.28% w/w 

epicatechin) (Figure 2.2) and higher-chain length procyanidins was able to 

increase proliferation of HUVECs grown under high-glucose concentrations, 

whereas a grape seed extract (Leucoselect® Phytosome®) containing a greater 

proportion of monomers (9.8% w/w epicatechin) and shorter chain length 

procyanidins (up to dp4) caused an anti-proliferative effect (Figure 2.4). Hence, 

increase in the rate of proliferation of endothelial cells grown under high-glucose 

concentrations after grape skin extract treatment indicated anti-atherogenic 

properties of higher-chain length procyanidins showing that they may be capable 

of preventing possible impairment in endothelial cell proliferation, which gradually 

leads to vascular endothelial dysfunction initiating atherosclerotic plaque 

formation. 

Cell proliferation measurements were followed by assessing the effect of high-

glucose, inflammatory cytokines and polyphenols on cell adhesion molecule 

expression by HUVECs. CAM measurement method was optimized successfully 

after assessing a series of parameters. TNF-α and IL1-β were found to be most 

effective treatments to stimulate CAM expression by HUVECs, with both able to 

strongly induce VCAM-1 and ICAM-1 expression. It was shown in previous studies 

that E-selectin is sensitive to trypsin (Gräbner et al., 2000). This can be overcome 

by crosslinking the antibody to E-selectin before trypsinization process. However, 

this may be still not the best option as the antibodies are also proteins and they 

may be cleaved by the trypsin. There are several studies, which compare the cell 



   C h a p t e r  2  | 62 

 

harvesting methods indicating cons and pros for each of them. According to Mutin 

and co-workers, the highest cell viability and the most effective method with the 

lowest disruption to the adhesion molecules is the trypsinization method, which is 

followed by the PBS-EDTA treatment (Mutin et al., 1996). Therefore, PBS/EDTA 

treatment was also tested to harvest the cells, as it is a less invasive method. 

Nevertheless, E-selectin could not be detected and cell yield was much lower 

compared to the trypsin/EDTA treatment (data not shown). Trypsin/EDTA 

treatment was chosen to be used in the experiments.  However, it is an invasive 

method and may lead to cell death. Dead cells may behave differently leading to 

non-specific binding to the antibodies (Figure 2.11). Therefore, experiments were 

carried out using propidium iodide to include only the live cells into the analysis 

rather than using the traditional method to fix cells prior to the analysis using 

paraformaldehyde.  

After CAM measurement method was optimized, the effects of high-glucose on 

CAM expression by HUVECs were tested. However, high-glucose was not 

effective in inducing CAM expression by HUVECs after treatments with different 

glucose concentrations for different durations (Figure 2.12). There are conflicting 

data in the literature concerning the effects of high-glucose on the expression of 

cellular adhesion molecules by HUVECs. The data varies between short-term 

glucose exposure and ≥24 h glucose exposure and also between reports for ≥24 h 

exposures. A short-term study which involved the incubation of a 3D in vitro 

human vascular tissue model with a high-glucose concentration (30 mM) for 9 h 

showed a significant increase in VCAM-1 expression compared to the cells grown 

in basal media (5.6 mM) (Gappa-Fahlenkamp and Shukla, 2009). However there 

were not significant increases in the expression levels of ICAM-1 and E-selectin 

with the high-glucose incubation over 9 h. TNF-α could activate ICAM-1 

expression after 9 h treatment, but it did not have an effect in the expression levels 

of E-selectin after 9 h.  

Several other studies that involved 24 h incubation of HUVECs with high-glucose 

media revealed an increase in the expression of VCAM-1, ICAM-1 and E-selectin 

(Piconi et al., 2004, Baumgartner-Parzer et al., 1995, Altannavch T. S., 2004). 

Therefore the time interval for the incubation of the cells at 37°C might be 

important and at least 24 h incubation with the high-glucose media might be 
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necessary for the induction of ICAM-1 and E-selectin expression. Also, there is 

inconsistency among reports of 24 h incubation with high-glucose for the 

expression of E-selectin. Altannavch and co-workers reported an increase in the 

expression of E-selectin as a result of the 24 h incubation of HUVECs with 16.5 

mM glucose media (Altannavch T. S., 2004). In contrast, Taki and co-workers did 

not detect a significant increase in E-selectin expression after the 24 h incubation 

of HUVECs in 33 mM glucose (Taki et al., 1996).  

An interesting study involved the treatment of HUVECs with sera from type 1 

diabetic patients and non-diabetic people (Ramussen et al., 2002). 6 h incubation 

with the non-diabetic sera stimulated the cells to produce CAMs higher than basal 

levels. When the cells were incubated with the sera from diabetic patients, a 

significant increase was observed in VCAM-1 expression compared to the cells 

incubated in sera from non-diabetic people. In parallel, experiments involving the 

incubation of the cells with high-glucose (5.5 to 13.5 mM) media did not activate 

the cells to express CAMs. On the other hand, TNF-α treatment increased    

VCAM-1 and E-selectin expression by the cells. Therefore, this study suggested 

that the increase in the VCAM-1 expression after the incubation with diabetic sera 

might be due to a component in the sera rather than high-glucose itself. Previous 

reports in the literature showed that higher levels of inflammatory cytokines were 

observed in the circulation of diabetics compared to non-diabetics (Lechleitner et 

al., 2000, Rajarajeswari et al., 2011, Nilsson et al., 1998, Spranger et al., 2003) 

which is likely to explain the increase in CAMs due to a secondary effect of 

hyperglycaemia.  

A recently published study by Azcuita and co-workers also investigated the effect 

of high-glucose on the expression of CAMs by endothelial cells. They incubated 

the cells in a high-glucose containing media with or without IL-1β or TNF-α 

(Azcutia et al., 2010). The high-glucose treatment could not induce CAM 

expression. However, incubation of the cells with high-glucose media in the 

presence of TNF-α caused a synergistic increase in the expression levels of 

ICAM-1 and VCAM-1. Therefore these two studies revealed that the high-glucose 

is not enough to activate HUVECs by itself, but it may have a synergistic effect to 

increase the CAM expression with pro-inflammatory cytokines.  

In summary, effects of glucose on HUVECs may be affected by the conditions in 

different labs. Therefore, the study presented here continued to assess the effects 
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of polyphenols on CAM expression by HUVECs after stimulating them with either 

IL-1β or TNF-α. 

Grape seed/skin extracts, quercetin, resveratrol and resveratrol human 

metabolites were tested for their abilities to inhibit cell adhesion molecule 

expression in HUVECs. All these polyphenols are well known for their anti-

inflammatory properties (Altannavch T. S., 2004, Ferrero et al., 1998, Tribolo et al., 

2008). Among the polyphenols tested, quercetin is the only polyphenol that 

inhibited pro-inflammatory cytokine induced VCAM-1 and ICAM-1 expression by 

HUVECs (Figure 2.22). Interestingly, grape seed/skin extracts increased cell 

adhesion proliferation synergistically with IL-1β and TNF-α (Figures 2.15 and 

2.19). Sen and Bagchi showed that pre-incubation with a grape seed 

proanthocyanidin extract (GSPE) (1-5 µl/ml) inhibited the TNF-α (10 ng/ml, for 16 

h) induced VCAM-1 expression (Sen and Bagchi, 2001). However, at the same 

time, this extract increased ICAM-1 expression. On the other hand, two 

consecutive studies by Zhang et al. (2006) and Ma et al. (2007) showed selective 

inhibition of VCAM-1 expression induced by advanced glycation end products (200 

mg/L for 12 h or 24 h) by pre-incubation of HUVECs with grape seed 

proanthocyanidin extract (5, 15, 25 , 50 and 100 µg/ml)  for 4 h. At the same time, 

Zhang et al. (2006) showed that GSPE did not have an effect on ICAM-1 

expression. The GSPE extract used by Zheng et al. (2006) was reported to 

comprise at least 96% procyanidins, but the exact composition was not indicated. 

On the other hand, the GSPE used in other two reported studies were reported to 

contain mainly dimeric proanthocyanidins  (>50% of the total) which is similar to 

the dimeric procyanidin content of the grape seed/skin extracts used in the study 

reported here.  

The up-regulatory effect of grape seed/skin extracts on TNF-α or IL-1β induced 

VCAM-1 and ICAM-1 expression observed in this study was not due to 

cytotoxicity, since only the viable cells were included in the analysis, which was 

achieved by excluding propidium iodide stained cells (Figure 2.11B). Also, it was 

shown that this up-regulatory change was the synergistic effect of the 

inflammatory cytokines and the extracts, as the extracts alone did not induce the 

expression of VCAM-1 and ICAM-1 (Figure 2.19).  
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Several reports have provided evidence that resveratrol has anti-inflammatory 

properties (Ou et al., 2006). It has been shown that resveratrol is capable of 

inhibiting induced VCAM-1 and ICAM-1 expression in endothelial cells. 

Resveratrol (30 μM and 50 μM) pre-treatment for 1 h of phorbol 12-myristate 13-

acetate activated (for 4 h) HT1080 endothelial cells inhibited the ICAM-1 

expression (Park et al., 2009). Ferrero and co-workers showed that pre-incubation 

of HUVECs with resveratrol (100 nM-1 μM) inhibits TNF-α induced ICAM-1 

expression (Ferrero et al., 1998). They also showed that 24 h pre-treatment of 

human saphenous vein endothelial cells inhibits LPS (4 mg/L, 4h) induced 

expression of VCAM-1. In an interesting study, Deng et al. (2010) showed that 

both resveratrol (0.1 μM -10 μM, 2h pre-incubation) and the resveratrol derivative, 

trans-3,5,4-trimethoxystilbene (0.1 μM -10 μM, 4 h pre-incubation) could inhibit 

TNF-α induced VCAM-1 and ICAM-1 expression. In these previous studies, the 

cells were activated for short time periods. Therefore both 6h and 24 h stimulation 

were tested in the experiments in this study. Also shorter resveratrol pre-treatment 

periods were tested. However, in this study, an anti-inflammatory effect of 

resveratol could not be established. It is observed that higher doses of resveratrol 

synergistically increased ICAM-1 expression with pro-inflammatory cytokines 

(Figures 2.23C and 2.23D). Data presented here shows that resveratrol is not pro-

inflammatory by itself (Figures 2.23C and 2.23D). Two different resveratrol human 

metabolites and their mixture were also tested for their potential anti-inflammatory 

effects. However, there was no significant change in the induced expression of 

VCAM-1 and ICAM-1 after the pre-incubation of HUVECs with resveratrol human 

metabolites or their mixtures (Figure 2.24). 

There are numerous reports that provide evidence of inhibitory effects of quercetin 

on induced VCAM-1 and ICAM-1 expression in endothelial cells. Kobuchi and co-

workers showed the inhibition of TNF-α induced expression of ICAM-1 in ECV304 

cells with the pre-incubation with quercetin (1-50 µM) (Kobuchi et al., 1999). 

Middleton and Anne also showed the inhibitory effect of quercetin (1-3 µM) on 

ICAM-1 expression in HUVECs activated by LPS (Middleton and Anne, 1995). On 

the other hand, Tribolo et al. (2008) showed that the pre-incubation of HUVECs 

with 10 µM and 50 µM quercetin for 45 minutes inhibited TNF-α /LPS induced 

VCAM-1 and ICAM-1 expression. Beside quercetin aglycon, it was also been 

shown that several quercetin human metabolites had the capacity to inhibit the 
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expression of these two cell adhesion molecules even though they were not as 

potent as quercetin aglycone. In the present study, it was shown that anti-

inflammatory effects of quercetin were dependent on type and duration of the 

agent used to stimulate the cells (Figures 2.20, 2.21 and 2.22).  

In conclusion, hyperglycaemic conditions did not significantly affect cell 

proliferation or CAM expression, the inflammatory cytokines TNF-α and IL1-β 

induced significant changes in CAM surface expression, and the different 

polyphenols induced different responses, pro- and anti-inflammatory, depending 

on concentration and period of exposure. 

Since the effect of increased glucose concentrations and pro-inflammatory 

cytokines on endothelial cells is multifaceted, and polyphenols have been shown 

to work through multiple mechanisms and elicit a variety of changes in the 

functions of cells to which they are exposed, a non-targeted approach such as 

metabolomics would provide the ideal approach for determining the full range of 

responses. Therefore, the next chapter involved method development and model 

assessment for the proposed metabolomics study.  
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CHAPTER 3: Metabolomic Analysis of HUVECs: Method 

Development and Testing  

3.1 Abstract 

Background: There are very few reports describing metabolite profiling of adherent 

cells. The methods used for cell harvesting and metabolite extraction may have 

influence on the results as it was shown in previous studies that different 

harvesting or extraction methods yielded variable results, and there is not an 

optimal method for all the cell types. Metabolite profiling of HUVECs by 1H NMR 

(proton nuclear magnetic spectroscopy)  is a novel approach. 

Aim: To develop and test a protocol that facilitates rapid arrest of cellular 

metabolism, efficient extraction of metabolites and analysis of extracted 

metabolites by 1H NMR producing non-biased and reproducible results.  

Approaches/methods: An initial protocol for extracting metabolites from cultured 

cells was established based on a review of the available literature. The protocol 

was then optimised to achieve maximum recovery of 1H NMR metabolite signals 

and minimize medium carry-over.  1H NMR spectroscopy was used to determine 

HUVEC metabolite profiles. The 2D NMR approaches of correlation spectroscopy 

(COSY) and heteronuclear single quantum correlation (HSQC) were used to 

identify metabolites. Six different sample preparation methods for profiling 

intracellular metabolites from HUVECs were compared for their effectiveness. 

Subsequently, the sensitivity and reproducibility of the selected method was 

assessed using samples from cells treated with lipopolysaccharide (LPS), 

malonate and growth factor-free medium (GF).  

Results: Among the six different sample preparation methods, direct methanol 

extraction, yielded the strongest signals with the highest number of metabolites 

detected. Therefore, it was used to bring cellular metabolism to a halt and allow 

metabolite extraction in a single step avoiding any possible alterations in cellular 

metabolism prior to NMR analysis. NMR spectra obtained for the metabolite 

extracts showed adequate signal-to-noise ratio which allowed identification of 27 

metabolites. LPS treatment did not induce any significant alterations in HUVEC 

metabolome. Removal of growth factors from culture medium led to a significant 
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decrease in the levels of aspartate (p<0.01), asparagine (p<0.001), tyrosine 

(p<0.001) and pyruvate (p<0.01). Malonate (10 mM, 6 h and 24 h) treatments 

disrupted cellular respiration causing reductions in intracellular ATP (p<0.001), 

glutamate (p<0.01), aspartate (p<0.001), lactate (p<0.001) and formate (p<0.05) 

levels, and elevations in glucose, pyruvate, inosine (p<0.001) and histidine 

(p<0.001) levels, and these observations are in keeping with the known effects of 

malonate as an inhibitor of Krebs cycle (inhibits succinate dehydrogenase). Also, 

succinate (50 mM) co-treatment prevented deleterious effects of malonate on 

HUVECs.  

Conclusions: The protocol facilitated rapid and effective freezing of cellular 

metabolism and extraction of metabolites. The extracted metabolites were 

analysed using 1H NMR, which produced non-biased and reproducible results 

when the effects of several known metabolic effectors on HUVECs were tested in 

the HUVEC model. 
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3.2 Introduction 

High-glucose, pro-inflammatory cytokines and polyphenols have all been shown to 

work through multiple mechanisms and elicit a variety of changes in the functions 

of cells. However, these changes were mainly investigated using targeted 

approaches so far as in the Chapter 2 of the present study. For example, Hsieh 

and co-workers assessed the protective effects of polyphenol rich guava budding 

leaves on glucose stimulated HUVECs by measuring cell viability, ROS and NO 

productions (Hsieh et al., 2007). Wang and co-workers investigated the effects of 

grape seed proanthocyanidins on the proliferation of glucose stimulated vascular 

smooth muscle cells (Wang et al., 2010). In another study, Crespo and co-workers 

compared the effects of kaempferol and quercetin on cytokine-induced pro-

inflammatory status of cultured human endothelial cells by measuring cell 

adhesion molecule expression (Crespo et al., 2008). Therefore, non-targeted 

approach metabolomics, was chosen as the ideal approach for further exploring 

effects of high-glucose, pro-inflammatory cytokines and polyphenols on HUVECs 

with a view to understanding the effects at a mechanistic level on the entire 

system. The metabolomics approach allows the identification of underlying 

disturbances in cellular metabolism after biological treatments that would not have 

been easily detected using targeted approaches, establishing more robust 

biomarkers of diseased states. 

Metabolomics targets determination of all small molecule (<1 kDa) metabolites 

present in a biological medium (Sellick et al., 2008, Teng et al., 2009, Danielsson 

et al., 2010). In recent years, this global analysis approach has gained noticeable 

importance as it can be used to visualise alterations in metabolome during both 

healthy and diseased states in biological systems (Miccheli et al., 2006, El Ghazi 

et al., 2010, Martínez-Martín et al., 2012). This approach may provide an 

influential attitude to define the possible effects of different agents (biological or 

chemical) on cellular phenotype since the alterations in metabolome reflects the 

changes in phenotype, which discriminates it from the transcriptomics and 

proteomics approaches (Dunn et al., 2005, Dunn and Ellis, 2005) (Figure 3.1).   
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Figure 3.1: Global analysis approaches in response to external stimuli. Alterations 

in gene expression, protein and metabolite profiles of cells can be determined 

using different global approaches; however, alteration in metabolite profile is more 

proximal to alterations observed in cellular phenotype. 

 

Gas chromatography (GC) or GC coupled to mass spectrometry (MS) were the 

initial analytical techniques used to detect metabolites. However, as NMR 

spectroscopy was improved it became the most popular analytical technique for 

metabolomics together with LC-MS. The improvements in the NMR spectroscopy 

were both in the hardware and in the methodologies which increased detection 

sensitivity enabling measurements of significantly smaller amounts of substances 

or spending less time for a fixed sample concentration. For example, two 

milestones in the hardware technology were the development of superconducting 

magnets up to 1 GHz providing higher field strength up to 23.5 Tesla (2.35 Tesla 

by iron magnet technology) and the cryoprobe technology which provides higher 

sensitivity and reduce signal-to-noise ratio at the given field strength (Kovacs et 

al., 2005). NMR spectroscopy is more practical compared to GC and MS since it 

requires minimal sample preparation and it is a non-destructive technique which 

enables further analysis of samples if necessary. On the other hand, GC and MS 

may require chemical or physical modification of samples since the metabolites in 

 

Cells

Stimuli

Alterations  observed in:

Genes

Proteins

Metabolites

Genomics (e.g. DNA microarray) 

Proteomics (e.g. 2D gel electrophoresis)

Metabolomics (e.g. NMR spectroscopy)

Alterations  reflected in: 

Genotype Phenotype



   C h a p t e r  3 | 71 

 

the sample must be separated (e.g. liquid chromatography) before MS detection or 

made volatile before GC analysis. Nevertheless, MS detection is more sensitive 

and in most cases can detect lower concentrations of metabolites, and may be 

used to complement data from NMR spectroscopy (Duarte, 2011, Valdés et al., 

2012).  

Although there are several metabolomics studies reported in the literature which 

involved cell suspension and adherent cell types, metabolic profiling of HUVECs 

by 1H NMR is a novel approach (Sellick et al., 2008, Duarte et al., 2010, El Ghazi 

et al., 2010, Dettmer et al., 2011). Therefore, a protocol was derived by reviewing 

existing reports in the literature to initiate experiments in the current study (Bennett 

et al., 2008, Teng et al., 2009, Martineau et al., 2011).  

In metabolomics, appropriate sample preparation prior to analysis bears a great 

importance. As the cellular metabolites may degrade quickly due to environmental 

conditions, the state of dynamic cellular metabolism must be quenched as soon as 

possible. Otherwise, it is not possible to have unbiased measurements of 

metabolite concentrations as they will reflect the changes until metabolism is 

brought to a halt (Danielsson et al., 2010, Dietmair et al., 2010).  

Therefore, in this study, a series of experiments were carried out to optimize a 

literature derived protocol which ultimately allowed quick and effective freeze of 

cellular metabolism, extraction of metabolites and analysis of extracted 

metabolites by employing 1H NMR producing non-biased and reproducible results. 

This protocol was then further tested assessing the effects of lipopolysaccharide 

(LPS), growth medium without growth factors (GF) and malonate on HUVEC 

metabolome (metabolite profile). 
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3.3 Materials & Methods 

3.3.1 Materials 

Deuterium oxide (D2O, D, 99.9%) was purchased from Cambridge Isotope 

Laboratories, Inc (USA). All other chemicals were obtained from Sigma-Aldrich 

(Poole,UK) unless specified. Centrifugation process used a Heraus Sepintech-

Mega fuge 1.0R) and centrifugal evaporator (Jouan RC1022). 

 

3.3.2 Quenching Metabolism and Extracting Metabolites (Literature Derived 

Protocol) 

10 cm dishes were seeded with a density of 2800-3000 cells/cm2. Cultures were 

maintained at 37°C and 5% CO2. Growth medium was changed on the following 

day of seeding in order to remove DMSO from the medium. Thereafter, medium 

was changed every 2 days. Cells became confluent 5 days after seeding. The 

initial method used to quench metabolism and extract metabolites for subsequent 

NMR analysis was derived from the following existing literature reports; Bennett et 

al. (2008), Teng et al. (2010) and Martineau et al. (2011).  

1. Remove the medium from confluent cells by aspiration 

 

2. Quench cells with 3 ml of cold 80% HPLC grade methanol in water (-80°C)  

 

3. Incubate the cells for 15 minutes on dry ice 

 

4. Detach the cells and disrupt cell membranes using a cell scraper 

 

5. Pipette the cells solution into centrifuge tubes 

 

6. Centrifuge at 2000g for 5 min at 4°C 

 

7. Save the supernatants on ice. Reconstitute the pellet in 0.5 ml 80% 

methanol (4°C). 

 

8. Repeat steps 6-7  

 

9. Pool the supernatants 

 

10.  Dry the sample using a centrifugal evaporator  
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11.  Reconstitute the sample in an appropriate solvent according to the 

subsequent analytical procedure; 

 

i. For NMR (NMR Buffer: 203 mM Na2HPO4, 40 mM NaH2PO4, 

7.7 mM NaN3, 145 µM TSP in D2O) 

ii. For MS (H2O) 

 

 

3.3.3 1H NMR Spectroscopy Recording and Statistical Analysis of 1H NMR 

Data 

High-resolution 1H NMR spectra were recorded on a 600 MHz Bruker Avance 

spectrometer fitted with a 5 mm TCI cryoprobe and a 60 slot auto-sampler (Bruker, 

Rheinstetten, Germany). Sample temperature was controlled at 300°K. Each 

spectrum consisted of 128 scans of 32,768 complex data points with a spectral 

width of 13.3 ppm (acquisition time 2.05s). The noesypr1d pre-saturation 

sequence was used to suppress the residual water signal with low power selective 

irradiation at the water frequency during the recycle delay (D1 = 2s) and mixing 

time (D8 = 0.10s). 

Spectra were transformed with 0.3 Hz line broadening and zero filling, manually 

phased and baseline corrected using the TOPSPIN 2.0 software. The NMR 

spectra were further analyzed using the Amix® software package (Bruker, 

Germany) to create buckets for signals within the range of 0.1-8.9 ppm (except the 

water signals, 4.60-5.0ppm). These buckets were of various widths, and each one 

encompassed singlets or multiplets that represented metabolites. The signal 

intensity for each bucket was integrated and a data matrix was obtained. Statistical 

multivariate analysis was performed using Matlab. The analysis involved principle 

component analysis (PCA), which is an unsupervised method. Data were scaled to 

unit variance (autoscaling) to compensate for large differences in intensity among 

metabolite signals. Buckets defined in a NMR spectrum form a single data point in 

PCA, and they are responsible for the separation observed in PCA plots. The 

contribution of each bucket to the separation in PCA plot can be visualised using 

the corresponding loading plot. In a loading plot, each bucket forms a data point.  

Final analysis involved applying univariate statistical analysis to confirm the 

changes observed by multivariate analysis, and determining the significance of the 
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differences. Non-parametric Mann-Whitney tests were used, and p values less 

than 0.05 (* p<0.05, ** p<0.01, *** p<0.001) were accepted as a significant 

difference.  
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3.4 Results 

3.4.1 Determination of Initial Metabolite Profiling Protocol for HUVECs 

The aim was to (1) draw up an initial protocol based on the available literature, (2) 

identify the metabolites using this protocol and assess several method 

performance parameters, (3) investigate variations in the method parameters on 

method performance and select the best protocol, (4) test the use of the protocol 

with the HUVEC model that has been treated with a known metabolic poison and 

with strong biological effectors (i.e. characterize the system/model). 

An initial protocol was formed according to the information obtained from the 

literature (Bennett et al, 2008, Teng et al., 2010, Martineau et al., 2011). Cold 

methanol/water buffer was selected as the solvent to quench cellular metabolism 

before extracting intracellular metabolites. Methanol (80% v/v, at -80°C) was 

added directly onto the cells immediately after the medium had been rapidly 

removed. The rapid addition of -80°C aqueous methanol to the cells causes an 

extremely rapid temperature drop in the cells and brings metabolism to a halt 

because enzymatic reactions are effectively terminated. In addition, the high 

concentration of methanol rapidly and effectively disrupts cell membranes and 

releases the cytosol into the bulk liquid extract phase and thus bypasses the need 

of an additional extraction step. After the addition of the cold methanol, cells were 

incubated on dry ice for 15 minutes to further disrupt cell membranes, and then the 

lysed cells/debris were scraped from the plastic surface using a cell scraper. After 

collecting the cell lysate, the cell debris was separated from the liquid phase by 

centrifugation, and the samples were dried using centrifugal evaporator. Dried 

metabolites were then re-suspended in appropriate buffers for subsequent 

analysis by NMR spectroscopy or MS. 

Having established an initial protocol, further experiments were designed to test 

variations of the quenching and extraction methods with adherent HUVECs, in 

order to gain a better understanding of how variations in the method affected 

performance, and to select the most effective procedures for use in a final 

protocol. First, the effectiveness of quenching cellular metabolism and extracting 

metabolites with cold methanol was assessed. HUVECs were grown until 

confluence and metabolites were extracted by cold methanol addition. After the 
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NMR spectra were obtained for the samples, further analysis was performed using 

Amix® software. A typical 1H NMR spectrum provides distinctive signals with 

particular splitting patterns for hydrogen-bearing molecules in a sample (Figure 

3.2). Signal intensities are proportional to the concentration of the individual 

metabolites in the sample. 

Amix® software was used to locate any differences in spectra visually and also for 

choosing and integrating the peaks (bucketing) to go into multivariate analysis 

(Figure 3.2). Multivariate analysis was performed on the data for intra- and 

extracellular metabolites (Figure 3.3).  

