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Abstract 

An almost universal feature of successful pathogens is the secretion of effector 

proteins, many of which translocate inside host cells. These effectors manipulate 

host processes for the pathogen’s benefit. However, in response to this manipulation, 

plants have evolved to monitor for effectors and trigger defence responses. 

Amongst plant pathogens, oomycetes of the genus Phytophthora have arguably 

caused almost unrivalled levels of human suffering and represent significant threats 

to global food security. The late blight pathogen, Phytophthora infestans, is the most 

devastating pathogen of potato – the fourth most important food crop worldwide. 

Effective and durable resistance against late blight is desperately needed; and will 

depend on an improved understanding of the mechanistic basis of disease. 

Determining the adaptive functions of effectors might reveal previously unexploited 

management strategies. 

This work details structure-function studies of two translocated effectors from the 

late blight pathogen; PexRD2, a representative RXLR effector, and CRN8, an 

effector with kinase activity. Efforts to heterologously express CRN8 were hampered 

by protein insolubility and low yields. However, the crystal structure of PexRD2 

revealed that it homodimerises, and was crucial to the discovery of a conserved 

oomycete effector protein fold, the WY-domain fold. 

Yeast two-hybrid screening identified four PexRD2-interacting host proteins, 

including MAPKKKε, a known positive regulator of plant immunity. MAP-kinase 

cascades transduce the perception of invading pathogens into effective defence 

responses, and MAPKKKε is involved in resistance against P. infestans. PexRD2 

specifically suppresses cell deaths that are either MAPKKKε-dependent or triggered 

by MAPKKKε overexpression. PexRD2 also inhibits MAPKKKε-triggered MAPK 

activation. Further, structure-led mutagenesis of PexRD2 suggests that this effector 

benefits the pathogen by interacting with MAPKKKε to inhibit the kinase’s 

signalling. Discovering the PexRD2-MAPKKKε interaction, and its implications for 

plant immunity, has suggested unexploited management strategies that could 

enhance crop resistance to this devastating pathogen. 
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1 General Introduction 

1.1 Effectors and plant immunity 

An almost universal feature of successful plant pathogens is the secretion of proteins 

that manipulate host processes for the pathogen’s benefit (Collinge et al., 2010). 

These proteins, now called effectors, have long been described by plant pathologists 

under a number of other terms, including avirulence and virulence factors, elictors 

and toxins. However, unlike these terms, effector is considered neutral as it does not 

imply either a positive or negative impact on the outcome of the disease interaction. 

Effectors have been defined as ‘pathogen produced molecules that alter host cell 

structure and function, thereby facilitating infection and/or triggering defence 

responses’ (Kamoun, 2007). Thus, although their genes reside in the genomes of the 

pathogens, effectors function at the interface with or even within host cells, and as 

such provide perhaps some of the most vivid examples of genes with ‘extended 

phenotypes’ (Dawkins, 1982, Kamoun, 2007). This neutral definition of effectors has 

represented a crucial conceptual development in the field of plant pathology 

(Kamoun, 2006, Hogenhout et al., 2009), as it is less restrictive than the alternative 

terms. Using this definition, ‘effector’ can easily be applied to molecules that have 

dual and conflicting functions in the outcomes of disease interactions. For example, 

an effector that induces cell death or defence responses in host plants would be 

considered an elicitor if expressed by some pathogens, and a toxin if expressed by 

others, dependent on ultimate outcome for the invading pathogen. Furthermore, a 

single effector from the same pathogen can have contrary effects on the outcome of 

infection, dependent on the genotype of the host plant infected. Examples of 

effectors with these conflicting functions have now been reported in a number of 

plant-microbial pathosystems (Kjemtrup et al., 2000, Alfano and Collmer, 2004, 

Oliva et al., 2010). 

 Although some effectors may serve structural roles, or aid nutrient acquisition or 

pathogen dispersal; most effectors of phytopathogenic microbes are thought to have 

evolved to enhance microbial fitness by manipulating the immune systems of their 

hosts (Jones and Dangl, 2006). In general, plants have both preformed and inducible 
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defences against infection. Preformed physical barriers include the waxy cuticle on 

the plant epidermis and plant cell walls; whereas pre-emptive chemical barriers 

include the low pH of the apoplastic space, antimicrobial secondary metabolites 

called phytoanticipins, and antimicrobial peptides called plant defensins (Guest and 

Brown, 1997). Plants respond to pathogens that breach these preformed barriers 

using a multilayered immune response. These defences rely on responses at the level 

of each individual cell, alongside the use of systemic signals that emanate from 

infection sites (McDowell and Dangl, 2000, Jones and Dangl, 2006). The first layer 

of the plant immune system recognises and responds to molecules common to many 

classes of microbe, called microbe- or pathogen-associated molecular patterns 

(MAMPs or PAMPs) (Ingle et al., 2006), and endogenous molecular patterns, which 

are present only when the tissue is infected or damaged (damage-associated 

molecular patterns or DAMPs) (Schilmiller and Howe, 2005, Huffaker and Ryan, 

2007, De Lorenzo et al., 2011). The second layer recognises specific pathogen 

effectors, either directly or indirectly through their effects on host proteins or 

processes (Jones and Takemoto, 2004, Jones and Dangl, 2006). 

Unifying features of PAMPs are that they comprise conserved molecular patterns, 

common to  many classes of microbe, with functions essential to general microbial 

fitness, but are otherwise absent in potential hosts (Nürnberger and Brunner, 2002). 

Recognition of PAMPs typically occurs via surface-localised pattern recognition 

receptors (PRRs) and results in the triggering of defence responses known as PAMP-

triggered immunity (PTI) (Figure 1.1). In some cases these responses are capable of 

halting any further colonisation. However, most successful pathogens suppress or 

otherwise manipulate this resistance by deploying effectors that interfere with PTI. 

This counter-defensive targeting of components involved in PAMP perception 

signalling or executors of defence responses can restore the pathogen’s virulence and 

result in effector-triggered susceptibility (ETS) (Figure 1.1) (Jones and Dangl, 2006). 

In reply to this manipulation by effectors, plants have evolved an additional layer of 

defence surveillance that monitors for the presence or activities of these counter-

defensive effectors. This second layer of the innate immune system recognises 

specific effectors using the gene products of host disease resistance genes, or R 

genes. These typically encode cytoplasmic NBS-LRR proteins, which are named 
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after their characteristic nucleotide binding site (NBS) and leucine-rich repeat (LRR) 

domains (van der Biezen and Jones, 1998, Dangl and Jones, 2001). Less frequently R 

genes encode extracellular LRR (eLRR) proteins that possess a single 

transmembrane domain and either a short intracellular C-terminus or kinase domain 

(Hammond-Kosack and Parker, 2003). An effector that is specifically recognised by 

one of the host’s R proteins is often termed an avirulence factor (Avr), and triggers 

the development of effector-triggered immunity (ETI) (Figure 1.1) (Jones and Dangl, 

2006). ETI resembles an amplified PTI response, and is typically associated with the 

hypersensitive response (HR), a form of programmed cell death (PCD). This 

response, localised at the infection site, is an effective response against pathogens 

that need to interact with living host tissue to survive (Glazebrook, 2005). 

 

 

Figure 1.1 The zig-zag model illustrating the quantitative output of 

the plant immune system  

Plants detect pathogen-associated molecular patterns (PAMPs) via PRRs to trigger 

PAMP-triggered immunity (PTI). Successful pathogens deliver effectors that 

interfere with PTI, resulting in effector-triggered susceptibility (ETS). Specific 

effectors (indicated as red circles) are recognized by an NBS-LRR protein, 

activating effector-triggered immunity (ETI), which resembles an amplified version 

of PTI that often passes a threshold for induction of hypersensitive cell death (HR). 

Pathogen isolates are selected that have lost the red effector, and perhaps gained 

new effectors (in blue) – these can help pathogens to suppress ETI. Selection 

favours new plant NBS-LRR alleles that can recognize one of the newly acquired 

effectors, resulting again in ETI. Figure taken from Jones and Dangl, (2006) 
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Perhaps the simplest explanation of how the interplay between Avr and R genes 

affects the outcome of  a disease interaction is provided by the gene-for-gene 

concept (Flor, 1971). This states that: for genes conferring avirulence to a pathogen, 

there are juxtaposed R genes conferring resistance in the host. In incompatible host-

pathogen interactions, R proteins recognise their cognate avirulence ligands, either 

directly or indirectly by its effect on other host proteins (van der Biezen and Jones, 

1998, van der Hoorn and Kamoun, 2008), and trigger ETI. Alternatively, if the host 

lacks the corresponding R gene, ETI is not triggered and disease may result. In these 

compatible interactions, the Avr effector might actually function as a virulence 

factor, and subvert host cellular function by acting upon host-encoded targets (van 

der Biezen and Jones, 1998). 

The antagonistic interplay between defensive and counter-defensive molecules of 

pathogens and hosts has resulted in a continuous co-evolutionary arms race between 

the two (Dodds and Rathjen, 2010). Natural selection favours pathogens that lose 

effectors to evade recognition or evolve new effectors to maintain ETS; whereas 

hosts are selected to circumvent manipulation by virulent pathogens, continue to 

recognise their effectors, and thus maintain disease resistance. Consistent with this 

view of an ensuing co-evolutionary arms race, effector genes have been 

demonstrated to undergo rapid sequence divergence and effector proteins typically 

show higher than average levels of amino acid polymorphisms (Schornack et al., 

2009). Furthermore, many NBS-LRR genes also show evidence for positive selection. 

The impact of this selection is heterogeneous between different domains, with the 

LRR region, predicted to be involved in protein recognition, showing the strongest 

evidence for diversifying selection (Mondragón-Palomino et al., 2002, McHale et 

al., 2006). 

The events that occur downstream of PAMP and effector perception overlap 

significantly. Amongst the earliest responses following perception of PAMPs in 

plants are ion fluxes, in particular an increase in cytosolic calcium ions (Ca
2+

) 

(Boller and Felix, 2009). This responses have also been implicated in R protein-

mediated resistance (Martin et al., 2003). The accumulation of apoplastic reactive 

oxygen species (ROS) in response to pathogen perception, the oxidative burst, is also 

a signature of the early plant immune response (Zipfel, 2009). ROS can act as toxins 
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against invading pathogens, as well as mediate structural reinforcement of the plant 

cell wall (Mehdy, 1994, Bolwell, 1999, Passardi et al., 2004). The synergistic 

interplay between ROS and the phytohormone salicylic acid- (SA)-signalling 

pathway (Blee et al., 2004), which plays important regulatory roles in both PTI and 

ETI, is also believed to activate a signal amplification loop that drives hypersensitive 

cell death and establishment of systemic defences (Doehlemann and Hemetsberger, 

2013). 

Both calcium-dependent protein kinases (CDPKs) and mitogen-activated protein 

(MAP) kinase cascades participate in signalling events that regulate both PTI and 

ETI (Martin et al., 2003, Boller and Felix, 2009, Segonzac et al., 2011). MAPK 

cascades appear to exert their control of plant defenses via a network of transcription 

factors, especially those of the WRKY superfamily (Mao et al., 2011). Plant 

responses to pathogen attack require large-scale transcriptional reprogramming, 

mediated, in part, by WRKY transcription factors. Changes in gene expression 

include the induction of genes involved in cell wall re-inforcement and phytoalexin 

biosynthesis,  and as well as pathogenesis-related (PR) genes (Pandey and Somssich, 

2009). Phytoalexins are antimicrobial secondary metabolites that are synthesized de 

novo by plants and accumulate rapidly at areas of pathogen infection (Dixon, 1986). 

PR genes encode a variety of proteins that accumulate in infected and surrounding 

tissue, as well as remote uninfected tissue and are induced by SA (Ebrahim et al., 

2011). PR proteins may constitute up to 10% of the total soluble protein of an 

infected leaf (Heil and Bostock, 2002, Bolton, 2009), and include proteins with 

potent antimicrobial activities, including hydrolytic enzymes such as chitinases and 

β-glucanases; and peroxidises that have been implicated in plant cell wall 

reinforcement (Ebrahim et al., 2011). 

The similar responses induced following perception of PAMPs and effectors, by 

PRR or R proteins respectively, has lead to the suggestion that the PTI-ETI 

dichotomy is an oversimplification, and in fact there is a continuum between PTI and 

ETI in plants (Thomma et al., 2011). 
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1.2 The late blight pathogen 

Amongst the most notorious and economically important pathogens of crop species 

are the plant pathogenic oomycetes. Together with the fungi, these two taxa cover 

the majority of eukaryotic plant pathogens (Agrios, 2005). Although oomycetes 

exhibit similar lifestyles and, to some extent, morphology with fungi, these two 

groups of microorganisms actually represent some of the most divergent eukaryotic 

pathogens (Baldauf et al., 2000). Their pathogenic lifestyles are therefore examples 

of convergent evolution and have evolved independently. The oomycetes are 

actually stramenopiles (Sogin and Silberman, 1998, Baldauf et al., 2000, Margulis 

and Schwartz, 2000), and are hence more closely related to the photosynthetic 

golden brown algae and diatoms, and distantly related to the apicomplexan parasites 

of animals, such as Plasmodium spp. (Schlegel, 2003, Adl et al., 2005, Harper et al., 

2005). Within the oomycetes, species of the genus Phytophthora are the best known. 

This genus was named after the Greek for ‘plant destroyer’ and its members are 

amongst the most serious threats to both agricultural food production and natural 

ecosystems worldwide (Latijnhouwers et al., 2003, Lamour et al., 2007). For 

example, Phytophthora infestans and Phytophthora sojae, the causative agents of 

late blight of potato and tomato, and stem and root rot of soybean, respectively, have 

both had longstanding histories of causing devastating disease in these economically 

important crops (Wrather and Koenning, 2006, Torto-Alalibo et al., 2007, Fry, 

2008). Other phytopathogenic oomycetes, such as the sudden oak death pathogen, 

Phytophthora ramorum, caused extensive damage to oak populations across North 

America and Europe (Rizzo et al., 2005). 

Phytophthora infestans is the most destructive pathogen of potato and also represents 

a model organism within the oomycetes (Haas et al., 2009). As the causative agent 

of potato and tomato late blight, it is infamous for attacking European potato crops in 

the mid-nineteenth century. This outbreak led to the Irish potato famine of 1845–

1849 and almost unrivalled levels of starvation, human mortality and mass 

emigration (Judelson and Blanco, 2005, Turner, 2005, Yoshida et al., 2013). In 

addition to its historical importance, a re-emergence of late blight during the late 

twentieth century has ensured that this disease remains a critical threat to current 

global food security (Fry and Goodwin, 1997, Fisher et al., 2012). Today, in terms of 
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total production, potato represents the fourth largest food crop, after maize, wheat 

and rice (Source: FAOSTAT). The benefits of this staple crop as an alternative to the 

major cereals in providing food security for an increasing world population are 

becoming progressively more apparent (Haas et al., 2009, Reader, 2009). Unlike 

cereal crops, potato is not a globally traded commodity (Source FAOSTAT) and as 

such, potato crops are less susceptible to price inflation driven by global market 

competition. Instead, the price of potatoes is heavily determined by local supply and 

demand, meaning that investing in potatoes is highly recommended as a food 

security safeguard for low-income countries.  

Late blight has the potential to destroy an entire field of potato within days. The 

frequent emergence of ‘resistance-breaking strains’ that overcome the resistance 

conferred to cultivars carrying specific R genes, necessitates growers to rely on 

potentially environmentally hazardous agrochemicals to protect their crops (Fry, 

2008). The cost of control and crop losses associated with late blight are 

conservatively estimated at $6.7 billion per year (Haverkort et al., 2008). As such, 

the development of novel management strategies that are durable and effective 

against this devastating pathogen continues to represent a major challenge (Fry, 

2008). Tackling this problem will arguably be dependent on an improved 

understanding of the mechanistic basis of disease interactions. 

Like most other Phytophthora species, P. infestans has both asexual and sexual 

lifecycles and produces a range of spore types that are involved in the disease cycle 

(Figure 1.2) (Judelson and Blanco, 2005). These spores include the asexual 

sporangia and zoospores, and the characteristic sexual spore or oospore, which play 

crucial roles in dispersal and overwintering survival, respectively (Drenth et al., 

1995, Flier et al., 2002b). The efficient production and dispersal of these spores 

represents an important prerequisite for successful infection, and many sporulation 

and infection cycles can occur within a single potato growing season (Flier et al., 

2002a). Sporangia are multinucleate, egg-shaped spores that develop on the termini 

of specialised aerial hyphae, called sporangiophores. In P. infestans, these sporangia 

are easily detached and can act directly in the dispersal of the pathogen. These 

sporangia can then, depending on the environmental conditions, either germinate 

directly or undergo indirect germination, also known as zoosporogenesis (Tani et al., 



1   General Introduction 

9 

 

 

2004). The latter of the two predominates under cooler environmental temperatures 

and involves cytoplasmic cleavage of the sporangium resulting in the formation of 

multiple, wall-less, uninucleate zoospores. These spores are motile and possess two 

flagella that function in their dispersal through water drops and films on plant 

surfaces or in waterlogged soil. The zoospores of P. infestans can then locate new 

hosts, possibly via chemotaxis, electrotaxis and autoaggregation (Tyler, 2002). Upon 

contacting the host, zoospores discard their flagella and affix themselves to the host 

surface, becoming immobile walled cysts. These cysts are short-lived and germinate 

within hours of encystment. These germinated cysts, or germinated sporangia in the 

case of direct germination, then initiate infection via the production of germ tubes. 

These then form appressorium-like structures under which the host’s surface is 

penetrated, facilitated by the secretion of cell wall degrading enzymes (Hardham and 

Blackman, 2009). 

 

Figure 1.2 Disease cycle of Phytophthora infestans 

Figure taken from Schumann, G.L. and C. J. D’Arcy. 2000. Late blight of potato 

and tomato. The Plant Health Instructor. DOI: 10.1094/PHI-I-2000-0724-01 
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P. infestans is a hemibiotrophic pathogen and the subsequent infection of host plants 

occurs as two distinct phases: an early biotrophic phase and a later necrotrophic 

phase  (Latijnhouwers et al., 2003). In the initial biotrophic phase of infection, the 

pathogen requires living plant tissue to survive. Hyphal growth is predominantly 

intercellular within the apoplastic space, and specialised infection and feeding 

structures called haustoria are established. Haustoria are formed by both biotrophic 

and hemibiotrophic fungi and oomycetes, and essentially involve the penetration of 

the plant cell wall and subsequent invagination of the host cell membrane around the 

cell wall of an intercellular hyphae (Hardham and Blackman, 2009). The formation 

of the host-derived extrahaustorial membrane involves the de novo production of 

host membrane components, as well as the selective exclusion of certain host cell 

proteins including: aquaporin, calcium transporters and specific PRRs (Lu et al., 

2012). P. infestans, like other hemibiotrophic oomycetes, establishes small finger- or 

digit-like haustoria (Latijnhouwers et al., 2003). Haustoria represent an intimate 

contact between the pathogen and living host protoplasm; and the dependence on 

these associations with living host cells means that successful early colonisation of 

the host is dependent on the pathogen evading the plant’s innate immune defences. 

However, as the infection progresses into the necrotrophic phase, the infected host 

tissue subsequently dies, forming necrotic lesions, and nutrients are obtained from 

these dead or dying host cells (Kamoun, 2007, Whisson et al., 2007). 

 

1.3 Oomycete PAMPs 

A range of oomycete specific molecules that display properties of PAMPs have been 

identified. Elicitins are 10 kDa secreted proteins, that are almost ubiquitous in 

Phytophthora spp. (Kamoun et al., 1994). These proteins are capable of binding 

sterols, and are proposed to shuttle host-derived sterols to the pathogen (Mikes et al., 

1998, Osman et al., 2001a, Blein et al., 2002). Oomycetes lack several of the 

enzymes that are required for the conversion of sterol precursors to mature sterols, 

which are required for their growth and sporulation (Gaulin et al., 2010). Elicitins 

also trigger a suite of PTI responses, such as ROS production, phytoalexin 

biosynthesis, MAPK activation, and non-specific systemic acquired resistance 
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(Bonnet et al., 1996, Keller et al., 1996, Rustérucci et al., 1996, Zhang et al., 1998, 

Asai et al., 2008), as well as HR-like cell death in most Nicotiana species (Kamoun 

et al., 1993, Takemoto et al., 2005). Sterol-loading of elicitins has been suggested to 

be a prerequisite for their recognition (Osman et al., 2001b). INF1 is the major 

elicitin from P. infestans (Kamoun et al., 1997). Recognition of INF1 is mediated by 

the membrane localised receptor-like protein ELR1 (Du et al., 2012) and LRR-RLK 

(leucine-rich repeat-receptor-like kinase) SERK3/BAK1
*
 (Chaparro-Garcia et al., 

2011), although the exact composition of the receptor complex remains unknown 

and other INF1-interacting plant membrane proteins have also been identified 

(Kanzaki et al., 2008). The signalling cascade following INF1 recognition and 

leading to HR-like cell death has been shown to require a respiratory burst oxidase 

homolog Nbrboh (Yoshioka et al., 2003), the heat-shock proteins HSP70 and HSP90 

(Kanzaki et al., 2003), and a ubiquitin ligased associated protein SGT1
†
 (Peart et al., 

2002). 

GP42 is a 42 kDa glycoprotein that is abundantly expressed in the cell wall of P. 

sojae, and conserved in other Phytophthora species including P. infestans, that also 

displays PAMP-like properties. This protein is a calcium-dependent 

transglutaminase (TGase) (Brunner et al., 2002); a class of enzymes that display 

protein cross-linking activity, with the resultant isopeptide bonds conferring 

increased resistance to proteolysis (Greenberg et al., 1991). GP42 is recognised via a 

13-amino-acid surface exposed fragment, Pep-13 (Nürnberger et al., 2004, Reiss et 

al., 2011). This peptide potently induces several PTI responses, including ROS 

production and phytoalexin biosynthesis, in both host and non-host plant species 

(Nürnberger et al., 1994, Brunner et al., 2002). Within this peptide, mutations that 

reduced its ability to induce defence responses also abolished the protein’s TGase 

activity. This is indicative of plants having evolved to recognise a conserved motif of 

the protein that is indispensable to its function. 

Cellulose-binding elicitor lectin (CBEL) is another oomycete cell wall associated 

glycoprotein that was initially isolated from Phytophthora parasitica var. nicotianae, 

                                                 
*
 SERK3 = SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3, BAK1 = brassinosteroid-

associated kinase 1 
†
 SGT1 = suppressor of G2 allele of skp1 
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the causal agent of tobacco Black Shank disease (Mateos et al., 1997). CBEL-like 

domain containing proteins have been identified in multiple Phytophthora spp. 

including P. infestans (Sierra et al., 2010). CBEL induces HR-like lesions and 

defense responses associated with PTI in both tobacco (Nicotiana tabacum) and non-

host plants including Arabidopsis thaliana (Khatib et al., 2004, Gaulin et al., 2006). 

Suppression of CBEL expression in P. parasitica var. nicotianae caused 

developmental abnormalities, suggesting a role in cell wall polysaccharide 

deposition and adhesion to cellulose, although knockdown transformants did not 

display significantly reduced virulence when plants were inoculated using mycelia 

explants. 

Branched heptaglucoside (HG) oligosaccharides derived from oomycete cell walls 

may also represent oomycete PAMPs. Their recognition is mediated by binding to 

apoplastic β-glucan-binding proteins (GBPs), and can trigger the production of 

phytoalexins (Cosio et al., 1992). However, since GBP-like proteins are found in 

many plant species, yet the ability to respond to HG appears to be restricted to the 

legumes, additional signalling components must be required (Fliegmann et al., 

2004). 

In spite of oomycete PAMPs being recognised by plant species and triggering a wide 

array of defence responses, phytopathogenic oomycetes are still able to successfully 

colonise plants. Similarly to many bacterial and fungal plant pathogens, this 

colonisation is believed to be accomplished by the suppression of host cell defences 

by pathogen-derived effectors (Birch et al., 2006, Kamoun, 2006).  

 

1.4 Oomycete effectors 

The genomes of sequenced Phytophthora species reveal that the effector secretomes 

of these pathogens are highly complex; with several hundred predicted proteins in 

families, typically significantly expanded with relation to those in non-pathogenic 

relatives (Haas et al., 2009). Comparative genetics has also revealed that 

Phytophthora species carry distinct repertoires of effectors genes, with only a limited 

number of examples belonging to a core set of shared orthologs (Haas et al., 2009, 
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Schornack et al., 2009). In general, however, oomycete effectors can be divided into 

two classes that target distinct sites in host tissues: apoplastic effectors that are 

secreted into the plant extracellular space, where they interact with extracellular 

targets and surface receptors; and translocated effectors that act inside the plant cell, 

where they may target different subcellular compartments (Schornack et al., 2009). 

 

1.4.1 Apoplastic effectors 

As many plant pathogenesis-related (PR) proteins that accumulate in the apoplast are 

hydrolytic enzymes, it is unsurprising that many apoplastic effectors that have been 

identified to date represent enzymatic inhibitors (Kamoun, 2006). Such effectors 

would include the glucanase inhibitors, GIP1 and GIP2 (Rose et al., 2002), which 

are secreted into the apoplastic space by P. sojae. These effectors exhibit significant 

structural similarity to the trypsin class of serine proteases, although are 

proteolytically inactive because of mutated catalytic residues. These are thought to 

function as counter-defensive molecules by inhibiting the degradation of components 

of the pathogen cell wall and possible release of defence-eliciting oligosaccharides 

by host β1-3-glucanases. At least four effector genes with similarity to GIPs have 

also been identified in P. infestans (Damasceno et al., 2008). 

In addition, apoplastic effectors from P. infestans also include serine protease 

inhibitors, such as EPI
‡
1 and EPI10, and cystatin-like cysteine protease inhibitors, 

such as EPIC1 and EPIC2 (Kamoun, 2006). These are also thought to function in 

counter-defence, by inhibiting defence-related host proteases. EPI1 and EPI10 are 

multi-domain modular proteins containing N-terminal signal peptides followed by 

several Kazal-like domains. Signal peptides are short amino-acid sequences that 

target proteins for export through the general secretory pathway, also known as the 

type II secretion system (von Heijne, 1990), whereas the Kazal-like domains mediate 

protease inhibition (Laskowski Jr and Kato, 1980). These secreted proteins’ roles in 

counter-defence are thought to be achieved by the inhibition of the tomato PR 

protein P69B, a subtilisin-like serine protease (Tian et al., 2004, Tian et al., 2005). 

The cysteine protease inhibitors EPIC1 and EPIC2 possess all the signature 

                                                 
‡
 EXTRACELLULAR PROTEASE INHIBITOR 
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sequences of cystatin-like protease inhibitors, and have been shown to inhibit PIP1 

and C14, apoplastic PR proteins of tomato and Nicotiana benthamiana with 

significant similarity to papain-like cysteine proteases (Tian et al., 2007, Kaschani et 

al., 2010). 

 

1.4.2 Translocated effectors 

Other oomycete effectors function within host cells and are translocated into the host 

cytoplasm. (Kamoun, 2006, Birch et al., 2009). The translocated oomycete effectors 

discovered so far belong to two effector families, the RXLR effectors and the CRN 

effectors (crinkling and necrosis or ‘Crinklers’). Both CRN and RXLR effector genes 

have been shown to occur predominantly in repeat rich, gene-sparse genomic 

regions; and represent gene families that have undergone significant expansion, 

apparently driven by non-allelic homologous recombination (Haas et al., 2009). 

Similar to oomycete apoplastic effectors, and the secreted effectors of bacterial 

phytopathogens such as Pseudomonas syringae (Alfano and Collmer, 2004), these 

translocated effectors are modular proteins; and consist of N-terminal regions, 

involved in secretion and translocation into host cells, followed by diverse C-

terminal domains, which are not required for translocation but instead confer the 

biochemical effector functions (Morgan and Kamoun, 2007). The two cytoplasmic 

effector families of Phytophthora spp. have been characterised by conserved peptide 

motifs within their N-terminal targeting domains. 

 

1.4.2.1 RXLR effectors 

Proteins in the RXLR family are widely considered the archetypical oomycete 

translocated effectors and have received the most attention (Kamoun, 2006, Morgan 

and Kamoun, 2007, Haas et al., 2009). RXLR effectors are secreted proteins, which 

average between 100 and 200 amino acids in length, and are defined by the N-

terminal amino acid motif arginine-x-leucine-arginine (where x signifies any 

residue). This motif is often followed by an acidic region including a ‘dEER’ motif 

(aspartate-glutamate-glutamate-arginine), although the second motif is frequently 
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less well conserved (Birch et al., 2006). These peptide motifs have been shown to be 

necessary for the translocation of RXLR effectors into host cells; most notably 

AVR3a from P. infestans (Whisson et al., 2007) and Avr1b from P. sojae (Dou et 

al., 2008b). However, it is important to emphasize that these motifs are not on their 

own sufficient to promote translocation and require additional flanking sequences 

(Whisson et al., 2007, Birch et al., 2008).  

The precise mechanism by which oomycete, or indeed fungal, effectors are delivered 

into plant cells is not well understood, and continues to be a very active area of 

research (Panstruga and Dodds, 2009). In general two basic mechanisms for 

translocation of oomycete effectors inside host cells have been proposed based on 

observations of other pathosystems. These include entry mechanisms that are 

dependent on pathogen-derived translocation machinery, as well as the 

environmental conditions established by the specialised infection structures, the 

haustoria (Morgan and Kamoun, 2007, Birch et al., 2008). This would suggest that 

entry occurs in a manner analogous to the Gram-negative bacterial type III secretion 

system (T3SS). Alternatively, it is possible that entry into host cells may utilise an 

entirely host-derived mechanism, following secretion via the general secretory 

pathway.  It has been reported that RXLR-mediated entry of Avr1b can occur in the 

absence of the pathogen and therefore independently of any possibly pathogen-

encoded translocation machinery or specialised infection structures (Dou et al., 

2008b). This pathogen-independent translocation has been suggested to be dependent 

on RXLR-mediated binding of phosphatidylinositol phosphates (PIPs) (Kale et al., 

2010). This interaction with PIP head groups exposed on the external surface of the 

plant’s plasma membrane was postulated to stimulate endocytosis of the effectors 

into plant cells. However, several subsequent studies have failed to reproduce many 

of these results (Wawra et al., 2012, Yaeno and Shirasu, 2013), and the debate over 

the exact mechanism of translocation looks set to continue (Ellis and Dodds, 2011, 

Tyler et al., 2013). 

All oomycete avirulence effectors discovered so far have been RXLR effectors; and 

although they were originally identified on the basis of their avirulence activity in 

resistant plant cultivars or species, several RXLR effectors have now been attributed 
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additional virulence activities that would confer a selective advantage when infecting 

a susceptible host (Morgan and Kamoun, 2007).  

The P. infestans effector AVR3a provides perhaps the best example of a translocated 

effector with an immunity suppressing virulence function. The AVR3a gene encodes 

at least two polymorphic secreted proteins that differ at only three residues, the last 

two of which are present in the mature protein. The avirulence allele, 

AVR3a
C19,K80,I103

, typically referred to as AVR3a
KI

, is carried by isolates that are 

avirulent on potato cultivars expressing the NBS-LRR resistance protein R3a,  

whereas virulent isolates carry only the virulence allele, avr3a
S19,E80,M103

, the gene 

product of which, AVR3a
EM

, is not recognised by R3a (Armstrong et al., 2005, 

Kamoun, 2006). The avirulent isoform, AVR3a
KI 

, has also been demonstrated to be 

a potent suppressor of the cell death response triggered by INF1 (Bos et al., 2006). 

Other avirulence RXLR effectors such as Avr1b, and ATR13
§
 from 

Hyaloperonospora arabidopsidis (Hpa) have also been demonstrated to enhance 

virulence in infections of susceptible plants and suppress defence responses induced 

by pathogenic attack (Sohn et al., 2007, Dou et al., 2008a, Schornack et al., 2009). 

The demonstration of virulence functions for numerous RXLR effectors, in addition 

to the previously described avirulence functions, has confirmed these pathogen-

derived proteins as a critical area for further study to understand the determinants of 

the outcome of infection. 

The hundreds of candidate RXLR effector genes revealed in the genomes of 

phytopathogenic oomycetes (Haas et al., 2009) is in stark contrast to the 

comparatively small complement of T3SS effectors required for infection by 

phytopathogenic bacteria (approximately 15 – 35 per Pseudomonas syringae 

pathovar) (Lindeberg et al., 2008, Kvitko et al., 2009). Furthermore many RXLR 

effectors fall into gene families with numerous paralogs. These two observations 

have highlighted the great potential for functional redundancy in oomycete effector 

families (Birch et al., 2008). When considered within the context of a pathogen–host 

co-evolutionary arms race, this redundancy may be advantageous for the pathogen. 

For example, if an effector is inactivated, by mutation or loss of expression to 

                                                 
§
 Arabidopsis thaliana recognised 13 
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prevent recognition by host R proteins, it need not necessarily reduce the pathogen’s 

fitness; since, other related effectors may continue to provide the same virulence 

function in susceptible cultivars. 

1.4.2.2 CRN effectors 

CRN effectors form a distinct, yet complex, family of secreted proteins that are also 

thought to play an important role in disease progression. The P. infestans genome 

contains a large family of 196 CRN genes, which is heavily expanded in P. infestans 

relative to P. sojae (100 CRNs) and P. ramorum (19 CRNs) (Haas et al., 2009). The 

CRNs are relatively large proteins, on average 400 – 850 amino acids, and like the 

RXLR effectors, they possess a modular structure. The hallmark feature of the CRNs 

is a highly conserved N-terminal domain structure. This comprises a conserved 

LFLAK domain which is approximately 50 amino acids and includes the conserved 

LXLFLAK peptide motif (Win et al., 2006), adjacent to a diversified DWL domain 

which ends with a HVLVXXP sequence motif (Haas et al., 2009). In the majority of 

CRNs, these domains are located downstream of a predicted signal peptide and 

followed by diverse C-terminal effector domains (Haas et al., 2009). 

Analogous to the RXLR region, the LFLAK domain has been demonstrated to be a 

functional translocation motif, and mediate the delivery of C-terminal effector 

domains inside plant cells, when expressed from transgenic Phytophthora capsici
**

 

(Schornack et al., 2010). Although the mechanism of LFLAK mediated transfer is 

also unknown, this motif overlaps with an RXLR motif in the N-termini region of 

some Hpa effectors, and results in a combined RXLRLFLAK motif (Win et al., 

2007). 

The CRN effectors were originally discovered following an in planta function 

expression screen of candidate secreted proteins from P. infestans (Torto et al., 

2003). CRN1 and CRN2, identified in this screen, were shown to be constitutively 

expressed during colonization of the host plant tomato; and elicited a leaf-crinkling 

and cell death phenotype when expressed in both tomato and Nicotiana spp. (Torto 

et al., 2003). Expression of CRN2 was accompanied by an induction of defence and 

PR genes, reminiscent of known general defence elicitors from Phytophthora spp., 

                                                 
**

 Phytophthora capsici is a hemibiotrophic pathogen of pepper and curbits. 
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but with delayed timing and a slightly different appearance of the necrotic response. 

The adaptive significance of the necrotic response has yet to be determined. 

However, it has been proposed the CRNs may function to aid Phytophthora spp. 

colonization of plant tissues during the late necrotrophic phase of infection (Qutob et 

al., 2002). Although their exact function remains unknown, it appears that the roles 

fulfilled by the CRN family of effectors may be significantly differently from those 

of the RXLRs. 

Genome analyses have revealed that, unlike the RXLR effectors, which appear 

restricted to the haustoria-forming phytopathogenic oomycetes, the CRN family is 

ubiquitous in plant pathogenic oomycetes (Schornack et al., 2010). CRNs have been 

identified in the more distantly related oomycetes such as Aphanomyces euteiches, 

which infects a variety of legumes but does not form haustoria (Schornack et al., 

2010). These findings suggest that the CRNs form a more ancient effector family 

that arose early in oomycete evolution. 

The CRN C-terminal regions are highly divergent, exhibiting a wide variety of 

domain structures. Thirty-six different conserved domains have been identified 

among the C-terminal regions of the 315 Phytophthora CRN proteins (Haas et al., 

2009). There is strong evidence that this diversity of effector domains has been 

driven by recombination events between different clades, occuring predominantly 

after the conserved HVLVXXP motif in the N-terminal domain. This suggests an 

evolutionary mechanism similar to the C-terminal re-assortment reported for T3SS 

effectors of phytopathogenic bacteria (Stavrinides et al., 2006, Schornack et al., 

2009). Although, like the RXLR effectors, most CRNs have no similarity to known 

sequences, the C-terminal domain of some CRN-like proteins show homology to 

protein kinases and phosphotransferases, suggesting possible mechanisms for these 

effectors to manipulate host physiology (Haas et al., 2009).  

 

1.5 Potential of ‘structural effectoromics’ 

In spite of the substantial progress that has been made in recent years, there is still a 

lot that as yet remains unclear about oomycete effectors. To date, genome sequence 
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analyses and comparative genomics have been extremely successful in identifying a 

plethora of putative effectors, of previously unexpected complexity and diversity 

(Haas et al., 2009). However, extensive effort is required to link these identified 

sequences to specific phenotypes. Within the field of plant pathology, there is now 

an increasing shift in emphasis of effector research towards improving our 

biochemical understanding of effector protein function. Although inferring gene 

function on the basis of sequence homology is one potential method to annotate 

unknown proteins, most oomycete effectors fail to demonstrate any significant 

homology to sequences present in public databases. Structural biology methods have 

the potential to overcome this limitation, and will hopefully play an important role in 

improving our understanding through the determination of the three-dimensional 

structure of effector proteins. 

Plant pathogenic bacteria, such as P. syringae, manipulate host cellular functions by 

employing structural mimicry of eukaryotic host proteins. Nearly all effector 

proteins from phytopathogenic bacteria eluded functional annotation on the basis of 

primary amino-acid sequence. However, solving their three-dimensional structures 

revealed important clues about their virulence mechanisms (Desveaux et al., 2006). 

The crystal structure of AvrB revealed that it shares features with protein kinases, 

that were not obvious from its primary sequence (Lee et al., 2004, Desveaux et al., 

2007), whilst the NMR structure of a recognised fragment of AvrPto demonstrated 

that it transitioned between unfolded and folded states, and adopted a helical-fold 

implicated in mediating protein recognition (Wulf et al., 2004). 

Structural characterisation of fungal effectors has also shed light on the determinants 

of virulence and avirulence activity. The structures of two proteins from the 

AvrL567 family of translocated effectors from the flax rust fungus, Melampsora lini, 

have been solved (Wang et al., 2007). This family of effectors are recognized by the 

flax R proteins L5, L6 and L7 via direct protein interaction (Dodds et al., 2006). 

Knowledge the three-dimensional structures allowed the contribution to molecular 

recognition events of specific polymorphic residues to be assessed within a structural 

context, as well as suggesting testable hypotheses to investigate the virulence 

activities of these effectors further (Oliva et al., 2010).  
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At the time of starting this PhD, no structural information was available for 

translocated effectors from oomycete species, although other oomycete protein 

structures have been published (Figure 1.3). The protein structures of a number of 

PAMP-like elicitins have revealed their capacity to bind sterols enclosed within a 

large hydrophobic cavity (Boissy et al., 1999, Rodrigues et al., 2006, Lascombe et 

al., 2007). Nep1
††

-like protein (NLP) from Pythium aphanidermatum, a soil-borne 

phytopathogenic oomycete, stimulates leaf necrosis and immune response in dicots 

(Pemberton and Salmond, 2004). The crystal structure revealed structural homology 

to fungal lectins and actinoporins, suggesting a possibly shared cytolitic membrane-

disintergrating mode of action (Ottmann et al., 2009). The NMR structure of 

phytotoxic protein PcF from Phytophthora cactorum
‡‡

, identified a novel fold among 

protein effectors, but showed structural homology to a plant protein suggesting a 

possible biological activity based on molecular mimicry (Nicastro et al., 2009). 

                                                 
††

 NECROSIS- AND ETHYLENE-INDUCING PEPTIDE1 
‡‡

 P. cactorum can cause root, collar, and crown rots, as well as foliar and fruit infections in 

an extremely large number of hosts (Jeffers and Aldwinkle, 1987). 

 

Figure 1.3 Published three-dimensional structures of oomycete 

proteins involved in plant-pathogen interactions 

(A.) Crystal structure of elicitin from Phytophthora cryptogea in complex with 

ergosterol (black). (B.) Crystal structure of NLP from Pythium aphanidermatum 

showing position of bound Mg
2+

 ions (cyan) (C.) NMR structure of phytotoxic 

protein PcF from Phytophthora cactorum. α-helices are coloured in red, β-strands in 

blue, and disulfide bridges in yellow. PDB IDs are indicated below each structure.  

A. B. C. 
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 The ultimate aim of effector biology is to improve our understanding of the 

molecular basis of oomycete pathogenesis and resistance. A prerequisite for 

achieving this will be developing a comprehensive knowledge of both oomycete 

effector structure and function. It is widely hoped that with this improved 

understanding, the much needed novel strategies for manipulating plants towards 

resistance to devastating phytopathogenic oomycetes, such as the late blight 

pathogen, will become apparent. 

 

1.6 Project aims and objectives 

This project’s objectives were to conduct structure-function analyses on translocated 

effectors from the late blight pathogen, with the aim of providing insights into the 

adaptive function of these proteins. A representative of both the RXLR and CRN 

effectors were included in this project. Structural data obtained was used to direct 

future studies aimed at assigning virulence functions to the effector in question. This 

approach was supported by a combination of protein-protein interaction techniques, 

and in planta assays.  
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2 Materials and Methods 

2.1 Bacterial strains and plasmids 

The Escherichia coli strains used in this worked are described in Table 2.1. Routine 

DNA work was conducted with DH5α and TOP10. BL21(DE3) was used for protein 

expression, and ccdB Survival™ 2 cells were used for amplification of 

pDONR™201 or destination vectors containing the ccdB lethal gene. 

Agrobacterium tumefaciens strain GV3101 (Van Larebeke et al., 1974),  harbouring 

the disarmed Ti (tumour inducing) helper plasmid pMP90 (Koncz and Schell, 1986), 

was used for routine agroinfiltration, unless specified otherwise. This strain was 

selected on L agar plates supplemented with rifampicin (chromosomal marker) and 

gentamycin (Ti plasmid marker) at the concentrations described below. 

The plasmid vectors, together with all DNA constructs generated and/or used in this 

work, are described in Appendix Tables A – E. 

Table 2.1 Escherichia coli strains 

Strain Genotype Source/Reference 

DH5α 

F– Φ80lacZΔM15 Δ(lacZYA-argF) 

U169 recA1 endA1 hsdR17 (rK–, 

mK+) phoA supE44 λ– thi-1gyrA96 relA1 

(Hanahan, 1983) 

TOP10 

F– mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara 

leu) 7697 galU galK rpsL (Str
R
) endA1 nupG 

Invitrogen 

BL21(DE3) F– ompT gal dcm lon hsdSB(rB- mB-) λ(DE3) 
Stratagene. 

Amsterdam, Europe 

ccdB Survival™ 2 

 

F- mcrA Δ(mrr-hsdRMS-mcrBC) 

Φ80lacZΔM15 ΔlacX74 recA1 araΔ139 Δ(ara-

leu)7697 galU galKrpsL 

(StrR) endA1 nupG fhuA::IS2 

Invitrogen 
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2.2 General chemicals 

All chemicals were purchased from Sigma-Aldrich Company Ltd. (Poole, Dorset 

UK), Fisher Scientific UK Ltd (Loughborough, UK) or VWR International (West 

Chester, Pennslyvania USA), unless specified otherwise. 

 

2.3 Media and culture conditions 

All media were made using de-ionised water and sterilised by autoclaving at 121 ºC, 

15 psi for 30 min. Sterilised molten agar was allowed to cool to ~50 ºC prior to 

addition of heat sensitive supplements. 

E. coli strains were cultured on Lysogeny broth (LB) media [1.0% (w/v) tryptone, 

0.5% (w/v) yeast extract, 1.0% (w/v) sodium chloride, pH 7.0] (Bertani, 1951). 

When using salt-sensitive antibiotics bacteria were grown using L media [1.0% (w/v) 

tryptone, 0.5% (w/v) yeast extract, 0.5% (w/v) sodium chloride, 1.0% (w/v) glucose, 

pH 7.0]. LB and L agar were made as above, although supplemented with 1% (w/v) 

microbiology grade agar. 

When appropriate, media were supplemented with antibiotics at final concentrations 

as follows; carbenicillin (100 μg.mL
-1

), kanamycin (50 μg.mL
-1

), gentamicin (25 – 

30 μg.mL
-1

), rifampicin (50 μg.mL
-1

), spectinomycin
*
 (100 μg.mL

-1
), streptomycin* 

(100 μg.mL
-1

), hygromycin B* (100 μg.mL
-1

), and chloramphenicol (34 μg.mL
-1

). 

