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Abstract 
 

The theory of quantum electrodynamics is employed in the description of linear and 

nonlinear optical effects.  We study the effects of using a two energy level 

approximation in simplifying expressions obtained from perturbation theory, 

equivalent to truncating the completeness relation.  However, applying a two-level 

model with a lack of regard for its domain of validity may deliver misleading results.  

A new theorem on the expectation values of analytical operator functions imposes 

additional constraints on any atom or molecule modelled as a two-level system.  We 

introduce measures designed to indicate occasions when the two-level approximation 

may be valid.   

 

Analysis of the optical angular momentum operator delivers a division into spin 

and orbital parts satisfying electric-magnetic democracy, and determine a new 

compartmentalisation of the optical angular momentum.  An analysis is performed on 

the recently rediscovered optical chirality, and its corresponding flux, delivering 

results proportional to the helicity and spin angular momentum in monochromatic 

beams.  A new polarisation basis is introduced to determine the maximum values that 

an infinite family of optical helicity- and spin- type measures may take, and disproves 

recent claims of ‘superchiral light’.  A theoretical description of recent experiments 

relate helicity- and spin- type measures to the circular differential response of 

molecules, and show that nodal enhancements to circular dichroism relate only to 

photon number-phase uncertainty relation and do not signify ‘superchiral’ regions.  

The six-wave mixing of optical vortex input, in nonlinear media, demonstrates the 

quantum entanglement of pairs of optical vortex modes.  The probability for each 

possible output pair displays a combinatorial weighting, associated with Pascal’s 

triangle.   

 

 A quantum electrodynamic analysis of the effect of a second body on absorption 

can be extended by integrating over all possible positions of the mediator molecules, 

modelling a continuous medium.  This provides links with both the molecular and 

bulk properties of materials. 
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Preface 
 

Quantum electrodynamics emerges from the application of quantum field theory to 

problems of electromagnetic origin, and describes, with unparalleled accuracy, 

phenomena involving light and matter.  In this thesis, quantum electrodynamics is 

applied to molecular systems, using the formulation developed by D. P. Craig, E. A. 

Power and T. Thirunamachandran.  Moreover, quantum optical techniques are 

employed in the description of various conserved electromagnetic quantities of 

interest, notably optical angular momentum.  

 

Chapter One is intended as an introduction to (and derivation of) the methods 

used in this thesis to describe light, matter and their interaction, and loosely follows 

the structure of the first chapters of Molecular Quantum Electrodynamics by Craig 

and Thirunamachandran.  It develops a fully quantised framework by which we may 

analyse problems in quantum and nonlinear optics.  Formally, the QED Lagrangian is 

shown to lead to the correct equations of motion for a system comprising the 

electromagnetic field and a system of electrons, bound by atomic and molecular 

potentials.  A gauge transformation is applied so that the emerging Hamiltonian 

models the system of particles as electric and magnetic multipoles.  This formulation 

lends itself to perturbation theory, where the light-matter interaction is weak 

compared with the Coulomb binding between the electrons and the nuclei.  Thus, the 

atomic, molecular and optical problems discussed in this thesis are given a theoretical 

basis on which they can be analysed.   

 

Chapter Two presents a theoretical study of the validity of the two-level 

approximation, generally and in the context of nonlinear optics.  In both analytical and 

computational settings, it is determined that the use of a two-state model without full 

cognisance of its limitations delivers potentially misleading results.  A new analytical 

theorem on the expectation values of quantum operators shows the invalidity of the 

two-level approximation in even simple systems.  Furthermore, the two-level 

approximation when applied to the optical susceptibility tensors of nonlinear optical 

processes is discussed, and the commonly held idea that ‘push-pull’ chromophores are 

associated with enhanced second harmonic response is disproved.  It is shown that ab 



 

 

initio calculations (performed by collaborators Peck and Oganesyan), combined with 

introduction of an error-gauging parameter, indicates that for two specified molecules 

the two-level approximation is valid in the case of Rayleigh scattering and invalid in 

the case of second harmonic generation.  Finally, it is proved that the number of terms 

in the pth-order optical susceptibility is a polynomial of order n(p-1), where n is the 

number of energy levels included in the sum-over-states computation, which puts 

these calculations in the class of problems quickly solvable by a computer.   

 

Chapter Three departs from the nonlinear optics of Chapter Two, to discuss the 

electromagnetic field in free-space.  This chapter develops a precise quantum optical 

framework for the study of optical angular momentum.  The new results from such an 

analysis emerge in terms of number operators and expectation values, delivering both 

qualitative and quantitative insight, and also perfectly mirror the results of other 

researchers (Bliokh and Nori), who use a purely classical framework.  It is shown that 

a new analysis of the optical angular momentum allows division into parts that satisfy 

duplex symmetry.  Introduction of a general Poincaré sphere representation of 

polarisation determines the orbital and spin parts of the angular momentum as 

dependant on the sum and difference of number operators for modes of opposing 

helicity, respectively.  These results are extended to the case of beams with orbital 

angular momentum.  A similar analysis of the optical chirality density and 

corresponding flux shows that they are proportional only to differences of number 

operators for modes of opposing helicity.  Introduction of a Laguerre-Gaussian basis 

reveals that beams with nonzero values of the optical chirality also do not possess 

orbital angular momentum characteristics.  The infinite hierarchy of helicity- and 

spin- type measures, introduced by Cameron, Barnett and Yao, all emerge with 

similar quantum operator form: identical to the helicity and spin operators, except 

with an additional k2 inside the mode summation for each successive pair of operators.  

Such analysis disproves the recent claim that light with nonzero values of optical 

chirality can differentiate between left- and right- handed molecules many times better 

than pure circularly polarised light.  This novel quantum optical analysis proves that 

the maximum (or minimum) value any helicity- or spin- type measure can take is that 

of pure left- or right- handed light.   

 

Chapter Four combines the nonlinear optical techniques developed in Chapter 



 

 

Two and the quantum optical techniques developed in Chapter Three.  It is shown 

that, when taking expectation values, measureable electromagnetic quantities must 

contain equal numbers of annihilation and creation operators.  This avoids the 

introduction of a rapidly oscillating phase factor, the real part of which averages to 

zero in any realistic measurement.  The first quantum electrodynamic treatment of 

recent experiments is presented, calculating the rates of circular differential processes 

and their relation to measures of helicity, spin and recently rediscovered measures of 

chirality.  The increase in circular dichroism at regular intervals from the mirror 

corresponds to Tang and Cohen’s claim of nodal enhancements and is proven to be 

associated only with the known behaviour of the electromagnetic field vectors.  

Furthermore, any increase or decrease in differential response at these locations is 

shown to be limited by the phase-photon number uncertainty principle and displays 

features associated with the reported shot-noise, deriving from the quantum nature of 

light.  A section on the new theoretical analysis of six-wave mixing of optical vortices 

demonstrates the quantum entanglement of pairs of optical vortex modes, where the 

probability for each output displays a neat combinatorial weighting, associated with 

Pascal’s triangle.  

 

In Chapter Five, a new nonlinear optical technique is detailed, which extends a 

quantum electrodynamic framework for the effect of a third body on absorption by 

integrating over all possible positions of the mediator molecules.  Developing such a 

theory provides links with both the molecular and bulk properties of materials.  

Moreover, it is determined which properties need to be optimised in order to tailor the 

medium modified effect. 

 

In Chapter Six, the new work done in this thesis is summarised and possible 

avenues of further investigation are identified. 
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Chapter 1 

Introduction 

 

 

 

 

“On account of its extreme complexity, most physicists will be very glad to see the end 

of [QED]” – Paul A. M. Dirac† 

 

“It is my task to convince you not to turn away because you don't understand it. You 

see my physics students don't understand it... That is because I don't understand it. 

Nobody does.” – Richard P. Feynman‡ 

 

 

 

 

 

 
†Kragh, Helge S., Dirac: A scientific biography (Cambridge University Press, 1990).  
‡Feynman, Richard P., QED: The Strange Theory of Light and Matter (Princeton University Press, 1988). 
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1.1  Background 

 

Quantum electrodynamics (QED) is the analytical tool of choice for the description of 

the electromagnetic field, the charge distributions in systems of matter, and the 

interaction between the two.  Precisely, QED is a relativistic quantum field theory of 

electrodynamics.  In simple terms, this means that both the matter and radiation are 

quantised and treated relativistically; it is this full treatment that gives rise to the 

remarkable precision tests of this theory [1–4].  It has unparalleled success in 

describing the physical world.  For example, the QED prediction and the experimental 

value of the anomalous magnetic moment of the electron agree to more than ten 

significant figures [5]: this is the most accurately verified prediction in the history of 

physics.   

 

In its region of applicability, QED gives qualitative and quantitative insight 

unmatched by either classical electrodynamics, or semi-classical theory (in which the 

matter is treated quantum mechanically and the radiation is described classically).  In 

QED formulations, the radiation is described quantum mechanically and, as a 

consequence of being modelled as a set of harmonic oscillators, its ground state has a 

non-zero energy expectation value.  Therefore, there exists zero-point energy that 

influences matter, and explains deviations from classical and semi-classical theory.  

For example, both QED and semi-classical theory deliver the same result for 

stimulated emission, but only the former acknowledges vacuum fluctuations that drive 

the perturbations responsible for ‘spontaneous’ emission [6].  Furthermore, it is only 

by considering the quantum nature of the optical field that, for example, the difference 

in energies between the 2S1/2 and the 2P1/2 orbitals of the hydrogen atom (Lamb shift 
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[7]) or the force between two uncharged metal plates in a vacuum (Casmir effect 

[8,9]), and the related Casimir-Polder interaction [10], can be accounted for.   

 

 In 1927, Paul Dirac published a formulation of quantum theory, which, for the 

first time, incorporated special relativity, and correctly computed the Einstein A-

coefficient for spontaneous radiative emission of an atom [11].  He went on to derive, 

what later came to be known as, the Dirac equation: a relativistic generalisation of the 

Schrödinger wave equation that predicted the existence of anti-matter [12] and led to 

his awarding of the Nobel Prize for Physics in 1933.  The early contributions of, 

among others, Fermi, Heisenberg and Pauli [13] indicated that any processes 

involving the interaction of light and matter would be computable.  However, it was 

quickly discovered by Oppenheimer [14] and others [15,16] that only the first-order 

perturbative contributions to the theory could be guaranteed to be finite.  Higher order 

terms involved infinities, which were believed to indicate an insurmountable 

inconsistency between quantum theory and special relativity.  

 

 The concept of renormalisation was first incorporated into QED by Hans Bethe 

in the late 1940s [17] with his calculation of the Lamb shift.  Generalisation of this 

work delivered a Lorentz covariant formulation of QED with a perturbation series that 

was finite to any order, and earned its discoverers: Richard Feynman [18–20], Julian 

Schwinger [21,22] and Sin-Itiro Tomonaga [23], the Nobel prize for physics in 1967.  

Initially, the formulations of Feynman, Schwinger and Tomonaga seemed quite 

different; the former relying heavily on Feynman diagrams and the latter centred on 

operators in quantum field theory.  However, in 1949 Freeman Dyson showed that the 

superficially different approaches were, in fact, equivalent [24].  Feynman (or time-
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ordered) diagrams were introduced as a way to visualise the terms in the equations of 

QED.  For example, in a simple scattering process an atom (or molecule) absorbs a 

photon of light and then re-emits it; less obviously, calculation of the probability 

amplitude requires an additional term that corresponds to the photon being emitted 

before it is absorbed.  Although counterintuitive, without this term the predictions of 

the theory are inexact.  For situations where large numbers of light-matter interactions 

take place (for example, in harmonic generation and n-wave mixing), the number of 

Feynman diagrams is also large and a state-sequence diagrammatic method becomes 

more useful.   

 

 The Lorentz covariant or relativistic formulation of QED is necessary when 

dealing with charged (or uncharged) particles moving at, as the name suggests, 

relativistic speeds.  For the systems discussed in this thesis, it is appropriate to 

consider atomic or molecular states – or, more precisely, electron fields that are bound 

in an electromagnetic potential generated by nuclei.  Non-relativistic or molecular 

QED was first formulated by Edwin Power and Sigurd Zienau in 1959 [25] and the 

Power-Zienau-Woolley representation [26,27] is the most convenient way of 

modelling the interaction of bound charges with the electromagnetic field.   

 

 The non-relativistic formulation of QED was later clarified in a series of works 

by Edwin Power and Thuraiappah Thirunamachandran [28–32], in which, along with 

a new perspective on fundamental theory, they tackled intermolecular interactions 

such as electronic energy transfer (EET).  Later, molecular QED had many of its own 

successes, distinct from the successes of the QED associated with particle physics, 

such as further unifying studies on EET [33,34], and the related laser assisted resonant 
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energy transfer (LARET) [35].  Furthermore, molecular QED laid the foundation of 

Rayleigh and Raman optical activity [36], second harmonic generation in randomly 

oriented media [37], four-wave mixing [38] and multiphoton absorption spectroscopy 

[39].   

 

 

1.2.  The macroscopic electromagnetic field 

 

Classical electrodynamics is an excellent description of the electromagnetic field 

when quantum effects are negligible and, when this is true, is compatible with 

Maxwell’s equations.  The most well-known version of the macroscopic version of 

these equations is [6]: 

 

;trueρ∇⋅ =D   (1.2.1) 

0;∇⋅ =B   (1.2.2) 

;
t

∂∇× = −
∂
BE   (1.2.3) 

.true

t
∂∇× = +
∂
DH J   (1.2.4) 

 

These equations give the relationship between the charges - represented by the charge 

density trueρ  and the related charge current trueJ - and the four field vectors 

( ) ( ) ( ), , , , ,t t tE r B r D r  and ( ), tH r .  The vectors E  and B  represent the electric 

and magnetic fields, and may exist even in regions where there are no charges, i.e. in 

source-free space.  The vectors D  and H  are the auxiliary fields and are basically the 
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electric and magnetic fields, respectively, when modified by matter in that region.  

Precisely, they are given by [40]: 

 

0 ;ε= +D E P   (1.2.5) 

0

1 ,
µ

= −H B M   (1.2.6) 

 

where 0ε  and 0µ  are the electric permittivity and magnetic permeability, respectively,  

of free space.  Here ( ), tP r  is the polarisation field and ( ), tM r  is the magnetisation 

field, which, as mentioned above, represent the charges not included in the true charge 

density and current.  Therefore, given a certain { }, , ,true trueρ J P M  and it is possible 

to calculate (not necessarily analytically) the E  and B  fields at every point subject to 

some specified boundary conditions.  Furthermore, adding the Lorentz force: 

 

( ) ,eF = E + v×B   (1.2.7) 

 

to our system of equation allows, with the help of the classical equations of motion, 

the calculation of the trajectory of a point particle with charge e  and velocity v .  

 

 

1.3. The microscopic electromagnetic field 

 

The polarisation and magnetisation fields are bulk quantities and are suitable for 

macroscopic problems.  In the microscopic formulation of electromagnetism, 
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however, the bulk fields are removed, in favour of the constituent charges and 

currents,  

 

;bulkρ = −∇⋅P   (1.3.1) 

.bulk

t
∂=∇× +
∂
PJ M   (1.3.2) 

 

It is then straightforward to define the total charge and current as: 

 

;true bulkρ ρ ρ= +   (1.3.3) 

.true bulk= +J J J   (1.3.4) 

 

Using these relations, we obtain the microscopic version of Maxwell’s equations, 

which are written in terms of lower case variables to make clear the distinction with 

the macroscopic field: 

 

0

;ρ
ε

∇⋅ =e    (1.3.5) 

0;∇⋅ =b    (1.3.6) 

;
t

∂∇× = −
∂
be    (1.3.7) 

02
1 ,
c t

µ∂∇× = +
∂
eb j   (1.3.8) 

   

where 2
0 0 1c ε µ =  can be used to eliminate one of the free space constants.  

Furthermore, the charge and current are not considered here in terms of some 
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continuous charge distribution, but are more accurately portrayed as particles indexed 

by α , with charge eα  and position vector αq .  The charge density and current are 

then given by, 

 

( ) ( );eα α
α

ρ δ= −∑r r q   (1.3.9) 

( ) ( ),e
t
α

α α
α

δ∂= −
∂∑ qj r r q   (1.3.10) 

 

where ( )αδ −r q  is the Dirac delta function, characterised by its two properties [41]: 

 

( ) 0,
;

,
α

α
α

δ
≠

− = +∞ =

r q
r q

r q
   (1.3.11) 

  

( ) 1.
V

dV αδ − =∫ r q   (1.3.12)  

 

 

1.4.  Gauge transformations 

 

It is a standard result of mathematics that if the divergence of a vector field vanishes, 

then the field can be expressed as the curl of an underlying field [42].  As the 

magnetic field, Eq.(1.3.6), satisfies this condition we introduce the vector potential: 

 

.=∇×b a   (1.3.13)  
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Substituting this expression into Faraday’s law, Eq. (1.3.7), delivers 

 

0.
t

∂ ∇× + = ∂ 
ae   (1.3.14) 

 

The term inside the brackets satisfies the condition for a curl free field, which means 

that it can be expressed as the gradient of a scalar field [41]: 

 

,
t

φ∂+ = −∇
∂
ae   (1.3.15) 

 

where φ  is called the scalar potential.  We choose the right hand side of Eq. (1.3.15) 

to have a negative sign with the foresight that it will be convenient later.   

 

 As above, the curl of the gradient of a scalar field is necessarily zero.  Thus, 

making the substitutions: 

 

;χ→ +∇a a    (1.3.16) 

,
t
χφ φ ∂→ −
∂

  (1.3.17) 

 

leaves Eq. (1.3.13) and (1.3.15) unchanged; this is known as a gauge transformation.  

This means that any choice of scalar field, χ , will give a set of potentials ( ),φa  that 

all deliver the same pair of e  and b  fields. 
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 It is curious to note that the electric and magnetic fields do not seem to be on 

equal footing in this formulation; the former is delivered as the time derivative of the 

underlying vector potential, whereas the latter is the curl.  The central theme of 

electromagnetic theory is that electricity and magnetism are different manifestations 

of the same phenomena; a suitable Lorentz transformation replaces the electric force 

with the magnetic force (or vice versa) in any given system.  This is often called the 

electric-magnetic democracy [43,44].  The key point here is that in source-free space 

the charge density is zero and the electric field is also divergence-free; the electric 

field can then also be represented as the curl of some underlying potential (normally, 

denoted c ).  Thus, it is the presence of matter that breaks the electric-magnetic 

symmetry.  

 

  Up to this point we have only used two, Eq. (1.3.6) and (1.3.7), of Maxwell’s 

equations; we may use the remaining two to establish the connection between the 

potentials, Eq. (1.3.13) and (1.3.15), and the charge distribution.  Combining the 

expression for the scalar potential, Eq. (1.3.15), and Gauss’ law, Eq. (1.3.5), reveals: 

 

2

0

.
t

ρφ
ε

∂∇ + ∇⋅ = −
∂

a    (1.3.18) 

 

Use of expressions for both the scalar and vector potentials, Eq. (1.3.13) and (1.3.15), 

along with the modified Ampère’s law, Eq. (1.3.8), gives 

 

( )
2

2
02 2 2

1 1 .
c t c t

φ µ∂ ∂ ∇ − −∇ ∇⋅ − ∇ = − ∂ ∂ 
aa a j   (1.3.19) 

 



Chapter 1: Introduction 

 - 11 - 

Now the sources have been related to the potentials, we can choose a particular gauge 

that can simplify Eq. (1.3.18) and (1.3.19); this is a process known as gauge fixing.  

 

 

1.4.  Gauge fixing 

 

The most commonly used gauges in the study of electromagnetism are the Lorenz 

[45] and Coulomb gauges, although, depending on the situation, others (Landau, 

Feynman-‘t Hooft, Yennie etc. [46]) may make calculations easier.  In the Lorenz 

gauge, the choice of vector potential is partially fixed by the condition: 

 

0 0 .
t
φε µ ∂∇ ⋅ = −
∂

a    (1.4.1) 

 

For problems involving particles moving at relativistic speeds, the Lorenz gauge is the 

most appropriate choice to deliver a manifestly Lorentz invariant formulation of 

quantum electrodynamics.  In this framework, the scalar potential is driven by the 

charge density and the vector potential by the currents. 

 

 To address the interaction of light with non-relativistic molecular states, we 

develop a non-covariant QED framework; to this end the Coulomb gauge, 

 

0,∇⋅ =a    (1.4.2) 

  

is most convenient.  Proof that it is always possible to choose a vector potential that 

satisfies this condition is presented in Appendix A.  Substitution of the Coulomb 
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gauge condition, Eq. (1.4.2), into Eq. (1.3.18) and (1.3.19) produces: 

 

2

0

;ρφ
ε

∇ =    (1.4.3) 

2
2

02 2 2
1 1 .
c t c t

φ µ ∂ ∂ ∇ − = ∇ −   ∂ ∂  
a j    (1.4.4) 

 

 Considering the vector potential is never measured or observed, it will be 

instructive to relate Eq. (1.4.3) and (1.4.4) to the electric and magnetic fields.  First, 

we decompose the electric and magnetic fields into the transverse and longitudinal 

parts,  

 

;⊥= +e e e    (1.4.5) 

,⊥b = b +b   (1.4.6) 

 

respectively.  Since, at least in currently observed situations, there are no magnetic 

monopoles, Eq. (1.3.6), the magnetic field is purely transverse: .⊥=b b   In free space, 

this is also true for the electric field.  However, in the presence of charges the e  field 

has both transverse and longitudinal parts, 

 

;
t

⊥ ∂∇× =∇× = −
∂
be e   (1.4.7) 

0

,ρ
ε

∇⋅ =∇⋅ =e e   (1.4.8) 

 

respectively.  Taking the remaining Maxwell equation, Eq. (1.3.8) and substituting the 
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above transverse/longitudinal split delivers: 

 

02
1 ,
c t

µ∂ = −
∂
e j


   (1.4.9) 

 

where ⊥= +j j j  are the transverse and longitudinal components of the current.  

Clearly, Eq. (1.4.9) along with Eq. (1.4.8), represents the equation of local 

conservation for charge and current.  Furthermore, the transverse component of the 

current can be obtained as:  

 

02
1 .
c t

µ
⊥

⊥∂∇× = +
∂
eb j   (1.4.10) 

 

In the Coulomb gauge, there is no longitudinal component of the vector potential and 

no transverse component of the scalar potential, which allows complete 

characterisation of the electric and magnetic fields in terms of the underlying 

potentials: 

 

;φ= −∇e   (1.4.11) 

;
t

⊥ ∂= −
∂
ae   (1.4.12) 

0;=b   (1.4.13) 

.⊥ =∇×b a   (1.4.14) 

 

Thus, using Eq. (1.4.2), allows decoupling of the vector potential and the transverse 

current from the scalar potential and the longitudinal current.  Eq. (1.4.4) and (1.4.3) 
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become: 

 

2
2

02 2
1 ;
c t

µ ⊥ ∂∇ − = − ∂ 
a j   (1.4.15) 

2

0

1 ,dtφ
ε

∇ = ∇⋅∫ j   (1.4.16) 

 

where the integral is over the time period considered.  Thus, the scalar potential, ,φ  is 

the electrostatic potential energy and, for example, relates to the force between bound 

electrons and the charges in the nuclei of atoms and molecules; whereas the vector 

potential, ,a  describes the radiation field, as φ  disappears beyond a set of charges that 

is overall electrically neutral.  This separation is unique in the Coulomb gauge and 

will prove to be useful in considering physical situations in which the radiation is 

coupled to slow-moving optical centres – atoms and molecules.  It will be shown that 

the QED Hamiltonian in the Coulomb gauge lends itself to a perturbation theory 

based on small modifications to the Schrödinger wave equation relating to the motion 

of the atoms and molecules.  

 

 

1.5.  Lagrangian Formulation 

 

There are no extra assumptions in quantum field theory, compared to quantum 

mechanics: The prescription is simply to take a classical field and apply the principles 

of quantum mechanics to it.  In the case of electrodynamics, the classical field 

equations are Maxwell’s equations, Eq. (1.2.1) - (1.2.4) and we can pick a Lagrangian 

density that leads, via the Euler-Lagrange equations of motion 
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( ) 0,
ji j ii jt a x aa x

 ∂ ∂ ∂ ∂ ∂+ − = ∂ ∂ ∂ ∂∂ ∂ ∂ 
∑ɺ

L L L   (1.5.1) 

 

to the correct classical description of the fields.  Here, L  is the Lagrangian density, 

which is integrated over space-time to obtain the action, whose minimum value 

signifies the classical path.  Precisely, the action is a functional, i.e. a map from a 

vector space (set of functions) to its underlying scalar field [47].  This becomes 

particularly important when considering the path integral formulation of quantum 

fields, which can be done for quantum electrodynamics [48,49].  The Lagrangian 

density is related to the Lagrangian by: 

 

L = t∂∫ ,L   (1.5.2) 

  

and is often used in relativistic theories instead of the Lagrangian because of the 

manifest Lorentz invariance.  Precisely, Eq. (1.5.1) arises from the principle of 

stationary action (Hamilton’s principle): 

 

2 2

1 1

3d d 0.
t

t

S tδ δ= =∫ ∫
r

r

rL   (1.5.3) 

 

At this juncture it is worthwhile to consider the parameters of the Lagrangian density; 

of course, in classical mechanics Hamilton’s principle is equivalent to saying that a 

particle calculates the action for all possible paths and takes the path for which it is 

least.  Therefore, one would expect the Lagrangian to be dependant on the current 

space-time coordinates and the future space-time coordinates.  In the former case, this 
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is true; the generalised coordinates for the electromagnetic field will be shown to be 

,a  the vector potential.  However, one can connect the current coordinates with the 

future ones by use of infinitesimal changes in these coordinates: precisely, the 

derivatives with respect to each space interval and the one time interval.  The 

Lagrangian density is therefore expressed as: 

 

( ), , .t= ∇ ∂ ∂a a aL   (1.5.4) 

 

In a fully covariant formalism, the space and time derivatives can be compactly 

written as: 

 

,µ
µ∂ ∂ a   (1.5.5) 

 
where the Greek index indicates summing over the four components of a space-time, 

and the upper and lower indices are related by the Minkowski metric [50].   