Multivariate analysis showed a good separation between intra- and extracellular 

metabolite profiles. The first two principal components (PC) were plotted against 

each other (Figure 3.3A). The two types of sample scores separated easily along 

PC1. The intracellular scores formed a tight cluster on the negative side of PC1, 

therefore, the extraction method used was repeatable (Figure 3.3A). The 

extracellular scores were divided into a score on the upper right hand quadrant of 

the plot (the fresh medium or medium 0) and a group of scores on the right hand 

lower quadrant (spent medium replicates) (Figure 3.3A). The spent medium 

replicates clustered tightly. 

The loading plot highlighted the buckets responsible for the separation on the 

score plot (Figure 3.3C). For example, the bucket 6.15 was located on the left 

hand side of the PC1 axis, which means that the intracellular extracts contained 

more of the signal at 6.15 ppm than the extracellular extracts as the intracellular 

extracts were located in the same side of the score plot (Figures 3.3A and 3.3B). 

Figure 3.3C shows the bucketing of signals for multivariate analysis. In the regions 

of the spectra that show the 6.15 ppm peak, there is a doublet at 6.15 ppm (ATP) 

present in the intracellular extracts but absent from the extracellular material which 

probably arose from a nucleotide entity and contributed to separation of these 

different sample groups.  
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Figure 3.2:
 1

H NMR spectra of the intracellular and extracellular extracts from HUVECs.  

Extracellular replicate 0 is fresh medium, 1-5, the spent medium on day 5 of the cell growth. 

 

 

 

 

 

 

 

Figure 3.3: A. Score plot of the first two axes from the PCA on 10 samples (4 intracellular 

replicates, 5 extracellular replicates (spent media) and 1 fresh medium. B. Loading plot for samples 

highlighting buckets contributed to PCA result. C. Signals bucketed for multivariate analysis. 
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Selected areas (1.3-3.2 ppm for Figure 3.4A and 5.8-8.0 ppm for Figure 3.4B) of 

the 1H NMR spectra of the intracellular and extracellular extracts from HUVECs 

highlighted the differences in the metabolite composition of the profiles. For 

example, in Figure 3.4A, glutamate was at higher concentration in the intracellular 

extracts, and glutamine was present at a much higher concentration in the 

extracellular extracts (spent media) and fresh medium. Some of the 

nucleosides/nucleotides were unique to the intracellular extracts.  

The results obtained indicated that there was very little variation between replicate 

samples (good precision). When the spectra were investigated, most of the peaks 

were found to be common in the intra- and extracellular samples. After this 

observation, the extraction protocol was questioned, as the similarity in the spectra 

of intra- and extracellular samples might be due to medium carry-over although it 

is expected that media metabolites would be taken up by cells and cell metabolites 

would be excreted to the media. Therefore a series of experiments were 

performed in which additional cell wash steps were included prior to methanol 

extraction to investigate the possibility of bias caused by medium carry-over into 

cell samples.  
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Figure 3.4: Selected areas (0.9-3.2 ppm for A and 5.8-8.0 ppm for B) of the 1H 

NMR spectra of the intracellular and extracellular extracts from HUVECs. 
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3.4.2 Identification of Metabolites 

The spectra from one-dimensional 1H NMR analyses yielded overlapping signals 

for many metabolites (Figure 3.5A). Therefore, two-dimensional (2D) NMR 

experiments were performed also to confirm metabolite identities by obtaining 

more dispersed signals and uncovering molecular interactions. In this study, 

interactions between two nuclei through the bonds which connect them (J-coupling 

interaction) were assessed to obtain signal multiplicity and coupling constants. 

Metabolites in HUVECs were assigned by analyzing their 1H/1H (correlation 

spectroscopy, COSY) (Figure 3.5B) and 1H/13C (heteronuclear single quantum 

correlation, HSQC) spin system coupling patterns and comparing their 1H NMR 

spectra chemical shifts with previously reported values (Teng et al., 2009), human 

metabolite databank [www.hmdb.ca]) and standard compounds. In total, 27 

metabolites could be identified (Table 3.1).  
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Figure 3.5: A. 1H NMR spectrum of intracellular metabolite extract from 

HUVECs (8.50-0 ppm). Several metabolites are annotated to the responsible 

signals. B. COSY experiment with intracellular metabolite extract from 

HUVECs. Metabolites were assigned by analysing 1H/1H spin system 

coupling patterns. 
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Table 3.1: Intracellular metabolite list for HUVECs. 27 metabolites were identified of which 

17 were amino acids. 

No Metabolites Abbreviation 
1
H NMR Signals 

1 Leucine Leu 0.97(t), 1.70(m), 3.74(m) 

2 Isoleucine Ile 0.94(t), 1.00(d), 1.27(m), 1.46(m), 1.96(m). 3.66(d) 

3 Valine Val 0.99(d). 1.08(d), 2.28(m), 3.62(d) 

4 Threonine Thr 1.34 (d), 3.60(d), 4.24(m) 

5 Alanine Ala 1.48(d), 3.78(q) 

6 Lysine Lys 1.49(m), 1.74(m), 1.92(m), 3.03(t), 3.76(t) 

7 Arginine Arg 1.67(m), 1.92(m), 3.25(t), 3.79(t) 

8 Pyroglutamate Pyro 2.03(m), 2.46(m), 2.35(m), 4.18(dd) 

9 Glutamate Glu 2.04(m), 2.14(m), 2.34(m), 3.75(dd) 

10 Glutamine Gln 2.14(m), 2.45(m), 3.78(t) 

11 Pyruvate Pyr 2.38(s) 

12 Methionine Met 2.14(m), 2.65(t), 3.85(dd) 

13 Aspartate Asp 2.66(dd), 2.80(dd), 3.89(dd) 

14 Asparagine Asn 2.88(m), 2.96(m), 4.00(m) 

15 Tyrosine Tyr 3.03(m), 3.18(m), 3.93(m), 6.89(m), 7.18(m) 

16 Phenylalanine Phe 3.10(dd), 3.26(dd), 3.99(dd), 7.32(d), 7.42(dd) 

17 Histidine His 3.13(dd), 3.25(dd), 7.10(dd), 7.90(dd) 

18  Glycine Gly 3.54(s) 

19  Lactate  Lac  1.33(d), 4.12(q)  

20  Acetate  -  1.92 (s)  

21  Choline  Cho  3.12(s), 3.53(m), 4.05(m)  

22  Glucose  Glc  3.25(dd), 3.41(m), 3.49(m), 3.55(dd), 3.75(m), 3.82(m), 

3.91(dd), 4.63(d), 5.24(d)  

23  Inosine  Ino  4.30(q), 4.44(q), 6.10(s), 8.25(s), 8.36(s),  

24  Adenosine 

triphosphate  

ATP  6.16(d), 8.24(s), 8.53(s)  

25  Nicotinamide adenine 

dinucleotide  

NAD  8.14 (s), 8.20(m), 8.41 (s), 8.51(s), 9.13(d), 9.33(s)  

26  Adenosine 

diphosphate  

ADP   5.94(m), 8.29(s), 8.54(s)  

27 Formate  -  8.46 (s)  
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3.4.3 Comparison of HUVEC Metabolite Extraction Methods  

After removal of cell medium by pipetting, it was possible to observe an 

unavoidable thin layer of medium still present on the cells. This situation might 

have caused bias in the determination of intracellular metabolites. To explore the 

potential for medium-to-cell carry over directly, culture media were spiked with two 

different concentrations of D-mannitol (1 mM and 11 mM) and, after a short period 

of incubation, cell and media samples were analysed by 1H NMR. Since D-

mannitol cannot cross biological membranes (non-permeable), it is suitable for use 

as a marker to indicate the degree of medium carry-over into intracellular extracts. 

The presence of the signals belonging to D-mannitol in the NMR spectra from 

cellular samples indicated that there was some medium carry-over for both of the 

concentrations of mannitol tested. Somewhat surprisingly, the mannitol signals 

remained in cell extracts produced from cells that were washed with ice-cold PBS 

prior to metabolite extraction (Figure 3.6).  

Figure 3.6: Assessment of medium metabolite carry-over by spiking growth 

medium with D-mannitol prior to metabolite extraction. D-mannitol signals in 

spectra were pointed-out using arrows 

 
3.950 3.900 3.850 3.800 3.750 3.700

Intracellular (Control) 

Intracellular (1 mM Mannitol) 

Intracellular (1 mM Mannitol), Ice-

cold PBS washed cells  
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Previously, Teng et al. (2009) described spiking culture medium with 0.5 mM 

sucrose and establishing that there was no medium carry-over into the methanol 

extract after washing cells twice with ice-cold PBS.  

Having shown that spiked mannitol was carried over into HUVEC extracts, 5 

different sample preparation methods for profiling intracellular metabolites from 

HUVECs were compared for their effectiveness in avoiding medium carry-over into 

the cell extracts. These methods involved additional wash steps prior to methanol 

addition onto the cells (Table 3.2). Beside additional wash steps, culture plates 

with different dimensions were also compared for optimal results (10 cm dish; 55 

cm2 surface area vs 6-well plate; 9.4 cm2 surface area).  

 

Table 3.2: Wash steps prior to metabolite extraction with 80% methanol (-80°C) 

treatment. Warm PBS, ice-cold PBS and warm NaCl (saline) were used to wash 

the cells in order to prevent medium carry-over. 

 

 

 

 

 

 

 

The score plot resulting from multivariate analysis of all 84 samples which included 

both intra- and extracellular samples showed that the extracellular samples (spent 

medium) were packed together tightly whereas intracellular samples were 

scattered (Figure 3.7A). This observation is consistent with different wash steps 

being applied to the cell samples prior to extraction of intracellular metabolites 

whereas all the media samples were treated similarly. The most scattered set of 

data was observed at the right-bottom quadrant of the plot. These samples belong 

to the intracellular metabolite extraction from 6-well plates, which were nearly 6-

Wash Steps 

1X wash with PBS at 37°C 

3X wash with PBS at 37°C 

1X wash with PBS – ice-cold 

1X wash with NaCl (0.9% w/v) at 37°C 

3X wash with NaCl (0.9% w/v) at 37°C 
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times smaller in surface area than the 10 cm dishes used for all extractions. NMR 

spectra for 6-well plate samples revealed that the metabolite concentrations were 

much lower for samples from 6-well plates compared to 10 cm dishes, and this is 

consistent with the increased variation (reduced precision) of the data. Therefore, 

10 cm dishes appeared to be more practical to work with in future experiments 

since they provided stronger signals after metabolite extraction. The analysis of 

intracellular samples obtained with different cell pre-washing steps showed that 

the replicates from each pre-wash process had similar metabolite profiles, but 

there were differences between the different pre-washes tested. There was not a 

significant intra- or inter-day variation observed for extracts without a wash step 

(n=3 for 2 experiments performed on different days, n=6 in total). However, 

sample-to-sample variation was observed in the sample replicates with extra wash 

steps. The highest variation was observed with the “3X PBS (37°C)” wash step 

(Figure 3.7B). Also, the cells used in these experiments were grown using 

passage 4 cells frozen on different days to assess possible differences in 

metabolism of HUVECs grown up from different vials. Therefore, the results 

showed that cells grown up from different vials fell into the cluster of data for direct 

methanol extraction (“No wash”) in PCA analysis indicating that they had similar 

metabolite profiles.  
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Figure 3.7: A. Score plot of the first two axes from the PCA on 84 samples, which 

include both intracellular and extracellular samples. The intracellular scores are 

scattered and the extracellular scores form a tight cluster (n=94). B. Intracellular 

samples with different wash steps (2 experiments n=3 each) 
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“1X PBS (37°C)”, “3X PBS (37°C)”, “1X NaCl (37°C)” and “3X NaCl (37°C)” yielded 

lower intensity signals compared to “No wash” and “1X PBS (ice-cold)” (Figures 

3.8A and 3.9A). This may be explained as a loss of metabolites due to leakage or 

disruption to the cell membrane by the washing steps. The aim with this 

experimental series was to determine a suitable quenching and extraction method. 

A favourable method to quench cellular metabolism must be quick and 

reproducible in order to obtain unbiased metabolite concentrations. These 

experiments showed that direct extraction with methanol (-80°C) and extraction 

with methanol just after a single wash with ice-cold PBS yielded higher 

concentrations of metabolites than warm NaCl and PBS wash methods. This 

observation is probably explained by increased leakage of metabolites during the 

longer-lasting wash methods compared to the shorter times between removing 

media and extracting metabolites for direct methanol and single ice-cold PBS 

wash methods that should minimize the amount of leakage from the cells.  

However, it is also possible that extracts without a wash step generated higher 

intensity signals due to medium carry-over. Indeed, there is some evidence to 

support this notion; the more stringent cell washing methods produced more 

extensive relative reductions in the signals for amino acids such as histidine, 

tyrosine and phenylalanine than observed for ATP signals (6.15 ppm) (Figure 3.8B 

& 3.9B). Since ATP was only present in intracellular extracts but not in spent 

medium (Figure 3.4B), whereas the amino acids were present in both cell and 

media samples, this observation is consistent with increased wash steps leading 

to reductions in medium carry-over. Nevertheless, D-mannitol signals were still 

present also in intracellular extracts, which had received a 1X PBS (ice-cold) wash 

step prior to extraction (Figure 3.6). The mannitol signal intensity was lower, but 

this was not specific to the mannitol signal as all metabolites had lower intensity 

signals after the wash step compared to direct methanol extraction including the 

ATP signal at 6.15 ppm. Therefore, it could be concluded that the lower intensity of 

the signals was due to metabolite loss, at least to some degree.  

Overall, these data favoured minimising processing and thus using direct methanol 

extraction in the subsequent experiments. However, without the wash steps, the 

probability of medium carry-over in the extracts remains.  
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Figure 3.8: Different regions of 
 1

H NMR spectra of intracellular extracts after different wash 

steps. A. 8.00-2.40 ppm. B. 8.00-6.10 ppm. 
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H NMR spectra of intracellular extracts after different wash 

steps. A. 7.00-1.00 ppm. B. 8.00-6.10 ppm. 
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3.4.4 Treatments to test method: LPS, malonate, medium without growth 

factors 

As the medium carry-over seemed to be unavoidable direct methanol extraction 

that yielded higher concentrations of metabolites and gave low between-replicate 

variation was chosen as the method for the subsequent experiments. The next 

objective was to investigate the suitability of the method for detecting changes in 

metabolite profiles in cultured HUVECs in response to treatments that would be 

expected to alter the cell metabolome. After reviewing the literature, 

lipopolysaccharide (LPS), malonate and growth medium without growth factors 

(GF) were selected as suitable treatments to be tested for their effects on HUVEC 

metabolism.  

Confluent HUVECs were treated with LPS (10 ng/ml) or growth medium without 

growth factors (GF) for 24 hours and with malonate (1 mM and 10 mM) for 6 h or 

24 h. Subsequently, cellular metabolism was quenched with 80% methanol (-80°C) 

and the metabolites were extracted. The signals falling under a bucket were 

integrated, and statistical multivariate analysis was performed on these data using 

Matlab®. The data was also transferred into Microsoft® Excel for further univariate 

analysis. It was observed that “10 mM Malonate” samples and “No GF” samples 

were separated from “Control” and “LPS” samples easily on the PCA plot (Figure 

3.10).  On the other hand, “1 mM Malonate” and “LPS” samples were similar to 

control samples. The close proximity of  “10 mM Malonate” and “No GF” sample 

replicates on the PCA plot reflected the robustness of the cellular metabolism 

quenching and metabolite extraction protocol. 
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Figure 3.10: Score plot of the first two axes from the PCA on intracellular 

metabolite samples of non-treated cells (control), cells treated with no growth 

factor medium, LPS and malonate treated cells. 

 

The differences observed in the score plot were consistent with the differences in 

the spectra of intracellular samples from cells treated with no growth factor 

containing medium and intracellular samples from cells treated with malonate (10 

mM). Therefore, metabolite changes responsible for the separation in the PCA plot 

were identified after univariate statistical analyses (Mann-Whitney test, non-

parametric). Removal of the growth factors from culture medium led to a decrease 

in the levels of several amino acids, namely aspartate (p<0.01), asparagine 

(p<0.001) and tyrosine (p<0.001) were the amino acids whose intracellular levels 

were significantly dropped. Alanine and phenylalanine levels were also reduced, 

however, the reductions were not statistically significant. Pyruvate was the other 

metabolite whose level was reduced significantly (p<0.01) after the removal of the 

growth factors from culture medium, together with non-significant reductions in 

ATP and acetate levels. Hence all these alterations in the metabolic profile 

contributed to separation in the PCA plot. 

 

-25 -20 -15 -10 -5 0 5 10 15 20 25

-20

-15

-10

-5

0

5

10

15

20

Scores on PC 1 (43.33%)

S
c
o
re

s
 o

n
 P

C
 2

 (
2
7
.2

1
%

)

Samples/Scores Plot of data

1:Control (no treatment) 

2:Malonate (10 mM ) 

3:Malonate (1 mM) 

4:LPS (10 ng/ml) 

 

 
1 

2

: 

3

:

: 

4

: 

:

: 



   C h a p t e r  3 | 92 

 

Malonate was selected to test the developed method because it is a Krebs cycle 

inhibitor and was expected to alter the profile of Krebs cycle intermediates (Figure 

3.11). Several experiments were designed to further validate the developed 

HUVEC extraction protocol using malonate, succinate and fumarate.  

 

Experimental set-up: 

Malonate (10 mM ) ;   6 h or 24 h 

Malonate (10 mM) + Fumarate (20 mM) ; 24 h 

Malonate (10 mM) + Succinate (50 mM) ; 6 h or 24 h  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: Malonate (M) is a competitive inhibitor of succinate dehydrogenase, 

which competes with substrate succinate (S) for the enzyme active site. Therefore, 

it can disrupt cellular respiration. 
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Cell culture medium was spiked with two different concentrations of malonate,      

1 and 10 mM, for 6 h or 24 h in order to visualize possible changes in the HUVEC 

metabolite profile. These experiments were followed by malonate (10 mM) / 

fumarate (20 mM) and malonate (10 mM) / succinate (50 mM) co-treatments to 

observe whether fumarate and succinate can prevent malonate related changes in 

HUVEC metabolite profile.   

1 mM malonate did not have any significant effects on HUVEC metabolite profile.  

On the other hand, 10 mM malonate addition into the culture medium caused 

significant reductions in intracellular ATP (p<0.001), glutamate (p<0.01), aspartate 

(p<0.001), lactate (p<0.001) and formate (p<0.05) levels, and increase in glucose 

(p<0.05), pyruvate (p<0.05), inosine (p<0.001) and histidine (p<0.001) levels 

(Table 3.3) (Figure 3.12 and 3.13). These changes clearly indicated that the 

cellular metabolism was disrupted. These changes could be reverted by succinate 

co-treatment whereas fumarate co-treatment could not overcome the deleterious 

effects of malonate on HUVEC metabolism. In addition, increases in fumarate 

levels were observed with succinate co-treatment. 

Table 3.3: The changes in HUVEC metabolite profile after malonate treatments for 6 h or 24 h and 

the ability of succinate to prevent these changes. Arrows indicated decrease or increase in 

particular metabolite concentrations (resting cells were compared with malonate treated cells; 

malonate treated cells were compared with malonate and succinate co-treated cells). 

 

Malonate (10 mM); 6h & 
24h

Malonate (10 mM)
+ Succinate (50 mM); 24h

Malonate (10 mM)
+ Succinate (50 mM); 6h 

Glutamate             ↓ ↑ ↑

Pyruvate                ↑ ↓ ↓

Aspartate              ↓ ↑ ↑

Glucose               ↑ ↓ ↓

Inosine ↑ ↓ ↓

ATP                      ↓ ↑ ↑

Fumarate - ↑ ↑

Histidine ↑ ↓ ↓

Formate ↓ ↑ ↑
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Fumarate co-treament did not prevent the negative effects of malonate on 

HUVECs.  However, an elevation in malate levels was observed with the treatment 

(Figure 3.12). Krebs cycle was not recovered possibly due to the negative 

feedback effect of malate accumulation on the enzyme fumarase which converts 

fumarate to malate (Figure 3.11).  

It could be observed that both of the treatments, 6 h and 24 h malonate, resulted 

in an unhealthy phenotype in HUVECs. However, succinate co-treatment partially 

prevented the change in the phenotype as reduced shrinkage was observed in the 

cells which indicated that the cells were less stressed since the cellular respiration 

was recovered (Figures 3.14A and 3.14B).  

 

 

Figure 3.12: 1H NMR spectra for 24 h treatments. Level of aspartate was lower 

with malonate (10 mM) treatment, but succinate (50 mM) co-treament prevented 

the decrease in intracellular aspartate concentration (2.60 and 2.80 ppm).  A 

dublet of dublet is present with fumarate (20 mM) treatment around 2.70 ppm 

which belongs to malate. 
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Figure 3.13: 1H NMR spectra for 6 h treatments. Histidine level was increased with 

malonate treatment, but succinate co-treament prevents this increase. ATP 

generation by Krebs cycle was blocked with malonate treatment but succinate co-

treatment managed to keep Krebs cycle active to generate ATP. Glucose was not 

used up by cells after malonate treatment, but with succinate co-treatment glucose 

was used up to generate energy. 
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Figure 3.14: Malonate and malonate/succinate treatments. A. 6 h malonate 

treatment. B. 24 h malonate treatment.  After both 6 h and 24 h malonate 

treatments HUVECs shrank and looked unhealthy. However, succinate co-

treatment prevented the change in the phenotype. 
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3.5 Discussion 

In this study a protocol that allowed quick and effective freezing of cellular 

metabolism, extraction of metabolites and analysis of extracted metabolites by 

employing 1H NMR was developed. The protocol facilitated the generation of non-

biased and reproducible data from 1H NMR analyses and was shown to be 

suitable for detecting alterations in HUVEC metabolism induced by relatively 

strong treatments such as a metabolic poison (malonate) and removal of growth 

factors from the cell culture medium.  

There are a few reports concerned with metabolite profiling of mammalian cells 

using 1H NMR in the literature covering a few different adherent cell types (Duarte 

et al., 2010, Martineau et al., 2011, Martínez-Martín et al., 2012). However, there 

was not any information reported in the literature about the HUVEC metabolome 

until recently when in 2012 Martinez-Martin and co-workers carried out a study 

using NMR metabolomics on HUVECs. They had used high-resolution magic 

angle spinning (HR-MAS) magnetic resonance spectroscopy to test effects of 

AMPK activation by the adenosine analog, 5-aminoimidazole-4-carboxamide-1-β-

D-ribofuranoside (AICAR), on the HUVEC metabolome. As a result, they observed 

alterations in energy metabolism and phospholipid biosynthesis. HR-MAS involves 

the analysis of semi-solid or viscous samples such as cell pellets. Detection of 

metabolites is achieved by spinning the sample at the magic angle 54.7º, which 

reduces line broadening effects observed due to chemical shift anisotropy, dipolar 

couplings and sample heterogeneity (Griffin et al., 2002). This technique was 

found to be useful in previous cell studies (Griffin et al., 2002, Shi et al., 2008, 

Weybright et al., 1998). However, Martinez-Martin et al. (2012) did not give any 

details about the metabolite extraction procedure. They had mentioned that the 

results were highly reproducible, but the method used for cell harvesting and 

metabolite extraction might have had influence on the results as it was shown in 

previous studies that different harvesting or extraction methods yielded variable 

results and there is not an optimal method for all the cell types (Sellick et al., 2008, 

Martineau et al., 2011). 

An ideal protocol for extracting metabolites from HUVECs must include a quick 

method to quench the cellular metabolism that would not stress the cells. Freezing 

in liquid nitrogen, acid treatment, cold/hot phosphate buffered saline treatment, 
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cold saline treatment and using methanol buffer solutions are several examples of 

quenching methods that have been reported (Teng et al., 2009, Miccheli et al., 

2006, Sellick et al., 2008).  In this study, it was preferred to use cold methanol in a 

single step to quench cellular metabolism and extract metabolites. In CAM 

detection experiments (Chapter 2), trypsinization, which is a conventional method 

to harvest cells was used. However, in metabolomics experiments, trypsin would 

not be suitable to be used before quenching cellular metabolism as it mechanically 

cleaves the surface proteins that attach the cells to the culture plates stressing the 

cells. Also, this method requires repetitive and time-consuming wash/centrifuge 

steps that could cause metabolite carry-over (Dettmer et al., 2011, Teng et al., 

2009). Instead of quenching cellular metabolism and extracting intracellular 

metabolites with a single solvent addition step, there are also various two-step 

extraction methods that have been used by researchers. These include treatments 

with cold/warm methanol or methanol/water solvents and acid or alkaline 

treatments (Sellick et al., 2008). However, an additional step may increase the 

chance of metabolite carry-over. Therefore, a method, which brought cellular 

metabolism to a halt and achieved metabolite extraction in a single step was used 

in this study in order to avoid any possible alterations in cellular metabolism prior 

to NMR analysis. NMR spectra obtained for the metabolite extracts showed 

adequate signal-to-noise ratio which allowed identification of 27 metabolites. 

Nevertheless, there was evidence of some medium-carry over in the extracts (e.g. 

after spiking medium with mannitol) even with an additional wash step. Therefore, 

the method provided good consistency (precision) but the absolute concentrations 

may not be accurate. However, this is expected to be similar between samples, 

and since the differences between treatments and controls are the particular 

interest, it would be possible to identify the alterations in the metabolites after the 

treatments with the developed method. 

Experiments were designed to investigate the sensitivity and reproducibility of the 

technique being used. This was achieved by assessing the biological changes 

observed after treating cells with LPS, malonate, and medium without growth 

factors. LPS was tested for its effects on cell adhesion molecule expression in 

previous chapter. It did not induce VCAM-1 and ICAM-1 expression by HUVECs. 

Nevertheless, it is a well-known pro-inflammatory molecule (the gram-negative 

bacterial cell wall constituent) (Porter et al., 2010) and it was previously reported 
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that LPS could activate microglial cells by inducing changes in cellular metabolism 

including elevation in glutamate and lactate levels (Yawata et al., 2008, El Ghazi et 

al., 2010). Therefore, LPS was chosen as a treatment that could change NMR 

metabolic profile of HUVECs. However, LPS treatment did not induce any 

detectable significant alterations in HUVEC metabolome.  

The second type of treatment tested for its ability to alter HUVEC metabolism was 

to remove growth factors from cell culture medium. The removed factors included 

human epidermal growth factor (hEGF), vascular endothelial growth factor 

(VEGF), human fibroblast growth factor B (hFGF-B) and insulin like growth factor 

(R3-IGF-1). Growth factor deprivation may disrupt cellular nutrient intake resulting 

in intracellular nutrient deficiency (Edinger and Thompson, 2002, Kan et al., 1994).  