 

2.4 General DNA procedures 

2.4.1 Isolation of plasmid DNA from bacteria 

A single, isolated E. coli colony harbouring the desired plasmid was inoculated into 

4 – 10 mL of LB broth supplemented with the appropriate antibiotics. After 

incubation at 37 ºC for 16 h with shaking between 200 – 230 rpm, the cells were 

harvested by centrifugation at 3,600 x g for 10 min at 4 ºC. The plasmid DNA was 

                                                 
*
 salt-sensitive antibiotics 
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isolated from the pelleted E. coli using either a QIAprep Spin Miniprep Kit (Qiagen) 

or ISOLATE Plasmid Mini Kit (BIOLINE) and as described in the accompanying 

manuals. These kits follow a modified alkaline lysis method originally developed by 

Birnboim and Doly (Birnboim and Doly, 1979), followed by neutralisation of the 

cell lysate, centrifugation to pellet cellular debris, and adsorption of the plasmid 

DNA on to a silica gel membrane in the presence of high concentrations of 

chaotropic salts. The DNA is then washed with the provided buffers containing 

ethanol to remove contaminating material, prior to elution of the DNA in 30 – 50 μL 

of water, and storage at -20 ºC.  

Isolation of plasmid DNA from Agrobacterium was conducted using very similar 

methods to those described above, with the exception that 100 μL of a freshly 

prepared stock of 10 mg.mL
-1

 lysozyme was added to the resuspension buffer and 

incubated at room temperature for at least 5 min to increase cell lysis, and DNA was 

eluted from silica membrane using water preheated to 60 ºC. 

 

2.4.2 Transformation of chemically competent E. coli  

Transformation of E. coli was conducted using a slightly modified version of the 

procedure developed by Hanahan (Hanahan, 1983). Competent cells were prepared 

by inoculating a single well isolated colony from a freshly streaked LB agar plate 

into 5 mL of LB broth, and incubating at 37 ºC for 16 h with shaking between 200 – 

230 rpm. The following day, this was used to inoculate 200 mL of fresh LB broth. 

The culture was incubated as before until a cultural density of OD600 = 0.3 was 

achieved. At which point, the culture was chilled on ice for 10 min, and the cells 

harvested by centrifugation at 1,500 x g for 10 min at 4 ºC. The supernatant was 

discarded and the pelleted cells resuspended in 80 mL of filter sterilised TFB1 

[30 mM potassium acetate, 10 mM calcium chloride, 100 mM rubidium chloride, 50 

mM manganese chloride, 15% (v/v) glycerol,  pH 5.8]. The cells were harvested as 

above, and resuspended in 8 mL of filter sterilised TFB2 [10 mM MOPS, 75 mM 

calcium chloride, 10 mM rubidium chloride, 15% (v/v) glycerol, pH 6.5]. Aliquots 

of 50 – 100 μL were made in prechilled microcentrifuge tubes and rapidly frozen in 

liquid nitrogen. The frozen competent cells, were stored at < -70 ºC prior to use. 
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For transformation, competent cells were thawed on ice and incubated with plasmid 

DNA immediately upon thawing, for 30 min. Cells were then subjected to a heat 

shock, at 42 ºC for 30 sec, and returned to cool on ice for 3 min. At this point, 500 

μL of SOC broth [2.0% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM sodium 

chloride, 2.5 mM potassium chloride, 21.3 mM magnesium chloride, 10 mM 

magnesium sulphate, 20 mM glucose] was added to the transformation mixture, and 

the cells recovered by incubation at 37 ºC with shaking for 1 h. Cells were then 

spread on LB agar plates supplemented with the appropriate antibiotics and 

incubated at 37 ºC for 16 h in a static incubator to allow growth of single colonies. 

 

2.4.3 Transformation of electrocompetent Agrobacterium 

Preparation of electrocompetent A. tumefacians GV3101 was conducted as follows. 

A single well isolated colony was inoculated into 50 mL of LB broth, and cultured 

for 24 h at 28°C, with shaking between 200 – 230 rpm. This culture was then diluted 

(1:200) in to 1 L of LB broth in a 2 L flask and grown for a further 16 h at 28°C and 

shaking, as before. The 1 L culture was allowed to grow until an OD600 of 1.5 was 

achieved. At this point the culture was transferred into four 1000-mL Nalgene
®

 

Centrifuge bottles. The bottles were then immediately placed into a prechilled 

Fibrelite
®

 F9S-4x1000y rotor (Thermo Scientific) and centrifuged at 

5,650 x g for 15 min at 4 ºC using an RC 6+ Centrifuge (Thermo 

Scientific
®
/Sorvall

®
). The supernatant was discarded and the pelleted cells 

resuspended in a total volume of 2 L of prechilled sterile water. The cells were 

pelleted as before, and resuspended again in a total volume of 1 L of prechilled 

sterile water. The cells were pelleted as before, before being resuspended in a total 

volume of 40 mL of prechilled sterile 10% (v/v) glycerol. The resuspended cells 

were then divided between two 50-mL Oak Ridge Centrifuge Tubes (Nalgene
®

), and 

centrifuged at 5,650 x g for 15 min at 4 ºC using an RC 6+ Centrifuge (Thermo 

Scientific/Sorvall) using a prechilled SS34 rotor (Sorvall). Each pellet was then 

resuspended in 1 mL of prechilled 10% (v/v) glycerol. Aliquots of 50 – 100 μL were 

made in prechilled microcentrifuge tubes and rapidly frozen in liquid nitrogen. The 

frozen electrocompetent cells, were stored at < -70 ºC prior to use. 
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For transformation, aliquots of electrocompetent cells were thawed on ice. The 

plasmid DNA was added immediately upon thawing, and the transformation mix 

transfer to a prechilled 0.1 cm electroporation cuvette. The cuvette was then ‘pulsed’ 

using a MicroPulser Electroporator (Bio-Rad Laboratories Ltd., Bio-Rad House, 

Maxted Road, Hemel Hempstead, Hertfordshire, UK) using the pre-programmed 

‘Agr’ setting to deliver a single pulse of 2.20 kV. Next, 500 μL of SOC broth was 

added to transformation mixture and transferred to a microcentrifuge tube. The cells 

were recovered by incubation at 28 ºC with shaking for 1 h; before being spread on 

to L agar plates supplemented with the appropriate antibiotics and incubated at 28 ºC 

for 36 – 48 h in a static incubator to allow growth of single colonies. 

 

2.4.4 Polymerase chain reaction (PCR) 

Standard end-point PCR was performed as described by Mullis (Mullis, 1990), using 

PfuTurbo
®
 DNA polymerase (Stratagene) or VELOCITY DNA polymerase 

(BIOLINE) using the buffers provided by the manufacturers. Reaction mixes 

consisted of 1x buffer, 0.2 mM of each dNTP, 0.1 – 0.5 μM of each primer and 

either 1.25 U of PfuTurbo
®
 DNA polymerase, 1.0 U of VELOCITY DNA 

polymerase or 1 μL of Phire
®

 Hot Start DNA polymerase, plus template DNA and 

made up to 50 μL with sterile water. The amount of template DNA added was varied 

depending on its source (Table 2.2). For PCRs that proved problematic, primer 

annealing temperature was varied and/or PCR enhancers, such as 5% (v/v) DMSO or 

1 M betaine, were also added. Thermal cycling was performed using a Biometra 

T3000 Thermocycler (Biometra, Goettingen, Germany), and amplification of 

products was typically achieved using the conditions described in Table 2.2. 

 

2.4.4.1 Synthesis of oligonucleotide primers 

Oligonucleotide primers were synthesised to order by Integrated DNA Technologies, 

Inc. (Belguim). Primers were supplied in a lyophilised form and resuspended in 

sterile water to a final concentration of 100 μM, prior to dilution to a working 

concentration 5 – 10 μM, and stored at -20 ºC. The oligonucleotide primers used in 

this study are described in Appendix Table F. 
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2.4.4.2 Colony PCR 

Colony PCR was conducted to confirm that transformed cells contained the construct 

of interest, prior to DNA isolation and sequencing. In brief, single colonies were 

picked from plates and small amount transferred to a PCR tube, with the remainder 

of the colony inoculated into 4 – 10 mL of LB broth supplemented with the 

appropriate antibiotics. To each PCR tube was added 2.0 μL of 5 x Crimson Taq 

Reaction Buffer, 0.2 μL of 10 mM dNTPs, 0.2 μL of both the forward and reverse 

Table 2.2 General PCR conditions 

 PfuTurbo® DNA 

polymerase 

VELOCITY DNA 

polymerase 

Phire® Hot Start 

DNA polymerase 

Amount of template DNA per 50 μL reaction 

genomic DNA / 

cDNA 

50 – 100 ng 

5 - 200 ng 25 - 250 ng 

plasmid DNA 50 pg- 50 ng 2.5 pg- 25 ng 

PCR reaction conditions 

Activation 95 ºC 2 min 1 x 98 ºC 4 min 1 x 98 ºC 30 s 1 x 

Denaturation 95 ºC 60 s 

30 x 

98 ºC 30 s 

40 x 

98 ºC 5 s 

35 x 
Primer 

annealing* 

45 - 

69 ºC 
60 s 

50 - 

68 ºC 
30 s 60 ºC 5 s 

Primer 

extension 
72 ºC 

60 s  

per kb 
72 º 

15 – 30 

s  

per kb 

72 ºC 15 s  

Final extension 72 ºC 10 min 1 x 72 ºC 4 min 1 x 72 ºC 1 min 1 x 

Holding step 4 ºC ∞ 1 x 10 ºC ∞ 1 x 4 ºC ∞ 1 x 

* Primer annealing temperature was typical 2 – 5 ºC below the predicted melting temperature (Tm) 

for the primer in the pair with the lowest value. Tm values were calculated using the OligoAnalyzer 

3.1 tool on the IDT) website (http://eu.idtdna.com/analyzer/applications/oligoanalyzer/). 

http://eu.idtdna.com/analyzer/applications/oligoanalyzer/
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primers (5 – 10 μM), 7.3 μL of water, and 0.1 μL of Crimson Taq DNA Polymerase 

(New England Biolabs). Thermal cycling was performed using the conditions 

described in Table 2.3. Five-μL of PCR reactions were loaded directly onto agarose 

gels, and gel electrophoresis performed (Section 2.4.5) to confirm amplification of a 

product of the expected size. 

 

2.4.5 Agarose gel electrophoresis 

Gels of between 0.7 – 4.0 % (w/v) agarose were cast in TAE buffer [40 mM Tris-

acetate, 1.0 mM EDTA, pH 8.0] containing 0.5 μg.mL
-1

 ethidium bromide. Gels 

were submerged horizontally in TAE buffer. Prior to loading, DNA samples were 

mixed with 4 x DNA loading buffer [12% (w/v) Ficoll 400 and 0.25% (w/v) 

Orange G]. Samples were loaded alongside molecular weight markers [1 kb Plus 

DNA ladder (Invitrogen), or Low Molecular Weight DNA Ladder (New England 

Biolabs)]. Once loaded, gels were run at a constant voltage of ~ 100 V, until the 

tracker dye had run sufficiently through the gel. DNA was visualised using exposure 

to ultraviolet (UV) (λ = 365 nm) light from a transilluminator. 

 

Table 2.3 Colony PCR conditions 

Activation/ 

Cell lysis 
95 ºC 10 min 1 x 

Denaturation 95 ºC 30 s 

35 x 
Primer 

annealing* 

45 - 

55 ºC 
60 s 

Primer 

extension 
60 ºC 2 min 

Final extension 68 ºC 5 min 1 x 

Holding step 8 ºC ∞ 1 x 
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2.4.5.1 Purification of DNA fragments by spin column 

PCR products and DNA fragments were purified using the QIAquick PCR 

Purification Kit (Qiagen) or NucleoSpin
®
 Extract II Kit (MACHEREY-NAGEL) as 

per the manufacturers’ protocol. Essentially this method utilises a silica-gel 

membrane that adsorbs DNA, only in high concentrations of chaotropic salts. After 

washing to remove contaminants, DNA was eluted for the membrane in 30 – 50 μL 

in sterile water and stored at -20 ºC. 

 

2.4.5.2 Purification of DNA fragments by gel extraction 

DNA fragments were subject to agarose gel electrophoresis as described above 

(Section 2.4.5) until sufficient separation was achieved, to allow excision of bands 

from the gel using a sterile razor blade. Purification of DNA was carried out using 

the QIAquick Gel Extraction Kit and QIAEX II Gel Extraction Kit (Qiagen), or 

NuceloSpin
®
 Extract II Kit (MACHEREY-NAGEL) as per the manufacturer’s 

protocol. 

 

2.4.6 Site-directed mutagenesis 

The majority of mutants used in this study were supplied to order by Genscript 

(USA), either by mutagenesis of a template DNA or synthesis of mutant sequence 

flanked by the attB recombination sites and supplied in a pUC57 vector. However, 

two mutants were generated using the two different methods outlined below. In all 

cases, the mutations were confirmed by DNA sequencing (Section 2.4.7). 

 

2.4.6.1 Whole plasmid mutagenesis by Quikchange method 

Whole plasmid mutagenesis was employed to introduce a site-directed point 

mutation into the PexRD2
vloop-8

 DNA sequence (see Section 5.2.10) using a 

modification of the Quikchange PCR protocol (Stratagene). Pairs of primers 

containing the desired E90A mutation were designed using the QuikChange Primer 

Design online tool (Agilent Technologies). Reaction mixes consisted of 1x x HI-Fi 

Buffer, 0.2 mM of each dNTP, 0.1 μM of each primer, 3% (v/v) DMSO and 1.0 U of 
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VELOCITY DNA polymerase, plus 10 ng of purified plasmid DNA 

(pDONR™201:vloop-8) and made up to 50 μL with sterile water. Amplification was 

carried out using the conditions as described in Table 2.4. 

Digestion of original template DNA was achieved by addition of 1 μL of DpnI to the 

reaction mix followed by incubation at 37 ºC for 1 h, prior to transformation into 

chemically competent E. coli as described in Section 2.4.2. The mutated 

pDONR™201:vloop-7 was obtained by isolation of plasmid DNA followed by DNA 

sequencing to confirm presences of the desired mutation. 

 

2.4.6.2 Overlap extension PCR (oe-PCR) 

Overlap extension allows the introduction of specific mutations, by using PCR to 

generate two DNA fragments that have overlapping ends containing the desired 

mutation, before reconstitution of the full length (Ho et al., 1989). This method was 

used when whole plasmid mutagenesis proved problematic for generation of the 

CRN8-D2
R469A/D470A 

mutations (Section 6.2.1), presumably as a result of the large 

size of the vector backbone. A set of complementary primers were designed so that 

they differed from the template sequence only by the substitutions required to cause 

the desired mutation. Two PCR reactions were set up as described above (Section 

2.4.4), but each using one flanking primer and one of these internal ‘mis-matched’ 

primers (see Figure 2.1). The PCR products of these two reactions were subjected to 

DpnI digestion to remove template DNA, and purified as described above. One-μL 

aliquots of each of the purified products were then mixed and diluted 250-fold in 

Table 2.4 Quikchange PCR conditions 

Activation 98 ºC 5 min 1 x 

Denaturation 96 ºC 50 s 

18 x 
Primer 

annealing* 
65 ºC 50 s 

Primer 

extension 
72 ºC 3 min 20 s 

Final extension 72 ºC 10 min 1 x 

Holding step 8 ºC ∞ 1 x 
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water. This template mix was then used in an overlap extension PCR reaction mix as 

follows: 1x PfuTurbo® buffer, 0.2 mM of each dNTP, 0.5 μL of template mix and 

1.25 U of PfuTurbo® DNA polymerase and made up to 47.5 μL with sterile water. 

This mix was subjected to seven cycles of PCR to cause extension from the 

overlapping region and regenerate the full length product. At this point 1 μL of each 

of the flanking primers (5 mM), plus an additional 0.5 μL of 10 mM dNTPs was 

added (total volume = 50 μL). The reaction was mixed by gentle pipetting, and 

subjected to PCR as described above (Section 2.4.4). The resultant full length PCR 

product containing the desired mutations was then purified from the reaction mix by 

gel purification (Section 2.4.5), and used for subsequent In-Fusion PCR cloning 

(Section 2.4.8.1). 

Figure 2.1 Site-directed mutagenesis by overlap-extension PCR 

Template DNA (grey arrows) was mixed with one flaking primer and one internal 

primer containing the desired mutation (red circle) (a + b or c + d). Two separate PCRs 

were conducted (1 and 2). The purified products of these reactions, AB and CD were 

then mixed and subjected to further rounds of PCR (3). Extension from the overlap 

region recreated the full length product (dotted lines). The flanking primers (a + d) were 

then added to the same reaction mix (within the dotted rectangle) and further rounds of 

PCR conducted to amplify the full length product containing the desired mutation. 

Figure based original from Ho et al., (1989). 
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2.4.7 DNA Sequencing 

DNA sequencing was performed to order by GATC Biotech AG (European Custom 

Sequencing Centre, Köln, Germany). Between 0.6 – 2 μg of purified plasmid was 

sent, together when required with custom sequencing primers at a final concentration 

of 10 pmol.μL
-1

. Sequencing was performed using the dideoxy chain 

termination/cycle sequencing technique on an ABI 3730xl (Applied Biosciences, 

California, USA). Alternatively, ~100 ng of plasmid DNA, was mixed with 2 μL of 

5 x sequencing buffer [350 mM Tris-HCl pH 8.8 and 2.5 mM magnesium chloride], 

1 μL ABI Big Dye Terminator Ready Reaction Mix Ver 3.1 (Invitrogen), 1 μL of 

30% (v/v) DMSO, and 1 μL of sequencing primer (5 – 10 μM) in a total volume of 

10 μL. Reactions were mixed and incubated in a Thermocycler using the conditions 

described in Table 2.5, Reactions were then submitted to Genome Enterprise Ltd 

(Norwich Research Park) and analysed on an ABI 3730xl sequencer. 

 

2.4.8 Cloning methods 

2.4.8.1 In-Fusion
®
 PCR cloning 

The In-Fusion
®
 PCR cloning system is based on a proprietary enzyme with proof-

reading exonuclease activity, which catalyses the joining of DNA duplexes via 

exposure of complementary single-stranded sequences. Consequently, linearised 

vectors and inserts can be precisely joined in an entirely sequence-independent 

manner, as long as there are sufficient regions of homology in their ends. This 

Table 2.5 DNA sequencing conditions 

 

Denaturation 96 ºC 10 s 

25 x Primer annealing 45 or 50 ºC 5 s 

Primer extension 60 ºC 4 min 

Holding step 8 ºC - 1 x 
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homology can be engineered into the PCR-generated insert by designing primers that 

include homology to the linearised vector sequence (Berrow et al., 2007). During 

incubation of the amplified PCR products and the linearised vector with the In-

Fusion™ enzyme, the 3’→5’ proofreading activity causes the exposure of 

complementary single-stranded sequences. These intermediates anneal to form a 

population of joint molecules that are relatively resistant to exonuclease activity and 

hence accumulate in the reaction (Hamilton et al., 2007).  

In-Fusion
®
 cloning reactions with pOPIN vectors were conducted as described in the 

user manual. Vectors were linearised by treatment with KpnI and HindIII, before 

being purified by gel extraction (Section 2.4.5.2, Figure 2.2 A). PCR, using primers 

designed to add 15-bp of sequence homologous to the ends of the linearised vector, 

was conducted to amplify the fragment (Figure 2.2 B). Since the proofreading 

exonuclease activity of the In-Fusion
®

 enzyme occurs in a 3’→5’ direction, the 3’-

overhang in the 5’-In-Fusion site, caused by KpnI, is lost. On the other hand, the 5’-

overhang in the 3’-In-Fusion site, caused by HindIII, is maintained, and the adapter 

sequences added to the respective primers are designed taking this into 

consideration. Purified PCR insert (10 – 100 ng) was then mixed with 100 ng of 

linearised vector, in 10 μL of water and added to one well of In-Fusion™ Dry-Down 

(Clontech) and mixed to resuspend the pellet. Alternatively, the PCR insert and 

linearised vector were combined with 2 μL of 5X In-Fusion™ HD enzyme premix 

(Clontech) and diluted to a total volume of 10 μL with water. These reaction mixes 

were incubated at 42 ºC for 30 min (Figure 2.2 C). Next, either 3 – 5 uL of this 

reaction volume were transformed into chemically competent E. coli DH5α as 

described above (Section 2.4.2), or the reaction was frozen until ready to proceed. 

Transformed cells were subjected to blue/white screening using LB agar selection 

plates supplemented with 100 μg.mL
-1

 carbenicillin, 1 mM IPTG, and 0.02% (w/v) 

X-gal. White colonies were selected for downstream processing, and all constructs 

were confirmed by sequencing. 
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2.4.8.2  Endonuclease restriction and ligation cloning 

Restriction endonucleases and T4 ligase together with appropriate buffers were 

purchased from standard commercial sources (New England Biolabs (UK) Ltd, 

Hertfordshire, UK or Fermentas International Inc.), and reactions carried out 

according to the manufacturers’ instructions, using the appropriate supplied reaction 

buffers for the enzyme/s being used.  Where buffer requirements were compatible, 

double digests involving two restriction endonucleases in a single reaction were 

used. Restriction endonuclease digests were typically performed in 30-μL reaction 

volumes at 37 ºC for 2 – 16 h. If possible, resulting digests were heat inactivated and 

digested products were analysed by gel electrophoresis, prior to purification by gene 

extraction (Section 2.4.5.2) or spin column procedure (Section 2.4.5.1). To prevent 

re-ligation, up to 1 μg of linearised vectors were treated with rAPid Alkaline 

Phosphatase (Roche) to dephosphorylate 5’ ends, according to the “Standard 

Dephosphorylation Procedure” in the product instructions. Reaction volumes of 10 – 

20 μL were used for DNA ligations. Samples were incubated at 4 ºC for 16 h, prior 

to transformation into chemically competent E. coli (Section 2.4.2). 

Figure 2.2 In-Fusion
®
 PCR cloning using pOPIN vectors 

(A.) pOPINF following digestion with KpnI and HindIII exposes 5’- (orange) and 3’-

(green) In-Fusion sites. (B.) Amplification of gene of interest (blue), flanked by 

sequences homologous to infusion sites (coloured as in A.) (C.) In-Fusion
®

 reaction 

ligates the PCR product into the linearised vector, removing the KpnI site and creating 

the full 3C protease site. Figure adapted from Berrow et al., (2009) 

 

5’-In-Fusion site 

 

 

3’-In-Fusion site 

 

 

A. 

B. 

C. 
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2.4.8.3 TOPO
®
 cloning 

Gel purified PCR products (Section 2.4.5.2) were cloned into pENTR™/D-TOPO
® 

vector (Invitrogen) as described in the manufacturer’s manual with the following 

minor modifications. Reaction mixes were incubated at RT for 15 – 30 min, and the 

entire reaction volumes were transformed into aliquots of chemically competent E. 

coli as described in Section 2.4.2. 

 

2.4.8.4 T-vector cloning 

PCR products were cloned into pGEM
®

-T Easy Vector (Promega) as outlined below. 

To add 3’ adenosines to the ends of DNA fragments, purified PCR products 

amplified using a proof-reading polymerase were incubated with 1.0 μl of 10x Taq 

reaction buffer,  0.3 μl of 50 mM MgCl2, 0.2 μl of 10 mM dATP,  1.0 μl of Taq 

DNA polymerase in a total volume of 10 μL, at 70 ºC for 20 min. Three-μL of these 

A-tailing reactions were then incubated with 5 μL of 5X Rapid Ligation Buffer, 1 μL 

of  pGEM
®
-T Easy Vector (50 ng.µl

-1
) and 1 μL of  T4 DNA Ligase (3 Weiss 

units.µl
-1

) in a total volume of 10 μL. Samples were incubated at 4 ºC for 16 h, prior 

to transformation into chemically competent E. coli (Section 2.4.2). Transformed 

cells were subjected to blue/white screening using LB agar selection plates 

supplemented with 100 μg.mL
-1

 carbenicillin, 1 mM IPTG, and 0.02% (w/v) X-gal. 

Typically, white colonies were selected for downstream processing. 

  

2.4.8.5 Gateway
®
 cloning 

Gateway
®

 cloning was conducted using Gateway
®
 BP Clonase™ II Enzyme Mix 

and Gateway
® 

LR Clonase™ II Enzyme Mix (Invitrogen) as described in the 

manufacturer’s manuals with the following minor modifications. Reaction mixes 

were incubated at RT for 1 – 16 h, prior to Proteinase K treatment. Up to 6 μL of the 

final reaction volume was used for transformation into an aliquot of chemically 

competent E. coli as described in Section 2.4.2. 

In some instances, entry clones and destination vectors contained the same antibiotic 

selection gene, typically conferring kanamycin resistance. To overcome this entry 

clones were linearised by digestion (Section 2.4.8.2) with NruI which cuts within the 
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KanR gene or the entire KanR gene was removed by digestion with BspHI, which 

cuts at sites flanking the gene in the pENTR-D/TOPO vector, followed by gel 

purification (Section 2.4.5.2). These Kan
R
 disabled entry clones were then included 

in LR reactions as described above. 

 

2.4.8.6 Construction of pERCH vector 

A double haemagglutination-epitope tag was amplified by PCR, using Phire
®
 Hot 

Start DNA polymerase, from the pBTEX:Pto-2xHA binary vector (provided by 

Professor Gregory Martin, (Boyce Thompson Institute for Plant Research, Ithica, 

NY)) (Section 2.4.4). This sequence was flanked by 5’ PacI and 3’ SpeI restriction 

sites, encoded in the primers used for amplification. This fragment was cloned into 

pGEM
®
-T Easy Vector to yield pGEM:H1 by T-vector cloning (Section 2.4.8.4). 

This plasmid was digested by double digest with PacI and SpeI and the epitope 

encoding fragment purified by gel extraction. This purified fragment was then 

ligated into linearised, dephosphorlyated pER8 vector that had been sequentially 

digested with PacI, and then SpeI (Section 2.4.8.2). Sequential digestion was 

employed, as opposed to double digestion, since the two restriction sites overlapped 

in the vector sequence. The sequence of the multiple cloning site and epitope tag of 

the resultant pERCH (pER8 with C-terminal HA-tag) was confirmed by DNA 

sequencing (Section 2.4.7). 

 

2.5 Protein procedures 

2.5.1 Separation of proteins by discontinuous sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE gels were run as previously described by Laemmli (Laemmli, 1970) 

with minor modifications. Resolving gels of either 12% or 17% (w/v) 

polyacrylamide were prepared by diluting the appropriate volume of a 30% (w/v) 

stock solution of acylamide/bis-acrylamide (37.5:1)  in 375 mM Tris-HCl pH 8.8 

and 0.1% (w/v) SDS, supplemented with 0.1% (w/v) ammonium persulfate, and 

0.04% (v/v) N,N,N’,N’-tetramethylethylenediamine added immediately prior to 
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pouring. The resolving gel was poured between two Mini PROTEAN
®
 system (Bio-

Rad) glass plates separated by 1 mm until the meniscus reached approximately 2 cm 

from the top of the shorter plate. Water-saturated butanol was then overlaid on top of 

the resolving gel until it had set, to ensure a level surface. The butanol was 

subsequently removed by extensive washing with Milli-Q (ultrapure) water. A 5% 

(w/v) polyacrylamide stacking gel was prepared by diluting the appropriate volume 

of a 30% (w/v) stock solution of acylamide/bis-acrylamide in 63 mM Tris-HCl pH 

6.8 and 0.1% (w/v) SDS, supplemented with 0.1% (w/v) ammonium persulfate, and 

0.1% (v/v) N,N,N’,N’-tetramethylethylenediamine added immediately prior to 

pouring on top of the resolving gel. A plastic comb was then inserted into the liquid 

stacking gel to provide wells for sample loading. After the gel was set they were 

individually wrapped in cling film and stored, until required, at 4 ºC in a humid 

atmosphere - a sealed plastic box lined with wet paper towels. 

To run a gel, the gel was placed into a Mini PROTEAN
®

 Tetra Cell system (Bio-

Rad) and the plastic comb removed. The gel was completely covered and both 

chambers were filled with SDS-running buffer [25 mM Tris-HCl, 250 mM glycine, 

and 0.1% (w/v) SDS]. Protein samples were typically prepared by adding a 4x SDS 

gel-loading buffer [0.2 M Tris-HCl pH 6.8, 0.4 M DDT, 8 % (w/v) SDS, 0.4% (w/v) 

bromophenol blue, 40% glycerol] to a protein extract or solution and incubating 

them at 95 ºC for 5 min, before loading into the wells in the stacking gel. Samples 

were loaded alongside molecular weight markers [SeeBlue
®
 Plus2 Pre-Stained 

Standard (Novex), PageRuler™ Prestained Protein Ladder (Fermentas) or 

BenchMark™ His-tagged Protein Standard (Novex)]. Electrophoresis was performed 

at a constant voltage of typically 150 V for 45 – 60 min. 

 

2.5.2 Staining of SDS-PAGE gel 

Protein gels were stained with InstantBlue (Novexin, Babraham Hall, Babraham, 

Cambridge, UK) following manufacturer’s procedures. InVision™ His-Tag In-Gel 

Stain (Novex) was used to detect hexa-histidine tagged proteins in accordance with 

the manufacturer’s procedures. 
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2.5.3 Expression of recombinant proteins in E. coli 

Typical small scale expression tests of recombinant proteins were conducted as 

follows. A single colony from plates of BL21(DE3), freshly transformed with the 

desired plasmid, was inoculated into 10 mL of LB media containing appropriate 

antibiotics. This culture was then grown for 16 h at 37 ºC with shaking and used to 

inoculate 10 mL (1/20) of either LB media or auto-induction media (AIM - LB Broth 

Base including Trace elements (ForMedium™)), supplemented with appropriate 

antibiotics. These cultures were grown further at 37 ºC with shaking until a cultural 

density of OD600 = 0.4 – 0.6 was achieved. At this point the cultures grown in LB 

media were induced with 1 mM IPTG, and 4 mL of each culture was transferred into 

two 24 deep well plates (STARLAB group). One plate was incubated at 37 ºC as 

before for a further 3 – 4 h, whilst the other was incubated at 18 ºC for 

approximately 16 h. After these incubations were complete, the cells were harvested 

by centrifugation at 3,600 x g for 5 min at 4 ºC using a Legend
®
 RT centrifuge 

(Sorvall) and stored at < -70 ºC for at least 1 h before proceeding to protein 

extraction. 

Protein extraction was conducted by allowing the pellets to thaw before resuspension 

in 1 mL of Lysis Buffer [50 mM Tris-HCl pH8.0, 300 mM sodium chloride, 20 mM 

imidazole, 5% (v/v) glycerol, supplemented with 0.1% polyethylenimine (PEI), 

EDTA free protease inhibitor tablets and 0.5 mg.mL
-1

 lysozyme]. Cells were then 

lysed, in the 24 deep well plates, by sonication using a Vibra-Cell™ 750 Watt 

ultrasonic processor, VC 750, (Sonics & Materials, Inc., Newtown, CT , USA) and a 

24-element probe. Cells were sonicated using a maximum amplitude of 40%, and 

repeated cycles of a 1-second pulse followed by a 2-second pause for a total of 3 

min, to minimise heat generation. The 24 deep well plates were kept on ice 

throughout to further counteract heat generation. 

A volume of 30 μL of cell lysate was mixed with 10 μL of 4x SDS gel-loading 

buffer and this total protein sample prepared and analysed by SDS-PAGE (Section 

2.5.1). The remainder of the cell lysate was clarified by centrifugation at 3,600 x g 

for 40 min at 4 ºC using a Legend
®
 RT centrifuge (Sorvall). A 30 μL sample of 

clarified cell lysate was mixed with 10 μL of 4x SDS gel-loading buffer as before to 

give a soluble fraction sample for SDS-PAGE analysis. 
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Once optimal expression conditions for each recombinant protein had been 

determined using small scale expression trials, these conditions were scaled up to 1 L 

culture volumes grown in 2 L flasks to ensure good aeration. Typically, these 

cultures were inoculated with 50 mL (1/20) of an overnight starter culture, grown at 

37 ºC with shaking until a cultural density of OD600 = 0.4 – 0.6 was achieved. At this 

point a 4-mL sample of uninduced cells was harvested and prepared for SDS-PAGE 

analysis as described for small scale expression trials above. The cultures were 

induced with 1 mM IPTG and incubated as determined in the small scale expression 

trials. Following this a further 4-mL sample of induced cells was harvested and 

prepared for SDS-PAGE analysis. The remaining culture was transferred into two 

1000-mL Nalgene
®
 Centrifuge bottles per original litre of culture. The bottles were 

then immediately placed into a prechilled Fibrelite
®
 F9S-4x1000y rotor (Thermo 

Scientific) and centrifuged at 5,670 x g for 7 min at 4 ºC using an RC 6+ Centrifuge 

(Thermo Scientific/Sorvall). Pelleted cells were resuspended in <50 mL of LB 

media, transferred to 50 mL centrifuge tubes (CORNING) and centrifuged again at 

3,600 x g for 10 min at 4 ºC using a Legend® RT centrifuge (Sorvall), prior to 

storage at < -70 ºC. 

 

2.5.4 Purification of recombinant proteins from soluble fraction 

Cell pellets from large scale expressions were typically resuspended in 25 mL per 

original litre of culture of chilled A1 buffer [50 mM Tris-HCl pH 8.0, 50 mM 

glycine, 5% (v/v) glycerol, 500 mM sodium chloride, 20 mM imidazole] 

supplemented prior to use with EDTA free protease inhibitor tablets. Cells were then 

lysed: either by sonication as described above (Section 2.5.3), but for a total time of 

6 – 9 min; or by using a cell disrupter (Constant Systems Limited, Low March, 

Daventry, Northamptonshire, UK) in ONE-SHOT mode and at a pressure of 25 kpsi. 

Resuspended cell pellets and lysates were kept chilled on ice throughout. The whole 

cell lysate was then clarified by centrifugation in 50-mL Oak Ridge Centrifuge 

Tubes (Nalgene), and centrifuged at 40,000 x g for 20 min at 4 ºC using an RC 6+ 

Centrifuge (Thermo Scientific/Sorvall) using a prechilled SS34 rotor (Sorvall). 

Following this first centrifugation, the supernatant was transferred to a fresh 
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centrifuge tube and centrifuged for a further 20 min as before to yield a clarified cell 

lysate.  

 

2.5.4.1  Purification of proteins by immobilised metal ion affinity 

chromatography (IMAC) 

The clarified cell lysate was applied to a 5 mL nickel (II) (Ni
2+

) charged HisTrap FF 

column (GE Healthcare) that had been pre-equilibriated in A1 buffer (Section 2.5.4) 

using an ÄKTAxpress (GE Healthcare)  at 4 ºC. The column was then washed with 

~10 column volumes of A1 buffer, before the protein of interest was step-eluted with 

B1 buffer [50 mM Tris-HCl pH 8.0, 50 mM glycine, 5% (v/v) glycerol, 500 mM 

sodium chloride, 500 mM imidazole]. Eluted fractions spanning the peak on the 

elution profile, as measured by absorbance at 280 nm, were prepared and analysed 

by SDS-PAGE. 

 

2.5.4.2 Purification of proteins by size exclusion chromatography 

Size exclusion chromatography separates macromolecules based on their size and 

shape. Pooled fractions containing the protein of interest were concentrated using an 

appropriate molecular weight cut off centrifuge cell (Sartorius) to a volume of 

<10 mL. Concentrated protein was centrifuged at 15,000 x g at 4 ºC for 30 min to 

pellet any insoluble material. Protein solution was then injected on to a Hi-Load 

26/60 Superdex 75 prep grade gel filtration column (GE Healthcare) pre-equlibrated 

and run in A4 buffer [50 mM HEPES, 150 mM sodium chloride, pH 7.5]. Columns 

were run using an AKTA Xpress at 4 ºC. A flow-rate of 3 mL.min
-1

 was used, with a 

total flow volume of two column volumes. Absorption at 280 nm was monitored 

continuously throughout and peak fractions collected.  

 

2.5.5 Cleavage of the affinity tag using 3C protease 

The affinity tags of recombinant proteins, expressed using the pOPIN suite of 

vectors, were removed by proteolytic cleavage by recombinant human rhinovirus 

(HRV) 3C protease owing to the presence of 3C protease site (LEVLFQGP) in the 
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linker region. Following cleavage, only the short glycine-proline dipeptide remains 

at the N-terminus of the cleaved protein. The protease itself has a hexa-histidine tag 

to allow its own purification, and separation from the cleaved fusion protein. 

Proteolytic cleavage was conducted in A4 buffer (Section 2.5.4.2) supplemented 

with 2 mM β-mercaptoethanol and 12 μg of recombinant protease per mg of fusion 

protein, using a concentration of fusion protein of 1 – 2 mg.mL
-1

. This reaction 

solution was then typically incubated at 4 ºC for approximately 16 h. Next, the 

reaction solution was applied directly to a 5 mL Ni
2+

 charged HisTrap HP column 

that had been pre-equilibriated in A1 buffer (Section 2.5.4). The column was then 

washed with five column volumes of A1 buffer using a peristaltic pump and the 

flow-through, which should contain the cleaved protein of interest, was collected. 

Any proteins bound to the nickel column, i.e. the cleaved hexa-histidine tags, the 

recombinant HRV 3C protease and any uncleaved fusion protein, were subsequently 

eluted in five column volumes of B1 buffer (Section 2.5.4) using a peristaltic pump. 

Samples of the fusion protein before and after incubation with protease, alongside 

samples of the HisTrap column flowthrough and eluted proteins were analysed by 

SDS-PAGE to assess efficiency of cleavage. The flowthrough containing the cleaved 

fusion protein was concentrated to a volume of <10 mL before injecting onto a 

Hi-Load 26/60 Superdex 75 gel filtration column (GE Healthcare) as described 

above (Section 2.5.4.2). 

 

2.5.6 Purification of recombinant proteins from inclusion bodies 

Inclusion bodies (IB) were purified as described below. The insoluble cell pellets 

formed after the clarification of cell lysates (Section 2.5.4) were washed five times in 

IB Wash buffer [50 mM Tris-HCl pH 8.0, 150 mM sodium chloride, 500 mM urea, 

0.5% (v/v) Triton X-100, supplemented with EDTA free protease inhibitor tablets]. 

Each wash consisted of resuspending the cell pellets in a volume of 10 mL of buffer 

per litre of culture volume, before centrifugation at 2,200 x g, for 10 min at 4 ºC. The 

purpose of the detergent in the washing buffer is to remove contaminating lipids and 

membranes from the insoluble cellular debris. However, detergent can interfere with 

downstream characterisation of the protein (Prince and Jia, 2012). As such the 
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washed inclusion bodies were washed three more times in the IB Rinse buffer, which 

contains no detergent [50 mM Tris-HCl pH 8.0, 150 mM sodium chloride, 500 mM 

urea, supplemented with EDTA free protease inhibitor tablets]. The cleaned 

inclusion body pellet was then solubilised by resuspension in IB Solubilisation 

buffer [50 mM Tris-HCl pH 8.0, 150 mM sodium chloride, 8.0 M urea, 5 mM β-

mercaptoethanol, supplemented with EDTA free protease inhibitor tablets], using 

12.5 mL of buffer per litre of culture volume. The solubilisation solution was left at 

RT for 16 – 20 h with stirring.   

Any remaining insoluble material was then removed by two centrifugation steps at 

17,000 x g for 45 min and 15 ºC. The solubilised material was applied to a 5 mL 

nickel (II) (Ni
2+

) charged HisTrap HP column (GE Healthcare) that had been pre-

equilibrated in A1-denaturing buffer [50 mM Tris-HCl pH8.0, 150 mM sodium 

chloride, 8.0 M urea, 5 mM β-mecraptoethanol, 20 mM imidazole] using an 

ÄKTApurifier (GE Healthcare) at RT. The column was then washed with 10 column 

volumes of A1-denaturing buffer, and fractions corresponding to this flow-through 

(FT) were collected. The protein of interest was step-eluted with B1-denaturing 

buffer [50 mM Tris-HCl pH 8.0, 150 mM sodium chloride, 8.0 M urea, 5 mM β-

mecraptoethanol, 500 mM imidazole]. Eluted fractions spanning the peak on the 

elution profile as measured by absorbance at 280 nm were prepared and analysed by 

SDS-PAGE, alongside the FT fraction samples. 

The fractions containing the denatured protein were then pooled and the protein 

refolded by rapid dilution. Initially a small scale refolding condition screen was 

conducted to determine conditions that minimised protein aggregation upon removal 

of the denaturant. The pH of the refolding buffer was assessed using four different 

buffers (sodium citrate-HCl pH 4.0; MES-NaOH pH 6.0; Tris-HCl pH 8.0; and 

CHES-NaOH pH 10.0). Two salt concentrations were also tested in a fully factorial 

design. As such, the eight refolding buffers tested contained 50 mM of the 

appropriate pH buffer, either 150 mM or 500 mM sodium chloride, 10% (v/v) 

glycerol, 20 mM imidazole, and 5 mM β-mercaptoethanol. 100-μL aliquots of 

pooled denatured protein (concentration ~3.0 mg.mL
-1

) were then added dropwise to 

5 mL (1/50 dilution) of each refolding buffer, kept ice cold and with stirring. Each 

refolding solution was then incubated at 4 ºC for 1 h, after which the turbidity of 

each refolded protein solution was assessed visually. A 2-mL sample of each 
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solution was centrifuged at 17,000 x g, for 40 min at 4 ºC, and a sample of the 

supernatant collected for SDS-PAGE analysis. Precipitant pellet formation following 

centrifugation was also scored visually. Optimal refolding conditions were 

determined as those that minimised buffer turbidity and pellet formation and 

maintained the protein in solution following centrifugation. 

Large-scale protein refolding was then conducted using optimised refolding 

conditions by rapid dilution as described above. Following refolding the solution 

was clarified by centrifugation at 17,000 x g, for 40 min at 4 ºC and the supernatant 

purified using IMAC and SEC (Section 2.5.4.1 – 2.5.4.2). 

 

2.6 Crystallographic methods 

Protein crystals are required for X-ray crystallography since the diffraction from a 

single molecule would be too weak to be measurable. Using a crystal, where 

multiple protein molecules are arranged in an ordered three-dimensional lattice, 

magnifies the signal. The aim of protein crystallisation is to bring a protein solution 

to a supersaturated state whereby nucleation and subsequent crystal growth can 

occur. All crystallisation in this study was conducted using the vapour diffusion 

method (Figure 2.3). This involves the diffusion of water vapour from a small drop 

of protein solution containing precipitant and a larger reservoir with a much higher 

concentration of precipitant in a closed system. This leads to an increase in the 

concentration of protein and precipitant in the drop. In ideal cases the concentration 

of precipitant increases to a level that results in the formation of crystallisation 

nuclei. As the protein crystal forms, the concentration of protein remaining in 

solution decreases and falls into the ‘metastable zone’ where no more nuclei are 

formed but existing protein crystal continue to grow.  

 

2.6.1 Initial crystallisation trials 

Initial crystallisation trials were set up using protein with the affinity tag cleaved and 

concentrated in A4 buffer, following purification by size exclusion chromatography 

(Section 2.5.4.2). Pooled fractions containing the protein of interest were 
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concentrated using an appropriate molecular weight cut off centrifuge cell (Sartorius) 

and centrifuged in a microcentrifuge at 17,000 x g for 30 min at 4 ºC to pellet any 

insoluble material. The protein concentration of a diluted sample of the concentrated 

protein was determined by measuring the absorbance at 280 nm using a NanoDrop 

1000 spectrophotometer (Thermo Scientific). The computed percent solution 

extinction coefficient for the protein, as estimated by the ProtParam program 

(Gasteiger et al., 2005) located on the Expert Protein Analysis System (ExPASy) 

proteomics server, was used to establish the protein’s concentration (Equation 2.1). 

The solution was then diluted accordingly in A4 buffer to adjust the protein 

concentration to 12 mg.mL
-1

. 

Initial crystallisation trials were conducted in 96-well format with sitting drops in 

MRC 2-well crystallisation plates (Molecular Dimensions) using the vapour 

diffusion method (Figure 2.3). Screens used in this study are listed in Table 2.6. The 

reservoir of each well in the plate was filled with 100 μL of precipitant solution from 

each sparse-matrix screen, using a Freedom EVO (Tecan). Aliquots of 0.3 μL of this 

concentrated protein solution were then mixed with equal volumes of the precipitant 

solution from each reservoir and placed into the sub-well using an OryxNano 

crystallisation robot (Douglas Instruments). The wells were then sealed with 

adhesive tape and left to equilibrate at 18 ºC. The plates were examined with a 

microscope after 24 h, and then at regular intervals for several weeks.  

 

 280 nm of diluted sample

                                      
                            

 
 

               
 

Equation 2.1   

Calculating the concentration of a given protein in solution using the absorbance at 

280 nm 
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Table 2.6 Crystallisation screens used in this study 

Screen Supplier 

The PEGs suite Qiagen 

The AmSO4 Suite Qiagen 

JCSG-plus™ 
Molecular Dimensions 

(MD1-37) 

PACT premier™ 
Molecular Dimensions 

(MD1-29) 

Structure Screen 1 and 2 
Molecular Dimensions 

(MD1-01, MD1-02) 

 

B. C. 

A. 

Figure 2.3  Crystallisation by vapour diffusion 

(A.) Protein solubility phase diagram showing crystallisation by vapour diffusion. 