  

 It emerges that the Lagrangian density for quantum electrodynamics is 

expressed as: 

 

( )
2

220

interaction
particles radiation

,
2n n

n
m c

t
εφρ φ
 ∂  = + ⋅ − + +∇ − ∇×  ∂   

∑ aq a j aɺ 
 

L  (1.5.6) 

 
where n nm q  is the generalised momentum of particle n.   The Lagrangian density can 

be written as the sum of three independent terms for the particles, radiation and their 

interaction,  
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part rad int .= + +L L L L   (1.5.7) 

  

In free space the Lagrangian density, Eq. (1.5.6), reduces to:  

 

( )
2

20

0

1 ,
2 2t
ε

µ
∂ = − ∇× ∂ 
a aL   (1.5.8) 

 

which, from Eq. (1.4.11) – (1.4.14), is equivalent to: 

 

 

( ) ( )2 20

0

1 .
2 2
ε

µ
⊥= −e bL   (1.5.9) 

 

It is readily verified that these Lagrangian densities lead, through use of Eq. (1.5.1), to 

the wave equation governing ,a  Eq. (1.4.15), in a free field and Maxwell’s equations.  

This confirms, at least for a charge-free region, our choice of Lagrangian density.  

Furthermore, if we apply the Euler-Lagrange equation for a system of particles, 

instead of that for a field, the equation for the Lorentz force emerges.   

 

 There are various methods for quantising the Lagrangian of a physical system; 

however, except for the simplest systems [51–53], exact solutions are generally 

intractable.  The next section is concerned with the conversion of the Lagrangian 

formalism to one focussing on a Hamiltonian, which lends itself more easily to 

perturbative solutions for complex systems.  
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1.6.  The Minimal Coupling Hamiltonian  

 

In the particle picture, the generalised coordinates are labelled ,nq  with the 

canonically conjugate momentum density given by: 

 

,n
n

∂=
∂qɺ
Lpppp   (1.6.1) 

 

where we have used p  to denote the momentum density.  Note, that this is a density 

because we use the Lagrangian density in the definition; indeed, if we use the 

Lagrangian, then we would obtain the particle’s momentum.  Analogously, in the 

field picture the momentum density is obtained by the definition: 

 

( ) .∂=
∂

Π r
aɺ
L   (1.6.2) 

  

It is preferable to use densities in quantum field theory to avoid unnecessary infinities: 

commonly, the infrared and ultraviolet divergences [54].  To obtain the explicit forms 

of the canonically conjugate momentum densities, we proceed by substituting Eq. 

(1.5.6) into Eq. (1.6.1) and (1.6.2) revealing 

 

( ) ,n n n n nm e= +q a qɺpppp   (1.6.3) 

 

and 
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0 ,
t

ε φ∂= +∇
∂
aΠ   (1.6.4) 

 

respectively.  Here, the field ( )na q  is explicitly evaluated at position .nq   The 

Hamiltonian density is now obtained from the Lagrangian density by [6]: 

 

.n n
n t

∂= ⋅ + ⋅ −
∂∑ aq ΠɺH Lpppp   (1.6.5) 

 

We proceed by substituting into Eq. (1.6.5) the expressions for the momentum 

densities, Eq. (1.6.3) and (1.6.4), and the Lagrangian density, Eq. (1.5.6): 

 

( ){ } ( ){ }

( ) ( ){ }

{ } ( ){ }

2

22 2 2
0 0

0 0

1
2

1 1 .
2

n
n n n n n n

n nn n

n
n n n n

n n

e e
m m
e e
m

c

φρ

ε φ ε
ε ε

= ⋅ − − −

− ⋅ − +

+ ∇ − − ∇×

∑ ∑

∑

a q a q

a q a q

Π Π Π a

H pppp p pp pp pp p

pppp

−−−−

 (1.6.6) 

  

Under the assumption that the fields tend to zero at infinity we can integrate Eq. 

(1.6.6) over all space to obtain the Hamiltonian: 

 

( )( ) ( ){ } ( )

3

2 22 2 2 3
0

0

1 1 1 d ,
2 2n n n

n n

H

e c V
m

ε
ε

= ∂

= − + + ∇× +

∫
∑ ∫

r

p a q Π a r q

H
 (1.6.7) 

 

where np  is the momentum of particle n, and Π  now represents the field momentum.  
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A term, ( )V q  has been added to take account of the total electrostatic potential, and 

can be divided into:  

 

( ) ( ) ( ){ }; ,V V V
ζ ζ

ζ ζ ζ
′<

′= +∑q   (1.6.8) 

 

where ζ  labels the optical centre and the sum is over the range ζ ξ′<  to ensure that 

there is no double counting.  In this context, optical centre refers to an electrically 

neutral system, such as an atom, molecule or chromophore.  Furthermore, ( )V ζ  

refers to the intramolecular Coulomb binding and ( );V ζ ζ ′  refers to the 

intermolecular energy between particles with labels ζ  and .ζ ′   For the systems 

considered here – namely atoms and molecules – we can assume that the nuclear 

motion is negligible.  The Hamiltonian, Eq. (1.6.7), is recast with the molecular label, 

,ζ  defining the position of the electron labelled by n: 

 

( ) ( )( ){ } ( ) ( )

( ) ( )( ){ }

2

min

22 2 2 3
0

0

1 ,
2

1 d .
2

n n n
n n

H e V V
m

c

ξ ξ
ξ ξ ξ ξ ξ

ε
ε

′<

 ′= − + + 
 

+ + ∇×

∑∑

∫

p a q

Π r a r r
 (1.6.9) 

  

The subscript ‘min’ draws attention to the fact that this is the minimal coupling 

Hamiltonian and corresponds to the transformation: 

 

,n n n ne→ −p p a   (1.6.10) 

 

which is called the Principle of Minimal Coupling.  By applying a canonical 
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transformation to the minimal coupling Hamiltonian, Eq. (1.6.9) the multipolar 

Hamiltonian can be obtained. 

 

 

 

1.7. The Multipolar Hamiltonian  

 

There are various, equivalent, ways to transition from classical theory to a quantum 

representation: one is by promoting Moyal brackets to commutators [55].  In the 

following a canonical transformation is applied to the minimal coupling Hamiltonian 

to obtain the multipolar Hamiltonian and the commutator formalism is used, however 

a classical version of the derivation can be carried out by the above correspondence.  

It should be stressed that the two different Hamiltonians are equivalent, in that they 

will give the same results for describing a physical system.  In fact, it has been shown 

that the two Hamiltonians describe the same electrodynamics, but with different 

gauge transformations applied [56].  

 

 In the quantum formalism, all variables and fields are promoted to operators.  In 

the following the traditional caret placed above variables to denote operators will be 

omitted, except to eliminate ambiguity.  For a general variable in the minimal 

coupling formalism, min ,v  the generalised approach, based on that of Power, Zienau 

and Wooley, involves the application of a unitary transformation: 

 

min ,iS iS
multi e e−=v v   (1.6.11) 
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where the generator, ,S  is given by: 

 

( ) ( ) 31 ,S d⊥= ⋅∫p r a r r
ℏ

  (1.6.12) 

 

where ⊥p  is the transverse component of the polarisation field [25,26,57].  By 

converting the exponential factors in Eq. (1.6.11) to power series, the multipolar form 

of the polarisation field can be obtained:  

 

;multi ;min

;min ;min ;min
1, , ,
2

iS iS
n n

n n n

e e

i S S S

−=

    = + − +    

p p

p p p …
 (1.6.13) 

 

The commutator, ;min, ,nS  p  commutes with S, thus the remaining expression is: 

 

;multi ;min ;min, .n n ni S = +  p p p   (1.6.14) 

 

We proceed by using the expression: 

 

( ) ( ) ( )( )
1

0

d ,n n
n

e δ λ λ= − − − − −∑ ∫p r q R r R q R  (1.6.15) 

 

where ( )δ r  is the Dirac delta function [57].  This allows Eq. (1.6.14) to be rewritten 

as: 
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( ) ( )( ) ( )
1

3
;multi ;min ;min

0

d , .n n n n n
n

ie dδ λ λ
  

= − − − − − ⋅  
   
∑∫ ∫p p q R r R q R a r r p

ℏ
(1.6.16) 

 

We proceed by explicitly referring to the components of the vectors,  

  

( ) ( )( )

( ) ( )( )( ) ( )( )

1

;multi; ;min;
0

3

d1
d

d d ,

n i n i i

i j j i j

p p e a

e a a

λ δ λ
λ

λδ λ λ

 = + + − − − 
 

+ ∇ −∇ − − − −

∫ ∫ r r R q R

r r q R r R q R r
 (1.6.18) 

 

where we have used the identities for any function, f  [48]: 

 

( ) ( )

( ) ( ){ }

( ) ( )

, i

d
d

i
i i

i

i
i

i
i

f q
f q p

q

f f
a

a f f
a

λ λ λ

λ λ λ
λ

∂ 
=    ∂ 

∂ − = − ∇ − ∂ 
∂ − = − 

∂ 

r a r a

r a r a

ℏ

  (1.6.19) 

 

Solving Eq. (1.6.18) and restoring the bold vector notation gives: 

 

( )

( ) ( )( ) ( ){ }
;multi ;min

1
3

0

d ,

n n e

e dλδ λ λ

= +

 
− − − − − − × ∇× 

 
∫ ∫

p p a q

q R r R q R a r r
 (1.6.20) 

 

With the goal of constructing the multipolar Hamiltonian, we calculate the expression 

for the multipolar field momentum: 
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( ) ( ) ( )

( ) ( )

multi min

3
multi min

min

i d ,

,

is iSe e−

⊥

⊥

=

 ′ ′ ′= + ⋅ 

= −

∫

Π Π

Π p r a r r Π r

r p r
ℏ

ΠΠΠΠ

  (1.6.21) 

 

where we have used the same reasoning for discarding the higher-order commutator 

brackets as in Eq. (1.6.13), and deployed the quantum commutation relation for 

conjugate pairs: 

 

( ) ( )( ), .i δ′ ′= −  a r Π r r rℏ   (1.6.22) 

 

Thus, we may now construct the multipolar Hamiltonian, from Eq. (1.6.9), (1.6.20) 

and (1.6.21): 

 

( ) ( )( ) ( ) ( )( )

( ) ( )} ( ) ( )( ) ( )( ){ }

multi

21
3

0

2 22 2 3
0

0

1 d
2

1; .
2

n
n n

H

e d
m

V V c d

ζ ζ

ζ λδ λ λ

ζ ζ ζ ε
ε

′<

⊥

=

   − ∇× × − − − −  
 

′+ + + + + ∇×

∑ ∫ ∫

∫

p a r q R r R q R r

Π r p r a r r

 (1.6.23) 

 

To put Eq. (1.6.23) into a form with explicit dependence on multipoles, we expand the 

brackets and correspondingly identify the importance of each term.  However, for the 

sake of clarity, we compartmentalise the Hamiltonian into terms representing the 

particles, interaction, radiation and self energy, respectively: 

 

( )( ) ( ) ( )2
part

1 ; ;
2 n

n n

H V V
m

ζ ζ

ζ ζ ζ ζ
′<

 
′= + + 

 
∑ p  (1.6.24) 
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( )( )2 3

self
0

1 .
2

H d
ε

⊥= ∫ p r r   (1.6.25) 

( ) ( )

( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( ) ( )

3
int

0
21

3

0

1
3

, 0

1
3

, 0

1

1 d
2

1 d d
2

1 d d ;
2

n n

n
n n

n
n n

H d

e d
m

e
m

e
m

ζ ζ

ξ

ξ

ε

λδ λ λ

ξ λδ λ λ

λδ λ λ ξ

⊥

′<

= ⋅ +

   ∇× × − − − − −  
  

   ⋅ ∇× × − − − −  
   
   ∇× × − − − − ⋅  
   

∫

∑∫ ∫

∑∫ ∫

∑∫ ∫

Π r p r r

a r q R r R q R r

p a r q R r R q R r -

a r q R r R q R p r

 (1.6.26) 

( )( ) ( )( ){ }2 22 2 3
rad 0

0

1 ;
2

H c dε
ε

= + ∇×∫ Π r a r r  (1.6.27) 

 

Assuming that the electron fields are bound by the molecules, and that there are no 

free charges, allows separation of ⊥p  into parts, ,ζ
⊥p   belonging to each optical centre.  

Thus the intermolecular part of the self energy corresponds to the overlap of the ζ
⊥p  of 

each source: 

  

  

( )( ) ( ) ( )

( ) ( )

( )

inter
2inter 3 3

self
,0 0

3

0

1 1
2 2

1

; ,

H d d

d

V

ζ ζ
ζ ζ

ζ ζ
ζ ζ

ζ ζ

ε ε

ε
ζ ζ

⊥ ⊥ ⊥
′

′

⊥ ⊥
′

′<

′<

 
= = ⋅ 
 

= ⋅

′= −

∑∫ ∫

∑ ∫

∑

p r r p r p r r

p r p r r  (1.6.28) 

 

and exactly cancels the electrostatic intermolecular interaction [6].  Therefore, the 

potential energy between optical centres is not conveyed instantaneously but through 
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the retarded mediation of the radiation field.  The remaining part of the self-energy 

Hamiltonian of the system, Eq. (1.6.25), is negligible in radiative processes, and is 

henceforth ignored.  It does, however, play an important role in self-energy 

calculations [58,59].  Introducing the definition of the auxiliary displacement field: 

 

( ) ( ) ( )0 ,ε= +d r e r p r   (1.6.29) 

 

allows comparison with: 

 

( ) ( ) ( )0 ,ε ⊥ ⊥= − −Π r e r p r   (1.6.30) 

  

to deliver: 

 

( ) ( ) ,⊥= −Π r d r   (1.6.31) 

 

which can be substituted into Eq. (1.6.26) along with the explicit (component 

indexed) multipole expansion of ( ) ,⊥p r   

( ) ( ) ( ) ( ) ( ){ }elec ... ,i ij j ij jk kp Qξ ξ
ξ

δ µ ξ δ ξ⊥ ⊥ ⊥= − − − ∇ +∑r r R r R  (1.6.32) 

 

where ,i ijQµ  represent the electric dipole and quadrupole moments and the 

magnetisation field: 
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( ) ( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

1

, 0

1

0

1

, 0
1

, 0

1 d
2

d

1 d

d .

n
n n

n

n
n n

n

n

e
m

e

e
m

e
t

ξ

ξ

ξ

ξ λδ λ λ

λδ λ λ ξ

λδ λ λ ξ

ξ
λδ λ λ


= × − − − −




− − − − − × 


= − − − − − ×

∂
= − − − − − ×

∂

∑ ∫

∫

∑ ∫

∑ ∫

m r p q R r R q R

q R r R q R p

q R r R q R p

q
q R r R q R

 (1.6.33) 

 

This can now be written in terms of magnetic multipole moments, 

 

( ) ( ) ( )mag
i i ij jm m Qζ ζ

ζ ζ
δ δ= − − ∇ − +∑ ∑r r R r R …  (1.6.34) 

 

We are now in a position to write Eqs. (1.6.24)-(1.6.27) in a more identifiable form: 

 

( )( ) ( )2
part

;

1 ;
2 n

n n

H V
mζ

ζ ζ
 

= + 
 

∑ p   (1.6.35) 

( ) ( ) ( ) ( ) ( ) ( ){ }int
0

1 ... ;i i ij i j i iH d Q d m bξ ξ ξ
ξ

µ ξ ξ ξ
ε

⊥ ⊥= − − ∇ − +∑ R R R  (1.6.36) 

( ) ( ){ }2 22 2 3
rad 0

0

1 d ;
2

H cε
ε

⊥= +∫ d r b r r   (1.6.37) 

self 0.H ≈   (1.6.38) 

 

It is worth noting that couplings involving magnetic dipole and electric quadrupole 

moments, when they are both allowed, are of similar magnitude and much less 

significant than electric dipole interactions [60]. 
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1.8.Quantisation  

 

“Physics is that subset of human experience which can be reduced to coupled 

harmonic oscillators” - Michael Peskin† 

 

As mentioned above, the transition from classical mechanics to quantum mechanics 

can be enacted by promoting the field vectors to operators; and the transition in field 

theory is no different.  By the promotion, 

 

,n
n

i ∂→ −
∂

p
q

ℏ   (1.8.1) 

 

the matter Hamiltonian, Eq. (1.6.35), acts on the quantum state of a physical system to 

deliver: 

 

( )
2

2
part

;
,

2 n
n n

H V E
mζ

ψ ζ ψ ψ
 

= ∇ + = 
 

∑ ℏ  (1.8.2) 

 

which is the Schrödinger wave-equation for a many-particle system [61].  This is 

identical to a semi-classical treatment of electrodynamics.  Thus, the radiation 

Hamiltonian, Eq. (1.6.37), is neglected in semi-classical theory, and the interaction 

Hamiltonian is introduced as a perturbation on the stationary atomic and molecular 

states.  

 

†Tong, David, Classical Dynamics (Cambridge University Part II Mathematical Tripos 2004).  
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 In the Coulomb gauge, the vector potential, ,a  satisfies a free-field wave 

equation, Eq. (1.4.15), which allows the solutions to be written as a complete set of 

plane waves, through a discrete Fourier decomposition: 

 

( ) ( ) ( ) ( ) ( ){ }( ) i ( ) i

,
, ( ) , e ( ) , e ,t a t a tλ λλ λ

λ

⋅ − ⋅= +∑ k r k r

k
a r e k k e k k  (1.8.3) 

 

where ( ) ( )λe k  is the (electric) unit polarisation vector, and ( ) ( ), ic ta t eλ −= kk  is the 

time dependent amplitude; here overbar denotes the complex conjugate [6].  

Furthermore, k andλ  are labels representing the wavevector and the polarisation 

respectively, characterising plane wave modes unambiguously.  The expressions for 

the corresponding electric and magnetic field vectors can be determined from 

Eqs.(1.4.14) and (1.4.12): 

 

( ) ( ) ( ) ( ) ( ){ }( ) i ( ) i

,
, i ( ) , e ( ) , e ;t ck a t a tλ λλ λ

λ

⋅ − ⋅= −∑ k r k r

k
e r e k k e k k  (1.8.4) 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

( ) i ( ) i

,

( ) i ( ) i

,

, i ( ) , e ( ) , e

i ( ) , e ( ) , e ,

t k a t a t

k a t a t

λ λλ λ

λ

λ λλ λ

λ

⋅ − ⋅

⋅ − ⋅

= × − ×

= −

∑

∑

k r k r

k

k r k r

k

b r k e k k k e k k

b k k b k k
 (1.8.5) 

 

where ( ) ( )( ) ( )λ λ= ×b k k e k is the magnetic polarisation vector and { }, ,e b k are a right-

handed orthogonal triad.   

 

 To avoid the infinity known as the infrared divergence [62], we carefully 

quantize the vector potential by considering a region of space and impose a periodic 

boundary condition, as done for quantum treatments of a particle in a potential well.  
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Without loss of generality, we choose the volume considered to be a cube of length L, 

with the allowed values of the Cartesian components of k given by: 

 

2 ,i ik n
L
π =  

 
  (1.8.6) 

 

where in ∈ℤ  is an integer.   Thus the vector potential, and associated fields, gets 

promoted to operator form through the following relations: 

 

( ) ( ) ( ) ( )
1

1 2
2

0 , ;
2

V a t a
ck

λε  →  
 

k kℏ   (1.8.7) 

 

( ) ( ) ( ) ( )
1

1 2 †2
0 , ,

2
V a t a

ck
λε  →  

 
k kℏ   (1.8.8) 

 

where ( ) ( )a λ k  and ( ) ( )†a λ k  are the Hermitian conjugate annihilation and creation 

operators, respectively, and the time dependence has been moved to the state vectors, 

as in the Schrödinger picture.  The promotions, Eq. (1.8.7) and (1.8.8), can equally be 

applied to the case of light fields with polarisation vectors not necessarily orthogonal 

to the propagation direction (non-paraxial light), and is discussed in Chapters 3 and 4.  

The annihilation and creation operators for a single mode ( ),λk  act only on that 

radiation mode, so that their behaviour with respect to number states (Fock states) 

with population n is given as: 
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( )

( )
1 1 1 2 2 2

1 1 1 2 2 2

( ) ( , ), ( , ), , ( , )

( , ), ( , ), , 1 ( , ) ;

m
m m m m

m m m m

a n n n

n n n n

λ λ λ λ

λ λ λ= −

k k k k

k k k

…

…
 (1.8.9) 

  

( )

†( )
1 1 1 2 2 2

1 1 1 2 2 2

( ) ( , ), ( , ), , ( , )

1 ( , ), ( , ), , 1 ( , ) ,

m
m m m m

m m m m

a n n n

n n n n

λ λ λ λ

λ λ λ= + +

k k k k

k k k

…

…
 (1.8.10) 

 

where the states with 0in = are usually omitted.  That is, radiation modes in their 

ground state are ignored unless they are explicitly involved in the interaction.  The 

operators ( ) ( )m
ma λ k  and †( ) ( )m

ma λ k  alone are not Hermitian, whereas the number 

operator ( ) ( )†( ) ( )( ) ( ) mm m
m m ma a N λλ λ =k k k  is and acts on a number state as follows: 

  

†( ) ( )
1 1 1 2 2 2

1 1 1 2 2 2

( ) ( ) ( , ), ( , ), , ( , )

( , ), ( , ), , ( , ) ,

m m
m m m m m

m m m m

a a n n n

n n n n

λ λ λ λ λ
λ λ λ=

k k k k k
k k k

…

…
 (1.8.11) 

 

which implies a non-zero expectation value for the number operator of that particular 

mode.   Hence, by employing the promotions prescribed in Eq. (1.8.7) and (1.8.8) we 

obtain the fully quantised expressions for the components of the electromagnetic 

fields: 

( ) ( ) ( )

( ) ( ) ( ) ( ){ }
0

1
2 †( ) i ( ) i0

,
i ( ) e ( ) e ;

2
ck a a
V

λ λλ λ

λ

ε

ε

⊥

⋅ − ⋅

= −

  − 
 

∑ k r k r

k

d r = e r Π r

= e k k e k kℏ  (1.8.12) 

( ) ( ) ( ) ( ) ( ){ }
1
2

†( ) i ( ) i

, 0

i ( ) e ( ) e .
2

k a a
cV

λ λλ λ

λ ε
⋅ − ⋅ 

= − 
 

∑ k r k r

k
b r b k k b k kℏ  (1.8.13) 
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Worthy of note is that the above electromagnetic operators are valid in the free-field; 

and that due consideration of the surrounding molecules in condensed phase systems 

delivers operators corresponding to medium-dressed photons, known as polaritons 

[63].  Application of the operators, Eq. (1.8.12) and (1.8.13), to the radiation 

Hamiltonian, Eq. (1.6.37), delivers: 

 

( ) ( ) ( ) ( )†
rad

,

1 ,
2

H a aλ λ

λ
ω ω = + 

 
∑
k

k k ℏ ℏ   (1.8.14) 

 

where 1
2 ωℏ  is the zero-point energy responsible for many differences between 

quantum electrodynamics and semi-classical theory, and is a perturbing influence on 

the stationary states of matter systems.  

 

 

1.9. Perturbation Theory  

 

The aim of perturbation theory is to derive an expression for an analytically 

unsolvable mathematical problem in terms of a related solvable problem.  Precisely, 

the expression is a power series in a small parameter that is a measure of the variation 

of the desired problem from the known one.  Here, the light-matter interaction is used 

as a perturbation on the separate unperturbed light and matter Hamiltonians.  Thus, 

perturbation theory fails when the interaction energy exceeds the Coulomb binding 

energy, holding the atoms and molecules together.  In quantum electrodynamics time-

dependent perturbation theory begins by dividing the total Hamiltonian into two terms 

[12]: 
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0 int ,H H H= +   (1.9.1) 

 

where H0 is the unperturbed Hamiltonian, 

 

0 part rad ,H H H= +   (1.9.2) 

 

and Hint provides the perturbation for the system.  Here, Hpart is the Hamiltonian for a 

system of particles and Hrad is the radiation Hamiltonian.  To proceed we convert from 

the Schrödinger picture to the interaction picture, in which both the operator and the 

state vector contains some of the time dependence of the process, by the following 

prescription: 

 

( ) 0 0i i
int;I inte e ;H t H tH t H −= ℏ ℏ   (1.9.3) 

( ) 0i
I e ,H ttψ ψ= ℏ   (1.9.4) 

 

where the subscript I denotes the fact that we are working with the interaction picture.  

Note that, by applying the procedure in Eq. (1.9.3) to the unperturbed Hamiltonian, 

leaves H0 unchanged, and thus H0 can be referred to unambiguously.  As the time 

dependence of a quantum system is governed by the Schrödinger wave equation, Eq. 

(1.8.2), we reformulate in the interaction picture: 

 

( ) ( )I int;I I
1 .
i

d t H t
dt

ψ ψ=
ℏ

  (1.9.5) 

 

Performing the time integration on this equation delivers: 
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( ) ( ) ( )
0

I I 0 int;I I 1 1
1 ,
i

t

t
t t H t dtψ ψ ψ= + ∫ ℏ   (1.9.6) 

 

where ( )I 0tψ  is the zeroth-order approximation of the wavefunction; the integration 

is over the dummy variable t1 and is between the start time t0 and the final time t.  To 

obtain progressively better approximations we start by deriving the first-order solution 

from the zeroth order solution by the replacement: 

 

( ) ( )I 1 I 0 ,t tψ ψ→   (1.9.7) 

 

which allows Eq. (1.9.6) to be written as: 

 

( ) ( ) ( )
0

1
I int;I 1 I 0

11 ,
i

t

t
t H dt tψ ψ = + 

 ∫ ℏ   (1.9.8) 

 

where the superscript (1) denotes the order of the approximation.  The second order 

solution is now obtained by setting ( ) ( ) ( )1
I I 1t tψ ψ→  so that Eq. (1.9.6) becomes: 

  

( ) ( ) ( ) ( ) ( ) ( )1

0 1 0

2
I int;I 1 1 int;I 2 int;I 1 1 2 I 02

1 11 ,
i

t t t

t t t
t H t dt H t H t dt dt tψ ψ = + − 

 ∫ ∫ ∫ℏ ℏ
 (1.9.9) 

  

where a new dummy variable t2 has been introduced to ensure correct integration.  