This starvation due to the blockage of nutrient intake activates nutrient-sensing 

signalling pathways (Panieri et al., 2010), which may lead to initiation of autophagy 

(Lum et al., 2005). Autophagy can be defined as a catabolic mechanism, which 

involves sequestration and degradation of cytoplasmic components including long-

lived proteins and dysfunctional organelles yielding nucleotides, amino acids and 

fatty acids that can favour cellular homeostasis by contributing to synthesis of 

macromolecules and ATP generation (Levine and Yuan, 2005, Han et al., 2012, 

Guo et al., 2013). The present data indicated that growth factor deprivation in cell 

culture medium led to an energy deficit in the cells that was reflected by the 

reduction observed in ATP and pyruvate levels. Similarly, Gottlieb and co-workers 

showed a reduction in the ATP/ADP ratio due to the defect in mitochondrial 

respiratory control in murine cell lines (Gottlieb et al., 2002). At the same time, 

observation of a reduction in the levels of amino acids which are all involved in 

feeding into the Krebs cycle indicated that autophagy almost certainly degraded 

intracellular contents to maintain ATP production promoting cell survival. Alanine, 

aspartate, asparagine, tyrosine and phenylalanine were the amino acids whose 

intracellular levels were reduced (Figure 3.15). Asparagine can be converted to 

aspartate with hydrolysis of the amide group, and aspartate can be converted to 

Krebs cycle intermediate oxaloacetate by a transamination reaction. Phenylalanine 

can be converted to tyrosine, and can be converted to the Krebs cycle 

intermediate fumarate. Alanine can be converted to pyruvate by a transamination 

reaction, which can be directed to the Krebs cycle. Therefore, it was shown that 
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alterations in HUVEC energy metabolism could be observed after treating cells 

with culture medium without growth factors using 1H NMR spectroscopy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Amino acid carbon skeleton entry into Krebs cycle. Tyrosine, 

asparagine and aspartate levels significantly reduced after treating cells with 

culture medium without GF. Also, insignificant reductions were observed in alanine 

and phenylalanine levels. Therefore, it may be speculated that the reductions 

indicated Krebs cycle feeding to meet cellular energy demand. 
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Malonate is one of the metabolic effectors, which was used to test the developed 

method in view of the fact that it is a Krebs cycle inhibitor. It competes with 

succinate to bind to the active site of the enzyme succinate dehydrogenase 

(Figure 3.11). Excess intracellular malonate concentrations are expected to bring 

the Krebs cycle to a halt. This would disrupt cellular energy metabolism.  

Therefore, theoretically, excess intracellular succinate concentrations would help 

to prevent the inhibition of the enzyme succinate dehydrogenase by malonate as it 

is a competitive inhibitor that does not react with the enzyme. Also, another option 

for overcoming the inhibitory effect of malonate on the Krebs cycle would be the 

addition of excess amount of fumarate, which is the product of succinate oxidation 

by succinate dehydrogenase that would enable the progress of reactions in the 

cycle (Figure 3.15).  

It has been speculated that HUVECs produce energy mainly via glycolysis (Peters 

et al., 2009, Sweet et al., 2009). However, the results obtained here clearly 

demonstrated that the Krebs cycle is active even though the glycolysis is the major 

biochemical pathway to produce energy in HUVECs. 

Cellular respiration, which is the most important biochemical reaction to produce 

cellular energy, starts with the conversion of glucose to pyruvate in glycolysis 

followed by the Krebs cycle in which NADH and FADH2 are produced for ATP 

production via the electron transport chain. The data presented here (depletion in 

ATP levels together with glucose and pyruvate accumulation) after malonate 

treatments revealed that the pyruvate was not channelled into the Krebs cycle and 

cellular respiration was switched off (Figure 3.13). Glutamate might be channeled 

into the Krebs cycle after conversion to the Krebs cycle intermediate α-

ketoglutarate. Accelerated glutamate transport into HUVECs provides a precursor 

for the biosynthesis of macromolecules and glutamine, which can be used up to 

produce energy in cultured cells (Pan et al., 1995). Although succinate could not 

be detected with 1H NMR, its level was expected to increase with the malonate 

treatment, and intracellular accumulation of histidine may be related to inhibition of 

urucanate hydratase by excess succinate (Figure 3.13). Histidine is a glucogenic 

amino acid, which can be catabolized into glutamate through a multi-enzyme 

system that involves the activities of 4 enzymes. Urucanate hydratase is the 

second enzyme in this system, and generates imidazolone propionate by 
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hydration of urocanate. Hug and co-workers showed that succinate inhibited 

urocanate hydratase which resulted in urocanate accumulation in Pseudomonas 

putida (Hug et al., 1968). This caused a negative feedback in the enzyme, 

histidase, which led to histidine accumulation.  

In conclusion, the developed protocol was sensitive enough to detect and quantify 

27 metabolites in HUVECs by 1H NMR. Previous studies reported in the literature 

used between 3-6 sample replicates in order to observe alterations in the 

metabolisms of different cells types with particular treatments (Teng et al., 2009, 

Duarte, 2011, Martineau et al., 2011). The present study has shown that 6 sample 

replicates gave consistent results between replicate samples, and it was suitable 

to detect changes in the HUVEC metabolome in response to a metabolic poison 

and removal of critical growth factors from the medium. In the next chapter, the 

protocol will be used to explore potential changes in HUVEC metabolite profiles in 

response to hyperglycaemia, inflammatory cytokine and polyphenol treatments.  
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CHAPTER 4: Effects of high-glucose, TNF-α and 

quercetin on endothelial cell primary metabolism: NMR 

and mass spectrometry analyses 

4.1 Abstract 

Background:  The effect of increased glucose concentrations and pro-inflammatory 

cytokines on endothelial cells is multifaceted, and polyphenols have been shown 

to work through multiple mechanisms and elicit a variety of changes in the 

functions of cells to which they are exposed. However, studies reported in the 

literature are mainly focused on the effects of high-glucose and inflammatory 

cytokines on individual endothelial cell activation and function markers so far and 

there have been no studies reported on the effects of polyphenols on primary 

metabolism in endothelial cells. Therefore, a non-targeted approach such as 

metabolomics provided the ideal approach for determining the full range of 

responses at a mechanistic level on the metabolic system. 

Aim: To demonstrate effects of quercetin on high-glucose and TNF-α stressed 

endothelial cells using non-targeted analysis approach metabolomics with a view 

to understanding the effects at a mechanistic level on the metabolic system. 

Approaches/methods: 1H NMR spectroscopy was used to determine HUVEC 

metabolite profile, and HILIC mode LC-MS/MS analysis was used to measure 

intra- and extracellular levels of ATP, ADP, AMP, adenosine, inosine and xanthine 

providing supplementary data.   

Results: 18 h glucose (28.5 mM) treatment significantly increased intracellular 

lactate (p<0.01) and glutamate (p<0.05) concentrations compared to unstimulated 

cells. Interestingly, quercetin affected mainly the HUVEC energy metabolism. 

Increases in intracellular inosine and acetate concentrations were observed, 

whereas lactate (p<0.01), ATP (p<0.01) and NAD+ (p<0.01) concentrations were 

reduced with quercetin pre-treatment (2 h) prior to high-glucose treatment (18 h). 

TNF-α (10 ng/ml, 6 h) treatment led to an elevation in asparagine concentrations 

(p<0.05) and a trend of elevation in pyroglutamate concentratins (p=0.0679), 

whereas a reduction was observed in asparate concentrations (p<0.001) 
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compared to unstimulated cells. On the other hand, the only significant change 

observed with quercetin (10 µM) pre-treatment (2 h) prior to TNF-α stimulation (6 

h) was a reduction in pyruvate concentrations (p<0.05). However, a trend of 

elevation in inosine (p=0.0566) and a trend of decrease in aspartate (p=0.0569) 

and ATP concentrations were observed. MS analyses revealed that pre-treatment 

with quercetin led to an increase in intracellular inosine and decrease in ATP 

(p<0.01), ADP (p<0.05) and NAD+ (p<0.01) concentrations, and increase in 

extracellular inosine (p<0.01) and decrease in xanthine (p<0.05) levels in high-

glucose stimulated HUVECs. TNF-α stimulation (6h) increased intracellular AMP 

concentrations (p<0.05) whereas it decreased adenosine (p<0.01) and NAD+ 

(p<0.01) concentrations compared to unstimulated HUVECs. Quercetin pre-

treatment increased intracellular inosine (p<0.001) and adenosine (p<0.05) 

concentrations in TNF-α stimulated HUVECs whereas it reduced ATP (p<0.05) 

concentrations. It also increased extracellular inosine (p<0.01) concentrations. 

Quercetin treatment alone was found to time-dependently increase intracellular 

pyroglutamate and lactate concentrations, whereas it reduced inosine 

concentrations time-dependently. Finally, MS analysis revealed that quercetin 

treatment alone decreased intracellular ATP and ADP concentrations, and 

increased AMP, adenosine and inosine concentrations depending on the 

treatment duration. Likewise, elevations in extracellular adenosine and inosine 

concentrationss were observed. 

Conclusions: The prevention of deleterious increases in lactate, reductions in the 

concentrations of pro-inflammatory metabolites ATP and ADP and, in parallel, 

increased concentrations of anti-inflammatory metabolites adenosine and inosine 

are consistent with the anti-inflammatory properties of quercetin that protect 

vascular endothelial cells against inflammation-induced damage.  
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4.2 Introduction 

Atherosclerosis has been characterized as a chronic inflammatory disease (Libby 

et al., 2002). Vascular endothelial dysfunction initiates formation of atherosclerotic 

plaques at sites of injury. Atherosclerotic plaque formation is associated with 

diabetes since the hyperglycaemic and pro-inflammatory conditions have the 

potential to activate endothelial cells and disrupt endothelial cell function due to 

the production of various vasoactive factors, growth factors and cytokines 

observed during diabetes (Guerci  et al., 2001). Endothelial cells possess 

important functions such as regulating vessel permeability, inflammation and 

thrombosis (Galley and Webster, 2004). High-glucose concentrations and pro-

inflammatory cytokines bear the potential to affect endothelial cell activation and 

function through multiple mechanisms, and polyphenols have been tested to 

investigate whether they have the potential to attenuate or completely prevent 

high-glucose and pro-inflammatory cytokine-induced conditions. So far, studies 

reported in the literature are mainly focused on the effects of high-glucose and 

inflammatory cytokines on individual endothelial cell activation and function 

markers. For example, Altannavch and co-workers reported that high-glucose 

concentrations and TNF-α induced cell adhesion molecule expression by HUVECs 

(Altannavch T. S., 2004). Chen and co-workers showed that the high-glucose 

concentrations reduced the endothelial cell proliferation rate (Chen et al., 2007). 

Sheu and co-workers suggested that the hyperglycaemic conditions induced 

human endothelial cell apoptosis by triggering caspase-3 activity through a 

phosphoinositide 3-kinase regulated cyclooxygenase-2 pathway, and also 

increases ROS production (Sheu et al., 2005). Rogers and co-workers showed 

that hypo- or hyperglycaemia lowers eNOS levels in HUVECs diminishing its 

cytoprotective effects (Rogers et al., 2013). Furthermore, Tribolo and co-workers 

reported that dietary polyphenol quercetin and its human metabolites prevented 

LPS/TNF-α induced expression of cell adhesion molecules by endothelial cells 

(Tribolo et al., 2008). Wahyudi and Sargowo showed that green tea polyphenols 

significantly reduced TNF-α expression by preventing oxLDL mediated NF-κβ 

activation (Wahyudi and Sargowo, 2007). Nevertheless, the reported literature 

regarding to the effects of polyphenols on hyperglycaemic conditions are very 

limited and targeted to particular aspects such as inhibitory activities against 
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cellular apoptosis and ROS productions (Chao et al., 2009, Hsieh et al., 2007, 

Choi et al., 2008) 

After a literature review was carried-out, only a handful of published reports were 

observed that concerned with the effects of high-glucose concentrations, TNF-α or 

polyphenols on mammalian cell metabolism, and only a few using a non-targeted 

metabolomics approach to explore cellular primary metabolism. However, there 

were several interesting studies reported with regards to the effects of high-

glucose or TNF-α on particular aspects of cellular metabolism. For example, 

Mortuza and co-workers assessed effects of chronic high-glucose concentrations 

on sirtuins (SIRTs), which is an important protein family in regulating aging 

process and metabolism that prevents aging-like process also in endothelial cells 

(Adams and Klaidman, 2007, Mortuza et al., 2013). They reported that high-

glucose concentrations diminished SIRT-1 activity leading to alterations in 

mitochondrial function that accelerated an aging-like process (Mortuza et al., 

2013). In another study, Iqbal and Zaidi demonstrated that TNF-α treatment time-

dependently increased cellular NAD+ levels in macrophages due to increased 

degradation of NAD+ by NAD+ metabolising enzymes (Iqbal and Zaidi, 2006).  

Beside the targeted experiments, there were several non-targeted metabolomics 

studies reported in the literature. A study focussed on the effects of TNF-α on 

phospholipid metabolism in human breast cancer cells (MCF7) using 31P and 13C 

NMR spectroscopy (Bogin et al., 1998). It was revealed that TNF-α inhibited 

choline transport in MCF7 cells by affecting the kinetics of membrane bound 

enzymes leading to a reduction in cellular phosphocholine levels. These 

alterations in the cellular metabolism were associated with apoptosis initiation 

(Shih and Stutman, 1996). In another study, Ibanez and co-workers developed a 

multianalytical platform based on CE/LC-MS analysis in order to determine effects 

of rosemary polyphenols on colon cancer cell (HT29) proliferation. Significant 

alterations in the cellular metabolome were observed after polyphenol treatments, 

and the results suggested chemopreventive effects of rosemary polyphenols with 

the observation of elevations in the reduced glutathione/oxidized glutathione ratio 

and changes in cellular polyamine profiles (Ibáñez et al., 2012). The effects of 

rosemary were also tested on K562 leukemia cells by applying a global microarray 

approach together with a metabolomics approach employing an MS-based method 
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(Valdés et al., 2012). In parallel with their effects on colon cancer cells, rosemary 

polyphenols treatment altered the leukemia cell metabolome, and particularly the 

elevation in the intracellular reduced glutathione levels and the reduction in the 

hypoxanthine levels indicated their chemopreventive effects on cancer cells. 

Another study reported the effects of resveratrol on the HepG2 cells (a human 

hepatoblastoma cell line) metabolome, which were investigated using 1H NMR 

analyses (Massimi et al., 2012). Resveratrol treatment caused significant changes 

in HepG2 metabolite profiles which were consistent with a switch in cellular energy 

metabolism was switched towards fat utilization to produce energy rather than 

using amino acids and glucose as cellular fuel.   

Chapter 2 was focused on the effects of high-glucose, inflammatory cytokines and 

polyphenols on individual endothelial cell function markers. According to the 

results, glucose did not have an effect on HUVEC proliferation or surface 

expression of VCAM-1 and ICAM-1 by HUVECs. IL1-β and TNF-α induced CAM 

expression by HUVECs, and the effects were stronger for TNF-α compared to IL1-

β.  Quercetin was the only polyphenol that prevented CAM expression by HUVECs 

after cytokine stimulation.  

Nevertheless, the effects of high-glucose concentrations, pro-inflammatory 

cytokines and polyphenols on the primary metabolism in endothelial cells have not 

been extensively studied so far. In chapter 3, a protocol was developed and tested 

which facilitated rapid and effective freezing of cellular metabolism and extraction 

of metabolites. The extracted metabolites were analysed using 1H NMR, which 

produced reproducible results when the effects of several known metabolic 

effectors on HUVECs were tested in the HUVEC model. The examples above with 

regards to both endothelial cell function markers and endothelial metabolism 

indicated that the effect of high-glucose and pro-inflammatory cytokines on 

endothelial cells is multifaceted, and polyphenols have been shown to work 

through multiple mechanisms and elicit a variety of changes in the functions of 

cells to which they are exposed.  

Therefore, the aim of the research presented in this chapter was to demonstrate 

effects of quercetin on high-glucose and TNF-α stressed endothelial cells using 

non-targeted analysis approach metabolomics with a view to understanding the 

effects at a mechanistic level on the metabolic system in order to test the 
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hypothesis that pro-inflammatory conditions alter the metabolome of HUVECs, and 

polyphenols are able to prevent some or all of the hyperglycaemia or 

inflammation-induced metabolic changes. 

 

4.3 Materials & Methods 

4.3.1 Materials 

Deuterim oxide (D2O, D, 99.9%) was purchased from Cambridge Isotope 

Laboratories, Inc (USA). All other chemicals were obtained from Sigma-Aldrich 

(Poole,UK) unless specified. Centrifuge (Heraus Sepintech-Mega fuge 1.0R). 

Centrifugal evaporator (Jouan RC1022). HPLC grade acetonitrile was obtained 

from Fisher Scientific (Loughborough, UK). Cambridge Soft BioDraw Ultra 

software trial version was used to draw biological diagrams.  

 

4.3.2 Optimized Cell Quenching and Metabolite Extraction Method 

Cell culture medium was quickly aspirated from the culture dish (10-cm) and 3 ml 

of 80% HPLC grade methanol (-80°C) was added to quench the cells. Then, the 

culture dish was incubated for 15 min on dry ice. Cells were then detached and 

cell membranes were disrupted by a cell-scraper. The methanol solution 

containing metabolites was transferred into a 5 ml centrifuge tube. The solution 

was centrifuged at 2000g for 5 minutes at 4°C.  The supernatant was saved. The 

pellet was re-constituted in 0.5 ml of 80% HPLC grade methanol and centrifuged 

again. The supernatants were pooled and dried using a centrifugal evaporator.  

 

4.3.3 1H NMR Spectroscopy Analysis of Intra- and Extracellular Metabolite 

Extracts 

Dried intracellular extracts were re-constituted in a buffer containing Na2HPO4, 

NaH2PO4, NaN3 and TSP in D2O. Spent media were diluted in the same NMR 

buffer prior to NMR analsysis. NMR recording was carried out according to details 

mentioned in Chapter 3. The NMR spectra were further analysed by Amix® 

software.  
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All the signals were separated to form buckets. The signals falling under a bucket 

were integrated, and statistical multivariate analysis was performed on these data 

using Matlab®. The analysis involved principle component analysis (PCA), which is 

an unsupervised method. Buckets defined in a NMR spectrum form a single data 

point in PCA, and they are responsible for the separation observed in a PCA plot. 

The contribution of each bucket to the separation in PCA plot was visualized using 

the corresponding loading plot. In a loading plot, each bucket forms a data point. 

Final analysis involved applying univariate statistical analysis to confirm the 

changes observed by multivariate analysis, and determine the significance of the 

differences. Non-parametric Mann-Whitney test was used, and p value less than 

0.05 (p< 0.05) accepted as a significant difference. 

 

4.3.4 HILIC Mode LC-MS/MS Analysis of Extra- and Intracellular Metabolites 

Levels of ATP, ADP, AMP, adenosine, inosine and xanthine were measured in 

both intra- and extracellular samples using the analytical method as published by 

Preinerstorfer et al. (2010). Intracellular metabolites were extracted following the 

protocol optimized for NMR spectrometry analysis. Prior to MS analysis, dried 

extracts were dissolved in H2O. Extracellular samples (spent culture media) were 

analysed without any additional preparation steps.  

An Agilent 1200 HPLC system (Agilent Technologies, Waldbronn, Germany) 

coupled to an Applied Biosystems 4000 QTrap triple quadrupole mass 

spectrometer was used. Data were processed with the Analyst 1.5 software 

(Applied Biosystems). During chromatographic runs, autosampler temperature 

was set to 5ºC, temperature of the column compartment was 25ºC and injection 

volume was 10 µl. Metabolites were separated using a ZIC-HILIC stationary phase 

(150 mm X 4.6 mm, 5 µm) purchased from Merck SeQuant (Marl, Germany) at a 

flow rate of 700 µl/min. Mobile phases were 20 mM ammonium acetate (adjusted 

to pH 7.5 for the neutral HILIC method), respectively, in (A) H2O and (B) 90% 

acetonitrile (MeCN). Mobile phase pH was adjusted using ammonium hydroxide 

solution (NH4OH). Gradient elution was performed as in Table 4.1. 
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A standard mixture was prepared which contained all of the 6 metabolites 

mentioned. Calibration curves were drawn for each metabolite using the standard 

mixture to quantify the levels of each metabolite in the samples. 

 

 

 

 

 

 

 

 

 

4.3.5 Post-hoc Analysis for Estimating Power of Analytical Method 

The equation below (Equation 4.1) was used to estimate the magnitude of the 

effect that was necessary to observe a significant difference in the levels of a 

particular metabolite after a particular treatment.   

Equation 4.1: 

  
    (     )   (   ) 

 

  
 

                               

 (     )              

 (   )              

  
                    

                                 
 

 

Time (min) %A %B 

0 0 100 

30 80 20 

31 0 100 

45 0 100 

 

Table 4.1: Gradient profile of mobile phase in HILIC Mode LC. 
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4.4 Results 

4.4.1 Effects of Hyperglycaemia and Quercetin Treatments on HUVEC 

Metabolome Using 1H NMR 

Effects of acute hyperglycaemia on HUVEC metabolite profiles were explored. 

Cells were grown under basal culture medium (5.5 mM glucose) until confluency, 

and then the medium was replaced with experimental high-glucose medium (28.5 

mM glucose) for 18 h. Dietary polyphenol, quercetin (10 µM), was also tested for 

its potential to alter metabolite profile in the presence of hyperglycaemia. The 

experiments involved 2 h pre-treatment with quercetin (10 µM) followed by 18 h 

high-glucose (28.5 mM) treatment. After the treatments, cellular metabolism was 

quenched, metabolites were extracted and analysed using 1H NMR by following 

the protocol validated in the previous chapter. 

A multivariate analysis was carried out for the data obtained for unstimulated cells, 

high-glucose treated (18 h) cells and quercetin pre-treated (2h) cells which were 

further high-glucose stimulated (18 h) in order to reveal alterations in the HUVEC 

metabolome after the treatments. Score plots of PC5 and PC10 showed a strong 

separation indicating that the treatments had different effects on HUVEC 

metabolome (Figure 4.1A). The contribution of individual buckets (chemical shifts 

representing metabolites) to the separation in the PCA plot were visualised using a 

corresponding loading plot (Figure 4.1B). There were 185 buckets, and glucose 

signals were not included in the analysis as they would have contributed non-

specifically to the separation. Furthermore, univariate analysis (Mann-Whitney 

test) was conducted for the buckets identified in the loading plot between 

unstimulated (n=30) and high-glucose (28.5 mM) treated (18 h, n=30), and also 

between high-glucose (28.5 mM) (18 h, n=20) treated and quercetin pre-treated 

samples (2 h quercetin + 18 h high-glucose, n=20) in order to confirm the 

significance of the changes observed.  

Confirmation of alterations in lactate concentrations was given as an example to 

show how the analysis was performed to reveal statistically significant changes. 

First of all, the bucket at 4.12 ppm which represents lactate was identified as a 

data point in the loading plot indicating that the bucket had contributed significantly 

to the separation (Figure 4.1B). Therefore, the signal at 4.12 ppm was checked in 
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the related spectra (Figures 4.2A and 4.2B), which was followed by a Mann-

Whitney test that confirmed the increase in intracellular lactate levels with high-

glucose treatment compared to unstimulated cells (p<0.01) and the reduction with 

quercetin pre-treatment compared to high-glucose treated cells (p<0.01) (Figure 

4.2C and 4.2D). Further, the minimum magnitude of effect that was necessary to 

observe a significant difference in lactate concentrations after quercetin treatment 

was estimated by employing Equation 4.1. The results revealed that a minimum of 

9.9% alteration in lactate concentrations was necessary in order to observe a 

significant difference after the quercetin treatments when 20 sample replicates 

were analysed.  

According to the loading plot analysis, the lactate, inosine, ATP, pyruvate, acetate, 

glutamate, aspartate, NAD+ and asparagine buckets contributed significantly to the 

separation observed in the PCA plot (Figure 4.1B). A Mann-Whitney test 

confirmed that 18 h glucose treatment significantly increased intracellular lactate 

(p<0.01) and glutamate (p<0.05) levels compared to unstimulated cells (Table 

4.2A). These data show that the main effect of quercetin treatment was to alter 

HUVEC energy metabolism. Increases in intracellular inosine and acetate levels 

were observed, whereas lactate (p<0.01), ATP (p<0.01) and NAD+ (p<0.01) levels 

were reduced with quercetin pre-treatment (Table 4.2B). A trend of decrease in 

pyruvate level with quercetin pre-treatment was observed, but it was not 

statistically significant.  
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Figure 4.1: Multivariate analysis for the effects of hyperglycaemia on HUVEC 

metabolome. A. Score plot of PC5 and PC10 from the PCA. 3 different treatment 

groups separated from each other. B. Loading plot for samples highlighting the 

buckets contributed to the PCA result.   
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Figure 4.2: Changes in metabolite concentrations after selected treatments are 

represented by 1H NMR spectra. A. 18 h treatment of confluent HUVECs with 

glucose (28.5 mM). Increase in lactate levels were observed compared basal 

glucose concentration. B. 2 h quercetin (10 μM) pre-treatment followed by 18 h 

glucose (28.5 mM) stimulation prevented high-glucose mediated lactate increases 

in HUVECs. C. & D. Statistical comparison of treatments using NMR intensity. 

**p<0.01, significant differences between two treatments by Mann-Whitney test. 
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Table 4.2: Statistically significant alterations in HUVEC metabolome after high-

glucose and quercetin treatments. A. Alterations in HUVEC metabolome with high-

glucose treatment. B. Effects of quercetin pre-treatment on metabolome of high-

glucose stimulated HUVECs. 

 

 

Unstimulated vs High-glucose (18 h); n=38 

Lactate  (p<0.01) 

Glutamate  (p<0.05) 

 

 

High-glucose (18 h) vs Quercetin (2 h)  + High-glucose (18 h); n=20 

Inosine  (p<0.001) 

Acetate  (p<0.05) 

Lactate  (p<0.01) 

ATP  (p<0.01) 

NAD
+
  (p<0.01) 

                                                   Pyruvate   

 

 

 

 

 

A. 

B. 
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4.4.2 Effects of TNF-α and Quercetin Treatments on HUVEC Metabolome 

Using 1H NMR 

In Chapter 2, TNF-α was shown to activate HUVECs to express cell adhesion 

molecules (CAMs), which are particularly important during inflammation. Quercetin 

prevented CAM expression after TNF-α stimulation depending on the durations of 

both pre-treatment with quercetin and stimulation with TNF-α. 2 h pre-treatment 

with quercetin (10 µM) was shown to inhibit both VCAM-1 and ICAM-1 by 

HUVECs after TNF-α stimulation (6 h) revealing anti-inflammatory properties of 

quercetin. Therefore, in the current study confluent HUVECs were stimulated with 

TNF-α (10 ng/ml) for 6 h to explore the alterations in HUVEC metabolome during 

the inflammatory state. Effects of quercetin on inflamed HUVECs were also 

investigated with 2 h pre-treatment with quercetin (10 µM) prior to stimulating cells 

for 6 h with TNF-α (10 ng/ml).  