Schematic representations of (B.) sitting drop and (C.) hanging drop methods. 

Arrows represent the diffusion of water molecules. 
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2.6.2 Optimisation of crystallisation conditions 

Any promising conditions observed in initial crystallisation screens were optimised 

with the aim of producing more, diffraction quality, protein crystals. All 

optimisations were conducted using hanging drop vapour diffusion method (Figure 

2.3) using 24-well plates (Molecular Dimensions). A range of reservoir solutions, 

based on the promising conditions, were prepared by slightly varying the 

concentration of precipitants, buffer, and pH and by the addition of potential 

cryoprotectants. Each well of the plate contained 1 mL of a variant reservoir 

solution, and 2 μL of each reservoir solution was mixed with 2 μL of concentrated 

protein solution (Section 2.6.1) in A4 buffer (Section 2.5.4.2) on a plastic cover slip. 

The cover slip was then placed over the corresponding well sealed in place using 

vacuum grease (Figure 2.3). These plates were then left to equilibrate at 18 ºC, and 

examined with a microscope at regular intervals until crystals developed. 

 

2.6.3 Cryoprotection of protein crystals for data collection 

A cryoprotectant is necessary so that the crystals can be cooled to cryogenic 

temperatures without the formation of ordered crystalline ice. Formation of 

crystalline ice should be avoided as it disrupts the internal order of the crystal, owing 

to its expansion in solvent channels upon freezing, and causes characteristic ‘ice 

rings’ on diffraction patterns, that can obscure the protein crystal’s diffraction.  

Cryoprotectants act to decrease the rate at which this cooling process must occur to 

vitrify the water contained in the crystal by 5 – 6 orders of magnitude (Garman and 

Owen, 2005). 

Commonly used cryoprotectant agents can be divided into two main types: those 

such as glycerol which penetrate into solvent channels; and oils which are used to 

coat the crystal, displacing the excess solvent that typically surrounds the protein 

crystal, and often contributes significantly to the ‘ice rings’ seen in the diffraction 

patterns of flash cooled protein crystals (Riboldi-Tunnicliffe and Hilgenfeld, 1999). 

Following removal from optimisation drops using loops, protein crystals were 

cryoprotected with N-paratone oil (Hampton Research) before being cryo-cooled 

either by plunging into liquid nitrogen or placing in a cryostream. 
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2.6.4 Data collection 

All X-ray data were collected from cryo-cooled crystals at the I02 tuneable 

diffraction beamline of the Diamond Light Source synchrotron facility (DLS, 

Oxfordshire, UK).  

 

2.6.5 Data processing and reduction 

X-ray diffraction images for each dataset were processed using iMOSFLM (Leslie 

and Powell, 2007). This program attempts to automatically determine crystal 

parameters such as unit cell dimensions, crystal orientation, point group and can 

estimate a value for the mosaicity. This process predicts where in reciprocal space 

conditions satisfying Bragg’s Law (Equation 2.2) and hence where a diffraction spot 

[Miller index (hkl)] is expected. These estimates are then refined to elucidate more 

accurate parameters enabling the images to be integrated, with further refinement of 

the crystal parameters to best predict hkl positions. An experimental measurement of 

each diffraction spot intensity is obtained (Ihkl), along with their standard deviations. 

Following integration, the data reduction was performed using POINTLESS and 

SCALA (Evans, 2011) as supplied within the CCP4 suite (Collaborative 

Computational Project, Number 4, 1994) (Navaza, 1994, Winn et al., 2011). 

POINTLESS was used to determine the space group of the crystal, and re-index (or 

change the space group) of datasets where appropriate. Datasets were scaled using 

SCALA, which attempts to make symmetry-related and duplicate measurements of a 

  hkl         

 

Equation 2.2 Bragg’s law : constructive interference and hence diffraction spots 

occur where n is an integer, λ is the wavelength of incident wave, dhkl is the spacing 

between the planes hkl in the atomic lattice, and θ is the angle between the incident 

ray and the scattering planes 
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reflection equal and puts all observations on a common scale; hence making all data 

internally consistent. SCALA was also used to set the high resolution limit. 

 

2.6.6 Obtaining phase information 

In essence two things are required to produce an interpretable electron density map 

and in the end solve a crystal structure; the amplitudes and phases of the diffracted 

X-rays. The amplitudes are provided by the measured intensities of the reflections, as 

described by the following relationship |Fhkl| = Ihkl
½
, but the phase relations between 

the reflections are lost. Obtaining the missing phase information, or solving the so-

called phase problem, is a fundamental issue in protein crystallography and is 

typically achieved by one of two major methods: molecular replacement and 

experimental phasing. Molecular replacement can be use if a previously determined, 

structurally similar model is available (Rossmann, 1990). This model can be used to 

calculate initial phases, by positioning the known model correctly within the new 

unit cell. These initial phases are then applied in the initial reconstruction of the 

electron density. 

In the absence of a suitable known structure model, as for the protein structure 

solved in this project, phases must be determined de novo by experimental phasing 

methods. These most generally applicable experimental phasing methods rely on the 

determination of the location of a few atoms, or even a single atom, within the 

asymmetric unit of one of the crystals from which data have been collected. These 

atoms, referred to as the marker atom substructure, are identified based on intensity 

difference data.  

In general, experimental phasing methods work on the basis of determining the 

locations of a smaller number of identifiable atoms within the unit cell, and 

calculating the structure factors for this known substructure. This calculation 

provides both amplitudes and, importantly, phases that can then be ‘bootstrapped’ 

onto all atoms in the unit cell to produce an initial electron density map. 

When using the isomorphic replacement method, this substructure typically consists 

of one or more heavy atoms present in one, or more, derivative crystals but absent in 

the native crystals. The location of this small number of atoms within the unit cell 
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can be determined using the difference in the intensity of reflections from the 

derivative data set compared to a native data set, so long as the crystal lattices are 

isomorphic, meaning that they are otherwise identical with the exception of the 

heavy atoms. 

The second means of experimentally obtaining phase information takes advantage of 

heavy atom's abilities to absorb x-rays of specified wavelength, and reemit it with an 

altered phase. This absorption violates Friedl's Law and the intensity of symmetry 

related reflections is no longer equal (Ihkl ≠ I-k-h-l). This inequality is referred to as 

anomalous scattering or anomalous dispersion. These anomalous differences 

between Friedl’s pairs can be used to locate the anomalous scatterers within the unit 

cell and obtain the phase information. 

 

2.6.6.1 Phase determination using single-wavelength anomalous 

dispersion (SAD) and initial model building 

Single-wavelength anomalous dispersion (SAD) involved collecting highly 

redundant data at the high energy side of the absorptive edge (labelled peak in Figure 

2.4), where absorptive values (f’’) is maximum. This dataset was then used to locate 

the anomalous scatterers present in the unit cell using SHELXC/D (Sheldrick, 2010), 

which finds the heavy atom sites using a Patterson function. These sites were then 

used for experimental phasing by PHASER-EP (McCoy et al., 2007), as 

implemented in the CCP4 suite. These initial phases derived from both enantiomeric 

arrangements of the heavy atoms, were then independently subjected to automated 

density modification and phase improvement using PARROT (Cowtan, 2010). An 

initial model was the generated, using the initial phases from one of enantiomeric 

arrangements using two rounds of autobuilding with BUCCANEER (Cowtan, 2006) 

with refinement using REFMAC5 (Murshudov et al., 1997). As expected, attempts 

to autobuild an initial model using the heavy atom positions of the other, incorrect, 

hand were unsuccessful. 
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2.6.7 Refinement, model building and validation 

Initial models created by automatic building programs will likely obtain a correct 

fold but will also contain many incorrect features, since the experimentally derived 

structure factors will be in poor agreement with the calculated structure factors used 

in the initial model. Crystallographic refinement aims to improve the fit between the 

model and the data, by finding a set of atomic positions for the protein model that 

give calculated values for the amplitude of structure factors, |Fcalc|, that are as close 

as possible to the observed values |Fobs|. This can be assessed using the 

crystallographic R factor; but this is susceptible to manipulation and so a more 

demanding and revealing criterion of model accuracy, the free R-factor or Rfree was 

also used (Tickle et al., 1998). This is computed in the same way as the R factor, but 

uses only a small ‘test-set’ of randomly chosen intensities that are not used during 

refinement, but reserved for cross validation. R and Rfree values range from zero, for 

perfect agreement to about 0.6, if observed amplitudes were compared with a 

random set of amplitudes. In this project, this initial model was then refined against 

the high resolution data. REFMAC5 (Murshudov et al., 1997) uses the amplitude 

Figure 2.4 Theoretical excitation spectrum at the K edge of bromine 

Peak absorption spectrum (f’’) shown alongside the dispersive spectrum (f’) for the 

element bromine, plotted as a function of incident X-ray energy. Values presented are 

theoretical approximations calculated as described previously (Brennan and Cowan, 

1992) and obtain from http://skuld.bmsc.washington.edu/scatter/AS_periodic.html 
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based maximum likelihood method of refinement, and was used for rigid body, 

restrained and TLS refinement of the protein structure. Fitting and refinement of the 

water molecules was conducted using ARP/wARP (Langer et al., 2008). Electron 

density and anomalous difference maps, as well as the protein model were visualised 

using COOT (Emsley and Cowtan, 2004), and used for manual rebuilding of the 

protein model to improve the fit with the electron density. The final models were 

produced through iterative rounds of refinement using REFMAC5, and rebuilding 

with COOT, until the calculated and observed data were in close agreement as 

assessed by monitoring the R and Rfree values. Structures were validated using the 

validation tools in COOT, and finally using the MOLPROBITY server (Davis et al., 

2007, Chen et al., 2009). All crystallography images displayed in this thesis were 

produced using PyMOL (The PyMOL Molecular Graphics System, Version 1.5.0.4 

Schrödinger, LLC).  

 

2.7 Blotting Procedures 

2.7.1 Wet blotting 

Transfer by wet blotting was conducted using a Mini Trans-Blot
®
 Electrophoretic 

Transfer Cell (Bio-Rad) as follows. Two foam pads and two pieces of 3 mm filter 

paper (Whatman™), cut to size of the gel, were soaked in Bjerrum transfer buffer 

[48 mM Tris, 39 mM glycine, pH 9.3, 20% methanol] supplemented with 0.0125% 

(w/v) SDS (Bjerrum and Schafer-Nielsen, 1986). A piece of Immobilon-P PVDF 

membrane (Merck Millipore) also cut to the size of the gel was activated by 

incubating briefly in methanol prior to equilibration in transfer buffer for at least 10 

min with agitation. Following equilibration of the membrane, the transfer sandwich 

was assembled within a gel holder cassette as follows from bottom to top: a foam 

pad, one piece of filter paper, the gel, the equilibrated PVDF membrane, the second 

filter paper and the second foam pad. A blot roller was used to remove any air from 

between the assembled layers, and the holder cassette was secured via the locking-

mechanism. The assembled cassette was inserted into the Mini Trans-Blot
®
 cell, 

placed inside a Mini PROTEAN
®

 Tetra Cell system tank along with the provided 

blue cooling unit and a magnetic stir bar. The tank was filled with ice cold Bjerrum 
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transfer buffer, and the transfer conducted, with the tank positioned on a magnetic 

stirrer, using either a constant current of 250 mA for 1 – 2 h, or a constant voltage of 

30 V, at 4 ºC, for 16 h. 

 

2.7.2 Semi-dry blotting 

Transfer by semi-dry blotting was conducted using a Trans-Blot
®
 Turbo™ Blotting 

System (Bio-Rad) and traditional semi-dry consumables as outlined in the 

instruction manual, but with minor modifications. Four pieces of 3 mm filter paper 

(Whatman™) were cut to size of the gel and soaked in Bjerrum transfer buffer [48 

mM Tris, 39 mM glycine, pH 9.3, 20% methanol] supplemented with 0.0125% (w/v) 

SDS (Bjerrum and Schafer-Nielsen, 1986). A piece of Immobilon-P PVDF 

membrane (Merck Millipore) also cut to the size of the gel was activated by 

incubating briefly in methanol prior to equilibration in transfer buffer for at least 10 

min with agitation. Following equilibration of the membrane, the transfer sandwich 

was assembled on the base of the transfer cassette (anode). Two pieces of wet filter 

paper were laid on the bottom; the equilibrated membrane was then added, followed 

by the gel, and finally the two remaining pieces of wet filter paper. A blot roller was 

used to remove any air from between the assembled layers. The cassette lid (cathode) 

was placed onto the base and secured in place via the locking-mechanism. The 

assembled cassette was inserted into the bay unit, and the transfer was conducted 

using the pre-programmed protocol “STANDARD SD”: a constant voltage of 25 V, 

a current of up to 1.0 A, for 30 min. 

 

2.7.3 Ponceau S staining of membranes 

Equal loading and efficient transfer of proteins onto the PVDF membrane was 

confirmed by Ponceau S staining as follows. Immediately after blotting, the 

membrane was activated by immersion in methanol for 30 sec. The membrane was 

then incubated in Ponceau S stain [0.1% (w/v) Ponceau S in 5% (v/v) acetic acid] for 

5 min with agitation and rinsed with MQ water until distinct bands were observed 

and background staining was low. Staining of the membrane was completely 
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reversed by incubating in 0.1 M sodium hydroxide, followed by repeated rinsing 

with MQ water. 

 

2.7.4 Immunodetection 

PVDF membranes containing immobilised proteins following transfer were blocked 

in 5% (w/v) dried skimmed milk powder in 0.1% TBS-T buffer [50 mM Tris-HCl, 

200 mM sodium chloride, pH 7.4, supplemented with 0.1% (v/v) Tween
®
-20] with 

incubation at 8 ºC for 16 h with shaking of 100 rpm, unless stated otherwise. 

For typical two-step detections, following blocking, the membranes were briefly 

washed three times in 0.1% TBS-T buffer, prior to probing with the appropriate 

primary antibody (Table 2.7). Membranes were then washed again, three times in 

0.1% TBS-T, and probed with the appropriate secondary antibody (Table 2.7). After 

incubation with the secondary antibody, membranes were washed as before, prior to 

the addition of appropriate detection reagents. The procedure for one-step detection 

was similar, with the exception that the detection reagents were added immediately 

after the wash steps following probing with the primary antibody. 

Peroxidase signal of the horseradish peroxidise (HRP)-conjugated antibodies was 

detected by treating the membranes with SuperSignal West Pico Chemiluminescent 

Substrate (Thermo Scientific), occasionally supplemented with 10% (v/v) 

SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific) to 

increase sensitivity, as described in the provided manuals. Signal was detected by 

exposing the treated membranes to Fuji Medical X-ray Film (Fuji) with exposure 

times ranging from 2 sec to over 8 h. 

Detection of alkaline phosphatase (AP) signal after probing with the α-FLAG-AP 

antibody was conducted by first washing the membrane three times in 0.05% TBS-T 

[TBS supplemented with 0.05% (v/v) Tween
®
-20], before treating the membranes 

with BCIP/NBT Color Development Substrate (Promega) as described in the 

provided manuals. 
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Table 2.7 Antibodies used in this study 

Antibody Supplier Origin 
Working 

dilution 
Buffer 

Incubation 

conditions 

Detection 

reagents 

Primary antibodies 

α-GFP 
(A11122) 

Invitrogen 

rabbit 

polyclonal 
1:4,000 

0.1%  

TBS-T 
RT for 1 h n/a 

α-HA 
(3F10) 

Roche 

rat 

monoclonal 
1:6,000 

0.1%  

TBS-T 
RT for 1 h n/a 

α-HIS 
(70796) 

Novagen 

mouse 

monoclonal 
1:1,000 

0.1%  

TBS-T 
RT for 1 h n/a 

α-pTEpY 
(#91015) 

Cell Signaling 

Technology 

rabbit 

monoclonal 
1:1,000 

0.1%  

TBS-T +5% 

(w/v) BSA 

8ºC for 16 h n/a 

α-FLAG-

AP* 

(A9469) 

Sigma 

mouse 

monoclonal 
1:1,000 

0.05% 

TBS-T 
RT for 1 h AP 

α-

GAL4DBD

-HRP* 

(RK5C1) 

Santa Cruz 

Biotechnology 

mouse 

monoclonal 
1:1,000 

0.1%  

TBS-T 
RT for 2 h Pico 

Secondary antibodies 

α-mouse-

HRP 

(A4416) 

Sigma 
goat 1:20,000 

0.1%  

TBS-T 
RT for 1 h Pico 

α-rat-

HRP 

(A9037) 

Sigma 
goat 1:20,000 

0.1%  

TBS-T 
RT for 1 h 

Pico or 

Pico/Femto 

α-rabbit-

HRP 

(A0545) 

Sigma 
goat 1:20,000 

0.1%  

TBS-T (+/- 

5% (w/v) 

milk powder 

RT for 1 h Pico/Femto 

Antibodies marked with * were suitable for one-step detection procedure, ‘AP’ indicates detection 

using BCIP/NBT Color Development Substrate, whilst ‘Pico’ or ‘Pico/Femto’ indicates detection 

with SuperSignal West Pico Chemiluminescent Substrate, without or supplemented with SuperSignal 

West Femto Chemiluminescent Substrate (Thermo Scientific) as described above. 
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2.8 Yeast two-hybrid procedures 

2.8.1 Yeast strains and culture media 

Yeast two-hybrid screening and analyses were conducted with Saccharomyces 

cerevisiae strain MaV203. This strain contains deletions in the endogenous GAL4 

and GAL80 transcription factor genes, allowing use with GAL4-based two-hybrid 

systems. The strain is also auxotrophic for leucine, tryptophan and uracil, but 

contains three GAL4-inducible reporter genes, HIS3, LacZ and URA3
†
, to identify 

protein-protein interactions. 

 

Untransformed MaV203 was cultured on YPAD agar [YPAD broth = 1% (w/v) 

yeast extract, 2% (w/v) bactopeptone, 2% (w/v) glucose, 0.003% (w/v) adenine 

hemisulphate, pH 6.0; supplemented with 2% (w/v) microbiology grade agar]. 

Colonies were streaked onto fresh plates, incubated at 28 ºC for 4 days, prior to 

storage at 4 ºC for up to 2 months. For longer term storage, aliquots of cultures, 

grown in YPAD broth at 28 ºC for 16 h, were supplemented with 20% (v/v) filtered 

sterile glycerol before freezing in liquid nitrogen and storage at < -70 ºC. 

                                                 
†
 HIS3 encodes imidazoleglycerol-phosphate dehydratase which catalyses the sixth step in histidine 

biosynthesis, URA3 encodes orotidine 5-phosphate decarboxylase which catalyzes one reaction 

involved in pyrimidine ribonucleotide biosynthesis, and lacZ encodes β-galactosidase, an enzyme that 

cleaves the disaccharide lactose. 

Figure 2.5 The three GAL4-inducible reporter genes in MaV203 

Schematic of the reporter genes in MaV203, including promoter regions. UAS = 

upstream activation sequence. URS = Upstream regulator / repressor sequence. 

Figure taken from ProQuest™ Two-Hybrid System User Manual (Invitrogen™). 
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The ProQuest™ system uses low-copy number ARS/CEN
‡
-based vectors. Low-copy 

vectors are claimed to improve the reproducibility of results, through reduced 

toxicity and consistent expression levels. The bait vector, pDEST™32, utilises the 

LEU2 selection marker, complementing the leucine auxotrophy; whereas the prey 

vector pDEST™22, utilises the TRP1 selection marker, complementing the 

tryptophan auxotrophy. By utilizing three reporter genes and low copy number 

vectors, the ProQuest™ System is reported to benefit from fewer false positives than 

other systems 

The ProQuest™ Two-Hybrid System includes four two-hybrid control plasmids 

based on the interaction of Krev1 with the ras association domain of RalGDS 

(Herrmann et al., 1996, Serebriiskii and Kotova, 2004). Three yeast co-transformants 

expressing a GAL4DBD-fusion of Krev1, together with GAL4AD-fusions of either 

wildtype RalGDS, mutant RalGDS
I77T

 or RalGDS
L65P

 were obtained from Dr. Miles 

Armstrong (JHI). The interaction between the two wild-type proteins represents a 

strong protein-protein interaction, whereas the two mutations in RalGDS either 

weaken or abolish, respectively, the detectable interaction between the two proteins. 

These three co-transformants were used as standard controls in all Y2H analyses. 

Co-transformants were selected and maintained on double-dropout synthetic 

complement (SC) medium (SC-LW) agar plates [0.67% (w/v) Yeast Nitrogen Base 

without Amino Acids (Y0626), 0.16% (w/v) Yeast Synthetic Drop-out Medium 

Supplements (Y2001), 0.0075% histidine, 0.0075% uracil, 2% (w/v) glucose, 

pH 5.6; supplemented with 2% (w/v) microbiology grade agar]. Triple-dropout SC 

medium plates used in reporter gene assays, were made as described above, although 

with the histidine (SC-LWH, or -HIS), or uracil (SC-LWU or -URA) omitted. 

Between 10 – 50 mM 3-amino-1,2,4-triazole (3AT) was added to molten SC-LTH 

agar just prior to pouring plates, to repress growth caused by unspecific auto-

activation of the HIS3 reporter gene. 

  

                                                 
‡
  ARS = autonomously replicating sequence, CEN = a yeast centromere 
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2.8.2 Small scale transformation of yeast by lithium acetate/single-

stranded carrier DNA/polyethylene glycol method 

Small scale transformation of S. cerevisiae was conducted using a slightly modified 

version of the procedure outlined in the ProQuest™ Two-Hybrid System User 

Manual (Invitrogen™). Fresh batches of competent cells were prepared, prior to 

each transformation, by inoculating a single well isolated colony of MaV203 from an 

YPAD agar plate into 10 mL of YPAD broth using a flamed wire loop under a 

laminar flow hood. This culture was then vortex mixed to resuspend the colony and 

incubated for 20 h at 28 ºC with shaking between 200 – 230 rpm. Next day, this 

culture was diluted to a culture density of OD600 = 0.4 in 40 mL of YPAD broth, 

before being incubated, as before, for a further 3 h. The cells were then harvested by 

centrifugation at 1,600 x g for 5 min at room temperature using a Legend
®
 RT 

centrifuge (Sorvall
®
). Pelleted cells were washed by resuspending in 40 mL of sterile 

water. The cells were harvested as above and resuspended in 0.5 mL of filter-

sterilised yeast resuspension buffer [100 mM lithium acetate and 5 mM Tris-HCl, 

0.5 mM EDTA, pH 7.5]. This was then incubated at room temperature for 10 min, 

before proceeding immediately to transformation of the competent MaV203 cells. 

For each transformation, approximately 150 ng of both bait and prey construct 

plasmid DNA were mixed with 10 µg of salmon sperm DNA, previously sheared by 

Figure 2.6 The standard controls included in Y2H analyses 

Co-transformants carrying control bait and prey constructs as indicated. –HIS 

indicates plates lacking histidine, +Xgal indicates LacZ reporter assay, whereas 

–URA indicates plates lacking uracil. See Section 2.8.3. 
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sonication, and denatured and rendered single-stranded just prior to use, by boiling 

and subsequent rapid cooling on ice respectively. To this DNA mix was added 10 µL 

of the competent MaV203 cell suspension, followed by 70 µL of yeast 

transformation buffer [40% PEG 3350, 100 mM lithium acetate and 10 mM Tris-

HCl, 1 mM EDTA, pH 7.5] and mixed well. The transformation mix was then 

incubated at 28 ºC for 30 min, at which point 8.8 µL of DMSO was added, and 

mixed well, and heat shocked at 42 ºC  for 7 min. The cells were pelleted by 

centrifugation at 1,000 x g for 1 min at room temperature using a Legend® RT 

centrifuge (Sorvall) and the supernatant removed. The cell pellets were then 

resuspended in 100 µL of sterile MQ water and plated onto selective double-dropout 

SC medium (SC-LW) agar plates, and incubated for 3 – 4  days at 28 ºC in a static 

incubator to allow growth of single colonies. 

 

2.8.3 Yeast two-hybrid reporter assays 

To test specific protein-protein interactions, the proteins were transferred using 

GATEWAY
®
 cloning (Section 2.4.8.5) into either the bait (pDEST™32) or prey 

(pDEST™22) destination vectors as described in the ProQuest™ Two-Hybrid 

System. The resultant expression clones (see Appendix Table B) were then co-

transformed into chemically competent yeast cells as described above (Section 

2.8.2). Each bait or prey expression clone to be tested was also co-transformed with 

either the empty pDEST22 or pDEST32 plasmid respectively to serve as a negative 

interaction control. The three standard controls (Section 2.8.1) were also included in 

all analyses. Colonies that grew following co-transformations were then replica 

plated onto selective Y2H assay plates as follows. Using a sterile pipette tip, between 

1 – 2 mm
3
 of yeast cells from a single colony was resuspended in 100 μL of sterile 

MQ water. At least three independent colonies were picked per protein-protein or 

protein-control interaction to be tested. Aliquots of 2.5 μL of re-suspended yeast 

cells were then spotted onto large (14 cm diameter) selective Y2H assay plates. The 

positioning of the colonies on the different plates was replicated on all plates and 

carefully noted. Double-dropout SC medium plates (SC-LW) were used to confirm 

that colonies selected retained both plasmids. Triple-dropout SC medium plates 

lacking histidine but containing between 10 – 50 mM 3AT, (SC-LWH, or -HIS), 
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were used to test for activation of the HIS3 reporter gene, whilst activation of the 

URA3 reporter genes was tested by replica spotting onto Triple-dropout SC medium 

plates lacking uracil (SC-LWU or -URA). Plates were incubated for at least 24 h at 

28 ºC in a static incubator, and the growth of co-transformants on the selective plates 

was scored. If any negative interaction controls showed growth on plates lacking 

histidine, suggesting auto-activation of reporter genes, the colonies were rescreened 

on SC-LWH plates and the concentration of 3AT was increased to either 25 mM or 

50 mM. 

Activation of the LacZ reporter gene was tested using the colourimetric assay 

described in the ProQuest™ Two-Hybrid System User Manual (Invitrogen). Re-

suspended yeast colonies were replica spotted onto a nylon membrane on the surface 

of an YPAD agar plate. This plate was incubated for 24 h at 28 ºC in a static 

incubator to allow colony growth. At this point, the nylon membrane was removed 

from the plate and immersed in liquid nitrogen for 30 s to lyse the yeast cells. The 

nylon membrane was then carefully placed in a plastic box, upon two layers of filter 

paper that had been pre-soaked in an X-gal solution. The X-gal solution was 

prepared by dissolving 20 mg of X-gal in 100 μL of N,N-dimethyl formamide 

(DMF), before adding 60 μL of β-mercaptoethanol and 10 mL of Z-buffer [60 mM 

disodium hydrogen phosphate (Na2HPO4), 40 mM sodium dihydrogen phosphate 

(NaH2PO4), 10 mM potassium chloride, 1 mM magnesium sulfate, pH 7.0]. The box 

and membrane was incubated at 37 ºC for 24 h at a slight angle to ensure excess X-

gal solution collected away from the membrane. After incubation the membranes 

were assessed for the development of a blue colouration. 

 

2.8.4 Preparation of yeast protein extracts for western blot analysis 

Yeast protein extracts were prepared as described in Clontech Yeast Protocols 

Handbook (p.12). For each transformed yeast strain to be assayed, a single isolated 

colony (aged between 3 – 4 days) was inoculated into 5 mL of double-dropout SC 

medium broth (as described in Section 2.8.1, although omitting microbiology grade 

agar) using a flamed wire loop under a laminar flow hood. A colony of 

untransformed MaV203 was inoculated into 10 mL of YPAD broth as a negative 

control. These cultures were then vortex mixed to resuspend the colony and 
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incubated for 16 – 20 h at 28 ºC with shaking between 200 – 230 rpm. Next day, 

these cultures were vortex mixed, to disperse cell clumps, and separately inoculated 

into 50 mL aliquots of YPAD broth. These cultures were then incubated, as before, 

until the cultural density reached between OD600 = 0.4 – 0.6 (approximately 4 h), at 

which point the OD600 of a 1 mL sample was recorded and multiplied by the culture 

volume to obtain the total number of OD600 units.  At this point, the cultures were 

quickly chilled by pouring it into prechilled 250-mL Nalgene
®
 Centrifuge bottles 

halfway filled with ice. The bottles were then immediately placed into a prechilled 

Fibrelite
®
 F14S-6x250y rotor (Thermo Scientific) and centrifuged at 1,000 x g for 5 

min at 4 ºC using a Legend
®
 RT centrifuge (Sorvall). The supernatant and unmelted 

ice was discarded. The cell pellet was then washed, by resuspending in 50 mL of ice-

cold sterile MQ water and centrifugation at 1,000 x g for 5 min at 4 ºC using a 

Legend
®
 RT centrifuge (Sorvall). Again the supernatant was discarded and the cell 

pellet was immediately frozen in liquid nitrogen and stored at < -70 ºC before 

proceeding to protein extraction. 

Yeast proteins were extracted using a urea/SDS protein extraction method as 

follows. The cell pellets, obtained as described above, were quickly thawed by 

separately resuspending each one in cracking buffer [8 M urea, 5% (w/v) SDS, 40 

mM Tris-HCl pH 6.8, 0.1 mM EDTA, 0.4 mg.mL
-1

 bromophenol blue] prewarmed 

to 60 ºC and supplemented with 125.7 mM β-mercaptoethanol, 6.2 μg.mL
-1

 Pepstatin 

A, 1.9 μM Leupeptin, 9.0 mM Benzamidine, 22.9 μg.mL
-1

 Aprotinin, and 4.4 mM 

phenylmethanesulfonyl fluoride (PMSF). For every 7.5 OD600 units of cells, 100 μL 

of supplemented cracking buffer was used. Each cell suspension was then transferred 

to a 2-mL screw-cap microcentrifuge tube containing 80 uL of glass beads (425 – 

600 μm; Sigma Cat No. G-8772) per 7.5 OD600 units of cells. The samples were then 

incubated at 70 ºC for 10 min, and vortexed vigorously for 1 min. Cellular debris and 

unbroken cells were pelleted using a microcentrifuge at 17,000 x g for 5 min at 4 ºC. 

The supernatants, hence termed first supernatants, were each transferred to fresh 1.5 

mL tubes and placed on ice. The pellets were boiled at 100 ºC for 5 min, prior to 

vigorous vortexing and centrifugation as before. The resulting supernatant (second 

supernatant) was then combined with the corresponding first supernatant, before the 

samples being briefly boiled at 100 ºC for 3 – 5  min. These samples were either 
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immediately loaded on a 17% SDS-PAGE gel for, or stored at < -70 ºC before 

proceeding to, western blot analysis. 

 

2.8.5 Detection of yeast GAL4DBD fusion proteins by western blot 

Protein extracts, prepared as outlined above (Section 2.8.4), were separated by SDS-

PAGE (Section 2.5.1), and transferred to PVDF membrane via semi-dry blotting 

(Section 2.7.2). Following Ponceau S staining, to confirm protein loading and 

efficient transfer (Section 2.7.3), immunoblotting and detection, using the α-

GAL4DBD HRP-conjugated antibody and ECL reagents respectively, was conducted 

as previously outlined (Section 2.7.4, Table 2.7). 

 

2.9 In planta procedures 

2.9.1 Growth conditions 

Nicotiana benthamiana and Nicotiana tabacum cv. Petite Gerard plants were grown 

in controlled environment rooms at 22 ºC with 55% humidity and a 16-h/8-h 

light/dark photoperiod, or in controlled glasshouses under similar conditions. 

 

2.9.2 Transient gene expression in planta via agroinfiltration 

Transient gene expression in planta was conducted via agroinfiltration (Kapila et al., 

1997, van der Hoorn et al., 2000). In brief, recombinant Agrobacterium strains 

harbouring appropriate binary plasmids (see Appendix Table C) were grown in LB 

or L broth supplemented with appropriate antibiotics for 16 – 36 h at 28 ºC with 

shaking. The cells were then harvested by centrifugation at 1,500 x g for 10 min at 

room temperature, and resuspended in MMA buffer [10 mM magnesium chloride, 10 

mM MES pH 5.6, 150 – 200 μM acetosyringone] to the desired OD600 (typically 

between 0.1 and 2.0). For co-agroinfiltrations, where the parallel expression of 

multiple transgenes on separate T-DNAs within the same tissue was desired, 

resuspended cells harbouring the appropriate binary vectors, were then mixed at the 
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appropriate ratios to achieve the desired final OD600 for each recombinant 

Agrobacterium (typically between 0.1 and 0.6). Unless specified otherwise, the cells 

were then incubated at room temperature for 1 – 2 h prior to infiltration into 4-week 

old Nicotiana benthamiana plants using a blunt syringe applied to the abaxial 

surface of the leaf. Superficial wounding of the leaf using a needle was used to aid 

infiltration when necessary. 

For binary vectors with transgenes expressed under the control of an estradiol-

responsive promoter, such as pER8, or its derivative pERCH (see Section 2.4.8.6), 

the expression was triggered by the application of 10 μM β-estradiol to both the axial 

and abaxial sides of the leaf using a trigger-spray bottle at 48 h after agroinfiltration; 

with additional spray treatments at 48 h intervals when necessary. 

 

2.9.3 Protein extraction from Nicotiana benthamiana 

Total protein extracts were obtained from Nicotiana benthamiana leaf tissue, either 3 

– 4 days post agroinfiltration or 24 h post estradiol induction, as follows. For small 

scale extractions, for example to confirm protein expression, four leaf disks of 8 mm 

in diameter were harvested per sample and collected in a single tube. These tissue 

samples were rapidly frozen in liquid nitrogen, and kept at -70 ºC until ready for 

protein extraction. Tissue samples were placed on dry ice, and ground to a fine 

powder using a metal micropestle that had been prechilled in liquid nitrogen. To 

each sample was added 150 μL of GTEN buffer [10% (v/v) glycerol, 150 mM Tris-

HCl pH 7.5, 1 mM EDTA, 150 mM sodium chloride] supplemented with 10 mM 

DTT, 2% (w/v) polyvinyl polypyrrolidone (PVPP), 1% (v/v) Protease Inhibitor 

Cocktail (P 9599, Sigma), 0.1% (v/v) Tween
®
-20. The samples were homogenised 

by vortexing for 30 sec, prior to centrifugation at 17,000 x g for 10 min at 4 ºC. 

For larger scale extractions, for example for co-immunoprecipitation experiments, 

the mid-veins from entire infiltrated leaves were removes using a razor blade and 

discarded, the remaining leaf tissue was wrapped in foil and rapidly frozen in liquid 

nitrogen, and kept at -70 ºC until ready for protein extraction. Tissue was ground to a 

fine powder using a pestle and mortar that had been prechilled in liquid nitrogen. 

Ground tissue was transferred to a prechilled 15 mL-centrifuge tube (CORNING) 
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and weighed. Two millilitres of GTEN buffer, supplemented as described above, was 

added per gram of ground tissue. The samples were homogenised by vortexing for 

30 sec, prior to centrifugation at 11,500 x g for 10 min at 4 ºC. The supernatant was 

then transferred to a new, chilled, 15 mL-centrifuge tube and centrifuged again as 

before. 

These clarified total protein extracts were then prepared for analysis by SDS-PAGE 

as described in Section 2.5.1, or used in co-immunoprecipitation experiments 

(Section 2.9.4). 

 

2.9.4 Co-immunoprecipitation from plant extracts 

Co-immunoprecipitation (co-IP) experiments were performed using total soluble 

protein extracts (Section 2.9.3). FLAG-IPs were performed using M2 anti-FLAG 

agarose (Sigma). Fifty-μL of resuspended affinity matrix per sample was washed in 

three times in a 5x volume of IP buffer [GTEN buffer + 0.1% (v/v) Tween
®
-20]. 

Washed affinity matrix was resuspended in the original volume of IP buffer, and 

50 L was added to 250 μL of protein extract and 1750 μL of IP buffer in a 2-mL 

microcentrifuge tube. The extracts were then mixed on a rotary mixer at 4 ºC for 1 – 

2 h. Affinity matrix was collected at the bottom of the centrifuge tube by 

centrifugation at 800 x g for 1 min at 4 ºC.  The majority of the supernatant was 

discarded and the matrix washed by adding 1 mL of fresh chilled IP buffer and 

resuspended resin by inversion, centrifuged as before, before discarding the 

supernatant again. The wash step was repeated as the above a further four times. 

After the last wash, the tubes were centrifuged again to collect any excess liquid. 

Elution of the bound protein was achieved by adding 100 µl IP buffer containing 150 

ng.µl
-1

 3x FLAG peptide, and incubating with gentle shaking at 4°C for 30 min. 

Following centrifugation as before, the supernatant containing the eluted proteins 

was transferred to a fresh microcentrifuge tube, and prepared and analysed by 

SDS-PAGE (Section 2.5.1), and western blotting (Section 2.7). 

HA-IPs were conducted as above, although 75 μL of anti-HA Affinity Matrix 

(Roche) was added to 1 mL of undiluted protein extract in a 2 mL microcentrifuge 

tube, prior to mixing on a rotary mixer. After mixing, samples were transferred to 
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SigmaPrep™ Spin Columns (Sigma) and washed five times with 0.6 mL of IP buffer 

in accordance with the manufacturer’s protocol. Elution of the bound protein was 

achieved as before, but by adding 75 – 100 μL of IP buffer containing 1 mg.mL
-1

 

HA-peptide (Roche). 

GFP-IPs were conducted using GFP-Trap
®
 coupled to agarose beads (GFP-Trap

®
-

A), or coupled to coupled to magnetic particles (GFP-Trap
®

-M). For both, 25 μL of 

affinity matrix was added to 1.5 – 2 mL of undiluted protein extract in a 2 mL 

microcentrifuge tube, prior to mixing on a rotary mixer. GFP-Trap
®

-A affinity 

matrix was washed as described above, either with or without the use of a 

SigmaPrep™ Spin Column (Sigma). GFP-Trap
®
-M affinity matrix was washed in 5x 

1 mL of IP buffer, using a magnetic rack to separate the beads until the supernatant 

was clear. Elution of the bound protein was achieved by incubating the affinity 

matrix in 50 μL of 1 x SDS-loading buffer at 95 ºC for 10 min. 

 

2.9.5 Purification of protein expressed in N. benthamiana by 

immobilised metal ion affinity chromatography (IMAC) 

Extraction of proteins from N. benthamiana for subsequent purification by IMAC 

was conducted as follows. Infiltrated leaves with the mid-veins removed, were 

wrapped in foil and rapidly frozen in liquid nitrogen. Tissue was ground to a fine 

powder using a pestle and mortar that had been prechilled in liquid nitrogen. Ground 

tissue was transferred to a prechilled 50 mL-centrifuge tube and weighed. Two 

millilitres of GTEN+I buffer [10% (v/v) glycerol, 150 mM Tris-HCl pH 7.5, 1 mM 

EDTA, 300 mM sodium chloride, 20 mM imidazole] supplemented with 2% (w/v) 

PVPP, 1% (v/v) Protease Inhibitor Cocktail (P 9599, Sigma), 0.1% (v/v) Tween20, 2 

mM β-mercaptoethanol and 20 mM sodium fluoride, was added per gram of ground 

tissue. The samples were homogenised by vortexing for 30 s, prior to centrifugation 

at 11,500 x g for 15 min at 4 ºC. The supernatant was then transferred to a new, 

chilled, 50 mL-centrifuge tube and centrifuged again as before. 

The EDTA within the clarified plant extract was chelated, by the addition of 10 mM 

magnesium chloride, and the solution filtered using a 0.45 μm filter, prior to loading 

on to a 1 mL nickel (II) (Ni
2+

) charged HisTrap crude column (GE Healthcare) that 

had been pre-equilibriated in chilled A1 buffer (Section 2.5.4) using an ÄKTAprime 
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(GE Healthcare). The column was then washed with ~10 column volumes of A1 

buffer, before the protein of interest was eluted with chilled B1 buffer using a 

gradient elution (Section 2.5.4.1). Eluted fractions spanning the peak on the elution 

profile, as measured by absorbance at 280 nm, were prepared and analysed by 

SDS-PAGE (Section 2.5.1), and western blot (Section 2.7). 

 

2.9.6 Virus induced gene silencing 

Recombinant Agrobacterium strains harbouring pTRV1 and pTRV2 binary plasmids 

were grown in L media supplemented with appropriate antibiotics and 6 mM 

magnesium sulphate, harvested and resuspended to an OD600 of 1.0 as described in 

Section 2.8.2. Immediately prior to agroinfiltration Agrobacterium harbouring 

pTRV1 was mixed with equal volumes of Agrobacterium harbouring and each of 

TRV2 construct used (final OD600 = 0.5), and infiltrated into the two largest leaves 

of N. benthamiana plants at the four leaf stage (typically 2 – 3 weeks old). 

 

2.9.6.1 Bioinformatic analysis of putative off-target silencing 

Bioinformatic analysis of the DNA sequences cloned into the pTRV2 vector was 

performed using PERL scripts, written by Dr. Joe Win (TSL). These were used to 

identify all 21-nt sequences that displayed the following characteristics, previously 

identified as predicting high silencing efficiency in mammalian cells and chicken 

embryos (Ui-Tei et al., 2004). Putative efficient siRNAs had the 5’ end of the 

antisense strand as an adenine (A) or uracil (U); the first seven bases of the antisense 

strand including at least five A or U bases; the 5’ end of the sense strand as a guanine 

(G) or cytosine (C), and a GC-content between 30 – 70%. 

These putative siRNAs were then used to find homologous transcripts (targets) in the 

recently released Nicotiana benthamiana draft genome (Bombarely et al., 2012). 

Since assessments of siRNA specificity suggest that mRNAs with only partial 

complementarity to a siRNA can also be targeted for destruction (Jackson et al., 

2003, Haley and Zamore, 2004), the level of mismatch allowed was varied from 

zero, perfect complementarity, up to a maximum of five mismatches. In all cases, no 

more than a single mismatch was permitted within the so called ‘seed region’ 
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(positions 2 – 12 from the 5’ end) and purine:purine mismatches at position 16 were 

also excluded, as these had been previously shown to drastically reduce silencing 

efficiency (Jackson et al., 2006, Schwarz et al., 2006) 

 

2.9.7 In planta infection with Phytophthora infestans 

P. infestans strains were grown on as previously described by Kamoun et al., (1998) 

at 18°C in the dark on rye sucrose agar (RSA) plates. Zoospores were harvested from 

12- to 14-day old plates by flooding the plate with 4 – 5 mL of chilled sterile water 

and incubating at 4 ºC for 3 h. Zoospore suspensions were diluted to 100 spores per 

μL and stored on ice until inoculation. Infection of TRV-silenced N. benthamiana 

plants was conducted 14 – 16 days after agroinfiltration of TRV constructs, whilst 

infection of leaf tissue transiently expressing effectors, or vector control, was 

conducted 24 hpi. Droplets of 10 µl of zoospore suspension were applied onto the 

abaxial sides of detached leaves and incubated for several days on wet paper towels 

in 100% relative humidity. 

Mycelial growth of P. infestans 88069td was visualised using a Leica 

Stereomicroscope (Leica Microsystems CMS GmbH) mounted with a CCD camera 

under UV LED illumination and filter settings for DsRed. White light images of 

infected leaves were taken using a Nikon COOLPIX L24 digital camera. Lesion 

areas were determined with GIMP (v2.8) software
§
. 

 

2.9.8 In planta cell death/cell death suppression assays 

Recombinant Agrobacterium strains harbouring appropriate binary plasmids were 

grown, harvested and resuspended in MMA buffer as described in Section 2.9.2. To 

test for MAPKKKε-dependency of cell death events, Agrobacterium strains 

harbouring R protein constructs (Cf4, Pto, or R3a) were then mixed with 

Agrobacterium strains harbouring effector protein constructs (Avr4, AvrPto, or 

AVR3a
KI

), to achieve final OD600 values of 1.0 and 0.5, respectively. Agrobacterium 

strains harbouring 35S:INF1, CRN8-D2 or, pTRBO:PexRD2 constructs were diluted 

                                                 
§
 http://www.gimp.org/ 

http://www.gimp.org/
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to achieve final OD600 values of 0.5, 0.3 and 0.3, respectively. Agrobacterium 

mixtures were infiltrated into leaves of 4- to 6-week old TRV-treated N. 

benthamiana plants (Section 2.9.6) at 14 - 28 days post-VIGS agroinfiltration. Each 

agroinfiltration site corresponded to a disk-shape approximately 2 cm in diameter. At 

least three (mid-level) leaves were used per plant, with typically 3 – 4 plants serving 

as biological replicates per independent experiment. Progression of hypersensitive 

response (HR)/programmed cell death (PCD) was monitored daily typically up to 7 

days post agroinfiltration (dpi). An agroinfiltration site was scored positive for 

HR/PCD following the development of clear necrosis occupying greater than 50% of 

the agroinfiltrated area. 

Effector-mediated cell death suppression was assessed as above, with minor 

modifications. Agrobacterium strains harbouring R protein/effector protein 

combinations were diluted with Agrobacterium harbouring wild-type or mutant 

PexRD2 or an empty vector control (pK7WGF2) to achieve final OD600 values of 

0.6, 0.3 and 0.3, respectively. Agrobacterium strains harbouring 35S:INF1, or 

CRN8-D2 were diluted to achieve final OD600 values as above, with wild-type or 

mutant PexRD2, or an empty vector control (pK7WGF2) at a 1:1 ratio. 