Thus, we can define the zeroth-, first- and second-order time evolution operators as: 

 



Chapter 1: Introduction 

 - 35 - 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0

1

0 1 0

1
I 0

2
I 0 int;I 1 1

3
I 0 int;I 1 1 int;I 2 int;I 1 1 22

, 1
1, 1
i
1 1, 1
i

t

t

t t t

t t t

U t t

U t t H t dt

U t t H t dt H t H t dt dt

=

 = + 
 
 = + − 
 

∫

∫ ∫ ∫

ℏ

ℏ ℏ

 (1.9.10) 

 

and by iteration we obtain the total time evolution operator as: 

   

( ) ( ) ( ) ( )

( ) ( ) ( )

1

0 1 0

2 1

2 1 0

I 0 int;I 1 1 int;I 2 int;I 1 1 22

int;I 3 int;I 2 int;I 1 1 2 33

1 1, 1
i

1 ,

t t t

t t t

t t t

t t t

U t t H t dt H t H t dt dt

H t H t H t dt dt dt
i

= + −

− +

∫ ∫ ∫

∫ ∫ ∫
ℏ ℏ

…
ℏ

 (1.9.11) 

 

where the nth term is given by: 

  

( ) ( ) ( )1 1

1 2 0
int;I int;I 2 int;I 1 1 2

1 .n

n n

n
t t t

n nt t t
H t H t H t dt dt dt

i
−

− −

 
 
  ∫ ∫ ∫… … …
ℏ

 (1.9.12) 

 

 Let us now define the initial i  and final f  states of the system, as eigenstates 

of the H0 operator with eigenvalues Ei and Ef respectively.  Let us further suppose that 

they are not the same state, i.e. they are orthogonal in the sense that: 

 

.fif i δ=   (1.9.13) 

  

If, as before, ( )I tψ  is the state of the system at time t, then the probability amplitude 

to find the system in state f is the projection: 
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( ) ( ) ( ) ( )I I 0 I 0 I 0, , ,f t f U t t t f U t t iψ ψ= =  (1.9.14) 

 

where the final step is a re-labelling of ( )I 0tψ .  The orthogonality of i  and f  

means that the first term of ( )I 0,U t t  vanishes.  Thus, the leading order term for the 

probability amplitude is: 

  

( ) 0 1 0 1

0

i i
I 0 int 1

1, e e ,
i

t H t H t

t
f U t t i f H i dt−= ∫ ℏ ℏ

ℏ
 (1.9.15) 

 

where we have converted back the Schrödinger picture, via the prescription in Eq. 

(1.9.3).  Thus, the unperturbed Hamiltonian H0 may now act on the states to reveal 

their eigenvalues (energies): 

( )
( )

( )
( ) ( )( )

1 1

0

1

0

0

i i
I 0 int 1

i
1 int

i i
int

1, e e
i
1 e
i

1 e -e ,

f i

f i

f i f i

t E t E t

t

t E E t

t

E E t E E t

f i

f U t t i f H i dt

dt f H i

f H i
E E

−

−

− −

=

=

= −
−

∫

∫

ℏ ℏ

ℏ

ℏ ℏ

ℏ

ℏ
 (1.9.16) 

where the time integration has been performed.  By defining 0t t tΔ = −  we obtain: 

 

( ) ( )
( )( ) ( ) 0i i

I 0 int
1, e -1 e ,f i f iE E t E E t

f i

f U t t i f H i
E E

− Δ −= −
−

ℏ ℏ  (1.9.17) 

 

which, by use of the identity ( )i i 2e 1 2i sin 2 ex xx− = ⋅  (from Euler’s formula and the 

trigonometric half-angle identities), delivers: 
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( ) ( )
( ) ( )( )0i 2int

I 0, 2i sin e ,
2

f iE E t tf i

f i

E E tf H i
f U t t i

E E
− + − Δ

 = −
 −  

ℏ

ℏ
 (1.9.18) 

 

The probability of finding our system in state f  is given by the square modulus of 

this result; however, we proceed by taking into account n closely neighbouring states, 

as in practice f  will have a non-zero width: 

 

( )
( )

( )2 2 2
I 0 int 2

1, 4 sin .
2

n

n

f i
n n

n n f i

E E t
f U t t i f H i

E E

 − Δ
 =
 −  

∑ ∑ ℏ
 (1.9.19) 

  

We assume that the states nf  are sufficiently close together to justifiably be 

considered the same, and only differ in their energies.  This means that the summation 

in Eq. (1.9.19) can be converted to an integral over the continuum of energies 
nf

E : 

 

( )
( )

( )2 2 2
I 0 int 2

1, 4 sin ,
2

n

n

n

f i
f f

f i

E E t
f U t t i f H i dE

E E
ρ

∞

−∞

 − Δ
 =
 −  

∫ ℏ
 (1.9.20) 

where fρ  is the density of final states, and fortunately the integral is analytically 

tractable with help from the identity: 

 

( )
( )

2

2

sin
.

ax
dx a

ax
π

∞

−∞

=∫   (1.9.21) 

 

Thus,  
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( ) 2 2
I 0 int

2, ,ff U t t i t f H iπ ρ= Δ
ℏ

  (1.9.22) 

 

is, to a first-order approximation, the probability that an initial state i  will transition 

to the final state f  in the time interval .tΔ   Working infinitesimally, t tδΔ → , we 

can define the rate of transition as: 

 

2
int

2 ,ff H iπ ρΓ =
ℏ

  (1.9.23) 

 

which is the probability per unit time, and known as the Fermi golden rule [6,11,64] 

By repeating the above analysis with the full expression for ( )I 0,U t t we obtain the 

full transition rate as: 

 

22 ,fi fMπ ρΓ =
ℏ

  (1.9.24) 

 

where 

( )

( )( )

( ) ( )( )

int int
int

int int int

,

int int int int

, ,

...,

fi
r i r

r s i s i r

r s t i t i s i r

f H r r H i
M f H i

E E

f H s s H r r H i
E E E E

f H t t H s s H r r H i
E E E E E E

= +
−

+
− −

+
− − −

+

∑

∑

∑

 (1.9.25) 

 

is the probability amplitude, or matrix element.  Here, r, s, and t correspond to 
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intermediate states and are called virtual in that they are not observed and are summed 

over, so as not to appear in the final result.  As one might imagine, every appearance 

of Hint denotes an interaction between the electromagnetic field and the electron fields 

in the systems of matter.  Thus, the term in Eq. (1.9.25) with n appearances of Hint is 

the leading order contribution to an n-photon process; for example, n-photon 

absorption.   

 

 The formulae derived in this section lay the foundation for the qualitative and 

quantitative study of the processes presented in this thesis – and much more besides.  

As far as is known, the QED picture is, in its domain of applicability, exact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Introduction 

 - 40 - 

1.10. Appendix A  

 

This appendix follows the procedure outlined in Ref [6]. We are free to choose a 

vector potential with zero divergence.  To begin a proof by contradiction, we assume 

that the vector potential has nonzero divergence, 

 

0.∇⋅ ≠a     (A.1) 

 

The fact that we are working within a gauge theory means that we can transform to 

another vector potential by the addition of the gradient of a scalar field, 

 

.χ→ +∇a a    (A.2) 

 

The divergence of this new vector potential is: 

 

2 ;χ∇⋅ = −∇a    (A.3) 

 

and can be made zero by demanding that χ  is a solution to the Laplace equation, 

 

2 0.χ∇ =   (A.4) 
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Chapter 2 

The Two-Level Approximation 

 

 

 

 

 

“It is, of course, not really a two-state system… Here we are going to consider… 

systems which, to some approximation or other, can be considered as two-state 

systems.” – Richard P. Feynman† 

 

 

 

 

 

 

† Feynman, Richard P., The Feynman Lectures on Physics – Volume III: Quantum Mechanics (Basic Books, 1965). 
 



Chapter 2: The Two-Level Approximation 

 - 47 -

2.1  Background 

 

In the development of theory to address quantum mechanical problems, one of the 

most widely deployed models is the two-level approximation: where the ground state 

and a single excited state dominate in determining the optical behaviour of an atom or 

molecule.  So ubiquitous is this simplification, that many introductory level quantum 

mechanics textbooks dedicate entire sections to its application and the study of the 

physical picture associated with it [1,2].  Of course, some atomic and molecular 

systems are well represented by a two-energy level approach: for example, ammonia 

has two inversion states, which, because of a narrow energy barrier between them, 

exhibit quantum tunnelling [3].  In the context of quantum optics, it is a theoretical 

basis for a wide range of representations for optical response – from those concerning 

atoms [4,5] to the more recent studies of quantum dots [6–8].  In the context of 

quantum information theory, Bialynicki-Birula and Sowiński have formalised the 

similarity between qubits and two-level atoms [9].  Where a system may legitimately 

be studied within a two-level representation, the advantages are obvious; calculational 

simplicity and results cast in formulae that entail a sufficiently small set of parameters 

to allow correspondence with their experimental realisation.  Even though a two-level 

model has been applied to molecules and chromophores of significantly complex 

energy level structure [10], even relatively few atomic transitions can legitimately 

studied in terms of to two electronic energy levels [11].  In fact, it has been long-

known that the two-level approximation is inadequate to correctly calculate atomic 

electric dipole absorption frequency shifts near a perfectly conducting interface [12]. 

In the context of nonlinear optics and atomic photophysics the two-level 

approximation is applied to the electronic states of systems with discrete energy levels 
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and is usually enacted by selecting – from the infinite number of states that emerge 

through the quantum mechanics of any realistic three-dimensional system – the two 

lowest in energy.  The issues in nonlinear optics are different than those in simple 

system interacting with low intensity radiation, where optical centres will, most likely, 

interact with photons singly.  With the typical intensities of pulsed laser light however 

(with current experimental limit of 1020 Wm-2 [13]), there exists a large likelihood of 

two or more photons interacting simultaneously, within the limits of quantum 

uncertainty, with an optical centre.  Even though the materials most effective for the 

generation of frequency-converted light have electronic energy level structures much 

more complicated than atoms (BBO, GaSe, ADP, etc.), the two-level approximation 

has been widely applied in this context [14–20]; it both delivers results in a 

mathematically simple form, and relates well to long-established concepts in the 

theory of chemical structure.  In particular, a great deal of studies have developed the 

connection between molecules with enhanced second harmonic response and push-

pull chromophore structures (those exhibiting a shifted permanent dipole moment in 

an electronically excited state, compared with the ground state) [21–25]. 

 

Presented in this chapter are analytical and numerical arguments that, in addition 

to the cautions presented elsewhere [26–28], should be observed when investigating 

the optical response of atoms and molecules when using the two-level approximation 

[29–32]. 
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2.2 Perturbation Theory and the Two-Level Approximation 

 

As discussed in the previous chapter, the rate of an electromagnetic interaction can be 

found from Fermi’s golden rule, Eq. (1.9.24), [33]: 

 

22 ,FIMπ ρΓ =
ℏ

  (2.2.1) 

 

where ρ  is the density of final states and MFI is the quantum amplitude that couples 

the initial and final states.  Here, upper-case letters denote system states, comprising 

both matter and radiation parts.  Use of time-dependent perturbation theory is required 

to fully determine MFI and it secured from the following infinite series (Chapter 1 – 

Section 9) [34]: 

 

( )int 0 int
0

int int 0 int int 0 int 0 int int 0 int 0 int 0 int ... ,

p
FI

p
M F H T H I

F H H T H H T H T H H T H T H T H I

∞

=
=

= + + + +

∑
 (2.2.2) 

 

where, I  and F  represent the initial and final system states, and intH  is the 

interaction operator, Eq. (1.6.36), which, in a quantum electrodynamic framework, 

acts upon both matter and radiation states.  In the above,  

 

( )0
0

1
I

T
E H

≈
−

  (2.2.3) 

 

where EI is the energy of the initial state and H0 is the unperturbed Hamiltonian, Eq. 



Chapter 2: The Two-Level Approximation 

 - 50 -

(1.9.1).  Enacting the completeness relation [35], 

 

1 ,
R

R R=∑   (2.2.4) 

 

allows Eq. (2.2.2) to be recast as: 

 

( )

( )( )

( )( )( )
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int int int

,
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, ,

...,

FI
R I R

R S I S I R
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M F H I

E E

F H S S H R R H I
E E E E

F H T T H S S H R R H I
E E E E E E

= +
−

+
− −

+
− − −

+

∑

∑

∑

 (2.2.5) 

 

where ,R  ,S  T … denote virtual system states, which are operated on by H0 to 

deliver En: the energy of the state labelled by its subscript. 

 

Commonly the mathematical result for the description of the optical response of 

an atom or molecule is obtained from the appropriate contributions from the series 

expansion, Eq. (2.2.5); the leading order contribution for a process involving n 

photons is, in general, the nth term.  The summation over the virtual molecular states is 

then limited to the set { }0,1 ,  where 0 and 1 index the ground and excited state 

respectively.  For a given system state, the decomposition into matter and radiation 

parts can be labelled as: 

 

rad mat .R rρ=   (2.2.6) 



Chapter 2: The Two-Level Approximation 

 - 51 -

Thus, enacting the two-level approximation at a later stage of calculation is exactly 

equivalent to taking the Hilbert space of system states and allowing the matter 

subspace to only be composed of, for example, a ground state mat0  and a single 

excited state mat1 .   That is, { }mat mat mat0 , 1 .r ∈   This strategy is exactly equivalent 

to excluding the other state projections from the completeness relation by truncating it 

to mat mat mat mat mat0 0 1 1 1 .+ =   Therefore, the two-level completeness relation is 

given as: 

 

{ }

rad mat mat rad
,

rad rad mat mat rad mat
,

rad mat mat mat mat mat mat
0,1

0

1

0 0 1 1 .

R

r

r

r

R R

r r

r r

r r

ρ

ρ

ρ ρ

ρ ρ

∉

=

≡

≡

≡ ≡ ×

≡ × + +   

∑

∑

∑

∑

1 1

1


 (2.2.7) 

 

In the rest of the chapter we consider the implications and physical insights that 

emerge from the development of introductory quantum mechanics and optical theory 

in the context of such an approximation: limiting the virtual intermediate states to the 

ground or a single excited state. 

 

 

2.3 The Two-Level Expectation Value Theorem 

 

First, we show that a physically realistic assumption, used with the two-level 

approximation, delivers a set of potentially unanticipated consequences and can lead 
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to patently absurd conclusions.  The motivation for this is to demonstrate that the 

application of the two-level approximation is not valid is when the two basis states 

have equal expectation values for the position and momentum operators.  This is 

physically justifiable in the specific cases of, for example, atoms or other spherically 

symmetric systems – the two expectation values being zero in these instances.  It will 

then follow that the two states are have equal energy, so that we have a contradiction.   

To obtain this contradiction, let us assume that, for an arbitrary Hermitian operator ˆ ,A  

the expectation value of that operator is equal in the two states dictated by the two-

level approximation, 

 

ˆ ˆ0 0 1 1 .A A=   (2.3.1) 

   

Then the theorem will show that this implies:  

 

ˆ ˆ0 ( ) 0 1 ( ) 1 ,f A f A=   (2.3.2) 

 

where ˆ( )f A  is any analytic function of the Hermitian operator ˆ.A   The initial 

assumption provides us with a base case from which to launch a proof by induction.  

 

The definition of an analytic function is that it can be expanded in terms of a 

convergent power series about a point, c, in the real  plane (as ˆ ,A  is Hermitian) [36].  

Therefore, it can be written in the form: 
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( )

0

( )ˆ ˆ( ) ( ) ,
!

n
n

n

f cf A A c
n

∞

=
= −∑   (2.3.3) 

which converges to ˆ( )f A  in a neighbourhood of c.  Thus, it suffices to show that: 

ˆ ˆ1 ( ) 1 0 ( ) 0 0.f A f A− =   (2.3.4) 

 

By substituting Eq. (2.3.3) into the left-hand side of Eq. (2.3.4) it emerges that: 

( ) ( )

0 0
( )

0

( ) ( )ˆ ˆ ˆ ˆ1 ( ) 1 0 ( ) 0 1 ( ) 1 0 ( ) 0
! !

( ) ˆ ˆ1 ( ) 1 0 ( ) 0 ,
!

n n
n n

n n
n

n n

n

f c f cf A f A A c A c
n n

f c A c A c
n

∞ ∞

= =

∞

=

− = − − −

 = − − − 

∑ ∑

∑
 (2.3.5) 

 

where the pre-factor can be taken outside the bra-ket as it does not carry the operator 

character of the expression.  To reach the desired conclusion, Eq. (2.3.4), it is 

sufficient to show that: 

 

ˆ ˆ1 ( ) 1 0 ( ) 0 0.n nA c A c− − − =   (2.3.6) 

 

We start by making the division  

 

1 1

ˆ ˆ1 ( ) 1 0 ( ) 0
ˆ ˆ ˆ ˆ1 ( ) 1 ( ) 1 0 ( ) 1 ( ) 0 ,

n n

n n

A c A c

A c A c A c A c− −

− − −

= − ⋅ ⋅ − − − ⋅ ⋅ −
 (2.3.7) 

 

in which we can insert the truncated, two-level form of the completeness relation, Eq. 

(2.2.7) to obtain: 
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( ) ( ) ( ) ( )

1 1

1 1

1 1

11 11 00 00

ˆ ˆ ˆ ˆ1 ( ) 0 0 ( ) 1 0 ( ) 1 1 ( ) 0
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n n
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A c A c A c A c
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− −

− −

− −
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+ − − − − −

≡ − − − − −

 (2.3.8) 

 

The final step is obtained by the introduction of subscripts to represent bra-kets and 

the observation that closed bra-kets commute.  Since our assumption, Eq. (2.3.1), is, 

in this notation, 00 11
ˆ ˆ( ) ( ) ,A c A c− = −  we can write our final result as: 

 

( ) ( ) ( ) ( )1 1
0011 00 11 00

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) .n n n nA c A c A c A c A c− − − − − = − − − −
 

 (2.3.9) 

  

Thus, if the theorem is true for n – 1, then Eq. (2.3.9), implies that it is also true for n.  

As the n=2 case is true by assumption, Eq. (2.3.1) the remaining infinite set of natural 

numbers, ,n∈ℕ  is verified by the cascade of inductive reasoning [37].  

 

 

2.4 Extensions and Implications of The Theorem 

 

A special case of the above theorem is:  if ˆ ˆ0 0 1 1 ,A A=  then: 

 

ˆ ˆ0 0 1 1 ,n nA A=   (2.4.1) 

 

which follows from the fact that a polynomial equation is an analytic function.  

Therefore, extending the theorem to the case of a vector Hermitian operator Â  (such 
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as the electric µ̂  and magnetic m̂  dipole moment operators) not only proves the 

theorem for a power of that operator ˆ ,nA  but also proves it for the cross-terms ˆ ˆ .i jA A   

Formally, if the vector operator Â  has identical expectation values in the two basis 

energy levels, then the expectation values of any string of components ˆ ˆ ˆ
i j nA A A…  will 

also have the same expectation values.  

 

An example of when the application of the two-level approximation is not valid is 

when the two basis states have equal expectation values for the position and 

momentum operators.  This is physically justifiable in the case of, for example, atoms 

or other spherically symmetric systems – the two expectation values being zero in 

these instances.  It then follows that, from the above theorem, the expectation values 

of the squares of the operators are also equal.  Since we can express the total energy 

of such a system in terms of these two squared operators, it implies that the two states 

are degenerate.  Explicitly, this is demonstrated in the case of the Hamiltonian for a 

simple harmonic oscillator; the expectation value for which is given by: 

 

0

2 2 2

2 2 2

1

ˆ0 0
1 1ˆ ˆ0 0 0 0

2 2
1 1ˆ ˆ1 1 1 1

2 2
.

E H

p m x
m

p m x
m
E

ω

ω

=

= +

= +

=

  (2.4.2) 

 

Thus, taking just two energy levels of a simple harmonic oscillator as a complete 

basis set leads to the absurd conclusion that both states have equal energies.  Whereas 

the quantum harmonic oscillator is analytically tractable – so this would be an 
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unlikely choice – we will now address other situations where the same logic would 

apply less obviously.  

 

That the expectation values of the square of the momenta are equal in the two 

basis states implies that the kinetic energies T should also be the same.  If the 

potential energy of the system V depends on a power m of the position (as it does in 

both the harmonic oscillator, and the Lennard-Jones potential [38]), then the Virial 

Theorem states that [39]: 

 

2 ,T m V=   (2.4.3) 

 

where diagonal brackets denote both the expectation value and the time-average of the 

quantity between them.  By substituting this into the equation for the total energy of a 

conservative system, we have: 

 

21 ,

E T V

T
m

= +

 = + 
 

  (2.4.4) 

  

where we infer, once again, that E0 = E1.  It is a commonly satisfied condition that the 

two basis states have the same expectation value for a particular observable, thus it is 

unguarded use of the truncated completeness relation that causes this paradox.  It is 

easily verified that removing the restriction on the completeness relation no longer 

implies the undesirable equal-energy conclusion.  
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A hidden constraint imposed by the two-level approximation is elucidated by 

considering the fluctuations in expectation values of quantum operators.  For 

example, if we define the variance of the electric dipole moment by [40]:  

 

22 2 ,Δ = −µ µ µµ µ µµ µ µµ µ µ   (2.4.5) 

 

then the theorem on two-level quantum operators, Eq. (2.4.1), implies that, for two 

energy levels with equal expectation values for dipole moment operators, the 

fluctuations must be equal.  To the extent that electronic distributions in the 

considered molecules do not obey this criterion, the two-level approximation fails in 

correctly reproducing the behaviour of the physical system. 

 

It is worthwhile noting that the analytical results presented in this section apply to 

a wide spectrum of operators.  Specifically, the theorem applies to both the 

momentum operator, p̂ , and the electric dipole operator, ˆ;µ  and can therefore provide 

insight in both the minimal-coupling ⋅p a  and multipolar ⋅µ e  formulations of 

(quantum) electrodynamics.  Issues concerning the computational differences between 

these formalisms were addressed long ago in a series of works by Power and 

Thirunamachandran [41,42], and Woolley [43,44].  Studying the calculations relating 

to multiphoton absorption, Meath and Power showed that the two-level approximation 

is never valid when used in conjunction with a minimal-coupling Hamiltonian [45].  
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2.5 The Optical Susceptibility Tensors 

 

The aim of this chapter is to discuss the validity of the two-level approximation when 

applied to the calculations of optical processes.  To this end, we first derive the 

expressions for the polarisability tensor for Rayleigh (elastic) scattering and the 

hyperpolarisability tensor for second harmonic generation as representative test cases.   

 

For Rayleigh scattering by a single molecule, the quantum amplitude of the 

process is taken from the second term of the perturbation expansion given in Eq. 

(2.2.5), where the initial and final states are given by: 

 

( )

( )

mat rad

mat

mat

;

0 ;1 ,

0 ;1 , ,

I I I

F

λ

λ

=

=

′ ′=

k

k

  (2.5.1) 

 

where k is the wavevector and λ  is the polarisation of the input and emergent 

radiation.  With the virtual intermediate total system states being denoted by R , the 

matrix element, in the electric dipole approximation, is given by 
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where 0 0r rE E E−≡ɶ ɶ ɶ  and the tildes are a reminder that a damping term, i
2 ,γ  has been 

included where γ  is the full linewidth at half maximum [46,47].  Here, overbars 

denote complex conjugation.  Each term inside the summation corresponds to a 

different time-ordering of interaction event.  By explicitly displaying the index 

notation of the vector terms, we obtain: 
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2
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2
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FI i j
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i j ij
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µ µ µ µ
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α ω ω
ε

    ′= − +   − +    
  ′= − − 
 
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ɶ ɶℏ ℏ

ℏ
 (2.5.3) 

 

where 

 

( ) ( ) ( )
0 0 0 0

00

0 0

; ,
r r r r

i j j i
ij

r r rE ck E ck
µ µ µ µ

α ω ω
  − = + 

− +  
∑ ɶ ɶℏ ℏ

 (2.5.4) 

 

is the frequency, ,ckω =  dependent polarisability.  Here, e and e’ are the polarisation 

vectors of the incident and emergent radiation respectively.  It is the value of the 

components of the polarisability tensor that determine the strength of the scattering 

events.  For example, the response of a polar molecule will be dominated by the 

( )00 ;zzα ω ω−  component, where z is the axial direction.  

 

 To derive the optical response tensor of a molecule displaying upconversion – 

the simultaneous (within the limits of quantum uncertainty) absorption of two 

identical photons and the emission of a harmonic photon with twice the frequency of 
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the input beam – we begin by characterising the initial and final states: 

 

( ) ( )

( ) ( )

mat

mat

0 ;2 , ,0 2 ,

0 ;0 , ,1 2 , ,

I

F

λ λ

λ λ

′=

′=

k k

k k
  (2.5.5) 

 

where the modulus of the output photon wave-vector is twice that of the input, 

2 .k k′ =   We substitute the relevant expression for Hint into the third term of the 

perturbative expansion for the matrix element,  Eq. (2.2.5): 

 

( )( )3
,0

1 ,FI
R S I S I R

F S S R R I
M

E E E Eε

⊥ ⊥ ⊥⋅ ⋅ ⋅
= −

− −∑
µ d µ d µ d

 (2.5.6) 

 

which, by explicitly labelling the components of the vectors, becomes: 
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∑
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 (2.5.7) 

 

Upper-case system states, R and S, Eq. (2.2.6), have been converted to lower-case 

letters to designate the intermediate matter states.  We associate the molecular part of 

the quantum amplitude with the hyperpolarisability tensor and re-express Eq. (2.5.7) 

as: 
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( ) ( )( )
3 11

22

0

1 ,
2FI i j k ijk
cM i k k n n e e e
V

β
ε

  ′ ′= − − 
 

ℏ  (2.5.8) 

 

where, evidently, 
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 (2.5.9) 

  

It is worth noting that as the j and k indices correspond to the two identical incident 

photons, the result must be identical when these indices are exchanged.  That is, the 

3×3 polarisation tensor, ,i j ke e e′  is j,k symmetric.  Therefore, we may construct the j,k 

symmetric part of the hyperpolarisability tensor by taking the mean average of 00
ijkβ  

and 00
ikjβ : 
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 (2.5.10) 

 

which is the only part of the response tensor that contributes to the rate. 
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The higher-order response tensors can be computed in an analogous way and it is 

by discussion of these quantities that we may investigate the applicability of the two-

level approximation in optical problems.  