After the treatments, cellular metabolism was quenched, metabolites were 

extracted and analysed using 1H NMR by following the protocol developed and 

tested in the previous chapter. A multivariate analysis was carried out for the data 

obtained for unstimulated cells, TNF-α stimulated (6 h) cells and quercetin pre-

treated (2h) cells that were further TNF-α stimulated (6 h) to reveal potential 

alterations in the HUVEC metabolome caused by these treatments (Figure 4.3). 

Score plots of PC4 and PC7 showed separation of these three treatment groups 

indicating that they had different effects on the HUVEC metabolome (Figure 4.3A). 

The contribution of individual buckets to the separation in the PCA plot were 

visualised using the corresponding loading plot (Figure 4.3B).  

According to the loading plot analysis pyruvate, NAD+, ATP, inosine, lactate, 

aspartate, asparagine and histidine were responsible for the separation observed 

in the PCA plot (Figure 4.3B). Furthermore, univariate analyses (Mann-Whitney 

test) were conducted for the buckets identified in the loading plot between 

unstimulated (n=17) and TNF-α stimulated (6 h, n=17), and also between TNF-α 

stimulated (6 h, n=11) and quercetin pre-treated samples (2 h quercetin + 6 h 

TNF-α, n=11) in order to confirm the significance of the changes observed. The 

Mann-Whitney tests confirmed that TNF-α (10 ng/ml) treatment caused an 

elevation in asparagine levels (p<0.05) and a trend of elevation in pyroglutamate 

levels (p=0.0679), whereas a reduction was observed in asparate levels (p<0.001) 
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(Table 4.3A). On the other hand, the only significant change observed with 

quercetin (10 µM) pre-treatment were reductions in pyruvate levels (p<0.05). 

However, a trend of elevation in inosine (p=0.0566) and a trend of decrease in 

aspartate (p=0.0569) and ATP levels were observed after loading plot and Mann-

Whitney tests for individual experiments were analysed (Table 4.3B).  
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Figure 4.3: Multivariate analysis for the effects of TNF-α on the HUVEC 

metabolome. A. Score plot of PC4 and PC7 from the PCA. 3 different treatment 

groups sepereated from each other. B. Loading plot for samples highlighting the 

buckets contributed to PCA result.   
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Table 4.3: Statistically significant alterations in HUVEC metabolome after TNF-α 

and quercetin treatments. A. Alterations in HUVEC metabolome with TNF-α 

treatment. B. Effects of quercetin pre-treatment on metabolome of TNF-α 

stimulated HUVECs. 

 

Unstimulated vs TNF-α (6 h); n=17 

Asparagine    (p<0.05) 

Pyroglutamate  (p=0.0679) 

Aspartate      (p<0.001) 

 

 

TNF-α vs  Quercetin (2 h) + TNF-α (6h); n=11 

Inosine    (p=0.0566) 

 Pyruvate (p<0.05) 

     Aspartate    (p=0.0569) 

                                                      ATP    

 

4.4.3 LC-MS Analysis of Changes in HUVEC Energy Metabolites 

NMR spectrometry results after high-glucose, TNF-α and quercetin treatments 

highlighted the alterations observed in HUVEC energy metabolism. Therefore, a 

multiple reaction-monitoring (MRM) based LC-MS analysis was used to measure 

both intracellular and extracellular concentrations for AMP, ADP, ATP, adenosine, 

inosine, xanthine and NAD+ since mass spectrometry analysis was expected to be 

substantially more sensitive measuring for metabolite concentrations compared to 

1H NMR. However, extracellular concentrations for only adenosine, inosine and 

xanthine could be measured due to low extracellular concentrations for AMP, 

ADP, ATP and NAD+. 

There were no significant changes in the concentrations of measured metabolites 

with high-glucose treatment (18 h) compared to unstimulated cells. However, the 

A. 

B. 
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results confirmed the significant increases in intracellular inosine (p<0.05) and 

decreases in intracellular ATP (p<0.01), ADP (p<0.05) and NAD+ (p<0.01) 

concentrations with quercetin pre-treatment (2 h) followed by high-glucose 

stimulation (18 h) (n=6) (Table 4.4). At the same time extracellular inosine 

(299.7±24.5% of high-glucose stimulated cells, p<0.001) concentrations were 

increased, whereas reductions were observed in xanthine (94.3±2.48% of high-

glucose stimulated cells, p<0.05) concentrations with quercetin pre-treatment 

followed by high-glucose treatment (n=6). Quercetin pre-treatment led to an 

insignificant increase in adenosine concentrations (107.1±4.76% of high-glucose 

stimulated cells). Refer to supplementary information for metabolite concentrations 

(page 201). 

TNF-α stimulation (6h) increased intracellular AMP concentrations (p<0.05) 

whereas it decreased adenosine (p<0.01) and NAD+ (p<0.01) concentrations 

compared to unstimulated HUVECs. On the other hand, quercetin pre-treatment (2 

h) followed by TNF-α stimulation (6 h) led to an elevation in inosine (p<0.001) and 

adenosine (p<0.05) concentrations and a reduction in ATP (p<0.05) 

concentrations (Table 4.5). The changes observed among the extracellular 

metabolites were increases in adenosine concentrations (132.6±43.4% of 

unstimulated cells) after TNF-α stimulation and quercetin pre-treatment prior to 

TNF-α stimulation (133.3±50.8% of unstimulated cells) and also increases in 

inosine concentrations (159.5±6.89% of TNF-α stimulated cells, p<0.01) after 

quercetin pre-treatment that was followed by TNF-α stimulation (n=6).  Refer to 

supplementary information for metabolite concentrations (page 202). 

Further, the minimum magnitude of the effect that was necessary to observe a 

significant difference in inosine concentrations after pre-treatment with quercetin 

prior to high-glucose stimulation of the cells was estimated by employing Equation 

4.1. This would allow a comparison of the precision of 1H NMR and HILIC mode 

LC-MS analyses since the inosine concentrations were measured using both NMR 

spectroscopy and LC-MS. The results revealed that a minimum of 33% alteration 

in inosine concentrations was necessary in order to observe a significant 

difference after the quercetin treatments when 20 sample replicates were analysed 

by 1H NMR spectroscopy, whereas 29% alteration in inosine concentrations was 
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necessary when 6 sample replicates were analysed by LC-MS indicating that LC-

MS provided more precise measurements. 

 

Table 4.4: Statistically significant alterations in HUVEC metabolome after high-

glucose and quercetin treatments.  

High-glucose (18 h) vs Quercetin (2 h)  + High-glucose (18 h); n=6 

Intracellular Extracellular 

Inosine (p<0.05) Inosine (p<0.01) 

ATP (p<0.01) Xanthine  (p<0.05) 

ADP (p<0.05)  

NAD
+
 (p<0.01)  

 

Table 4.5: Statistically significant alterations in HUVEC metabolome after TNF-α 

and quercetin treatments. 

TNF-α vs  Quercetin (2 h) + TNF-α (6h); n=6 

Intracellular Extracellular 

inosine (p<0.001) Inosine (p<0.01) 

adenosine (p<0.05)  

ATP (p<0.05)  
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4.4.4 Time-Dependent Effects of Quercetin  

The HUVEC metabolome was investigated post-addition of quercetin (10 µM) into 

the cell medium.  This was achieved by analysing HUVEC extracts obtained 2 h, 4 

h, 8 h and 20 h after treating cells with quercetin (10 µM) by NMR. Measurement 

of intracellular AMP, ADP, ATP, adenosine, inosine, xanthine and NAD+ 

concentrations were carried out also by mass-spectrometry in MRM mode. 

Pyroglutamate and lactate were the two metabolites whose concentrations were 

most significantly increased with time (Figures 4.4A and 4.4B, respectively). 

Aspartate and acetate concentrations (Figures 4.4C and 4.4D, respectively) were 

also increased post-quercetin treatment, but the proportion of increases for these 

metabolites after 4 h quercetin treatment were lower compared to the time-

dependent effect of quercetin on pyroglutamate and lactate concentrations. At the 

same time, a time-dependent decrease was observed in inosine concentrations 

(Figure 4.4E). 
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Figure 4.4: Quercetin treatments caused time-dependent changes in certain 

intracellular metabolites. A. Pyroglutamate concentrations were significantly 

increased with time. B. Lactate concentrations were significantly increased with 

time after 8 h. Aspartate (C.) and acetate (D.) concentrations were significantly 

increased after 4 h and there were no furher increase with time. E. Inosine 

concentrations were significantly decreased with time after 8 h. 
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LC-MS analyses (Table 4.6) revealed that intracellular ATP levels were 

significantly reduced after 8 h and 20 h quercetin treatments. Similarly, a 

significant reduction in ADP and NAD+ concentrations were observed after 20 h 

quercetin treatment.  8 h and 20 h quercetin treatments increased both AMP and 

inosine concentrations, and 2 h and 20 h treatments also led to a significant 

increase in adenosine concentrations. Xanthine was the only metabolite measured 

which was not affected by quercetin treatments (Table 4.6A). On the other hand, 2 

h quercetin treatment caused a significant increase in extracellular adenosine 

(p<0.01) concentrations (Table 4.6B). In parallel with the changes observed in 

intracellular inosine concentrations, quercetin time-dependently increased 

extracellular inosine concentrations. Finally, 20 h quercetin treatment caused a 

small but significant reduction in extracellular xanthine concentrations (P<0.01).   

Refer to supplementary information for metabolite concentrations (page 200).  
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Table 4.6: Effects of quercetin on energy metabolites in HUVECs.  Metabolite 

levels were measured using mass spectrometry MRM mode. Values in the table 

represent percentage of intracellular (A.) or extracellular (B.) metabolite levels 

after quercetin treatment for each time point compared with metabolite levels in 

untreated cells for each time point (n=6).   

 

 2 h 8 h 20 h 

ATP 179.7±89.5% 55.6±15.6% (p<0.01) 70.7±14.2% (p<0.01) 

ADP - - 71.57±21.0% (p<0.05) 

AMP 96.5±14.2% 153.6±40.0%  (p<0.05) 117.2±28.8%  

Adenosine 286.2±187.6% (p<0.05) 72.8±29.8% 162.4±65.2% (p<0.05) 

Inosine 122.4±22.1% 200.9±40.9% (p<0.01) 273.2±34.5% (p<0.01) 

Xanthine 100.0±17.01% 102.8±20.3 109.8±12.5% 

NAD+ - 90.6±10.4 75.5±3.2% (p<0.01) 

 

 

 2 h 8 h 20 h 

Adenosine 112.5±5.95% (p<0.01) 105.8±16.2% 103.4±15.6% 

Inosine 120.1±2.9% (p<0.01) 167.8±4.2% (p<0.01) 303.4±12.9% (p<0.01) 

Xanthine 102.9±4.7% 104.2±10.6% 93.8±1.0% (p<0.01) 

 

 

 

A. Intracellular metabolites 

B. Extracellular metabolites 



   C h a p t e r  4 | 126 

 

4.5 Discussion 

NMR and MS analysis results revealed that high-glucose, TNF-α and quercetin 

treatments affected mainly HUVEC energy metabolism which was reflected as 

alterations in energy metabolites such as intracellular ATP, ADP, AMP, adenosine, 

inosine, lactate, pyruvate, NAD+ and amino acids that feed into the Krebs cycle 

such as aspartate, asparagine and glutamate. Furthermore, it was shown that the 

effects of quercetin on certain metabolites were time-dependent.  

Hyperglycaemic conditions caused elevations in intracellular glutamate and lactate 

levels compared to unstimulated cells. On the other hand, quercetin pre-treatment 

prior to high-glucose stimulation repressed the increase in intracellular lactate 

levels keeping its concentration closer to the level of unstimulated cells. The other 

interesting changes observed with quercetin pre-treatment were increases in 

inosine concentrations and reductions in ATP level. It is most likely that the 

reductions in lactate and ATP concentrations, and increases in inosine 

concentrations were associated with the anti-inflammatory properties of quercetin.  

Physiological lactate concentrations in circulating blood are around 1-3 mM, 

whereas they are typically higher (around 5-15 mM) during tissue injury and 

inflammation (Sjöstrand et al., 2000, Ghani et al., 2004). In recent years, reports 

have been published showing that HUVECs produce cellular energy mainly via 

“aerobic glycolysis” yielding end-product lactate after utilization of glucose even in 

the presence of oxygen. This is in contrast to other non-malignant cell types, 

where the Krebs cycle provides auxiliary ATP production after glutamine utilization 

that supplies Krebs cycle intermediate α-ketoglutarate (Peters et al., 2009, Sweet 

et al., 2009). These reported observations are consistent with the elevation of 

intracellular lactate and glutamate levels reported here for HUVECs after high-

glucose treatment since the increased level of glycolytic substrate glucose would 

shift energy production towards glycolysis limiting glutamate utilization for the 

production of the Krebs cycle intermediate α-ketoglutarate. It has been reported 

that dibabetic patients have higher blood lactate concentrations (Messana et al., 

1998), and this is correlated (or associated with) with CVD risk (Crawford et al., 

2010). Therefore, increased extra- and intracellular concentrations of lactate may 

have important implications on endothelial cell function even though the increase 

observed in this study was only ≈15%.  
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Since the extracellular lactate concentration bears importance in this 

circumstance, extracellular lactate levels were measured in the spent media by 

NMR spectroscopy confirming the elevated lactate concentrations (≈10%, 

p<0.001, n=38) after high-glucose stimulation that were reduced by quercetin pre-

treatment (≈11%, p<0.01, n=20) in the present study. In a previous study, it was 

reported that isocapnic acidosis enhances HUVEC adhesiveness by increasing 

cellular adhesion molecule expression (Chen et al., 2011a). Therefore a potential 

reduction in pH caused by increased extracellular lactate concentrations has the 

potential to induce CAM expression in HUVECs. However, there was no increase 

observed in ICAM-1 and VCAM-1 after 5.5-28.5 mM glucose treatments for 18 

hours in the present study. Exogenous lactate treatment was shown to induce 

vascular endothelial growth factor (VEGF) and vascular endothelial growth factor 

receptor 2 (VEGFR2) protein productions by HUVECs (Kumar et al., 2007, Beckert 

et al., 2006, Hunt et al., 2007). In contrast with other growth factors, VEGF was 

shown to induce expression of inflammatory genes including VCAM-1, ICAM-1, E-

selectin and IL-8 in HUVECs (Schweighofer et al., 2009, Weston et al., 2002). 

Therefore, a potential increase in VEGF concentration due to increased lactate 

concentrations may have pro-atherogenic effects on HUVECs. Beckert and co-

workers reported that treating HUVECs with lactate for 24 hours dose-dependently 

increased VEGF protein levels indirectly leading to an increase in HUVEC 

migration (Beckert et al., 2006). In parallel, increased intracellular lactate induced 

NF-κB activation leading to IL-8 production that stimulated HUVEC migration 

(Végran et al., 2011).  

Vegran and co-workers showed that elevated lactate concentrations can also 

trigger reactive oxygen species (ROS) production by HUVECs. Cytosolic inactive 

NF-қB translocates into the nucleus of the cells regulating gene transcription when 

it is activated by various stimuli. Hence, increased ROS levels due to elevated 

lactate levels led to NF-қB activation through IқBα phosphorylation which further 

stimulated IL-8 production (Vegran et al., 2011). However, the reported effects of 

glucose on VEGF expression are not consistent. Several studies reported variable 

results depending on the cell type and experimental conditions (Qian et al., 2011, 

Yang et al., 2008). Qian and co-workers reported an increase in VEGF protein 

levels in human microvascular endothelial cells after 48 h high-glucose (30 mM) 

treatment (Qian et. al., 2011). On the other hand, Yang and co-workers reported 
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that high-glucose (25 mM) treatment of HUVECs for 72 h significantly reduced 

VEGF expression at both mRNA and protein levels, and increased cellular 

apoptosis. However, spiking the medium with 20 ng/ml VEGF protected the cells 

against apoptosis (Yang et al., 2008).  

High-glucose was previously reported to increase intracellular lactate 

concentration and this was related to decreased flux of pyruvate to the Krebs cycle 

(Selva et al., 1996). They showed also that thiamine (vitamin B1) overcame the 

effect of glucose reducing the lactate concentration. The authors suggested that 

thiamin achieved this either by favouring pyruvate flux towards the Krebs cycle or 

increased glucose 6-phosphate flux towards the pentose-phospate pathway. 

However, they did not provide data in support of these mechanisms. On the other 

hand, a more recent study reported reductions in intracellular lactate 

concentrations in AGE1.HN cells induced by quercetin treatment (10 μM) (Niklas 

et al., 2011). Observations of increased pyruvate flux into mitochondria also 

indicated that the cells might become less reliant on the glycolytic pathway and 

switch to the Krebs cycle for energy production after quercetin treatment. Similarly, 

the present report shows an increased intracellular lactate concentration with high-

glucose treatment (28.5 mM), which was reduced ≈15% (p<0.01) by quercetin pre-

treatment (10 μM). The loading plot (Figure 4.1B) shows that pyruvate had 

contributed to the separation of treatments from each other. Although it was not 

statistically significant, reductions in intracellular pyruvate (11.5%) concentrations 

with quercetin pre-treatment supported the hypothesis that quercetin directs 

pyruvate into the Krebs cycle to be used up in HUVEC energy production. 

Likewise, intracellular pyruvate levels were significantly reduced (p<0.05) also with 

quercetin pre-treatment (2 h) that was followed by TNF-α stimulation (6 h) of 

HUVECs. These data were further supported with the significant reduction in 

intracellular NAD+ levels after quercetin pre-treatment followed by high-glucose 

stimulation. Reductions in intracellular NAD+ concentrations indicated that NAD+ 

was being reduced to NADH in the Krebs cycle which was likely to be activated 

after quercetin pre-treatment. Incubating HUVECs with medium containing 

quercetin (10 µM) for 20 h also led to a reduction (24.5%, p<0.01) in intracellular 

NAD+ concentrations. Therefore, the observation of increased extra- and 

intracellular lactate concentrations, and their reduction with quercetin pre-

treatment is likely to indicate both anti-atherogenic and anti-carcinogenic (Warburg 
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effect- cancer cells requires increased aerobic glycolysis to produce energy) 

properties of quercetin due to its effects on HUVEC primary metabolism.  

The other significant alterations were observed primarily in the HUVEC purine 

metabolism. After quercetin treatments significant increases in intracellular 

adenosine, inosine and AMP concentrations and reductions in intracellular ATP 

and ADP concentrations were observed. Likewise, increases in extracellular 

inosine and adenosine concentrations were observed after quercetin treatments. 

Inosine and adenosine possess anti-inflammatory functions whereas ATP and 

ADP are pro-inflammatory metabolites. Also, quercetin pre-treatment prior to high-

glucose stimulation caused increases in both intra- and extracellular inosine 

concentrations and reductions in intracellular ATP and ADP concentrations. On 

the other hand, after TNF-α stimulation of HUVECs reductions in intracellular 

NAD+ and adenosine concentrations were observed. Nevertheless, quercetin pre-

treatment prior to TNF-α caused elevations in intra- and extracellular inosine and 

intracellular adenosine concentrations, and reductions in intracellular ATP 

concentrations.  

Previously published reports indicated that inflammatory stimuli including TNF-α 

affect cellular NAD+ metabolism, and this effect is cell-type dependent. IFN-γ 

increased intracellular NAD+ concentrations in RAW264.7 cells (Grant et al., 1999) 

whereas a mixture of IL-1β/IFN-γ/TNF-α and TNF-α alone decreased NAD+ 

concentrations in Caco-2 cells (Khan et al., 2002) and macrophages (Iqbal and 

Zaidi, 2006), respectively.  In the present study, TNF-α (10 ng/ml for 6 h) caused a 

significant decrease (p<0.01) in intracellular NAD+ concentrations. Furthermore, it 

was shown that restoring NAD+ concentrations diminishes the inflammation (Osar 

et al., 2004). In the present study, quercetin did not restore NAD+ concentrations 

most likely due to its effect of enhancing the Krebs cycle activity caused increased 

utilization of NAD+ reducing it to NADH. Quercetin treatment alone and quercetin 

pre-treatment followed by high-glucose stimulation led to time-dependent 

reductions in intracellular NAD+ concentrations in HUVECs. Energy accumulation 

due to excess cellular fuel have been linked to a decrease in cellular longevity due 

to elevated ROS levels and disturbed cellular metabolism (Finkel and Holbrook, 

2000). These changes were related to high-glucose concentrations in several 

studies. High-glucose concentrations were reported to reduce the activity of SIRT1 
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in endothelial cells (Mortuza et al., 2013, Zheng et al., 2012).  SIRT1 is a nuclear 

member of the sirtuin family. Sirtuin protein family deacetylates proteins using 

NAD+ as a substrate, and possess important functions to regulate cellular 

longevity and metabolism (Adams and Klaidman, 2007, Taylor et al., 2008). 

Previously published reports suggested elevation in SIRT1 activity due to the 

effects of several polyphenols including resveratrol (Adams and Klaidman, 2007, 

Chung et al., 2010, Gertz et al., 2012). However, De Bour and co-workers reported 

that quercetin did not have an effect on SIRT1 activity in HT29 (colon carcinoma 

cell line) cells although quercetin increased the recombinant SIRT1 activity. The 

authors related that to the instability of the polyphenol in cell culture medium since 

they observed a small but not significant increase in the SIRT1 activity when they 

tested the effect of the main quercetin metabolite, quercetin 3-O-glucuronide (Q 3-

O-GlcA) (de Boer et al., 2006). Nevertheless, the present study showed that 

quercetin was metabolized into quercetin 3-O-sulfate and methyhlated quercetin 

(refer to chapter 5), which may still bear the capacity to induce SIRT1 activity 

explaining the decreases in intracellular NAD+ concentrations observed after 

quercetin treatments.  

Endothelial cell damage bears great importance during early events of acute 

inflammation. Elevated ATP concentrations were observed at the site of 

inflammation (Verghese et al., 1996). Budin and Burnstock worked with HUVECs 

demonstrating an elevation in extracellular ATP concentrations during LPS 

induced acute inflammation of HUVECs (Bodin and Burnstock, 1998). ATP 

contributes to the inflammation process in several different ways. After treating 

human microvascular endothelial cells with hydrolysis resistant ATP (adenosine 5’-

O-(3-thiotriphosphate), elevations in the release of pro-inflammatory agents IL-1, 

IL-8, monocyte chemoattractant protein-1 and growth regulated oncogene α 

together with the increases in the surface expression of ICAM-1 by the cells were 

observed (Seiffert et al., 2006).  ATP also induced VCAM-1 expression in human 

coronary artery endothelial cells (HCAEC) enhancing adhesion of monocytic U937 

cells to HCAECs indicating that the increased ATP concentrations are likely to be 

important in the monocyte accumulation at atherosclerotic lesions.  

ATP degradation is a constant process. CD39 (ectonucleoside triphosphate 

diphosphorylase 1, ENTPD1) and CD73 (5’-nucleotidase, ecto-5’-NT) are two 
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important enzymes present on cell membranes which sequentially convert ATP, 

ADP and AMP into adenosine (refer to Figure 5.1 for purine metabolism). CD39 

hydrolyses ATP and ADP into AMP. AMP is then further hydrolyzed to adenosine 

by CD73. In several cell types including HUVECs, extracellular adenosine is 

cleared up and converted to inosine by adenosine deaminase (ecto-ADA) 

(Yegutkin, 2008b). Likewise, ADP is another metabolite with the potent pro-

inflammatory activities. ADP has been known to be a regulator of platelet reactivity 

in vascular injury sites (Woulfe et al., 2001). Birk and co-workers showed that ADP 

but not ATP bears pro-aggregatory activity (Birk et al., 2002). However, they 

observed inhibition of platelet aggregation with ATP treatment in plasma due to the 

direct hydrolysis of ATP to AMP without yielding ADP. AMP is further hydrolysed 

to adenosine, and it is a potent inhibitor of platelet aggregation. Therefore, in the 

present study, the reductions observed in ATP and ADP concentrations after 

quercetin treatments are associated with the anti-inflammatory activities of 

quercetin on the endhotelial cell metabolism.  

Adenosine is a potent inhibitor of the inflammatory process. Extracellular 

adenosine concentrations are responsible for its anti-inflammatory properties as its 

effects are initiated by the activation of G-protein-coupled P1 purinergic receptors 

(A2A/2BAR) that activate intracellular cAMP production leading to a range of effects 

(Riksen et al., 2003) (Figure 4.5). For example, extracellular adenosine was 

reported to reduce the expression of VCAM-1 and E-selectin (Bouma et al., 1996). 

HUVECs were stimulated with TNF-α (0.01 ng/ml) for 5 h to induce E-selectin and 

VCAM-1 expression, and 20 h to induce ICAM-1 expression that provided maximal 

expression of these adhesion molecules on HUVEC surface. The presence of 

adenosine (250 µM) during the stimulation period caused inhibition of E-selectin 

and VCAM-1 expression but not ICAM-1 expression by HUVECs. Majumdar and 

Aggarwal investigated the effects of adenosine on NF-κB activation using several 

different agents to activate various cell types (Majumdar and Aggarwal, 2003). 

They revealed that the adenosine pre-treatment inhibited NF-κB activation after 

inflammatory stimuli by TNF-α in human monocytic cell line KBM-5, lymphoid cells 

(Jurkat), epithelial cells (HeLa), and embryonic kidney cells demonstrating that the 

effect of adenosine was not cell-type dependent. Nevertheless, adenosine did not 

inhibit NF-κB activation induced by phorbol ester, LPS, hydrogen peroxide, 

okadaic acid and ceramide in KBM-5 cells showing selectivity for blocking TNF-α 
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induced signal transduction pathway. Richard and co-workers assessed the 

effects of adenosine on endothelium permeability by measuring Even’s dye-

labeled albumin clearance from cell culture medium. Adenosine enhanced both 

basal endothelial barrier function and prevented increase in permeability due to 

the oxidant stimuli after xanthine and xanthine oxidase addition into cellular 

medium caused oxygen radical production (Richard et al., 1998).  