Agrobacterium mixtures were infiltrated into leaves of 4-week old N. benthamiana 

plants and progression of HR/PCD was monitored daily, and scored as described 

above. 

Effector-mediated suppression of kinase-triggered cell death was assessed by mixing  

Agrobacterium strains harbouring pER8/pERCH contructs, the P19 suppressor of 

silencing and wild-type or mutant PexRD2 or an empty vector control (pK7WGF2) 

to achieve final OD600 values of 0.25, 0.1 and 0.3, respectively. These Agrobacterium 

mixtures were infiltrated into leaves of 4-week old N. benthamiana plants, and 

expression of kinase induced as described in Section 2.9.2. Development of cell 

death was monitored daily up to 7 days post estradiol treatment (dpt), and sites 

scored positive as described above. 

 

2.9.9 Ion leakage assay 

Ion leakage associated with tissue necrosis was measured as described by Melech-

Bonfil and Sessa (2010), with minor modifications. Three 8-mm diameter leaf disks 

were floated on 15 mL of MQ-water in 50-mL centrifuge tubes (CORNING) with 
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gentle shaking for > 2 h. Conductivity measurements, in microsiemens per cm 

(μS.cm
-1

), were taken using a B-173 Compact Twin Conductivity Meter (HORIBA). 

 

2.9.10 MAPK activation assay 

The activation of endogenous MAP kinases in Nicotiana benthamiana following 

either agroinfiltration (Section 2.9.2) or PAMP treatment; was assessed by adapting 

a previously published methodology (Heese et al., 2007, Segonzac et al., 2011). In 

brief, eight leaf disks of 8 mm in diameter were harvested per condition and 

combined in one microcentrifuge tube. These tissue samples were rapidly frozen in 

liquid nitrogen, and kept at -70 ºC until ready for protein extraction. 

For total protein extraction, tissue samples were placed on dry ice, and ground to a 

fine powder using a metal micropestle that had been prechilled in liquid nitrogen. To 

each sample was added 200 μL of activated Lacus buffer [50 mM Tris-HCl pH 7.5, 

10 mM magnesium chloride, 15 mM EGTA, 100 mM sodium chloride, 1 mM 

sodium fluoride, 1 mM sodium molybdate, 0.5 mM activated sodium orthovanadate, 

30 mM glycerol 2-phosphate, 0.1% (v/v) Igepal CA-630 (Sigma), supplemented just 

prior to use with 0.5 mM PMSF, 1 % (v/v) Protease Inhibitor Cocktail (P 9599, 

Sigma), 100 nM calyculin A and 2 mM DTT]. The samples were homogenised by 

vortexing for 30 s, prior to centrifugation at 17,000 x g for 10 min at 4 ºC. The total 

protein concentrations of the resulting supernatants were assessed by Bradford assay 

(Hammond and Kruger, 1994) and the samples standardised by dilution in activated 

Lacus buffer. The standardised samples were then boiled and separated by SDS-

PAGE on a 12% (w/v) polyacrylamide gel (Section 2.5.1), and transferred to PVDF 

membrane by semi-dry blotting (Section 2.7.2). Ponceau S staining was used to 

confirm protein loading and efficient transfer (Section 2.7.3). Immunoblotting was 

conducted as described in Section 2.7.4, but with minor modifications. The PVDF 

membrane containing immobilised proteins was blocked in 5% (w/v) dried skimmed 

milk powder in 0.1% TBS-T buffer and incubated for 1 h at RT with shaking at 100 

rpm. The membrane was then probed using a primary antibody that cross-reacts with 

the dually phosphorylated active form of the MAPK ERK1 (α-pTEpY, Table 2.1) at 

8 ºC for 16 h, followed by an α-rabbit secondary antibody diluted in 5% (w/v) dried 
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skimmed milk powder in 0.1% TBS-T buffer (Table 2.1). The signal was detected 

using SuperSignal West Femto Chemiluminescent Substrate (Thermo Scientific).  

For PAMP treatment, eight leaf disks of 5 mm in diameter were harvested from 4-

week old N. benthamiana plants and added to wells of a 96-well microtitre plate, 

containing 100 μL of either MQ-water, 100 nM flg22 peptide (provided by Simon 

Lloyd (JIC)) or 100-fold diluted P. infestans culture filtrate (provided by Angela 

Chaparro-Garcia (TSL)). These leaf disks were then collected in a single 

microcentrifuge per treatments, and the samples rapidly frozen in liquid nitrogen. 

Total protein extraction using Lacus buffer was conducted as described above. 

 

2.9.11 Leaf and epidermis cell area measurement 

The third and fourth leaves from five independent TRV-treated plants were collected 

and digitally photographed. Leaf area was determined with GIMP (v2.8) software. 

To measure the total cell area, the third leaf from five independent plants were 

removed, and observed on a Leica Stereomicroscope (Leica Microsystems CMS 

GmbH). The area of abaxial epidermal cells (n = 50–150) was calculated using 

GIMP (v2.8) software. Average leaf and cell areas were used to calculate cell 

numbers.  
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3 Structural Characterisation of PexRD2 

3.1 Introduction 

This introduction refers to the state of the knowledge at the start of this project in 

November 2009. Subsequent publications relevant to this chapter of this thesis are 

referenced throughout, and discussed at the end of, this chapter. 

3.1.1 PexRD2, a candidate RXLR effector 

PexRD2, Phytophthora extracellular (Pex) effector containing an RXLR-dEER (RD) 

motif 2, was first cloned from genomic DNA from Phytophthora infestans isolate 

88069 using an allele mining strategy (Oh et al., 2009). This, and other, candidate 

effectors were selected from a collection of  >80,000 ESTs (expressed sequence 

tags) on the basis of a typical modular domain organisation (Figure 3.1) (Win et al., 

2007, Chen et al., 2009). In PexRD2, the first twenty amino acids at the N-terminus 

were bioinformatically predicted to represent a functioning signal peptide, that 

would mediate its secretion from the pathogen, and be cleaved in the mature protein 

(Nielsen et al., 1997). The N-terminal region of this effector also contained the 

conserved peptide motifs that define this class of effectors, an RXLR motif, (RLLR, 

Figure 3.1 PexRD2 displays a typical modular domain organisation. 

Protein sequence of PexRD2 from Phytophthora infestans isolate 88069 highlighting 

the signal peptide (yellow), RXLR (blue) and ‘dEER’ (red) translocation motifs, as 

well as the C-terminal ‘effector’ domain. 
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residues 38 – 41), and a putative variant of the more degenerate ‘dEER’ motif, 

(ENDDDSEAR, residues 48 – 56). These peptide motifs had been implicated as 

required for the translocation of effectors across the host cell plasma membrane and 

into the host cytosol (Whisson et al., 2007, Dou et al., 2008b, Schornack et al., 

2010), although the exact mechanism by which this occurs was unknown and still 

remains highly contentious within the field (Panstruga and Dodds, 2009, Ellis and 

Dodds, 2011). As such, the N-terminal region of this protein contained peptide 

motifs required for the delivery of this protein from the pathogen to the inside of host 

cells, but was predicted to likely be dispensible for any subsequent biological 

activity of the effector, which had been shown to be the case for other RXLR-family 

effectors (Schornack et al., 2009). The remainder of this protein, from Ala57 to the 

C-terminal Val121, henceforth referred to as the ‘effector’ domain, showed no 

significant sequence homology to any known non-redundant protein sequences, 

outside of the oomycetes, as determined using BLASTP (Altschul et al., 1990). This 

lack of similarity to characterised proteins made assignment of biochemical function 

from primary sequence impossible, although it is not unexpected as RXLR effectors 

frequently lack any sequence homology to other proteins within their effector 

domains (Kamoun, 2007, Oliva et al., 2010). 

There are five paralogs of PexRD2 present in the P. infestans reference genome, 

isolate T30-4 (Haas et al., 2009) (Figure 3.2 A). The amino acid sequence of all 

paralogs is identical within their effector domains, but they do display a number of 

non-synonymous polymorphisms in their signal peptides and the region preeceding 

the RXLR motifs (Figure 3.2 B). 
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Figure 3.2 PexRD2 paralogs show high sequence identity 

(A.) Sequence alignment of full-length coding sequences (CDS) for the five PexRD2 

paralogs from P. infestans reference genome (T30-4). Conserved nucleotide bases are 

shaded in black. (B.) Sequence alignment for full length protein sequences for PexRD2 

paralogs with conservation status coloured using the PRALINE server. Signal peptide 

and RXLR and ‘dEER’ translocation motifs are coloured as in Figure 3.1. 

A. 

B. 
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3.1.2 PexRD2 induces a weak cell death response in planta 

Similar to other plant pathogen effectors, where transient expression of effector 

proteins within plant tissues leads to macroscopic symptoms (Kjemtrup et al., 2000, 

Torto et al., 2003, Cunnac et al., 2009, Gürlebeck et al., 2009), ectopic expression of 

the mature PexRD2 (residues 21 – 121, i.e. excluding the signal peptide) from a 

Potato Virus X (PVX) based vector triggers a weak cell death in the model plant 

Nicotiana benthamiana (Oh et al., 2009) and in several susceptible and resistant 

Solanum spp (Vleeshouwers et al., 2008). This response was observed using both 

PVX agroinfection via toothpick wounding (Kanneganti et al., 2007) and 

agroinfiltration (Figure 3.3 A and B, respectively).  

The cell death observed was concluded to be dose-dependent, since co-

agroinfiltration of a binary vector expressing P19, a suppressor of post-

transcriptional gene silencing (PTGS) from the Tomato bushy stunt virus, 

accelerated and enhanced the cell death response triggered by PexRD2 (Oh et al., 

2009) (Figure 3.3 B). Co-infiltration with P19 had previously been shown to increase 

expression of a number of transgenes in planta (Voinnet et al., 2003) 

The cell death was also shown to be dependent on the host ubiquitin ligase 

associated protein SGT1. This SGT1-dependency had previously been observed for a 

variety of cell death responses in plants (Peart et al., 2002). Virus induced gene 

silencing (VIGS) of SGT1 in N. benthamiana suppressed the cell death triggered by 

PexRD2, even in the presence of P19 (Figure 3.3 C). 
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B. A. 

C. 

Figure 3.3 PexRD2 induces a weak cell death response in planta 

(A.) Cell death response triggered by PexRD2 via PVX agroinfection. Image taken 

after 12 days. Response is weaker than that triggered by the P. infestans elicitin 

INF1, expressed via the same system. (B.) Cell death response triggered by PexRD2 

via agroinfiltration, with or without the suppressor of gene silencing P19. Image 

taken after 6 days. (C.) SGT1 is required for the cell death response induced by 

PexRD2. SGT1-silenced (TRV2:NbSGT1) plants challenged by agroinfiltration with 

PexRD2 do not develop PexRD2-associated cell death, whereas control-silenced 

plants (TRV2:GFP) showed cell death that was enhanced in the presence of P19. 

Figure adapted from Oh et al., (2009). 
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3.2 Results and Discussion 

3.2.1 Expression and purification of PexRD2 effector domain 

Note: At the beginning of the work described in this chapter Dr Laurence Boutemy 

(JIC) had constructed the recombinant plasmid (pOPINF:PexRD2) for the 

expression in E. coli of recombinant PexRD2 effector domain and identified 

expression conditions that yielded soluble protein in small scale expression tests. 

The recombinant plasmid pOPINF:PexRD2 comprises a DNA sequence encoding 

the effector domain of PexRD2, sub-cloned into the expression vector pOPINF, 

using ligation-independent cloning (Berrow et al., 2007). The sequence was 

amplified from a synthetic construct previously codon optimised for E. coli 

expression (Figure 3.4). This plasmid was designed to express recombinant PexRD2 

effector domain and lack the N-terminal putative signal peptide and translocation 

motifs. These regions were omitted either because they were likely to be absent from 

the mature secreted protein (Nielsen et al., 1997) or predicted to be largely 

disordered (Yang et al., 2005; Figure 3.5). As stated previously, the published 

literature had also suggested that these regions were often dispensable for RXLR 

effector function. The effector domain of PexRD2 was expressed with an N-terminal 

hexa-histidine tag that was cleavable using 3C protease (Figure 3.6). 

Figure 3.4 Wild-type vs. codon optimised PexRD2 DNA sequences  

A sequence alignment of full-length coding sequence (CDS) for PexRD2 (paralog 

PITG_21422) from P. infestans reference genome (T30-4) against the synthesised 

codon optimised DNA sequence encoding the effector domain, as cloned into 

pOPINF. Conserved nucleotide bases are shaded in black. 
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Small scale expression tests had determined that using E. coli BL21(DE3) grown in 

LB media yielded soluble protein.  Protein expression was induced at an OD600 of 0.6 

with 1 mM IPTG, before further incubation for 3 – 4 hours at 37ºC. These growth 

conditions were applied to large scale inductions. Cells were harvested and lysed by 

sonication. Cell lysates, clarified by centrifugation were applied to a pre-

equilibriated nickel affinity column as described in Section 2.5.4.1. Fractions 

containing eluted proteins were pooled and concentrated prior to further purification 

by size exclusion chromatography (SEC) (Section 2.5.4.2). The protein eluted as a 

single broad peak, as measured using A280, and appeared to be very pure, as 

determined by SDS-PAGE analysis (Figure 3.7). 

Figure 3.5 Disorder predictions for PexRD2 protein sequences 

Protein disorder predictions conducted using the RONN protein disorder prediction 

tool (http://www.strubi.ox.ac.uk/RONN) aligned to the polypeptide sequence of 

different regions of PexRD2. Peptide motifs are coloured as in Figure 3.1 

 

http://www.strubi.ox.ac.uk/RONN
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Figure 3.6 pOPINF:PexRD2 

(A.) The codon optimised PexRD2 DNA sequence (shaded) as cloned into the In-Fusion 

site of pOPINF expression vector. Important vector features have been highlighted in bold 

type and labelled above. PexRD2 was cloned in-frame with the vector encoded N-terminal 

hexa-histidine tag (shown in light blue) and the 3C protease site (orange). (B.) The amino 

acid sequence of the PexRD2 fusion protein as expressed from pOPINF:PexRD2, the 

hexa-histidine tag and 3C cleavage site are coloured as in (A.), with the point of protein 

cleavage marked with .  

A. 

B. 
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Figure 3.7 Purification of hexa-histidine-tagged PexRD2  

(A.) 17% SDS-PAGE analysis at different stages of the purification of the effector 

domain of PexRD2 expressed from pOPINF. Lane 1: soluble fraction of cell lysate. 

Lane 2: unbound flow-through (FT) after passing through nickel affinity column 

(IMAC). Lane 3: pooled elution from IMAC. Lane 4-12: size exclusion 

chromatography (SEC) fractions corresponding to A280 peak. M indicate lanes 

containing SeeBlue® Plus2 molecular weight markers. (B.) Representation of 

A280 nm elution profile for SEC of His6-PexRD2. Fractions analysed by SDS-PAGE 

are numbered as in (A) (lanes 4 – 12). 
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Fractions containing purified protein of the correct size, as determined by 

comparison with the molecular marker, were pooled and concentrated to 

approximately 1 mg.mL
-1

 prior to a trial 3C protease digestion to determine optimum 

conditions for the cleavage of the tag. Two 100-μL reaction solutions were prepared 

as described in Section 2.5.5 and incubated at either room temperature (RT) or 4ºC. 

Ten-μL aliquots were taken immediately prior to adding the protease, and at regular 

intervals from 30 min to 22 h. Samples taken were immediately prepared for 

SDS-PAGE analysis. Overnight incubation at 4ºC was sufficient to achieve complete 

digestion, without the development of the possible degradation products that were 

observed following prolonged incubation at RT (Figure 3.8). 

Proteolytic cleavage of the remainder of the concentrated fusion protein was then 

conducted using these optimised conditions with protein concentrated to 

approximately 2 mg.mL
-1

. The cleaved protein was purified from the reaction 

solution, as described in Section 2.5.5, using a pre-equilibrated nickel affinity 

column, followed by further purification using size exclusion chromatography 

(Section 2.5.4.2). Again the protein eluted as a single broad peak, although at a 

larger elution volume than the affinity tagged protein (~200 mL vs ~190 mL 

respectively), as would be expected owing to the reduced molecular weight of the 

cleaved protein (Figure 3.9). SDS-PAGE analysis of eluted fractions showed little 

evidence of contamination indicating the solution was of high purity (Figure 3.9. A). 

These fractions were pooled and concentrated to 12 mg.mL
-1

. The identity of the 

purified protein was confirmed by intact mass spectrometry which gave a value of 

7337.92 Da, perfectly matching the predicted theoretical mass (7337.92 Da). 

 

* * 

Figure 3.8 Trial digestion of His6-PexRD2 by 3C protease 

17% SDS-PAGE analysis of time course of hexa-histidine-tagged PexRD2 effector domain 

(His6-PexRD2) incubated with 3C protease at room temperature or 4ºC. M indicates lane containing 

SeeBlue
®
 Plus2 molecular weight markers. Asterisks indicate potential degradation products. 

 

kDa 

4 
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His6-PexRD2 

(9.3 kDa) 

 PexRD2 

(7.3 kDa) 

 

A. 

B. 

Figure 3.9  Purification of untagged PexRD2 effector domain 

(A.) 17% SDS-PAGE analysis at different stages of the removal of the affinity tag 

and subsequent purification of the effector domain of PexRD2. Lane 1. His6-

PexRD2 concentrated to 2 mg.mL
-1

. Lane 2: post-incubation with His6-tagged 3C 

protease, at 4°C for ~20 h. Lane 3: unbound flow-through (FT) after passing 

through nickel affinity column (IMAC). Lane 4: elution from IMAC. Lane 5: re-

concentrated unbound FT. Lanes 6–13: size exclusion chromatography (SEC) 

fractions corresponding to A280 peak. M indicate lanes containing SeeBlue® Plus2 

molecular weight markers. (B.) Representation of A280 nm elution profile for SEC of 

untagged PexRD2. Fractions analysed by SDS-PAGE are numbered as in (A) 

(lanes 6 – 13). The dashed line indicates the peak elution volume of 203.9 mL. 
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3.2.2 Crystallisation of PexRD2 effector domain 

Crystallisation trials were performed with PexRD2 effector domain purified with the 

affinity tag cleaved as outlined in Section 3.2.1. Initial trials were set up as described 

in Section 2.6.1 using protein concentrated to 12 mg.mL
-1

 and the vapour diffusion 

sitting drop method. Of the 480 conditions screened, a single crystal was obtained in 

only one condition: 2.2 M ammonium sulfate, 0.2 M ammonium bromide (AmmSO4 

screen, condition H2). This crystal formed within two days, and after the formation 

of a small amount of light granular precipitate (Figure 3.10 A). This condition was 

then optimised using the hanging-drop method in a 24-well plate, as described in 

Section 2.6.2. The concentrations of protein and ammonium bromide used were the 

same as those as in the initial trials. The concentration of ammonium sulfate was 

varied from 1.6 to 2.6 M; and conditions with or without the addition of 100 mM 

Tris-HCl pH 7.0 – 8.0 were also screened using a fully factorial design. Multiple 

crystals were obtained from a range of these optimised conditions and formed 

between 2 days and 4 weeks (Figure 3.10 B – C). As before, crystals formed after the 

appearance of a small amount of light granular precipitate, however, in optimisation 

trials a visible skin precipitate over the surface of drops was also observed. 

Figure 3.10 Crystals of PexRD2 effector domain 

(A.)  A single crystal formed in the initial trial (2.2 M ammonium sulfate, 0.2 M 

ammonium bromide). Crystals formed in a range of optimised conditions: (B.) 2.6 M 

ammonium sulfate, 0.2 M ammonium bromide, 100mM Tris-HCl pH 7.0 (a second 

cuboid crystal is highlighted by the white arrow); (C) 2.6 M ammonium sulfate, 

0.2 M ammonium bromide, 100mM Tris-HCl pH 7.5; and 2.2 M ammonium sulfate, 

0.2 M ammonium bromide, 100mM Tris-HCl pH 7.0 (not shown). 
 

C. B. A. 
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3.2.3 Data collection 

Note: All datasets from protein crystals of PexRD2 effector domain were collected 

by Dr. Allister Crow (JIC). 

For data collection, crystals from optimised conditions were harvested and cryo-

protected using paratone-N, and subsequently cryo-cooled, as described in Section 

2.6.3. Two diffraction datasets were collected (Figure 3.11) from an optimised 

crystal at the I02 tuneable diffraction beamline of the Diamond Light Source 

synchrotron facility (DLS, Oxfordshire, UK). One dataset was collected at a 

wavelength of 0.8984 Å corresponding to the peak side of the theoretical value for 

the K-edge of bromine (13.4737 keV, or 0.9202 Å, Figure 2.2). A second, higher 

resolution, dataset was collected at a wavelength of 0.9700 Å. 

 

3.2.4 Data processing and structure solution 

The ‘bromide peak’ dataset consisted of 360 images and diffracted to a maximum 

resolution of 1.9 Å. The data were processed using iMOSFLM (Leslie and Powell, 

2007), then scaled and reduced with SCALA (Evans, 2011) as described in Section 

2.5.5. The data collection statistics are shown in Table 3.1. The crystal could be 

satisfactorily processed in the orthorhombic space group P212121 with an overall 

Rmerge of 6.5%. Unit cell dimensions were established as a = 44.80 Å, b = 52.36 Å, 

Figure 3.11 Example of 

a diffraction 

image 

collected 

from 

PexRD2 

crystals 

A representative diffraction 

image taken from a dataset 

collected from a PexRD2 

effector domain crystal. 

 

Figure 3.11  

Example of a diffraction 

image collected from 

PexRD2 crystals 
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c = 53.32 Å; and α = β = γ = 90º. Unit cell calculations predicted two molecules 

within the asymmetric unit giving a solvent content of 42.4%. This dataset was used 

for initial phase calculations. The phase problem was solved using a single-

wavelength anomalous dispersion (SAD) approach utilising the anomalous signal of 

bromide ions present in the crystal lattice, as described in Section 2.6.6.1. SHELX 

C/D (Sheldrick, 2010) predicted 11 heavy atom sites that were used by PHASER-EP 

(McCoy et al., 2007) for experimental phasing. These initial phases were subjected 

to phase improvement by PARROT (Cowtan, 2010), and an initial model, 

comprising at least the backbone of 127 residues docked within the density, was 

generated using BUCCANEER (Cowtan, 2006). 

 

3.2.5 Refinement, rebuilding and validation 

The ‘high resolution’ dataset consisted of 360 images and diffracted to a maximum 

resolution of 1.75 Å. These data were processed using iMOSFLM, then scaled and 

reduced with SCALA, as described in Section 2.6.5. The data collection statistics are 

shown in Table 3.1. The crystal belonged to the orthorhombic space group P212121, 

with an overall Rmerge of 7.9% and unit cell dimensions of a = 44.45 Å, b = 52.92 Å, 

c = 53.73 Å; and α = β = γ = 90º. The initial model solved using bromine SAD on 

the bromine peak data set was then refined against the high resolution dataset using 

REFMAC5 (Murshudov et al., 1997) extending the maximum resolution to 1.75 Å. 

The model was improved via iterative cycles of refining with REFMAC5 and 

rebuilding in COOT. Water molecules were fitted and refined using ARP/wARP 

(Langer et al., 2008), followed by manual inspection in COOT. The occupancy of 

bromide ions in the predicted sites was also modified manually in COOT. During the 

final stages of refinement, translation, libration, and screw-rotation (TLS) restraints 

were used grouping the fitted residues of chain-a and chain-b into two TLS groups. 

The final model comprised the N-terminal residue of the expressed construct, Gly55, 

through to the penultimate residue Ala120 in chain-a, and from Gly55 to Thr119 in 

chain-b. The C-terminal Val121 in chain-a, and residues Ala120 – Val121 in 

chain-b, were excluded owing to a lack of well defined electron density to determine 
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Table 3.1 Data Collection and Refinement Statistics for PexRD2 

 
PexRD2 

bromide peak 

PexRD2 

high resolution 

 

Data Collection 

Instrumentation DLS-I02 DLS-I02 

Wavelength (Å) 0.8984 0.9700 

Resolution range  (Å)
a
 44.80–1.90 (2.00–1.90) 37.70–1.75 (1.84–1.75) 

Space Group P 212121 P 212121 

Unit cell parameters 

(Å) 

a = 44.80, b = 52.36,  

c = 53.32, 

α = β = γ = 90.00º 

a = 44.45, b = 52.92, 

c = 53.73,  

α = β = γ = 90.00º 

Completeness (%)
b
 99.0 (98.7), 99.3 (99.1) 

99.9 (100.0), 100.0 

(100.0) 

Unique Reflections
a
 10229 (1451) 13313 (1907) 

Redundancy
b
 12.9 (13.3), 7.0 (7.0) 15.8 (16.3), 8.4 (8.5) 

Rmerge (%)
a, c

 6.5 (43.0) 7.9 (42.5) 

I/σ(I)
a
 25.4 (6.7) 26.3 (9.9) 

Number of SAD sites 11  

FOM 0.34  

 

Refinement 

 

Resolution range  (Å)  37.70 – 1.75 

Rwork (%)
a
  18.9 (23.8) 

Rfree (%)
a
  24.4 (27.3) 

No. of non-hydrogen atoms 

(protein/waters) 
 1154 (1027/127) 

RmsBond (Å)  0.015 

RmsAngles (°)  1.446 

ESU (based on ML) (Å)  0.08 

Mean B factors (Å
2
)  14.145 

Ramachandran plot 

favoured/allowed/disallowed 

(%)
d
 

 99.3 / 100 / 0 

a
 Values in parentheses are those for the highest resolution shell. 

b
 Completeness and Redundancy. First value given is for merged data, second represents separated 

anomalous pairs (values in parentheses for highest resolution shell). 

c
 Reflection statistics are as reported in SCALA. Rmerge is calculated as described by Evans (2005). 

d
 As calculated by MOLPROBITY (Davis et al., 2007, Chen et al., 2009). 
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their positions. The side chain atoms of a number of lysine, glutamine and arginine 

residues were also excluded for the same reasons. Another 11 residues with flexible 

side chains were modelled with alternate conformations where clear electron density 

indicated their positions. Seven bromide ions were retained within the final model 

although the occupancy of these sites varied from 0.5 – 1. Final refinement statistics 

for the PexRD2 effector domain crystal structure are given in Table 3.1. 

The final structure was checked for geometric and structural validity using COOT 

tools during refinement and MOLPROBITY (Figure 3.12) (Davis et al., 2007, Chen 

et al., 2009) to generate Ramachandran plots. These plots are a way of visualising 

the Φ against Ψ dihedral angles of each of the residues present in the structure. The 

Ramachandran plot for PexRD2 effector domain revealed that all residues are within 

the allowed regions and there are no outliers (Figure 3.13). MOLPROBITY also 

analyses the other aspects of protein geometry. It compares the conformations of 

each amino acid in protein structures deposited in the Protein Data Bank (PDB) to 

the residues present in the structure being analysed, and determines whether they are 

in acceptable conformations. The MOLPROBITY score of 1.6 is excellent, putting 

the structure in the 89
th

 percentile of structures of a comparable resolution, 1.75 Å ± 

0.25 Å, already deposited in the PDB (Figure 3.12). Only two residues with 

unacceptable conformations, or ‘poor rotamers’, were identified; however, the 

positioning of the side chains was supported by the observed electron density in both 

cases. 

Figure 3.12  Validation of final structure of PexRD2 effector domain 

Analysis conducted by MOLPROBITY. * 100
th
 percentile is the best amongst 

structures of comparable resolution; 0
th
 percentile is the worst. 
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Figure 3.13 Ramachandran plot for refined PexRD2 structure 

99.3% (137/138) of all residues were in favoured (98%) regions, 100.0% (138/138) of 

all residues were in allowed (>99.8%) regions. There were no outliers. Produced by 

MOLPROBITY. 
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3.2.6 Structure of PexRD2 effector domain 

The structure of the effector domain of PexRD2 is composed of five α-helices and 

crystallises as a dimer (Figure 3.14). The buried surface area between the two chains 

is equal to 1830 Å
2
, the equivalent to 20% of the surface area of each monomer as 

measured using the ‘Protein interfaces, surfaces and assemblies’ service PISA 

(Krissinel and Henrick, 2007). This interface was given a high Complex Significance 

Score (CSS) of 0.89 (values range from 0 – 1). 

Within the dimer, the two protein chains show the same overall fold. Superposition 

of one chain onto the other gives a root mean square deviation (r.m.s.d.) for all atoms 

of 0.484 Å. Helices α1, α2 and α5 show almost identical orientations, as do the 

residues comprising the loop between α1 and α2. Slight differences, however, are 

observed in certain more flexible regions; such as the N- and C-termini, and, 

interestingly, the region comprising helix α3 and helix α4 (Figure 3.15).  

α3 

α4 

α5 
N 

α2 

C 

α1 

A. B. 

Figure 3.14 Protein structure of the effector domain of PexRD2 

(A.) Cartoon ribbon representation of the effector domain of PexRD2 with chain-a 

coloured in dark red, and chain-b in grey. The N and C termini, as well as helices 1 – 5 

(α1 – 5) are labelled on chain-a. (B.) Protein structure of PexRD2 effector domain in the 

same orientation as in A. but showing the locations of the 7 bromide ions (large green 

spheres), and 127 waters (small red spheres).  
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The solvent exposed surface of the PexRD2 dimer displays a large positively 

charged region, dominated by a large number of lysines, that wraps around the 

structure (Figure 3.16 A). Two distinct negatively charged patches are also observed: 

a large one that maps to a groove in the structure in the proximity of the C-termini of 

the two chains; and a smaller one in the area spanning helices α4 from both chains.  

In contrast, the interface between the two PexRD2 monomers is dominated by 

hydrophobic residues (Figure 3.16 B). 

  

Figure 3.15 Superposition of PexRD2 chain-b onto PexRD2 chain-a  

(A.) Cartoon ribbon representation of the superposition of the two polypeptide chains in 

the asymmetric unit, with chain-a coloured in dark red, and chain-b in grey, and the 

orientation of chain-a the same as in Figure 3.14. and (B.) rotated 60º, anti-clockwise, 

about the y-axis. The differences in the positioning of the N- and C-termini, as well as 

helices α3 and α4, are clearly visible. 

 

 

α4 
α4 

α3 

α3 

N 

C 

A. B. 

60º 
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90º 

90º 

Figure 3.16 Surface charge distribution for PexRD2 dimer and monomer 

(A.) (MIDDLE) Electrostatic potential calculated with Pymol for the PexRD2 dimer in 

the same orientation as Figure 3.14 displaying the large positively charged region. 

(TOP) This positive charge wraps around the structure, encircling the small patch of 

negative charge that spans helices α4 from both chains. (BOTTOM) The large negative 

charged patch maps to a groove in the structure in the proximity of the C-termini of the 

two chains. (B.) Electrostatic potential for a PexRD2 monomer highlighting the contrast 

between (TOP) the positively charge solvent surface exposed and (BOTTOM) the 

hydrophobic dimerisation interface. 

180º 

negative positive 

A. B. 
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3.2.7 Oligomeric state of PexRD2 in solution and in planta 

The observation of dimers of PexRD2 effector domain in protein crystals could 

represent an artefact of crystallisation. To test whether this was the case, the 

oligomeric state of PexRD2 was assessed in solution, by size exclusion 

chromatography (SEC) and analytical ultracentrifugation (AUC), and in planta, by 

co-immunoprecipitation (co-IP). 

 

3.2.7.1 Preparative size exclusion chromatography data support 

dimerisation of PexRD2 effector domain 

Size exclusion chromatography separates macromolecules based on their size and 

shape (Section 2.5.4.2). A very large macromolecule cannot penetrate the pores 

within the stationary phase and passes only through the space between the particles 

within the column, also known as the void volume (V0).  On the other hand, small 

macromolecules can penetrate the pores, as well as the void volume. Therefore, 

larger particles will elute earlier, when a volume of mobile phase equal to the V0 has 

passed through the column, whilst smaller molecules will elute much later after a 

greater volume has passed through the column. 

By comparing the elution volume (Ve) that corresponds to the A280 peak for PexRD2, 

to a calibration curve of elution volumes of protein standards of known molecular 

weights, run previously on the same SEC column, a rough estimate for the apparent 

molecular weight of PexRD2 can be obtained. From the initial purification of 

PexRD2, with the affinity tag cleaved post 3C protease treatment, an elution volume 

of 203.9 mL is observed (Figure 3.9). By comparison to a previously generated 

calibration curve (Figure 3.17), this equates to a predicted molecular weight of 12.7 

kDa. Since the molecular weight of monomeric PexRD2 is 7.3 kDa (-5.4 kDa), and a 

dimer of PexRD2 is 14.7 kDa (+2.0 kDa), this predicted value is closer to that of 

PexRD2 effector domain eluting as a dimer, rather than a monomer. The deviation 

between the predicted value and the actual molecular weight likely results from the 

fact that the standards used to generate the calibration curve and the experimental 

sample were not run in parallel, as well as the use of a preparative column and not an 

analytical column.  
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Figure 3.17 The estimated molecular weight of PexRD2, using its Ve from 

SEC columns, suggests dimerisation in solution. 

(A.) A previously generated calibration curve of elution volumes (Ve) of protein 

standards, as determined using a Hi-Load 26/60 Superdex 75 prep grade gel filtration 

column, against their molecular weights (MW). V0 for this column equals 110.7 mL and 

the calibration of the column was conducted by Dr. Richard Hughes. (B.) The estimated 

molecular weight of eluted PexRD2 effector domain, (12.7 kDa), from its elution 

volume on the same column at a later stage during its purification (203.9 mL), is closer 

to the value of a PexRD2 dimer (14.7 kDa).   

A. 

B. 
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3.2.7.2 Analytical ultracentrifugation (AUC) confirms that dimers 

of PexRD2 are the dominant species in solution 

Note: AUC analysis of PexRD2 effector domain was performed by Dr. Tom Clarke 

(UEA) with solutions of purified protein as used in crystallisation trials. 

Analytical ultracentrifugation is commonly regarded as the ‘gold standard’ technique 

for the measurement of the molecular weight of protein and protein complexes in 

solution. Sedimentation equilibrium experiments were performed at a speed of 

99,660 x g. Optical interference patterns were collected at equilibrium for protein 

samples at concentrations of 3.0 and 6.0 mg.mL
-1

. Data were fitted using 

ULTRASCAN (Demeler et al., 2005), with the molecular masses of the species 

fixed at their theoretical value, to a dimer/tetramer model. The dimeric form 

predominated in solution, and there was no evidence for any free monomer (Tom 

Clarke, personal communication, for more details see Supplementary Figure 3, 

Boutemy et al., 2011). 

 

3.2.7.3 Co-immunoprecipitation (Co-IP) experiments confirm 

PexRD2 self-associates in planta 

Note: The Co-IP described below was conducted by Dr. Joe Win (TSL). 

In addition to the data obtained from purified proteins in solution, the oligomeric 

state of PexRD2 in planta was also assessed. Co-immunoprecipitation experiments 

are widely considered the gold standard for demonstration of protein-protein 

interactions in vivo. Transient expression, in N. benthamiana via agroinfiltration, of 

both FLAG-epitope-tagged or GFP-fusions of effector proteins, were followed by 

co-immunoprecipitation from total protein extracts with anti-FLAG M2 affinity gel 

as described in Section 2.9.4 and by Boutemy et al., (2011). Subsequent western blot 

analysis of total extracts and immunoprecipitated proteins demonstrated that 

PexRD2 self-associates in planta (Joe Win, personal communication, for more 

details see Supplementary Figure 3, Boutemy et al., 2011). 
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3.2.8 Structural similarity searches with PexRD2 

One of the benefits of solving the three-dimensional structure of a new protein is that 

by searching for structural similarity to already characterised proteins in the PDB, it 

may be possible to infer a biochemical function for the new protein. This approach 

can often be more successful than searches based on primary sequence data alone 

since the structure of a protein is more important in determining function and, as 

such, is often more conserved (Illergård et al., 2009). A structural similarity search 

with chain-a from the structure of PexRD2 effector domain was conducted using the 

DALI server (Holm and Rosenström, 2010). Similarity is measured by Dali 

Z-scores, and structures that have significant similarities have a Z-score above 2, and 

usually have similar folds.  

 

3.2.8.1 L29 protein, a 50S ribosomal subunit protein 

The top hit obtained following a search against a subset of PDB matches, filtered to 

remove those with 90% sequence identity (PDB90) was to L29: one of the proteins 

within the large ribosomal subunit of the ribosome of Haloarcula marimortui, a 

halophilic archaeon (1JJ2, chain-u). The Z-score for this hit was 4.6, and the 

structural alignment with PexRD2 had an r.m.s.d. of 4.6 Å, with 20% sequence 

identity over the aligned region. 

L29 interacts extensively with a kink-turn motif (K-turn or KT), in the 23S 

ribosomal RNA (25S rRNA) designated KT-7 (Klein et al., 2001). A histidine 

residue near the N-terminus of this protein, His4, interacts by stacking with the 

protruded nucleotide in KT-7, A96; and this protein contacts KT-7 on the opposite 

face to one of the two assembly initiator proteins, L24. 

Visual inspection of the superposition of protein L29 onto the chain-a from the 

structure of PexRD2 effector domain (Figure 3.18) showed clear differences between 

the two protein folds that likely indicate differences in function. The structure of L29 

consists of only three helices; a single short helix followed by two extended helices. 

The second and third helices run anti-parallel and are linked by a loop of seven 

residues. In the superposition, the first helix shows a partial overlay with α1 of 
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PexRD2, but is misaligned by an angle of approximately 20º. The second helix is 

overlaid with both α2 and α3, but does not include the articulation observed between 

these two helices in PexRD2. As such, the alpha carbon atoms of the residues at the 

end of these two helices (L29 helix 2, and PexRD2 α3) are 9.4 Å apart in the 

superposition. No part of the structure of L29 is overlaid with α4 from PexRD2, and 

the third helix only partial overlays with α5, but misaligned by an angle of 

approximately 16º. These structural differences, combined surface differences, in 

particular the lack of a residue that could substitute for residue His4 of L29, mean 

that is highly unlikely that PexRD2 would also interact with ribosomal RNA, and the 

apparent structural similarity must be deemed coincidental. 

 

A. 

180º 

Figure 3.18 Superposition of the 50S ribosomal subunit protein, L29, on 

to the structure of PexRD2 effector domain 

Cartoon representations of a superposition performed using the DaliLite tool for the 

pairwise alignment of protein structures. The appropriate chain from structure 1JJ2 from 

the PDB, was aligned with the chain-a from PexRD2. L29 polypeptide chain is coloured 

in green, and the KT-7 motif of the 25S rRNA is orange. PexRD2 chains are coloured as 

in Figure 3.14. The black arrow indicates the positioning of His4 from L29 that stacks 

with the protruded nucleotide A96. 
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3.2.8.2 Sus1, a central component of the yeast ‘gene gating’ 

machinery 

The second hit obtained following a structural similarity search of PexRD2 against 

the PDB90 was Sus1
*
: a small nuclear protein from Saccharomyces cerevisiae 

(3KIK, chain-a). The Z-score for this hit was 4.5, and the structural alignment with 

PexRD2 had a lower r.m.s.d. (3.6 Å) than that with L29, but with only 8% sequence 

identity over the aligned region.  

Sus1 is a central component of the yeast ‘gene gating’ machinery (Ellisdon et al., 

2010). Gene gating refers to the tethering of actively transcribed genes to the nuclear 

pore complex (NPC) and as such integrates transcription with mRNA nuclear export. 

Sus1 is part of both the SAGA complex: a 2 MDa protein complex that acts as a co-

activator for transcription by RNA polymerase II; and the TREX2 complex; that 

tethers the SAGA complex to the NPC. Sus1 adopts an “articulated helical hairpin 

fold” that consists of five alpha helices linked by loops that form putative hinges. 

This fold is proposed to allow Sus1 to wrap tightly an extended alpha helix of its 

interacting proteins following ‘a surface exposed hydrophobic stripe’. The first helix 

of Sus1 was shown to not be involved in the interaction with some interacting 

proteins, and in these cases its positioning was shown to be highly variable. 

The overall fold of PexRD2 could also be described as an articulated helical hairpin 

(Figure 3.19 A), which also wraps around an α-helix, in this case the α5 of the other 

monomer in the dimer. However, closer visual inspection of the superposition of 

Sus1 onto the chain-a from PexRD2 (Figure 3.19) shows some clear differences 

between the two. For example, the second helix of Sus1 is extended by four residues 

when compared to α2, which results in a dramatic change in the positioning of 

helices 3 and 4 in Sus1, compared to the corresponding helices in PexRD2 (Figure 

3.19 B). These two helices are also both much longer in Sus1 relative to those in 

PexRD2. 

The helix from the Sus1-interacting protein, Sgf11 (Sgf11-h), that was crystallised in 

complex with Sus1 is also in a drastically different orientation than the 

corresponding α5 helix from the other PexRD2 in the dimer. Sgf11-h has its N-

                                                 
*
 Sus1 encoded by SUS1 (SUS = synthetic lethal gene upstream of Ysa1) 
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terminus near to the end of helix 5 from Sus1. Its C-terminus is close to the loop 

between Sus1 helices 3 and 4 (Figure 3.19 C-D). Whereas, in the PexRD2 dimer, the 

α5 of the chain-b monomer, starts close to the centre of α4 from chain-a; and ends 

nearer the start of α2 on chain-a (Figure 3.19 E). These findings suggest that rather 

than implying a shared function in ‘gene gating’, the superficial resemblance of 

PexRD2 to Sus1, may likely result from both proteins converging on a protein fold 

that mediates protein-protein interactions. The articulated helical hairpin allows tight 

binding to an α-helix from an interacting partner. In the case of Sus1, it allows 

heterodimer formation with other proteins involved in the SAGA and TREX2 

complexes, but for PexRD2 it appears to mediate homodimerisation. 
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3.2.8.3 Structural similarity of PexRD2 to other RXLR effectors 

Around the same time the crystal structure of PexRD2 from P. infestans was 

published, the three-dimensional structures of four other oomycete RXLR effectors 

were also released: AVR3a11  (Boutemy et al., 2011), AVR3a4 (Yaeno et al., 2011), 

ATR1
†
 (Chou et al., 2011) and ATR13 (Leonelli et al., 2011). AVR3a11 and 

AVR3a4 are paralogs from the hemibiotrophic pepper and curbit pathogen P. capsici 

(Pc), and are close homologs of arguably the best studied of RXLR effectors, 

AVR3a from P. infestans. ATR1 and ATR13 are RXLR effectors from 

Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph of the model plant 

Arabidopsis thaliana. 

The effector domains of AVR3a11 (Thr70 - Val132) and AVR3a4 (Gly59 - Tyr122) 

were determined by X-ray crystallography (Boutemy et al., 2011) and nuclear-

magnetic resonance (NMR) (Yaeno et al., 2011), respectively. The structure of 

AVR3a11 was solved to a sub-angstrom resolution of 0.9 Å, and the solution 

structure of AVR3a4 had an r.m.s.d. for the backbone atoms in the helical regions of 

the protein of 0.36 Å. Both were shown to adopt a four-helix bundle, with α-helices 

connected by loop regions, and with their folds stabilised by a core of hydrophobic 

residues. 

The crystal structure of the ATR1 effector domain (Ala52 - Val311) was solved to a 

resolution of 2.3 Å. The fold of ATR1 was described as a “two-domain, extended, 

seahorse like structure” and is comprised of 13 α-helices (Chou et al., 2011). The N-

terminal 'head' formed from the first three helices was separated from the larger C-

terminal 'body' made up of the other 10 helices, by a nine residue loop referred to as 

the 'neck' region. Analysis of the structure of the C-terminal body domain of ATR1 

revealed that it contained two five-helix structural repeats that were not evident in 

the primary sequence. The Cα-atoms for helices α4 – α8 could be overlaid on to 

those of the next five-helix segment (α9 – α13) with r.m.s.d. of 5.1 Å, in spite of 

only 8% sequence identity between the two repeats. 

The solution structure of ATR13 effector domain (Ser54-Gln154), from Hpa strain 

Emco5, has an r.m.s.d. for backbone atoms in the helical regions of the protein of 

                                                 
†
 ATR = Arabidopsis thaliana recognized 
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0.8 Å. The fold consists of a disordered N-terminal region preceding a three-helix 

bundle containing another large, disordered loop region. The central helix packs 

against a short helix and turn on one side, and a long C-terminal helix on the other. 

A comparison of PexRD2 to the other RXLR structures led to the identification of a 

three-helix bundle fold that was conserved in four of the five structures (Win et al., 

2012, Figure 3.20 B). This conserved fold was observed in the structures of PexRD2, 

Avr3a11, Avr3a4 and ATR1 (Figure 3.21 B); but not ATR13. These helices were 

linked by one conserved loop and one variable loop, and the fold was maintained by 

a hydrophobic core. This conserved fold was called the ‘WY-domain’ (Boutemy et 

al., 2011) (Figure 3.21), since it was shown to be composed of two published 

conserved sequence motifs (the W-motif and the Y-motif) that were known to be 

prevalent in the C-terminal effector domains of large numbers of RXLR effectors 

(Dou et al., 2008a). The key residues identified in each motif were buried inside the 

hydrophobic core of this bundle, and the interaction between these key residues was 

suggested to maintain the fold's overall structural integrity (Boutemy et al., 2011). 