 

 

2.6 ‘Push-Pull’ Chromophores 

 

As mentioned above, it is widely considered true that ‘push-pull’ chromophores –

display enhanced second harmonic response [48–56].  ‘Push-pull’ chromophores are 

those optical centres that display shifted static dipole moments in their excited states, 

with respect to their ground state moments, and are thought to display large optical 

nonlinearity.  These often have the form of electron donor and acceptor groups 

connected with a benzene ring, and are manufactured with the goal of application in 

electronic andphotonic technologies.  Here, we show that this reasoning is derived 

from a two energy level model is not necessarily accurate.  The application of such an 

approximation is very rarely recognised as potentially misleading in this context [57].  

Furthermore, since the publication of the papers that relate to this chapter, it has been 

experimentally verified that a two-state model gives an incorrect value for 

hyperpolarisability [58]. 

 

We begin our analysis by restricting the set of energy levels, labelled as i, f, r and 

s in Eq. (2.5.9), to containing only one ground state 0  and a single excited state 1 .   

Under this assumption there are only four possible routes through state space; namely: 
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0 0 0 0
0 1 0 0
0 0 1 0
0 1 1 0 ,

→ → →

→ → →

→ → →

→ → →

  (2.6.1) 

 

where the states, from left to right are denoted by i, r, s and f.  Each route generates 

terms in Eq. (2.5.9) depending on the transition dipole moments, 01µ  and 10 ,µ  and the 

static dipole moments, 00µ and 11.µ   It has been shown that nonlinear susceptibilities 

only have a dependence on the static moments in terms of their vector difference– in 

this case 11 00.= −d µ µ   Furthermore, to deliver the correct results it is sufficient to 

apply the following algorithm [34,59–61]: 

 

11 11 00

00 0 .
→ − =

→

µ µ µ d
µ

  (2.6.2) 

 

Of the four routes in Eq. (2.6.1) only one does not have a dependence on the ground 

state dipole moments,  

 

0 1 1 0 ,→ → →   (2.6.3) 

 

and Eq. (2.5.9) becomes: 
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 (2.6.4) 
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It is this equation that represents the matter in second harmonic generation under the 

two-level approximation, and is used as justification for the idea that a non-zero d is 

required for a non-zero hyperpolarisability.   

 

Extending this analysis to that of an n-photon process allows, via the application 

of the above mentioned algorithm, each state sequence to be written as: 

 

1 2 10 0 ,nr r r −→ → → → →…   (2.6.5) 

where { }0 , 1 .ir ∈   If n is odd, then the non-vanishing state sequences must 

contain at least one ' 1 1 ',→  which, by the prescription in Eq. (2.6.2), is replaced by 

d.  Therefore, within the two-level approximation, for odd-n nonlinear 

susceptibilities:  

 

( )0 0.oddχ= ⇒ =d   (2.6.6) 

  

However, for processes that depend on even-order nonlinear susceptibilities, the 

alternating state sequence  0 1 0 1 0 1 0 ,→ → → → → →…  will generate a 

term that neither vanishes by an appearance of a 0 0→  or depends on d, by the 

appearance of a 1 1 .→   Thus: 

 

( )0 0,evenχ= ⇒ =d   (2.6.7) 

 

which physically denotes that a non-‘push-pull’ chromophore does not imply a 
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vanishing even-order optical susceptibility tensor.  

 

 

2.7 Two-level Model for Elastic Scattering 

 

By examining the calculations corresponding to Rayleigh (elastic scattering) we can 

come to a conclusion as to whether this process is well represented by two energy 

levels.  Slight rearrangement of Eq. (2.5.4) leads to: 

 

( )

( ) ( ) ( ) ( )
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0 0 0 0 0 0 0 0

0 0 0 0

; TLA BG
ij ij ij

u u u u u u u u
i j j i i j j i

u u u uE ck E ck E ck E ck

α ω ω α α

µ µ µ µ µ µ µ µ′ ′ ′ ′

′ ′

− = +

 
 = + + + +
 − + − + 

…ɶ ɶ ɶ ɶℏ ℏ ℏ ℏ

 (2.7.1) 

 

where the superscripts TLA and BG denote two-level and background terms.  Here, 

u′  is a third energy level.  It is worth noting that terms solely dependant on 00
iµ  and 

00
jµ  vanish, and it is this aspect of the calculations that forms a basis for the 

algorithmic method outlined in Ref. [34,59–61].   In the following, we compare the 

magnitude of these terms in two representative merocyanine dyes that are known to 

have large nonlinear susceptibilities.  Furthermore, the considered molecules are 

electrically neutral, polar molecules so that their optical response is dominated by the 

axial components of their respective tensors.  Compound (1) is                                 

1-methyl-4-[(oxocyclohexadienylidene)ethylidene]-1,4-dihydropyridine and dye (2) is 

1-methyl-4-[(dicyanomethylidene)hexadienylidene]-1,4-dihydropyridine; A  diagram 

of their chemical structure is displayed in Fig. 2.1.  
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Fig. 2.1.  Structure of the two merocyanine laser dyes discussed here. 

 

We begin by comparing the dispersion curves for the zzα  component of the 

molecules with just one excited state included (dashed line) in the sum-over-states, to 

that with twenty excited states included (solid line).  The ab intio computations were 

performed by Peck and Oganesyan [30] for a range of frequency values in the visible 

and near-UV range.  In Fig. 2.2., it will be observed that the deviation of the two-level 

curve from that of the twenty-one level is minimal at this scale; a small structural             

  

 

Fig. 2.2. The most intense features in the spectra of compounds 1 – (i), and 2 – (ii) arising from the zz 

component of the polarisability.  The horizontal scale is in wavenumbers (cm-1).  The difference 

between the two-level and 21-level result has its maximum of 2.5% in Fig (i) and 2% in Fig (ii).  In 

both images it is near to the 3.5 x104cm-1 position.  

 

difference is seen at approximately 3.5 × 104 cm-1.  To further validate the claim that, 

for these molecules, two energy levels are adequate to describe the polarisability 
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tensor, we plot the following measure: 

 

( )
( )
( )

100 ,
2

ij
ij

ij

N
N

α
α

α
= ⋅⌣   (2.7.2) 

 

where the argument N, indicates the number of excited states used in the computation, 

and the overbar represents averaging over the frequency interval.  The measure, 

( ) ,ij Nα⌣  is then an indication of the percentage departure from the two-level model; a 

value close to 100(%) indicates good agreement.   

 

The two plots in Fig. 2.3. fully support the claim that the two-level approximation 

is a satisfactory description of optical processes that depend on the polarisability of 

the active optical centre.  

 

 

Fig. 2.3 Plot of ( )ij Nα⌣  against number of excited states in compound 1 (i) and 2 (ii).  The value of 

( )ij Nα⌣ varies by a maximum of 2.5% over the whole range of excited states.  

 

2.8 Two-level Model for Second Harmonic Generation 

 

In the previous section it was verified, by example, that the two-level approximation 
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is valid in the application of nonlinear optical techniques to elastic scattering.  

However, it will now be shown that the same cannot be said for a process one order of 

optical nonlinearity higher; namely, second harmonic generation.  As in Eq. (2.7.1), 

we partition the hyperpolarisability tensor into two-level and background terms: 
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 (2.8.1) 

 

where u′  is a third excited state and 00.u u′ ′′ = −d µ µ   From this partition it is clear 

that we can justify the two-level approximation if the bracketed terms in Eq. (2.8.1) 

dominate.   

 

To study the effect of a third energy level on the denominators in Eq. (2.8.1)

we proceed by assuming similar values for the numerators.  While this may not be a 

realistic assumption, it provides an insight into the complexity of systems frequently 
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assumed to comprise just one excited energy level.  We begin by constructing a set of 

new variables from Fig. 2.4. – 1 0 ,uE E ωΔ = −ɶ ɶ ℏ 1 0 ,uE E ω′′Δ = −ɶ ɶ ℏ 2 02 ,uE Eω−Δ = −ɶ ɶℏ  

and 2 0 2 .uE E ω′′Δ = −ɶ ɶ ℏ   For convenience, we choose the pair { }1 1,E E′Δ Δɶ ɶ as a basis set; 

the other two new variables can be constructed from these via 2 1E E ωΔ = Δ −ɶ ɶ ℏ  and 

2 1 .E E ω′ ′Δ = Δ −ɶ ɶ ℏ   With this replacement, Eq. (2.8.1) becomes: 
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 (2.8.2) 

 

When the input light has energy markedly less than that of the first excited state, 

analysis of Eq. (2.8.2) shows that terms 1, 4, 7 and 10 will all have large values due to 

their denominators.  As we have two linearly independent variables upon which the 

hyperpolarisability depends, we may plot a contour landscape of the denominator 

terms, as shown in Fig. 2.5.   By introducing β ′  (as defined in Fig. 2.5.) we may 

visualise the added contributions to the hyperpolarisability tensor from the 

denominators corresponding to an additional energy level.  To remove the 
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singularities associated with exact resonance conditions the energy differences include 

a representative damping factor of value ~ 0.1 .γ ωℏ   The white regions in the map 

dad 

 

Fig. 2.4.  Diagram of three energy levels.  Here, ωℏ  is the energy of the input photons and u, u’ label 
the first and second excited levels; 

1EΔ ɶ , 
2EΔ ɶ , 

1E′Δ ɶ , 
2E′Δ ɶ  are defined in Section 5. 

 

correspond to values of 1EΔ ɶ  and E′Δ ɶ  where the background contributions to the 

hyperpolarisability are at least as great as the two-level contributions; it must be 

supposed that further energy levels add more corrections.  However, the darkest 

regions of the landscape indicate pairs of energy offset values that give rise to values 

of 00
ijkβ  that are less than 20% different in value than the same tensor calculated with 

just two energy levels; the use of such an approximation is then defensible.  

 

Instead of imposing the approximate equality of the numerators in Eq. (2.8.1)we 

now analyse the dispersion curves for the hyperpolarisability for second harmonic 

generation.  Displayed in Fig. 2.6. are the dispersion curves – computed by Peck and 

Oganesyan [30] – for the axial component of the hyperpolarisabilty calculated with a 

single excited state (dashed line) and twenty excited states (solid line).  Except for 
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regions far from resonance, both compounds display large deviations from the two- 

gun 

 

Fig. 2.5.  A landscape illustrating the magnitude of β ′  for the hyperpolarisability corresponding to 

second harmonic generation, 00
ijkβ . The horizontal and vertical scales are in units of ωℏ . 

 

level results, suggesting that the two-level approximation fails for optical processes of 

this order.  To address the issue of convergence, we introduce the analogue of Eq. 

(2.7.2) for the hyperpolarisability tensor: 

 

( )
( )
( )

100 ,
2

ijk
ijk

ijk

N
N

β
β

β
= ⋅

⌣
  (2.8.3) 

 

where, once again, a value close to 100(%) indicates good agreement.  Presented in 

Fig. 2.7. displays the value of this measure for increasing N.  The plot for compound 1 
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(i) displays increasing divergence from the two-level result as the number of excited 

states increases above 15, whereas the equivalent plot for compound 2 (ii) exhibits an  

 

 

Fig. 2.6. The most intense features in the spectra of compounds 1 – (i), and 2 – (ii) arising from the zzz 

component of the hyperpolarisability for second harmonic generation.  The horizontal scale is in 

wavenumbers (cm-1). 

 

 

Fig. 2.7. Plot ( )ijk Nβ
⌣

 against of number of excited states in compound 1 (i) and 2 (ii). 

 

approximately 16% divergence from the two-level result when 8-11 excited states are 

included.  With the inclusion of 12-20 excited states the value of ( )ijk Nβ
⌣

reduces to 

closer to the two-level result.  Therefore, in both cases it is not guaranteed that the 
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two-level approximation gives a similar value to an N-level approximation when 

.N →∞  

 

 

2.9 Other Hyperpolarisability Components 

 

To ensure that the above divergence is not just associated with the zzz component of 

the hyperpolarisability, the dispersion curves for the other components are presented 

in Fig. 2.8.  Clearly, for both molecules and for both components, the two-level 

approximation completely fails to discern any dispersion characteristics on this scale.  

In Fig. 2.8.(b) a 21-level sum over states calculation reveals a resonance with 

magnitude ~1% of that corresponding to the zzz component.  Despite this small value, 

it is still surprising to see that the result based on the two-level approximation does 

not even hint that there might be a resonance in this frequency range.  These small 

absolute magnitudes, in practise, will make a negligible difference to the rate due to 

the zzz components being 103-106 times larger than the off-diagonal components.  By 

extension of the error-gauging parameter, displayed in Fig. 2.5., to the other diagonal 

components of ( )00 2 ; ,ijkβ ω ω ω−  we may quantify the extent of the two-level failure for 

these molecules at varying wavenumbers, Fig. 2.9. 

 

It is observed in Fig. 2.8. that for all diagonal components of the 

hyperpolarisability the two-level model differs from the 21-level model by varying 

amounts in the near-UV and visible parts of the spectrum.  In both compounds the 

xxxβ ′ value is ~106 – indicating that two- and 21- level calculations differ by a factor of 

a million. 
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Fig. 2.8. Dispersion curves for the (a) xxx  and (b) yyy components of compound 1, and (c) xxx  and   

(d) yyy components of compound 2. 

 

To conclude, it is worthwhile to display the variation of the error-gauging 

parameter for off-diagonal hyperpolarisability elements, Fig. 2.9.  Interestingly, by 

observation of the dispersion curves, it is apparent that the value of the error-gauging 

parameter tends to be higher in the range corresponding to resonance.  Thus, the two-

level approximation applied to second harmonic generation is invalid over almost the 

entire range of frequencies considered here, especially close to resonance features.   
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Fig. 2.9. Values of the diagonal components of the error-gauging parameter BG TLAβ β β′ = for (a) 

compound 1 and (b) compound 2, and values of a representative set of off-diagonal components of the 

error-gauging parameter BG TLAβ β β′ = for (c) compound 1 and (d) compound 2. 

 

 

2.10 Counting Terms in Optical Susceptibility Tensors  

 

Even for the hydrogen atom, which has known atomic wavefunctions, analytical 

calculation of the transition dipoles proves difficult.  Beyond hydrogen-like atoms 

these vectors become only numerically tractable, usually requiring time consuming 

computational techniques [29,30,62–65].  Here we demonstrate that the number of 

terms in each optical susceptibility tensor puts constraints on their calculational ease. 

 

Generally the polarisability tensor takes the following form: 
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where the superscript (n) denotes the number of energy levels included in the sum-

over-states.  Each term inside the brackets corresponds to a time-ordering of the 

Feynman diagrams and is summed over the possible values of the intermediate state 

label, r.  It is readily observed that the number of terms in Eq. (2.10.1), when 

including n energy levels is 2n+1.  Turning our attention to the first 

hyperpolarisability tensor allows us to directly compute: 

 

( ) 23 6N n=   (2.10.2) 

 

as the number of terms in the second-order optical susceptibility tensor.  In general, 

the pth order susceptibility has a product of  p  transition dipoles with fixed initial and 

final states, and a (p – 1)-fold sum over the n possible intermediate states.  From 

combinatorial mathematics we observe that choosing (p – 1) repeatable elements from 

a set of n delivers n(p-1) possible arrangements.  It is then seen that the pth order optical 

susceptibility has N(p) terms, with  

 

( ) ( )1! ,pN p p n −=   (2.10.3) 

 

where the factor p! is included to account for the number of time-orderings.  In some 

cases the number of time-orderings can be reduced; for example, a reduction to         

(p – 2)! in harmonic generation occurs by virtue of the symmetrical input photon 

labels.  It can be seen that in the case of the polarisability tensor the inclusion of an 
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addition energy level increases the number of terms, linearly, by two.  For the first 

hyperpolarisability, however, increasing the set of n energy levels to n + 1 demands 

an 12n + 6 extra terms.  In the general case, for a pth-order optical susceptibility, 

increasing the set of n energy levels by one delivers an increase in number of terms 

by: 

 

( ) ( ) ( )( ) ( )
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 (2.10.4) 

 

where 
n
k
 
 
 

 is a binomial coefficient.  For example, in calculating the first 

hyperpolarisability tensor, p = 3, increasing the set of energy levels from ten to eleven 

requires computation of an additional 126 terms.  The precise number of terms in  

the first four optical susceptibility tensors (ignoring any index symmetry) are 

displayed in Fig. 2.12.  For example, a four-wave mixing process calculated with 40 

possible intermediate energy levels requires calculation of 310 million terms. 

However  

However, in the language of complexity theory, these computations are at least 

solvable in polynomial time with respect to n as there are, approximately O(n(p-1)) 

terms to calculate [66].   
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       n 

   p 2 5 10 20 30 40 

2 – ijα  2 10 20 40 60 80 

3 – ijkβ  24 150 600 2400 5400 9600 

4 – ( )3
ijklχ  190 3000 2.4×104 1.9×105 6.4×105 1.5×106 

5 – ( )4
ijklmχ  1900 7.5×104 1.2×106 1.9×107 9.7×107 3.1×108 

 

  Fig. 2.12. The values of ( ), ,N p n  the number of terms in the pth-order nonlinear susceptibility 

tensor taking into account n energy levels, to two significant figures.   

 

 

2.11 Conclusion 

 

The purpose of the above has been to study the criteria for the validity of the two-

level approximation, generally and in the context of nonlinear optics.  It has been 

determined that the use of a two-state model undermines realism in return for 

calculational ease [29–32].  

 

First, we presented an analytical theorem on the expectation values of quantum 

operators that showed the invalidity of the two-level approximation in even simple 

systems.  As an example, we proved that applying a two-level model to a quantum 

harmonic oscillator led to the absurd conclusion that the different energy levels must 

have the same energy.  Furthermore, by application of the Virial theorem it was 

shown that this reductio ad absurdum argument applies to a wider class of problems.  
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Such analysis forces not only that the expectation value of quantum operators in the 

two basis states be equal, but also the equality of fluctuations in those two states.  To 

the extent that these criteria are not satisfied the two-level approximation fails.  

 

Secondly, we discussed the validity of the two-level approximation when applied 

to the optical susceptibility tensors of nonlinear optical processes.  After deriving the 

molecular response tensors for Rayleigh scattering and second harmonic generation, 

we challenged the commonly held idea that ‘push-pull’ chromophores are associated 

with enhanced second harmonic response; this idea is justifiable only within the two-

level approximation.  It was then shown that ab initio calculations combined with 

introduction of an error-gauging parameter indicated that for two specified molecules 

the two-level approximation was indeed valid.  However, it has been shown that the 

sum over all molecular states of any optical susceptibility is zero, which demands 

that, when considering just two energy levels, the excited state tensor is precisely the 

negative of the ground state tensor, 00 uuχ χ=  [67].   

 

The extension of these arguments to second harmonic generation began by 

plotting a visually representative landscape, which, under the strict assumption of 

similarly valued numerators, indicated regions where a two-level model gave similar 

(and vastly different) results to that obtained by introducing a third energy level.  The 

dispersion curves of two organic chromophores – again calculated by Peck and 

Oganesyan [31] – were exhibited and, in contrast to those for Rayleigh scattering, 

indicated that a twenty excited state calculation differed vastly from the two-level 

result.  An error gauging parameter was introduced, which indicated that the 
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hyperpolarisability for the second harmonic response of these molecules does not 

converge as the number of included energy levels increases.  

 

Finally, it was proved that the number of terms in the pth-order optical 

susceptibility is polynomial of order n(p-1), where n is the number of energy levels 

included in the sum-over-states computation.  The physical implications of deploying 

the two-level approximation are not obvious and mostly unrealistic, thus the 

implications of such a model deserve wider recognition.  
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Chapter 3 

Measures of Optical Angular Momentum 

 

 

“This unexpected discovery … is a source of mathematical ‘embarras de richesses’ 

because of the lack of any ready physical interpretation for the quantities that are 

found to be conserved.”  

– Daniel M. Lipkin† 

 

 

 

 

 

 

† Lipkin, Daniel M., Existence of a New Conservation Law in Electromagnetic Theory – Journal of Mathematical 
Physics Vol 5 No. 1 –  p696  (1964). 
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3.1 Background 

 

Conservation laws are important in electromagnetic theory because they put 

constraints on how a system may evolve with time.  For example, if a photon travels 

in free space, we would be very surprised if, upon looking after a time-interval, its 

direction of motion had reversed.  Here, of course, we have not considered the 

conservation of linear momentum, which arises from the spatially integrated 

Lagrangian (density) being invariant under a continuous translation.  By 1918, Emmy 

Noether had shown that for both particles and fields, every differentiable symmetry of 

a system’s action corresponds to a conservation law [1], connecting a Noether charge 

and the flow of a Noether current [2].  The quantum version of Noether’s theorem 

necessarily involves taking the expectation values of the four-currents, and is called 

the Ward-Takahashi identity [3].  It emerges that the infinitesimal spatial rotation 

symmetries of the action correspond to the conservation of angular momentum.  In 

fact, this is a special case of the hyperbolic space-time rotations, known as Lorentz 

transformations, which generate a whole host of conservation laws [4].   

 

In 1909, John Poynting suggested that electromagnetic radiation has, in the case of 

circular polarisations, an associated angular momentum [5].  Robert Beth’s famous 

experiment in 1936 showed that, by measuring the torque on the thread suspending a 

half-wave plate through which circularly polarised light was passed, light does indeed 

posses intrinsic angular momentum of ±ℏ  per photon [6].  A modern version of this 

experiment, performed with optical tweezers, rotates micrometre-sized birefringent 

calcite spheres by transferring angular momentum from the optical trap [7].  

Moreover, it has been shown that the spin angular momentum (associated with the 
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polarisation) and the orbital angular momentum (associated with an optical field with 

a twisted phase) can produce mechanically equivalent effects [8]. 

 

In this chapter we show that the optical angular momentum can be divided into 

parts that satisfy duplex symmetry (electric-magnetic democracy).  The spin and 

orbital parts of the angular momentum are analysed in a quantum optical framework 

and are shown to depend on number operators in characteristic ways.  Furthermore, 

the spin part is shown to obey a continuity equation with the electromagnetic helicity.  

Both measures are evaluated using plane wave and Laguerre-Gaussian modes, and, as 

expected, the spin and helicity measures are not affected by the introduction of orbital 

angular momentum.  We then investigate the recently rediscovered optical chirality 

density and corresponding flux to show that, in the paraxial approximation, they are 

proportional only to the spin part of the optical angular momentum.  Beams with 

nonzero values of these measures do not have any orbital angular momentum 

characteristics.  Finally, it is shown that the infinite hierarchy of helicity- and spin- 

type measures, introduced by Cameron, Barnett and Yao, all emerge with similar 

quantum operator form, and a general expression is provided.  Thus, the motivation 

for this chapter is to develop a fully quantised description of the various optical 

angular momentum measures.  Such an analysis has results that match exactly to the 

classical light description, developed by Bliokh and Nori.  Furthermore, the orbital 

and spin parts of the electromagnetic field emerge as dependant upon number 

operators, which can easily be recast in terms of intensities to relate to experimental 

work.  A description of this kind also leads to a similar description of the recently 

rediscovered optical chirality density (Lipkin zilch) and an intuitive proof that 

‘superchiral light’ does not exist.  
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3.2 Symmetry 

 

By demanding that an infinitesimal space-time translation, ,q q tµ µ µ→ +  where t is a 

constant translation and Greek superscripts denote the four space-time coordinates, 

leaves the spatially integrated field Lagrangian unchanged, it emerges that a set of 

quantities are conserved.  In this case, it is the electromagnetic stress-energy tensor 

[3,4]: 

2 2
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σ σ σ

σ σ σ
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+  

  
 
 =  
 
 
 
  

E B

 (3.2.1) 

 

where the Si are the components of the Poynting vector, ( )01 ,µ= ×S E B  and 

( )2 2
0 0 0 01 2 1 2 1 .ij i j i j ijE E B B E Bσ ε µ ε µ δ= − − + +   Here, ( )2 2

0 01 2 1u ε µ= +E B  is 

the energy density.  In a system of charges we obtain the continuity equation: 

 

,u
t

∂ +∇⋅ = − ⋅
∂

S j e   (3.2.2) 

 

where j is the current density.  Of course, in a free field, this becomes a conservation 

equation, and it is revealed that the flow of the Poynting vector out of (or in to) any 

volume is the rate of change energy density in that volume.   
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If we instead demand that the action is invariant under the set of Lorentz 

transformations, which contains the subset of three-dimensional spatial rotations, we 

obtain another conserved current; namely: 

 

,M T x T xµο ο µ µ ο
ν ν ν= −   (3.2.3) 

  

where 0.Mν µο
ν∂ =   If we only consider the three-dimensional spatial rotations and use 

the electromagnetic Lagrangian, we obtain the conservation of the cross-product of 

the position vector, r, with the Poynting vector, which is interpreted at the angular 

momentum of the electromagnetic field.   

 

Thus, the conservation of energy-momentum is a consequence of the invariance of 

the action under a space-time transformation and the conservation of angular 

momentum is a consequence of the invariance of the action under a spatial rotation.  

Furthermore, it can be shown that the electromagnetic field Lagrangian is invariant 

under a shift in the velocity of the observer (a Lorentz transformation), which gives 

rise to a proof that the electric and magnetic fields are different manifestations of the 

same force [9].  