 

 

 

 

 

 

 

 

 

Figure 4.5: Activation of adenosine receptors by adenosine leads to anti-

inflammatory responses 

 

On the other hand, inosine has been known as an inert end product in purine 

metabolism for a long time. However, recent studies showed that inosine may 

exert anti-inflammatory effects potentially through adenosine A2 receptors (Liaudet 

et al., 2002, Hasko et al., 2000, Lapa et al., 2012, Haskó et al., 2004).  Hasko and 

co-workers assessed the effects of inosine both in vitro on macrophages and 

spleen cells, and in vivo in a mouse model (Hasko et al., 2000). The in vitro study 

reported that inosine was a potent inhibitor of pro-inflammatory cytokine 

production including TNF-α, IL-1, IL-12, macrophage-inflammatory protein-1α, and 

IFN-γ, but not anti-inflammatory IL-10 through the activation of adenosine A1 and A2 

subtype receptors. These data were further supported by the results obtained after 

injecting mice with inosine which was followed by challenging the animals with 
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LPS. In parallel with afore mentioned in vitro study, they observed inhibition in the 

production of TNF-α, IL-1, IL-12, macrophage-inflammatory protein-1α, and IFN-γ 

and additionally an increase in the production of anti-inflammatory IL-10 that 

indicated potent anti-inflammatory characteristics of the metabolite inosine. In a 

more recent study, Lapa and co-workers demonstrated that adenosine and inosine 

act synergistically to prevent acute inflammatory responses in carrageenan-

induced pleurisy in a mouse model most likely through the activation of adenosine 

A2 subtype receptor and the inhibition of inflammatory cytokine production or 

release (Lapa et al., 2012). Therefore, observation of increased adenosine and 

inosine concentrations after quercetin treatments in the present study provided 

evidence to the quercetin associated anti-inflammatory responses by endothelial 

cells.  

It was previously reported that hyperglycaemic conditions (25 mM glucose, 24 h) 

caused increases in extracellular adenosine concentrations in endothelial cells 

(not observed in the present study) (Puebla et al., 2008). Likewise, HUVECs from 

gestational diabetes pregnancies were shown to have higher concentrations of 

extracellular adenosine due to the reduced transport (San Martín and Sobrevia, 

2006). Extracellular adenosine concentrations in HUVECs from normal 

pregnancies were measured as 0.05 μM whereas extracellular adenosine 

concentrations for HUVECs from diabetic pregnancies were measured as 2.7 μM 

(Vásquez et al., 2004). The difference is likely to be an anti-inflammatory response 

in diabetic patients since adenosine was shown to increase L-arginine level 

followed by the increased NO production. However, increased NO due to the 

elevated adenosine concentrations during gestational diabetes may affect the 

fetus. An impaired nutrient transport to fetus due to vascular endothelial  

dysfunction may have adverse effects on “fetal programming” leading to increased 

risk of CVD and diabetes in the later life of progeny (Yajnik et al., 2007). Hence, 

possible elevations in extracellular adenosine concentrations after consumption of 

quercetin rich food or supplement may have different consequences in diabetic 

patients and in diabetic pregnancies. 

In conclusion, after the effects of inflammatory conditions and quercetin on 

HUVEC metabolome were explored, several alterations in HUVEC metabolome 

were revealed which have biological significances that may be explained with 
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several different mechanisms. For example, increases in intra- and extracellular 

lactate concentrations with high-glucose treatments reflect a pro-inflammatory 

activity in HUVEC metabolism in response to the stimuli, whereas quercetin pre-

treatment attenuated these responses by preventing the elevation in lactate 

concentrations as well as reducing the concentrations of pro-inflammatory 

metabolites ATP and ADP and in parallel increasing the concentrations of anti-

inflammatory metabolites adenosine and inosine. The alterations in HUVEC 

metalome were observed mainly in the energy metabolism. However, the changes 

in lactate and pyruvate concentrations were most likely to be mediated through the 

effects of quercetin on glycolysis and the Krebs cycle, whereas the changes 

observed in ATP, ADP, AMP, adenosine and xanthine concentrations were most 

likely to be mediated through the effects of quercetin on the enzymes which are 

involved in the purine metabolism. Therefore, it was hypothesized that the 

quercetin-induced changes in metabolism were due to interactions between 

quercetin or its metabolites and the enzymes involved in energy metabolism. This 

hypothesis was tested in the next chapter by measuring the effects of quercetin 

and its metabolites on the activities of the major enzymes involved in purine 

metabolism, in tubo and using intact HUVECs.   
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CHAPTER 5: How does quercetin exert its anti-

inflammatory effects? 

5.1 Abstract 

Background: In the previous chapter quercetin was shown to reduce the 

concentrations of pro-inflammatory metabolites ATP and ADP and in parallel 

increase the concentrations of anti-inflammatory metabolites adenosine and 

inosine. Purine nucleotides and their metabolites act as the signalling molecules 

yielding various biological responses via their specific receptors. ATP and ADP 

induce pro-inflammatory responses, whereas adenosine has been shown to have 

extensive anti-inflammatory potential. Therefore, clearance of ATP and ADP from 

extracellular milieu is a critical process due to the pro-inflammatory effects of these 

two molecules. There are 5 major enzymes involved in the conversion of ATP and 

ADP sequentially to uric acid which is the end-product of purine metabolism. 

Assessing the effects of quercetin on the activities of these enzymes and 

determining the concentration of quercetin inside the cells and whether it is 

metabolised by HUVECs will provide valuable data towards the explanation of the 

alterations observed in HUVEC energy metabolism after quercetin treatments. 

Aim: To investigate the potential for quercetin and for its metabolites to modulate 

the activities of a series of enzymes involved in purine metabolism in HUVECS. 

Approaches/Methods: In order to determine the concentration of quercetin and 

whether it was metabolised, cell and media samples from quercetin-treated 

HUVECs were analysed using LC-DAD and LC-MS. Single HUVEC volume was 

estimated using a flow cytometric method in order to calculate intracellular 

quercetin concentrations after the treatments. The effects of quercetin and 

individual conjugates were tested on the activities of CD39/ENTPD1, CD73/5’-

nucleotidase, adenosine deaminase (ADA), purine nucleoside phosphorylase 

(PNP) and xanthine oxidase using commercial pure enzymes, HUVEC protein 

extracts in tubo and using intact HUVECs.  

Results: After 10 µM quercetin treatments for 2 h, 8 h or 20 h, quercetin was 

quickly taken up by HUVECs and metabolized into quercetin, quercetin 3’-O-

sulfate (Q 3’-O-S), methylquercetin and 2 other metabolites which could not be 
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precisely identified. Quercetin aglycone and methylquercetin were present inside 

the cells up to 8 hours, whereas no flavonols were detected inside the cells after 

20 h quercetin treatment. On the other hand, quercetin, methylquercetin and 

putative quercetin and methylquercetin dimers were identified in the culture media 

after 2 h, 8 h and 20 h quercetin treatments. Quercetin aglycone was shown to be 

a strong inhibitor of all the 5 purine metabolism enzymes when its effects on 

recombinant enzymes were tested (IC50= 0.574 - 55.6 µM) whereas its conjugates 

had different effects on the activities of the enzymes depending on the position of 

the conjugation and nature of the conjugated chemical group. However, neither 

quercetin nor its metabolites inhibited PNP and CD39 activity in the HUVEC 

extracts or intact HUVECs respectively, and quercetin was only a weak inhibitor of 

the CD73 activity in intact HUVECs.  

Conclusions: The present study assisted to explain the anti-inflammatory 

alterations observed in HUVEC energy metabolism after quercetin treatments. The 

most significant changes observed were the reductions in ATP and ADP and the 

elevations observed in AMP, adenosine and inosine concentrations. The inhibition 

of ADA and CD73 activities with physiological cellular concentrations was in 

keeping with the elevations observed in adenosine and AMP levels.  At the same 

time, CD39 and PNP activities were not affected indicating that the reductions in 

ATP and elevations in inosine levels were likely to be due to the altered levels of 

CD39 and PNP proteins after quercetin treatments, respectively.  
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5.2 Introduction 

In recent years, the importance of the purinergic signalling cascade has been 

emphasised by several studies that led to the identification of particular targets for 

the development of new therapeutic applications in inflammation (Yegutkin, 2008a, 

Burnstock, 2002). Purine nucleotides and their metabolites act as the signalling 

molecules yielding various biological responses via their specific receptors. ATP 

and ADP modulate their effects through P2 receptors whereas adenosine 

activates P1 receptors (Ralevic and Burnstock, 1998, Bours et al., 2006). ATP was 

shown to induce cell adhesion molecule expression (Goepfert et al., 2000), and 

release of cytokines and chemokines (Seiffert et al., 2006) whereas ADP was 

shown to regulate platelet reactivity (Woulfe et al., 2001, Birk et al., 2002) which 

were explained in detail in the previous chapter. Therefore, clearance of ATP and 

ADP from the extracellular milieu is a critical process due to the pro-inflammatory 

effects of these two molecules, and that is achieved by the activities of the ecto-

enzymes present on the cell surface (Bours et al., 2006).  

Figure 5.1 shows that CD39 (ectonucleoside triphosphate diphosphohydrolase 1, 

E-NTPDase1) and CD73 (5’-nucleotidase, ecto-5’-NT) act sequentially converting 

ATP and ADP to AMP and then AMP to adenosine. CD73 has both membrane 

bound and soluble forms inside the cells (Antonioli et al., 2013). Goepfert and    

co-workers had transfected HUVECs with an adenoviral vector, rAdCD39, to 

increase the CD39 activity in the cells (Goepfert et al., 2000). In parallel, they 

showed that increased CD39 activity reduced ATP-induced surface expression of 

E-selectin by HUVECs. On the other hand, Grunewald and Ridley assessed the 

effects of CD73 depletion in HUVECs. According to the results they had observed, 

CD73 depletion in HUVECs diminished extracellular adenosine levels showing that 

CD73 activity is necessary to produce extracellular adenosine by HUVECs 

(Grunewald and Ridley, 2010). They also observed increased surface expression 

of ICAM-1, VCAM-1 and E-selectin by HUVECs through the activation of NF-κβ 

pathway. In contrast to the pro-inflammatory activities of ATP and ADP, adenosine 

had been shown to possess anti-inflammatory potential modulated through 

adenosine receptors (Riksen et al., 2003). Adenosine deaminase (ADA) which 

converts adenosine irreversibly to inosine regulates the activation of the adenosine 

receptors by eliminating the extracellular adenosine (Cristalli et al., 2001). ADA 
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protein had been shown to carry out its activities both inside the cells as a soluble 

enzyme and in the extracellular milieu bound to surface receptor CD26 (Eltzschig 

et al., 2006). IMP hydrolysis by 5’-NT is another source of inosine. Inosine is 

converted to hypoxanthine by the activity of the PNP enzyme. Hypoxanthine is 

further converted to xanthine, and then xanthine is converted to uric acid. Both of 

the reactions are catalysed by xanthine oxidase, and uric acid is the end-product 

of purine metabolism.  

 

Figure 5.1: Major enzymes involved in purine nucleotide/nucleoside metabolism. 

ATP and ADP are sequentially converted to AMP, adenosine, inosine, 

hypoxantine, xanthine and finally to uric acid. Extracellular adenosine activates 

adenosine receptors initiating anti-inflammatory activities. CD39: ectonucleoside 

triphosphate diphosphohydrolase 1 (E-NTPDase1), CD73: 5’-nucleotidase (ecto-

5’-NT), 5’-NT: 5’-nucleotidase, AKA: adenosine kinase, ADA: adenosine 

deaminase, PNP: purine nucleoside phosphorylase. 
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Dietary flavonoids are found in glycosylated forms in plants and food and 

beverages (Manach et al., 2004), and they are deglycosylated during absorption 

from the gut (Németh et al., 2003). It was concluded that quercetin glycosylates 

are further metabolized into different forms by the time they reach the systemic 

circulation as the quercetin aglycone has not been detected in human plasma 

(Manach et al., 2005). Mullen and co-workers fed volunteers with lightly fried 

onions and the analysis showed that quercetin was sulfated, glucuronidated or 

methylated by the time it reached the systemic circulation (Mullen et al., 2006). 

Quercetin 3’-O-sulfate (Q 3’-O-S), quercetin 3-O-glucuronide (Q 3-O-GlcA) and 3’-

methylquercetin 3-O-glucuronide (IsoR 3-O-GlcA) were the major quercetin 

metabolites identified in the plasma of volunteers. Nevertheless, the fate of 

quercetin in HUVECs is unknown.  

According to the results obtained in Chapter 4 (metabolomics study), it was 

hypothesized that the quercetin-induced changes in the HUVEC metabolism were 

due to interactions between quercetin and the enzymes involved in energy 

metabolism. This hypothesis was tested in this chapter by investigating the ability 

of quercetin to interact with the enzymes involved in purine metabolism. 

Furthermore, the fate of quercetin inside the HUVECs was investigated in order to 

address important related questions- do HUVECs metabolise quercetin, and do its 

metabolites accumulate in the cells?  
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5.3 Materials & Methods 

5.3.1 Materials 

Isorhamnetin, tamarixetin, rhamnetin and quercetin 3-O-sulfate were purchased 

from Extrasynthase (Genay, France). Rutin and tetramisole HCl were purchased 

from Sigma-Aldrich (Poole, UK). Quercetin 3’-O-sulfate, quercetin 3-glucuronide, 

quercetin 3’-glucuronide, isorhamnetin 3-glucuronide were chemically synthesized 

by Dr Paul Needs in the Kroon Lab using a previously published method (Needs 

and Kroon, 2006). 7-Methyl-6-thioguanosine was purchased from Carbosynth Ltd, 

UK. Biomol Green™ Reagent was purchased from Enzo Life Sciences UK LTD. All 

the other chemicals used were purchased from Sigma-Aldrich (Poole, UK). 

 

5.3.2 Identification of Flavonol Metabolites in the Intracellular Extracts and 

the Culture Medium Samples 

5.3.2.1 Quercetin Treatments and Harvesting Cells 

HUVECs were grown either on 6-well plates or 10-cm dishes until they reached 

confluency. Then, the culture media were replaced with quercetin (10 µM) 

containing media for 2 h, 8 h or 20 h. At the end of the treatments, 950 µl of media 

aliquots were removed from the plates and added into Eppendorf tubes containing 

25 µl HPLC grade acetonitrile and 25 µl acetic acid in order to lower the pH and 

preserve flavonol metabolites. Consequently, the media were removed from the 

plates and the cells were washed three times with phosphate buffered saline 

(room temperature). Cells were scraped free. 450 µl MilliQ water was then added 

onto the cells and the resulting cell suspension was pipetted into Eppendorf tubes 

containing 25 µl HPLC grade acetonitrile and 25 µl acetic acid. Samples were 

stored at -20ºC when necessary. 

 

5.3.2.2 Sample Preparation 

Media samples were mixed using a bench top vortex, and centrifuged at 13,000 

rpm for 10 min at 4ºC using a bench top centrifuge (Thermo Scientific™ Heraeus™ 

Fresco 17). Supernatants were removed and pipetted into HPLC vials for analysis 
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using either LC-DAD or LC-MS. Intracellular extracts were mixed using a bench 

top vortex, and ultra-sonicated in a sonic water bath (Ultrawave) for 10 min. This 

was followed by centrifuging samples in the microfuge at 13.000 rpm for 10 min at 

4ºC. Supernatants were removed and pipetted into HPLC vials for analysis with 

either LC-DAD or LC-MS. 

 

5.3.2.3 LC-DAD and LC-MS Analyses 

Reverse phase HPLC (Agilent HP1100 system, Agilent Technologies, Waldbronn, 

Germany) with UV diode array detection was used for routine analyses and 

quantitation. During chromatographic runs, autosampler temperature was set to 

4ºC, temperature of the column compartment was 30ºC and injection volume was 

20-100 µl. Metabolites were separated using a Phenomenex® Luna® 5-C18(2) 

(250 × 4.60 mm, 5 µm) column at a flow rate of 1 ml/min. Mobile phases were (A) 

50 mM ammonium acetate in H2O (adjusted to pH 5) and (B) 2% tetrahydrofuran 

(THF) and 0.1% acetic acid in acetonitrile. Gradient elution was performed as in 

Table 5.1. 

Table 5.1: Gradient profile of mobile phase for quercetin metabolite detection. 

Time (min) A % B % 

0 83 17 

2 83 17 

7 75 25 

15 65 35 

20 50 50 

25 0 100 

30 0 100 

35 83 17 

50 83 17 
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An Agilent 1100 HPLC system coupled to an Agilent LC/MSD SL spectrometer 

was used for LC-MS analyses. The same gradient elution (Table 5.1) was used for 

the LC-MS analyses. Flavonol metabolites were monitored using MS in full scan in 

both positive and negative ion modes with electrospray ionisation. 

Individual standards for quercetin, isorhamnetin, rhamnetin, tamarixetin, quercetin 

3’ -O-sulfate (Q 3’-O-S), quercetin 3 -O-sulfate (Q 3-O-S), quercetin 3’-glucuronide 

(Q 3’-O-GlcA), quercetin 3-glucuronide (Q 3-O-GlcA), isorhamnetin 3-glucuronide 

(IsoR 3’GlucA) were analysed using HPLC and LC-MS methods in order to help 

the metabolite identification process and for quantification.  

 

5.3.2.4 Solid Phase Extraction (SPE) 

The aliquoted culture medium sample was centrifuged, and then the supernatant 

was pumped through a C18 SPE cartridge (Waters Sep-Pak Cartidges Vac C18 

3cc) which had been activated by flushing with 4 ml of methanol. Sample was run 

through the cartridge in 3 ml of acidified water. Another 3 ml of acidified water was 

used to flush the cartridge to remove all the remaining traces of medium, and the 

flavonol metabolites were then eluted with 3 ml of acidified methanol. The sample 

dried until 100-200 µl of sample was left using a centrifugal evaporator placed in 

HPLC vial for MS analysis. 

 

5.3.2.5 Chemical Synthesis of Quercetin Dimer 

The procedure for the quercetin dimer synthesis procedure was adopted from 

those of Gulsen et al. (2007) and Pham et al. (2012). It involved the oxidation of 

quercetin with potassium ferricyanide. Quercetin (340 mg) was dissolved in 80 ml 

of acetonitrile, and mixed with a 20 ml solution of 50 mM potassium ferricyanide 

and 50 mM sodium carbonate over 30 min. The solution was stirred for 3 h in the 

dark. Concentrated hydrochloric acid was used to adjust the pH to 2. The solution 

was then concentrated under vacuum to remove the acetonitrile which was 

followed by extraction four times with 40 ml of ethyl acetate:diethyl ether (8:2 v/v). 

The combined extracts were dried using magnesium sulphate (MgSO4). Then 
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remaining solvents were removed using a rotary evaporator in vacuo (Butchi 

Rotavapor R-20 coupled to Butchi Vacuum Pupm V-700). 

 

5.3.2.6 Prep-HPLC for Purifying Quercetin Dimer 

The final product of the quercetin dimer synthesis was purified using Gilson prep-

HPLC. The sample was run through a Phenomenex® Prodigy™ ODS3 guard 

column (60 × 21.30 mm, 5 µm, 100 Å) connected to   Phenomenex® Prodigy™ 

ODS3  column (250 × 21.2 mm, 5 µm, 100 Å), and fractions were collected using a 

fraction collector (Gilson Model 120). Collected fractions were analysed by LC-MS 

and the fractions with the desired quercetin dimer were pooled. Solvents in the 

pooled samples were removed using the rotary evaporator in vacuo. 

 

5.3.2.7 HUVEC Volume Determination by Flow Cytometry  

HUVECs were cultured in 6-well plates at 3500 cells/cm2
 using basal medium (5.5 

mM glucose). After the treatments, confluent monolayers were washed with PBS 

and harvested using Trypsin (0.025%)/EDTA (0.01%) or 2 mM EDTA only. Cells 

were re-suspended in PBS (pH 7.4) containing 0.1% BSA and propidium iodide 

(PI) (2 µg/ml).  Flow cytometric analysis was carried out using an iCyt Eclipse EC 

800 flow cytometer (Sony Biotechnology Inc.) with 405 nm, 488 nm, 561 nm and 

642 nm excitation lasers available. The flow rate was adjusted to 10 μl/min and 

data were acquired for 2.5 min. The FL6 detector was used for electric volume 

determination and the FL3 detector with a 780/40 filter was used to detect PI 

stained cells. The PMT setting was 6 and it was 1 for electric volume. The 

threshold was set on side scatter (SS). 

 

5.3.2.8 Enzymatic Assays 

Adenosine Deaminase (ADA) 

The effects of quercetin and its metabolites on adenosine deaminase activity were 

tested using both commercial pure enzymes and crude HUVEC protein extracts. 

Adenosine deaminase converts the substrate adenosine to inosine (Figure 5.2).  
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Adenosine deaminase
NH3

Adenosine InosineH2O  

Figure 5.2: Adenosine deaminase catalyzes the conversion of adenosine to 

inosine. 

The enzymatic activity and the inhibition studies for recombinant human adenosine 

deaminase expressed in E. coli (Sigma-Aldrich®) were performed using the 

continuous spectrophotometric rate determination procedure adapted and 

modified from the procedure Sigma-Aldrich® provided. Adenosine absorbs UV-light 

at 265 nm and, in this assay the reduction in adenosine levels in the experimental 

mix which was reflected as a reduction in the absorbance was measured using a 

spectrophotometer (UvikonXS). The experimental mixture, containing substrate 

solution (1.35 mM adenosine solution, pH 7.0 at 25°C), reaction buffer (100 mM 

potassium phosphate buffer, pH 7.5 at 25°C) and H2O was incubated in a 3 ml 

quartz cuvette at 37°C for 1 min to equilibrate the temperature. The reaction was 

initiated by the addition of the adenosine deaminase enzyme solution (0.20-0.40 

unit/ml) making a reaction mix which contained 53.3 mM potassium phosphate, 

0.045 mM adenosine and 0.02-0.04 unit of adenosine deaminase (final 

concentrations). In the inhibition studies quercetin or its metabolites were included 

in the experimental mix. Quercetin and isorhamnetin were dissolved in DMSO, and 

the maximum amount of DMSO in the experimental mix was 0.16% (v/v) and 2.2% 

(v/v) respectively. Decrease in absorbance at 265 nm was measured at 30 s 

intervals over 5 min. In the blanks, adenosine deaminase was replaced with 

bovine serum albumin (BSA), and the absorbance values subtracted from 

experimental readings. Results were plotted as a graph representing adenosine 

consumption by the enzyme per unit time. 

Adenosine deaminase activity was also tested using HUVEC protein extracts.  The 

confluent HUVECs were washed three-times with PBS (room temperature). The 

cells were then incubated on dry ice for 15 min. 400 µl MilliQ water was added 

onto the cells, and cell membranes were disrupted using a cell scraper. The 

solution was transferred into Eppendorf tubes, and centrifuged at 4ºC for 15 min. 

The supernatant was removed, protein concentration in the extract was 

determined by bicinchoninic acid (BCA) assay and an extract containing 30 µg 

protein used to replace the pure enzyme in the experimental mix to determine 
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enzymatic adenosine deaminase activity, and inhibitory effects of quercetin or its 

metabolites.  

 

5.3.2.9 Xanthine Oxidase 

The effects of quercetin and its metabolites on xanthine oxidase activity were 

tested using a commercial pure enzyme. The enzymatic activity and inhibition 

studies for the xanthine oxidase from bovine milk (Sigma-Aldrich®) were performed 

using the continuous spectrophotometric rate determination procedure adapted 

and modified from the procedure Sigma-Aldrich® provided. Xanthine oxidase 

catalyses the reaction where xanthine is converted into uric acid (Figure 5.3). 

 

O2

Xanthine Oxidase
H2O2Xanthine Uric acidH2O  

Figure 5.3: Xanthine oxidase catalyzes the conversion of xanthine to uric acid. 

 

Production of uric acid was detected by measuring absorbance at 290 nm. The 

experimental mixture, containing potassium phosphate buffer (50 mM, pH 7.5), 

xanthine 0.15 mM), was incubated in a 3 ml quartz cuvette at 37°C for 1 min. The 

reaction was initiated by xanthine oxidase (0.1-0.2 unit) addition, and the increase 

in absorption at 290 nm was recorded at 30 s intervals for 5 min at 37°C. The 

procedure was repeated with the addition of various concentrations of flavonols 

dissolved in DMSO (final concentration, 0.16% for quercetin and 2.2% for 

isorhamnetin) and H2O. The blank samples contained the experimental mixtures 

without xanthine oxidase. 

 

5.3.2.10 Purine Nucleoside Phosphorylase (PNP) 

PNP metabolizes adenosine into adenine, inosine into hypoxanthine and 

guanosine into guanine. The effects of quercetin and its metabolites on PNP 

activity were tested using both commercial pure enzyme and HUVEC protein 

extract. The enzymatic activity and inhibition studies for Geobacterium sp. PNP 
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expressed in E. coli (Sigma-Aldrich®) were performed using the continuous 

spectrophotometric rate determination procedure. A guanosine analogue, 7-

methyl-6-thioguanosine (MESG) which is widely used in PNP activity assays was 

used as the substrate for PNP (Webb et al., 1992) (Figure 5.4). 

 

PNP
Ribose 1-phosphate 7-Methyl-6-thioguanosine 7-Methyl-6-thioguaninePi

 

Figure 5.4: PNP catalyzes the conversion of MESG to 7-methyl-6-thioganine and 

ribose 1-phopshate. 

 

The experimental mixtures, containing potassium phosphate buffer (50 mM, pH 

7.5) and PNP (0.02/0.04 unit) were incubated in the wells of a microplate at 37°C 

for 1 min. The reaction was initiated by substrate addition (800 µM), and the 

increase in absorption at 360 nm was recorded at 30 s intervals for 5 min at 37°C 

measuring the formation of the product. The procedure was repeated with the 

addition of various concentrations of flavonols dissolved in DMSO (final 

concentration, 0.2%) and H2O. The blank samples contained the experimental 

mixtures without the enzyme.  

PNP activity was also tested using HUVEC protein extracts by replacing pure 

commercial PNP in the assay with HUVEC protein extract (30 µg protein). 

 

5.3.2.11 CD39/ENTDP1 

CD39 is an ecto-enzyme bound to cell membrane that hydrolyses ATP and ADP to 

AMP. In this assay, the CD39 activity and inhibitory effects of quercetin and its 

metabolites were measured using both recombinant human (rh) CD39 (R&D 

Systems) and intact HUVECs.   

The assay procedure provided by R&D Systems was used to measure rhCD39 

activity. ATP was used as the substrate, and the free phosphate liberated after 

hydrolysis of ATP was measured using the Biomol Green™ Reagent kit that is 

based on a colourimetric phosphate quantification method.  First of all, a standard 
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curve (0-2 nm phosphate) was prepared using the phosphate standard (800 µM 

phosphate in H2O) provided in the phosphate detection kit. Then, 25 µl of the 0.04 

µg/ml enzyme diluted in assay buffer (25 mM Tris, 5 mM CaCl2, pH 7.5) was 

mixed with 25 µl of the 100 µM ATP diluted in assay buffer in the wells of a 

microplate. The microplate was covered with parafilm and incubated at 37°C for 30 

min. After the incubation period, the reaction was stopped by the addition of 100 µl 

of Biomol Green™ Reagent to each well. The microplate was incubated at room 

temperature for 20 min allowing the formation of green colour, and the absorbance 

was read at 620 nm. The amount of phosphate liberated in the reaction was 

calculated using a standard curve prepared with known concentrations of 

phosphate. The procedure was repeated with the addition of various 

concentrations of flavonols dissolved in DMSO (final concentration, 0.2% v/v) or 

H2O. The blank samples contained the experimental mixtures without CD39. 