The discovery of the WY-fold gave previous mutation analysis of these sequence 

motifs a structural context. With hindsight, the observation that the mutations at 

these key residues typically result in the loss of function of the W- and Y-motif 

containing RXLR effectors (Dou et al., 2008a) can be explained by their likely 

disruptive impact on the protein folding. Furthermore, although the key residues are 

likely to be important for effector stability, and hence function, the exact identity of 

these residues is variable between the different examples of WY-folds observed in 

the four effectors (Win et al., 2012b). The conserved WY-domain of PexRD2, which 

consists of helices α1, α2 and α5, has Met66 and Tyr111 in the key residue positions 

of the W- and Y- motifs, respectively. The WY-domains of AVR3a11 and AVR3a4, 

which consist of helices α2, α3 and α4, both have tryptophan and tyrosine residues in 

the key positions (Trp96/Tyr125, and Trp105/Tyr135 respectively). The C-terminal 

body region of ATR1 contains two WY-domains, with the first (ATR1-WY1) 

consisting of helices α6, α7 and α8, and the second (ATR1-WY2), helices α11, α12 

and α13. The key residues of ATR1-WY1 and ATR1-WY2 are Trp173/Cys208 and 

Tyr259/Tyr305, respectively. In all cases a hydrophobic core is maintained and 

 



3   Structural Characterisation of PexRD2 

102 

 

 

 

F
ig

u
re

 3
.2

0
 

S
tr

u
ct

u
re

s 
o
f 

R
X

L
R

 e
ff

ec
to

rs
 f

ro
m

 d
if

fe
r
en

t 
o
o

m
y
ce

te
 s

p
ec

ie
s 

sh
o
w

 a
 c

o
n

se
rv

ed
 f

o
ld

. 

(A
.)

 P
u
b

li
sh

ed
 s

tr
u
ct

u
re

s 
o
f 

R
X

L
R

 e
ff

ec
to

r 
d
o
m

ai
n
s 

sh
o
w

in
g
 k

ey
 s

tr
u
ct

u
ra

l 
fe

at
u

re
s.

 F
ro

m
 l

ef
t 

to
 r

ig
h
t:

 P
ex

R
D

2
 

(P
D

B
 I

D
 c

o
d

e:
 3

Z
R

G
),

 P
cA

V
R

3
a1

1
 (

3
Z

R
8
),

 P
cA

V
R

3
a4

 (
2
L

C
L

),
 a

n
d
 H

p
a

A
T

R
1

 (
3

R
M

R
).

 (
B

.)
 T

h
e 

sa
m

e 
fo

u
r 

st
ru

ct
u
re

s 
as

 a
b

o
v
e 

h
ig

h
li

g
h
ti

n
g
 o

n
ly

 t
h
e 

h
el

ic
es

 t
h
at

 c
o
n
tr

ib
u
te

 t
o
 t

h
e 

co
n
se

rv
ed

 W
Y

-f
o
ld

s.
 

  

A
. 

B
. 



3   Structural Characterisation of PexRD2 

103 

 

 

 

Figure 3.21 Sequence and structural alignments of WY-fold from 

published RXLR structures. 

(A.) Alignment of the five WY-fold sequences found in published structures of 

RXLR effectors, generated manually from structural alignments. Conserved 

residues are shaded black, and similar residues shaded grey. The positioning of the 

three helices that form the fold are shown above the alignment (red cylinders), as is 

the position of the variable loop region within this fold (wavy line). The key 

residues, from the W- and Y-motifs, that contribute to the hydrophobic core are 

highlighted by white triangles. (B.) Cartoon representation of superposition of the 

five WY-folds, with respective helices coloured as in Figure 3.20. ‘Loop’ regions 

are shown in grey, and the side-chains of the key residues that form the 

hydrophobic core of each WY-fold are shown in stick representation. (C.) R.m.s.d. 

values for pair-wise alignments of Cα within the conserved helices of the WY-

folds. Performed using the DaliLite server, with additional values as reported in 

Win et al., (2012). 

A. 

B. 

C. 
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water is excluded. When residues with large side chains are substituted for smaller 

ones, complementary mutations are observed at other positions to fill the available 

space (Win et al., 2012b). 

Comparison of the five available structures of WY-folds shows that the overall 

positions of the three constituent helices are highly conserved. R.m.s.d. for Cα-atoms 

of overlaid helices varied from 0.73 – 2.12 Å. This comparison also identified a 

number of ways this conserved fold could be adapted (Boutemy et al., 2011, Win et 

al., 2012b). With respect to PexRD2, one of the most striking adaptations is a 

significant insertion in the loop between the second and third helices of the 

conserved fold. The WY-fold of PexRD2 has an additional 16 residues inserted in 

this variable loop, compared to the corresponding loop in the structure of AVR3a11. 

These additional residues contribute to the two unique helices seen in the structure of 

PexRD2 (α3 and α4). Interestingly, the positioning of these two helices was 

highlighted previously as one of the regions that showed the greatest differences 

between the two monomers in the PexRD2 dimer (Section 3.2.6, Figure 3.15). The 

flexibility in this variable loop region is also evident in the comparison of the 

structures of the other WY-domains, and can be seen to vary in both length and 

conformation. 

Other significant adaptations of the conserved three-helix bundle fold are extensions 

on the N- and C-termini. In AVR3a11 and AVR3a4 an additional α-helix at the N-

terminus of the WY-fold adapts it into a four-helix bundle; and in the two WY-folds 

of ATR1, an extension of two α-helices at the N-terminus onto each one cause the 

five-helix structural repeats. Also in ATR1, the physical linking of two adapted WY-

folds in one polypeptide chain, plus the addition of N-terminal 'head' domain, show 

how this simple fold can be repeated and modified to give a diversity of structures. 

The structure of PexRD2 provides another example of how two WY-folds may be 

functionally linked. The WY-folds present in each of the two PexRD2 monomers are 

juxtaposed by dimer formation. Interestingly, the two helices (α3 and α4) that form 

the extended variable 'loop' of PexRD2, contribute a significant number of residues 

to the hydrophobic dimerisation interface. Therefore it is possible that the extension 

and formation of ordered helices in this variable loop may be a specific adaptation of 
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the WY-fold to support oligomerisation. None of the other WY-folds solved to date 

show any evidence of secondary structure within this region, nor do any show 

evidence of homo-oligomerisation. 

 

3.2.9 Structural modelling of PexRD2 homologs and family members 

Solving the structure of PexRD2 also allowed the use of homology modelling 

methods to generate predictions for the structures of PexRD2 homologs from other 

Phytophthora species, as well as PexRD2 family members from P. infestans. 

Analysis of available genome sequences suggests that PexRD2 homologs are 

restricted to clade 1C of the Phytophthora genus (Blair et al., 2008). Within this 

clade, a clear homolog of PexRD2 was identified in the genome of the closely 

related species, Phytophthora mirabilis (Pm) (Liliana Cano Mogrovejo, personal 

communication). Species in clade 1C have evolved through host jumps followed by 

adaptive specialisation on plants belonging to different botanical families (Blair et 

al., 2008, Raffaele et al., 2010a).  P. mirabilis is a pathogen of Mirabilis jalapa, also 

known as the four o'clock flower or marvel of Peru. A PexRD2 homolog was cloned 

from P. mirabilis PIC99114 gDNA using primers designed in the flanking regions of 

the gene, before ligating the amplified product into the pGEM
®
-T Easy vector and 

sequencing. This sequence showed signatures of positive selection (dN/dS = 1.27) 

and contained non-synonymous polymorphisms at five positions (Liliana Cano 

Mogrovejo, personal communication). Comparison to the PexRD2 structure revealed 

these five residues to be presented on the protein’s surface, although they were not 

co-localised to any one particular surface region (Figure3.22). It was concluded that 

these polymorphisms in surface exposed residues may have contributed to the 

adaptation of PexRD2 to a new host species without disrupting the stable WY-fold. 

These changes may be required to strengthen an interaction with homologs of the 

effector’s predicted virulence target in the new host, or allow the effector to interact 

with an entirely novel target. Alternatively they may allow evasion of recognition of 

the effector by the new host immune system. 
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Although PexRD2 appears restricted to the clade 1C species, PexRD2-like effectors 

can be identified in the reference genomes of P. infestans and the more distantly 

related P. sojae, and P. ramorum: the causative agents of soybean stem and root rot; 

and sudden oak death, respectively. A bioinformatic analysis of RXLR effectors 

from the reference genomes of P. infestans, P. sojae, and P. ramorum, based on 

homology restricted to within the C-terminal effector domains (Joe Win, personal 

communication) identified 12 putative PexRD2-like effectors in P. infestans using an 

E-value threshold of e
-03

; with five putative PexRD2-like effectors identified from P. 

sojae, and six from P. ramorum. However, manual inspection of sequence 

alignments eliminated two candidates from both P. infestans (PITG_09739 and 

PITG_09773) and P. sojae (PsG_134359 and PsG_159079), because they showed 

poor alignment, insertions and/or deletions within the conserved WY-fold of 

PexRD2. An alignment of PexRD2 with the remaining 19 PexRD2-like effectors is 

provided in Figure 3.23.  A phylogenetic tree based on this alignment and showing 

the proposed evolutionary relationships within the PexRD2-like effector family is 

shown in Figure 3.24. 

The IntFold2 server allows homology modelling using solved structures as templates 

(Roche et al., 2011). This server was previously used in a novel automated 

prediction pipeline to model haustoria-localised proteins from the barley powdery 

mildew pathogen, Blumeria graminis f. sp. hordei (Bindschedler et al., 2011). This 

Figure3.22
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homology modelling server, using the deposited PDB file of PexRD2 as a template, 

was able to generate predictions for the three-dimensional structures of all of the 

other 19 PexRD2-like effectors. The confidence level and p-values for these 

predictions of PexRD2-like effectors varied from CERT 9.989E-5 to MEDIUM 

3.140E-2, and the corresponding global model quality scores varied from 0.8762 to 

0.3230 (for PITG_14787 and PITG_13628 (PexRD27, (Oh et al., 2009)) 

respectively). A complete set of statistics for all PexRD2-like structure predictions is 

shown in Table 3.2. The best homology models for all family members were 

confidently predicted to adopt a WY-fold with similar adaptations in the variable 

loop region to those seen in PexRD2 (Figure 3.25). The most significant differences 

observed in the predicted structures compared to the solved structure of PexRD2 

tended to occur in regions that had already been identified as displaying some 

plasticity. Most notably, small insertions or deletions within the variable loop region 

and extensions at the N- and C-termini were observed. Extensions at the N-terminus 

tended to be relatively short, between 3 – 9 residues. On the other hand, longer C-

terminal extensions of between 10 – 107 residues were also observed. These 

extensions were largely predicted to be unstructured in the models with the highest 

confidence, although some of the less confident models did suggest some secondary 

and tertiary structure within these C-terminal extensions based on potential 

homology to other proteins in the PDB. 
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Figure 3.23 Sequence conservation in the effector domains of PexRD2-like 

effectors from Phytophthora spp. 

Sequence alignment of the effector domains of the 20 PexRD2-like effector family 

members created using PRALINE. Sequences are from P. infestans (PITG), P. sojae 

(PsG) and P. ramorum (PrG). The key features of the WY-fold are indicated as shaded 

boxes above the alignment (W-motif (dark grey), Y-motif (light grey) and the variable 

loop region (purple). The location of residues corresponding to Met66 and Tyr111 are 

indicated with . 

 

 



3   Structural Characterisation of PexRD2 

109 

 

 

 

Figure 3.24 The evolutionary relationships between PexRD2 family 

effectors from Phytophthora spp. 

Consensus tree by Maximum Likelihood methods as generated using an alignment of 

effector domains and the MEGA software package (Tamura et al., 2011). Sequences are 

from P. infestans (PITG), P. sojae (PsG) and P. ramorum (PrG). Sequences previously 

excluded from PexRD2-like effector family (PITG_09739, PITG_09773, PsG_134359 

and PsG_159079) were used as an out-group. Bootstrap values greater than 40% are 

shown at the appropriate nodes. 
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Table 3.2 Structural homology modelling statistics for PexRD2-like 

effectors 

Family 
member 

Confidencea P-valuea 
Global model 
quality scorea 

Sequence identity 
in aligned regionb 

PITG_14787 CERT 9.989E-5 0.8762 18/62 (29%) 

PITG_14986 CERT 1.020E-4 0.8742 27/59 (46%) 

PITG_14984 CERT 1.079E-4 0.8688 27/58 (47%) 

PITG_14783 CERT 1.160E-4 0.8618 18/62 (29%) 

PITG_14983 CERT 1.719E-4 0.8240 26/58 (45%) 

PITG_01934 CERT 1.720E-4 0.8239 11/47 (23%) 

PITG_21778 CERT 2.007E-4 0.8091 9/39 (23%) 

PITG_09741 CERT 2.183E-4 0.8010 12/44 (27%) 

PITG_13612 CERT 2.465E-4 0.7893 14/58 (24%) 

PsG_159220 CERT 2.488E-4 0.7885 27/59 (46%) 

PsG_159219 CERT 2.778E-4 0.7778 28/59 (47%) 

PrG_97258 CERT 3.367E-4 0.7593 17/60 (28%) 

PrG_78800 CERT 3.659E-4 0.7513 16/53 (30%) 

PrG_97380, 

PrG_97256 
CERT 4.491E-4 0.7316 18/57 (32%) 

PrG_97259 HIGH 1.302E-3 0.6292 15/53 (28%) 

PrG_97257 HIGH 2.404E-4 0.5702 16/53 (30%) 

PsG_159106 HIGH 5.221E-3 0.4956 18/56 (32%) 

PITG_13628 
(PexRD27) 

MEDIUM 3.140E-2 0.3230 18/60 (30%) 

 

All statistics listed above are for structures modelled on the published co-ordinates for 

PexRD2 effector domain (3ZRG), as found by template searching with IntFold server. 
a
 Values obtained from the IntFold (Version 2.0) server (Roche et al., 2011) 

b.
 Value obtained using BLASTP (Altschul et al., 1990). 
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Figure 3.25 Homology models of PexRD2-like effectors 

Models generated using the IntFold (v. 2.0) server (Roche et al., 2011) and oriented 

with the chain-a in PexRD2 (top left). Models are arranged in order of decreasing global 

model quality score, and coloured by local model quality score (residue accuracy 

prediction). Where images have been cropped, the full structure is shown to right of the 

cropped image, with the region displayed highlighted in the dotted square. 
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3.3 Conclusion 

At the start of this project there was no structural information for RXLR effectors. At 

the time of writing this thesis, the three-dimensional structures of five RXLR 

effector domains have been published, PexRD2 from Phytophthora infestans, 

Avr3a11 and Avr3a4 from P. capsici; and ATR1 and ATR13 from H. arabidopsidis. 

The decision to omit the N-terminal region of PexRD2, which contains the 

translocation motifs, from the construct design appears a prudent one, in terms of 

producing protein for structural study. The structures of all RXLR effectors solved 

by X-ray crystallography have also excluded these regions. The PcAVR3a4 structure 

solved by NMR is the full length mature protein (excluding only the signal peptide), 

and shows the N-terminal region as disordered (Yaeno et al., 2011). Furthermore, 

NMR analysis of the effector domain of PcAVR3a11 revealed residues 63 – 69 were 

structurally disordered and impeded crystallisation. Excluding these residues yielded 

protein that crystallised readily, producing protein crystals that diffracted to sub-

angstrom resolution (Boutemy et al., 2011).  

Solving the crystal structure of the effector domain of PexRD2 was crucial to the 

identification of the WY-fold. It demonstrated that a three-helix bundle was the 

minimal conserved structural motif. The fold is composed of, and hence named after, 

two sequence motifs previously identified as prevalent in RXLR effector C-terminal 

domains: the W- and Y- motifs. Bioinformatics revealed that this fold may be 

present in over 44% of all predicted RXLR effectors (Win et al., 2012b), with some 

having up to 11 tandem repeats of WY-folds. Also, the WY-domain, like the RXLR 

motif, was shown to be limited to haustoria-forming phytopathogenic oomycetes.  

The prevalence of RXLR effectors containing this conserved fold may have arisen 

from the extensive gene duplication which is a common mechanism of effector 

evolution in Phytophthora spp. (Haas et al., 2009, Raffaele et al., 2010b). The fold 

may have been preserved in this large number of effectors because it represents a 

protein scaffold that is stable in the plant cytosol following translocation; and can be 

extensively modified to increase its functionality. The adaptation of a simple protein 

scaffold to achieve a diversity of functions can also be seen both in nature: in the 
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virion assembly proteins of some bacteriophage (Cardarelli et al., 2010); and in 

synthetic biology: in libraries of de novo designed four-helix bundles that function to 

complement different lethal mutations in E. coli (Fisher et al., 2011). 

The WY-fold can be adapted through surface polymorphisms, extensions at the N- 

and C-termini and changes within the variable loop region between WY-α2 and WY-

α3. The structure of PexRD2 demonstrates that insertions within the variable loop 

region can display secondary structure. It is also unique amongst published RXLR 

effector structures as it demonstrates how WY-domains can oligomerise, which 

could further increase their functionality. One could hypothesise that these two 

observations are linked, since the two helices that are formed by the extension with 

the variable loop contribute extensively to the hydrophobic dimerisation interface. 

This suggests that dimerisation is important for this effector’s function. 

Although the lack of significant structural homology to characterised proteins 

currently available in the PDB has not aided assignment of a biochemical function to 

this effector, the structure does provide a useful framework to interpret future results 

that would otherwise be unavailable. It can also be exploited as a platform for the 

rational design of structurally informed mutants of PexRD2 that could be used to 

probe this effectors functioning (see Section 5.2.10).  

The effector domain of PexRD2 has been used as a template for the homology 

modelling of other RXLR effectors within the PexRD2 effector family. As would be 

expected, all family members were confidently predicted to adopt a WY-fold with 

similar adaptations to those seen in PexRD2. However, since the WY-fold is highly 

prevalent within the effectoromes of some oomycetes, the published co-ordinates of 

PexRD2 may assist in solving of the structures of other, less closely related, RXLR-

WY-effectors. The WY-fold of PexRD2 could be used as a search model for 

molecular replacement methods to solve the phase problem. Since molecular 

replacement requires no additional experimental procedures or data, and additionally 

simplifies model-building, it is usually the method of choice for structure 

determination when a suitable search model is available. In fact, to date, the majority 

(>60%) of macromolecular crystal structures within the PDB have been solved by 

molecular replacement. 
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4 Identifying Potential Host Targets of 

PexRD2 

4.1 Introduction 

A central paradigm in the field of plant pathology is that understanding how 

phytopathogens interact and co-evolve with their host plants is dependent on first 

determining the virulence, and avirulence, activities of their effectors (Oh et al., 

2009). Bioinformatic analysis of the genome sequences of plant pathogenic 

oomycetes has revealed extensive effector repertoires. For example, the genome 

sequence of Phytophthora infestans strain T30-4 has a total of 563 predicted RXLR 

effector genes (Haas et al., 2009). The biochemical effector functions of the majority 

of RXLR effectors remain unknown. However, high-throughput effectoromics 

combined with in-depth studies of particular effectors have begun to uncover the 

mechanisms behind the virulence and avirulence activities of these effectors. 

The P. infestans effector AVR3a is able to suppress the programmed cell death 

(PCD) response triggered by the PAMP-like molecule INF1 (Bos et al., 2006, Bos et 

al., 2009). This effector was shown to be essential for the pathogen’s virulence. An 

AVR3a stable-silenced line of P. infestans 88069 shows significantly reduced 

virulence and infectivity; which was restored by transient over-expression of AVR3a 

in the host (Bos et al., 2010b). The virulence activity of AVR3a was inferred to 

result from this effector’s capacity to interact with, and stabilise, the host E3 

ubiquitin ligase CMPG1
*
 (Bos et al., 2010b). CMPG1 is required for the plant 

immune response to a diverse range of elicitors, including INF1 (González-Lamothe 

et al., 2006, Gilroy et al., 2011). The nature of CMPG1 as a virulence target for this 

effector is supported by evidence from infection of wild-type or CMPG1-silenced 

Nicotiana benthamiana; although the data indicated contrasting roles in the 

biotrophic and necrotrophic stages of infection (Bos et al., 2010b). During the 

biotrophic stage, AVR3a-mediated stabilisation of CMPG1 suppresses its activity 

and is hypothesised to allow colonisation of the host. However, CMPG1 is 

                                                 
*
 CMPG1, named according to the first four strictly conserved amino acids: cysteine, methionine, 

proline, and glycine (Kirsch et al., 2001).  
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implicated to play a positive role in infection development during the necrotrophic 

stage, since infections of CMPG1-silenced plants showed reduced lesion growth and 

sporulation. 

IPI-O1 (also known as AVRblb1) is a P. infestans RXLR effector that is recognised 

by the Rpi-blb1 late blight resistance (R) protein from the wild potato Solanum 

bulbocastanum in a gene-for-gene manner (Vleeshouwers et al., 2008). The effector 

protein has also been shown to contain an RGD (arginine-glycine-aspartate) 

tripeptide sequence which mediates an interaction with the lectin receptor kinase 

LecRK-I.9 (Senchou et al., 2004, Gouget et al., 2006, Bouwmeester et al., 2011). 

Interaction of IPI-O1 with this receptor kinase caused disruption of cell wall-plasma 

membrane adhesions in Arabidopsis. Since Arabidopsis is a non-host for P. 

infestans, testing this effector-target interaction during infection utilised the 

Phytophthora brassicae-Arabidopsis pathosystem. Plants mutated in the LecRK-I.9 

gene showed a gain-of-susceptibility phenotype, which could be phenocopied by 

transgenic lines over-expressing IPI-O1 (Bouwmeester et al., 2011), suggesting an 

important role for this protein in resistance against Phytopthora spp. 

AVRblb2 is a recognised effector from P. infestans, that blocks infection of potato 

plants carrying the broad-spectrum R  gene Rpi-blb2 from S. bulbocastanum (Oh et 

al., 2009). AVRblb2 was shown to interact with the host papain-like cysteine 

protease C14 (Bozkurt et al., 2011). During infection, both the effector and 

interacting protease accumulated at the haustoria; and co-expression of AVRblb2 

blocked the normal secretion of C14 to the host apoplast (Bozkurt et al., 2011). 

Transient silencing of C14 in N. benthamiana caused increased susceptibility to 

P. infestans (Kaschani et al., 2010, Bozkurt et al., 2011); which was also observed in 

transgenic plants over-expressing AVRblb2 (Bozkurt et al., 2011). In contrast, 

transgenic over-expression of C14 conferred increased resistance against P. 

infestans, which could be partially reversed by simultaneous over-expression of 

AVRblb2 (Bozkurt et al., 2011). These results suggest that AVRblb2 enhances 

virulence by functioning as an inhibitor of the secretion of the plant immunity 

associated protease C14. 
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The potato and tomato orthologs of BSL1 have been shown to associate with both 

P. infestans RXLR effector AVR2 and the Solanum demissum R protein R2 to 

mediate disease resistance (Saunders et al., 2012). Arabidopsis BSL1 (BSU1
†
-LIKE 

PROTEIN1) is a predicted serine/threonine-protein phosphatase, with an N-terminal 

kelch repeat region and C-terminal phosphatase domain, which is involved in 

brassinosteroid signal transduction (Mora-García et al., 2004, Kim et al., 2009). The 

effector domain of AVR2 and putative phosphatase domain of BSL1 were shown to 

mediate the interaction, and the two proteins were shown to co-localise and 

accumulate around haustoria during infections (Saunders et al., 2012). Silencing 

BSL1 in N. benthamiana revealed that it was specifically required for the recognition 

of AVR2 by R2, and not the other AVR-R recognition events tested (Saunders et al., 

2012). BSL1-silenced plants showed a loss of R2-mediated resistance following 

infection with P. infestans, but no other effect of BSL1-silencing during either 

compatible or incompatible infections could be observed (Saunders et al., 2012). In 

planta co-IPs revealed an association between BSL1 and R2 only in the presence of 

AVR2 (Saunders et al., 2012); consistent with indirect recognition of the effector by 

the R protein, through its interaction with the BSL1 protein as an intermediate. As 

such BSL1 could represent a ‘guarded’ virulence target (van der Biezen and Jones, 

1998), or represent a ‘decoy’ that aids the recognition of the effector by R2 (van der 

Hoorn and Kamoun, 2008). However, further investigation is required to elucidate 

the function of BSL1 during infection. 

The characterisation of the biochemical functions of the RXLR effectors described 

above has been assisted greatly by the identification of their interacting host proteins. 

The adaptive function of effectors is to manipulate the host cell function and 

structure for the benefit of the pathogen, and the means by which effectors achieve 

this manipulation is likely to result from an interaction with components of the 

signalling cascades and executors of the plant defence response. To identify 

PexRD2-interacting host proteins that might provide an insight into the biochemical 

function of this effector, a yeast two-hybrid screen was conducted using PexRD2 and 

a cDNA library extracted from infected host tissue.  

                                                 
†
 BSU1 = bri1 SUPPRESSOR 1, BRI1 = BRASSINOSTEROID-INSENSITIVE 1 
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4.2 Results and Discussion 

4.2.1 Yeast two-hybrid screening – introduction 

Yeast two-hybrid (Y2H) screening is a molecular biology technique used to discover 

protein–protein interactions, by testing for physical interactions between 

two proteins (Fields and Song, 1989). The principle behind the test is the activation 

of downstream reporter genes by the binding of a transcription factor onto an 

upstream activating sequence (UAS). The transcription factor’s DNA binding 

domain (DBD) is responsible for binding to the UAS, and the activation domain 

(AD) is responsible for activating transcription. The protein of interest is fused to the 

DBD, and called the ‘bait’, whilst potential interactors are fused to the AD, and 

called ‘prey’. If the bait and prey interact, they bring the DBD and AD in close 

enough proximity to each other, to reconstruct the transcription factor and lead to the 

transcription of the reporter genes. 

Y2H screening with PexRD2 was conducted using the ProQuest™ Two-Hybrid 

System (Invitrogen). This system utilizes Saccharomyces cerevisiae MaV203 which 

has a single copy of each of three GAL4 inducible reporter genes (HIS3, URA3, and 

lacZ) integrated into its genome. Activation of the reporter genes can be detected by 

growth on plates lacking histidine or uracil, or the formation of a blue colouration in 

the presence of X-gal resulting from the activity of the lacZ encoded β-galactosidase 

enzyme, respectively. 

 

4.2.2 Identification of PexRD2-interacting proteins using the 

ProQuest™ Two-Hybrid System 

Note: The yeast two-hybrid screen, described below, was conducted by Dr. Miles 

Armstrong at the James Hutton Institute (JHI), Invergowrie, Dundee, Scotland UK. 

Follow-up Y2H analyses were conducted initially with Dr. Miles Armstrong at JHI, 

and later independently at JIC. 

To identify PexRD2-interacting host proteins (PexRD2PIs), a yeast two-hybrid 

screen was conducted using a PexRD2 paralog, (PITG_11383
K104E

, residues 21 – 

http://en.wikipedia.org/wiki/Protein
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121) as the bait. This was screened against a cDNA prey library, prepared from RNA 

extracted in the early biotrophic and later necrotrophic phases of a susceptible potato 

interaction (Bos et al., 2010b). Prey plasmids from yeast colonies that grew on 

selective media lacking histidine were isolated and sequenced using the suggested 

forward and reverse sequencing primers as described in the manufacturer’s manual. 

PexRD2PIs were identified by using these sequencing results to search the released 

Solanum tuberosum Group Phureja DM1-3 (DM) annotated genome sequence 

(Potato Genome Sequencing Consortium et al., 2011) and BLAST searches of non-

redundant protein databases (Altschul et al., 1990). Following confirmation of the 

entire gene sequences of interacting yeast clones by iterative rounds of sequencing, 

four candidate interactors were identified: MAPKKKε; two unknown protein kinases 

with homology to phylogenetically annotated MAPKKK kinases (MAPKKKKs or 

MAP4Ks, henceforth PexRD2 interacting MAP4K 1 (PM4K1) and 2 (PM4K2)); and 

a U-box domain-containing protein with homology to the Arabidopsis protein 

PUB38 (Table 4.1). Each candidate was found as multiple clones. 

To confirm the interactions were not false positives, a clone for each candidate 

interactor was re-transformed and re-screened in Y2H against a PexRD2 bait 

(PITG_21422, residues 21 – 121), or the a bait vector control (empty pDEST™32). 

Figure 4.1 Overview of the yeast two-hybrid system 

In the Y2H system, the protein of interest (X) is fused to the DNA-binding domain 

(DBD), to produce the ‘bait’; whilst potential interactors (Y) are fused to the activation 

domain (AD), to produce the ‘prey’. An interaction between the two proteins mediates 

the reconstruction of the transcription factor, which activates transcription of specific 

reporter genes, containing an upstream activating sequence (UAS) in their promoter 

regions (Fields and Song, 1989). 
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Each bait/prey combination was tested in assays for each of the three independent 

reporter genes (Figure 4.2). 

Each candidate interactor was confirmed positive for an interaction with PexRD2 by 

activation of at least two of the three independent reporter genes. None of the 

candidate interactors were able to activate the reporter genes in the absence of 

PexRD2, confirming that they were not auto-active. Interestingly the interactions 

between PexRD2 and PM4K1 or PM4K2 activated the more stringent URA3 reporter 

gene, suggesting that these may be stronger interactions, whilst the interaction with 

the U-box domain containing PUB38-like only showed weak blue colouration in the 

presence of X-gal, suggesting this may be a weaker interactor. Since the interactions 

between the host protein kinases and PexRD2 appeared to be the strongest, 

combined with MAPKKKε having already been identified as a regulator of plant 

immunity signalling, these interactions were prioritised for further characterisation 

using a range of protein-protein interaction techniques. 

 



4   Identifying Potential Host Targets of PexRD2 

121 

 

 

 

T
a
b

le
 4

.1
 

P
ex

R
D

2
-i

n
te

ra
ct

in
g
 p

r
o
te

in
s 

id
en

ti
fi

ed
 b

y
 Y

2
H

 s
cr

ee
n

in
g

 

N
F

 =
 n

o
t 

fo
u

n
d

. 
H

o
w

ev
er

 P
M

4
K

1
 s

h
o
w

s 
o
v
er

al
l 

se
q
u
en

ce
 i

d
en

ti
ty

 t
o
 t

h
e 

fo
ll

o
w

in
g
 t

h
re

e 
p

re
d
ic

te
d

 p
ro

te
in

s:
 P

G
S

C
0

0
0

3
D

M
P

4
0

0
0

2
5

0
1

8
 

(4
9

.0
%

);
 P

G
S

C
0

0
0

3
D

M
P

4
0

0
0
2
5
0
1
9
, 
(4

8
.8

%
);

 P
G

S
C

0
0
0
3
D

M
P

4
0
0
0
2
5
0
1
7
, 

(4
8
.7

%
).

 



4   Identifying Potential Host Targets of PexRD2 

122 

 

 

 

4.2.3 MAPKKKε 

Kinase signalling-cascades of the mitogen-activated protein (MAP) kinase class play 

central roles in transmitting external and endogenous signals to downstream targets, 

and are crucial for the regulation of development, growth and programmed cell death 

(PCD), as well as responses to both abiotic and biotic stresses.  MAP kinase cascade-

mediated signalling is an essential step in the establishment of resistance to a diverse 

range of pathogens (Colcombet and Hirt, 2008, Pitzschke et al., 2009). The MAP 

kinase core module is highly conserved in eukaryotes and consists of three protein 

kinases that are sequentially activated by the upstream component to form a 

‘phospho-relay’. At the bottom of the cascade, a MAP kinase (MAPK or MPK) is 

activated by the dual phosphorylation of the threonine-x-tyrosine motif located 

Figure 4.2 PexRD2 interacts with four host proteins in Y2H 

Y2H analysis of co-transformants carrying PexRD2 bait and one of the four identified 

interacting host proteins as indicated. Interaction between PexRD2 and the host protein 

preys allows growth on plates lacking histidine (–HIS) and blue colouration in the 

presence of X-gal (+Xgal). The stronger interaction between PexRD2 and PM4K1 or 

PM4K2 also allow growth on plates lacking uracil (-URA). No growth on –HIS plates 

was detected for co-transformants carrying empty vector controls, confirming that 

none of the proteins in question are auto-active. Bait/prey combinations were tested in 

triplicate and single representative colonies are shown. 

 



4   Identifying Potential Host Targets of PexRD2 

123 

 

 

within the activation loop of its kinase catalytic domain. This phosphorylation is 

mediated by a MAP kinase kinase (MAPKK or MKK), which, in turn, is activated 

by phosphorylation by a MAP kinase kinase kinase (MAPKKK or MKKK). In 

higher plants, roughly 10% of all kinases are involved in MAPK pathways, and 

MAPKKKs are the most divergent of these three proteins. The genome of the model 

plant, Arabidopsis thaliana, encodes approximately 80 putative MAPKKKs, at least 

10 MAPKKs and 20 MAPKs (Ichimura et al., 2002, Colcombet and Hirt, 2008). 

The tomato homolog of MAPKKKε was discovered by Melech-Bonfil and Sessa 

(2010) as a positive regulator of cell death responses associated with plant immunity 

(see Introduction to Chapter 5 for more details). SlMAPKKKε is a 154 kDa protein 

with an N-terminal catalytic kinase domain, and a C-terminal domain containing two 

armadillo (ARM) repeats. ARM repeats are short ~42-amino-acid motifs that have 

been implicated in mediating protein-protein interactions (Huber et al., 1997). 

SlMAPKKKε shares 98% amino acid sequence identity with the potato homolog 

indentified in the Y2H screen, StMAPKKKε. If the comparison is limited to the 

catalytic kinase domains (residues 19 – 273) the two proteins share 100% identity. 

Phylogenetic analysis revealed that SlMAPKKKε and its homologs belong to the A4 

subgroup of plant MAPKKKs (Ichimura et al., 2002). Closely related homologs can 

also be found in a range of dicot plants, including the wild tomato species, Solanum 

pimpinellifolium (99% amino acid sequence identity), and N. benthamiana 

(NbMAPKKKε1, 90%). More distantly related homologs were found in Arabidopsis 

thaliana (AtMAPKKKε1, 72%; and AtMAPKKKε2, 69%) and Brassica napus 

(BnMAPKKKε1, 67%). 

 

4.2.4 The WY-domain of PexRD2 interacts with the catalytic kinase 

domain of MAPKKKε 

To identify which domains of StMAPKKKε and PexRD2 were involved in the 

interaction, different N- and C-terminal truncation of both were sub-cloned into the 

pENTR™/D-TOPO
®
 entry vector, before being transferred into the Y2H vectors by 

Gateway
®

 cloning. 
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Five truncated StMAPKKKε prey vector constructs were tested for interaction with 

PexRD2 (residues 21 – 121). These constructs were tested alongside the almost full 

length StMAPKKKε prey construct identified in the Y2H screen (clone PexRD2PI-1 

residues 4 – 1401), and the appropriate empty vector controls as before. 

PexRD2 interacted with all three constructs that contained the N-terminal catalytic 

kinase domain (KD) (N1, residues 2 – 373; N2, residues 2 – 300; and N3, residues 2 

– 278), as evidenced by both the growth of co-transformed yeast on media lacking 

histidine, and the development of blue colouration in the presence of X-gal (Figure 

4.3). On the other hand, PexRD2 showed no interaction with the two C-terminal 

region constructs (C1, residues 279 – 1401; and C2, residues 301 – 1401). These 

results indicate that the catalytic kinase domain of MAPKKKε is both necessary and 

sufficient for the interaction with the effector PexRD2. As with the original Y2H-

library clone, none of the truncated StMAPKKKε prey constructs showed any 

evidence of auto-activation activity. 

To identify whether the effector domain of PexRD2 was sufficient for the interaction 

with MAPKKKε, the full length mature effector (residues 21 – 121) and two N- 

terminal truncations of PexRD2 in the Y2H-bait vector were screened for protein-

protein interactions with MAPKKKε. The truncated PexRD2 constructs started 

either immediately after the RXLR translocation motif, but included the ‘dEER’ 

motif (residues 42 – 121) or immediately after the ‘dEER’ motif, and included just 

the WY-fold containing effector domain (residues 57 – 121). The original almost full 

length (~FL) PexRD2PI-1 clone, as well as the MAPKKKε-N2 and -N3 truncations 

were used as known interacting preys. All bait/prey combinations were assessed 

using the HIS3, and lacZ reporter gene assays, alongside empty vector controls. 

All three PexRD2 constructs were able to interact with the MAPKKKε prey 

constructs, as evidenced by the activation of both the HIS3 and lacZ reporter genes 

(Figure 4.4). These results demonstrate that the N-terminal region of PexRD2, 

containing the translocation motifs is dispensable for the interaction. On the other 

hand, the effector domain of PexRD2, which contains a WY-fold, mediates the 

interaction with MAPKKKε KD. As with the original PexRD2 bait, the truncated 

bait constructs showed no evidence of auto-activation of the reporter genes. 
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Figure 4.4 PexRD2 WY-domain interacts with MAPKKKε 

Y2H analysis of co-transformants carrying PexRD2 baits and StMAPKKKε preys are 

indicated (~FL = residues 4 – 1401, N2 = 2 – 300, N3 = 2 – 278). Growth on SC-LW 

(TOP panel) confirms co-transformation. Interaction between PexRD2 truncations and 

MAPKKKε confirmed by activation of (MIDDLE) HIS3 and (BOTTOM) lacZ reporter 

genes. Bait/prey combinations were tested in triplicate using three single colonies. 
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4.2.5 PexRD2 specifically interacts with MAPKKKε orthologs 

To confirm if the interaction between PexRD2 WY-domain and StMAPKKKε KD 

was specific, interactions between PexRD2 and a MAPKKKε ortholog, or the 

catalytic kinase domain (KD) of a second, closely related, tomato MAPKKK, 

SlMAPKKKα, were also assessed. The potato and tomato homologs of MAPKKKε 

share 100% amino acid sequence identity within the identified minimal interacting 

domain (MAPKKKε-N3); so instead an interaction between PexRD2 and 

AtMAPKKKε1 was tested. This Arabidopsis ortholog shares an overall 72% 

sequence identity with the potato protein, and 94% identity with StMAPKKKε-N3. 

SlMAPKKKα had also been identified as a positive regulator of cell death signalling 

pathways associated with both plant immunity and disease (del Pozo et al., 2004). 

Significant homology between MAPKKKε and MAPKKKα is restricted to the 

catalytic kinase domains, with the two proteins sharing 42% identity within their 

aligned regions. 

An entry clone encoding the full length AtMAPKKKε1 was provided by Dr Malick 

Mbengue (The Sainsbury Laboratory, NRP), whereas a sequence encompassing the 

SlMAPKKKα KD (residues 192 – 467) was sub-cloned into pENTR™/D-TOPO
®
, 

from a binary vector provided by Professor Gregory B. Martin (Boyce Thompson 

Institute for Plant Research (BTI), Ithaca, NY). The respective Y2H-prey constructs 

were then generated using Gateway
®

 cloning methods. 

Prey constructs encoding: AtMAPKKKε1, SlMAPKKKα KD, StMAPKKKε ~FL 

(PexRD2PI-1), StMAPKKKε KD (N2), and an empty prey vector control; were co-

transformed with bait vectors: encoding PexRD2, PexRD2 WY-domain, or an empty 

bait vector control. Yeast cells expressing the PexRD2 and AtMAPKKKε1 failed to 

activate the HIS3 and lacZ reporter genes under the same assay conditions used to 

detect the interaction between PexRD2 and StMAPKKKε (Figure 4.5). However, 

protein-protein interactions between AtMAPKKKε1 and PexRD2 WY-domain were 

detectable, as evidenced by the growth on media lacking histidine and the 

development of a blue colouration in the presence of X-gal, indicating β-

galactosidase activity. No interactions between PexRD2 or PexRD2 WY-domain and 

the kinase domain of SlMAPKKKα were detected. 
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Figure 4.5 PexRD2 interacts specifically with MAPKKKε orthologs 

Y2H analysis of co-transformants carrying PexRD2 (FL = residues 21 – 121, WY = 57 

– 121) baits and StMAPKKKε preys (~FL = residues 4 – 1401, KD = 2 – 300), 

alongside AtMAPKKKε1 FL (residues 1 – 1368) and SlMAPKKKα KD (residues 192 – 

467) preys. Growth on SC-LW (TOP panel) confirms co-transformation. Interaction 

between specific baits and preys confirmed by activation of (MIDDLE) HIS3 and 

(BOTTOM) lacZ reporter genes. Bait/prey combinations were tested in triplicate using 

three single colonies. 
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The observation that PexRD2 WY-domain yields a weak, yet detectable interaction 

with the Arabidopsis ortholog, whilst PexRD2 does not, may be explained in a 

number of ways. It could indicate that the N-terminal region of the effector impinges 

on the interaction with the Arabidopsis, but not the potato, kinase. Alternatively, it 

could indicate that the interaction between AtMAPKKKε1 and PexRD2 is existent, 

but weaker than that between AtMAPKKKε1 and PexRD2 WY-domain and as such 

too weak to activate the reporter genes in this experimental system. Of the two 

explanations, the second is perhaps more favourable, as the interaction between 

PexRD2 WY-domain and StMAPKKKε was shown to give more robust activation of 

the lacZ reporter gene than that with PexRD2 (Figure 4.4). 

Together, these results suggest that the WY-domain of PexRD2 specifically interacts 

with the kinase domains of MAPKKKε homologs and not generically with 

MAPKKKs. Furthermore, the potentially weaker interaction between PexRD2-WY 

and the Arabidopsis ortholog, compared to PexRD2-WY and the potato ortholog, 

suggest that the effector is better adapted to interact with the host potato protein, 

rather than the non-host, Arabidopsis, protein. However, confirmation of this would 

be dependent on determining the expression levels of the two kinase orthologs in 

yeast. 

To further test specificity, a PexRD2 ortholog from the Phytophthora mirabilis was 

tested for an interaction with StMAPKKKε. This sequence flanked by the attB 

recombination sites was synthesised supplied in a pUC57 vector by Genscript 

(USA). The sequence of this effector had originally be confirmed (see Section 3.2.9) 

by cloning from P. mirabilis PIC99114 gDNA (provided by Liliana Cano 

Mogrovejo (TSL)) Gateway
®

 cloning methods were used to transfer the sequence 

from the pUC57 vector into the entry vector pDONR™201, and eventually into the 

Y2H-bait vector as described previously. 

In addition, two PexRD2-like effector family members (see Section 3.2.9) were 

cloned from P. infestans T30-4 gDNA (from Liliana Cano Mogrovejo (TSL)) into 

the pENTR™/D-TOPO
®

 entry vector. The coding sequences of PITG_14984 and 

PITG_14787 (excluding the N-terminal signal peptides), are henceforth referred to 

as PexRD2-like-1a and PexRD2-like-2a, respectively. These were confirmed by 
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sequencing; and PexRD2-like-1a was shown to share 47% amino acid sequence 

identity with the WY-domain of PexRD2; whilst PexRD2-like-2a shared 29% 

identity. These two effector sequences were then transferred to the pDEST™32 bait 

vector by Gateway
® 

cloning, and tested for interactions with prey vectors 

StMAPKKKε, or the StMAPKKKε-N2 and -N3 truncations as before. 

The P. mirabilis ortholog of PexRD2 showed activation of both reporter genes 

indicating an interaction with StMAPKKKε preys. In contrast, neither PiPexRD2-

like-1a, nor PiPexRD2-like-2a, showed any evidence of interaction with the 

StMAPKKKε preys (Figure 4.6 A). The expression of both PexRD2-like GAL4-

DBD fusion proteins in yeast was confirmed by western blot (Figure 4.6 B). 

Therefore, the lack of detectable interactions is not due to the proteins not being 

expressed per se, although the protein level of PexRD2-like-1a was markedly lower 

than that of PexRD2 or PexRD2-like-2a. These results further support the conclusion 

that different PexRD2 homologs, and not other PexRD2-like RXLR effectors, are 

adapted to interact with MAPKKKε homologs.  
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Figure 4.6 PexRD2 orthologs, but not PexRD2-like effectors, interact 

with MAPKKKε in yeast two-hybrid 

(A.) Y2H analysis of co-transformants carrying PexRD2 or PexRD2-like baits and 

StMAPKKKε (~FL = residues 4 – 1401, N2 = 2 – 300, N3 = 2 – 278). Growth on SC-

LW (TOP panel) confirms co-transformation. Interaction between PexRD2 baits and 

MAPKKKε preys confirmed by activation of (MIDDLE) HIS3 and (BOTTOM) lacZ 

reporter genes. Bait/prey combinations were tested in triplicate using three single 

colonies. (B.) Western blot analysis confirming expression levels of PexRD2 and 

PexRD2-like baits. White stars indicate the expected sizes of full length fusion proteins. 