 

 

3.3 Optical Angular Momentum 

 

From Noether’s theorem it is determined that the angular momentum for the 

electromagnetic field is given by: 
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( ){ }3
0 ,ε= ∂ ×∫J r r e×b   (3.3.1) 

 

where (e×b) is the Poynting vector [10].  We first make a trivial division, 

 

( ){ } ( ){ }3 30 0 ,
2 2
ε ε= ∂ × − ∂ ×∫ ∫J r r e×b r r b×e  (3.3.2) 

 

and substitute the vector potential of the b field in the left term and of the e field in the 

right term, to obtain: 

 

( ) ( ){ }30 .
2
ε= ∂ × ∇ + × ∇∫J r r e× ×a r b× ×c  (3.3.3) 

   

We proceed by making explicit the indices of the vectors in our expression: 

 

( ) ( ){ }30 ,
2i j ijk j ijkk kJ r rε ε ε= ∂ ∇ + ∇∫ r e× ×a b× ×c  (3.3.4) 

 

where ijkε  is the antisymmetric Levi-Civita symbol [11].  Further decomposition into 

index notation delivers: 

 

( ) ( ){ }

{ }

30

30

,
2

.
2

i j ijk klm l j ijk klm lm m

j ijk klm l mnp n p j ijk klm l mnp n p

J r e r b

r e a r b c

ε ε ε ε ε

ε ε ε ε ε ε ε

= ∂ ∇ + ∇

= ∂ ∂ + ∂

∫

∫

r ×a ×c

r
 (3.3.5) 

 
 

The Levi-Civita has the following properties [11]: 
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.
klm mkl lmk

mkl mnp kn lp kp ln

ε ε ε
ε ε δ δ δ δ

= =
= −

  (3.3.6) 

  

Therefore, the expression can be rearranged to: 

 

( ) ( ){ }
( ) ( ){ }

30

30

2

.
2

i j ijk kn lp kp ln l n p j ijk kn lp kp ln l n p

j ijk l k l l l k j ijk l k l l l k

J r e a r b c

r e a e a r b c b c

ε ε δ δ δ δ ε δ δ δ δ

ε ε ε

= ∂ − ∂ + − ∂

= ∂ ∂ − ∂ + ∂ − ∂

∫

∫

r

r
 (3.3.7) 

 

The j ijk l l kr e aε ∂  and the j ijk l l kr b cε ∂  terms can be integrated by parts to deliver 

 

( ) ( )( )
( ) ( )( )

3 3

3 3 ,

j ijk l l k j ijk l k ijk l l k j l l kj

j ijk l l k j ijk l k ijk l j l k j l l k

r e a r e a r e a r e a

r b c r b c r b c r b c

ε ε ε

ε ε ε

=∞

=−∞

=∞

=−∞

 ∂ ∂ = − ∂ ∂ + ∂ 

 ∂ ∂ = − ∂ ∂ + ∂ 

∫ ∫
∫ ∫

r

r

r

r

r r

r r
 (3.3.8) 

 

where the square brackets are zero if the fields vanish at infinity and  

 

0
0,

l l

l l

e
b

∂ =∇⋅ =
∂ =∇ ⋅ =

e
b

  (3.3.9) 

 

in the absence of charges.  We are then left with  

 

( ) ( )( ) ( ) ( )( ){ }30 .
2i j ijk l k l l j l k j ijk l k l l j l kJ r e a r e a r b c r b cε ε ε= ∂ ∂ + ∂ + ∂ + ∂∫ r  (3.3.10) 

 

Noting that l j ljr δ∂ =  enables us to write 
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( ) ( ){ }30 ,
2i ijk j k j k j ijk l k l l k lJ e a b c r e a b cε ε ε= ∂ + + ∂ + ∂∫ r  (3.3.11) 

 

which, returning to vector notation, is expressed as 

 

( ) ( ) ( )( ){ }30 .
2 l l l le a b cε= ∂ × + × + ×∇ + ×∇∫J r e a b c r r  (3.3.12) 

 

We can identify the spin part as 

 

( )30 ,
2
ε= ∂ × + ×∫S r e a b c   (3.3.13) 

 

and the orbital part as  

 

( ) ( ){ }30 .
2 l l l le a b cε= ∂ ×∇ + ×∇∫L r r r   (3.3.14) 

 

If the trivial division in Eq. (3.3.2) is not made, the resultant division is: 

 

( )
( ){ }

3
0

3
0

;

;

,l le a

ε

ε

= ∂ ×

= ∂ ×∇

∫
∫

J = S +L

S r e a

L r r

  (3.3.15) 

 

which are not invariant under the Heaviside-Lamor (or duplex) transformation and 

therefore do not abide by electric-magnetic democracy [12–15]: 
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1

cos sin
cos sin .

c
c

θ θ
θ θ−

→ +
→ −

E E B
B B E

  (3.3.16) 

  

It is worth noting that the expressions. Eq. (3.3.13) and (3.3.14) are not gauge 

invariant due to the appearance of the vector potentials; however, use of the paraxial 

approximation allows this separation [16].  The gauge invariant separation was 

proposed long ago by Darwin [17], and in the context of this thesis delivers identical 

results, as the vector potentials are purely transverse.  

 

In the free field, it can be shown that the spin and orbital parts are independently 

conserved [18], but are not separately angular momenta, in that their quantum 

operators do not satisfy the same commutation relations with the other elements of the 

Poincaré group, as the total angular momentum.  However, the components of these 

quantities are separately measureable and play different roles in the interaction of 

light and matter [19].   

 

 

 
3.4 The Spin Part of Optical Angular Momentum 

 

In this chapter we will compute the exact form of the spin and orbital parts of the 

optical angular momentum within a quantum electrodynamic framework.  Precisely, a 

mode analysis on these operators reveals expressions in terms of photon annihilation 

and creation operators [20].   
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For clarity, we calculate the quantum electrodynamic expressions for the parts of 

the electromagnetic angular momentum given in Eq. (3.3.15); in the free-field the 

results emerge identical to those using the duplex-symmetric forms given in Eq. 

(3.3.13) and (3.3.14).  The operator for the electromagnetic vector potential of a plane 

wave mode is given by: 

 

( ) ( ) ( ) ( ) ( ){ }
1
2

†( ) i ( ) i

, 0

( ) e ( ) e ,
2

a a
ckV

η ηη η

η ε
⋅ − ⋅ 

 
 

∑ k r k r

k
a r = e k k + e k kℏ  (3.4.1) 

 

where ( ) ( )a η k  is the annihilation operator for a mode with polarisation label η  and 

wavevector k, respectively.  The polarisation vector for the mode with the same labels 

is given by ( ) ( ).ηe k   The electric and magnetic field operators are obtained from: 

 

t
∂= −
∂
ae   (3.4.2) 

 

.=∇×b a   (3.4.3) 

 

First we substitute the mode expansions for the electromagnetic fields into the 

expression for the spin operator: 
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( )
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r
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e k e k k k

e k e k k k

e k e k k k
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 (3.4.4) 

 

where the r-dependence of the modes is contained in the exponential.  Therefore, we 

may enact the normalisation conditions: 

 

( )

( )

3

3

for
0 otherwise

for
.

0 otherwise

i
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∫
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  (3.4.5) 

  

After simplification of the pre-factor, our expression becomes: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
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 (3.4.6) 
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Any measurement of the spin operator will be delivered as an expectation value, thus 

the first and last terms vanish.  In fact, even if we leave these terms in at this stage, 

they will vanish when we introduce an orthogonal polarisation basis.  We therefore 

obtain: 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

, ,

† †

† †

, ,

2

2 ,

i

a a a a

i a a +a a

η η

η η η η η η η η

η η η η η η

η η

′

′ ′ ′ ′

′ ′ ′

′

= ⋅

× − ×

= ⋅ ×

∑

∑

k

k

S

e k e k k k e k e k k k

e k e k k k k k

ℏ

ℏ

 (3.4.7) 

  

where in the last step we have used the anti-commutative property of the cross-

product and exchanged the dummy polarisation labels in the right-hand term.  Now 

we may sum over a suitable basis set of polarisation vectors.  First we address the 

case of linearly polarised light, 

 

( ) ( )
( ) ( )

ˆ

ˆ,

H

V

=

=

e k i

e k j
  (3.4.8) 

  

where H and V correspond to horizontal and vertical polarisations respectively, and î  

and ĵ are the Cartesian unit vectors, with ( )ˆ ˆ ˆ, ,i j k  forming an orthogonal right-handed 

triad.  We trivially obtain: 

 

0.=S   (3.4.9) 

 

However, if we instead consider a circularly polarised basis: 
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( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 ˆ ˆ
2

1 ˆ ˆ ,
2

L R

R L

i

i

= = +

= = −

e k e k i j

e k e k i j
  (3.4.10) 

 

we obtain the following prescription: 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

/ /

/ /

ˆ

0.

L R L R

L R R L

i× =

× =

e k e k k

e k e k

∓
  (3.4.11) 

 

The calculation of the operator form of the spin part of the angular momentum then 

proceeds as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( )( )

† † ˆ

ˆ ˆ ˆ ,

L L R R

L R

a a a a

N N

= −

= −

∑

∑
k

k

S k k k k k

k k k

ℏ

ℏ
 (3.4.12) 

 

where ( ) ( )/ˆ L RN k  is the number operator for the mode with wavevector k.  Thus, 

calculating the expectation value of the spin operator for an optical state delivers the 

difference between the expected number of left- and right- handed photons in each 

mode, multiplied by Planck’s constant and the unit vector in the direction 

perpendicular to the plane of polarisation.  Thus, a single photon state vector is an 

eigenstate of the spin operator, with eigenvalue ˆ± kℏ .   
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3.5 Poincaré Sphere Representation of Polarisation 

 

To generalise this result we may include a degree of freedom in the analysis – 

corresponding to an arbitrarily chosen pair of polarisation vectors.  We can represent 

the superposition state of a two-level quantum mechanical system geometrically as a 

point on the Bloch sphere.  In (quantum) optics this is also known as the Poincaré 

sphere, where any pair of basis polarisation vectors can be depicted as two separate 

points on the surface of the sphere [21].  Furthermore, a suitable basis set should 

satisfy the orthogonality condition, ( ) ( ) ,n m
nmδ⋅ =e e  and correspond to diametrically 

opposing points on the Poincaré sphere.  To satisfy these conditions, we introduce a 

polarisation vector ( ) ( )1e k , characterised by angular coordinates θ  and φ , Fig. 3.1. 

with its counterpart basis vector given by: 

 

( ) ( )
( ) ( )

1

2

ˆ ˆsin cos
ˆ ˆcos sin .

i

i

e

e

φ

φ

θ θ

θ θ

= +

= −

e k i j

e k i j
  (3.5.1) 

 

Thus, to calculate the value of the spin part of the angular momentum in a more 

general form, we may replace Eq. (3.4.10) and (3.4.11) with our new prescription: 

 

( ) ( )

( ) ( )

1 1

2 2

ˆ ˆ ˆ
ˆsin cos 0 sin 2 sin

sin cos 0

ˆ ˆ ˆ
ˆcos sin 0 sin 2 sin

cos sin 0

i

i

i

i

e i
e

e i
e

φ
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φ
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θ θ θ φ
θ θ

θ θ θ φ
θ θ

−

−

× = = −

× = − =
−

i j k
e e k

i j k
e e k

 (3.5.2) 
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Thus, the spin part emerges as: 

 

( ) ( ) ( ) ( ) ( ) ( )( )1 2ˆ ˆ ˆsin 2 sin ,N Nθ φ= −∑
k

S k k kℏ  (3.5.3) 

 

where we recover the linear polarisation case, Eq. (3.4.9), by setting 0θ = , 0φ =  for 

horizontal polarisation and 2θ π= , 0φ =  for vertical polarisation.  We also recover 

the circularly polarised case, Eq. (3.4.12), by setting 4θ π= , 2φ π= ±  for left- and 

right- handed polarisations respectively, and note that such an expression 

unambiguously reveals pure left- (right-) handed light as generator of the maximum 

(minimum) value for the spin operator.   

 

 

Fig. 3.1. The Poincaré sphere representation of optical polarisation basis vectors determined by angular 

coordinates θ  and .φ   
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3.6 Electromagnetic Helicity  

 

Here we will show that the spin part of the optical angular momentum satisfies a 

conservation equation with the electromagnetic helicity, and that a quantum optical 

analysis of these measures relates perfectly to known results in particle physics.  

Precisely, the helicity of a fundamental particle is defined as the projection of the spin 

angular momentum on to the direction of propagation.  For particles travelling at less 

than the speed of light, this means that the helicity is not invariant (as a Lorentz boost 

changes the relative propagation direction, but not the direction of the spin).  

However, for particles travel at the speed of light, like the photon, the helicity is an 

invariant property, and is known to be directly related to the chirality. We now derive 

the helicity from the assumption that there is a scalar that satisfies a continuity 

equation with the spin angular momentum.  To determine the scalar operator that has 

spin as the corresponding flux, we begin by computing the divergence of the spin: 

 

( )

( ) ( ) ( ) ( ){ }
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0 0 0 0

2

2

,
2 t t t t

ε

ε

ε ε µ ε µ

∇⋅ = ∂ ∇⋅ × + ×

= ∂ ⋅ ∇× − ⋅ ∇× + ⋅ ∇× − ⋅ ∇×
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∫

∫

∫

S r e a b c

r a e e a c b b c

b c e ar a e c b

 (3.6.1) 

which is observed to be a time derivative: 

 

{ }30
0 0

2 3 0

0

2
1 .

2 2
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ε ε µ

ε
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∂∇⋅ = − ∂ ⋅ − ⋅
∂

 ∂= − ∂ ⋅ − ⋅ ∂  

∫

∫

S r a b c e
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Thus, we have derived the helicity, h, 

 

3 0

0

1 ,
2 2

h ε
µ

 
= ∂ ⋅ − ⋅ 

 
∫ r a b c e   (3.6.3) 

 

and spin, which are related by: 

 

2 0,hc
t

∂ +∇⋅ =
∂

S   (3.6.4) 

 

or equivalently they form a four-vector in Minkowski space [22].  Using the same 

quantum optical mode expansion as in analysis of the spin angular momentum 

operator, we obtain: 

 

{ }
( ) ( ) ( ) ( ){ }

3 0

0

†(1) (1) †(2) (2)

1 2

1
2 2

sin 2 sin ( ) ( ) ( ) ( )
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h
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N N

ε
µ

θ φ
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 
= ∂ ⋅ − ⋅ 

 

= −

= −

∫

∑

∑
k

k

r a b c e

k k k k

k k

ℏ

ℏ

 (3.6.5) 

 

This relates with the particle physics definition of helicity as the projection of the spin 

onto the direction of propagation [23].  

 

 

3.7 Light with Orbital Angular Momentum 

 

To address situations in which the radiation might carry orbital angular momentum, 
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we first return to a classical wave, free to propagate only in the z-direction: 

 

( ) ( ) ( ), ,i kz tt u e ω−=a r e r   (3.7.1) 

 

where u(r) is the amplitude function and e is a polarisation vector, both in the plane 

transverse to z.  Through introduction of the Lorenz gauge we obtain the Maxwellian 

wave equation in paraxial form, also known as the Helmholtz equation [24]: 

 

( )2
, 2 0,x y ik u

z
∂ ∇ + = ∂ 

r   (3.7.2) 

 

where the subscript on the gradient operator denote which variables one differentiates 

with respect to and k is the longitudinal wavenumber.  In Cartesian coordinates the 

amplitude function can be expressed as the product of ( ),nu x z  and ( ),mu y z , two 

functions that individually obey paraxial wave equations in their respective transverse 

direction.  Normalised solutions to such wave equations are expressible as the product 

of a Gaussian function with a Hermite polynomial; they are commonly known as 

Hermite-Gaussian beams [25].   

 

Expressing the paraxial wave-equation, Eq. (3.7.2), in cylindrical polar 

coordinates delivers: 

 

( )
2 2

2 2
1 1 2 , , 0,lpik u r z
r r r r z

ϕ
ϕ

 ∂ ∂ ∂ ∂+ + + = ∂ ∂ ∂ ∂ 
 (3.7.3) 

 



Chapter 3: Measures of Optical Angular Momentum 

 - 105 -

where r is the radial coordinate and  φ is the azimuthal angle. The form of this 

equation lends itself to cylindrically symmetric solutions expressible as the product of 

a Gaussian function with a generalised Laguerre polynomial; they are commonly 

known as Laguerre-Gaussian beams.  It will be shown that Laguerre-Gaussian beams 

are eigenfunctions of the orbital angular momentum operator, and therefore carry l± ℏ  

units of orbital angular momentum along the direction of propagation.  In a classical 

framework, the Laguerre-Gaussian modes are given by: 

 

( ) ( ) ( )
( )

( )
( ) ( ) ( )

22

2 22
2

2 2 1
2

2 2, , ,R

ikr zl r
z z i p l zlp lw z il
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C r ru r z e L e e e
w z w z w z

χϕϕ
− + − + +   

=       
   

 (3.7.4) 

 

where l
pL  are the generalised Laguerre polynomials, w(z) is the beam waist and 2zR is 

the Rayleigh range.  The normalisation constant is given by Clp and χ(z) is the Gouy 

phase of the beam, which indicates that when a Gaussian beam passes through a focus 

it acquires a π phase shift.  The intensity distribution of a Laguerre-Gaussian mode is 

that of progressively (outward from r = 0) fainter concentric rings with the number of 

rings determined by the radial index, p + 1.   

 

Experiments can be constructed that have a Rayleigh range of several metres [26], 

so that it is reasonable to assume beam collimation is maintained for .Rz z≫   Under 

this assumption, we have: 

 

( )

( ) ( ) ( )

2

2 2

0

2 2 1

;

1.R

ikr z
z z i p l z

w z w

e e χ+ − + +

→

→

  (3.7.5) 
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Thus, our amplitude function can be expressed as: 

 

( ) ( ),, , ,il
lp l pu r z f r e ϕϕ −=   (3.7.6) 

 

where the exponential phase factor corresponds to an orbital angular momentum 

eigenvalue of lℏ  [27] , and the radial distribution function for the mode with 

azimuthal index l and radial index p is given by: 

 

( )
2

2
0

2

2
0 0 0

2 2 .
l r

lp lw
lp p

C r rf r e L
w w w

−   
=        

  (3.7.7) 

   

Such functions are orthogonal, in the sense that: 

 

( ) ( ) 2 2
, , 0

0

,l p l q lp pqr f r f r r A w δ
∞

∂ =∫   (3.7.8) 

 

where, regardless of indices, Alp = 1/2 due to the properties of the generalised 

Laguerre polynomials [28].   

 

The electric and magnetic field vectors are derivable from the electromagnetic 

vector potential, which, most generally, is written as a linear combination of all 

possible solutions to Eq. (3.7.3): 

 

( ) { }( ) ( )
, , , , , , , , , ,

, , ,
, ( ) ( , ) ( ) ( , ) ,ikz i t ikz i t
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η η

η
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k
a r e k e k  (3.7.9) 
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where , , ,l pa ηk  are the complex coefficients.  The wavevector k is constrained to the 

propagation direction, so is given by ˆ.kz   By promoting the complex coefficients to 

operators, 
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 
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k

k

k

k

ℏ

ℏ
  (3.7.10) 

 

and using the properties of the amplitude function, we obtain the quantum optical 

mode expansion for a Laguerre-Gaussian mode: 

 

{ }
1
2

( ) ( ) ( ) †( )
, , , ,

, , , 0

( ) ( ) ( ) ( ) ( ) ( ) .
2

ikz il ikz il
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ckV
η η ϕ η η ϕ

η ε
− − + 

= + 
 

∑a e k k e k kℏ  (3.7.11) 

 

Here we work within the Heisenberg picture, so that the annihilation and creation 

operators implicitly contain the time-dependence of the vector potential.  The 

annihilation and creation operators introduced here raise and lower the photon 

occupancy number in the usual way and satisfy the expected commutation relations 

[29]. 

 

Both set of solutions to the paraxial wave-equation form a complete basis and can 

therefore describe any state of a paraxial light field and can be represented as a 

superposition of the other.  Furthermore, there are many other solutions to 

Maxwellian wave equations; for example, in elliptical coordinates one can obtain an 
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orthogonal set of Ince-Gaussian modes, which have Hermite-Gaussian and Laguerre-

Gaussian modes as special cases.  It is worth noting that Hypergeometric-Gaussian 

modes, with a singular phase profile, are also eigenfunctions of the orbital angular 

momentum operator [30], and warrant further study in context of quantum 

formulations of optical angular momentum. 

 

Having derived the quantum optical vector potential for Laguerre-Gaussian modes 

we can now begin analysis of the orbital angular momentum operator.  For clarity, 

presented here is calculation of the non duplex-symmetric form of the orbital angular 

momentum operator, as presented in Eq. (3.3.15),  where, analysis of the fully 

symmetric form of this expression, Eq. (3.3.14), delivers the same result in free-space.  

With this vector potential, the related electric field is given by: 
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1
2

( ) ( ) ( ) †( )
, , , ,

, , , 0

( ) ( ) ( ) ( ) ( ) ( ) .
2

ikz il ikz il
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k l p
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V

η η ϕ η η ϕ

η ε
− − + 

= − 
 

∑e e k k e k kℏ  (3.7.12) 

 

We note that in an axially symmetric beam the only nonzero component of the orbital 

part of the angular momentum is the part directed along the z-axis.  This component is 

given by: 

 

( ){ }3
0 ,z m mzL e aε= ∂ ×∇∫ r r   (3.7.13) 

 

where, in cylindrical polar coordinates,  
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r φ z
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  (3.7.14) 

 

The system is rotationally symmetric (and, within the Rayleigh range, effectively 

invariant with respect to z), thus:  

 

( ) .
z ϕ

∂×∇ =
∂

r   (3.7.15) 

 

We may then calculate the z component of the orbital part of the angular momentum: 
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(3.7.16) 

 

where × represents scalar multiplication and the subscript (m) labels components of 

the polarisation vector.  By enacting the multiplication and returning to vector 

notation, we obtain: 
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 (3.7.17) 

 

We note that in cylindrical polar coordinates the volume element is given by: 

 

.r r zϕ∂ ∂ ∂   (3.7.18) 

 

We may then integrate the r, φ and z dependent sections of Eq. (3.7.17) separately: 
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(3.7.19) 

 

Here, the z-dependent sections satisfy the same normalisation conditions as Eq. 

(3.4.5) and the φ-dependent sections satisfy: 
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After enacting these normalisation conditions, we are left with: 
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 (3.7.21) 

 

As before, any meaningful result will be delivered as the expectation value of an 

optical state, thus the first and last terms vanish as they do not leave the state 

unchanged.  Furthermore, enacting the radial normalisation condition delivers: 
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  (3.7.22) 

To proceed, we sum over the pairs of general polarisation vectors given in Eq. (3.5.1), 

with scalar product given by: 
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( ) ( ) ( ) ( ) .s t
stδ⋅ =e k e k   (3.7.23) 

 

Thus, our expression becomes: 
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 (3.7.24) 

  

Crucially, the results of Sections 3.5 and 3.5, when enacted with mode expansions 

explicitly containing orbital angular momentum, still deliver the exact same 

expressions for spin and helicity, Eq. (3.5.3) and (3.6.3).  It is then evident that in the 

paraxial regime the total angular momentum can be expressed as the sum of Eq. 

(3.5.3) and (3.7.24) delivering: 
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 (3.7.25) 

 

This represents a new compartmentalisation of the orbital and spin parts of the optical 

angular momentum into terms that depend on the sum and difference of number 

operators for modes of opposing polarisation helicity [31].  Such an expression also 

explains the mechanical equivalence of the spin and orbital parts in angular 

momentum exchange with matter [8]. Furthermore, such analysis gives a basis, 

through Eq. (3.7.15), for the use of heuristic orbital angular momentum operator 
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i
ϕ
∂−
∂
ℏ .  Intuitively, the form of these equations represents the fact that the spin and 

orbital degrees of freedom are distinct and separable in the paraxial approximation, 

and in the free-field.  Both angular momenta are quantised and an arbitrary 

electromagnetic field has total spin/orbital angular momentum given by the sum of the 

number of photons in each spin/orbital state.  For spin angular momentum, this has 

two values: +1 and -1; however, for orbital angular momentum, this ± l, where l is any 

natural number.   

 

 
3.8 Optical Chirality/The Lipkin Zilch 

 

In 1964, Daniel M Lipkin observed that in an arbitrary electromagnetic free field, 

Maxwell’s equations guarantee the conservation of the quantity [32]: 

 

( ) ( )0

0

1 ,
2 2
εχ

µ
= ⋅ ∇× + ⋅ ∇×e e b b   (3.8.1) 

 

with respect to a corresponding flux: 

 

( ) ( )
2

0 .
2
c= × ∇× + × ∇×  e b b eεεεεφφφφ   (3.8.2) 

 

That is, these two quantities are related by the following conservation equation: 

  

0.
t
χ∂ +∇⋅ =
∂

φφφφ   (3.8.3) 
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In a modern context [33], these quantities are known as the optical chirality density, 

Eq. (3.8.1), and the optical chirality flux, Eq. (3.8.2), and have recently been the 

subject of considerable debate regarding physical interpretation and relation to other 

measures of helicity and optical angular momentum.  Lipkin originally dismissed 

these quantities as having no ready physical interpretation, except that an observation 

of the units of the ‘zilch’ (ergs per second) suggests that it “might provide a measure 

of optical activity in the field”.  Importantly, the units are not the same as those of 

angular momentum.  It was later discovered that the optical chirality measures are 

associated with conservation of electromagnetic polarisation [34].  The rest of this 

chapter aims to develop, in precise quantum electrodynamic terms, a description of 

these measures in a photonic context.  Furthermore, it has been shown by Cameron, 

Barnett and Yao [15] that the optical chirality and the helicity, Eq. (3.6.3) form the 

basis of an infinite family of helicity-type measures.  In Section 3.9 it is demonstrated 

that the infinite hierarchy of helicity-type and the related spin-type measures all have a 

strikingly similar form in a quantum electrodynamic formalism.  