The CD39 activity in intact HUVECs was measured using an adapted and 

optimized method (Goepfert et al., 2000, Kawashima et al., 2000). HUVECs were 

grown in 6-well plates until confluency. Cell medium was removed from the wells 

and the confluent HUVECs were washed three-times with the assay buffer (25 mM 

Tris, 5 mM CaCl2, pH 8). The cells were then incubated with 2 ml of substrate 

buffer (25 mM Tris, 5 mM CaCl2, 5 mM tetramisole HCl,100 μM ATP, pH 8) at 

37°C for 15 min. Tetramisole HCl which is an alkaline phosphatase inhibitor was 

used in the assay to prevent ecto-alkaline phosphatase activity. Liberated 

phosphate levels were then measured using Biomol Green™ reagent. The 

procedure was repeated with the addition of various concentrations of flavonols 

dissolved in DMSO (final concentration, 0.1% v/v) or H2O into the substrate buffer. 

For the blanks, 25 mM Tris, 5 mM CaCl2, 5 mM tetramisole HCl and individual 

flavonols/metabolites were incubated with the cells and the experimental buffer 

containing substrate was incubated without the cells. The blank values were 

subtracted from the sample values.  

 

5.3.2.12 CD73/5’-Nucleotidase 

CD73 is an enzyme that has the ability to hydrolyse both intra- and extracellular 

AMP to adenosine. In this assay, CD73 activity and inhibitory effects of quercetin 

and its metabolites were measured using both rhCD73 (R&D Systems) and intact 
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HUVECs.  CD73 activity assay procedures for both rhCD73 and intact HUVECs 

were nearly same with the CD39 activity assays performed except few 

modifications. AMP (50 µM) was used as the substrate, and the free phosphate 

liberated after hydrolysis of AMP was measured using the Biomol Green™ 

Reagent kit. A standard curve (0-2 nm phosphate) was prepared using the 

phosphate standard (800 µM phosphate in distilled water) provided in the 

phosphate detection kit. Then, 25 µl of the 0.04 µg/ml rhCD73 diluted in assay 

buffer (25 mM Tris, 5 mM MgCl2, pH 7.5) was mixed with 25 µl of the 50 µM AMP 

diluted in assay buffer in the wells of a microplate. The microplate was covered 

with parafilm and incubated at 37°C for 20 min. After the incubation period reaction 

was stopped by the addition of 100 µl of Biomol Green™ Reagent to each well. The 

microplate was incubated at room temperature for 20 min allowing the formation of 

green colour, and the absorbance was read at 620 nm. Phosphates liberated in 

the reactions were quantified using the standard curve prepared with known 

concentrations of phosphate. The procedure was repeated with the addition of 

various concentrations of flavonols dissolved in DMSO (final concentration, 0.2% 

v/v) or H2O. The blank samples contained the experimental mixture without CD39. 

The CD73 activity in intact HUVECs was measured using the same procedure with 

CD39 assays where 100 µM ATP and CaCl2 in the assay buffer were replaced with 

50 µM AMP and MgCl2 which are essential for CD73 activity. For the blanks, 25 

mM Tris, 5 mM MgCl2, 5 mM tetramisole HCl and particular flavonol were 

incubated with the cells and the experimental buffer containing substrate was 

incubated without the cells. The blank values were subtracted from the sample 

values. 

 

5.3.2.13 BCA Assay for Total Protein 

BCA assay was used to determine protein concentrations in cellular extracts 

where necessary. Assay components were bicinchoninic acid and copper(II) 

sulfate. Samples were diluted 1:15 with sodium phosphate (Na- Pi) buffer. A 

working reagent was prepared by mixing bicinchoninic acid and copper(II) in the 

ratio of 50:1. A standard curve was generated using bovine serum albumin diluted 

in Na-Pi buffer. 25 µl of sample or standard was mixed with 200 µl of working 

reagent and incubated for 30 min at 37ºC. Absorbance was read at 550 nm, and 
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protein concentrations were calculated using a standard curve prepared with 

known concentrations of bovine serum albumin. 

 

5.3.2.14 Statistical Analysis 

The difference in the enzyme activities after treatments were statistically analyzed 

using one-way analysis of variance (one-way ANOVA) with the aid of GraphPad 

Prism 5.01 software. Once it was determined that differences exist among the 

means, Tukey post hoc tests determined which means differed. P values less than 

0.05 (p< 0.05) were accepted as a significant difference.   

The IC50 values were estimated by the non-linear regression analyses of the 

residual enzyme activities and the log transformed flavonoid concentrations using 

GraphPad Prism 5.01 software. 
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5.4 Results 

First, quercetin metabolites present inside the cells and in the culture media after 

the quercetin treatments were identified. That was followed by measuring the 

effects of quercetin and its metabolites on the activities of the enzymes, in tubo 

and using intact HUVECs.  Figure 5.5 shows the quercetin conjugates tested in 

these studies. 

 

  

 

 

 

 

 

 R1 R2 R3 R4 R5 

Quercetin OH OH OH OH OH 

Isorhamnetin OCH3 OH OH OH OH 

Tamarixetin OH OCH3 OH OH OH 

Rhamnetin OH OH OH OH OCH3 

Q 3’-O-GlcA OCH3 OH OH OH OH 

Q 3’-O-S OSO3 OH OH OH OH 

Q 3-O-GlcA OH OH OCH3 OH OH 

Q 3-O-S OH OH OSO3 OH OH 

IsoR 3-O-GlcA OH OH OCH3 OH OH 

Rutin OH OH ORutinoside OH OH 

 

Figure 5.5: Quercetin conjugates tested in the study. 
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5.4.1 Fate of Quercetin in the HUVEC Model and the Nature of Putative 

Metabolites  

Previous human studies showed that quercetin is metabolized in vivo, and only its 

metabolites were present in circulation after consumption of quercetin rich food 

(Mullen et al., 2006, Egert et al., 2012) or supplements (Cialdella-Kam et al., 

2013). There are also studies that have been reported in the literature with regards 

to the intracellular quercetin metabolism including the studies which used human 

dermal fibro blasts (Spencer et al., 2003), Caco-2 cells (Murota and Terao, 2003) 

and HT29 cells (de Boer et al., 2006). However, there is no information with 

regards to metabolism of quercetin in HUVECs. 

Therefore, the fate of quercetin in the HUVEC model was assessed prior to the 

investigation of the inhibitory effects of quercetin on certain purine metabolism 

enzymes. In order to do that, HUVECs were incubated with 10 µM quercetin for    

2 h, 8 h and 20 h which allowed to analyse uptake kinetics and intracellular 

quercetin levels (Figures 5.6 and 5.7). Figures 5.6 and 5.7 shows that quercetin 

was quickly taken up by HUVECs and metabolized into quercetin, quercetin 3’-O-

sulfate (Q 3’-O-S), methylquercetin and 2 other metabolites which could not be 

precisely identified. There was no free quercetin aglycone left in the culture 

medium after 20 h. Intracellular extracts contained only quercetin and 

methylquercetin after 2 h - 8 h, but there were no polyphenols left inside the cells 

after 20 h that could be detected by LC-DAD. Q 3’-O-S was present in culture 

media after 2 h treatment. However, it was not present in intracellular extracts 

indicating that quercetin was metabolized quickly in the cells and most likely the Q 

3’-O-S was rapidly removed from the HUVECs. Likewise, methyquercetin was 

present in culture media after 2 h, and its concentrations were highest in culture 

media after 8 h. However, its presence in the intracellular extracts after 2 h and 8 h 

of the quercetin treatment indicated that unlike Q 3’-O-S, it was not removed from 

the HUVECs quickly. The culture medium samples and intracellular extracts were 

analysed also with LC-MS (Table 5.2). After LC-MS analysis, the unknown peaks 

observed in the LC-DAD analyses were believed to represent oxidation products 

of quercetin and methylquercetin. Therefore, they were likely to be produced in the 

culture medium rather than being cellular products.  
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LC-MS analysis confirmed the identities of the labelled peaks in LC-DAD 

chromatogram (Figure 5.6A, Table 5.2). The culture medium samples were 

analysed by LC-MS after a solid-phase extraction process to concentrate 

quercetin conjugates and remove other cell culture medium components that 

interfere with the analysis. Standards prepared were also analysed to assist the 

identification process of the quercetin conjugates. The peak with the retention time 

of 16.56 min in culture medium samples was identified as a quercetin sulfate (M - 

H of 380.8 and M + H of 382.9). Both Q 3’-O-S and quercetin 3-O-sulfate (Q 3-O-

S) standards were analysed with the LC-MS method. Retention time for Q 3-O-S 

standard was 10.66 min whereas it was 16.85 min for Q 3’-O-S standard which 

was similar to the retention time for quercetin sulfate identified in culture medium 

samples (16.56 min) indicating that it was representing Q 3’-O-S. Unknown 1 peak 

had a retention time of 17.73 min. After the LC-MS analysis, it was assumed to be 

a quercetin dimer (M - H of 600.8).  The peak with retention time of 19.95 min was 

identified as quercetin (M –H of 300.9 and M + H of 302.9). Unknown 2 peak had a 

retention time of 21.357 min was assumed to be a methylquercetin dimer (M – H 

of 628.8). The peaks with retention times of 22.55 and 22.60 in the culture medium 

samples were identified as methylquercetin (M - H of 314.9 and M - H of 317.0). 

Isorhamnetin (3’-OCH3-quercetin), tamarixetin (4’-OCH3-methylquercetin) and 

rhamnetin (7-OCH3-methylquercetin) standards were analysed in order to identify 

the site of the methyl group conjugation. Isorhamnetin and tamarixetin had 

retention times of 22.77 min and 22.90 min respectively, and rhamnetin had a 

retention time of 24.42 min. Therefore, the peaks in culture medium samples 

which were identified as methylquercetin likely to be representing isorhamnetin 

and tamarixetin. The exact molecular structures for unknown conjugates and other 

identified conjugates can be confirmed with NMR spectroscopy analysis after 

isolating the fractions which would contain each flavonol separately. The peak that 

represented unknown 3 disappeared after the SPE process, and also its UV 

spectrum in LC-DAD analysis indicated that it was not representing a polyphenol.  

 

 

 



   C h a p t e r  5 | 153 

 

 

B. 

 

Figure 5.6: LC-DAD chromatograms. A. Culture medium samples collected at 3 

different time points after quercetin treatment. Phenol red, Q 3’-O-S, quercetin and 

methylquercetin could be identified using standards. However, peaks labelled 

as ?1, ?2 and ?3 remained as unknowns that could not be precisely identified by 

HPLC analysis. B. Intracellular extracts obtained from control cells (without 

quercetin treatment), 2 h, 8 h and 20 h quercetin treated cells. 
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A. Culture medium samples 

 

B. Intracellular Extracts 
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Figure 5.7: Quercetin uptake and metabolism kinetics by HUVECs. A. Levels of 

quercetin and its metabolites produced in culture medium with time (n=3). B. Levels of 

quercetin and merhylquercetin in intracellular extracts with time (n=3). 



   C h a p t e r  5 | 155 

 

Table 5.2: M-Z values values for the flavonols detected in the medium samples. 

Retention Time 

(min) 

M-H M+H Identity 

16.56 380.8 382.9 Q 3’-O-S 

17.73 600.8 - (Quercetin Dimer) 

19.95 300.9 302.9 Quercetin 

21.36 628.8 - (Methylquercetin Dimer) 

22.55 and 22.67 314.9 317.0 Methyquercetin 

 

Interestingly, when the fresh culture medium was spiked with 10 µM or 100 µM 

quercetin and incubated at 37ºC without the cells, free quercetin aglycone 

disappeared with time, and two new peaks were observed (Figure 5.8). According 

to the LC-MS analysis results, these two peaks were assumed to be quercetin 

dimers   (M – H of 600.8) likely produced after oxidation of quercetin in the culture 

medium.  

 

Figure 5.8: HPLC chromatogram for fresh culture medium samples spiked with   

10 µM quercetin and incubated for 2 h, 8 h or 20 h at 37ºC. 
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Further investigations showed that quercetin oxidation was due to a component of 

the culture medium since the incubation of quercetin (100 µM) spiked into PBS at 

37ºC did not cause any modifications on of the quercetin aglycone (Figure 5.9). 

Also, supplementing culture medium with additional ascorbic acid, reduced the 

rate of quercetin oxidation (data not shown). 

 

 

Figure 5.9: HPLC chromatogram of quercetin (100 µM) spiked PBS at 37ºC for    

20 h. 

 

Previously, Pham and co-workers reported the presence of a quercetin dimer (M + 

H of 603.0769) in culture medium after the incubation of quercetin (100 µM) spiked 

medium at 37ºC for 24 h, and they had revealed the structure of the dimer using 

1NMR and LC-MS analyses (Pham et al., 2012). They had also confirmed that 

their dimer had the same molecular structure with a previously reported synthetic 

quercetin dimer (Gülşen et al., 2007).  In the present study, a synthetic dimer was 

synthesized using the procedure Pham and co-workers had used to aid the 

elucidation of the molecular structures of quercetin dimers observed after treating 

the cells or spiking the culture medium with quercetin. The reaction mixture 

contained three major peaks (Figure 5.10). The required product, quercetin dimer, 

was shown to have a retention time of 24.06 min and M – H of 600.8 and M + H of 

602.8. Hence, it had the same retention time and mass as one of the two quercetin 

dimers observed here in the quercetin spiked culture medium incubated without 

the cells (Figure 5.8). The peak representing quercetin dimer was isolated using 

prep-HPLC to be analysed by NMR to elucidate its molecular structure. The 
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product was successfully isolated with a negligible amount of quercetin aglycone 

impurity as it could be seen in Figure 5.11. The final step prior to NMR analysis to 

elucidate quercetin dimer structure involved removing the solvents using a rotary 

evaporator in vacuo. Unfortunately, in the final step the purity of the product was 

lost (Figure 5.12). The newly formed products had a similar profile to the initial 

product mixture, but with an interesting new peak observed with a retention time of 

18.03 and M - H of 600.8 (Figure 5.12). Hence, it had same retention time and M – 

H with the quercetin dimer (unknown 1) identified after treating HUVECs with 

quercetin (Figures 5.6 and 5.12).  

 

 

Figure 5.10: HPLC chromatogram for reaction mixture produced during chemical 

synthesis of quercetin dimer. 

 

 

Figure 5.11: HPLC chromatogram representing the purity check for the isolated 

fraction (isolated from the mixture represented in Figure 5.10) containing quercetin 

dimer after prep-HPLC application. 
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Figure 5.12: HPLC chromatogram representing the purity check for the isolated 

fraction containing quercetin dimer after removal of solvents prior to NMR analysis. 

 

5.4.2 Estimation of Single HUVEC Volume and Intracellular Quercetin 

Concentrations  

Single HUVEC volume was estimated using a flow cytometric approach. First, the 

effects of cell harvesting methods on HUVEC volume were assessed in order to 

have confidence that the volume estimates were not affected by the processing of 

the cells. In Figure 5.13, it can be observed that the live cells and propodium 

iodide stained dead cells were gated. Only live cells were analysed for their 

volumes. Trypsin/EDTA treatment yielded a higher percentage of live cells (n=3, 

p<0.05). However, it seemed to be a more aggressive method since higher 

variability in the cell volume was observed compared to the cells harvested using 

EDTA only.  Since it is necessary to work with a method that would not affect cell 

volume, EDTA was used to harvest cells in the subsequent experiments.  
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Figure 5.13: Effects of cell harvesting methods on HUVEC volume. Live cells were 

gated for electric volume analysis. 

 

Next, the volume of normal resting HUVECs and of treated HUVECs was 

estimated using flow cytometry. High-glucose concentrations increased HUVEC 

volume to 113.6% ± 8.490% of the unstimulated HUVEC volume, but this change 

was not statistically significant (Figure 5.14A). However, both quercetin and 

quercetin pre-treatment followed by glucose treatment significantly reduced 

HUVEC volume compared to high-glucose treated cells (p<0.05 and p<0.01 

respectively). Similarly, TNF-α alone did not have a significant effect on HUVEC 

volume (Figure 5.14B). Nevertheless, reductions in HUVEC volumes to 64.77% ± 

5.963% (p<0.01) and 70.68% ± 9.880% (p<0.01) of the unstimulated HUVEC 

volume were observed after quercetin treatment and quercetin pre-treatment 

followed by TNF-α, respectively.  Therefore, these results indicated that quercetin 

treatment led to a reduction in HUVEC volume in the presence or absence of high-

glucose concentrations and TNF-α treatment.   
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Figure 5.14: HUVEC volume estimation after particular treatments using flow 

cytometry (n=3). A.  Mean HUVEC volumes measured after particular treatments 

with quercetin (10 μM) and glucose (28.5 mM).  B. Mean HUVEC volumes 

measured after particular treatments with quercetin (10 μM) and TNF-α (10 ng/ml). 
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The average quercetin concentration in a single HUVEC was calculated using an 

equation that was defined by three variables. The amount of quercetin (moles) in a 

given extract was divided by the volume of a single HUVEC and the total number 

of cells in order to determine the quercetin concentration in a single HUVEC 

(Equation 5.1). 

 

                              
                  

                                     
 

 

An example calculation was carried out to show how the intracellular quercetin 

concentration for a single HUVEC was calculated after 2 h quercetin (10 μM) 

treatment. Previously, intracellular extracts for quercetin treated cells were 

analysed using a HPLC method (Figure 5.6B). A standard curve used to calculate 

the quercetin concentration in the extract ([quercetin]= 0.4587 μM), and the 

volume of the extract was 500 μl. Therefore, the amount of quercetin present in 

the extract could be calculated using “Equation 5.2”: 

 

  
               

      
 

           
               

        
 

           

                           

Average cell number in a single well of a culture plate was calculated as 268750 

cells/9.4 cm2 (n=6). Mean HUVEC volume was measured as 9128 μm3               

(9.13 × 10-12 L, n=3) after 2 h quercetin (10 μM) treatment. This value was used to 

calculate quercetin concentration in a single HUVEC. After obtaining all of the 

three variables, it was possible to estimate quercetin concentration in a single cell 

by applying “Equation 5.1”: 

                                                               
                  

                                     
                      

Equation 5.1: 

Equation 5.2: 
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Furthermore, two studies were reported in the literature that attempted to calculate 

single HUVEC volume. Hillebrand and co-workers used atomic force microscopy 

(AFM) to assess the effects of estrogens on HUVEC volume (Hillebrand et al., 

2005). They measured single HUVEC volume as 2408 ± 94.1 fl/cell. This value 

was used in “Equation 1” to calculate quercetin concentration in a single HUVEC 

by replacing the HUVEC volume value measured using flow cytometry.  

                        

 
                  

                      
 

          

The other study was carried out by Leunig and co-workers where they had tested 

effects of Photofrin® treatment and laser light on HUVEC volume (Leunig et al., 

2996). They had employed scanning electron microscopy (SEM) to measure 

endothelial cell volume. They had provided a scanning electron micrograph 

showing both unstimulated and PF treated HUVECs. HUVEC volume was 

calculated using the scale on the scanning electron micrograph, and then 

“Equation 1” was applied to calculate quercetin concentration in a single HUVEC.  
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Hence, 3 different HUVEC volume estimations used to calculate intracellular 

quercetin concentration yielding 3 different values; 93.47 µM with flow cytometry, 

354.4 µM with AFM and 1331 µM SEM methods.  

 

5.4.3 The Effects of Quercetin and Its Metabolites on Purine Metabolising 

Enzymes in HUVECs 

Quercetin, methylated quercetin and quercetin sulfate were identified in the culture 

medium samples whereas quercetin and methylated quercetin were identified in 

the intracellular extracts after treating the cells with quercetin. Therefore the 

effects of quercetin, isorhamnetin and Q 3’-O-S were tested on HUVEC energy 

metabolism enzymes. Also, the effects of other flavonols were tested on these 

enzymes to provide a broader knowledge of the potential of flavonols to inhibit the 

activity of these enzymes. 

 

5.4.3.1 Adenosine Deaminase (ADA) 

The effects of quercetin, isorhamnetin, quercetin 3’-O-sulfate and quercetin 3’-

glucuronide were tested on the activity of adenosine deaminase.  The results were 

plotted as a graph representing adenosine consumption by the enzyme per time, 

where the gradient of the line reflected the rate of the reaction (A265nm/min) (Figure 

5.15). The linear phase of the reaction was used to calculate the rate of adenosine 

deamination. Therefore, the initial step was to test several parameters in the 

enzymatic activity measurement procedure to eliminate any bias in the results. 

First of all, the linear phase of the reaction was determined by allowing the 

reaction to continue for 20 min. Figure 5.15 shows that during the first 5 min, the 

reaction rate is roughly linear.  
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Figure 5.15: Adenosine deaminase activity was represented as adenosine 

consumption per unit time. 

 

After the optimum reaction time was determined, an absorbance linearity test was 

performed to determine that the absorbance value did not fall in the plateau, but in 

the linear phase of the reaction for the adenosine concentration suggested in the 

test procedure. The initial concentration of adenosine was 45 µM in the assay. 

When the absorbance values were plotted for the experimental mix containing 

reaction buffer, increased concentrations of adenosine substrate, quercetin (10 

µM) and enzyme (heat de-activated at 70ºC) against the adenosine 

concentrations, it was observed that  90 µM adenosine and the lower 

concentrations fall in the range of the linearity (Figure 5.16). Therefore, 45 µM 

adenosine was selected to be a suitable concentration to measure the enzymatic 

activity of ADA.  
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Figure 5.16: Absorbance linearity test. Increasing concentrations of adenosine 

were tested for their effects on the linearity of the reaction. Purple line which 

contained the experimental buffer with increased concentrations of adenosine, 

enzyme and quercetin indicated that 45 µM adenosine is suitable for the assay. 

 

Finally, different DMSO concentrations were tested in experimental mix to test any 

possible effects on the inhibitory activities of quercetin and isorhamnetin since 

DMSO may affect the hydrophobic interactions between polyphenols and the 

enzyme. Increased DMSO concentrations (0.1%-3% (v/v)) did not alter the 

inhibitory effects of quercetin (30 µM) and isorhamnetin (30 µM) on ADA 

enzymatic activity (Figure 5.17A & 5.17B).  
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Figure 5.17: Assessing effects of DMSO on enzyme activity inhibition.  

 

Two different protein extraction methods were tested for obtaining the highest yield 

of protein extracts from HUVECs. A commercial lysis buffer (Cell Signalling 

Technology) and mechanical disruption methods were compared for their 

efficiencies. Protein concentrations in the extracts were determined by a BCA 

assay, and both of the methods yielded similar amounts of protein (data not 

shown) and ADA activity (Figure 5.18A). However, the lysis buffer contains several 

chemicals that may affect the inhibitory activity of polyphenols. Therefore, 

mechanical disruption of the cell membranes was preferred as the method used to 

obtain protein extracts. When the heat-treated HUVEC protein extracts were used 

in the experiment, there was only a negligible reduction in A265nm (Figure 5.18B). 

The reduction was most likely to be the reflection of adenosine auto-degradation in 

the experimental mix.  
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Figure 5.18: HUVEC protein extracts for ADA activity assays. A. Assessing the 

effects of protein extraction methods on enzyme activity. B. Heat treatment of the 

HUVEC extracts almost completely abrogates the reduction in A265nm which shows 

that the loss of adenosine was enzyme dependent. 
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The inhibitory effects of quercetin, isorhamnetin, Q 3’-O-S and Q 3’-O-GlcA were 

tested on ADA activity (2 µM - 50 µM). All of these flavonols significantly inhibited 

ADA activity.  Analysis of the inhibitory effects of quercetin on ADA activity was 

given as an example to show how the calculation of IC50 (half maximal inhibitory 

concentration) estimates was performed. Figure 5.19A shows the dose-dependent 

inhibition of ADA activity by quercetin, and Figure 5.19B shows the calculation of 

an IC50 value for inhibition of ADA activity using the rate of the reaction values 

from Figure 5.19A.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19: Determination of IC50 value for quercetin. A. Quercetin dose-

dependently inhibited ADA activity. B. IC50 value for quercetin was determined as 

55.6 µM. Red-dashed line shows 95% confidence interval. 
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The strongest inhibitory activity (=most potent inhibitor) was observed with 

isorhamnetin, and it was followed by quercetin, Q 3’-O-S and Q 3-O-GlcA (Table 

5.3). Quercetin, isorhamnetin and Q 3’-O-S showed dose-dependent inhibitory 

effects. However, Q 3-O-GlcA significantly inhibited ADA activity at 2 µM (p<0.01, 

n=3), but increasing its concentration did not further alter the residual activity 

(Figure 5.20). Hence, it was not possible to calculate an IC50 value for the Q 3-O-

GlcA. Interestingly, the IC50 values for isorhamnetin, quercetin and Q 3’-O-S were 

lower for the ADA activity in HUVEC protein extracts, and the inhibition strength by 

each flavonol was ordered in parallel with the results obtained for the commercial 

pure enzyme (Table 5.3). 

 

 

 

 

 

 

 

 

 

Figure 5.20: Q 3-O-GlcA significantly inhibited ADA activity with concentrtions 

starting at 2 µM. The strongest inhibition was obtained with 50 µM Q 3-GlcA 

(37.3% inhibition) 
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Table 5.3: Effects of quercetin and its metabolites on ADA activity (n=3 minimum 

for each treatment). 

Enzyme Treatment Method Literature 

Pure Human 
Enzyme IC

50       
(μM) 

HUVEC Extract 
IC

50   
(μM) 

Adenosine 
Deaminase 

Isorhamnetin 48.94  15.67 Intact calf aortic 

endothelial cells were 
used to test several 
flavonoids. IC

50
 for 

quercetin was 26 μM 
(Melzig et al., 1995).  

Quercetin  55.56  20.04  

Quercetin 3’-O-
Sulfate 

194.6  55.65  

Quercetin 3-O-
Glucuronide 

-  Not tested 

 

5.4.3.2 Xanthine Oxidase 

Quercetin, isorhamnetin and Q 3’-O-S were strong inhibitors of the xanthine 

oxidase activity (Table 5.4). Likewise the ADA inhibition, isorhamnetin was the 

most potent inhibitor of xanthine oxidase activity (IC50=0.31 μM, n=3) followed by 

Q 3’-O-S (IC50=0.45 μM, n=3), and quercetin (IC50=3.04 μM, n=3) (Figure 5.21). 

However, no xanthine oxidase activity was observed when the HUVEC protein 

extract (30-100 μg protein content) was used in the assay instead of the 

commercial pure enzyme. This remained the case even when the extracts were 

de-salted and concentrated using spin columns (Millipore Microcon®) to remove 

any substances potentially interfering with the assay. 
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Figure 5.21: Determination of IC50 value for inhibition of xanthine oxidase by 

quercetin. A. Quercetin dose-dependently inhibited xanthine oxidase activity. B. 