MaV203 represents total proteins from an untransformed yeast and serves as a negative 

control. PS indicates Ponceau staining to confirm protein loading. 

A. 

B. 
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4.2.6 PexRD2 interacts with MAPKKKε in planta 

Since the interaction between PexRD2 and MAPKKKε was confirmed to be specific 

in the Y2H system, independent protein-protein interaction experiments were 

conducted to confirm this in planta. 

PexRD2 was confirmed to interact with MAPKKKε in planta by bimolecular 

fluorescence complementation (BiFC) (Dr Petra Boevink (JHI), unpublished data). 

This technique allows the detection of protein-protein interactions in living cells, and 

is based upon reconstitution of split fragments of a fluorescent protein, primarily 

yellow fluorescent protein (hence “split YFP”), to form a fluorescent fluorophore 

(Ghosh et al., 2000, Hu et al., 2002). Co-expression of PexRD2 fused to the N-

terminal portion of YFP (YN-), with StMAPKKKε-FL fused to the C-terminal 

portion (YC-), resulted in clear fluorescence, indicating protein-protein interactions. 

Although weak fluorescence was detected when YN-PexRD2-like-1a or YN-

PexRD2-like-2a were co-expressed with YC-StMAPKKKε, above that observed in 

the uninfiltrated control, the level of fluorescence was significantly lower than that 

observed for co-expression with YN-PexRD2. Switching to use YC-fused effectors 

and YN-StMAPKKKε had no effect on the observed results (Petra Boevink, personal 

communication). 

These results support the conclusion that PexRD2 specifically interacts with 

MAPKKKε, and show that this interaction can occur within living plant cells. 

Additional experiments to independently confirm this in planta interaction via co-

immunoprecipitation (Co-IP) are on-going. 
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4.2.7 PM4K1 and PM4K2 

The signalling components upstream of the MAPKKKs at the top of the three-tiered 

MAPK cascades, are typically poorly characterised, but a number have been shown 

to be activated by, so called, MAPKKK kinases (MAPKKKKs or MAP4Ks) (Qi and 

Elion, 2005). PexRD2 interacts with two protein serine/threonine kinases (named 

PM4K1 and PM4K2) that show homology to the kinase domains of Ste20p-related 

protein kinases. Ste20p (Sterile 20 protein) is a putative yeast MAP4K that is known 

to activate a MAPK cascade by direct phosphorylation of the MAPKKK, Ste11p 

(Wu et al., 1995, van Drogen et al., 2000). Clear homologs of this protein have been 

identified in mammals and other organisms, indicating that Ste20-related protein 

kinases comprise a large, emerging family (Dan et al., 2001). This family can be 

further divided into the p21-activated kinase (PAK) and germinal centre kinase 

(GCK) families. They are characterized by the presence of a conserved catalytic 

kinase domain, located at the C-terminus for PAKs and the N-terminus for GCKs, 

and a structural diverse non-catalytic region. Ste20p-related kinases have been 

implicated in a diverse range of intracellular regulatory processes, including the 

regulation of apoptosis, morphogenesis and rearrangement of the cytoskeleton (Sells 

and Chernoff, 1997, Bagrodia and Cerione, 1999, Kyriakis, 1999). 

A search for conserved protein domains using CD-search (Marchler-Bauer et al., 

2011) revealed that PM4K1 and PM4K2 contain serine/threonine kinase catalytic 

domains (Figure 4.7) with homology to those found in the oxidative stress response 

kinase (OSR1) and Ste20-related proline alanine-rich kinase (SPAK


). OSR1 and 

SPAK are both GCKs and belong to the GCK-VI subfamily (Dan et al., 2001). 

These two proteins share distinctive features in their non-catalytic regulatory regions 

including a putative nuclear localisation signal (NLS), a caspase-cleavage site and a 

C-terminal region of high conservation required for interaction with their 

downstream membrane associated protein targets (Piechotta et al., 2003, Delpire and 

Gagnon, 2008). Although some of the residues comprising the putative NLS are 

conserved in PM4K1 and PM4K2 (Figure 4.7), the rest of the proposed regulatory 

regions of the two PexRD2-interacting kinases are generally highly divergent from 

                                                 


 also known as PASK (proline-alanine-rich Ste20p-related kinase) 
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OSR1 and SPAK. This suggests that the potential downstream targets and regulatory 

mechanisms of PM4Ks are unlikely to be the same as OSR1 and SPAK. 

Furthermore, unlike OSR1 or SPAK, but in similarity with some other GCKs 

(Yustein et al., 2003, Callus et al., 2006, Delarosa et al., 2011), both PM4Ks have 

predicted coiled coils (CCs) at their extreme C-termini (Figure 4.7). These were 

predicted by using SMART (simple modular architecture research tool) to identify 

potential signalling domains (Schultz et al., 1998, Letunic et al., 2012). These 

protein-protein interaction motifs have been implicated in other Ste20-related 

kinases in mediating homodimerisation, which typically enhances their activity 

(Delarosa et al., 2011). 

Champion et al., (2004b) conducted a phylogenetic analysis based on an extensive 

survey of MAPKKKs in the Raf
††

 superfamily and STE family kinases: which 

                                                 
††

 Raf = RAPIDLY ACCELERATED FIBROSARCOMA 

Figure 4.7 PM4K1 and PM4K2 show similar domain organisation 

Sequence alignment of full-length protein sequences for the PM4K1 and PM4K2. 

Conserved residues are shaded in black, similar residues are shaded grey. The position 

of the conserved catalytic kinases domains (orange), putative NLS (dotted blue) and 

predicted coiled coils (pink) are indicated above (PM4K1) and below (PM4K2) the 

alignment. The positions of the catalytic arginine and aspartate residues are indicated 

with *. 
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include kinases related to the MAP4K, Ste20p, the MAPKKK, Ste11p; and the 

MAPKK Ste7p. This revealed that the annotated MAP4Ks formed a monophyletic 

lineage, which was the sister clade to the CDC
‡‡

 subfamily kinases that includes 

MAPKKKε homologs. 

The two PexRD2-interacting PM4Ks identified in the initial Y2H screen share 48% 

amino acid sequence identity over their entire protein sequences. Restricting the 

comparisons to the N- and C-terminal regions separately, the two proteins share 

approximately 78% sequence identity within their N-terminal catalytic kinase 

domains (PM4K1, residues 1 – 277), and 29% sequence identity within their C-

terminal regions (PM4K1, residues 278 – 674). Analysis of the Solanum tuberosum 

Group Phureja DM1-3 (DM) annotated genome sequence (Potato Genome 

Sequencing Consortium et al., 2011) revealed one sequence sharing 99% amino acid 

sequence identity with PM4K2. In contrast, no clear candidate sequence for PM4K1 

could be found. Three predicted protein sequences in the potato draft genome shared 

overall sequence identities with PM4K1 of between 48 – 49%, and one of which was 

the identified PM4K2 sequence (see Table 4.1). The inability to find a clear PM4K1 

candidate likely results from the incomplete nature of the draft genome, since only 

86% of the 844 megabase genome has currently been assembled (Potato Genome 

Sequencing Consortium et al., 2011). In spite of this, orthologous proteins for both 

PM4K1 and PM4K2 can be found in both tomato: sharing 99% and 97%; and N. 

benthamiana: sharing 92% and 90% sequence identity to the potato proteins, 

respectively. PM4K1 and PM4K2 only share significant homology with MAPKKKε 

within the catalytic kinase domains, sharing 34% and 35% amino acid sequence 

identity with the KD of StMAPKKKε. Since the two related PM4Ks show 

significant sequence similarity, and similar domain organisations, subsequent 

analyses were restricted to focus on PM4K1. 

 

                                                 
‡‡

 CDC = CELL DIVISION CYCLE 
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4.2.8 The WY-domain of PexRD2 specifically interacts with a region 

containing the kinase domain of PM4K1 

To identify which domains of StPM4K1 and PexRD2 were involved in the 

interaction, the full length and different N- and C-terminal truncations were sub-

cloned into the pENTR™/D-TOPO
®
 entry vector, before being transferred into the 

Y2H vectors by Gateway
®
 cloning. 

Three truncated PM4K1 prey vector constructs were tested for interaction with 

PexRD2. These constructs were tested alongside the full length PM4K1 prey 

construct sub-cloned from the Y2H screen (clone PexRD2PI-2), and the appropriate 

empty vector controls as before. 

PexRD2 interacted with one truncated construct that contained the N-terminal 

catalytic kinase domain (KD) plus some additional 42 amino acids of the C-terminal 

region (PM4K1-N1, residues 2 – 319), as evidenced by both the growth of co-

transformed yeast on media lacking histidine, and the development of a weak blue 

colouration in the presence of X-gal (Figure 4.8). This interaction was weaker than 

that observed with the PM4K1-FL prey, as no growth on media lacking uracil was 

detected. PexRD2 showed no interaction with the other two prey constructs 

(PM4K1-N2, residues 2 – 286; and PM4K1-C, residues 287 – 674). These results 

suggest that, in similarity with MAPKKKε, PexRD2 is interacting with the kinase 

domain of PM4K1, or a region immediately downstream. In the full length protein, 

the interaction is potentially being stabilised by weak contacts with residues within 

the remainder of the C-terminal region, or by potential homodimerisation of the 

kinase mediated by the predicted C-terminal coiled coil. Alternatively the weaker 

interaction with PM4K1-N1, compared to PM4K-FL, and lack of interaction with 

PM4K1-N2 and PM4K-C with might result from reduced stability of these 

truncations in yeast. As with the original PexRD2PI-2 clone, none of the sub-cloned 

PM4K1 prey constructs showed any evidence of auto-activation activity. 
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Note: Y2H interaction assays conducted between PM4K1 and PexRD2-WY or 

PexRD2-like effectors were conducted with Benjamin Hall. 

To identify whether the effector domain of PexRD2 was sufficient for the interaction 

with PM4K1, PexRD2 and its WY-domain in the Y2H-bait vector, which had 

previously been tested for interaction with MAPKKKε, were screened for protein-

protein interactions with PM4K1-FL. Full length P4MK1 was chosen since this 

construct had shown more robust activation of reporter genes than the interacting N-

terminal fragment. To test whether this interaction were specific to PexRD2, the two 

PexRD2-like effectors, PexRD2-like-1a and PexRD2-like-2a, were also included as 

additional baits. All bait/prey combinations were assessed using the HIS3, lacZ and 

URA3 reporter gene assays, alongside the appropriate empty vector controls. 

Figure 4.8 Truncated PM4K1 containing catalytic kinase domain 

interacts with PexRD2, weaker than PM4K1-FL 

Y2H analysis of cotransformants carrying PexRD2 bait and PM4K1 truncated preys are 

indicated. Growth on SC-LW confirms cotransformation. Interactions between PexRD2 

and the full length or one truncated PM4K1 preys are confirmed by growth on plates 

lacking histidine (–HIS) and blue colouration in the presence of X-gal (+Xgal). Growth 

on media lacking uracil (-URA) only seen for interaction with almost full length 

PM4K1. KD indicates the catalytic kinase domain and CC indicates a predicted coiled 

coil. Bait/prey combinations were tested in triplicate and single representative colonies 

are shown. 
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Consistent with previous results, the WY-domain of PexRD2 was able to interact 

with PM4K1; as evidenced by the activation of all three reporter genes (Figure 4.4). 

These results indicate that the N-terminal region of PexRD2, containing the 

translocation motifs is dispensable for the interaction with PM4K1. This suggests 

that, as for the interaction between PexRD2 and MAPKKKε, the WY-fold 

containing effector domain is mediating the interaction with PM4K1. This 

interaction is specific to the WY-domain of PexRD2, as neither of the two PexRD2-

like effector baits showed activation of any of the reporter genes when co-

transformed with PM4K1-FL prey. The specificity of PexRD2 for PM4K1 and 

PM4K2 was further confirmed by the fact that PexRD2 was shown not to interact 

with another putative potato MAP4K that was identified as an interactor of another 

predicted RXLR-WY effector (Dr. Miles Armstrong, unpublished data) This non-

interacting putative MAP4K shared 46% amino acid sequence identity with PM4K1 

KD. These results support the conclusion that PexRD2 interacts specifically with 

PM4K1. 

 

Figure 4.9 PM4K1 interacts specifically with PexRD2 

Y2H analysis of co-transformants carrying PexRD2 or PexRD2-like baits and PM4K1-

FL prey as indicated. Growth on SC-LW confirms co-transformation. Interactions 

between PM4K1 and full length or effector domain from PexRD2 are confirmed by 

growth on plates lacking histidine (–HIS), β-galactosidase activity (+Xgal), and growth 

on media lacking uracil (-URA). No interactions were detected for PexRD2-like baits. 

Bait/prey combinations were tested in triplicate and single representative colonies are 

shown. 
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4.2.9 PexRD2 interacts with PM4K1 in planta 

Since the interaction between PexRD2 and PM4K1 was confirmed to be specific in 

the Y2H system, independent protein-protein interaction experiments were 

conducted to confirm that the two proteins also interacted in planta by co-

immunoprecipitation (co-IP). Co-IP experiments are widely considered the gold 

standard for demonstration of protein-protein interactions in vivo. The full length 

PM4K1 sequence was transferred into the binary expression vector pK7WGF2 by 

Gateway
®

 cloning. This vector allows transient expression of transgenes with N-

terminally fused GFP expressed under the control of a 35S promoter (Karimi et al., 

2002). Agroinfiltation was used to transiently express this GFP-fusion PM4K1-FL or 

free GFP with either PexRD2, PexRD2-like-2a WY-domain, or the unrelated WY-

domain-containing RXLR effector AVR3a. All effectors were expressed with N-

terminal FLAG-epitope tags from the pTRBO binary vector (Lindbo, 2007).  

Total protein extracts were subjected to GFP-IPs using GFP-Trap
®
 (ChromoTek), 

and total and immunoprecipitated protein samples were analysed by western blots. 

Immunoprecipitation of GFP-PM4K1 specifically supported the co-

immunoprecipitation of the FLAG-epitope tagged PexRD2, but not the other two 

RXLR effectors. Immunoprecipitation of free GFP did not support the co-

immunoprecipitation of any of the FLAG-epitope tagged effectors (Figure 4.10). 

This indicates that the interaction between PexRD2 and PM4K1 also occurs in 

planta. 
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4.2.10 PUB38-like 

All aspects of cellular physiology and development are controlled by the balance of 

de novo protein synthesis and degradation of existing proteins. The principle 

proteolytic system found in eukaryotes is the ubiquitin-26S proteasome system, and 

growing evidence has highlighted the extensive role that this system plays in plant 

cellular signalling. In this pathway, the ubiquitin (Ub) protein, which is found in all 

eukaryotes, serves as a reusable ‘tag’ that directs target proteins for selective 

degradation. Polymeric ubiquitin (poly-Ub) chains are covalently attached via the C-

terminal glycine residue to lysine residues on protein targets. This is achieved by the 

iterative actions of a three step enzymatic conjugation cascade. 

Free ubiquitin moieties are activated by an E1 ubiquitin-activating enzyme by an 

ATP-dependent mechanism. The activated ubiquitin is then transferred to a cysteine 

Figure 4.10 PexRD2 interacts with PM4K1 in planta 

Western blots showing PexRD2 specifically coimmunoprecipitates with PM4K1 in planta. 

Free GFP or GFP-tagged PM4K1 were co-expressed with FLAG-tagged effectors in N. 

benthamiana. Immunoprecipitates (IP) obtained with GFP-Trap
®
 (α-GFP IP) and total protein 

extracts (inputs) were immunoblotted with antibodies as indicated. PS indicates of Ponceau 

stain of large RuBisCO subunit to confirm equal protein loading. 
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residue in an E2 ubiquitin-conjugating enzyme. Once conjugated to ubiquitin, the E2 

enzyme binds to one of several E3 ubiquitin ligases which are responsible for 

tethering the Ub-E2 enzyme and the target protein substrate. The close proximity 

allows transfer of the ubiquitin from the E2 cysteine to a lysine residue on the target 

protein. Of the three enzyme classes E3 ubiquitin ligases are the most abundant. The 

Arabidopsis genome contains two E1 enzymes, around 45 E2 enzymes and 1415 E3 

enzymes. This diversity is required as it is the E3 enzymes that perform target 

protein recognition and hence specificity. 

The nature of the inter-ubiquitin covalent linkages in the poly-Ub tag is key to 

determining the fate of the ubiquitinated target. Lys48-mediated inter-ubiquitin 

linkages predominate in cells, and direct target proteins towards degradation by the 

2 MDa, ATP-dependent, 26S proteasome. Other inter-Ub linkages have also been 

observed, and function in non-proteolytic signalling. Lys63-linked poly-Ub chains 

have been shown to mediate a number of processes including, interestingly, kinase 

activation. 

Within Arabidopsis, AtPUB-ARM proteins form a family of E3 ligases with 41 

members (Azevedo et al., 2001, Mudgil et al., 2004). These proteins are 

characterised by ~70-amino-acid conserved plant U-box (PUB) domain which is a 

recognised E3 ubiquitin ligase motif, and between two and 32 ARM repeats. 

PexRD2 interacts with a potato PUB-ARM domain protein that shows homology to 

the confirmed E3 ubiquitin ligase AtPUB38 (Mudgil et al., 2004). AtPUB38 has N-

terminal U-box, and five predicted ARM repeats in its C-terminus. Comparison to 

the AtPUB38 and the homologous sequence in the Solanum tuberosum Group 

Phureja DM1-3 (DM) annotated genome sequence (StDMPUB38-like) indicated that 

the interacting prey identified in the Y2H screen was N-terminally truncated (StΔN-

PUB38-like). Overall, StPUB38-like shows a similar domain organisation to 

AtPUB38, although polymorphisms between the two sequences mean that the fourth 

Arm repeat is no longer confidently predicted by bioinformatic analysis. StΔN-

PUB38-like and AtPUB38 share an overall amino acid identity of 52%. 
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U-box domains are predicted to mediate interactions with E2 ubiquitin-conjugating 

enzymes (Pringa et al., 2001), whilst the C-terminal ARM repeats are expected to 

mediate interactions with target proteins (Mudgil et al., 2004). Although, the crystal 

structure of the mammalian, ARM repeat-containing protein β-cateninin suggests 

that six repeats constitute a protein interaction domain (Huber et al., 1997), the C-

terminal domains of AtPUB38, which contains only five predicted repeats was 

shown to interact with the intracellular kinase domains of a number of plant receptor 

A. 

B. 

Figure 4.11 Homology between AtPUB38 and PUB38-like proteins 

(A) Domain organisation for the truncated StPUB38-like sequence (StΔN-PUB38-like) 

identified in Y2H clone PexRD2PI-4, and the Arabidopsis ortholog AtPUB38. (B) 

Sequence alignment for the two protein sequences represented in (A), in addition to the 

predicted full length sequence found in the Solanum tuberosum Group Phureja DM1-3 

(DM) annotated genome sequence (StDMPUB38-like), highlighting the U-box domain 

(red) and ARM repeats (blue). 
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like kinases (RLKs) (Samuel et al., 2008). A number of other AtPUB-ARM proteins 

were also shown to interact with RLK KDs, and these interactions highlighted the 

potential role of PUB-ARM proteins as downstream signalling proteins for RLKs. 

The potential for StPUB38-like to interact with RLKs remains to be investigated, but 

the ability of PexRD2 to interact with both protein kinases and an E3 ubiquitin ligase 

raises the question as to whether these host proteins are also functionally linked 

and/or exist in a larger, macromolecular complex. 

 

4.2.11 MAPKKKε and PM4K1 can self associate, interact with each 

other and PUB38-like 

To address the potential functional links between PexRD2-interacting host proteins, 

the ability of StMAPKKKε, PM4K1 and StPUB38-like to interact with one another 

in the Y2H system was assessed. The PM4K1-FL and MAPKKKε ~FL sequences 

were transferred into the Y2H-bait vector by Gateway
®

 cloning. These constructs 

were then co-transformed with the previously described PM4K1-FL, StMAPKKKε 

~FL and ΔN-PUB38-like prey vectors, and an empty prey vector control. In addition, 

the WY-domain of PexRD2 was transferred into the Y2H-prey vector by Gateway
®

 

cloning, and co-transformed with the two host kinases as baits, as a potential positive 

interaction control. 

Co-transformants were then tested for their ability to grow on media lacking 

histidine or uracil, as well as for β-galactosidase activity. Preliminary experiments 

showed that the previously used concentration of 3AT
§§

 of 10 mM was insufficient 

to prevent auto-activation of the HIS3 reporter gene by the new kinase baits; as 

evidenced by the growth of yeast cells expressing these baits with the empty prey 

vector. To combat this, the HIS3 reporter assay was repeated with the 3AT 

concentration increased to 50 mM. None of the protein-protein interactions tested 

were able to allow growth on media lacking uracil, indicating no activation of the 

more stringent URA3 reporter gene. 

                                                 
§§

 3AT (3-amino-1,2,4-triazole) is a competitive inhibitor of the product of the HIS3 gene, and is used 

to repress growth caused by unspecific auto-activation of this reporter gene, allowing detection of 

specific protein-protein interactions. 
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Activation of HIS3 and lacZ reporter genes (Figure 4.12) indicated protein-protein 

interactions for StMAPKKKε-StMAPKKKε and PM4K1-PM4K1 co-expressing 

yeast, suggesting that these two host kinases might self associate and possible 

function as homodimers. Weak protein-protein interactions were detected for yeast 

co-expressing PM4K1 as the bait and MAPKKKε as the prey: as evidenced by 

activation of the HIS3 gene and detectable growth on media lacking histidine; but 

not the lacZ gene and hence no development of blue colouration in the presence of 

X-gal. Weak protein-protein interactions were also detected between either of the 

host kinases baits and the ΔN-PUB38-like prey. The discovery that the host proteins 

that interact with PexRD2 can also form homomeric and heteromeric interactions 

increases the chance that these proteins might be functionally linked, or even exist in 

large macromolecular complexes within the host cell. Whether PexRD2 interacts 

Figure 4.12 Homomeric and heteromeric protein-protein interactions can 

be detected between the confirmed interactors of PexRD2 

Y2H analysis of cot-ransformants carrying bait and prey constructs as indicated. 

Homomeric interactions between the two host kinases is indicated by growth on plates 

lacking histidine, but supplemented with 50 mM 3AT (–HIS + 50 mM 3AT) and blue 

colouration in the presence of X-gal (+Xgal). Weak heteromeric interactions between 

the two host kinases, and either kinase and the ΔN-PUB38-like prey were indicated by 

weak growth on –HIS + 50 mM 3AT media. No interactions were detected for the 

PexRD2-WY prey. All bait/prey combinations were tested in triplicate and single 

representative colonies are shown. 
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with the host proteins individually, or as homodimeric, or higher order, complexes 

remains to be investigated. 

Unexpectedly, following the detectable interaction between MAPKKKε and 

PM4K1, the reciprocal co-transformation (MAPKKKε as the bait and PM4K1 as the 

prey) did not cause activation of the HIS3 reporter gene.  This could have resulted 

from steric hindrance of this particular combination of fusion partners, preventing 

the normal association between the two host proteins. Alternatively the specific 

geometry of the resultant kinase complex might not be able to promote the 

recruitment of the transcriptional machinery required to initiate reporter gene 

expression.  

Surprisingly, any co-transformation involving the WY-domain of PexRD2 in the 

prey vector was unable to activate any of the reporter genes. This was true even 

when it was co-expressed with PexRD2-FL in the bait vector (Figure 4.12), and 

when the 3AT concentration was reverted back to 10 mM (data not shown). As 

PexRD2 is known to self associate this was unpredicted (Section 3.2.6 – 3.2.7). 

Again, this may indicate that steric hindrance is preventing the association between 

the different PexRD2 GAL4-fusions, or that the specific geometry of the resultant 

PexRD2 GAL4-fusion ‘heterodimer’ cannot promote the recruitment of the 

transcriptional machinery. However, it may indicate that the PexRD2-WY protein 

when expressed as a GAL4-AD fusion, but not a DBD fusion, is unstable in yeast. 

Further work is required to determine which, if any, of these explanations is best 

describing the situation. 
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4.3 Conclusion 

Y2H hybrid screening revealed that the RXLR-WY effector PexRD2 interacts with 

four different host proteins. Although other RXLR effectors, such as AVR3a have 

been shown to interact with multiple host proteins (Bos et al., 2010b), most RXLR 

effectors tested, to date, using the same Y2H screen have revealed a single 

interacting host protein (Professor Paul Birch, JHI, personal communication).  

Two of the interactions, those between PexRD2 and MAPKKKε, and PexRD2 and 

PM4K1, have also been confirmed independently in planta. This reduces the chance 

that observed interactions were false positives, validating the Y2H screening 

approach. For the same interacting proteins, the WY-fold containing effector domain 

of PexRD2 was shown to be sufficient to mediate these interactions. This validates 

the biological relevance of the construct used for crystallisation, and means that the 

solved structure of PexRD2’s effector domain should prove an invaluable resource 

for understanding the molecular nature of these interactions. 

Since Y2H analyses have demonstrated that PexRD2 interacts with regions of 

MAPKKKε and PM4K1 that include the catalytic kinase domains might suggest a 

shared interaction mechanism. The importance of the N-terminal domains of the 

three host protein kinases for the interaction with PexRD2 could have been inferred 

from the sequence of the clones identified in the Y2H screen. The Y2H-prey cDNA 

library screened was generated by amplification of mRNA transcripts from their 3’-

end and N-terminally truncated constructs are frequently observed (i.e. StΔN-

PUB38-like). As such, the retrieval of almost exclusively, full length constructs for 

particularly long genes such as MAPKKKε (~4.2 kb) and the two PM4Ks could be 

considered a strong indicator that the N-terminus of these proteins are important for 

the interactions in question. 

The specific role of the C-terminal regions of these interaction protein kinases, 

which are predicted to contain known protein-protein interaction motifs (ARM 

repeats and CC domains), has not been characterised.  These regions could 

potentially mediate interactions with upstream or downstream signalling 

components, or the homomeric associations observed above (Figure 4.12) allowing 

regulation and conferring specificity to the activity of the kinases.  



4   Identifying Potential Host Targets of PexRD2 

147 

 

 

StPUB38-like also contains ARM repeats within its C-terminus. Although six arm 

repeats are predicted to be a prerequisite for an effective protein interaction domain, 

the homologous region of the Arabidopsis E3 ubiquitin ligase AtPUB38, which 

contains only five repeats, is known to interact with the kinase domains of a range of 

RLKs. As ARM repeats are often extremely sequence diverse both between and 

within ARM-repeat containing proteins (Mudgil et al., 2004), the potential for 

additional repeats with the sequences of AtPUB38 and PUB38-like proteins cannot 

be excluded. The weak interactions detected between StΔN-PUB38-like and PM4K1 

or MAPKKKε might suggest that this protein is actually able to interact with a 

broader range of protein kinases, although if the predicted ARM-repeats are 

required, to mediate these interactions, has yet to be tested. 

Following the detection of an interaction between the MAPKKKε, and the putative 

MAP4K, PM4K1, it is tempting to suggest a role of PM4K1 as an upstream activator 

of the MAPKKKε MAPK cascade. Whether PM4K1 can phosphorylate and/or 

activate MAPKKKε has yet to be investigated. Other members of the GCK family 

are known to associate with MAPKKKs and activate their downstream cascades. 

However, a GCK has yet to been shown to directly phosphorylate its interacting 

MAPKKK. Instead they have been proposed to achieve activation of signalling by 

acting as adaptors or scaffold proteins, rather than genuine MAPKKK kinases 

(Kyriakis, 1999). 

The interaction with MAPKKKε is perhaps most interesting. This host protein was 

already known to be involved in plant immunity signalling, following recognition of 

effectors from both bacterial and fungal pathogens (see Introduction to Chapter 5). 

As such this protein represents a potential convergence point for plant immunity 

signalling pathways. The detected interactions between MAPKKKε and the other 

PexRD2-interacting proteins could suggest that this protein is a part of a highly 

connected cellular hub, similar to other proteins known to be involved in plant cell 

immunity signalling (Mukhtar et al., 2011).  The interaction of PexRD2 with the 

catalytic kinase domains of this host protein might suggest a potential virulence role 

of PexRD2 as an inhibitor of said kinase. This finding could suggest that, as 

proposed for other effector repertoires, effectors from Phytophthora infestans are 

targeting the protein complexes at the points of convergence in plant immunity 
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signalling cascades (Mukhtar et al., 2011). However, it is important to recognise that 

interactions between effectors and host proteins, even when validated by multiple 

protein-protein interaction techniques do not necessarily indicate that the host protein 

represents a ‘target’ of the effector. 

For an interacting protein to represent a genuine virulence target, one would expect 

the interaction with the effector to interfere with the normal functioning of the 

protein, to deliver a benefit to the pathogen. Interacting proteins might alternatively 

represent examples of decoys (van der Hoorn and Kamoun, 2008). In this model, the 

effector’s interactions with these specific host proteins are not expected to benefit the 

pathogen. However, in certain host genetic backgrounds containing cognate R 

proteins, the interaction with the decoy would serve to aid recognition of the 

effector’s presence or activity. Decoys are expected to either be related to or mimic 

genuine, operative targets; however, confirming a protein’s roles as a decoy is likely 

to be challenging because of the expected redundancy of interactions and reliance on 

negative results (van der Hoorn and Kamoun, 2008). Other interactors might further 

represent so called ‘helpers’ (Win et al., 2012a), and perform some required 

modification of the effector, to allow it to carry out its virulence function, or serve to 

deliver it to its eventual sub-cellular localisation, or protein complex, promoting the 

effector’s interaction with its genuine virulence target. 

Understanding the importance of the different interactions, described in this chapter, 

in the context of normal plant cell function, immunity and infection represents the 

next big challenge. Further characterisation of the interplay between the effector and 

the identified host proteins in planta may help elucidate the adaptive value, if any, of 

these interactions for either the pathogen or the host. This would aid the 

determination as to whether the host proteins are targets, decoys or helpers. In the 

subsequent chapter, the role of the immunity signalling host kinase, MAPKKKε, in 

the resistance response against Phytophthora infestans is assessed. The implication 

of the interaction of PexRD2 with this kinase for this host protein’s activity is also 

tested, using a range of experiments in the model host plant N. benthamiana.  
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5 MAPKKKε and the Putative Virulence 

Function of PexRD2 

5.1 Introduction 

This introduction refers to the state of the knowledge at the start of this aspect of the 

project in 2011. Subsequent publications relevant to this section are referenced 

throughout, and discussed at the end of, this chapter. 

Mitogen-activated protein (MAP) kinase cascade-mediated signalling, involving 

three-tiered MAP kinase core modules, is critical for defence responses following the 

perception of pathogen-associated molecular patterns (PAMPs) and effectors from a 

range of pathogens (Asai et al., 2002, Nürnberger et al., 2004, Pitzschke et al., 

2009). The best characterised MAPK cascades involved in plant immunity are 

arguably those following perception of the PAMP, flagellin, the principal component 

of bacterial flagellum (Zipfel, 2008). In Arabidopsis thaliana, FLAGELLIN 

SENSING 2 (FLS2)-mediated perception of the 22-amino-acid peptide of flagellin, 

flg22, triggers activation of two MAPK cascades (Asai et al., 2002, Nicaise et al., 

2009). One involves MEKK1
*
, which is likely functionally redundant with at least 

one other unknown MAPKKK; the MAPKKs, MKK4/MKK5; and MAPKs, 

MPK3/MPK6. The other comprises MEKK1, MKK1/MKK2, and MPK4 (Figure 

5.1). The two act antagonistically; the first contributes positively, and the second 

negatively, to PAMP-triggered immunity (PTI). 

Other PAMPs, such as the peptide elf18 from the bacterial elongation factor Tu (EF-

Tu), induce a similar set of responses as flg22, including activation of MKK4/MKK5 

and MPK3/MPK6 (Zipfel et al., 2006). Furthermore, perception of oomycete 

PAMPs, such as the peptide Pep-13 from a Phytophthora sojae cell wall 

transglutaminase or the P. infestans sterol-scavenging elicitin INF1, trigger 

activation of MAPK cascades required for subsequent defence responses (Kroj et al., 

2003, Zipfel and Felix, 2005, Asai et al., 2008).  

                                                 
*
 MEKK = MAPK/ERK kinase kinase, ERK = extracellular signal-regulated kinase 



5   MAPKKKε and the Putative Virulence Function of PexRD2 

151 

 

 

MAPK cascades have also been identified as signalling components in R protein-

mediated effector-trigger immunity (ETI). In solanaceous plants, NPK1 is a MEKK-

like MAPKKK that is required for triggering resistance mediated by the N, Bs2, 

and Rx resistance (R) proteins (Jin et al., 2002). N-mediated resistance against 

tobacco mosaic virus (TMV) was also dependent on MEK2
†
, WIPK and SIPK

‡
 (Jin 

et al., 2003), which are orthologs of Arabidopsis MKK4/MKK5, MPK3, and MPK6 

respectively, as well as MEK1, and the MAPK, NTF6
§
 (Liu et al., 2004), which 

function downstream of NPK1 (Soyano et al., 2003). 

MAPKKKα was identified as a positive regulator of cell death associated with plant 

immunity in solanaceous plants (del Pozo et al., 2004). It is required for AvrPto/Pto-

triggered hypersensitive response (HR) and is suggested to signal through MEK2, 

SIPK, MEK1, and WIPK. The signalling ability of MAPKKKα was shown to be 

enhanced by a 14-3-3 protein, TFT7
**

 (Oh et al., 2010). MAPKKKα also positively 

regulates cell death associated with disease susceptibility (del Pozo et al., 2004).  

MAPKKKε is a positive regulator of cell death responses specifically associated 

with plant immunity (Melech-Bonfil and Sessa, 2010). The tomato homolog was 

identified as required for the immune response against bacterial pathogens using a 

virus-induced gene silencing (VIGS)-based screen. Silencing of SlMAPKKKε 

resulted in a loss of resistance against avirulent Xanthomonas campestris pv. 

vesicatoria (Xcv) strains and Pseudomonas syringae pv. tomato (Pst) DC3000. 

Gene silencing in N. benthamaina showed that MAPKKKε was required for eliciting 

the HR triggered following the recognition of the Pst effector AvrPto by the R 

protein Pto (Melech-Bonfil and Sessa, 2010). Silencing MAPKKKε also impaired the 

HR triggered by the recognition of Avr4 and Avr9 from the fungal pathogen 

Cladosporium fulvum (Cf) by Cf4 and Cf9, respectively. 

Similar to some other MAPK-cascade components implicated in plant immunity 

(Yang et al., 2001, del Pozo et al., 2004), the over-expression of MAPKKKε in 

planta results in a pathogen-independent cell death. This response is dependent on 

                                                 
†
 MEK2 = MAPK/ERK kinase 2 

‡
 WIPK = wound-induced protein kinase, SIPK = salicylic acid-induced protein kinase 

§
 NTF6 = Nicotiana tabacum FUS3-like kinase 6 

**
 TFT7 = Tomato Fourteen-Three-three protein 7 
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Figure 5.1 MAP kinase cascades involved in PAMP-triggered immunity, 

are prominent targets of bacterial effectors 

Two antagonistically acting MAPK cascades are activated following FLS2-mediated 

perception of the PAMP-peptide flg22 in Arabidopsis. The activity of these cascades 

triggers a defence response aimed to inhibit growth of invading pathogens. The 

bacterial phytopathogen Pseudomonas syringae injects effector proteins into the plant 

cytoplasm via it type III secretion system (T3SS) to interfere with this PAMP-triggered 

immunity (PTI). Three such effectors that specifically target components of MAPK 

cascades are shown. 
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the catalytic kinase activity of this protein as it was abolished by substituting the 

essential lysine in the ATP-binding site with an arginine (K49R). 

Epigenetic experiments identified the signalling components downstream of 

MAPKKKε as MEK2, SIPK and WIPK (Melech-Bonfil and Sessa, 2010). A second 

MAPKK, SIPKK (SIPK KINASE) was identified as a negative regulator of 

MAPKKKε-mediated cell death. 

As described in Section 4.2.3, StMAPKKKε is a multi-domain protein with a 

catalytic kinase domain at its N-terminus, and a C-terminal domain containing two 

predicted armadillo (ARM) repeats. Closely related homologs exist in a range of 

dicots, including cultivated and wild tomato species, Solanum lycopersicum and S. 

pimpinellifolium, respectively, and N. benthamiana. More distantly related homologs 

were found in A. thaliana and Brassica napus. 

The most closely related non-plant relatives of MAPKKKε homologs were identified 

as cell division control (Cdc) proteins from yeast (Jouannic et al., 2001). 

BnMAPKKKε1 was found to partially complement the Schizosaccharomyces pombe 

cdc7 mutant implicating a role in cell division (Jouannic et al., 2001). 

AtMAPKKKε1 and AtMAPKKKε2 were determined to be functionally redundant 

and required for pollen development (Chaiwongsar et al., 2006).  Double mutants 

had pollen lethality; which together with functional redundancy, limited assessment 

of their roles in developing or adult plants. However, the observation that both genes 

were expressed in all tissues (Champion et al., 2004a) suggested that they are likely 

to play a general role in cellular function rather than a role limited to pollen 

development (Chaiwongsar et al., 2006). Finally, both tomato and N. benthamiana 

MAPKKKε had been implicated as having a pleiotropic role in growth and 

development, in addition to immunity (Melech-Bonfil and Sessa, 2010). 

The interaction between the catalytic kinase domain of MAPKKKε and PexRD2 

raises the possibility that this effector is an inhibitor of this host kinase. For the 

bacterial phytopathogen P. syringae, manipulation of MAPK cascades has emerged 

as a common strategy for effector-mediated suppression of PTI (see Figure 5.1) 

(Block et al., 2008, Block and Alfano, 2011, Lindeberg et al., 2012).  
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For example, the type III secretion system (T3SS)-effector HopAI1 (HRP
††

-

dependent outer protein AI1) irreversibly inhibits MPK3 and MPK6 activity via a 

unique phosphothreonine lyase activity (Zhang et al., 2007). HopF2 also inhibits 

flg22-triggered immunity (Wang et al., 2010). HopF2 is an ADP-ribosyltransferase 

that interacts with MKK5, and potentially other MAPKKs. Residues in HopF2 that 

are critical for either interaction with MKK5, or in vitro ADP-ribosylation activity, 

were also shown to be required for HopF2-mediated PTI-suppression (Wang et al., 

2010). Finally, AvrB is a recognised T3SS-effector (Ashfield et al., 1995, Grant et 

al., 1995, Ashfield et al., 2004), that contributes to virulence in plants lacking 

cognate R proteins through an association with MPK4 (Cui et al., 2010). AvrB 

enhances MPK4 phosphorylation and activity which, in turn, negatively regulates 

plant immunity. The crystal structure of AvrB revealed that it shares features with 

protein kinases (Desveaux et al., 2007). As such, AvrB may mimic plant MKKs to 

activate MP4K (Cui et al., 2010), however kinase activity for AvrB has yet to be 

demonstrated. 

To investigate if MAPKKKε represents a genuine virulence target of PexRD2, the 

involvement of this protein in resistance to Phytophthora infestans was assessed 

using the model plant N. benthamiana. The effect of PexRD2 on multiple in vivo 

readouts of MAPKKKε activity was investigated, and the crystal structure of 

PexRD2 effector domain was interrogated to design mutants that could be used to 

probe the molecular mechanism of PexRD2 function. 

  

                                                 
††

 HRP = HYPERSENSITIVE RESPONSE AND PATHOGENECITY 
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5.2 Results and Discussion 

5.2.1 Virus-induced gene silencing (VIGS) – introduction 

Following the confirmation of a specific interaction between PexRD2 and 

MAPKKKε independently using Y2H and in planta, VIGS of MAPKKKε was used 

to probe this putative target’s role during infection with P. infestans. This technique 

has previously been used to identify other components of the plant immune response 

against Phytophthora including CMPG1 (Bos et al., 2010b), the receptor like kinase 

SERK3/BAK1 (Chaparro-Garcia et al., 2011), the resistance genes Rpi-blb1and R1 

(Brigneti et al., 2004), as well as ten other genes that are highly expressed in potato 

during the early stages of infection (Du et al., 2013). 

 

VIGS allows investigation of gene function by exploiting the plant's own RNA-

mediated antiviral defence mechanism (Lu et al., 2003b). Infection with a wild-type 

virus, specifically targets the response against the viral genome (Ratcliff et al., 1999, 

Voinnet, 2001); however, virus-based vectors carrying inserts derived from specific 

host genes can additionally target the corresponding endogenous mRNA (Burch-

Smith et al., 2004, Robertson, 2004). Gene silencing is thought to result from 

replication of the modified viral genome transiently forming double-stranded RNA 

(dsRNA) within plant cells. This dsRNA is cleaved by Dicer-like ribonucleases 

(Blevins et al., 2006), into short interfering RNAs (siRNAs) of 21 - 24 nucleotides in 

length. These siRNAs guide the RNA-induced silencing complex (RISC) to degrade 

homologous transcripts (Pantaleo et al., 2007), and 'knock down' gene expression. 

The tobacco rattle virus (TRV)-based vectors are the most frequently used for VIGS 

(Ratcliff et al., 2001, Liu et al., 2002, Valentine et al., 2004). TRV has a bipartite 

genome and, as such, two different vectors are used: pTRV1, which encodes the 

replication and movement viral functions while the other; and pTRV2, harbors the 

coat protein and the sequence used to direct VIGS. Inoculation of N. benthamiana 

with a mixture of Agrobacterium strains harbouring each vector results in systemic 

infection and silencing of homologous target genes. 

TRV-based VIGS of MAPKKKε has previously been used to confirm this kinase’s 

involvement in the plant’s immune response to bacterial pathogens; as well as in 
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eliciting the cell death triggered following the recognition of AvrPto, Avr4 and Avr9 

by Pto, Cf4 and Cf9 respectively (Melech-Bonfil and Sessa, 2010). A pTRV2 

derivative, which included a 411-bp fragment (nucleotides 898 – 1308) from the 

tomato MAPKKKε cDNA, hereafter TRV:5’MAPKKKε, was obtained from the lab 

of Professor Guido Sessa (Tel-Aviv University, Tel-Aviv, Israel). To confirm that 

any phenotypes observed resulted from the silencing of MAPKKKε, a second 

pTRV2 derivative including a 348-bp fragment (nucleotides 3086 – 3433) from the 

NbMAPKKKε2 cDNA, hereafter TRV:3’MAPKKKε, was provided by Dr. Hazel 

McLellan (JHI), along with a pTRV2 derivative encoding a 356-bp fragment of GFP, 

TRV:GFP, to be used as a negative control, and pTRV1. 

 

5.2.2 Silencing MAPKKKε increases susceptibility to Phytophthora 

infestans 

N. benthamiana plants were infiltrated with Agrobacterium harbouring silencing 

constructs as described in Section 2.9.6. As observed previously, plants silenced with 

either fragment of MAPKKKε showed a growth inhibition phenotype when 

compared to the ‘GFP’-silenced control plants. Furthermore, this phenotype was 

more severe for plants silenced with TRV:3’MAPKKKε  – which showed reduced 

stem growth and smaller, thicker leaves with a darker green pigmentation – 

compared to those silenced with TRV:5’MAPKKKε  (Figure 5.2, and see Section 

5.2.9 for quantification of growth defects). 

Detached leaves from silenced plants were subsequently infected with Phytophthora 

infestans zoospores as described in Section 2.9.7. Infection assays were conducted 

with P. infestans 88069td, a transgenic isolate of 88069 that expresses tdTomato, a 

tandem-dimer red fluorescent protein (RFP). The use of this fluorescent derivative 

strain allowed the observation of the initial biotrophic stages of infection by 

fluorescence microscopy. The development of necrotic lesions during the 

necrotrophic stage and sporulation were scored visually and a lesion diameter 

quantified using image analysis software. 
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N. benthamiana plants silenced with either fragment of MAPKKKε showed increased 

susceptibility to infection by P. infestans 88069td. Fluorescence microscopy 

repeatedly revealed increased hyphal growth of the pathogen on leaves silenced for 

MAPKKKε that was visible 3 – 4 days post inoculation. The growth of necrotic 

lesions and progression to sporulation was also accelerated on MAPKKKε-silenced 

plants. Necrotic lesions that developed on leaves silenced with TRV:5’MAPKKKε 

or TRV:3’MAPKKKε, within the first six days of infection, were significantly larger 

than those on leaves treated with the TRV:GFP control (Tukey HSD, P < 0.05). 

These results suggest that MAPKKKε is involved in mediating a defence response 

against Phytophthora infestans 88069td that can limit infection by the pathogen. 

  

  

Figure 5.2 Growth inhibition in plants silenced for MAPKKKε 

Phenotype of Nicotiana benthamiana plants 14 days after treatment with either 

TRV:GFP control, or TRV:5’MAPKKKε, or TRV:3’MAPKKKε. See Section 5.2.9 for 

quantification of growth defects. 