 

In the quantum field picture, Eq. (3.8.1) and (3.8.2) are promoted to operator 

status.  As with the computation of the spin and helicity measures, both terms are 

easily shown to deliver equal contributions in a free field.  Thus, for calculational 

clarity we need only look at a single term (multiplied by two).  Our ansatz is that we 

should integrate the optical chirality density over a spatial volume to bring results in 

coincidence with the form of the electromagnetic helicity:   

 

( )3 3
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V V

χ ε∂ = ∂ ⋅ ∇×∫ ∫r r e e   (3.8.4) 



Chapter 3: Measures of Optical Angular Momentum 

 - 115 -

 

Introducing the mode expansion for the electric field of a plane wave and using vector 

subscript notation delivers: 
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 (3.8.5) 

 

where × represents scalar multiplication.  Enacting the multiplication delivers: 
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As an expedient, we may drop the first and last terms, as taking expectation values of 

precisely defined photon number states will cause these terms to vanish.  Thus, we 

obtain: 
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where the normalisation condition, Eq. (3.4.5), has been used.  By reinstating the 

vector character of the polarisation vectors we obtain: 
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From the general polarisation basis, given in Eq. (3.5.1), we determine that the only 

contributions to Eq. (3.8.7) are when the polarisations η and η’ in Eq. (3.8.8) are 

identical.  This is shown explicitly in Appendix B.  Thus, our expression becomes: 
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which, after simplification and use of the annihilation and creation operator 

commutation relations, becomes: 
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 (3.8.10) 

 

where the last step delivers our expression in terms of number operators.  This result 

remains identical when using a non-plane wave basis for derivation of this expression, 
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such as the Laguerre-Gaussian vector potential given in Eq. (3.7.11).  From this 

expression we readily obtain Lipkin’s observation that the optical chirality has 

dimensions of energy per time.  Furthermore, by starting with the optical chirality 

density, Eq. (3.8.1), and replacing some of the electric and magnetic field vectors with 

their curls, we obtain: 

 

( ) ( )0

0

1 ,
2 2
εχ

µ
= − ⋅ ∇×∇× + ⋅ ∇×∇×e c b a   (3.8.11) 

 

which, after using the vector identity ( ) 2 ,∇×∇× =∇ ∇⋅ −∇v v v  for any vector field 

v, becomes: 

 

( ) ( )2 20

0

2 0

0

1
2 2

1 .
2 2

k

εχ
µ

ε
µ

= ⋅ ∇ − ⋅ ∇

 
= ⋅ − ⋅ 

 

e c b a

a b c e
  (3.8.12) 

 

Thus, in a monochromatic (not necessarily parallel) beam we have the relation: 

 

2 3

V

k hχ∂ =∫ r   (3.8.13) 

 

where h is the helicity, as given in Eq. (3.6.5).  By mode analysis or vector 

manipulation it is similarly found that the spatially integrated optical chirality flux is 

given by: 
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( ) ( ) ( ) ( ) ( ) ( )( )1 23 2ˆ ˆ ˆsin 2 sin .
V

N N kθ φ∂ = −∑∫
k

r k k kℏφφφφ  (3.8.14) 

 

Thus, for a monochromatic field:  

2 3 .
V

k ∂ =∫ r Sφφφφ   (3.8.15) 

 

These monochromatic correspondences have been observed in a classical momentum 

representation [35] and using a Riemann-Silberstein vector formalism [36].  In the 

next chapter we will determine what physical effects become manifest when matter 

interacts with light possessing non-zero values of these measures with matter.  

 

 

3.9  Family of Helicity-type and Spin-type Measures 

 

It was shown by Cameron, Barnett and Yao [15] that the starting with free-space 

Maxwell-like equations, involving the vector potentials: 

 

2

0;
0;

;

1 ,

t

c t

∇⋅ =
∇⋅ =

∂∇× = −
∂
∂∇× =
∂

c
a

ac

ca

  (3.9.1) 

 

and replacing every a and c, the magnetic and electric vector potentials, with their 

curls delivers, first, Maxwell’s equations.  Continuing to replace any appearance of a 

field with its curl reveals an infinite list of Maxwell-like equations.  Moreover, for any 
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conserved electromagnetic quantity one can replace each appearance of the fields with 

their curls, or curls of curls, etc., generating an infinite list of related conserved 

quantities.  It is easy to check that optical chirality density and its associated flux can 

be derived from the helicity and spin operators by repeating such a replacement.  

More generally, it is now shown that starting with the electromagnetic helicity, Eq. 

(3.6.5), and spin, Eq. (3.3.15), operators, and repeatedly taking curls, creates an 

infinite set of pairs of helicity-type and spin-type measures.  It will be shown that all 

measures are proportional to the difference in populations of optical modes with 

opposing helicity.  Furthermore, it is observed that the helicity and spin satisfy a 

continuity relation, Eq. (3.6.4); this is mirrored by a corresponding continuity in the 

optical chirality density and associated flux, and in any higher order counterparts.  In 

contrast, it has been shown that other orbital angular momentum measures are not 

conserved; precisely, the total number of optical vortices on a cross-section of a 

paraxial beam [37].  

 

To prove that all measures in the Cameron-Barnett-Yao infinite hierarchy are 

proportional to the difference in populations of optical modes with opposing helicity, 

we observe that taking each successive curl of the field operators in the expressions 

for the spin and helicity has three effects: through the exponential factor in the 

quantum optical mode expansion, each operator is multiplied by ik, which, by the 

bilinearity of each term, results in an overall multiplication of k2; the comparative 

signs of the positive and negative frequency terms alternate; and the polarisation 

vectors are exchanged in a two-cycle, 

  

( ) ( ) ( )(1/2) (1/2) (1/2)ˆ . .→ × → →e k k e k e k …   (3.9.2) 
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Therefore, each of the helicity-type measures will always involve the dot product of 

the electric polarisation vector with the complex conjugate of the corresponding 

magnetic polarisation vector [38], ( ) ( )1/2ˆ .×k e k   With the generalised polarisation 

vector basis, Eq. (3.5.1), these products emerge as: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 1

2 2

ˆ ˆ ˆ ˆˆ sin cos cos sin

sin cos sin cos
sin 2 sin ;

ˆ ˆ ˆ ˆˆ cos sin sin cos

sin cos sin cos
sin 2 sin .

i i

i i

i i

i i

e e

e e
i

e e

e e
i

φ φ

φ φ

φ θ

φ φ

θ θ θ θ

θ θ θ θ
θ φ

θ θ θ θ

θ θ θ θ
θ φ

−

−

−

−

 ⋅ × = + ⋅ − + 
= −
=

 ⋅ × = − ⋅ + 
= − +
= −

e k k e k i j i j

e k k e k i j i j
 (3.9.3) 

 

Similarly, the spin-type measures involve either the vector cross product of the 

electric or magnetic polarisation vectors with itself, which emerge as: 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 1

2 2

ˆ ˆ ˆ
ˆ ˆ ˆ0 cos sin cos sin

0

ˆsin 2 sin ;
ˆ ˆ ˆ

ˆ ˆ ˆ0 sin cos sin cos
0

ˆsin 2 sin ,

i i
y x

y x

i i
y x

y x

e e e e
e e

i

e e e e
e e

i

φ φ

φ φ

θ θ θ θ

θ φ

θ θ θ θ

θ φ

−

−

     × × × = − = −    
−

= −

     × × × = − = −    
−

=

i j k
k e k k e k k

k

i j k
k e k k e k k

k

 (3.9.4) 

 
and 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 1

2 2

ˆ ˆ ˆ
ˆsin cos 0 sin 2 sin ;

sin cos 0

ˆ ˆ ˆ
ˆcos sin 0 sin 2 sin ,

cos sin 0

i

i

i

i

e i
e

e i
e

φ

φ

φ

φ

θ θ θ φ
θ θ

θ θ θ φ
θ θ

−

−

× = = −

× = − =
−

i j k
e k e k k

i j k
e k e k k

 (3.9.5) 

With these prescriptions it is clear that the only nonzero terms are those containing the 

number operator   ( ) ( ) ( ) ( )† 1/2 1/2(1/2)ˆ ( )N a a≡k k k  with the polarization state matching 

that of the polarization vector. Thus, all helicity- type and spin-type operators 

obtained via repeated curls of the field operators have resulting formulae all 

containing the distinctive dependence on the difference between number operators for 

optical modes of opposing helicity.  More generally, these quantum operators are 

delivered as: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }2 1 23 ˆ ˆsin 2 sin ;jj

V

h c k N N∂ = −∑∫
k

r k kℏ θ φ  (3.9.6) 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 23 2 ˆ ˆ ˆsin 2 sin ,j j

V

k N N∂ = −∑∫
k

rS k k kℏ θ φ  (3.9.7) 

 

where the superscript labels the different generations of helicity- and spin- type 

measures, with (j = 0) and (j = 1) representing the helicity/spin densities and optical 

chirality/chirality flux generations respectively [31].  We can immediately conclude 

that the maximum (minimum) value that any of the above operators may attain is 

when acting on a state containing purely left- (right-) handed photons.   
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3.10 Conclusion 

 

It has been shown that careful analysis of the optical angular momentum allows 

division into parts that satisfy duplex symmetry (electric-magnetic democracy).  

Introduction of a general Poincaré sphere representation of polarisation allows the 

analysis a greater degree of generality.  In a quantum optical framework, the orbital 

and spin parts of the angular momentum have been shown to depend on the sum and 

difference of number operators for modes of opposing helicity, respectively.  The 

Noether charge that corresponds to the spin was delivered as the electromagnetic 

helicity.  In a plane wave analysis, both measures depend on the difference between 

numbers of optical modes with polarisation vectors diametrically opposed to the 

Poincaré sphere.  This result extends to the case of beams with orbital angular 

momentum.  The involvement of orbital angular momentum has been tackled by 

investigation of Laguerre-Gaussian modes, which form a complete basis set for 

rotationally symmetric beams.  

 

A similar analysis of the recently rediscovered optical chirality density and 

corresponding flux showed that they are proportional only to difference of number 

operators for modes of opposing helicity.  Introduction of a Laguerre-Gaussian basis 

reveals that beams with nonzero values of the optical chirality do not necessarily have 

any orbital angular momentum characteristics.  Finally, it is shown that the infinite 

hierarchy of helicity- and spin- type measures, introduced by Cameron, Barnett and 

Yao, all emerge with similar quantum operator form: identical to the helicity and spin 

operators, except with an additional k2 inside the mode summation for each successive 

operator pair.   
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Recently, it has been claimed that light with nonzero values of optical chirality 

can differentiate between left- and right- handed molecules many times better than 

pure circularly polarised light [39–41].  The analysis in this chapter unambiguously 

shows that the maximum value any helicity- or spin- type measure can take is that of 

pure left- or right- handed light.  In the next chapter we provide a quantum 

electrodynamic analysis of the experiments that claim to show such effects. 
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3.11 Appendix B – Polarisation Vectors dot product 

 

This appendix explicitly calculates the various combinations of polarisation vector dot 

and cross products, used in Section 3.8 to compute the spatially integrated optical 

chirality density and flux in terms of quantum number operators.  
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Chapter 4 

The Interaction of Twisted Light with Matter 

 

 

 

 

“Spin. n. a quantum characteristic of an elementary particle that is visualized as the 

rotation of the particle on its axis and that is responsible for measurable angular 

momentum.”  

“Spin. n. a special point of view, emphasis, or interpretation presented for the 

purpose of influencing opinion.” 

– Merriam-Webster Dictionary† 

 

 

† Merriam Webster Dictionary, Merriam Webster, U.S.; Revised edition (2004) 
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4.1 Background 

 

In 1974, Nye and Berry showed theoretically that whenever three or more waves 

interfere there will be lines of phase indeterminacy that imply zero amplitude at these 

locations [1].  In the context of optics, the details of these phase dislocations were not 

recognised until the 1990s; namely, that beams with these properties convey orbital 

angular momentum [2–6].  These one-dimensional vortex lines have been shown to 

spontaneously form knots [7], even in simple nonlinear optical systems [8,9].  

Moreover, the well-known speckle pattern present in laser beam profiles is associated 

with optical vortices in these regions [10,11].  In contrast, it has been long known that 

the spin part of the optical angular momentum, associated with polarisation, 

determines circular differential response for chiral molecules [12].  However, it is 

now known that orbital angular momentum does not play a role in the electronic 

dipole transitions, only in centre of mass motion [13,14]; this was later verified 

experimentally [15,16].  On the beam axis the spin and orbital parts of the angular 

momentum have mechanically equivalent effects: they cause the rotation of a weakly 

absorbing dielectric microsphere [17].   

 

Beams with orbital angular momentum are commonly created by the conversion 

of a conventional optical beam, with spiral phase plates [18], spatial light modulators 

[19,20] and q-plates [21,22].  In fact, it is now possible to convert transverse 

electromagnetic mode (TEM) beams into tailored complex beams, in which both the 

phase and the polarisation of the output is predetermined [23,24].  These beams often 

have complex polarisation structures, varying over the beam profile and may also 

display polarisation singularities [25].  Demanding material inhomogeneity and 
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anisotropy, q-plates allow the entanglement of the spin and orbital degrees of freedom 

of photons [26], which, in the context of quantum computing, provides a means for 

spin-orbit information transfer [21,27].  Thus, possibilities for encoding, processing 

and transmitting information of higher dimensionality than in pure spin states [28] 

have been met with renewed optimism [29–36]. 

 

The potential applications associated with optical vortex beams are numerous: for 

example, in optical manipulation [37–39], in optical sensing [40], and in contrast 

enhanced ghost imaging [41].  In fact, it has recently been shown that light with 

orbital angular momentum has several astrophysical applications [42], such as 

adaptive optics [43], high contrast imaging of exoplanets [44] and speculation that 

rotating black holes produce light with orbital angular momentum [45].   Furthermore, 

there have been recent reports that the orbital angular momentum of light can enhance 

higher-order multipole effects [46] and new selection rules for atomic transitions [47].   

 

Since the previous chapter disproved the possibility that the optical chirality 

density can allow ‘superchiral’ electromagnetic fields, the motivation for the work in 

this chapter is to develop a theoretical understanding of the experiments of Tang and 

Cohen.  Molecular QED is used in the description of circular dichroism near to a 

reflecting surface, and gives results that tie in perfectly with the experimental reports 

of Tang and Cohen.  Furthermore, a six-wave mixing process is described that can 

display many of the interesting entanglement features of spontaneous parametric 

down-conversion, except with the added benefit of being possible in an isotropic 

medium.   
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4.2 Bilinear Measures 

 

To begin, it is worthwhile considering the mathematical form of optical measures of 

freely propagating radiation.  All observations, therefore, emerge as expectation 

values that do not demolish the radiation state.  In the previous chapter we displayed 

the components of the electromagnetic stress-energy tensor, each containing the 

product of precisely two field operators.  Furthermore, the division into spin and 

orbital parts, the helicity and the infinite hierarchy of chiral measures are all bilinear 

terms in the electric and magnetic (or related) fields.  Evaluating these quantities with 

a plane-wave or Laguerre-Gaussian mode expansion reveals resultant formulae with 

terms containing precisely one annihilation and one creation operator.  It is this 

feature that allows many optical measures of interest to be constructed as dependant 

on number operators.  

 

To address the case of non-paraxial beams we introduce, as a representative test 

case, an exact classical solution for the electric field vector of a beam bearing orbital 

angular momentum [48]: 

 

( ) ( ) ( ) ( ){
( ) ( ) ( ) ( )

0

1 1 ,
2

z
k ik zil

u x v y l

i i
z u v l u v l

z

x e d E e e e J

e i e J i e J
k

φ

φ φ

κ κ α α κρ

κ α α κρ α α κρ−
− +

= × +


 + − − +  



∫E
 (4.2.1) 

 

where ( )lJ κρ  are Bessel functions, with l topological charge, l, the z component of 

the wavevector ( )1 22
zk k κ2= −  and the complex constants ,u vα α  satisfy 

2 2 1.u vα α+ =   To promote Eq. (4.2.1) to a quantum operator, we recognise that uα  
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and vα  correspond to orthogonal plane polarisations, such as horizontal and vertical, 

and demand that they are promoted to operator status through: 

 

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

L R

L R

;
2
1 ,
2

v

u

i a a

a a

α

α

→ ±

→ ±

k k

k k
  (4.2.2) 

 

where the superscript L/R denote left- and right- handed circular polarisations, 

respectively.  Thus, the quantum optical form of Eq. (4.2.1) is an expression that is 

linear in the annihilation and creation operators.  To summarise: for both paraxial and 

non-paraxial light, the stress-energy tensor components and all angular momentum 

observables are bilinear in ( )( )a η k  and ( )†( ) .a η k  

 

To generalise this analysis, we postulate a quantum operator Q̂  given by an 

analytical function of fields containing strings of annihilation and creation operators.  

Such functions permit power series expansions and are therefore amenable to the 

following analysis.  For two operators Â  and ˆ ,B  their normal order is denoted here 

as ˆ ˆ .AB


 In quantum field theory, a product of quantum fields and, equivalently, a 

product of the annihilation and creation operators of those fields, is said to be 

normally ordered when all annihilation operators are to the right of all creation 

operators.  Normal ordering can be defined in many other ways, but for the present 

purposes the usual definition works perfectly.  For the same two operators Â  and 

B̂, their contraction is denoted ˆ ˆ ,A B  and is defined to be: 

 



Chapter 4: The Interaction of Twisted Light with Matter 

 - 135 -

ˆ ˆ ˆˆ ˆ ˆ .= −A B AB AB


   (4.2.3) 

 

For the product of an annihilation and creation operator the contraction is given by: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† † †
, , ,a a a a a aλ η λ η λ η

λ ηδ δ= − = p kk p k p k p


  (4.2.4) 

 

which is effectively a restatement of the annihilation and creation operator 

commutation relation.  Wick’s Theorem [49]   states that a product of annihilation and 

creation operators can be written as the normal ordering of that product, plus the 

normal order of the product after all single contractions, plus the normal ordering after 

all double contractions, etc [50].  It is worth noting that this contraction is a real 

number – precisely, either 1 or 0.  Thus, the above contraction will reduce the number 

of operators in any given string by 2.  Simply, from Wick’s Theorem, any string of 

annihilation and creation operators can be decomposed into a set of terms that are all 

in normal order.  Significantly, the difference between the number of annihilation and 

creation operators is a constant for all terms in the decomposition.   

 

We have determined that, by Wick’s Theorem, the operator Q̂  transforms into a 

series of terms, each with the form: 

 

( ) ( ) ( ) ( )† † ,
r s

a a a aη η η η… …   (4.2.5) 

 

where the mode label, k, has been dropped for convenience. If r and s are the number 

of times each operator appears, then (r – s) is a constant dictated by Q̂  and inherited 
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by all terms.  Taking the expectation value of the terms of such an operator over a 

number (Fock) state delivers: 

 

 ( ) ( )
2

† † ! | ,
! !sr

nn a a a a n n r n s
n r n s

= − −
− −

… …  (4.2.6) 

 

which, due to the orthogonality of the state vectors, only gives a non-vanishing result 

when r = s.  Thus, when investigating the properties of number states, Hermitian 

operators must contain terms with equal numbers of annihilation and creation 

operators.  

For greater generality, we extend this argument to coherent states [51], which, 

unlike Fock states, are not necessarily orthogonal.  Taking the expectation of the 

terms in Q̂   gives: 

 


† † ,r s

sr

a a a aα α α α=… …   (4.2.7) 

 

where the coherent state, ,α  is an eigenstate of the annihilation operator, with 

eigenvalue ,α  a complex number.  Thus, unequal numbers of annihilation and 

creation operators are not prohibited for coherent states by the same reasoning as for 

precisely defined number states.  However, explicitly displaying the time dependence 

of the raising and lowering operators gives:  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )† †

, ,0 ;

, ,0 ,

i t

i t

a t a e

a t a e

η η ω

η η ω

−=

=

k k

k k
  (4.2.8) 

 

where ckω =  is the photon frequency.  Substitution of these expressions into Eq. 

(4.2.7) reveals that a normally ordered string of annihilation and creation operators 

will contain a residual oscillating phase factor if the numbers of each operator are 

imbalanced.  Precisely, the phase factor will be ( ) ,r s i te ω−  which, is inherited by all 

terms in the normally ordered decomposition prescribed by Wick’s theorem.  Thus, 

unless r = s, the real part of this factor, involved in any measurement, acquires a zero 

expectation value.   Finally, a general optical state – representable as a linear 

combination of either number or coherent states – will similarly deliver only nonzero 

values when electromagnetic measures have terms with equal numbers of annihilation 

and creation operators. 

 

 

4.3 Connecting Molecular and Optical Chirality 

 

We now introduce a framework for discussing the symmetry principles involved in 

the interaction of optical handedness with molecular chirality.  Using a multipolar 

representation of the interaction Hamiltonian, we can model each photonic interaction 

as: 

 

( ) ( ) ( ) ( ){ }3
int ,H = − ∂ ⋅ + ⋅∫ r p r e r m r b r   (4.3.1) 
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where p(r) is the molecular polarisation field (comprising all electric multipoles), e(r) 

and b(r) are the transverse electric and magnetic fields respectively, and m(r) is the 

molecular magnetisation field (comprising all magnetic multipoles) [52].  Here, we 

have ignored the diamagnetisation term, whose contribution is of the order α2, the fine 

structure constant – the same order as magnetic quadrupole and electric octupole 

contributions [53].  A Taylor series expansion of the polarisation and magnetisation 

fields makes explicit the multipole orders, denoted En and Mn respectively.  The 

leading order contributions are denoted E1, E2 and M1, and correspond to the electric 

dipole, ,µ  electric quadrupole, ,ijQ and magnetic dipole, ,m  quantum operators, 

where the latter two are smaller than the electric dipole interaction by the order of the 

fine structure constant [51].  For the work considered in this thesis we only consider 

the electric and magnetic dipole interactions, whose effects, it will be shown, provide 

the leading order chiral response terms.  The electric dipole operators change sign 

under space inversion (space-odd) but retain their sign under time reversal (time-

even), whereas the magnetic dipole operator is space-even and time-odd [13].   

 

In a quantum electrodynamic framework, the rate of an optical process is 

determined from Fermi’s rule, which, in turn, is determined by the probability 

amplitude.  The probability amplitude is a complex scalar and is obtained through 

application of time-dependent perturbation theory.  For a general n-order optical 

process, the quantum amplitude is delivered as a series of scalar terms, each the inner 

product of two rank r tensors [54]: 
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( ) ( )
; ; ; ;

0
~ ,

n n
r r

FI e m n e m e m n e m
e m n e

M − − − −
= = −

⊗∑ ∑ S T   (4.3.2) 

 

where ⊗ denotes the tensor inner product and e, m correspond to the number of 

electric and magnetic interaction.  If we only consider the E1, E2 and M1 interactions, 

labelled by e1, m1, q, then r = e1 + m1 + 2q.  The tilde, in Eq. (4.3.2), is introduced as, 

for clarity, we have ignored the space-time-inversion invariant constants (also labelled 

by e, m, n), which therefore do not contribute to discussions of the dynamical 

symmetries, which are all contained in the S and T tensors.  Here, the S tensor is an 

outer product of electric and magnetic field vector components, and T is an outer 

product of molecular transition integrals (in the dipole approximation these are 

electric and magnetic transition dipole components).  As the probability amplitude is 

scalar with the dimensions of energy, the total product ( ) ( )
; ; ; ;
r r

e m n e m e m n e m− − − −⊗S T  must not 

change sign under space or time inversion.  Therefore, the parity signatures of each 

pair of S and T tensors must be identical to satisfy this condition.  

 

Evaluating the probability (or rate) from the square modulus of the probability 

amplitude delivers a series of diagonal terms with no discriminatory chiral behaviour, 

as quadratic dependence on either radiation or molecular tensor is space- and time- 

even and it is space inversion that physically corresponds to changing molecular or 

optical handedness.  Thus, it is the interference terms that may have odd spatial parity 

and will contribute to differential response.  Furthermore, this analysis makes it clear 

that the total probability is a sum over all diagonal and off-diagonal terms. Thus, a 

non-zero result only arises from the chiral radiation modes being disproportionately 

populated, or by unequal populations of left- and right- handed molecules.  



Chapter 4: The Interaction of Twisted Light with Matter 

 - 140 -

4.4 Differential Absorption from a Single Beam 

 

It has recently been suggested that the optical chirality density determines the rate of 

differential absorption of circularly polarised light by chiral molecules.  Moreover, it 

has been suggested that “superchiral light”, with values of optical chirality density 

greater than pure circularly polarised light [55,56], can exist in suitably constructed 

experiments, and correspond to regions of enhanced chiroptical prominence [57–60].  

Although, there may exist mechanisms by which the chiral response of optical centres 

can be enhanced, it was shown in the previous chapter that the optical chirality has 

maximum values for circularly polarised light [61,62].  This has also been shown in a 

classical setting by Bliokh and Nori [63], and in terms of Riemann-Silberstein vectors 

by Bergman [64]. 