IC50 value for quercetin was determined as 3.04 µM. Red-dashed line shows 95% 

confidence interval. 
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Table 5.4: Effects of quercetin and its metabolites on xanthine oxidase activity 

(n=3 minimum for each treatment). 

Enzyme Treatment Method Literature 

Pure Human 
Enzyme 

IC
50 (μM) 

HUVEC Extract 
IC

50 (μM) 

Xanthine 
Oxidase 

Isorhamnetin 0.31 Enzyme activity 
could not be 
detected 

Quercetin and its 
metabolites are strong 
inhibitors of xanthine 
oxidase. Day et al. 
(2000) used xanthine 
oxidase (from 
buttermilk). 
 

Quercetin 3’-O-sulfate 0.45  Enzyme activity 
could not be 
detected 

Quercetin  3.04  Enzyme activity 
could not be 
detected 

 

 

5.4.3.3 Purine Nucleoside Phosphorylase (PNP) 

Inhibitory effects of quercetin, isorhamnetin, Q 3’-O-S, Q 3-O-S, IsoR 3-O-GlcA, 

rhamnetin, Q 3-O-GlcA and Q 3’-O-GlcA were tested on PNP activity (2 µM - 50 

µM) (Table 5.5). Quercetin and Q 3’-O-S were the only flavonols which inhibited 

the activity of bacterial purine nucleosidase with IC50 values of 36.9 μM (Figure 

5.22) and 48.3 μM (n=3) respectively. The inhibitory effect of quercetin became 

significant at 30 μM whereas this value was 15 μM for Q 3’-O-S. Furthermore, the 

effects of increased phosphate and sulphate ion concentrations on PNP activity 

were tested. Neither phosphate nor sulphate affected PNP activity or the inhibitory 

activity of Q 3’-O-S (Figure 5.23).  

Quercetin and quercetin 3’-O-S were tested for their inhibitory effects on the PNP 

activity using HUVEC protein extracts. Interestingly, neither quercetin aglycone nor 

Q 3’-O-S inhibited PNP activity.  
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Figure 5.22: Determination of IC50 value for quercetin. A. Quercetin dose-

dependently inhibited PNP activity. B. IC50 value for quercetin was determined as 

36.9 µM. Red-dashed line shows 95% confidence interval. 
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Table 5.5: Effects of quercetin and its metabolites on PNP activity (n=3 minimum 

for each treatment). 

Enzyme Treatment Method Literature 

Pure Bacterial 
Enzyme 

IC
50 (μM) 

HUVEC Extract 
IC

50 (μM) 

Purine 
Nucleoside 
Phosphorylase 

Quercetin  36.9  No inhibition No literature about 
flavonoid inhibition.  
However, the effects 
of sulfate on the 
bacterial enzyme was 
tested since it was 
shown that sulfate 
and P

i
 can compete 

for the binding site 
(Kierdaszuk et al., 
1997; Modrak-wojcik 
et al., 2008).   

Quercetin 3’-O-
sulfate 

48.3 μM No inhibition 

Isorhamnetin No inhibition Not tested 

Quercetin 3-O-sulfate No inhibition Not tested 

Isorhamnetin 3-O-
Glucuronide 

No inhibition Not tested 

Rhamnetin No inhibition Not tested 

Quercetin 3’-O-
Glucuronide 

No inhibition Not tested 

Quercetin 3-O-
Glucuronide 

No inhibition Not tested 

 

 

 

 

 

 

 

 

 

Figure 5.23: Effects of sulfate (A.) and phosphate (B.) on PNP activity.   
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5.4.3.4 CD39/ENTDP1 

The activity of a recombinant human CD39 enzyme (rhCD39) was inhibited by Q 

3’-O-S (IC50=0.183 µM), quercetin (IC50=0.574 µM), Q 3’-O-GlcA (IC50= 10.1 µM) 

(Figure 5.24), Q 3-O-GlcA (IC50= 52.5 µM) and IsoR 3-O-GlcA (IC50= 75.2 µM) but 

not by isorhamnetin, tamarixetin or rhamnetin (Table 5.6). The inhibition became 

significant at 2 µM (p<0.001) with Q 3’-O-S, quercetin and Q 3’-O-GlcA (Figure 

5.24) whereas the inhibition became significant at 15 µM with quercetin, IsoR 3-O-

GlcA and Q 3-O-GlcA.  

Prior to the experiments using intact HUVECs as a source of CD39, different 

substrate concentrations were tested. As the ATP concentration was increased, 

the amount of phosphate liberated with the CD39 activity was increased (Figure 

5.25). 100 µM ATP was shown to be a suitable substrate concentration. Quercetin, 

Q 3’-O-S and isorhamnetin were tested for their inhibitory effects on CD39 activity 

using intact HUVECs. In contrast to the inhibitory effects of quercetin and Q 3’-O-S 

observed with rhCD39, quercetin and Q 3’-O-S did not inhibit the CD39 activity in 

the intact HUVECs. Isorhamnetin was also tested to confirm that the flavonols 

which did not inhibit rhCD39 also do not inhibit CD39 activity in the intact 

HUVECs.  
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Figure 5.24: Determination of IC50 value for Q 3’-O-GlcA. A. Q 3’-O-GlcA dose-

dependently inhibited rhCD39 activity. B. IC50 value for Q 3’-O-GlcA was 

determined as 10.11 µM. 
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Figure 5.25: Determination of the 

optimum substrate concentration for 

the CD39 assay. 
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Table 5.6: Effects of quercetin and its metabolites on CD39 (n=3 minimum for 

each treatment). 

Enzyme Treatment Method Literature 

Pure Human 
Enzyme 
IC

50 (μM) 

Intact HUVECs 
IC

50 (μM) 

CD39/ENTPD1   
Quercetin 3’-O-
sulfate 

0.183  No inhibition Quercetin and 
resveratrol restored 
the reduced CD39 
activity in HUVECs, 
in response to 
thrombin (Kaneider 
et al., 2004) 

Quercetin 0.574  No inhibition 

Quercetin 3’-O-
Glucuronide 

10.1  Not tested 

Quercetin 3-O-
Glucuronide 

52.5  Not tested 

Isorhamnetin 3-O-
Glucuronide 

71.2  Not tested 

Isorhamnetin No inhibition No inhibition 

Tamarixetin No inhibition Not tested 

Rhamnetin No inhibition Not tested 
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5.4.3.5 5’-Nucleotidase/CD73 Activity  

rhCD73 activity was inhibited by quercetin (IC50=1.69 µM), isorhamnetin (IC50= 

8.29 µM) and Q 3’-O-S (IC50=160 µM) but not by rutin, Q 3’-O-GlcA, Q 3-O-GlcA or 

IsoR 3-O-GlcA (Table 5.7). Quercetin (Figure 5.26) and isorhamnetin were strong 

inhibitors of the CD73 activity where the inhibition became significant at 1 µM 

(p<0.01) and 2 µM (p<0.001) respectively whereas Q 3’-O-S was a weak inhibitor 

where the inhibition became significant at 30 µM (p<0.01).  

Prior to the experiments where intact HUVECs were used as a source of CD73, 

different substrate concentrations were tested. As the AMP concentration was 

increased (5 µM- 200 µM), the amount of phosphate liberated (due to CD73 

activity) was increased (Figure 5.27). 50 µM was found to be a suitable substrate 

concentration to be used in the assays. 

CD73 activity in intact HUVECs was weakly inhibited by quercetin (50 µM, 13% 

inhibition, n=3), but not by isorhamnetin or Q 3’-O-S.   
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Figure 5.26: Determination of quercetin IC50 value for quercetin. A. Quercetin 

dose-dependently inhibited rhCD73activity. B. IC50 value for quercetin was 

determined as 1.69 µM. 
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Table 5.7: Effects of quercetin and its metabolites on CD73 (n=3 minimum for 

each treatment). 

Enzyme Treatment Method Literature 

Pure Human 
Enzyme 

IC
50 (μM) 

Intact HUVECs 
IC

50 (μM) 

5’-
Nucleotidase/CD73 

 Quercetin 1.69 13% inhibition 
with 50 μM 
quercetin 

Quercetin was able to 
inhibit the ecto-5'-
NT/CD73 activity and 
modulate its 
expression in human 
U138MCG glioma cell 
line (Braganhol et al., 
2007). 
Flavonids inhibits 5’-
nucleotisase activity. 
Pure enzyme cell-free 
assay. 5’-NT from 
Crotalus atrox venom  
(Kavutcu & Melzig, 
1999). Quercetin IC50= 
1.4 μM, no inhibition 
with rutin.  

Isorhamnetin 8.29  No inhibition
  

Quercetin 3’-O-
sulfate 

160  No inhibition 

Quercetin 3-O-
Glucuronide 

No inhibition Not tested 

Isorhamnetin 3-
O-Glucuronide 

No inhibition Not tested 

Quercetin 3’-O-
Glucuronide 

No inhibition Not tested 

Rutin No inhibition Not tested 

 

 

 

 

                                            

 
Figure 5.27: Determination of 

the optimum substrate 

concentration for the CD73 

assay. 
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NMR spectroscopy was also used to check the activity of the enzyme by 

measuring the substrate AMP and the product adenosine levels directly, rather 

than measuring free-phosphate levels. Figure 5.28 shows that the HUVECs 

converted AMP to adenosine indicating that the assay was working, and that 

topical quercetin (2-15 µM) additions did not have an effect on CD73 activity. 

 

  

 

 

 

 

 

 

 

 

Figure 5.28: NMR analysis of intact HUVEC CD73 activity experimental mixture. 

Presence of signals belonging to adenosine showed that CD73 was actively 

converting AMP to adenosine. 
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5.5 Discussion 

In the previous chapter, it was shown that quercetin treatments altered HUVEC 

energy metabolism, and the changes observed in ATP, ADP, AMP, adenosine and 

xanthine concentrations were most likely to be mediated through the effects of 

quercetin on the enzymes which are involved in the purine metabolism.  Therefore, 

the interactions between quercetin and quercetin metabolites and the major 

enzymes involved in purine metabolism were investigated. 

The main findings presented here revealed that HUVECs metabolize quercetin to 

Q 3’-O-S and methylquercetin. Also, dimers of quercetin and methylquercetin were 

produced in the culture medium. The effects of quercetin aglycone, isorhamnetin 

and Q 3’-O-S together with other  quercetin and methylquercetin conjugates were 

tested on the activities of the 5 major enzymes involved in HUVEC energy 

metabolism. Quercetin aglycone was observed to be a strong inhibitor when its 

effects on recombinant enzymes were tested whereas its conjugates had different 

effects on the activities of the enzymes depending on the position of the 

conjugation and nature of the conjugated chemical group. However, neither 

quercetin nor its metabolites inhibited PNP and CD39 activities in HUVEC extracts 

or intact HUVECs respectively, and quercetin was only a weak inhibitor of CD73 

activity in intact HUVECs.  

There are numerous published studies describing quercetin metabolism in cellular 

systems, but hardly anything for HUVECs. Awad and co-workers identified 

glutathionyl quercetin in culture medium which also indicated the formation of 

intermediate quercetin quinone/quinone methide metabolites after treating B16F-

10 melanoma cells with 10-100 μM quercetin (Awad et al., 2002). Spencer and co-

workers worked with dermal fibroblasts in order to explore the intracellular 

metabolism of quercetin. Similarly, they reported the presence of quercetin 

aglycone, a 2’-glutathionyl quercetin adduct and an unidentified product (which 

they believed to be quercetin quinone/quinone methide) after treating the cells with 

quercetin (Spencer et al., 2003). In another study, Murota and co-workers 

assessed the efficiency of absorption and metabolic conversion of quercetin in 

human intestinal cell line Caco-2 (Murota and Terao, 2003). They found quercetin, 

isorhamnetin and their conjugated forms present inside the cells. However they did 

not identify the conjugated forms of quercetin and isorhamnetin. In the present 
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study, quercetin aglycone and methylquercetins were identified inside the cells 

whereas quercetin aglycone, Q 3’-O-S, methylquercetins and also putative 

quercetin and methylquercetin dimers were identified in culture medium after 

treating the cells with 10 μM quercetin. Formation of quercetin dimers after spiking 

the culture medium with quercetin aglycone alone indicated that it was not stable 

in the culture medium. Pham and co-workers isolated a quercetin dimer formed 

after incubating quercetin in complete culture medium (DMEM), and they identified 

its molecular structure using 1H NMR and LC-MS (Pham et al., 2012). However, 

the present study showed that two different quercetin dimers were formed in 

complete culture medium (EGM-2). Also, after treating the HUVECs with 

quercetin, there was only one dimer observed in the culture medium most certainly 

with a different molecular structure since all these dimers had the same molecular 

weights, but different retention times. Pham and co-workers assessed the effects 

of the quercetin dimer they had identified on MDA-MB-231 (human breast 

adenocarcinoma) cells by treating the cells with the culture medium which was 

incubated with quercetin for 24 h prior to the treatment to allow the quercetin dimer 

formation. That treatment (72 h) did not have an effect on cell death, but fresh 

quercetin aglycone treatment significantly increased cell death, and they 

concluded that the quercetin aglycone was responsible for the observed cell 

death. However, the appearance of structurally different quercetin dimers in the 

present study in culture media only in the presence of cells indicates that a 

quercetin dimer might be responsible for the increased cell death observed in the 

previously reported studies with MDA-MB-231 cells.  In the present study, it was 

aimed to isolate, structurally define and chemically synthesize the quercetin and 

methylquercetin dimers produced after the quercetin treatments and test their 

effects on the enzymes. However, it was not possible to obtain enough material for 

the structural analysis with 1NMR due to the low quantities produced by cultured 

cells.  

In this study, single HUVEC volume was estimated using a flow cytometric method 

in order to calculate intracellular flavonol concentrations. This was important 

because flavonol concentrations in the physiological range could be used while 

testing their effects on the purine metabolism enzymes. According to the 

calculations where single HUVEC volume was estimated using the flow cytometric 

method, intracellular quercetin concentrations after 2 h quercetin treatment (10 



   C h a p t e r  5 | 184 

 

μM) was calculated as 93.5 µM. However, in this method, beads with known sizes 

(5 μm, 10 μm and 15 μm) were used for calibration which is not directly 

comparable with the live cells. Hence, it is important to understand that the 

measured HUVEC volume provided just an estimate. The estimates of single 

HUVEC volumes reported previously (two different studies) were also used as 

references to calculate the intracellular quercetin concentration. Intracellular 

quercetin concentrations after 2 h quercetin treatment were calculated as 354 µM 

and 1330 µM using AFM and SEM methods to estimate cell volumes, respectively 

(Hillebrand et al., 2006, Leunig et al., 1996). All three values reflected enough 

intracellular quercetin concentrations to inhibit intracellular ADA, 5’-NT and 

xanthine oxidase activities. The estimates of cell volume reported here are the 

highest, and consequently the intracellular concentrations the lowest to date. 

Energy metabolites such as ATP, ADP and adenosine play important roles in 

cellular signalling cascades. Several polyphenols have been shown to have 

inhibitory effects on the individual enzymes involved in energy metabolism 

(Kaneider et al., 2004, Wu et al., 2010). The present study is integrated in 

investigating all major purine metabolism enzymes with quercetin aglycone and its 

metabolites. 

CD39 is the first enzyme in the overall pathway where ATP is converted by a 

series of enzyme-catalysed reactions into uric acid (Figure 5.29). CD39 hydrolyses 

ATP and ADP into AMP. Thrombin was previously shown to reduce CD39 activity 

leading to increased ATP and ADP levels (Kaneider et al., 2002). Kaneider and 

co-workers assessed the effects of quercetin and resveratrol on CD39 activity in 

thrombin-activated HUVECs (Kaneider et al., 2004). They treated HUVECs with 

thrombin (0.1 mU/ml) and quercetin or resveratrol (1 pM to 100 μM) for 45 min 

which was followed by the addition of 100 μM ATP or ADP (20 min) into the 

environment that allowed measurement of the CD39 activity. They reported that 

both quercetin and resveratrol pre-treatments restored the thrombin-induced 

decreased rate of ATP and ADP hydrolysis dose-dependently which could be 

measured as the elevations in AMP and adenosine levels. In the present study, 

rhCD39 activity was strongly inhibited by Q 3’-O-S, quercetin, Q 3’-O-GlcA, Q 3-O-

GlcA and IsoR 3-O-GlcA, whereas isorhamnetin, tamarixetin and rhamnetin did 

not inhibit CD39 activity. According to these results, the inhibitory activity of 
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quercerin was affected by the conjugation of a single methyl group regardless the 

conjugation site. Interestingly, isorhamnetin with a conjugated glucuronide group 

at 3-position still had the inhibitory effect but with a higher IC50 value compared to 

the other flavonols which inhibited CD39 activity. On the other hand, quercetin, Q 

3’-O-S and isorhamnetin were tested for their effects on CD39 activity in the intact 

HUVECs, and they did not have an effect on the CD39 enzymatic activity. In 

chapter 4, decreased ATP (70.7% of control, p<0.01) and ADP (71.6%% of 

control, p<0.05) and elevated intracellular AMP (196.10% of control, p<0.01) and 

adenosine (162 % of control, p<0.05) levels were observed after quercetin 

treatments (20 h). Therefore, the observation of no inhibitory effects of quercetin 

and its conjugates on CD39 activity when the intact HUVECs were used in the 

assays is in line with the results observed in metabolomics analysis. The 

decreased ATP and ADP levels after quercetin (20 h) treatments were most likely 

due to the increased expression of CD39 protein by HUVECs.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.29: Effects of quertin and its conjugates on the enzymes involved in 

purine nucleotide/nucleoside metabolism. The red crosses shows the 

enzymes inhibited by quercetin and its particular conjugates and the 

green circles shows the enzymes which were not affected in this study.  
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rhCD73 activity was inhibited strongly by quercetin and isorhamnetin. Q 3’-O-S 

was a weak inhibitor of rhCD73 activity, whereas Q 3-O-GlcA, Q 3’-O-GlcA, IsoR 

3-O-GlcA and rutin did not have an effect on rhCD73 activity. Therefore, it was 

observed that the hydroxyl group at the 3-position is likely to be important for the 

inhibitory activity, and Q 3’-O-GlcA did not have an effect most likely due to the 

relatively large size of the glucuronic acid group at the 3’-position. On the other 

hand, quercetin was a weak inhibitor of CD73 activity in the intact HUVECs. The 

other flavonols tested did not exert an effect on CD73 activity in the intact 

HUVECs.  In the literature, there are two reports regarding the effects of flavonoids 

on CD73 activity. Kavutcu and Melzig assessed the inhibitory activities of several 

flavonoids on purified 5’-NT obtained from Crotalus atrox venom. They revealed 

that quercetin and myricetin strongly inhibited 5’-NT activity, and that several other 

flavonoids were also inhibitors but with weaker inhibitory activities depending on 

the hydroxylation patterns. Rutin was one of the flavonoids which did not inhibit 5’-

NT activity (Kavutcu and Melzig, 1999). Therefore, the strong inhibition with 

quercetin and lack of inhibitory activity with rutin is in parallel with the results 

obtained in the present study where rhCD73 was used. On the other hand, 

Braganhol and co-workers assessed the effects of quercetin on CD73 activity in 

U138MG human glioma cell line (Braganhol et al., 2007). They reported that 

quercetin inhibited AMP hydrolysis by the cells with an IC50 value of 45.3 μM. The 

assay involved incubating the cells with the substrate AMP and different 

concentrations of quercetin (0.1 to 500 μM). They also treated the cells with 

quercetin (10, 30 and 100 μM) for 24 h, 48 h or 72 h, and then assessed CD73 

activity in the cells. After 72 h quercetin treatment, they observed a reduction in 

CD73 activity, which might be due to decreased CD73 protein expression by the 

cells since they observed decreased CD73 mRNA expression after 24 h quercetin 

treatment. Therefore, the strong inhibitory effects of quercetin on CD73 activity in 

the U138MG human glioma cell line was in contrast with the minor inhibitory 

activity of quercetin on CD73 activity in HUVECs reported here. The weak 

inhibition of CD73 by quercetin is likely to explain the time-dependent increase in 

AMP levels observed after quercetin treatment in the metabolomics study (Table 

4.6). Nevertheless, a possible increase in CD39 protein expression by HUVECs, 

the minor inhibition of CD73 with quercetin or both might be responsible for the 

increase observed in AMP levels in HUVECs after quercetin treatments.   
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Isorhamnetin, quercetin and Q 3’-O-S inhibited both recombinant human ADA and 

ADA activity in HUVEC extracts. Q 3-O-GlcA was tested with only recombinant 

human ADA, and it inhibited ADA activity. Several flavonols including quercetin, 

myricetin, kaempferol, morin and rutin were shown to inhibit ADA activity in calf 

aortic endothelial cells (Melzig, 1996). Therefore, the inhibitory activity of quercetin 

observed in the present study is consistent with the previously reported study. 

Furthermore, the demonstration of inhibition of ADA activity by isorhamnetin and Q 

3’-O-S is important because it was also shown that quercetin aglycone was 

metabolized by HUVECs yielding quercetin aglycone and methylquercetin inside 

the HUVECs and quercetin, methylquercetin and Q 3’-O-S  in the culture medium 

after 2 h quercetin treatment. In parallel, increases in intra- and extracellular 

adenosine (112.5% and 286.2% of control levels, respectively) were observed 

which were most likely due to the inhibitory activities of the afore mentioned 

flavonols. Melzig (1996) stated that ADA activity is present only inside the cells. 

However, a more recent study by Eltzschic and co-workers hypothesized that 

under inflammatory conditions, ADA is synthesized inside and then released from 

the endothelial cells, and then binds to the surface receptor CD26 which converts 

adenosine to inosine (Eltzschig et al., 2006). They inhibited the interaction of ADA 

with CD26 using the HIV-1 envelope glycoprotein gp120 and showed that this led 

significant reductions in extracellular ADA activity in human microvascular 

endothelial cells (HMEC-1s), thus supporting their hypothesis.  

The next enzyme on the pathway was PNP. The pure bacterial PNP activity was 

inhibited by quercetin and Q 3’-O-S. Interestingly, the inhibitory activity was lost in 

the other conjugates tested.  In the literature, it was reported that sulfate competes 

with Pi for the enzyme active site (Kierdaszuk et al., 1997, Modrak-Wójcik et al., 

2008). Therefore, it was hypothesized that the inhibitory effect of Q 3’-O-S was 

due the conjugated sulfate group. Nevertheless, neither Q 3-O-S nor sulfate alone 

inhibited the PNP activity and also increased Pi did not diminish the inhibitory 

effect of Q 3’-O-S indicating that the inhibitory activity of Q 3’-O-S was not due to 

the conjugated sulphate group.  On the other hand, none of the tested flavonols 

inhibited PNP activity in HUVEC extracts. In the metabolomics study (Chapter 4), it 

was observed that there was a time-dependent elevation observed in both intra- 

and extracellular inosine levels after quercetin treatment. Since the activity of PNP 

was not affected, it can be concluded that the increased inosine levels were most 
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certainly due to a decrease in the levels of PNP protein after quercetin treatments 

which might have resulted in decreased inosine conversion to hypoxanthine.  

The final enzyme in the pathway was xanthine oxidase. Isorhamnetin, quercetin 

and Q 3’-O-S were strong inhibitors of the xanthine oxidase from bovine milk. The 

inhibitory activities of the dietary polyphenols on this particular enzyme were 

previously reported (Day et al., 2000, Pauff and Hille, 2009, Wu et al., 2010). For 

example, Day and co-workers tested the effects of quercetin and its glucuronide 

conjugates on xanthine oxidase activity (from butter milk) (Day et al., 2000). They 

had observed that quercetin, isorhamnetin, Q 4’-O-GlucA, and Q 3’-O-GlcA 

inhibited xanthine oxidase activity. In the metabolomics study, intracellular 

xanthine levels were not altered after treating HUVECs with quercetin. Therefore, 

this indicated that even though strong inhibition of the enzyme was observed in 

vitro with quercetin and its conjugates, xanthine oxidase activity in HUVECs might 

not be affected by quercetin treatments. This could not be tested since the 

xanthine oxidase activity could not be detected with the assay used in the present 

study.  

A recent study which used a strepozotocin-induced diabetic rat model to 

investigate the effects of red wine and grape juice consumption on activities of 

CD39, 5’-NT and adenosine deaminase reported that the diabetic rats had higher 

CD39, 5’-NT and adenosine deaminase activities  (Schmatz et al., 2013). They 

showed that administration of red wine and grape juice (4.28 ml/kg body weight) to 

the diabetic rats for 45 days further increased ectonucleotidases activities and 

inhibited ADA activity. The in vitro effects of resveratrol which is one of the 

polyphenolic constituents of the red wine and grape juice on these enzyme were 

consistent with the in vivo study. They observed an increase in ectonucleotidases 

activities and inhibition in ADA activity by resveratrol in the platelets isolated from 

the diabetic rats.  However, when they tested the effects of another constituent of 

the red wine and grape juice, quercetin, on the CD39, 5’-NT and adenosine 

deaminase in platelets isolated from the diabetic rats, they showed that quercetin 

(5-200 µM) significantly inhibited ATP, ADP and AMP hydrolysis and ADA activity. 

This is partially consistent with the notion in the present study that quercetin 

modulates purine metabolism enzymes leading to changes in the endothelial cell 

energy metabolism. 
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According to the results obtained in Chapter 4 (metabolomics study), it was 

hypothesized that the quercetin-induced changes in the HUVEC metabolism were 

due to interactions between quercetin and the enzymes involved in energy 

metabolism. The present study which involved integrated investigation of all major 

purine metabolism enzymes with quercetin aglycone and its metabolites assisted 

to test this hypothesis. The most significant changes observed after quercetin 

treatments were the reductions in ATP and ADP concentrations and elevations in 

AMP, adenosine and inosine concentrations (Table 4.6).  Although quercetin and 

its individual conjugates were potent inhibitors of CD39 and PNP activities in the 

assays where commercial pure recombinant enzymes were used, the assays 

performed using intact HUVECs or HUVEC protein extracts showed that neither 

quercetin nor its conjugates inhibited CD39 and PNP activities in cellular 

environment. As the CD39 activity was not inhibited by quercetin or its 

metabolites, a possible elevation in the expression of CD39 protein by HUVECs 

together with the minor inhibition of CD73 after quercetin treatment was likely to 

explain the increase in AMP levels. At the same time, quercetin was shown to be a 

potent inhibitor of ADA activity which is consistent with the observation of 

elevations in adenosine concentrations after quercetin treatments in the 

metabolomics study. Nevertheless, PNP activity was not inhibited by quercetin or 

its conjugates, and inosine was being actively metabolized into hypoxanthine. 