 

TRV:GFP 

TRV:5’MAPKKKε TRV:3’MAPKKKε 
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Figure 5.3 Silencing MAPKKKε in N. benthamiana enhances growth and 

sporulation of P. infestans 

(A.) Fluorescence microscopy of red fluorescent P. infestans 88069td showing 

increased hyphal growth on TRV:5’MAPKKKε and TRV:3’MAPKKKε treated plants 

at 4 days post zoospore inoculation (dpz). (B.) White light images of infection sites 

showing increased necrosis and sporulation on MAPKKKε-silenced plants. Images 

taken 5 dpz. Scale bar = 10 mm. (C.) Percentage of inoculation sites showing 

symptoms at 5 dpz. Results are from at least 50 inoculations per silencing construct.  

 

A.

A. 

B. 

C. 
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5.2.3 Testing the target specificity and silencing efficiency of 

MAPKKKε VIGS constructs 

Note: qRT-PCR analysis was conducted by Dr Hazel McLellan (JHI). The scripts 

used to search the N. benthamiana draft genome were written by Dr. Joe Win (TSL). 

Bioinformatic searches and preliminary analyses of retrieved sequences were 

conducted with Dr. Joe Win. 

To confirm that the increased susceptibility phenotype observed resulted from a 

reduction in MAPKKKε expression, the level of silencing in TRV:5’MAPKKKε, 

TRV:3’MAPKKKε, and TRV:GFP treated plants was assessed by real-time 

quantitative reverse-transcriptase PCR (qRT-PCR). Successful application of VIGS 

relies on high target specificity and silencing efficiency, and as such, the potential 

for off-target silencing of the related MAPKKKα was also assessed. Consistent with 

observations by Melech-Bonfil and Sessa (2010), qRT-PCR analysis indicated that 

endogenous transcripts of NbMAPKKKε were reduced by approximately 70% in 

Figure 5.4 Silencing NbMAPKKKε increases lesion area of P. infestans 

Mean lesion area at 5 – 6 days post zoospore inoculation (dpz) for infection with P. 

infestans 88069td. Bars indicate the mean ± SE for 40 inoculations per silencing 

construct. Asterisks indicate means that are significantly different at a given time point, 

as determined by Tukey HSD (*, p<0.05).  

 

Days Post Zoospore Inoculation 
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plants silenced with either TRV:5’MAPKKKε or TRV:3’MAPKKKε. In contrast, 

the levels of NbMAPKKKα were only slightly altered in MAPKKKε-silenced plants, 

suggesting that silencing was specific. 

As off-target silencing represents one of the biggest caveats associated with this 

technique (Xu et al., 2006), analysis of the recently released N. benthamiana draft 

genome (Bombarely et al., 2012) was conducted to identify any bioinformatically 

predicted off-targets. Since siRNAs guide the RNA-induced silencing complex 

(RISC) to degrade transcripts (Pantaleo et al., 2007), all 21-nucleotide sequences 

within the silencing constructs that were predicted to mediate efficient silencing 

were identified (Section 2.9.6.1). These were then used to find N. benthamiana 

transcripts (henceforth targets) containing sequences with homology to putative 

efficient siRNAs (henceforth sites). Since mRNAs with only partial complementarity 

to a siRNA can also be targeted for destruction (Jackson et al., 2003, Haley and 

Zamore, 2004), the level of mismatch allowed was varied from a zero, meaning 

perfect complementarity, to five mismatches.  

Figure 5.5 Virus-induced gene silencing of MAPKKKε in N. benthamiana 

plants is efficient and specific 

qRT-PCR analysis of TRV:GFP, TRV:5’MAPKKKε, and TRV:3’MAPKKKε silenced 

Nicotiana benthamiana. The expression of NbMAPKKKε and NbMAPKKKα in silenced 

plants was standardised relative to expression of the elongation factor-1 alpha gene 

(EF1α) as an internal reference control (Rotenberg et al., 2006). Values are the average 

of triplicates ± SE. Experiment was independently repeated with similar results. Data 

collected by Dr. Hazel McLellan. 
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The 356-nt insert in TRV:GFP was predicted to contain 32 putative efficient 21-nt 

siRNAs, whilst the 411-nt insert in TRV:5’MAPKKKε and the 348-nt insert in 

TRV:3’MAPKKKε were predicted to contain 43 and 30, respectively. The 

N. benthamiana genome encodes two paralogs of MAPKKKε, NbMAPKKKε1 and 

the more recently identified NbMAPKKKε2 (Hashimoto et al., 2012), which share 

98% DNA and 95% amino acid sequence identity. Unlike TRV:5’MAPKKKε and 

TRV:3’MAPKKKε, none of the predicted TRV:GFP-derived siRNAs showed any 

homology to either MAPKKKε transcript, even when using the highest level of 

siRNA/site mismatch threshold tested.  

As expected increasing the maximum level of mismatch allowed between the 

predicted siRNAs and sites in potential target transcripts increased the number of 

predicted putative off-targets (Figure 5.7). At the maximum level of mismatch tested, 

the longer TRV:5’MAPKKKε construct has a total of 1431 putative off-targets. The 

TRV:3’MAPKKKε and TRV:GFP constructs had predicted totals of 581 and 527 

putative off-targets, respectively. 

Figure 5.6 Both MAPKKKε-silencing constructs contain predicted efficient 

siRNAs directed against both paralogs of NbMAPKKKε 

The number of predicted efficient siRNAs from the three TRV constructs used that target 

sites within either paralog of MAPKKKε as found in the draft N. benthamiana genome. 

Different thresholds of mismatch between the siRNA and site within the transcript are used. 
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If the analysis is restricted to those targets that show no more than three mismatched 

base pairs (3 bp) between a predicted siRNA and the target site, TRV:5’MAPKKKε, 

TRV:3’MAPKKKε and TRV:GFP have predicted totals of 45, 16 and 20 putative 

off-targets, respectively. Analysis of these 81 putative off-target sequences revealed 

that they are all unique to their respective silencing constructs (Figure 5.8). Only the 

two copies of NbMAPKKKε are targeted by both TRV:5’MAPKKKε and 

TRV:3’MAPKKKε, but importantly not TRV:GFP. Together these results indicate 

that the enhanced susceptibility to P. infestans, described above, was likely a result 

of specific silencing of MAPKKKε. 

 

 

  

Figure 5.8 No common off-targets are predicted between different TRV 

constructs using the 3-bp siRNA/site mismatch threshold 

Venn diagram showing the number of predicted off-targets in common between the three 

TRV constructs when analysis is restricted to a maximum of three mismatches between a 

predicted siRNA and a putative off-target. The number in brackets indicates that the two 

intended targets (NbMAPKKKε1 and NbMAPKKKε2) are only shared between 

TRV:5’MAPKKKε and TRV:3’MAPKKKε. 
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5.2.4 In planta transient expression of PexRD2, prior to infection, 

enhances virulence of Phytophthora infestans 

The identification of NbMAPKKKε as important component for the plant’s immune 

response against P. infestans is consistent with the hypothesis that the effector 

PexRD2 might function as an inhibitor of this kinase. To test this, the ability of 

transient expression of PexRD2 in planta to phenocopy silencing of MAPKKKε 

during infection assays was tested. This approach is commonly adopted since, 

although stable transformation of P. infestans isolates to over-express or silence 

specific genes is achievable, it has only been successful in a limited number of 

research groups (Judelson et al., 1991, Grouffaud et al., 2008, Bos et al., 2010b). 

Agroinfiltration was used to transiently express a GFP-fusion of PexRD2 in one half 

of a leaf, and free GFP (pK7WGF2, empty vector control) in the other half of the 

same leaf. After 24 h, infiltrated leaves were detached from the plants and infected 

on both sides of the mid-vein with P. infestans 88069 zoospores as described in 

Section 2.9.7. The growth of necrotic lesions and progression to sporulation were 

scored as before, see Figure 5.9 A. 

Transient expression of PexRD2, prior to zoospore inoculation, enhances infection 

by P. infestans 88069. The percentage of infection sites showing necrosis or 

sporulation within the first five days of infection was higher for leaf tissue 

expressing PexRD2 than leaf tissue infiltrated with the vector control (Figure 5.9 B). 

The mean lesion area at five days post zoospore inoculation (5 dpz) for infection of 

tissue expressing PexRD2 (251.7 ± 37.5 mm
2
) was significantly higher (ANOVA, 

P < 0.001) than for infection of the vector control leaf tissue (83.0 ± 20.4 mm
2
) 

(Figure 5.9 C-D). Conversion of these absolute lesion areas to relative measures 

revealed that transient expression of PexRD2 in planta significantly increased the 

lesion area, 5.2-fold (± 0.9), relative to infection of the vector control tissue on the 

same leaf (Tukey HSD, P < 0.01, Figure 5.10 A). 
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Figure 5.9 Transient expression of PexRD2 in N. benthamiana enhances 

growth and sporulation of P. infestans 

(A.) Agrobacterium strains harbouring PexRD2 and a vector control are agroinfiltrated 

into either half of a N. benthamiana leaf. After 24 h, leaves are detached and inoculated 

with P. infestans 88069 zoospores (10 μL at 100 zoospores.μL
-1

) and incubated at room 

temperature with high humidity. Between 5 – 8 days after zoospore inoculation (dpz), 

symptoms are scored and leaves images, and the area of each lesion calculated using 

image analysis software. (B.) Percentage of inoculation sites showing symptoms at 5 

dpz. Results are from at least 30 inoculations per construct. (C.) Representative leaf 

showing infection of vector control- and PexRD2-agroinfiltrated tissue. Image taken 7 

dpz.  (D.) Mean lesion area at 5 dpz for infection with P. infestans 88069. Bars indicate 

the mean ± SE for 51 inoculations, and 17 leaves, per construct. (ANOVA, *** = P < 

0.001)  

 

 

A. B. 

C. 

D. 
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This method was also used to test the two PexRD2-like effectors introduced in the 

previous chapter. These effectors do not interact with MAPKKKε or PM4K1. 

Nevertheless, as effectors, these proteins are still expected to contribute to pathogen 

virulence, and qRT-PCR has confirmed that the expression of all three is induced in 

P. infestans 88069 during the early biotrophic stages of infection of potato (Dr. 

Hazel McLellan (JHI), unpublished data). Conversion of absolute lesion areas to 

relative measures revealed that transient expression of GFP-fusions of either 

PexRD2-like effector in planta did not significantly enhance the growth of 

P. infestans 88069 (Tukey HSD, P > 0.05 Figure 5.10 A). Western blot analysis 

confirmed expression of all three GFP-fusion proteins (Figure 5.10 B), and so the 

lack of a significant enhancement is not due to a lack of expression of the PexRD2-

like effectors in planta. 

Figure 5.10 PexRD2, but not PexRD2-like effectors, enhances the infection 

of N. benthamiana by P. infestans 88069. 

(A.) Mean relative lesion area at 5 dpz for infection with P. infestans 88069. Relative 

lesion area is calculated by dividing the lesion area for infection of effector 

agroinfiltrated tissue, by the lesion area for infection of vector control agroinfiltrated 

tissue within the same leaf. Each bar represents the mean ± SE of at least 17 leaves per 

construct. Asterisks indicate means that are significantly different from the standardised 

value of 1.0 for infection of vector control tissue (Tukey HSD, ** = P < 0.01, ns = not 

significantly different). (B.) Western blot analysis confirming expression levels of GFP-

fusions of PexRD2 and PexRD2-like effectors at 3 dpi. White stars indicate expected 

sizes of full length fusion protein. Black arrow indicates expected size of free GFP. PS 

indicates Ponceau staining of RuBisCO to confirm protein loading. 

 

 

A. 

B. 
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These results may be explained in a number of ways. The two PexRD2-like effectors 

tested might not contribute to the virulence of this specific isolate of the pathogen on 

this specific host species. Alternatively, and in contrast to PexRD2, the N-terminal 

GFP fusion might adversely affect these effector’s activities in planta. It is also 

possible that the delivery of the endogenous effectors might be carefully regulated to 

a specific infection stage; or the effectors might require some post-translational 

modification in the pathogen or plant apoplast prior to translocation to function 

effectively. Constitutive expression of effectors in planta removes this potential for 

regulation. Finally, the levels of endogenous effector translocated during infection 

may already be optimal for infection, meaning that no additional effect is observed 

through further over-expression. 

 

5.2.5 Identification of MAPKKKε-dependent and MAPKKKε-

independent cell death responses 

Note: Confirmation of the loss of AvrPto/Pto and Avr4/Cf4 triggered hypersensitive 

response on plants silenced for MAPKKKε was conducted by Dr. Hazel McLellan 

(JHI). Experiments involving INF1 were conducted at both JHI and JIC. 

Gene silencing experiments had previously shown that MAPKKKε was required for 

mediating the HR following the recognition of the bacterial effector AvrPto by the 

resistance protein Pto, and the fungal chitin-binding protein Avr4 by the LRR-RLK 

Cf4 (Melech-Bonfil and Sessa, 2010). This was re-confirmed using transient co-

expression assays in N. benthamiana plants silenced with the TRV:5’MAPKKKε 

and TRV:3’MAPKKKε used in this study as described in Section 2.9.8 (Figure 

5.11). The role of MAPKKKε as a positive regulator of the plant’s immune response 

against P. infestans suggests that it might also mediate a signalling event following 

the perception of an unknown elicitor from P. infestans. As such, a range of cell 

death events that are associated with P. infestans infections were also tested.  
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In planta transient expression of the secreted oomycete elicitin INF1 results in a cell 

death response (Kamoun et al., 1998, Kamoun et al., 2003). The level of cell death 

observed following infiltration with Agrobacterium harbouring INF1 into 

N. benthamiana plants silenced with either TRV:5’MAPKKKε or 

TRV:3’MAPKKKε, was not significantly different to the level observed for the 

TRV:GFP silencing control plants (Figure 5.12 A-B). This indicates that MAPKKKε 

is not required for signalling following perception of INF1 leading to the 

development of INF1-induced cell death (ICD). 

Co-expression of the RXLR effector AVR3a
KI

 allele, but not the AVR3a
EM

 allele, 

with R3a results in HR (Armstrong et al., 2005). Expression of the D2 domain of the 

translocated effector CRN8 (Haas et al., 2009) also triggers cell death. Both of these 

cell death responses were also shown to be MAPKKKε-independent; since 

TRV:5’MAPPPKε-silenced plants showed levels of necrosis that were not 

Figure 5.11 Silencing of MAPKKKε reduces the hypersensitive response (HR) 

activated by co-expression of effector protein/R proteins 

Mean percentage of agroinfiltration sites in silenced plants with greater than 50% of the 

agroinfiltrated area showing confluent HR following co-expression of (A.) Avr4 and 

Cf4, or (B.) AvrPto and Pto. Bars indicate means ± SE for three plants. Asterisks 

indicate means that are significantly different from the TRV:GFP control at a given 

time point, as determined by Tukey HSD (**, P<0.01). Images of representative 

agroinfiltration sites for each silencing construct following co-expression of (C.) Avr4 

and Cf4, or  (D.) AvrPto and Pto, taken at 7 dpi. Data collected by Dr Hazel McLellan 

  

C. D. 

A. B. 
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significantly different from those observed in TRV:GFP control plants following the 

co-expression of AVR3a
KI 

with R3a, or expression of CRN8 (Figure 5.12 C). 

 

Figure 5.12 MAPKKKε is not required for cell death triggered by INF1, 

recognition of AVR3a
KI

 by R3a, or CRN8. 

(A.) Mean percentage of agroinfiltration sites in silenced plants with greater than 50% 

of the agroinfiltrated area showing confluent cell death following expression of INF1. 

Bars indicate means ± SE for at least 10 plants. Values are not significantly different 

(ns) from the TRV:GFP control, as determined by Tukey HSD (P>0.05). (B.) Images of 

representative agroinfiltration sites for each silencing construct following expression of 

INF1, taken at 7 dpi. (C.) Mean percentage of agroinfiltration sites in silenced plants 

showing cell death following agroinfiltration of pEAQ-HT:D2 (CRN8) or p35S:R3a 

with pTRBO:AVR3a
KI

 or pTRBO:AVR3a
EM

. Bars indicate means ± SE for at least 

three plants. Values are not significantly different (ns) from the TRV:GFP control, as 

determined by Tukey HSD (P>0.05). 

 

B. 

C. 
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5.2.5.1 PexRD2-triggered cell death is independent of MAPKKKε 

In planta over-expression of PexRD2 from a PVX-based binary vector triggers a 

weak cell death phenotype (Oh et al,. 2009, also see Section 3.1.2). This response 

was shown to be dose dependent and required the host ubiquitin ligase associated 

protein SGT1, since VIGS of SGT1 in N. benthamiana suppressed the response. To 

determine whether PexRD2-triggered cell death was also dependent on MAPKKKε, 

PexRD2 (residues 21 – 121) or PexRD2 WY-domain (residues 57 – 121
‡‡

) were 

transiently expressed in MAPPPKε-silenced plants. Proteins were expressed with N-

terminal FLAG-tags from the TMV-based pTRBO vector (Lindbo, 2007), which is 

known to deliver high levels of expression in N. benthamiana.  

In preliminary experiments, pTRBO:PexRD2 and pTRBO:PexRD2-WY were 

agroinfiltrated into wild-type N. benthamiana plants. In parallel, FLAG-tagged RFP 

and PexRD2-like-2a-WY were expressed by agroinfiltration as additional controls. 

Transient expression of either PexRD2, or its WY-domain, in N. benthamiana plants 

caused the development of discrete, pale, necrotic lesions in infiltrated tissue. This 

confirms that the WY-domain of PexRD2 is sufficient to elicit the weak cell death. 

This response was observable as early as 4 dpi; and was fully developed by 7 dpi 

(Figure 5.13 A). Unlike the stronger cell death responses of INF1 or CRN8, the weak 

PexRD2-triggered cell death never achieved confluent necrosis of infiltrated tissue. 

Neither RFP nor PexRD2-like-2a-WY triggered any observable cell death, 

confirming that the cell death observed was specific to expression of PexRD2. As 

seen for other cell death responses, the weak cell death triggered by PexRD2 was 

also associated with a significant increase in electrolyte leakage, compared to over-

expression of the RFP control (two-sample t = 5.9, df = 6, P < 0.01, Figure 5.13 B). 

                                                 
‡‡

 PexRD2 WY-domain was sub-cloned into pTRBO, from pENTR™/D-TOPO
®
, using a single-tube 

overlap extension PCR-based epitope tagging strategy with primers 386F, 388F and 389R. 
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Following confirmation that pTRBO-driven over-expression was sufficient to trigger 

a reproducible cell death response, the PexRD2 and RFP constructs described above 

were agroinfiltrated into N. benthamiana plants treated with either 

TRV:5’MAPKKKε, TRV:3’MAPKKKε, or TRV:GFP. As before, PexRD2 triggered 

significantly more cell death than the RFP control (Figure 5.14 A), although the 

percentage of infiltration sites showing PexRD2-triggered cell death at 7 dpi was not 

significantly different between the MAPKKKε-silenced plants and the control plants 

(Figure 5.14 B). Therefore the previously observed weak cell death activity of 

PexRD2 is also independent of MAPKKKε. Interestingly, and in contrast to the 

preliminary experiment with wild-type N. benthamiana plants, agroinfiltration of 

pTRBO:RFP into silenced plants resulted in the occasional development of necrotic 

lesions. This was not MAPKKKε dependent as it was observed in both control 

(TRV:GFP) and TRV:5’MAPKKKε-silenced plants, although the level of cell death 

observed was not statistically significant (Figure 5.14 B). 

Figure 5.13 PexRD2 induces a weak cell death response in planta 

(A.) Leaf showing weak cell death activity of PexRD2 or PexRD2 WY-domain as 

expressed from pTRBO. Image taken at 7 dpi. (B.) Quantification of cell death by 

measuring electrolyte leakage from leaf tissue agroinfiltrated with either RFP or 

PexRD2, measured at 4 dpi.Bars represent the mean value ± SE from at least three 

plants. (t-test, ** = P < 0.01). 

B. A. 
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5.2.6 PexRD2 suppresses MAPKKKε-mediated cell death responses 

Note: PexRD2 mediated suppression of AvrPto/Pto triggered hypersensitive 

response was conducted by Dr. Hazel McLellan (JHI).  

To test the hypothesis that the effector PexRD2 functions as an inhibitor of the host 

kinase MAPKKKε, the ability of PexRD2 to suppress MAPKKKε-dependent cell 

death responses was assessed. GFP-fusions of PexRD2 were co-expressed in 

N. benthamiana, using co-agroinfiltration, with AvrPto and Pto, or Avr4 and Cf4 

(Section 2.9.8). In addition, constructs expressing these pathogen and corresponding 

host proteins were co-agroinfiltrated with an appropriate empty vector control. 

Figure 5.14 PexRD2-trigged cell death is MAPKKKε-independent 

 (A.) Leaves showing weak cell death activity of PexRD2, but not RFP, in leaves from 

silenced plant. Images taken at 7 dpi. (B.) Mean percentage of agroinfiltration sites in 

silenced plants displaying weak cell death at 7 dpi. Bars indicate means ± SE for 

between 3 – 6 plants. Values are not significantly different (ns) from the TRV:GFP 

control, as determined by Tukey HSD (P>0.05). 

B. 

A. 
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Co-expression of PexRD2 with AvrPto and Pto has a significant effect on the mean 

level of HR observed between 3 – 5 dpi (ANOVA, F = 18.83, df = 1, P < 0.001)) 

(Figure 5.15). Furthermore, the mean level of HR observed at 5 dpi for leaves 

expressing Avr4 and Cf4 with PexRD2 was also significantly reduced (3.6 ± 2.0%) 

compared to co-agroinfiltration with the empty vector control (60.1 ± 5.1%, (Tukey 

HSD, p < 0.01)) (Figure 5.16 A-B). The HR triggered by the Avr4/Cf4 recognition 

event was also associated with an increase in electrolyte leakage from leaf tissue 

(Section 2.9.9), which was also significantly reduced by co-expression with PexRD2 

(Tukey HSD, p < 0.01, Figure 5.16 C). The ability of PexRD2 to suppress the HR 

observed following co-expression of both AvrPto and Pto, and Avr4 and Cf4, in N. 

benthamiana supports the hypothesis that PexRD2 can suppress MAPKKKε-

dependent cell death responses. 

 

Figure 5.15 PexRD2 suppresses the hypersensitive response (HR) activated 

by co-expression of AvrPto/Pto 

(A.) Mean percentage of agroinfiltration sites with greater than 50% of the 

agroinfiltrated area showing confluent HR following co-expression of AvrPto/Pto, and 

PexRD2 or a vector control. Bars indicate means ± SE for four plants. (B.) Images of 

representative agroinfiltration sites taken at 7 dpi. Data collected by Dr Hazel McLellan 

 

 

HM 

B. A. 
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Figure 5.16 PexRD2 suppresses the hypersensitive response (HR) 

activated by co-expression of Avr4/Cf4 

(A.) Mean percentage of agroinfiltration sites with greater than 50% of the 

agroinfiltrated area showing confluent HR following co-expression of Avr4/Cf4, and 

PexRD2 or a vector control. Bars indicate means ± SE for at least 20 plants. (B.) 

Images of representative agroinfiltration sites taken at 7 dpi. (C.) Quantification of 

cell death associated with HR by measuring electrolyte leakage from leaf tissue 

agroinfiltrated as described. Measurements were taken before (0 dpi) or 2 – 3 days 

post agroinfiltration (2 dpi/3 dpi). Bars represent the mean ± SE  from six plants. 

(Tukey HSD, ** = P < 0.01). 
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To further investigate, PexRD2’s function in planta, its ability to suppress the 

MAPKKKε-independent INF1-induced cell death (ICD) and CRN8-triggered cell 

death was also assessed using the same co-agroinfiltration approach. For either 

elicitor, no significant difference in the mean level of cell death was observed 

between the PexRD2 and vector control conditions (Tukey HSD, P > 0.05, Figure 

5.17). This supports the hypothesis that PexRD2 specifically suppresses MAPKKKε-

dependent cell death, and not all cell death responses, consistent with a potential 

virulence function as a specific inhibitor of this host protein kinase. 

The cell death suppression assays described above were all conducted using 

simultaneous infiltration of the Agrobacterium strains (co-agroinfiltration) 

harbouring PexRD2 or an empty vector control with other Agrobacterium strains 

Figure 5.17 PexRD2 does not suppress the cell death triggered by INF1 or CRN8 

Mean percentage of agroinfiltration sites with greater than 50% of the agroinfiltrated 

area showing confluent HR following co-expression of (A.) INF1 or (B.) CRN8, with 

PexRD2 or a vector control. Bars indicate means ± SE for at least six plants. Means 

are not significantly different from the vector control at a given time point, as 

determined by Tukey HSD (P>0.05). Images of representative agroinfiltration sites 

for co-expression PexRD2 or vector control with (C.) INF1 or (D.) CRN8. Images 

taken at 7 - 8 dpi, respectively. 
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harbouring the relevant cell death elicitors. Agroinfiltration of PexRD2 or a vector 

control, prior to agroinfiltration with the cell death elicitors (pre-agroinfiltration) 

represents an alternative method to test for cell death suppression. Wang et al., 

(2011) assessed the ability of 169 RXLR effectors from Phytophthora sojae for 

suppression of the programmed cell death (PCR) triggered by the pro-apoptotic 

mouse protein BAX in N. benthamiana. BAX-triggered PCD (BT-PCD) was tested 

because it physiologically resembles cell death associated with HR. Cell death 

suppression was assessed using co-agroinfiltration or pre-agroinfiltration assays. Six 

RXLR effectors could completely suppress BT-PCD when co-agroinfiltrated with 

the Agrobacterium harbouring the BAX gene, whilst nine showed a partially 

suppression of BT-PCD. When infiltrated 12 h prior to BAX, 41 and 38 P. sojae 

RXLR effectors could completely or partially suppress BT-PCD, respectively. If a 

delay of 24 h between infiltrations was used, the number of effectors with cell death 

suppression activity increased, with 107 effectors consistently suppressing BT-PCD 

and a further 20 showing partial suppression. Wang et al., (2011) also assessed the 

ability of 49 of these RXLR effectors for suppression of the INF1-induced cell death 

(ICD) using pre-agroinfiltration with either a 16 h or 24 h delay between 

agroinfiltrations. Fifty-one percent of the effectors tested (25 out of 49) were able to 

suppress ICD when infiltrated prior to agroinfiltration of INF1. 

Two effectors that were included in Wang et al.’s study, and which are interesting 

with respect to the work described above, are Avh98a and Avh98b. These two 

effectors were previously introduced as the PexRD2-like effectors PsG_159219 and 

PsG_159220 respectively (Section 3.2.9, Figures 3.24–25). Agroinfiltration of 

Avh98a 24 h prior to BAX could completely suppress BT-PCD, whereas pre-

agroinfiltration of Avh98b had no effect on BT-PCD. For both effectors, co-

agroinfiltration with BAX also had no effect on BT-PCD, suggesting that the delay 

between the two infiltrations was critical for activity. Avh98a was also able to 

suppress INF1-induced cell death if pre-agroinfiltrated 16 h in advance. Avh98a and 

Avh98b share 98% sequence identity within their C-terminal effector domains, and 

share 47% and 46% sequence identity, respectively, with the effector domain of 

PexRD2. 



5   MAPKKKε and the Putative Virulence Function of PexRD2 

177 

 

 

Since these results were reported to show that PexRD2-like effectors from P. sojae 

were able to suppress a greater range of cell death response if infiltrated prior to the 

elicitor of the cell death response, similar assays involving PexRD2 were also 

conducted. The Wang et al. study had used PVX-based binary vectors for expression 

of both the effectors and INF1. As such Agrobacterium strains harbouring the PVX-

based pGR106:PexRD2 or an appropriate vector control (pGR106:ΔGFP), were 

either infiltrated either 0 h (co-agroinfiltration) or 16 h (pre-agroinfiltration) prior to 

Agrobacterium harbouring pPGR106:INF1 (Huitema et al., 2005). Co-

agroinfiltration of PexRD2 or the vector control had no effect on INF1-induced cell 

death, as 100% of infiltrated sites showed confluent cell death at 5 dpi (Figure 5.18). 

In contrast, pre-agroinfiltration of PexRD2, prior to INF1, completely suppressed 

ICD and none of the sites developed necrosis. Of the sites pre-agroinfiltrated with 

Figure 5.18 Pre-agroinfiltration of PexRD2 can suppresses the INF1-

induced cell death mediated by agroinfiltration 

(A.) Percentage of agroinfiltration sites with 100% of the agroinfiltrated area showing 

confluent cell death (full cell death), or discrete necrotic lesions (partial cell death) 

following agroinfiltration of pGR106:INF1 either with (co-agroinfiltration) or 16 h after 

(preagroinfiltration) of PGR106:PexRD2 or a vector control (pGR106:ΔGFP). Data 

from 20 infiltrations sites per combination, collected at 3 days after agroinfiltration of 

INF1 (3 dpi). (B.) Images of representative agroinfiltration sites for each treatment 

taken at 3 dpi. 

 

B. 
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the vector control, 85% showed confluent cell death, and the remaining 15% showed 

only discrete necrotic lesions, suggesting partial suppression of ICD.  

The rationale for agroinfiltration of RXLR effector prior to elicitins, such as INF1, is 

that this better reflects the expression patterns of these proteins during an actual 

infection. Many RXLR effectors show a characteristic increase in expression levels 

during the early biotrophic stage (Schornack et al., 2009), whilst INF1 expression is 

down-regulated during early stages and highest during in late stages of infection 

when prolific sporulation and tissue necrosis occur (Kamoun et al., 1997). This 

might explain why a greater number of effectors can demonstrate cell death 

suppression activity if infiltrated prior to the elicitor. However, one caveat of the pre-

agroinfiltration approach, acknowledged by Wang et al., is that the expression level 

of the second transgene reduces with increasing delay between the first and second 

infiltrations. This observation can explain why certain effectors can suppress certain 

cell death responses when pre-agroinfiltrated prior to, but not when co-

agroinfiltrated with, the Agrobacterium harbouring the elicitor. The reduction in the 

expression level of the INF1 transgene, when infiltrated second, could result in a 

weaker response being triggered which is more easily suppressed by a broader range 

of effectors, including PexRD2. 

To test this hypothesis, the ability of pre-agroinfiltration of PexRD2 to suppress the 

cell death triggered by direct infiltration of P. infestans culture filtrate (provided by 

Angela Chaparro-Garcia (TSL)) was tested. Crude culture filtrate (CF) was prepared 

by growing P. infestans 88069 in liquid media for 3 months. The media was filtered 

to remove hyphal tissue, and provide a rich source of secreted elicitins, including the 

major secreted elicitin of P. infestans, INF1. The direct application of secreted 

protein circumvents the problems associated with transgene expression. Leaf tissue 

from N. benthamiana and N. tabacum (tobacco) were agroinfiltrated with GFP-

fusions of PexRD2 or free GFP as a negative vector control. A GFP-fusion of the 

RXLR effector AVR3a
KI 

was used as a positive control, as this effector is known to 

suppress INF1-induced cell death (Bos et al., 2006, Bos et al., 2009). 

Three days after agroinfiltration, to ensure integration of the transgene, a 10-fold 

dilution series of CF was prepared and infiltrated, alongside a negative control of 
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sterile media, into the pre-agroinfiltrated leaf tissue. CF-induced cell death (CF-ICD) 

was scored at 7 days post CF-infiltration. Both N. benthamiana and N. tabacum 

showed similar responses to CF, although a stronger cell death response was elicited 

in tobacco. Pre-agroinfiltration of the positive control, AVR3a
KI

, was able to 

completely suppress CF-ICD at 1000- and 100-fold dilutions, and partially suppress 

CF-ICD at a 10-fold dilution (Figure 5.19). On the other hand, the same dilutions of 

CF elicited a clear cell death response in both PexRD2 and vector control infiltrated 

tissue. These results support the conclusion that, unlike AVR3a, PexRD2 cannot 

suppress the MAPKKKε-independent cell death triggered by the elicitin INF1 

meaning that the previous observation of cell death suppression if PexRD2 was pre-

agroinfiltrated 16 h prior to INF1 is potentially an artefact of the experimental 

approach. However, the use of a crude culture filtrate, and not purified INF1 elicitin, 

means that this would require further investigation. 

The experiments described above raise a number of questions about the current 

methodology used to assess cell death suppression activity of effectors. In particular, 

Figure 5.19 Pre-agroinfiltration of PexRD2 cannot suppresses the induced 

cell death following infiltration of P. infestans culture filtrate 

Cell death elicited following infiltration of a 10-fold dilution series of P. infestans 

culture filtrate into N. tabacum leaves, agroinfiltrated 3 days prior with either vector 

control, PexRD2 or AVR3a
KI

. Negative control is undiluted sterile culture media. 

Results are representative of those obtained from three plants. 
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caution must be taken when comparing conclusions based on co-agroinfiltration 

versus pre-agroinfiltration of the effector in question. Wherever possible the 

expression levels of elicitors in suppressed and non-suppressed conditions should be 

determined to ensure no obvious differences that could explain the results. 

Furthermore, where extracellular recognition of elicitors occurs, the use of culture 

filtrates or purified protein provides an alternative to the pre-agroinfiltration 

approach which may provide more reliable results.  

 

5.2.7 PexRD2 specifically inhibits MAPKKKε-triggered cell death 

Similar to some other MAPK-cascade components (Yang et al., 2001, del Pozo et 

al., 2004), the over-expression of MAPKKKε in planta results in a pathogen-

independent cell death response (Melech-Bonfil and Sessa, 2010). Over-expression 

(OE) of either full length or the catalytic kinase domain (KD) of the tomato 

MAPKKKε resulted in a strong cell death response. This response was shown to be 

dependent on the catalytic kinase activity of this protein since the substitution of the 

essential lysine in the ATP-binding site with an arginine (K49R) abolished this 

response. This pathogen-independent cell death can be considered a proxy for a 

MAPKKKε-mediated HR, and the ability of PexRD2 to suppress MAPKKKε-OE-

triggered cell death was assessed in planta. The wild-type and kinase-inactive mutant 

of the tomato MAPKKKε KD, both cloned into the pER8 binary vector (Zuo et al., 

2000), were obtained from lab of Professor Guido Sessa (Tel-Aviv University, Tel-

Aviv, Israel). These constructs allow transient expression of a C-terminal double 

haemagglutinin (2xHA) epitope-tag; and under the control of an estradiol inducible 

promoter (Melech-Bonfil and Sessa, 2010). A GFP-fusion of PexRD2 or free GFP 

(vector control) was co-expressed, via co-agroinfiltration in N. benthamiana, with 

HA-epitope-tagged SlMAPKKKε KD (SlKDε1-332, residues 1 – 332) (Section 2.9.8). 
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Two days after agroinfiltration, the expression of SlKDε1-332 was induced by 

treatment of infiltrated tissue with 10 μM β-estradiol. The development of 

MAPKKKε KD-triggered cell death started at 2 days post estradiol treatment (dpt) 

was scored up to 7 dpt (Figure 5.20 A-B). The mean level of MAPKKKε KD-

triggered cell death observed 7 dpt in PexRD2 co-agroinfiltrated conditions was 

significantly reduced (6.3 ± 2.9%) compared to co-agroinfiltration with the empty 

vector control (78.6 ± 4.1%, (two-sample t = 14.3, df = 36, P < 0.001)). Western blot 

analysis confirmed that MAPKKKε KD accumulated to similar levels in the 

presence or absence of PexRD2, indicating loss of cell death is not due to loss of 

expression (Figure 5.20 C). 

Figure 5.20 PexRD2 suppresses the cell death triggered by over-expression 

of MAPKKKε kinase domain (KD) 

(A.) Mean percentage of agroinfiltration sites with greater than 50% of the 

agroinfiltrated area showing confluent cell death, follwing treatment with β-estradiol at 

2 days post agroinfiltration of PexRD2 or a vector control with SlMAPKKKε KD. 

Quantification of cell death at 1 – 7 days post estradiol treatment (dpt) to induce kinase 

expression. Bars indicate means ± SE for at least 20 plants. (Tukey HSD, ** = P < 

0.01). (B.) Images of representative agroinfiltration sites taken at 7 dpt. (C.) Western 

blot confirming expression of HA-tagged SlMAPKKKε KD (black triangle) in the 

presence of PexRD2 (red triangle). The green triangle indicates the expected size of 

free GFP. PS indicates Ponceau staining of RuBisCO to confirm protein loading. 

 

 

B. 

A. 

C. 



5   MAPKKKε and the Putative Virulence Function of PexRD2 

182 

 

 

Note: The sub-cloning of potato and Arabidopsis MAPKKKε kinase domains in the 

pER8 derivative vector, pERCH, was conducted by Dr. Richard Hughes (JIC) 

To confirm that the cell death suppression activity of PexRD2 is specific to 

MAPKKKε-mediated cell death, the effect of over-expression the kinase domains 

from the potato and an Arabidopsis homolog in the presence and absence of PexRD2 

was also assessed. Two different potato MAPKKKε truncations both containing the 

kinase domain were tested. StKDε1-332 (residues 1 - 332) is a portion of the potato 

protein that corresponds to the region of the tomato homolog previously used for in 

planta expression. StKDε1-300 (residues 1 - 300) corresponds to the MAPKKKε-N2 

truncation that showed the strongest activation of reporter genes in Y2H suggesting a 

robust protein-protein interaction. The kinase domain of AtMAPKKKε1 (AtKDε1-300) 

was also included in the analysis. DNA sequences for all three kinase domains were 

ligated into XhoI/PacI double digested derivative of the pER8 vector, pERCH (pER8 

with C-terminal HA-tag, see Section 2.4.8.6). The three new constructs were 

transiently expressed in N. benthamiana using agroinfiltration together with PexRD2 

or an empty vector control as before. The previously described SlKDε1-332 and 

SlKDε1-332
K49R 

expressing constructs were also included as appropriate positive and 

negative controls, respectively. 

At 7 dpt, all four active kinases were capable of triggering cell death when co-

agroinfiltrated with the vector control; and no significant differences were observed 

for the level of cell death triggered (Tukey HSD, P > 0.05) (Figure 5.21). Co-

expression of PexRD2 with any of the MAPKKKε KD homologs caused a complete 

inhibition of this cell death (Tukey HSD, P < 0.01). Consistent with published results 

no cell death was observed following OE of the kinase inactive SlKDε1-332
K49R

. 
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To further test the specificity of the cell death suppression activity of PexRD2, its 

ability to suppress cell death triggered by the over-expression of other MAPK 

cascade components was also tested. The over-expression of a catalytically active 

kinase domain of a second tomato MAPKKK, MAPKKKα, also triggers a cell death 

in planta (del Pozo et al., 2004). In similarity with MAPKKKε, MAPKKKα signals 

as part of a MAPK-cascade, involving the downstream MAPKK, MEK2 (or MKK2). 

Over-expression of a constitutively active mutant of MEK2, MEK2
DD

, where Thr215 

and Ser221 in the activation loop have been substituted with phosphomimetic 

aspartates,
 
also induces a HR-like cell death (Oh and Martin, 2011). Over-expression 

of NtMEK2
DD

 induces expression of defence genes, and generation of nitric oxide 

and reactive oxygen species (Yang et al., 2001, Liu et al., 2007). These responses are 

preceded by the MEK2-mediated activation of endogenous WIPK and SIPK (Yang 

et al., 2001). Interestingly, transgenic potato plants carrying MEK2
DD

 driven by a 

pathogen-inducible promoter show enhanced resistance to Phytophthora infestans 

(Yamamizo et al., 2006). 

Figure 5.21 PexRD2 suppresses the cell death triggered by over-expression 

of  MAPKKKε kinase domains (KD) from potato and 

Arabidopsis orthologs. 

Mean percentage of agroinfiltration sites with greater than 50% of the agroinfiltrated area 

showing confluent cell death, following treatment with β-estradiol at 2 days post agroinfiltration. 

PexRD2 or a vector control were co-agroinfiltrated with wild-type SlMAPKKKε KD (SlKDε1-

332), catalytically inactive SlMAPKKKε KD (SlKDε1-332
K49R

), two potato MAPKKKε KD 

constructs (StKDε1-332 and StKDε1-300), and the Arabidopsis ortholog KD (AtKDε1-300).  

Quantification of cell death at 7 days post estradiol treatment (dpt). Bars indicate means ± SE 

for at least three plants. Asterisks indicate values that are significantly different from the SlKDε1-

332/vector control condition (Tukey HSD, ** = P < 0.01). 
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The effect of co-expression of PexRD2 on SlMAPKKKα KD-triggered and 

SlMEK2
DD

-triggered cell death was tested as before. PexRD2 or an appropriate 

empty vector control was co-agroinfiltrated in N. benthamiana, with double HA-

epitope-tagged versions of the two kinases, under the control of estradiol inducible 

promoters (provided by Professor Gregory Martin (BTI)). Two days after 

agroinfiltration the expression of the protein kinases was induced with 10 μM 

β-estradiol, and the development of cell death was scored up to 7 dpt. Consistent 

with previous observations by Melech-Bonfil and Sessa (2010), MAPKKKα KD-

triggered and MEK2
DD

-triggered cell death developed faster than that triggered by 

MAPKKKε. For both kinases, cell death was observable at the earliest time-point 

(1 dpt), and 100% of infiltrated sites showed full cell death at 4 dpt and 3 dpt 

respectively (Figure 5.22 A-B). No significant difference was observed in the mean 

level of cell death observed in PexRD2 co-agroinfiltrated compared to empty vector 

control co-agroinfiltration with the for either MAPKKKα KD or MEK2
DD

. 

These results are consistent with PexRD2 interacting with MAPKKKε homologs to 

function as a specific inhibitor of MAPKKKε-mediated cell death responses at the 

MAPKKK level of the signalling cascade. 
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5.2.8 PexRD2 inhibits MAPKKKε-mediated activation of MAPK  

To determine if PexRD2 could inhibit other MAPKKKε-mediated responses prior to 

the development of macroscopic cell death, the phosphorylation of downstream 

signalling components following MAPKKKε over-expression was assessed; first in 

the absence, and subsequently in the presence, of PexRD2. 

Phosphorylation and activation of the MAPKs, WIPK and SIPK, is known to 

precede the HR-like cell death and defence gene induction triggered by over-

expression of the constitutively active MEK2
DD

 (Yang et al., 2001). Epigenetic 

experiments have implicated MEK2, SIPK and WIPK as the downstream 

components of the MAPKKKε signalling cascade, as they are required for 

MAPKKKε-OE-triggered cell death (Melech-Bonfil and Sessa, 2010). As such the 

Figure 5.22 PexRD2 cannot suppress the cell death triggered by over-

expression of MAPKKKα KD or a constitutively active mutant 

of MEK2 (MEK2
DD

) 

(A.) Mean percentage of agroinfiltration sites with greater than 50% of the 

agroinfiltrated area showing confluent cell death, follwing treatment with β-estradiol at 

2 days post agroinfiltration of PexRD2 or a vector control with SlMAPKKKα KD or 

MEK2
DD

. Quantification of cell death at 1 – 5 days post estradiol treatment (dpt) to 

induce kinase expression. Bars indicate means ± SE for at least 10 plants. (Tukey HSD, 

P> 0.05). (B.) Images of representative agroinfiltration sites taken at 7 dpt.  
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phosphorylation of the endogenous WIPK and/or SIPK represents a potential 

surrogate measure for MAPKKKε activity in vivo. MAPKs are activated following 

phosphorylation of threonine and tyrosine residues within the TEY motif in their 

activation loops. As such their activation can be detected using phosphospecific 

antibodies that cross react with only the dually phosphorylated pTEpY motif (anti-

pTEpY) (Segonzac et al., 2011). 

To determine if MAPK activation could be detected following MAPKKKε KD over-

expression in N. benthamiana, leaf tissue was agroinfiltrated with MAPKKKKε KD 

or the catalytically inactive mutant, MAPKKKKε KD
K49R

. Expression of the kinases 

was induced by treatment with estradiol at 48 hpi (0 hpt). Leaf disks from infiltrated 

tissue were collected at 0, 6, and 24 hpt.  

Endogenous MAPK activation was detected by western-blot analysis as described by 

Segonzac et al., (2011) and in Section 2.9.10. Estradiol-induced expression of 

MAPKKKε kinase domains was confirmed using an anti-HA antibody. Consistent 

with previous experiments in N. benthamaiana (Segonzac et al., 2011), a single band 

between 40 – 55 kDa was detected with anti-pTEpY antibody. This band was 

detectable at both 6 and 24 hpt for tissue expressing MAPKKKKε KD, but not the 

catalytically inactive MAPKKKKε KD
K49R

, consistent with MAPK activation 

occurring after MAPKKKε KD over-expression and preceding the development of 

MAPKKKε-OE-triggered cell death (Figure 5.23 A). 

To confirm that the band detected corresponded to activated endogenous SIPK or 

WIPK, N. benthamiana leaf disks were treated with peptide corresponding to the 

epitope of the bacterial PAMP flagellin, flg22. Recognition of flg22 by FLS2 is also 

known to trigger activation of SIPK and WIPK (Segonzac et al., 2011). In parallel, 

N. benthamiana leaf disks were treated with a 100-fold dilution of P. infestans 

culture filtrate, which contains the oomycete PAMP-like elictin INF1. INF1-induced 

cell death is also known to involve signalling through MAPK (Asai et al., 2008). 