 

To relate these measures to experiment, we calculate the difference between the 

Fermi rates for absorption by left- and right- handed molecules in a single beam, 

 

( ) ( )
CD CD
+ −Γ −Γ ,  (4.4.1) 

 

where (+) and (–) represent the left- and right- handed enantiomer respectively.  Each 

term is directly proportional to the square modulus of the probability amplitude 

corresponding to the transition between the initial and final states: 

 

22 .fiMπ ρΓ =
ℏ

  (4.4.2) 
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In accordance with the prescription set out in Section 4.3, the resultant formula will 

emerge as the inner product of a molecular tensor with a radiation tensor; the latter 

will prove to be proportional to both the optical chirality and the electromagnetic 

helicity measures derived in the previous chapter.  We begin by characterising the 

initial state of the system,  

 

( ) ( ) ( ) ( )0mol rad ,L Rn nψ= k k   (4.4.3) 

 

where the molecular state is characterised by the ground-state wave-equation of the 

molecule, and the radiation state is assumed to be two modes with the same wave-

vector k, only differing in their circular handedness.  With this notation, the final state 

of the system is given by: 

 

( ) ( ) ( ) ( )mol rad , 1 ,L Rn nαψ= −k k   (4.4.4) 

 

for the absorption of a right-handed photon, and  

 

( ) ( ) ( ) ( )mol rad 1, ,L Rn nαψ= −k k   (4.4.5) 

 

for the absorption of a left-handed photon.  Here α  represents the excited state of the 

molecule.  By use of Eq. (4.3.1) within the electric and magnetic dipole 

approximation, the amplitude for the transition between the prescribed initial and final 

state is given by: 
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 (4.4.6) 

 

where the label k has been suppressed for convenience.  We want to calculate the 

square modulus of this amplitude as, in accordance with the Fermi rule (and Max 

Born’s interpretation of normalised wavefunctions), it corresponds to the rate (or, in 

the case of time independent results, probability) of transition. This delivers: 

 

( ) ( ) ( ) ( ) ( )
( ) ( )

( )
( ) ( )

( )

( ) ( ) ( ) ( ){ }
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2 2/ /

1 2
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e M E M M
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= +

= +

+ ℜ

 (4.4.7) 

 

where subscripts are used for numbering purposes so that the terms can be tackled 

individually.  The matrix element, Eq. (4.4.6), and the final result, will depend on the 

electric and magnetic transition dipole moments, µα0 and mα0 respectively, which, in 

cases where the wavefunctions are not analytically tractable, must be calculated by 

numerical means.  Considering that the electric and magnetic dipoles can be 

calculated by computational methods it remains to evaluate the following four Dirac 

bra-kets: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1

L L L L

R R R R

n n n n

n n n n
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− −

k e k k b k

k e k k b k
 (4.4.8) 
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By using either a plane wave or a Laguerre-Gaussian description of the electric and 

magnetic fields, we observe that in each case only the annihilation term in the 

quantum mode expansion delivers a non-zero result.  Thus, we obtain, for the left-

handed electric term: 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

0

1 2
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1 2
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1 1
2
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 
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 (4.4.9) 

 

Similarly we have that: 
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 (4.10) 

 

where ( )/L Re  and ( )/L Rb  are the electric and magnetic polarisation vectors for the mode 

with wave-vector k.  With this information we can evaluate Eq. (4.4.7).  The terms 

labelled by (1) and (2) will be identical for either enantiomer, so will vanish in an 

expression for the difference in the rate of absorption for enantiomers of differing 

handedness.  This corroborates with the result in Section 3, which demands that chiral 

phenomena emerge from quantum interference between terms of different symmetry 

character.  Therefore, the difference in Fermi rates is given by: 
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 (4.4.11) 

 

Making the indices of the molecular and radiation tensors explicit, delivers the 

difference in transition probabilities as: 
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 (4.4.12) 

 

To proceed, we note that the quantum mechanical magnetic dipole operator is given 

as [49]: 

 

( )3 ,
2
i ρ= − ∂ ×∇∫m r rℏ   (4.4.13) 

 

where ρ is the charge density.  Choosing the molecular wavefunction to be real, 

demands an associated real electric dipole moment, and accordingly requires the 

magnetic dipole to be purely imaginary.  We then obtain the prescription: 
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( ) ( )

( ) ( )

0 0
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β β

β β

+ −

+ −

=

= −

µ µ

m m
  (4.4.14) 

 

so that we may present the result in terms of just one enantiomeric form: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ){ }2 2 0 0

0

.L L L R R R
FI FI i j i j i j

kM M e m e b n e b nα αµ
ε

+ − + + 
− = ℜ + 

 

ℏ  (4.4.15) 

 

Shown in Appendix C, is the relationship between the electric and magnetic 

polarisation vectors; enacting these relations and performing a three-dimensional 

isotropic rotational average delivers:  

  

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0

0

2 m ,
3

L Rk n nα απρ
ε

+ − + + 
Γ − Γ = ℑ ⋅ − 

 
µ m k k  (4.4.16) 

  

where ρ is the density of final states.  In terms of number operators, this is given by: 

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

0 0~ m

ˆ ˆ, , ,L R L R L Rn n k N N n n

α α+ − + +Γ − Γ ℑ ⋅ ×

−

µ m

k k k k k k
 (4.4.17) 

 

where × represents scalar multiplication.  In a monochromatic beam or, equivalently, 

for each optical mode this result is proportional to the both the helicity and the 

spatially integrated optical chirality density: 
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( ) ( ) ( ) ( )( )
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0 0 3
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α α

α α
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∫µ m r
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 (4.4.18) 

 

where h is the helicity operator.   

 

It has been explicitly shown above that the differential rate of absorbing left- and 

right- handed light by chiral molecules in a single beam is given by a product of 

( ) ( )( )0 0m α α+ +ℑ ⋅µ m  representing the inherent chirality of the matter, and any of the 

helicity-type measures displayed in the previous chapter.  Therefore, for single beams 

there is no mechanism by which chiral molecules can differentially absorb light at a 

rate above (or below) that of pure circularly polarised light.  

 

 
 
4.5 Mirrors and Standing Waves 

 

The experimental set-up of Tang and Cohen [57,65], is a normally incident circularly 

polarised beam reflected by a mirror with the sample of chiral molecules positioned at 

varying distances from the mirror.  They report nodal enhancements to the 

dissymmetry in left- and right- handed molecule absorption rates.  Theoretically this 

is modelled by counterpropagating beams, one each for the incident and reflected 

radiation.  It is noted that the sign of the k vector changes by definition, and the sign 

of the j vector must change to preserve (E, B, k) as a right-handed triad.  Therefore, it 

is readily apparent that ɵˆ ˆ ˆ− −i = i, j = j, k = kɵ ɵ .  The reflection conserves spin, but the 

wavevector is reversed; thus the helicity, signifying the projection of the spin onto the 

direction of propagation, is reversed.  The electric field is space-odd, so reverses sign 
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on reflection, whereas the magnetic field is space-even, so retains its sign.  

Classically, it is easily shown that the superposition of an incident and reflected beam 

is a standing wave:  

 

( ) ( )
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= +

E k E k

i j i j

i j i j

i j

 (4.5.1) 

 

Analysis of Eq. (4.5.1) and the symmetry properties of the optical fields delivers a 

superposition of the incident and reflected electric fields that has minima and maxima 

in different locations to the magnetic counterpart, Fig. 4.1.  Due to quantum 

uncertainty, neither the electric nor magnetic field vanishes entirely.  The circular 

differential response of a chiral molecule at this location might exhibit an electronic 

transition that is both E1 and M1 (electric dipole and magnetic dipole) allowed with 

large E1-M1 interference contributions – the leading-order chiral correction. 

Moreover, engaging the optical centre with this radiation field can suppress the achiral 

E12 absorption rate contribution.  

 

 

4.6 Circular Dichroism in Counterpropagating Beams 

 

To describe the absorption of a chiral molecule in the vicinity of a partially reflecting 

surface, we choose to model the radiation as a coherent state, an eigenstate of the 

annihilation operator: 
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( ) ( ) ( ) ( ) ( ), , , ,a η α η α η α η=k k k k   (4.6.1) 

 

where ( ),α ηk  denotes the coherent state with wavevector k and polarisation η.   

 

 

 

 

Fig. 4.1.  The electric (top) and magnetic (bottom) field vectors of reflected circularly polarized light. The 

superposition (c,f) of the input (a,d) and reflected (b,e) beams results in states with minima and maxima in different 

locations for the electric and magnetic fields. 

 

Coherent states model the electromagnetic field when the average population of a 

mode is large and only describable as a probability distribution (specifically, a 

Poisson distribution) over a range of occupation numbers.  In the limit of large 

occupation numbers the quantum description of the electromagnetic field is identical 

to the classical description, in which one can make exact simultaneous measurements 

of, for example, the phase and amplitude.  Coherent states, then, are most like 

classical states, in which there is minimum uncertainty in the phase and photon 
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number.  In contrast, phase states and number states individually have precisely 

determined optical phase and photon number, respectively, with the other variable 

completely unknown [66].  Notably, the expectation value of a coherent state mode 

with respect to the number operator is the square modulus of the complex number 

indexing that mode: 

 

( ) ( ) ( ) 2ˆ, , , ,Nα η η α η α=k k k   (4.6.2) 

 

and the probability of measuring any given number of photons, n, follows a Poisson 

distribution with variance of 2α [51]: 

 

( )2
2

2 2; .
!

n

n e P n
n

αα
α α−= =   (4.6.3) 

 

With this notation, we can characterise the initial state of the total – molecular and 

radiation parts of – the system: 

 

( ) ( )( ) ( ) ( )( )0mol rad , , , ,L Re eψ α α ′′ ′ ′= k k k k  (4.6.4) 

 

where the molecular state is characterised by the wavefunction of the optical centre, 

the radiation state consists of the incident and reflected radiation, and the reflected 

wavevectors is given by .′ = −k k   Without loss of generality, this model assumes a 

left-handed input beam, which demands a right-handed reflected beam.  Similarly, the 

final state of the system is given by: 
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( ) ( )( ) ( ) ( )( )mol rad , , , ,L Re eβψ α α ′′ ′ ′= k k k k  (4.6.5) 

 

where represents the molecular excited state, and the radiation state is unchanged by 

the absorption from either mode.  The probability amplitude for the absorption by a 

molecule in this region is then given by: 
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 (4.6.6) 

 

However, to model the partial reflection of the mirror the expectation value of 

incident coherent state 2α  is assumed to be much larger than that of the reflected 

state 2α′  so that the overlap,  

 

( )2 21 2 2
0,e

α α αα
α α

′ ′− + −
′ = ≈   (4.6.7) 

 

is approximately zero.  Then the probability amplitude can be simplified to: 
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To identify the differential rate of absorption, we calculate the square modulus of this 

expression with both left- and right- handed molecules.  Again, using subscripts so 

that terms can be tackled individually, the probability is given by: 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ){ }
( )

2 2/

2 2

1 2

3
2 ,

FI FI FI

FI FI

FI FI

M M M

M M

e M M

α α

α α

α α

+ − ′= +

′= +

′+ ℜ

  (4.6.9) 

 

As with the single beam case, the electric and magnetic transition dipole moments can 

be calculated computationally, so it remains to calculate the following four terms: 

 

.
α α α α
α α α α

⊥
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e b
e b

  (4.6.10) 

 

Since we are calculating the rate of absorption, we enact the expectation values of the 

fields, where only the annihilation term contributes: 
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 (4.6.11) 

 

Here, only a plane wave representation of the fields has been used, as using a 

Laguerre-Gaussian description does not change the final result: no orbital angular 

momentum is transferred to the mirror.  This is true for normally reflecting mirrors, 
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however a phase conjugate mirror can be constructed, where incident light with 

orbital angular momentum is converted to light with opposite handedness.  This 

means that 2l units of orbital angular momentum is transferred to the mirror, and a 

phonon is created that propagates into the mirror.  For the present purposes, we 

assume no orbital angular momentum is transferred to the mirror.  Similarly, for the 

other terms of Eq. (4.6.10), we have that: 
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 (4.6.12) 

 

First, we take term (1) from Eq. (4.6.9): 

 

( ) ( ) ( )
( )
( )
( )

2/ 0 0

0 0

0 00 0

0 00 0 ,

FI i i i i

jj j j

ji j i j i i j

ji j i j i i j

M e m b

e m b

e e m e b

m b e m m b b

β β

β β

β ββ β

β ββ β

α µ α α α α

µ α α α α

µ µ α α α α µ α α α α

µ α α α α α α α α

+ − ⊥

⊥

⊥ ⊥ ⊥

⊥

= − ⋅ − ⋅

⋅ − ⋅ − ⋅

= +

+ +

 (4.6.13) 

 

where the overbar represents complex conjugation.  Then, using the calculations of 

the Dirac bra-kets from Eq. (4.6.11) and (4.6.12), we obtain: 
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 (4.6.14) 

 

where the electric and magnetic polarisation vectors possess all of the vector character 

of the electromagnetic fields, and thus display the index notation.  The quantisation 

volume has been removed by box normalisation.  Furthermore, by Appendix C and 

our arguments in section 4.5., we have that: 
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  (4.6.15) 

 

where the reflected polarisation vectors are denoted by primed characters.  With this 

notation Eq. (4.6.14) becomes: 
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 (4.6.16) 

  

which, by Eq. (4.6.2), is: 
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where Ln  denotes the expected number of left-handed photons and × represents scalar 

multiplication.  By identical analysis term (2) of Eq. (4.6.9) is delivered as: 
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The change in sign of the E1-M1 interference terms comes as a result of the changed 

handedness of the radiation.  The interference term between the input and emergent 

radiation – term (3) of Eq. (4.6.9) – is similarly calculated as: 
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 (4.6.19) 

 

Once again, we substitute the quantum electrodynamic mode expansions from Eq. 

(4.6.11) and (4.6.12), to obtain: 
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 (4.6.20) 

 

To remove the quantisation volume, we set the z-axis as the direction normal to the 

mirror so that: 
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As mentioned above, the probability of a given number state occurring in a coherent 

state follows a Poisson distribution, thus: 
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 (4.6.22) 

 

Furthermore, the uncertainty in the precise occupation number is given by: 

 



Chapter 4: The Interaction of Twisted Light with Matter 

 - 156 -

{ }
{ }

1
2 22

1
4 2 4 2

ˆ ˆ

.

n N Nα α α α

α α α

α

Δ = −

= + −

=

  (4.6.23) 

 

Then we may rewrite Eq. (4.6.19) as: 
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Thus, combining all terms of Eq. (4.6.9), delivers: 
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As with the single beam case, it is known that the electric and magnetic transition 

dipole moments can be chosen to be purely real and purely imaginary, respectively, so 

that they satisfy Eq. (4.4.14).  We can now obtain the difference in probability 

amplitudes for left- and right- handed molecules in the region close to a partially 

reflecting mirror: 
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Adhering to basic symmetry constraints equation Eq. (4.6.26) changes sign under 

parity inversion, equivalent to swapping the handedness of the input radiation, 

.L R↔   Acknowledging the imaginary character of the magnetic dipole moment, we 

set: 

   

;m iM M= ∈ℜ   (4.6.27) 

 

which gives us the prescription that im M→ − .  Applying this condition and 

contracting the vector indices delivers: 
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Finally, converting the exponential to trigonometric form allows us to explicitly 

obtain the real part of the expression: 
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 (4.6.29) 

 

Thus, it can be seen that if the distance between the mirror and the absorber is 

( )2 1 4 zz n kπ= + , then the interference term will become zero and the resulting 

expression is identical to the single beam case:    
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where the link with the helicity and chirality measures from the previous is apparent 

through the appearance of the difference in occupation numbers for modes of 

opposing helicity.  Precisely, there are three features of the system that will cause this 

interference term to vanish.  Firstly, if the cosine function returns a zero result, then 

the interference term vanishes.  This signifies regions where the electric field of one 

beam is parallel or antiparallel to the magnetic field of the other, Fig. 4.2.  In this case, 

the interference of the two beams will have mirror symmetry in the plane containing 

the direction of propagation and the two, now parallel, field vectors; thus there is no 

three-dimensional basis for engaging molecular chirality, except by the helicity of the 

individual beams.  Secondly, if the molecule has transverse components of the electric 

and magnetic dipoles related by:   
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then the interference term vanishes.  Finally, taking an isotropic rotational average of 

Eq. (4.6.29) delivers a zero results for the interference term, corresponding to the 

conditions of a freely rotating sample in a fluid.  Of course, if the uncertainty in 

photon number, in either beam, is zero, then the rate of circular dichroism is identical 

to that for precisely determined number states.   

 

4.7 Analysis of Recent Experiments 

 

In the experiment by Tang and Cohen, they observe nodal enhancements in the 

dissymmetry of circularly polarised absorption, which corresponds precisely to the 

sinusoidal distance dependence term in Eq. (4.6.29) [57].  Furthermore, they note that 

“The energy density in the dim regions is so small that shot noise begins to drown out 

the signal.  The more we enhance the dissymmetry, the noisier the signal”.  By setting 

the electric and magnetic transition dipoles to unity in Eq. (4.6.29), the ratio of the 

two terms becomes: 
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  (4.7.1) 

 
which is the sum of the signal-to-noise ratios for the incident and reflected beams, 

weighted by the uncertainty in photon population for the opposing beam [67].  Thus, 

the enhancements in circular differential response, for this experimental set-up, 
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display a connection with the phase-photon number uncertainty relation, and seem 

only explicable in terms of a quantised electromagnetic field.  

 

Using a quantised field representation, we have shown that circular dichroism 

responds only to the polarisation state of the radiation and does not engage the optical 

orbital angular momentum.  It was shown that Eq. (4.6.29), corresponding to Tang 

and Cohen’s recent experiment, has two terms: one with characteristic dependence on 

photon occupation numbers for modes of opposing helicity, and one with a sinusoidal 

dependence on distance from the mirror.  Importantly, the nodal positions for the E1-

M1 interference term do not coincide with the positions at which the electric field 

vanishes (within the limits quantum uncertainty).  Thus, there are distances from the 

mirror where the normally dominant achiral E12 contribution to the absorption rate is 

suppressed and the chiral E1-M1 contribution is large, Fig. 4.2.  Due to the manifestly 

discrete nature of the electromagnetic field at low intensities, this displays a relation 

with the uncertainties in the Poisson-distributed photon occupation number, and, 

moreover, the signal-to-noise ratio, Eq. (4.7.1).  To summarise, it is proven that 

although there are certainly nodal enhancements (or reductions) in the differential 

absorption rate, the effect is a result of beam superposition, and does not support the 

existence of “superchiral light”.  



Chapter 4: The Interaction of Twisted Light with Matter 

 - 161 -

 

Fig. 4.2.  The electric and magnetic field vectors of reflected circularly polarized light. Noted are the positions 

where the alignment of the electric and magnetic field vectors of different beams forbids the interaction of the 

chiral molecules with the interference of the circularly polarised beams.  The dotted lines show the lines of mirror 

symmetry responsible for the forbidden chiral interactions.  

 

Kadodwala et al. recently provided experimental results that were interpreted as 

verifying the capability of the optical chirality density to identify regions of enhanced 



Chapter 4: The Interaction of Twisted Light with Matter 

 - 162 -

chiral dissymmetry.  They used left- and right- handed gold gammadions (swastikas) 

of length 400 nm and thickness 100 nm, with a 5-nm chromium adhesion layer, 

deposited on a glass substrate with a periodicity of 800 nm. Using UV-visible circular 

dichroism spectroscopy the optical properties of these planar chiral metamaterials 

were probed under various liquids, and resonances in the CD spectra, associated with 

the excitation of localized surface plasmon resonances, were observed.  It is well 

known that surface plasmons amplify local electric fields in systems fabricated with a 

metal substrate [68].  In these situations, both conventional optical and chiroptical 

response will exhibit much larger than usual effects [69–72].  In support of their 

conclusions, Kadodwala et al. exhibited the results of calculating both the electric 

field strengths and the corresponding value of the optical chirality around the PCM 

[58].   

 

It is possible to generate optical states of more chiral character, through the 

involvement of orbital angular momentum. However, these additional contributions 

have no effect on internal dipole transitions and cannot be measured by spectroscopic 

means [13,16].  Instead, the orbital angular momentum is observable through 

mechanical rather than chiroptical effects.  The possibility of engaging the orbital 

angular momentum of light through spin-orbit coupling in nanostructures has not been 

considered here [73]. 
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4.8 Six-Wave Mixing of Optical Vortices  

 

Second harmonic generation is normally forbidden in isotropic media [74,75].  This is 

due to the process being dependant on an even-order optical susceptibility, which 

gives vanishing values for the Fermi rate after performing an isotropic rotational 

average.  Theoretical predictions by Allcock and Andrews have shown that engaging 

odd-order susceptibilities, corresponding to an even number of light-matter 

interactions, allows a six-wave mixing process, in which four pump photons are 

converted into two second harmonic output photons [76].  It emerges that the 

harmonic photons are generated on opposite sides of an output cone, where wave-

vector matching is achieved.  This principle has been displayed experimentally with 

third-harmonic generation in a sapphire crystal, with conical output angle ~10° [77].   

 

In this section it is shown that by considering a pump with a predetermined 

amount of orbital angular momentum per photon, the conservation of both linear and 

angular momentum allows for more than one output possibility.  Precisely, there are 

four input photons, each with l = 1 units of orbital angular momentum; upon 

interaction with nonlinear optical matter, two output photons are created with double 

the frequency of the input photons.  There are now three possible configurations of 

orbital angular momentum, assuming conservation: (2,2), (3,1) and (4,0).  The 

allowed pairs of output photons indicates quantum entanglement of the orbital angular 

momentum degree of freedom, as has been observed in recent experimental studies 

[78,79].  It is the topic of on-going investigation, whether similar effects can be 

anticipated from input photons of varying l and p numbers. 
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To begin, the leading order term in the probability amplitude for the process is 

obtain from sixth order perturbation theory, Eq. (1.9.25): 

 

( )( )( )( )( )
int int int int int int

, , , ,
~ ,FI

R S T U V I R I S I T I U I V

F H V V H U U H T T H S S H R R H I
M

E E E E E E E E E E− − − − −∑ (4.8.1) 

 

where I, F denote the initial and final system states, and R, S, T, U, V denote virtual 

intermediate states to be summed over.  In the following model, parameters are 

chosen to simulate an 800 nm wavelength laser focussed onto the conversion material.  

The output angle of the emergent radiation is determined by the wave vector matching 

condition, Fig 4.C. a Simply, the sum of the wavevectors of the emergent radiation 

should  

 

Fig. 4.3.  Visual representation of the wavevector matching condition and its relation to the refractive index of the 

conversion material for a photon of frequency ω and a harmonic photon of frequency 2ω.  

 

should match the sum of the input wavevectors: 

 

4 .′ ′′= +k k k   (4.8.2) 

 

The speed of light in a medium, m, is reduced by a factor of the refractive index in 
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that medium, thus: 
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Furthermore, we can now obtain the conical angle α as: 
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which, from Fig. 4.3. implies that: 

( )
( )

2 2
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m

n
k k k

n
ω

ω
′ ′′= =   (4.8.5) 

 

In the experiments performed by Boyd et al. the conical angle was angle ~10°, which 

is consistent with the paraxial approximation to within 1%.  This implies that the ratio 

of refractive indices, Eq. (4.8.4), is ~0.98.  Thus, it is now possible to use, within the 

electric dipole approximation, the paraxial quantum electrodynamic interaction 

Hamiltonian with Eq. (4.8.1), to obtain:  
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 (4.8.6) 

 

where × represents scalar multiplication and the numbering has been introduced so 

that terms can be tackled individually.  The subscript i refers to the input photons and 

the subscripts f1, f2 denote the emergent harmonic photons.  Term (1) can be 

simplified to: 
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 (4.8.7) 

 

where, to relate to experiment, I is the irradiance and g(4) is the degree of fourth-order 

coherence.  Analysis of term (2) of the probability amplitude has been performed by 

Williams and shows the non-zero value of an isotropic rotational average.  This is due 

to this process being a coherent parametric process, where the observable emerges 

from the square modulus of the rotationally averaged quantum amplitude.  

Furthermore, the analysis indicates that plane polarised input delivers the most 

efficient conversion rate, and that the emergent radiation will be primarily polarised 

parallel to the input polarisation [80].  The exponential term (4) delivers the 

normalisation condition for linear momentum and orbital angular momentum 
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conservation, and cancels with the V-1 in Eq. (4.8.7).  Importantly, term (3) contains 

the entire radial variation of the matrix element and, therefore, the intensity 

distribution.  Thus, we may plot this factor to obtain the variation of the output beams 

with respect to the pairs of allowed topological charge.  We ignore the Laguerre-

Gaussian modes with radial index p > 0, as the beam width, w, increases outwards 

with a monotonic dependence on p.  Thus, the Fermi rate inherits the w−2p dependence 

of the radial distribution functions and delivers successively smaller contributions for 

non-zero p modes, compared to the p = 0 counterpart.  Importantly, the radial 

variation of the output for the three possible pairs of orbital angular momentum 

modes differs only in intensity and not in structure, Fig. 4.4.  Moreover, the relative 

magnitude of each output pair has a Pascal’s triangle form, displayed in Fig. 4.4.   

 

Such observations are particularly interesting in light of recent observations of 

unexpectedly weighted topological charges in a four-wave mixing process [81].  This 

study inherently involves the entanglement of orbital angular momentum states of 

photons, in which there has been recent interest [82,83].  Furthermore, in regions 

close to the conversion material the ring structure of each output photon will 

significantly overlap, analysis of which will certainly display features of increasing 

angle-angular momentum uncertainty [33,84].   
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Fig. 4.4.  (Left) Visual representation of the proposed experimental set-up.  (Middle) Normalised intensity plots of 

the emission cone for varying combinations of orbital angular momentum in the output photons, (l1, l2), at a 

distance 100 wavelengths from the conversion material.  (Right) Cross-sectional intensity distribution of the (2, 2) 

output (centred around the input beam axis) with radial distance scale matching the middle diagram.              

(Table) The relative magnitudes of output from the three pairs of orbital angular momentum.  

 

 

4.9 Conclusion 

 

Presented above are the details of a series of recent papers delivering a quantum 

electrodynamic treatment of recent experiments, delivering the rates of circular 

differential processes and their relation to measures of helicity, spin and recently 

rediscovered measures of chirality [61,62,85–87].  It emerges that an increase in 

circular dichroism at regular intervals from the mirror is associated only with the 

known behaviour of the electromagnetic field vectors and corresponds to Tang and 

Cohen’s claim of nodal enhancements [57].  Furthermore, any increase or decrease in 

differential response at these locations is limited by the phase-photon number 

uncertainty principle and displays features associated with the reported shot-noise 
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[65], deriving from the quantum nature of light.    

 

It was also shown that, for both paraxial and non-paraxial light, known 

electromagnetic quantities are all bilinear in the electric and magnetic fields, and, 

correspondingly, have exactly one annihilation and creation operator.  In general, it 

was shown that, when taking expectation values, measureable electromagnetic 

measures must contain equal numbers of annihilation and creation operators.  This 

avoids the introduction of a rapidly oscillating phase factor, the real part of which 

averages to zero in any realistic measurement [85].  

 

The section on six-wave mixing of optical vortices demonstrates the quantum 

entanglement of pairs of optical vortex modes, and was presented recently in a journal 

article [80].  In particular, measurement of one photon heralds the detection of the 

other.  It was shown that the probability for each output displays a neat combinatorial 

weighting, associated with Pascal’s triangle.  Furthermore, strict analysis shows that 

such a process is allowed in isotropic media with plane polarised input.    
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4.10 Appendix C 

 

The electric and magnetic polarisation vectors are related by [51]:  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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2 2 .

L R

L L R R

e i e i

b ie b ie

= + = −
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i j i j
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Since the incident and reflected coordinates are related by: 

 

ɵˆ ˆ ˆ ,− −i = i, j = j, k = kɵ ɵ   (C.2) 

 

we have that: 
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Chapter 5 

Medium Modified Absorption 

 

 

 

 

 

“A voyage to Europe in the summer of 1921 gave me the first opportunity of 
observing the wonderful blue opalescence of the Mediterranean Sea. It seemed not 
unlikely that the phenomenon owed its origin to the scattering of sunlight by the 
molecules of the water. To test this explanation, it appeared desirable to ascertain the 
laws governing the diffusion of light in liquids.” 