Therefore, elevated inosine concentrations observed after quercetin treatments in 

the metabolomics study were most likely due to decreased activity of PNP 

(converts inosine to hypoxanthine) inside the cells possibly due to the decreased 

expression of PNP protein after quercetin treatments. Furthermore, the estimated 

intracellular quercetin concentrations after 10 µM quercetin treatments also 

indicated that the IC50 values obtained for the enzymes tested in the present study 

were achievable in the cellular environment supporting the notion that increased 

adenosine and AMP concentrations were due to the inhibition of adenosine 

deaminase by quercetin and its metabolite Q 3’-O-S and the partial inhibition of 

CD73 by quercetin, respectively. However, it is necessary to investigate the effects 

of quercetin and its metabolites on the expression levels of CD39 protein to 

explain the reductions in ATP and ADP concentrations and the levels of CD73 

proteins in order to explain the elevation in inosine concentrations. 
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Hence, the enzyme activity assays performed in the present study showed that 

quercetin treatments modulate both endo and ecto-enzyme activities in HUVECS 

playing an important role in the alterations observed in endogenous metabolites 

involved in pro- or anti-inflammatory processes.   
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CHAPTER 6: General Discussion 

6.1 Summary of Main Findings 

The overall aim of the research project described in this thesis was to investigate 

the deleterious effects of hyperglycaemia and inflammatory cytokines on vascular 

endothelial cells, with a particular focus on elucidating underlying mechanisms. 

The effects of hyperglycaemic conditions and inflammatory cytokines on 

established physiological markers of endothelial function and the ability of selected 

polyphenols to prevent these negative changes were assessed.  

The main findings were: 

 The inflammatory cytokines TNF-α and IL1-β were shown to induce 

significant changes in CAM surface expression, and the different 

polyphenols induced different responses, pro- and anti-inflammatory, 

depending on concentration and period of exposure. 

 

 The protocol developed for metabolomics study facilitated rapid and 

effective freezing of cellular metabolism and extraction of metabolites. The 

extracted metabolites were analysed using 1H NMR, which produced non-

biased and reproducible results when the effects of several known 

metabolic effectors on HUVECs were tested in the HUVEC model. 

 

 The prevention of deleterious increases in lactate, reductions in the 

concentrations of pro-inflammatory metabolites ATP and ADP and, in 

parallel, increased concentrations of anti-inflammatory metabolites 

adenosine and inosine were observed after quercetin treatments, and these 

alterations were associated with anti-inflammatory properties of quercetin 

that protect vascular endothelial cells against inflammation-induced 

damage. 

 

 Subsequently, the investigation of purine metabolism assisted to explain the 

anti-inflammatory alterations observed in HUVEC energy metabolism after 

quercetin treatments. The inhibition of ADA and CD73 activities with 
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physiological cellular concentrations of quercetin was consistent with the 

elevations observed in adenosine and AMP levels. 

 

 

6.2 Relevance and Importance of the Findings  

Before the project started, there have been no studies reported in the literature 

with regards to the metabolite profile of endothelial cells. Here, it was shown for 

the first time that non-targeted analysis of endothelial cell metabolite profile can be 

achieved using 1H NMR. This approach was applied successfully to reveal the 

alterations in endothelial cell primary metabolism (e.g Krebs cycle, purine 

metabolism) after malonate, high-glucose, TNF-α and polyphenol treatments 

showing that the approach is favourable to be used in future studies by scientists 

to test various biological or chemical effectors on endothelial cell metabolome.  For 

example, consumption of cruciferous vegetables have been associated with the 

reduced risk of cancer and CVD (Zhang et al., 2011, Bosetti et al., 2012), and a 

recent intervention study by Armah and co-workers has shown that consumption 

of a diet rich in high-glucoraphanin broccoli altered plasma metabolite profiles of 

the subjects providing more evidence that the consumption of cruciferous 

vegetables is associated with reduced risk of cancer (Armah et al., 2013). 

Glucosinolates are another type of plant secondary metabolites, and 

glucoraphanin is a glucosinolate which accumulates in vegetables such as 

broccoli, kale and calebrese (Traka et al., 2013). The interesting point is that the 

alterations observed after high-glucoraphanin diet were suggested to be the effect 

of glucoraphanin on mitochondrial dysfunction via the regulation of fatty acid β 

oxidation (reduced acylcarnitines), and cataplerotic and anaplerotic reactions 

(altered amino acid profiles) affecting Krebs cycle. Consequently, the effects of 

glucoraphanin may be explored in HUVEC metabolism using the method 

developed in the present project and obtaining supplementary data for Krebs cycle 

metabolites using LC-MS in order to elucidate the mechanism of the 

glucoraphanin action at cellular levels by confirming its potential effects on 

mitochondrial activity.  
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6.2.1 Quercetin and Its Metabolites Altered HUVEC Energy Metabolism 

6.2.1.1 Reduction in Lactate Production is Promising in Several Different 

Aspects  

The specific tested markers of vascular endothelial cell function were not 

significantly affected after high-glucose treatments. However, the hyperglycaemic 

conditions experienced during diabetes are likely to induce metabolic 

disturbances. In this project, the effects of high-glucose conditions on endothelial 

cell metabolome were explored for the first time. Furthermore, quercetin was 

shown to prevent some of the alterations. The prevention of the increase in lactate 

concentrations by quercetin was not only associated with improved endothelial cell 

function, but it is also a remarkable finding for proposing imminent research 

studies related to cancer biology. Tumour cells were shown to consume relatively 

higher amounts of glucose and accumulate lactate via glycolysis even in the 

presence of oxygen (Warburg Effect) (Hirschhaeuser et al., 2011). Lactate induces 

metastasis through stimulation of tumour-associated fibroblasts to secrete 

hyaluronan (Stern et al., 2002). Moreover, it induces cell migration and VEGF 

production which is fundamental for angiogenesis process to produce new blood 

vessels supplying the tumour with enough oxygen and nutrient to allow 

proliferation of tumour cells (Goetze et al., 2011, Beckert et al., 2006).  

Consequently, lactate concentrations in solid tumours can be used to predict 

metastasis and correlate with survival of patients (Hirschhaeuser et al., 2011, 

Goetze et al., 2011). Therefore, prevention of the elevation in lactate 

concentrations by quercetin is likely to be a promising area for future cancer 

research, and should include effects to elucidate the mechanism at the molecular 

level.  

Another example for the potential use of quercetin would be in pharmaceutical 

industry rather than being a dietary polyphenol which is again related to its effects 

on energy metabolism in cells. Niklas and co-workers have been trying to generate 

an efficient host to produce α1-antitrypsin in a cost effective way in recent years 

(Niklas et al., 2012a, Niklas et al., 2012b, Niklas et al., 2013, Niklas et al., 2011). 

α1-Antitrypsin is a glycoprotein which is necessary for protection against neutrophil 

elastase where inherited low serum levels in patients can result in lung 

emphysema and liver dysfunction leading to death (Petrache et al., 2009, Kelly et 
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al., 2010, Niklas et al., 2013). The intravenous perfusion of pure α1-antitrypsin to 

elevate its serum levels was shown to diminish the rate of mortality in patients 

(The Alpha-1-Antitrypsin Deficiency Registry Study Group, 1998). The fact that 

only human plasma-derived products are licenced by US-FDA for augmentation 

therapy regardless of the attempts to produce recombinant human α1-proteinase 

inhibitors in several different host systems has driven Niklas and co-workers to 

optimize AGE1.HN cell metabolism for α1-antitrypsin production. AGE1.HN cells 

are continuous human brain cells. Continuous cell lines play an important role in 

the pharmaceutical industry, however, they have been known to have 

disadvantages in that their primary metabolism shares similarities with cancer cells 

(Irani et al., 1999). For example, the energy demands in continuous cells are 

similarly supplied mainly via aerobic glycolysis which leads to elevated lactate 

production (Xu et al., 2005). Consequently, lactate lowers the pH of the 

extracellular medium causing growth inhibition (Ozturk et al., 1992). Beside the 

inefficient use of glucose that yields much lower energy via glycolysis (2 mol of 

ATP versus 36 mol ATP), the generation of ammonia during the compensation of 

cellular energy demands via anaplerotic reactions (glutuminolysis) that feeds the 

Krebs cycle represents another drawback. Ammonia has been shown to inhibit 

cellular growth and induce cell death (Newland et al., 1990), and lower product 

quality by affecting protein glycosylation (Yang and Butler, 2000). Irani and co-

workers showed that continuous mammalian cell metabolism can be improved by 

transfecting BHK-21A (Syrian baby hamster kidney) cells line with a plasmid 

containing the cDNA of pyruvate carboxylase (converts pyruvate to oxaloacetate) 

which increased glucose flux into Krebs cycle. As a result, the consumption of 

glucose and glutamine for energy production was reduced together with the 

reduction in lactate concentrations which improved cellular growth. Therefore, this 

metabolomic engineering study managed to manipulate cellular metabolism, 

improving the use of energy source and reducing the generation of unfavourable 

by-products by the cells, and overall demonstrated a promising step for reduced 

production costs. Similarly, Niklas and co-workers showed that increased pyruvate 

supplementation to AGE1.HN cells led to elevated lactate concentrations (Niklas 

et al., 2012b). Consequently, they showed that both reducing the glucose 

concentrations and ceasing pyruvate supplementation improved cell viability and 

elevated α1-antrypsin production by the cells. Therefore their findings also 
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indicated a weakness in the connection of pyruvate flux into the Krebs cycle. 

Furthermore, in another study, they showed that supplementing cell culture media 

with quercetin reduced lactate production by the cells, improved AGE1.HN 

longevity and increased α1-antrypsin yield. They suggested that quercetin 

managed to alter the metabolic phenotype of the cells by channelling pyruvate flux 

into mitochondria and hence improving Krebs cycle. Therefore, when the afore 

mentioned mechanisms and effects of quercetin on the manipulation of cellular 

energy metabolism both in Niklas et al. (2012) and in the present study (reduced 

pyruvate and lactate concentrations) are taken into account, quercetin has been 

shown to be an exogenous effector that may improve the cellular metabolic 

phenotype, specifically by enhancing biopharmaceutical production by the host 

mammalian cells without the need of metabolic engineering. 

Consequently, the fact that quercetin increases the connection between glycolysis 

and the Krebs cycle made it possible to consider a therapy that will involve 

quercetin supplementation of pyruvate carboxylase (PC) deficiency patients 

aiming to minimize detrimental effects of lactic acidosis and related biochemical 

disturbances. PC replenishes the Krebs cycle by converting pyruvate to 

oxaloacetate (Figure 3.15). PC deficiency is a rare (1:250,000 live births) 

autosomal recessive disease, and classified into three forms which are the 

infantile form (Type A, North American form), neonatal form (Type B, French 

Form) and benign form (Type C, Benign form) (Wang et al., 2008). PC actively 

contributes to intermediary metabolism by playing important roles in 

gluconeogenesis, glycogen synthesis, lipogenesis, glycerogenesis, the synthesis 

of amino acids and neurotransmitters, and glucose-dependent insulin secretion, 

and therefore its deficiency may disrupt metabolism in various organs especially 

where relatively high Krebs cycle activity (oxaloacetate flow) is necessary (e.g. 

liver and brain) (Wang et al., 2008, Marin-Valencia et al., 2010). PC deficiency 

manifests itself with the presence of elevated serum lactate concentrations due to 

increased pyruvate concentrations leading to lactic acidosis (> 5 mmol/L lactic 

acid). Ahmed and co-workers applied a treatment involving high doses of 

aspartate and citrate supplementation to a patient with the Type B form of PC 

deficiency (severe lactic acidosis and ketosis, low aspartate and glutamate, 

elevated citrulline and proline, and mild hyperammonemia). They showed that 

feeding anaplerotic reactions to compensate the reductions in oxaloacetate levels 
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was successful in terms of controlling biochemical disturbances. Nevertheless, the 

treatment did not affect the neurological complications observed in the patient. 

Furthermore, Marin-Valencia and co-workers summarised the important 

therapeutic strategies used so far and concluded that the future therapeutic 

applications should attempt to activate Krebs cycle using anaplerotic substrates. In 

summary, there is good evidence showing that quercetin activates the Krebs cycle 

by directing pyruvate flux towards the Krebs cycle although the exact mechanism 

has not been elucidated yet. Therefore, it can be hypothesized that quercetin 

treatment will improve biochemical profiles of patients suffering from pyruvate 

carboxylase deficiency because of its ability to direct excess pyruvate to the Krebs 

cycle. 

 

6.2.1.2 Quercetin and Its Metabolites Altered Purine Metabolism by Directly 

Interacting with the Enzymes Involved In Purine Metabolism  

The other remarkable discovery in this project was the ability of quercetin to alter 

purine metabolism. Both the prevention of increases in lactate concentrations 

during inflammatory conditions and the alteration in energy metabolites might be 

due to different properties of quercetin and its metabolites (e.g. inhibition of 

particular enzymes, alteration of gene expression and effect on signalling 

pathways). Since several polyphenols are known to interact with proteins (Nozaki 

et al., 2009, Rawel et al., 2005), and several polyphenols have been shown to 

inhibit some of the enzymes involved in purine metabolism, the hypothesis that the 

polyphenols altered energy metabolite concentrations in HUVECs by directly 

affecting activities of the enzymes (e.g. inhibition of enzyme) involved in purine 

metabolism was investigated in more details under in vitro conditions. The work 

presented here is the most comprehensive study reported to date and includes 

testing the effects of both quercetin and its metabolites on the activities of all the 5 

major enzymes involved in purine metabolism so far.  

Polyphenol classes differ in structure, and this difference influences the effects of 

different polyphenols on the purine metabolism enzymes. For example, Schmatz 

and co-workers showed that quercetin was a potent inhibitor of the hydrolysis of 

ATP and ADP in platelets from diabetic rats (Schmatz et al., 2013) whereas 
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quercetin did not affect the hydrolysis of ATP and caused only minor inhibition of 

ADP in HUVECs. Therefore, this project broadened the literature indicating that 

more research is needed to elucidate the polyphenol mechanism of action on 

CD39 enzyme, and it should be noted that the effects of quercetin on the purine 

metabolism enzymes in different cell types may differ.   

 

6.2.2 HUVECs Metabolized Quercetin Producing Methylated and Sulfated 

Conjugates 

Polyphenols have been shown to be metabolized by a limited number of cell types. 

The majority of reported studies were with intestinal, colon or kidney cells, and 

there is no information reported in the literature regarding quercetin metabolism in 

HUVECs. In this project, quercetin was shown to be taken up and rapidly 

metabolized by HUVECs. The identified metabolites were then tested for their 

effects on purine metabolism enzymes to observe whether quercetin or its 

metabolites were responsible for the alteration observed. The observation of 

variable effects of quercetin metabolites depending on position and nature of the 

conjugated group indicated that these metabolites may have specific biological 

actions. Therefore, it is now logical to suggest that the polyphenol uptake and 

metabolism should always be investigated as part of cell model-based studies. 

 

6.3 The Use of Venous Endothelial Cells Might be a Limitation to 

the Study 

Atherosclerosis is the disease of arteries (Berliner et al., 1995). However, in this 

project, venous endothelial cells were used. This may account as a limitation to 

the study because differences were observed between the two cell types. Apart 

from the obvious difference that arteries manage oxygenated blood flow whereas 

veins manage deoxyganeted blood flow, there were several other differences 

observed between arterial and venous endothelial cells. Deng and co-workers 

compared both basal and oxLDL-stimulated (atherogenic stimuli) gene expression 

profiles of human saphenous vein endothelial cells (SVECs) and coronary artery 

endothelial cells (CAECs) (Deng et al., 2006). Interestingly, the basal gene 

expression profiles of the two cell types differed significantly and 1129 genes were 
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differently expressed between them. They revealed that the venous arterial cells 

over-expressed genes involved in protection against endothelial dysfunction 

(which is a fundamental process in the initiation of atherosclerosis) compared to 

coronary artery cells. Consequently, they showed that oxLDL stimulation of the 

cells increased the expression of the genes involved in cell proliferation and 

apoptosis in CAECs, whereas these genes were not affected in SVECs after 

oxLDL stimulation. Therefore, the atheroprotective gene expression patterns in 

vein endothelial cells might be the reason explaining why high-glucose did not 

affect endothelial cell proliferation and cell adhesion molecule expression in this 

project.  

 

6.4 Future Work  

One of the major findings of this project was that quercetin treatments modified 

purine metabolism (ATP, ADP, adenosine and inosine concentrations). This 

observation was important because alterations in purine metabolism have the 

potential to alter purinergic signalling which might contribute to the regulation of 

inflammatory responses in the endothelial cells under hyperglycaemic conditions 

that mimic the diabetic state. However, this project did not involve targeted studies 

designed to demonstrate if changes in anti-inflammatory processes were due to 

altered purinergic signalling. Therefore, the potential of quercetin and its 

metabolites to alter purinergic signalling directs future research towards the 

determination of whether the quercetin-induced alterations in purine metabolism 

modulate ATP and adenosine receptors activation and initiation of anti-

inflammatory events.  

In this respect, subsequent research would need to involve a series of 

experimental approaches that would provide a more comprehensive set of 

observations. First, it would be useful to determine the effects of quercetin on 

expression of purine metabolising enzymes to confirm whether ATP and ADP 

hydrolysis and inosine accumulation are due to increased levels of CD39 and 5’-

NT proteins. At the same time, a more sensitive LC-MS method needs to be 

developed so that quantification of extracellular concentrations of ATP, ADP and 

AMP could be possible. This would facilitate the investigation of the effects of 
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quercetin on ATP and ADP release from HUVECs. In parallel, the effects of 

quercetin on adenosine transporters should be assessed in order to elucidate if 

they contribute to the elevations observed in extracellular adenosine 

concentrations. Subsequently, the effects of quercetin and high-glucose/TNF-α 

treatments on the inflammatory status of the cells should be compared in the 

presence and absence of inhibitors of adenosine receptors. This could be 

assessed by investigating several factors such as alterations in NF-κB activation, 

cell adhesion molecule expression and endothelial cell barrier function which have 

been previously shown to be affected by the activation of adenosine receptors. 

More potent inflammatory responses may be observed after high-glucose or pro-

inflammatory cytokine treatments when arterial endothelial cells are used because 

arterial endothelial cells are more vulnerable to atherogenic stimuli compared to 

vein endothelial cells (Deng et al., 2006). Therefore, it would be useful to 

investigate the effects of quercetin on the energy metabolite concentrations in 

human arterial endothelial cells (HAECs). According to the results, the next step 

could involve investigation of the effects of quercetin and its metabolites on the 

purine metabolism enzymes in HAECs. After confirming the effects of polyphenol 

treatments on arterial endothelial cells, a potential animal study would provide 

extremely valuable data since the reported animal and human studies in the 

literature have been mostly focused on the effects of quercetin supplementation on 

selected markers (Dias et al., 2005, Davis et al., 2008, Askari et al., 2012), and 

there are no reported studies focused on alterations in energy metabolite levels 

and the activities of the enzymes investigated here, except for xanthine oxidase 

(Abbey and Rankin, 2011).  

Therefore, a comprehensive animal study which would investigate the effects of 

quercetin supplementation on the levels of energy metabolites and the enzymes 

involved in purine metabolism and their activities could provide valuable 

information. In addition, physiological evidence could relate potential alterations in 

energy metabolites to their biological effects on atherosclerotic plaque formation in 

animals. For example mouse models of diabetes and atherosclerosis such as 

streptozotocin (STZ)-induced diabetic mice (Ito et al., 2001) and apolipoprotein E 

deficient mice (ApoE -/-) (Chatzigeorgiou et al., 2009) both of which are prone to 

developing atherosclerosis could be used for this purpose. The proposed animal 
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study would involve supplementing the mice with quercetin which may be in oral or 

intravenous forms. The dose and duration of the treatment could be determined 

either by reviewing previously published study reports or performing preliminary 

treatments to set the optimum dose and duration. After the treatment period, blood 

would be collected from animals in order to determine the effects of quercetin 

treatments on plasma concentrations of ATP, ADP, AMP, adenosine, inosine and 

xanthine, and platelet aggregation. The isolated platelets would be used to 

measure the activities of purine metabolism enzymes. Furthermore, pro-

inflammatory markers which are closely associated with purinergic signalling could 

be assessed. The effects of quercetin treatment on NF-κB activation could be 

investigated together with its downstream effects on IFN-γ and inducible nitric 

oxide synthase (iNOS). Therefore, at this point, another treatment group which 

would be supplemented by adenosine may be useful to determine whether the 

changes observed after quercetin treatments were due to adenosine receptor 

activation. Similarly, treating mice with inhibitors of purinergic receptors would 

indicate whether the changes are due to altered ATP concentrations.  

The reductions in lactate concentrations after quercetin treatments are also 

interesting because that may have therapeutic potential in cancer and pyruvate 

carboxylase deficiency disease. Further, this may be useful in pharmaceutical 

industry with the potential to improve the yield and quality of recombinant proteins 

produced by mammalian host cells. It is now logical to propose the investigation of 

the contributions of a potential inhibition in lactate dehydrogenase activity 

(converts pyruvate to lactate) by quercetin and its metabolites to the reductions 

observed in lactate concentrations. In parallel, studies should be designed to 

assess the effects of quercetin on the flux of pyruvate into the Krebs cycle since it 

is another potential mechanism to explain the observed reductions in lactate 

concentrations.   
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Supplementary Information 

The metabolite concentrations measured for HUVEC extracts (intracellular 

metabolites) and cell culture media samples (extracellular metabolites) using 

HILIC mode LC-MS method are presented below:  

Table S 1: Metabolite concentrations for HUVEC extracts after high-glucose and 

quercetin treatments.  

 High-glucose (18 h)  Quercetin (2 h) + High-glucose (18 h) p-value 

ATP 29.3±4.147 µM 12.8±6.662 µM p<0.01 

ADP 2.40±0.273 µM  1.5±0.798 µM p<0.05 

AMP 0.17±0.039 µM 0.21±0.068 µM p>0.05 

Adenosine 0.29±0.055 µM 0.26±0.106 µM p>0.05 

Inosine 0.52±0.091 µM 1.07±0.029 µM p<0.05 

Xanthine 0.55±0.083 µM 0.46±0.149 µM p>0.05 

NAD
+ 

5.42±0.495 µM 3.64±1.492 µM p<0.01 

 

 

Table S 2: Metabolite concentrations for extracellular media samples after high-

glucose and quercetin treatments. 

 High-glucose (18 h) Quercetin (2 h) + High-glucose (18 h) p-value 

Adenosine 0.05±0.001 µM 0.05±0.002 µM p>0.05 

Inosine 2.23±0.148 µM 6.67±0.545 µM p<0.01 

Xanthine 2.63±0.105 µM 2.48±0.065 µM P<0.05 
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Table S 3: Metabolite concentrations for HUVEC extracts after TNF-α and 

quercetin treatments. 

 TNF-α (6 h) Quercetin (2 h) +TNF-α (6 h) p-value 

AMP 0.33±0.053 µM 0.29±0.056 µM p>0.05 

Adenosine 0.06±0.036 µM 0.12±0.036 µM p<0.05 

Inosine 4.89±0.563 µM 9.07±0.075 µM p<0.001 

Xanthine 0.59±0.046 µM 0.66±0.022 µM p>0.05 

NAD
+ 

2.94±0.265 µM 3.00±0.263 µM p>0.05 

 

 

Table S 4: Metabolite concentrations for extracellular media samples after TNF-α 

and quercetin treatments. 

 TNF-α (6 h) Quercetin (2 h) +TNF-α (6 h) p-value 

Adenosine 0.02±0.006 µM 0.02±0.007 µM p>0.05 

Inosine 22.5±0.852 µM 35.8±1.546 µM p<0.001 

Xanthine 2.13±0.282 µM 2.15±0.173 µM 

 

P>0.05  
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Table S 5: Metabolite concentrations for HUVEC extracts after quercetin treatment 

(2 h). 

 Unstimulated (2 h) Quercetin (2 h)  p-value 

AMP 0.25±0.036 µM 0.24±0.033 µM p>0.05  

Adenosine 0.24±0.130 µM 0.49±0.151 µM p<0.05 

Inosine 6.11±1.224 µM 7.33±1.187 µM p>0.05 

Xanthine 0.30±0.051 µM 0.29±0.045 µM p>0.05 

 

 

Table S 6: Metabolite concentrations for extracellular media samples after 

quercetin treatment (2 h). 

 Unstimulated (2 h) Quercetin (2 h)  p-value 

Adenosine 0.03±0.130 µM 0.04±0.151 µM p<0.05 

Inosine 37.8±0.756 µM 45.4±1.098 µM p<0.01 

Xanthine 2.57±0.047 µM 2.64±0.120 µM p>0.05 
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Table S 7: Metabolite concentrations for HUVEC extracts after quercetin treatment 

(8 h). 

 Unstimulated (8 h) Quercetin (8 h)  p-value 

AMP 0.24±0.050 0.36±0.045 p<0.05 

Adenosine 0.07±0.015 µM 0.05±0.025 µM p>0.05 

Inosine 4.37±0.707 µM 8.56±0.656 µM p<0.01 

Xanthine 0.63±0.126 µM 0.62±0.055 µM p>0.05 

NAD
+ 

3.57±0.495 µM 3.21±1.492 µM p>0.05 

 

 

Table S 8: Metabolite concentrations for extracellular media samples after 

quercetin treatment (8 h). 

 Unstimulated (8 h) Quercetin (8 h)  p-value 

Adenosine 0.01±0.003 µM 0.01±0.002 µM p>0.05 

Inosine 21.4±1.563 µM 35.9±0.891 µM p<0.01 

Xanthine 2.15±0.244 µM 2.24±0.229 µM p>0.05 
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Table S 9: Metabolite concentrations for HUVEC extracts after quercetin treatment 

(20 h). 

 Unstimulated (20 h) Quercetin (20 h)  p-value 

ATP 29.0±2.978 µM 20.2±3.281 µM p<0.01 

ADP 2.6±0.619 µM 1.87±0.548 µM p<0.05 

AMP 0.19±0.050 0.21±0.045 p<0.05 

Adenosine 0.23±0.056 µM 0.37±0.216 µM p<0.05 

Inosine 0.42±0.040 µM 1.147±0.157 µM p<0.01 

Xanthine 0.46±0.039 µM 0.50±0.048 µM p>0.05 

NAD
+ 

5.90±0.346 µM 4.46±0.191 µM p<0.01 

 

 

Table S 10: Metabolite concentrations for extracellular media samples after 

quercetin treatment (20h). 

 Unstimulated (20 h) Quercetin (20 h)  p-value 

Adenosine 0.05±0.008 µM 0.054±0.002 µM p>0.05 

Inosine 2.10±0.060 µM 6.38±0.271 µM p<0.01 

Xanthine 2.66±0.049 µM 2.49±0.025 µM p<0.01 
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