 

– Chandrasekhar Raman† 

 

 

 

 

 

 

 

 
† Raman, Chandrasekhar V., - Nobel Lecture: The Molecular Scattering of Light". (1930). 
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5.1 Background 

 

It is well known that the local electronic environment of atoms and molecules can 

influence optical processes, such as resonance energy transfer [1].  Many biological 

systems, for example, contain complex systems of molecules with shifted absorption 

bands due to nearby optical centres.  For example, in widely studied light-harvesting 

complexes, the photosynthetic system bacteriochlorophyll B800 will absorb radiation 

and then only pass excitation on when its energy bands have been shifted by the 

presence of a neighbouring B850 [2,3].  Up to this date, quantum electrodynamic 

calculations on the influence, of a neighbouring, off-resonant molecule on photon 

absorption [4–6], have centred on the experimentally verified phenomenon of induced 

circular dichroism, where a chiral mediator confers circular differential absorption on 

an achiral acceptor [7–9].   

 

Here, we investigate the influence of a neighbour, M, on the absorption by an 

acceptor molecule, A.  The mediator is assumed to have an electronic level slightly 

above the input photon energy, so that it is not a competing acceptor.  The key issues 

are analysed in a quantum electrodynamic framework, by studying the effect of a 

second body on optical absorption.  It emerges that the second body result can be 

extended by integrating over all possible positions and orientations of the mediators 

and thereby modelling a continuous medium in which the acceptor is embedded.  

Developing such a theory is shown to provide links with both the molecular and bulk 

properties of materials.  Moreover, it proves possible to determine which properties 

need to be optimised in order to tailor the medium modified effect.  
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5.2 Medium Modified Absorption 

 

Here, we develop in precise quantum electrodynamic terms, the mathematical 

modelling of photon absorption, and then extend this analysis to a medium modified 

case.  The initial and final system states are given by: 

 

( ) ( ) ( )0 0Initial ; , ;A M nψ ψ η= k   (5.2.1) 

( ) ( ) ( )( )0Final ; 1 , ;A M nβψ ψ η= − k   (5.2.2) 

 

where ψ designates the wavefunction of either the acceptor, A, or inert mediator, M.  

Moreover, the subscript of ψ corresponds to either: the ground state, 0, or the excited 

state β.  The radiation is modelled as a precisely defined number state of wavevector k 

and polarisation label η.  The energy of the absorbed photon must adhere to the 

conservation of energy; that is: 

 

0 .E E ckβ − ≈ ℏ   (5.2.3) 

 

According to the Feynman prescription, the contributions to the matrix element are 

terms corresponding to all topologically distinct Feynman diagrams [10], and are 

displayed in Fig 5.1.  The probability amplitude for the process is then given by the 

sum of three terms:  

 

( ) ( ) ( ) ,A MA AM
FI FI FI FIM M M M= + +   (5.2.4) 
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where ( )A
FIM  is the amplitude for absorption by the acceptor molecule, A; the second 

term, ( )MA
FIM , corresponds to the mediator molecule, M, absorbing a photon and then 

transferring the energy to the acceptor molecule, and ( )AM
FIM  denotes the absorption of 

a photon by A, which then interacts with M.  We intend to determine the rate from the 

Fermi Golden Rule, Eq. (1.23), which depends on the square modulus of Eq. (5.2.4): 

 

( )

( )

( )

( )

( )

( )

{ ( ) ( )

( )

( ) ( )

( )

( ) ( )

( )
}

2 2 22

1 2 3

4 5 6

2 ,

A MA AM
FI FI FI FI

A MA A AM MA AM
FI FI FI FI FI FI

M M M M

e M M M M M M

= + + +

ℜ + +

  

  

 (5.2.5) 

 

where numbering has been introduced so that terms can be tackled individually.  The 

leading order term is term (1), which corresponds to absorption when the mediator is 

absent.  The terms (2) and (3) are small in comparison to term (1), as they derive from 

a higher order of perturbation theory.  This, in turn, implies that term (6) is also small.  

Thus, the first correction terms to absorption are terms (4) and (5). 

 

 

 (a)  (b) (c)  

Fig. 5.1. Feynman diagrams for absorption (a), and the dynamic (b) and static (c) modification 

considered here, which are described by first and third order perturbation theory. The molecular virtual 

intermediate state is labelled by r, and the virtual photon is designated φ.  
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5.3. Free-Space Absorption 

 

To begin, we calculate the leading order term, when the medium is not involved.  In 

the electric dipole approximation, we have: 

 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( )

int

0 0 0

0 0 0

1
2

0 i( )

0

1 , ; ; ,

; ; 1 , ,

i ( ) e ,
2

A

A
FI

A M A M

A M A M

A

M F H I

n n

n n

n ck
V

β

β

β η

η ψ ψ ψ ψ η

ψ ψ ψ ψ η η

ε
⋅

=

= − − ⋅

= − ⋅ −

 
= − ⋅  

 
k r

k µ e k

µ k e k

µ e k ℏ

 (5.2.6) 

 

where we have assumed that the wavefunctions are real and rA is the position vector 

of the acceptor.  The square modulus of this, or term (1) from Eq. (5.2.5), is: 

 

( ) ( )2 20 ( )

0

( ) ,
2

A A
FI

n ckM
V

β η

ε
 

= ⋅ 
 

µ e kℏ   (5.2.7) 

 

which, by substituting into the Fermi Golden Rule and performing an isotropic 

rotational average [11], becomes:  

 

( ) ( ) 20

0

.
3

A Anck
V

βπ ρ
ε

 
Γ =  

 
µ   (5.2.8) 

 

This result is now well-known [5], and is presented as a means for comparing the 

magnitude of the modification by the mediator. 
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5.4. Static Correction Term 

 

To begin calculation of the correction terms, we compute ( )AM
FIM  from third-order 

perturbation theory: 

 

( )

( )( )
int int int

,
.MA

FI
R S I S I R

F H S S H R R H I
M

E E E E
=

− −∑  (5.2.9) 

 

In the electric dipole approximation, the interaction Hamiltonian is given by 

intH ⊥= − ⋅µ e  so that the result emerges as dependent on a sum over wavevectors and 

polarisation labels.  Converting the wavevector sum to an integral, by the following 

prescription [5]: 

 

( )
3

3
1 ,

2V π
∂→∑ ∫

k

k   (5.2.10) 

 

and using a program of contour integration, delivers this term of the quantum 

amplitude, Eq. (5.2.4), as: 

 

( ) ( ) ( ) ( ) ( )0 00~ , ,AM A M
FI j jk kl MA lM e V Rη β

η
α ω µ∑   (5.2.11) 

 

where ( )0A
ij

βα is the polarisability tensor for the acceptor molecule and where 

( ),ij MAV k R  is the fully-retarded dipole dipole interaction tensor (discussed in the next 

subsection).  Here, the tilde denotes that we have ignored the pre-factors for 
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calculational simplicity.  This delivers the static interference term of the probability – 

term (5) of Eq. (5.2.5) – as: 

 

( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )0 00 0

,
2 ~ 2 , .A AM A M M

FI FI i j i l jk kl MAe M M e e e V k Rη η β β

η η
µ µ α′

′

 
ℜ ℜ  

 
∑  (5.2.12) 

 

As this term explicitly depends on ( )00M
lµ , we can assume that this contribution to the 

rate vanishes if the molecules comprising the medium have no static dipole moment. 

 

 

5.5. Dynamic Correction Term 

 

To begin calculation of the remaining correction term, we compute ( )MA
FIM , as before, 

from third-order perturbation theory, which delivers this term of the quantum 

amplitude as: 

( ) ( ) ( ) ( ) ( )00 0~ , ,MA M A
FI j jk kl MA lM e V Rη β

η
α ω µ∑   (5.2.13) 

 

where ( )00M
ijα is the polarisability tensor for the molecule M.  Term (4) from Eq. 

(5.2.5), then becomes: 

 

( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )0 0 00

,
2 ~ 2 , ,A MA A A M

FI FI i j i l jk kl MAe M M e e e V k Rη η β β

η η
µ µ α′

′

 
ℜ ℜ  

 
∑  (5.2.14) 
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where ( ),ij MAV k R  is the fully retarded dipole-dipole interaction tensor and is given by 

[12]: 

 

( ) ( ) ( )
( )

3
0

2 2

ˆ ˆ ˆ ˆ, 3 3
4

ˆ ˆ .

MAikR

ij MA ij MAi MAj MA ij MAi MAj
MA

MA ij MAi MAj

eV k R R R ikR R R
R

k R R R

δ δ
πε

δ

= − − −

− − 

 (5.2.15) 

 

It is worth noting that in the multipolar formalism of quantum electrodynamics the 

interaction tensor can be generalised to couplings between electric and magnetic 

multipoles of any order [13–15].  Therefore, the form of Eq. (5.2.14) can be modified 

to permit calculation of modifications to absorption in a medium with strong magnetic 

dipole or electric quadrupole transition moments.  In fact, it is through involvement of 

the magnetic transition dipole moments that an achiral molecule may display induced 

circular dichroism in the presence of a neighbouring chiral molecule [4].  The transfer 

tensor given here, Eq. (5.2.15), is the form appropriate for species interacting in a 

vacuum.  We now introduce a modified form, developed specifically to accommodate 

the effects of a surrounding medium [16]: 

( ) ( )
22

2
1 2, , ,

3
bath
ij MA ij MA

nV k V nk
n
 +=  
 

R R   (5.2.16) 

 

where n is the complex refractive index of the surroundings at the wavelength 

corresponding to the transfer energy.  At this juncture, the surrounding medium, 

characterised by n, is not assumed to be composed of M.  Substituting Eq. (5.2.15) 

and (5.2.16) into Eq. (5.2.14) delivers: 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) }

0 0 00

,

22
0 0 00

3 2
, 0

2 2 2

2 ,

1 2 ˆ ˆ3
2 3

ˆ ˆ ˆ ˆ3 .

MA

A A M bath
i j i l jk kl MA

inkR
A A M

i j i l jk kl MAk MAl
MA

MA kl MAk MAl MA kl MAk MAl

e e e V k R

e ne e e R R
R n

inkR R R n k R R R

η η β β

η η

η η β β

η η

µ µ α

µ µ α δ
πε

δ δ

′

′

−
′

′

 
ℜ  

 
  + =ℜ × −    

+ − − − 

∑

∑  (5.2.17) 

 

As the initial and final states of M are identical, M is not observed.  Therefore, each 

possible mediator must be taken into account (precisely, summed over), so that term 

(4) of Eq. (5.2.5) becomes: 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

22
0 0 00

3 2
, , 0

2 2 2

1 2 ˆ ˆ3
2 3

ˆ ˆ ˆ ˆ3 .

MAinkR
A A M

i j i l jk kl MAk MAl
M MA

MA kl MAk MAl MA kl MAk MAl

e ne e e R R
R n

inkR R R n k R R R

η η β β

η η
µ µ α δ

πε

δ δ

−
′

′

  + ℜ × −    
+ − − − 

∑
 (5.2.18) 

 

We now assume that species M will have a physically random orientation to justify 

performing an isotropic rotational average with respect to the orientation of M.  This 

expedient allows analytical calculation and avoids computational work involving 

predetermined orientations.  Enacting the rotational average and contracting the vector 

indices enables the expression to be written as: 

 

( )

( ) ( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ }
( ) ( ) ( )( ){ }

22
00

3 2
0

0 0 0

0 0

0 02 2 2

1 2
6 3

ˆ ˆ3

ˆ ˆ3

ˆ ˆ ,

MAinkR
M

M MA

A A A
MA MA

A A
MA MA MA

A A
MA MA MA

e ne
R n

inkR

n k R

λλ

β β β

β β

β β

α
πε

−  +ℜ ×  
 

⋅ ⋅ − ⋅ ⋅

+ ⋅ − ⋅ ⋅

− ⋅ − ⋅ ⋅ 

∑

e µ e µ e R µ R

e µ e R µ R

e µ e R µ R

 (5.2.19) 
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where × represents scalar multiplication and we have used the orthogonality of the 

electric polarisation vectors.  To aid interpretation of the mathematical result, let us 

assume that the input radiation propagates at an angle γ  to the dipole moment of the 

acceptor molecule.  In such a case, the scalar products become cosines: 

 

( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } }

22 200 0
3 2

0

2 2 2

1 2 cos
6 3

cos 3cos cos cos 3cos cos

cos 3cos cos ,

MAinkR
M A

M MA

MA

MA

e ne
R n

inkR

n k R

β
λλα γ

πε

γ θ γ θ γ θ γ θ

γ θ γ θ

−  +ℜ ×  
 

 − − + − −

− − − 

∑ µ

 (5.2.20) 

 

where we are working in spherical coordinates and θ is the polar coordinate.  To 

correctly model a continuous medium, the sum over all mediators is promoted to an 

integral over all positions of M, 

 

( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) }

22 200 0
3 2

0

2 2 2 2

1 2 cos
6 3

cos 3cos cos cos 3cos cos

cos cos cos sin ,

MA

MA

inkR
M A

MAR

MA

MA MA MA

e ne
R n

inkR

n k R R d d dR

β
λλα γ

πε

γ θ γ θ γ θ γ θ

γ θ γ θ θ θ φ

−  +ℜ ×  
 

 − − + − −

− − − 

∫∫∫ µ

 (5.2.21) 

 

where ( )2 sinMA MAR d d dRθ θ φ  is the volume element and a function ( ), ,MAf R θ φ  is 

integrated over every point in 3ℝ  by the triple integral [17]: 

 

( ) ( )
2

2 2

0 0 0

, , sin .
MA

MA MA MA
R

f R R d d dR
π π

φ θ

θ φ θ θ φ
∞

= = =
∫ ∫ ∫  (5.2.22) 
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First enacting the θ integral, allows us to make use of the following results: 

 

( ) ( ) ( ) ( ) ( )
0

cos sin cos 3cos cos 0;d
π

γ θ γ θ γ θ θ− − =  ∫  (5.2.23) 

  

( ) ( ) ( ) ( ) ( ) ( )2

0

4cos
cos sin cos cos cos .

3
d

π γ
γ θ γ θ γ θ θ− − =  ∫  (5.2.24) 

 

Thus, we observe the vanishing of terms that are both R independent and dependent 

on R-1.  Then our expression becomes: 

 

( ) ( ) ( )2 22 200 0 2

0

4cos2 .
6 3 3

MA

MA

inkR
M A

MA MA
R

e ne R k d dRβ
λλ

γ
α φ

πε

−  + −ℜ   
   

∫∫ µ  (5.2.25) 

  

Integrating over the azimuthal angular coordinate merely introduces a factor of 2 .π   

By imposing a minimum distance between the acceptor molecule and the molecules in 

the medium, Rmin, we can use the following identity: 

 

( ) ( )
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min

min
2 2

1
 for m 0.MA

iknR
inkR

MA MA
R

e iknR
e R R nk

k n

−∞
− +

∂ = − ℑ <∫  (5.2.26) 

 

The wavenumber is purely real and overbar denotes complex conjugation, thus this 

identity is valid for ( )m 0nℑ > , when the medium is absorptive.  We then obtain the 

first medium induced correction to the matrix element for absorption: 

 



Chapter 5: Medium Modified Absorption  

 - 189 -

( ) ( ) ( ) ( )
min

22 200 0min2
2

0

14 2cos ,
9 3

iknR
M Ae iknRne

n
β

λλγ α
ε

− + + ℜ   
   

µ  (5.2.27) 

 

where ( ) 0.m nℑ >   The zeros of Eq. (5.2.27) can be readily identified as 

2,nγ π π= − and when Rmin tends to infinity.  By letting Rmin tend to zero we obtain: 

 

( ) ( ) ( )
22 200 02

0

4 2cos .
9 3

M Ane
n

β
λλγ α

ε

  + ℜ   
   

µ  (5.2.28) 

 

Furthermore, by rotational averaging with respect to the input radiation or, 

equivalently, the orientation of the acceptor molecule A - eliminating the dependence 

on γ, we obtain: 
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µ   (5.2.29) 

  

It is now possible to compare the free-field term and the dynamic correction.  It is 

clear that for the modification of absorption to become significant the medium 

requires large diagonal elements of the associated polarisability tensor.  The transition 

dipole of the acceptor molecule does not affect the modification in rate since it 

appears in both Eq. (5.2.7) and (5.2.29). 
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5.5. Conclusion 

 

To fully determine the optimum criteria for modifying optical absorption by a 

molecule it is necessary to take into account more than one acceptor molecule.  It is 

anticipated that the emerging result would depend on the ratio of acceptors to 

mediators.  Furthermore, for a complete description it would be necessary to model 

the situation in which all mediators have some alignment preference, in low 

temperature samples or in the presence of a static field, for example.  Such a situation 

would require use of weighted rotational averaging [18], and would require explicit 

calculation of the static correction terms.  It is interesting to note that while this result 

is analytically tractable; it has recently been shown that calculations corresponding to 

modification of resonance energy transfer by a third body is not, and requires use of 

numerical methods [19].  The inclusion of the magnetic dipole interaction in the 

above calculations would reveal medium induced chiral effects. It is anticipated that, 

although this would introduce another tier of complexity, the analysis would stem 

from the same order of perturbation theory and therefore be solvable by analytical 

means.  
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Chapter 6 

Future Work 

 

 

 

“You see, wire telegraph is a kind of a very, very long cat. You pull his tail in New 
York and his head is meowing in Los Angeles. And radio operates exactly the same 

way: you send signals here, they receive them there. The only difference is that there 
is no cat.” 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
†Einstein, Albert. 
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6.1 Introduction 

 

In these final sections, the results from all chapters are discussed, identifying 

further avenues of investigation.  We discuss the possibilities for future work by 

relaxing the approximations that have been made, and note further questions that these 

studies have revealed.  

 

6.2 The Two-Level Approximation 

 

With the emergence of progressively advanced computer software and hardware, it 

becomes harder to justify use of the two-level approximation in the computation of 

nonlinear optical susceptibilities.  However, the use of the two-level approximation is 

still important in a pedagogical context, where problems with more than two energy 

levels are often not analytically tractable.  It could be envisaged that introduction of 

empirical wavefunctions for the different classes of molecules (arranged according to 

their symmetry groups) could allow calculation of the important optical susceptibility 

tensors, giving indications of whether or not the two-level approximation is valid.   

 

Analytically, knowledge of the energy level spacing may provide access to 

information on the convergence of the optical susceptibility tensors.  However, at 

present it still remains unknown in advance which number of energy levels (if any) is 

required to ensure convergence of each term of perturbation theory.    
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6.3 Measures of Helicity 

 

It is well-known that the electromagnetic Lagrangian is rotationally symmetric, which 

leads, via Noether’s Theorem, to the conservation of electromagnetic angular 

momentum.  It has recently been shown that the electromagnetic helicity is 

approximately generated by the mixing of electric and magnetic fields, the so-called 

duplex or Heaviside-Larmor symmetry [1].  By replacing the appearances of the 

electric and magnetic fields in the Lagrangian by their curls, the same calculations 

lead to the conclusion that optical chirality is generated by the ‘rotation’ of these new 

fields into a mixture of the two.  That is, the duplex-like symmetry for the curl of the 

electric and magnetic fields delivers the conservation of optical chirality.  However, a 

fully-satisfactory description of what symmetries generate the spin- and helicity- type 

measures has not been found. 

 

Furthermore, whether or not the infinite hierarchy of spin- and helicity- type 

measures correspond to different physical phenomena, remains to be seen.  From the 

quantum optical description, it can easily be shown that the combination of a left-

handed red photon and a right-handed blue photon has zero helicity; yet a non-zero 

optical chirality.  Furthermore, the appearance of k2 in the expression for the optical 

chirality indicates that the optical chirality may play a role in chiral discrimination in 

a medium.  To support this observation, it has been shown that the optical chirality is 

conserved in a homogeneous, dispersive medium [2].  However, since all helicity- and 

spin- type measures have the same basis states, it is apparent that manipulation of the 

optical chirality provides no way to encode more information in a photon than is 

accessible by manipulation of the optical helicity.  
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6.4 The Interaction of Twisted Light with Matter 

 

To extend the analysis in Chapter 4, it is worthwhile to consider not just absorption 

near to a mirror, but higher-order chiral processes, such as differential scattering.  It is 

anticipated that nodal enhancements will similarly arise.  Of course, the analysis of 

the electric and magnetic field superposition states for radiation near to a mirror is 

equally valid in these cases; there will still be regions in which chiral phenomena is 

forbidden by symmetry arguments.   

 

It will be interesting to investigate various nonlinear optical processes near to a 

phase conjugate mirror, where the topological charge is reversed.  Such a situation 

may engineer standing wave-like behaviour in the phase of the beam, as opposed to 

the electric and magnetic field vectors.   Of course, it is now known that orbital 

angular momentum does not play a role in internal electric dipole transitions [3], 

however it is conceivable that in carefully constructed situations the vector potential 

ceases to be approximately invariant over the volume of the optical centre.  As such, 

the electric dipole approximation may no longer be valid and the higher-order 

multipoles will have to be engaged.  

 

 

6.5 Optical Vortex Generation by Nanoantenna Arrays 

 

A series of recent work has centred on the generation of optical vortex light from 

molecular chromophore arrays [4,5].  The arrangement of three nanoantennas in a 

structure satisfying C3 or C3h symmetry allows the formation of a delocalised 
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excitation.  By analysis of the molecular point group, it emerges that there are two 

degenerate delocalised excitations with a phase factor corresponding to optical 

emission with topological charge of either -1 or 1.  On relaxation, such wavefunctions 

necessarily produces radiation imprinted with an identical phase structure.  By 

breaking the x-y symmetry of the set-up the energy levels will be split, allowing 

predetermined selection of emission of the sought handedness. 

 

Furthermore, it transpires that by increasing the number of nanoantennas, the 

topological charge of the emission can be tailored to any integral value.  Precisely, 

arrangements of nanoemitters with Cn or Cnh symmetry have pairs of delocalised 

excitations with topological charges of every integral value between –(n–1)/2 

(signifying the largest integer greater than or equal to (n–1)/2) and +(n–1)/2.  

Experimental verification of these theoretical principles is the centre of ongoing 

research at the University of Ottawa.  

 

 

6.6 Summary 

 

In Chapter One, we laid the foundations of a fully quantised framework for the 

interaction of light and matter, when the optical fields are weaker than the Coulomb 

interaction between the electron field and the molecular nuclei.   These fields are 

weak enough so that the interaction can be considered a perturbation on the matter 

and radiation states.  Thus, atomic and molecular problems in quantum 

electrodynamics are treated within the confines of perturbation theory, so that 
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encountering fields strong enough to compete with the Coulomb interactions requires 

different methods altogether.  

 

In Chapter Two, we studied the validity of the two-level approximation, 

generally and in the context of nonlinear optics.  We presented an analytical theorem 

on the expectation values of quantum operators, showing the invalidity of the two-

level approximation in even simple systems.  Furthermore, the two-level 

approximation when applied to the optical susceptibility tensors of nonlinear optical 

processes was discussed, and the commonly held idea that ‘push-pull’ chromophores 

are associated with enhanced second harmonic response was challenged.  It was then 

shown that ab initio calculations (performed by Peck and Oganesyan) combined with 

introduction of an error-gauging parameter indicated that for two specified molecules 

the two-level approximation was valid in the case of Rayleigh scattering and invalid 

in the case of second harmonic generation.  Finally, it was proved that the number of 

terms in the pth-order optical susceptibility is a polynomial of order n(p-1), where n is 

the number of energy levels included in the sum-over-states computation, which puts 

these calculations in the class of problems quickly solvable by a computer.  In 

summary, for both analytical and computational problems it was determined that the 

use of a two-state model undermines realism in return for calculational ease [6–9].  

 

In Chapter Three, it was shown that careful analysis of the optical angular 

momentum allows division into parts that satisfy duplex symmetry.  Introduction of a 

general Poincaré sphere representation of polarisation determined the orbital and spin 

parts of the angular momentum as dependant on the sum and difference of number 

operators for modes of opposing helicity, respectively.  These results were extended 



Chapter 6: Future Work 

 - 199 -

to the case of beams with orbital angular momentum.  A similar analysis of the optical 

chirality density and corresponding flux showed that they are proportional only to the 

difference of number operators for modes of opposing helicity.  Introduction of a 

Laguerre-Gaussian basis revealed that beams with nonzero values of the optical 

chirality also do not possess orbital angular momentum characteristics.  The infinite 

hierarchy of helicity- and spin- type measures, introduced by Cameron, Barnett and 

Yao, all emerge with similar quantum operator form: identical to the helicity and spin 

operators, except with an additional k2 inside the mode summation for each successive 

pair of operators.  Such analysis dispels the recent claim that light with nonzero 

values of optical chirality can differentiate between left- and right- handed molecules 

many times better than pure circularly polarised light.  A quantum optical analysis 

proved that the maximum (or minimum) value any helicity- or spin- type measure can 

take is that of pure left- or right- handed light.   

 

In Chapter Four, it was shown that, when taking expectation values, measureable 

electromagnetic measures must contain equal numbers of annihilation and creation 

operators.  This avoids the introduction of a rapidly oscillating phase factor, the real 

part of which averages to zero in any realistic measurement [9].  The subsequent 

sections detailed a quantum electrodynamic treatment of recent experiments, 

delivering the rates of circular differential processes and their relation to measures of 

helicity, spin and recently rediscovered measures of chirality [10–14].  The increase in 

circular dichroism at regular intervals from the mirror corresponds to Tang and 

Cohen’s claim of nodal enhancements [15] and is associated only with the known 

behaviour of the electromagnetic field vectors.  Furthermore, any increase or decrease 

in differential response at these locations was shown to be limited by the phase-
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photon number uncertainty principle and displays features associated with the 

reported shot-noise [16], deriving from the quantum nature of light.  The section on 

six-wave mixing of optical vortices demonstrated the quantum entanglement of pairs 

of optical vortex modes, where the probability for each output displays a neat 

combinatorial weighting, associated with Pascal’s triangle [17].   

 

In Chapter Five, it was shown that a quantum electrodynamic framework for the 

effect of a third body on absorption could be extended by integrating over all possible 

positions of the mediators.  Developing such a theory provided links with both the 

molecular and bulk properties of materials.  Moreover, it was determined which 

properties need to be optimised in order to tailor the medium modified effect.  

 

In this final chapter, possible avenues of further investigation were identified, 

along with speculation of what results might emerge.  

 

“Need we add that mathematicians themselves are not infallible?” 
-Henri Poincaré 
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