Treatment with either flg22 or diluted P. infestans culture filtrate also resulted in 

detection of a single band of 40 – 55 kDa using the anti-pTEpY antibody (Figure 

5.23 B), confirming that signal detected is likely the result of detection of activate 

SIPK or WIPK. 
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To determine if PexRD2 can inhibit MAPKKKε-mediated activation of MAPK in 

N. benthamiana, leaf tissue was agroinfiltrated with MAPKKKKε KD, either alone or 

co-agroinfiltrated with Agrobacterium expressing a GFP-fusion of PexRD2 or a free 

GFP control. As before, expression of the kinase was induced by treatment with β-

estradiol, and leaf disks were collected at 0, 6, and 24 hpt. For tissue infiltrated with 

MAPKKKε alone or co-agroinfiltrated with the GFP control, western blot analysis 

revealed clear bands corresponding to activated MAPKs detected at both 6 and 24 

hpt. Co-agroinfiltration with PexRD2 dramatically reduced the signal observed, 

consistent with reduced MAPKKKε-mediated activation of MAPK in the presence 

of PexRD2 (Figure 5.23 C). Anti-GFP and anti-HA western blot analysis confirmed 

expression of GFP-PexRD2 or free GFP, and induction of MAPPKKKε KD, 

respectively. These results confirm that PexRD2 can inhibit the MAPKKKε-

mediated phosphorylation of downstream signalling components that occur prior to 

the onset of macroscopic cell death. 
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Figure 5.23 Over-expression of MAPKKKε kinase domain (KD) triggers 

activation of MAPKs, that is suppressed by co-expression 

with PexRD2 

(A.) Western blot showing that over-expression of SlMAPKKKε KD in N. 

benthamaina, but not the catalytically inactive mutant SlMAPKKKε KD
K49R

, triggers 

phosphorylation of MAPKs as detected with the phosphopeptide-specific anti-pTEpY 

antibody. (B.) The same size band is detectable following treatment of N. benthamaina, 

leaf disks with 100 nM flg22 peptide or 100-fold diluted P. infestans culture filtrate 

(PiCF) for 15 minutes. (C.) Co-expression of PexRD2, but not the vector control 

(pK7WGF2) reduces levels of phosphorylated MAPKs following inducation of 

MAPKKKε KD expression. Anti-HA western blot confirms induction of kinase 

expression. Anti-GFP western blot confirms expression of PexRD2 fusion protein (red 

arrow) and free GFP (black arrow). PS indicates Ponceau staining of RuBisCO to 

confirm protein loading. 
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5.2.9 PexRD2 inhibits cell expansion in planta 

The results described above indicate that PexRD2 can inhibit MAPKKKε-mediated 

signalling in plant immunity. However, MAPKKKε has been implicated as having 

pleiotropic roles in both plant immunity and development. Therefore, the effect of 

PexRD2 on plant development was also assessed. 

VIGS of MAPKKKε in N. benthamiana and tomato causes an obvious growth 

inhibition phenotype (Melech-Bonfil and Sessa, 2010). Growth is the product of cell 

division and expansion, and reduced growth can therefore result from a reduction in 

cell number, cell size or both. Although the mapkkkε-1;mapkkkε-2 double-mutant in 

Arabidopsis causes pollen lethality, use of an ethanol-inducible promoter construct 

rescued this lethal phenotype (Chaiwongsar et al., 2012). In the absence of ethanol, 

homozygous double-mutant plants showed significantly reduced root elongation and 

leaf expansion, resulting from reduced cell expansion and division. Application of 

ethanol, to induce expression of the transgenic MAPKKKε could partially rescue the 

reduced cell expansion in leaf epidermal cells. 

To further characterise the role of MAPKKKε in plant development in solanaceous 

plants, the effect of silencing MAPKKKε in N. benthamiana on leaf cell size and 

number was assessed (Section 2.9.11). The mean leaf area for plants silenced using 

TRV:5’MAPKKKε was significantly smaller than that of TRV:GFP-treated control 

plants (23.98 ± 2.34 cm
2 

vs
 
44.21 ± 2.94 cm

2
, t-test t = 5.39, df = 17, P < 0.001 

(Figure 5.24 A-B)). 

Microscopy of epidermal cells on the abaxial surface of leaves revealed that 

silencing MAPKKKε reduces cell size (Figure 5.24C-D). Leaf epidermal cells from 

TRV:5’MAPKKKε silenced N. benthamaiana plants had a mean cell area of 1931 ± 

160 μm
2
, compared to 4089 ± 1020 μm

2 
for TRV:GFP silenced plants (t-test, t = 

5.39, df = 181, P < 0.01). Division of leaf areas by mean cell area gives an estimate 

for the total number of cells per leaf. In contrast to its effect on cell expansion, 

silencing MAPKKKε has no significant effect on number of cells per leaf (Figure 

5.24 E), suggesting cell division is occurring as normal. Therefore consistent with 

AtMAPKKKε1 and AtMAPKKKε2, N. benthamaiana homologs of MAPKKKε are 

also positive regulators of cell expansion, and hence plant growth. 
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A. B. 

C. 

D. E. 

Figure 5.24 Silencing MAPKKKε inhibits cell expansion, and hence growth 

(A.) Overall size and shape of N. benthamiana leaves 14 days after treatment with 

either TRV:GFP or TRV:5’MAPKKKε. Scale bars = 10 cm (B.) Mean total area 

for 10 leaves (± SE). (C.) Representative microscopy images of abaxial 

epidermal cells. Scale bars = 100 μm. (D.) Mean cell area for 50 – 150 (±SE). 

(E.) Mean estimated number of epidermal cells per leaf (±SE). (t-test, ns = non 

significant P>0.05, ** = P < 0.01, *** = P < 0.001). 
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To determine if PexRD2 could inhibit MAPKKKε-mediated responses other than 

those involved in plant defence, the effect of transient expression of PexRD2 on 

plant development was also assessed. PexRD2 was expressed from the binary vector 

pEAQ-HT in one half of leaves of 28-day old N. benthamaiana plants, prior to leaf 

expansion. Seven days subsequent to agroinfiltration (7 dpi), the un-agroifiltrated 

half of each leaf was fully expanded whilst tissue expressing PexRD2 was not, 

resulting in a striking curvature of the mid-vein of the leaf (Figure 5.25 A). Control 

leaves, where half of each leaf was infiltrated with Agrobacterium harbouring an 

empty vector control (pEAQ-HT:EV), showed no reduction in tissue expansion. 

To confirm that PexRD2-mediated inhibition of leaf expansion did not result from 

the previously published weak cell death activity of PexRD2 (Oh et al., 2009), 

accumulation of autofluorescent phenolic compounds that are associated with cell 

death was visualized under ultraviolet (UV) light. The levels of ion leakage from 

infiltrated leaf tissue, which also correlates with cell death, were also measured 

(Section 2.9.9). Transient expression of D2 domain of CRN8, which is known to 

cause a strong death response in planta (Haas et al., 2009), see Section 6.1.2, was 

used as a positive control. In similarity with PexRD2, leaf tissue expressing CRN8-

D2 failed to expand resulting in clear curvature of the mid-vein, however, unlike 

pEAQ-HT:PexRD2-infiltrated tissue, pEAQ-HT:D2-infiltrated tissue showed 

extensive necrosis (Figure 5.25 A). CRN8-agroinfiltrated leaf tissue showed clear 

auto fluorescence (Figure 5.25 B), and high levels of ion leakage (Figure 5.25 C), 

consistent with the observed cell death. PexRD2-agroinfiltrated tissue did not visibly 

fluoresce more than the vector control-agroinfiltrated tissue (Figure 5.25 B), nor 

were the ion leakage levels significantly different for PexRD2 (Figure 5.25 C). As 

such, the reduced tissue expansion caused by PexRD2 cannot be explained by 

detectable cell death activity. The fact that transient expression of PexRD2 in planta 

appears to phenocopy the developmental effects of silencing MAPKKKε suggests 

that PexRD2 could also inhibit MAPKKKε’s role involved in plant development. 
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The results presented above support the role of PexRD2 as a specific inhibitor of 

MAPKKKε-mediated signalling events, in both plant immunity and development 

(Figure 5.26 A). Whether PexRD2’s inhibition of cell expansion has any biological 

relevance to the host-pathogen interaction during an infection, or is simply an 

unavoidable effect of PexRD2 targeting MAPKKKε-mediated immunity signalling 

to achieve effector triggered susceptibility (Figure 5.26 B), is yet to be determined. 

Figure 5.25 Transient expression of PexRD2 also inhibits leaf expansion, 

which is not caused by cell death activity 

(A.) Transient expression of PexRD2 via agroinfiltration into half a leaf of a 28-day old 

N. benthamaiana plant inhibits leaf expansion, resulting in curvature of mid-vein, 

without visible necrosis of infiltrated tissue, unlike CRN8. (B.) Visualization of leaves 

under ultraviolet (UV) light (480/40 nm excitation filter; 510 nm barrier) confirms lack 

of accumulation of autofluorescent phenolic compounds that are associated with cell 

death for PexRD2, but not CRN8. Photographs were taken at 7 dpi. (C.) Quantification 

of cell death by measuring electrolyte leakage from leaf tissue confirms lack of cell 

death for PexRD2-infiltrated tissue. Bars represent the mean value ± SE from at least 

three plants. Asterisks indicate means that are significantly different from the 0 dpi 

sample (Tukey HSD, ** = P < 0.01). 

 

A. 

B. 

C. 
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Figure 5.26 Model for PexRD2’s effect on known MAPKKKε-mediated 

signalling responses in vivo, and proposed virulence function 

during infection 

(A.) Schematic representation of PexRD2-mediated inhibition of MAPKKKε activity 

required for cell death associated with plant immunity and plant development. 

(B.) MAPKKKε’s role in the restriction of growth of P. infestans suggests that it is 

required for triggering a defence response following perception of an as yet unknown 

oomycete elicitor (PAMP?, AVR?). PexRD2 is proposed to function as an inhibitor of 

this kinase to confer effector-triggered susceptibility, and enhance colonisation. 

A. 

B. 
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5.2.10 Mutations in PexRD2 disrupt the interaction with MAPKKKε  

To help develop a more mechanistic understanding of PexRD2’s interaction with 

MAPKKKε, and the importance of this interaction for the effector’s virulence 

function, a series of mutant PexRD2 effectors were designed. These mutants were 

either generated by whole-plasmid mutagenesis (Section 2.4.6.1) or synthesised by 

Genscript (USA), before testing to identify those that disrupted the interaction with 

MAPKKKε. Since the WY-fold containing effector domain of PexRD2 was 

sufficient to mediate the interaction with MAPKKKε KD, only residues within this 

region were targeted. The structure of PexRD2’s effector domain, together with 

sequence alignments of PexRD2 and the two ‘non-interacting’ PexRD2-like 

effectors, were used to design structurally-informed mutants. These mutants were 

intended to investigate the importance of different features of PexRD2 in mediating 

the interaction with MAPKKKε, without disrupting the conserved WY-fold. 

Amongst the published WY-fold effectors, dimerisation is uniquely observed in 

PexRD2. Co-immunoprecipitation experiments had confirmed that this 

oligomerisation was also observed for PexRD2 in planta (see Figure 3.18 B). The 

crystal structure reveals that this homodimerisation is mediated by an interface 

dominated by hydrophobic residues. To investigate the importance of this interface 

for dimerisation and effector function, two leucine residues with side-chains that 

contributed to this surface (Leu109 and Leu112) were individually mutated to 

aspartates (Figure 5.27 B). A similar approach had been used to investigate the 

importance of the observed dimerisation in the crystal structure of the bacterial 

effector AvrRps4 (Sohn et al., 2012). In that study, replacement of a hydrophobic 

isoleucine, within the predicted dimerisation interface, to a charged aspartate 

abolished dimer formation and confirmed that monomeric effector is sufficient to 

activate plant immunity pathways. 

Other individual point mutations in PexRD2 were designed to either abolish or 

reverse the charge of ten residues with side-chains that were solvent exposed in the 

crystal structure and as such not involved in the dimerisation interface (Figure 5.27 

A). It was hypothesised that the residues that are solvent exposed in the crystal 

structure might mediate the interactions with the host targets. Five of the ten 
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mutations targeted negatively charged surface features; namely a glutamate present 

at the start of the first α-helix of the WY-fold (Glu61, (E61A)); two aspartates 

(Asp74 and Asp75, (D74A and D75A)) that contribute to part of the large negatively 

charged groove observed in the structure; and two glutamates (Glu97 and Glu101, 

(E97Q and E101Q)) that map to the smaller negatively charged patch that spans 

helices α4. Furthermore five lysines (Lys79, Lys81, Lys85, Lys104, and Lys107), 

which contribute to the large positive region that wraps around the structure, were 

mutated to negatively charged glutamates. The mutation of surface exposed lysines 

to glutamates has also been applied to study the function of AVR3a, targeting 

residues that were predicted to be surface exposed based on a homology model 

(Yaeno et al., 2011). 

All twelve mutants were transferred to the pDEST™32 bait vector by Gateway
® 

cloning, and tested for interactions with the prey vector encoding StMAPKKKε KD 

or the appropriate empty vector control. The loss of interaction with MAPKKKε KD 

was assessed using the HIS3, and lacZ reporter gene assays. Only the two mutants 

differing in the dimerisation interface, PexRD2
L109D

 and PexRD2
L112D

, had any 

observable effect on the interaction with this host protein. Neither mutant was able to 

interact with the MAPKKKε prey construct, as evidenced by the lack of activation of 

either the HIS3 or LacZ reporter genes (Figure 5.27 C), although anti-GAL4-DBD 

western blot analysis confirmed expression to levels comparable to wild-type 

PexRD2 (Figure 5.28 C). The other ten single point mutations targeting surface 

exposed residues did not interfere with PexRD2’s interaction with MAPKKKε. As 

with the wild-type PexRD2 bait, none of the mutant bait constructs showed any 

evidence of auto-activation activity. 

These results indicate that an intact dimerisation interface is crucial for PexRD2’s 

interaction with MAPKKKε KD. This could suggest that PexRD2 interacts with the 

kinase exclusively as a dimer; or that this hydrophobic surface on PexRD2 is a dual-

purpose interaction interface mediating either homodimerisation or binding to host 

targets. 

 

 



5   MAPKKKε and the Putative Virulence Function of PexRD2 

196 

 

 

 

Figure 5.27 Point mutations in PexRD2 dimerisation interface abolish 

interaction with MAPKKKε KD in yeast two-hybrid 

Cartoon ribbon representation with electrostatic surface of the effector domain of 

PexRD2 with WY-fold on chain-a coloured in dark grey and variable loop highlighted 

in purple. and chain-b in grey. (A.) Homodimer highlighting surface exposed residues 

targeted by mutagenesis. (B.) Dimerisation interface of monomer showing dimerisation 

interface residues targeted by mutagenesis. (C.) Y2H analysis of cotransformants 

carrying wild-type or mutant PexRD2 baits and StMAPKKKε KD (residues 1 – 300) 

prey. Growth on SC-LW confirms cotransformation. Interactions between baits and 

prey are confirmed by growth on plates lacking histidine (–HIS) and blue colouration in 

the presence of X-gal (+Xgal). Bait/prey combinations were tested in triplicate. 

A. B. 

C. 
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The inability of any single point mutation to alter the interaction between PexRD2 

and kinase is perhaps not surprising. The P. mirabilis homolog of PexRD2, contains 

five polymorphisms in its effector domain when compared to PiPexRD2, and is still 

able to interact with MAPKKKε. Therefore more dramatic mutants, simultaneous 

targeting multiple residues, were designed using a structurally informed approach. 

The natural variation between PexRD2 and the non-interacting PexRD2-like-1a was 

exploited to identify residues that may be important in mediating the interaction. As 

noted above for PexRD2-like effectors (Section 3.2.9), the variable loops and C-

termini were identified as regions of the two proteins that showed the greatest 

variation.  

Interrogation of the crystal structure revealed eight residues within the variable loop 

region with solvent exposed side-chains. A mutated version of PexRD2 in which all 

eight of these residues were mutated to their corresponding residues from the 

variable loop of PexRD2-like-1a was designed, henceforth PexRD2
vloop-8 

(Figure 

5.28 B). The appropriate DNA sequence was then synthesised, flanked by the attB 

recombination sites, and supplied in a pUC57 vector by Genscript (USA). Of the 

selected eight residues, Ala90 was the closest to the dimerisation interface and its 

mutation to the corresponding glutamate from PexRD2-like-1a could potentially be 

quite disruptive. As such the mutated Glu90 of PexRD2
vloop-8

 was reverted back to 

the wild-type alanine to generate PexRD2
vloop-7 

using whole plasmid mutagenesis.  

PexRD2-like effectors can show substantial extensions to the conserved WY-fold at 

their C-termini. PexRD2-like-1a has an additional nine residues compared to 

PexRD2. To investigate if these C-terminal extensions in PexRD2-like effectors 

impede the interactions of these effectors with MAPKKKε, the last three residues of 

PexRD2 (119-TAV-121) were replaced with the last 12 residues of PexRD2-like-1a 

(121-NKKKKPNLVYYS-132). The resultant mutant is henceforth referred to as 

PexRD2
long-tail

. The reciprocal swap in PexRD2-like-1a yielded the mutant 

PexRD2-like
short-tail

, and was used to investigate if removal of the long C-terminal 

extension could cause a gain of interaction of PexRD2-like effectors with 

MAPKKKε KD. The appropriate DNA sequence for PexRD2
long-tail

 and PexRD2-

like
short-tail 

were synthesised, flanked by the attB recombination sites, and supplied in 

a pUC57 vector by Genscript (USA). These four additional PexRD2/PexRD2-like 
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mutants were then transferred to the pDEST™32 bait vector by Gateway
® 

cloning, 

and tested for interactions with the prey vector encoding MAPKKKε KD or the 

appropriate empty vector control. The loss of interaction with MAPKKKε KD was 

assessed using the HIS3, and lacZ reporter gene assays 

PexRD2
long-tail 

showed wild-type interactions with MAPKKKε KD, and PexRD2-

like
short-tail 

did not gain the ability to interact with the host kinase domain (Figure 

5.28 A). These results show that the residues comprising the short C-terminal tail of 

PexRD2 are neither required nor sufficient to mediate the interaction; and that 

extensions at the C-terminus of PexRD2 can be accommodated without impacting 

the interaction with the host kinase. 

In contrast, the PexRD2
vloop-7

 mutant showed a reduced interaction with MAPKKKε 

KD, as evidenced by the weak growth on media lacking histidine, but not the 

development of a blue colouration in the presence of X-gal (Figure 5.28 A). 

Furthermore, the PexRD2
vloop-8 

showed no interaction with MAPKKKε KD; co-

transformants failed to activate either the HIS3 and lacZ reporter genes. Western blot 

analysis using anti-GAL4-DBD confirmed expression of PexRD2
vloop-7

 to levels 

similar to wild-type PexRD2, whilst PexRD2
vloop-8

 accumulated to slightly lower 

levels (Figure 5.28 C). This suggests that the A90E mutation, present in 

PexRD2
vloop-8

 but not PexRD2
vloop-7

, has an additive effect in reducing the strength of 

interaction between PexRD2 and MAPKKKε, possibly through reducing protein 

stability. Furthermore, the composition of surface exposed residues in the variable 

loop region of PexRD2 is important for the effector’s ability to interact with 

MAPKKKε. 
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Figure 5.28 More drastic mutations in PexRD2 reduce interaction with 

MAPKKKε KD in yeast two-hybrid 

(A.) Y2H analysis of cotransformants carrying wild-type or mutant effector baits and 

StMAPKKKε KD (residues 1 – 300) prey. Growth on SC-LW confirms 

cotransformation. Interactions between baits and prey are confirmed by growth on 

plates lacking histidine (–HIS) and blue colouration in the presence of X-gal (+Xgal). 

Bait/prey combinations were tested in triplicate, and a single respresentative colony is 

shown. (B.) Cartoon ribbon representation PexRD2 dimer with WY-fold on chain-a 

coloured in dark grey and variable loop highlighted in reddish-purple. Mutations 

present in both PexRD2vloop-7 and PexRD2vloop-8, or just PexRD2vloop-8 are shown 

without or within brackets respectively. (C.) Western blot analysis confirming 

expression levels of wild-type or mutant PexRD2 baits. Red arrow indicates expected 

size of fusion protein. MaV203 represents total proteins from an untransformed yeast 

and serves as a negative control. PS indicates Ponceau staining to confirm protein 

loading. 

 

 

A. 

B. C. 
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5.2.11 Non-interacting mutants do not suppress MAPKKKε-dependent 

HR, or MAPKKKε-triggered cell death 

Following identification of mutants of PexRD2 that reduce or abolish its interaction 

with MAPKKKε, the ability of these mutants to suppress MAPKKKε-mediated cell 

death in planta was assessed. Cell death suppression assays were repeated using 

these mutants as described in Sections 2.9.8, 5.2.6, and 5.2.7. The PexRD2
K104E

 

mutant that still interacts with MAPKKKε KD in Y2H significantly suppressed the 

HR triggered by recognition of Avr4 by Cf4, to the same level as that achieved by 

wild-type PexRD2 (Figure 5.29 A-B). In contrast, co-expression of the two non-

interacting point mutants, PexRD2
L109D

 or PexRD2
L112D

, with Avr4 and Cf4 in N. 

benthamiana did not significantly suppress the level of HR observed, compared to 

the empty vector control, although western blot analysis confirmed their expression 

to levels comparable to wild-type PexRD2 (Figure 5.29 C). 

B. 

A. 

C. 

Figure 5.29‘Dimerisation 

interface mutants’ 

of PexRD2 do not 

suppress Avr4/Cf4-

triggered HR 

(A.) Mutations in the dimerisation 

interface of PexRD2 (L109D or 

L112D) abolish the effector’s ability 

to suppress Avr4/Cf4-triggered HR. 

Data represents the mean ± SE from 

at least three plants. Superscripts 

above means indicate the 

significance level of the difference 

compared to the vector control at a 

given time point, as determined by 

Tukey HSD. (B.) Images of 

representative levels of HR/HR 

suppression for each condition, 

taken 7 dpi. (C.) Western blot 

analysis confirming expression 

levels of GFP-fusions of wild-type 

and mutant PexRD2 at 3 dpi. Red 

arrow indicates expected size of full 

length fusion protein. PS indicates 

Ponceau staining of RuBisCO to 

confirm protein loading. 

 

 

Figure 5.29  

‘Dimerisation interface mutants’ 

of PexRD2 do not suppress 

Avr4/Cf4-triggered HR 
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Co-expression of the same non-interacting point mutants, PexRD2
L109D

 and 

PexRD2
L112D

, with the kinase domain of SlMAPKKKε had no significant effect on 

the level of cell death observed following estradiol treatment (Figure 5.30). In 

similar with wild-type PexRD2, the PexRD2
K104E

 mutant could significantly 

suppress the MAPKKKε KD-triggered cell death. 

 

Furthermore, mutations within the variable loop region which negatively affected the 

interaction with MAPKKKε KD in Y2H, also negatively affected PexRD2-mediated 

suppression of the MAPKKKε KD-triggered cell death. The PexRD2
vloop-8 

mutant, 

which does not interact with MAPKKKε KD in Y2H, did not suppress MAPKKKε 

KD-triggered cell death in planta (Figure 5.31 A-B). The level of cell death observed 

Figure 5.30 ‘Dimerisation interface mutants’ of PexRD2 do not suppress 

the cell death triggered by MAPKKKε KD 

(A.) Mutations in the dimerisation interface of PexRD2 (L109D or L112D) also abolish 

the effector’s ability to suppress MAPKKKε KD -triggered cell death. Data represents 

the mean ± SE from at least four plants. Superscripts above means indicate the 

significance level of the difference compared the vector control at a given time point, as 

determined by Tukey HSD. (B.) Images of representative levels of MAPKKKε-

triggered cell death/cell death suppression for each condition, taken 7 dpt. 

B. 

A. 
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was not significantly different from the negative control. In contrast, the 

PexRD2
vloop-7 

mutant, which still shows a very weak interaction with MAPKKKε 

KD in Y2H, showed a reduction in, but not complete loss of, cell death suppression 

activity. The level of MAPKKKε KD-triggered cell death when co-expressed with 

PexRD2
vloop-7

 was significantly different from both the vector control and wild-type 

PexRD2 conditions. It was also significantly different from the level of cell death 

observed following co-expression with PexRD2
vloop-8 

(Figure 5.31 A-B). Western 

blot analysis confirmed that both mutants accumulated to similar levels to wild-type 

PexRD2 in planta (Figure 5.31 C). This intermediate level of cell death suppression 

activity indicates that the ability of PexRD2 to suppress MAPKKKε-mediated cell 

death can be positively correlated with the strength of interaction between the 

effector and host protein, as estimated by the Y2H. 

Figure 5.31‘Variable loop 

mutants’ of PexRD2 

do not suppress the 

cell death triggered 

by MAPKKKε KD 

(A.) Mutations in the variable loop 

region of PexRD2 significantly 

reduce the effector’s ability to 

suppress MAPKKKε KD-triggered 

cell death. Data represents the mean 

± SE from at least five plants. 

Different letters above two means 

indicate they are significantly 

different from each other at that 

given time point, as determined by 

Tukey HSD (P<0.05). (B.) Images of 

representative levels of MAPKKKε-

triggered cell death/cell death 

suppression for each condition, taken 

7 dpt. (C.) Western blot analysis 

confirming expression levels of GFP-

fusions of wild-type and mutant 

PexRD2 at 4 dpi. Red arrow 

indicates expected size of full length 

fusion protein. PS indicates Ponceau 

staining of RuBisCO to confirm 

protein loading. 

 

C. 

B. 

A. Figure 5.31  

‘Variable loop mutants’ of 

PexRD2 do not suppress the cell 

death triggered by MAPKKKε 

KD 
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5.2.12 Non-interacting mutants of PexRD2 do not enhance growth of 

Phytophthora infestans  

Since non-interacting PexRD2 mutants show less suppression of cell death responses 

that are dependent on MAPKKKε-mediated signalling, which was shown to limit the 

spread of infection with P. infestans, their ability to enhance infection was also 

tested. As described for wild-type PexRD2 in Section 5.2.4, agroinfiltration was used 

to transiently express PexRD2 mutants in one half of a leaf, and vector control in the 

other half of the same leaf. After 24 h, detached leaves were infected with P. 

infestans 88069 zoospores and the growth of necrotic lesions was scored as before. 

Wild-type PexRD2 enhanced infection by P. infestans 88069, as measured by lesion 

area, approximately five-fold relative to infection of the vector control tissue (Figure 

5.10 A). In contrast, prior expression of any of the four mutants: that show no 

(PexRD2
L109D

, PexRD2
L112D

, and PexRD2
vloop-8

) or significantly reduced 

(PexRD2
vloop-7

) ability to suppress MAPKKKε-mediated signalling, did not 

significantly enhance infection by the P. infestans 88069 (Figure 5.32). The lesion 

area achieved for infection of leaf tissue expressing any of the four mutants was not 

significantly different from the lesion area of infections in the same leaf on tissue 

infiltrated with vector control (Tukey HSD, P > 0.05). 

 

Figure 5.32 In planta expression of non-interacting mutants does not 

enhance infection by P. infestans 

Mean relative lesion area at 5 dpz for infection with P. infestans 88069. Relative lesion 

area is calculated as in Figure 5.10. Each bar represents the mean ± SE of at least 16 

leaves per construct. Asterisks indicate means that are significantly different from the 

standardised value of vector control tissue (Tukey HSD, ** = P < 0.01, ns = not 

significantly different, P>0.05) 
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5.2.13 PexRD2
L109D

 mutant displays dominant negative activity 

To further explore the mechanism of PexRD2’s virulence function, the ability of a 

structurally-informed mutant PexRD2 that no longer interacts with MAPKKKε, nor 

inhibits MAPKKKε-mediated signalling, to function in a dominant negative manner 

was tested. Previous studies had shown that co-expression of catalytically inactive 

mutants of the translocated kinase effector CRN8, or the bacterial effector HopAO1, 

with the wild-type effectors could inhibit the wild-type effectors’ activities. To 

determine if PexRD2
L109D

 (L109D) displays dominant negative activity, 

Agrobacterium harbouring 3xHA-PexRD2 was mixed with other Agrobacterium 

harbouring either empty vector control (pK7WGF2) or GFP-L109D in various ratios 

to achieve a combined OD600 of 0.3. These agroinfiltration mixtures were then co-

agroinfiltrated with SlMAPKKKε KD into N. benthamiana leaves and the level of 

cell death following estradiol treatment was scored (Section 2.9.8). 

Co-expression of 3xHA-PexRD2 alone with MAPKKKε KD significantly 

suppressed the triggered cell death, indicating that different N-terminally tagged 

variants of PexRD2 retain activity (Figure 5.33 A). Co-expression of a mixture of 

wild-type PexRD2 and the empty vector control, at any ratio, still significantly 

suppressed the MAPKKKε KD-triggered cell death, to similar levels to expression of 

PexRD2 alone (Figure 5.33 B). However, co-expression of a mixture of PexRD2 and 

L109D, at any ratio, did not suppress the MAPKKKε KD-triggered cell death. The 

level of MAPKKKε KD-triggered cell death achieved following co-expression with 

L109D was not significantly different either in the presence or absence of PexRD2. 

Interestingly the cell death that occurred when co-expressed of L109D was 

accelerated relative to that that occurred when MAPKKKε KD was co-

agroinfiltrated with the vector control (see Figure 5.36 A).  
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These above results demonstrate that PexRD2
L109D 

does display dominant negative 

activity, and is able to apparently inhibit the activity of the wild-type PexRD2. This 

dominant negative activity could result from a number of different mechanisms, 

which are outlined in Figure 5.34: (Section 5.2.13.1) L109D
 
could out compete wild-

type PexRD2 for the interaction surface on MAPKKKε KD without suppressing 

MAPKKKε-mediated signalling; (Section 5.2.13.2) L109D
 
could render PexRD2 

non-functional either through destabilisation of wild-type protein or formation of 

non-functional heterodimers; (Section 5.2.13.3) expression of L109D
 
could trigger 

an altered physiological state in planta that unspecifically accelerates cell death 

responses; or (Section 5.2.13.4) L109D could out compete wild-type PexRD2 for a 

third unknown factor that is required for PexRD2-mediated suppression of 

MAPKKKε-mediated signalling. 

Figure 5.33 PexRD2
L109D

 displays dominant negative activity. 

(A.) Co-expression of PexRD2
L109D

 (L109D), but not a vector control, with wild-type PexRD2 

in planta prevents PexRD2-mediated suppression of MAPKKKε KD-triggered cell death. 

Leaves were imaged at 5 days post estradiol treatment (dpt). (B.) Level of MAPKKKε KD-

triggered cell death observed at 5 dpt. Results presented represent the percentage of infiltration 

sites per plant with greater than 50% of area showing cell death. Bars represent the mean ± SE 

from at least five plants. Asterisks indicate means that are significantly different from the vector 

control alone condition (Tukey HSD, ** = P < 0.01, ns = not significantly different, P>0.05) 

 

B. 

A. 
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Figure 5.34 Potential mechanisms behind dominant negative activity of 

PexRD2
L109D

 mutant 

Schematic representation of the proposed means by which PexRD2
L109D

’s (L109D) domain 

negative activity might result. (A.) L109D might block the binding interface on MAPKKKε 

without inhibiting the kinase’s activity. (B.) L109D might form non-function heterodimers with 

or otherwise destabilise the wild-type PexRD2. (C.) PexRD2 might reduce MAPKKKε-

mediated signalling below the threshold required for elicitation of cell death. L109D might 

cause an altered physiological state that reduces the threshold required for elicitation of cell 

death resulting in accelerated cell death, even in the presence of PexRD2. (D.) PexRD2 might 

require a third unknown component (purple pentagon) to mediate inhibition of MAPKKKε-

mediated cell death. L109D might compete with PexRD2 for this unknown component, 

preventing PexRD2-mediated inhibition of MAPKKKε. 

A. B. 

C. 

D. 
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5.2.13.1 Does L109D compete with wild type PexRD2 for the 

interaction interface on the host target? 

Dominant negative activity could result from L109D competing with wild type 

PexRD2 for the interaction interface on the host target, without being able to inhibit 

the kinase’s activity itself. However, this explanation can be deemed unlikely. For 

L109D to block the interaction surface on MAPKKKε KD one should expect it be 

able to interact with the host kinase with at least an equal, if not greater, affinity than 

the wild-type PexRD2. The protein-protein interaction studies described above 

(Section 5.2.10) have confirmed a loss of detectable interaction between L109D
 
and 

MAPKKKε KD. 

 

5.2.13.2 Does L109D interact with PexRD2 and prevent the 

interaction with the host target? 

A second explanation is that the L109D mutant interacts with the wild-type PexRD2 

and prevents it from interacting with its proposed virulence target. L109D might 

achieve this through forming non-functional heterodimers with PexRD2, or by the 

mutant destabilising the wild-type protein. 

An interaction between PexRD2 and L109D is plausible, because the crystal 

structure of PexRD2 revealed that this protein homodimerises. This oligomerisation 

of wild-type PexRD2 was reconfirmed by multiple independent techniques (Section 

3.2.7). To assess for the potential for heterodimerisation, or destabilising effects, 

3xHA-PexRD2, or 3xHA-L109D, were co-expressed in planta, with either free GFP, 

GFP-PexRD2 or GFP-L109D by co-agroinfilitration. Total protein extracts were 

obtained from infiltrated tissue and analysed by western blotting.  

Co-expression of 3xHA-PexRD2 with GFP-L109D had no effect on the 

accumulation of the wild-type protein compared to co-expression with GFP or GFP-

PexRD2 (Figure 5.35). This means that the dominant negative activity of L109D is 

unlikely to result from any destabilising effect, however, unlike wild-type PexRD2, 

no expression of 3xHA-L109D was detected, even after anti-HA 
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immunoprecipitation, suggesting that this particular construct has reduced expression 

or stability, although this requires further investigation. 

The potential for PexRD2 and L109D to form non-functional heterodimers remains a 

possibility. Immunoprecipitation of 3xHA-PexRD2, using anti-HA affinity matrix, 

did not co-immunoprecipitate GFP-L109D, but neither did it co-immunopreciptiate, 

wild-type GFP-PexRD2 (Figure 5.35). As such experiments designed to assess 

potential for heterodimerisation remain inconclusive. 

One way that this could be assess in the future, would be to switch the HA-tag for a 

FLAG-tag and reassess for heterodimerisation, as GFP-PexRD2 was previously 

shown to co-IP with FLAG-PexRD2 (Boutemy et al., 2011). Co-expression or co-

purification of the two proteins expressed recombinantly in E. coli, followed by 

biophysical characterisation, represents another strategy to assess the potential for 

homo- and heterodimerisation of L109D. 

Yeast two-hybrid does not represent a suitable assay to assess for PexRD2 

oligomeriation since the homodimeric interaction between wild-type PexRD2 was 

not detectable (Figure 4.13). However, the potential for L109D to disrupt PexRD2’s 

interaction with MAPKKKε could be tested using yeast three-hybrid (Zhang and 

Lautar, 1996, Werner et al., 2004, Moriyoshi, 2009). 

These first two explanations are based on the assumption that the dominant negative 

actitivty of L109D is reliant on it preventing PexRD2 from interacting with 

MAPKKKε. Although these explanations cannot be excluded, they both do not 

explain why the cell death triggered by MAPKKKε KD is
 
accelerated when co-

expressed with L109D,
 
compared to when co-expressed with the vector control, even 

in the absence of PexRD2. 
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5.2.13.3 Does expression of L109D trigger an altered physiological 

state that accelerates the development of cell death? 

L109D might act as a non-specific sensitizer to cell death responses. Although 

L109D itself doesn’t trigger a detectable necrosis, it may alter the physiological state 

within the cell such that the responses triggered by cell-death elicitors are enhanced 

and accelerated in an unspecific manner. This explanation is consistent with the 

significantly accelerated MAPKKKε KD-triggered cell death in the presence of 

L109D (Figure 5.36). This cell death response reaches its maximum with L109D 

within 3 dpt, compared to 5 dpt with the empty vector control.  

Figure 5.35 L109D does not destabilise PexRD2 in planta, although 

attempts to assess heterodimerisation remain inconclusive 

Western blots showing immunoprecipitation of 3xHA-PexRD2. 3xHA-PexRD2 was 

coexpressed with free GFP, GFP-tagged PexRD2 or L109D in N. benthamiana. 

Immunoprecipitates (IP) obtained with Anti-HA affinity matrix (α-HA IP) and total protein 

extracts (inputs) were immunoblotted with antibodies as indicated. PS indicates of Ponceau 

stain of large RuBisCO subunit to confirm equal protein loading. 
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If the apparent dominant negative activity of this mutant effector is due to an 

unspecific, altered physiological state, one might expect the responses triggered by 

other cell-death elicitors to also be accelerated by L109D. To test this, the effect of 

L109D on cell death responses that are known to be MAPKKKε-independent was 

assessed. The cell death responses triggered by the translocated effector CRN8 and 

the elicitin INF1 have been shown to be independent of MAPKKKε in N. 

benthamiana (Section 5.2.5, Figure 5.12). These cell death responses were also not 

suppressed by co-agroinfiltration with PexRD2 (Section 5.2.6, Figure 5.17). The 

development of cell death following co-expression of either elicitor with L109D was 

compared to that following co-expression of the two elicitors with an empty vector 

control. The level of cell death triggered by CRN8 or INF1 was not significantly 

affected by co-expression with L109D. This result is consistent with a specific 

response, and not a general, altered physiological state as described above. However, 

caution should be taken when drawing conclusion based on negative results.  

A. B. 

Figure 5.36 PexRD2
L109D

 specifically accelerates cell death triggered by 

MAPKKKε KD 

(A) Co-expression of PexRD2
L109D

 (L109D, black circles) accelerates the cell death 

triggered by over-expression of MAPKKKε KD compared to co-expression with the 

vector control (grey circles). Values represent the mean ± SE for at least six plants. 

Different letters within the circles indicate means that are significantly different from 

each other, as determined by Tukey HSD (P<0.05). (B) The development of cell death 

triggered by INF1 (triangles) or CRN8 (squares) is not effected by co-expression of 

L109D. Values represent the mean ± SE for at least six plants. 
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5.2.13.4 Does L109D compete with PexRD2 for an unknown factor 

that is required for suppression of MAPKKKε? 

It is possible that PexRD2 mediates its inhibition of MAPPPKε-mediated signalling 

through an interaction with a third unknown component that forms part of the 

effector-target complex. For example, PexRD2 might stabilise an interaction with an 

endogenous negative regulator of the host kinase. One could speculate that, in the 

absence of any elicitors, activity of the kinase may be inhibited through interaction 

with this proposed negative regulator. Over-expression of this kinase is sufficient to 

overcome this baseline level of negative regulation resulting in the pathogen-

independent cell death. PexRD2 could inhibit MAPPPKε-mediated signalling by 

stabilising the interaction with said unknown negative regulator and MAPKKKε. 

The L109D
 
mutant

 
cannot interact with MAPKKKε, meaning that it cannot inhibit 

the kinases activity. However, if it could still interact with the proposed negative 

regulator, this might prevent the putative endogenous regulation mechanism that 

would otherwise slow the cell death progression. When PexRD2 and L109D are co-

expressed together with MAPKKKε KD, the mutant could compete with the wild-

type effector for this potential negative regulator. Although this explanation is highly 

speculative, it is also consistent with the accelerated MAPKKKε-triggered cell death 

observed when co-expressed with L109D. 

To further investigate this potential explanation, the ability of the L109D mutant to 

interact with other identified putative targets of PexRD2, was assessed using Y2H. 

These known interactors of PexRD2 and MAPKKKε might be likely candidates for 

the third unknown component. Yeast co-transformants harbouring the L109D mutant 

bait and either StPM4K1 or StΔN-PUB38-like preys were tested using all three 

reporter gene assays, alongside co-transformants harbouring the wild-type PexRD2 

bait or the appropriate empty vector controls. 

Unlike wild-type PexRD2, co-expression of the L109D bait with either the StPM4K1 

or StΔN-PUB38-like preys failed to activate any of the reporter genes (Figure 5.37). 

This indicates that mutation of this residue in the dimerisation interface also 

abolishes the interactions with these other host targets. This suggests that these host 

proteins are unlikely candidates for the proposed unknown component required for 
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PexRD2-mediated suppression of MAPKKKε. Further analysis would be required to 

identify host proteins that interact with both PexRD2 and L109D, and could 

represent the proposed unknown component. 

 

 

5.2.14 Cell death suppression assays can be adapted to identifiy 

PexRD2-insensitive MAPKKKε kinase domains from a 

randomly-generated library 

The involvement of MAPKKKε in the plant’s resistance response to P. infestans 

(Section 5.2.2), and the suggested role of PexRD2 as a specific inhibitor of this host 

protein (Section 5.2.6 – 5.2.9), suggest that mutant MAPKKKε that can function 

even in the presence of PexRD2 could be deployed to provide novel resistance 

mechanisms to this pathogen. To identify such a mutant, the MAPKKKε KD-

triggered cell death suppression assay described in Section 5.2.7 was adapted and 

optimised for a medium- to high-throughput screening format. 

The wild-type sequence for the potato MAPKKKε kinase domain (residues 1 – 332, 

StKDε1-332) was expressed with under the control of the estradiol inducible promoter 

in the pERCH vector (see Section 5.2.7). This protein had been confirmed to cause a 

strong cell death response that was robustly suppressed by PexRD2 (Figure 5.21). 

This protein was co-expressed with N-terminally 3xHA tagged PexRD2, to provide a 

Figure 5.37 PexRD2
L109D

 does not interact with PM4K1 or PUB38-like 

Y2H analysis of co-transformants carrying PexRD2 or L109D baits and identified interacting 

host proteins (PexRD2PIs) as indicated. Interactions allow growth on plates lacking histidine 

(-HIS) or uracil (-URA) and blue colouration in the presence of X-gal (+Xgal). Bait/prey 

combinations were tested in triplicate and single representative colonies are shown. 
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PexRD2-sensitive MAPKKKε condition, whilst a ‘PexRD2-insensitive mutant’ was 

simulated by co-expressing StKDε1-332 with the N-terminally 3xHA tagged, non-

interacting, PexRD2
L109D

 mutant that does not suppress MAPKKKε KD-triggered 

cell death (Section 5.2.11 and 5.2.13). 

The rate at which mutant MAPKKKεs could be screened in a medium- to high-

throughput agroinfiltration-based assay could be increased if the Agrobacterium 

infiltration mixes could be prepared a day in advance. The effect of incubation of 

Agrobacterium in infiltration buffer for prolonged periods (>16 h) prior to 

infiltration into leaf tissue, was compared to the previously used 1 – 2-h incubation 

period. When using prolonged incubation, the effect of adding 0.2% (w/v) sucrose, 

as a source of carbon, to the standard infiltration buffer was also assessed. 

Overnight (>16 h) incubation in infiltration buffer, prior to agroinfiltration and 

estradiol treatment to induce kinase expression, significantly reduced the level of cell 

death observed in the ‘PexRD2-insensitive mutant’ simulated condition, compared to 

the standard < 2-h incubation period (Figure 5.38 A). Addition of sucrose to 

Figure 5.38 Overnight incubation of agroinfiltration mixes reduces 

subsequent MAPKKKε KD-triggered cell death 

(A.) The effect of prolonged incubation in infiltration buffer on the mean level of cell death 

triggered by StMAPKKKε KD (residues 1 – 332 ) in the presence of PexRD2 or L109D, with 

or without the addition of 0.2% (w/v) sucrose to infiltration buffer. Bars indicate the mean ± SE 

for three plants. Asterisks indicates means that are significantly different from the standard 2 h 

incubation condition (Tukey HSD, * = P<0.05, ** = P<0.01). (B.) Image of a representative leaf 

with conditions numbered as in (A.) taken at 7 dpt. 

 

A. B. 
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infiltration buffer used for overnight incubation had some effect in restoring the level 

of cell death observed, although it was still dramatically reduced compared to the 

standard incubation period. These results likely indicate a reduction in 

Agrobacterium mediated transformation efficiency. Based on these results prolonged 

incubation was deemed unsuitable for the subsequent preliminary mutant screening, 

and the standard incubation period was used instead. 

Note: Mutant library construction was conducted by Dr Richard Hughes (JIC). 

Preliminary screening was conducted with Dr Richard Hughes and Benjamin Hall 

(JIC). Subsequent screening will be conducted by Benjamin Hall. 

Mutants were generated by error-prone-PCR, cloned into pERCH, and transformed 

into Agrobacterium by Dr Richard Hughes (JIC). Agrobacteria harbouring mutant 

clones were grown, mixes as described and prepared as described in Section 2.9.8, 

and infiltrated into the leaves of N. benthamiana. Each leaf infiltrated contained four 

different mutant clones co-agroinfiltrated with PexRD2, as well as, wild-type 

StKDε1-332 and PexRD2, as a PexRD2-sensitive control and wild-type StKDε1-332 and 

PexRD2
L109D

, as a surrogate ‘PexRD2-insensitive’ control. Any mutants that 

triggered a higher level of cell death than the PexRD2-sensitive negative control 

were deemed a potential hit. 

This assay design means that since cell death induction is most likely dependent on 

kinase activity, any mutants identified will likely be catalytically active. In the 

preliminary pilot screen 286 Agrobacterium clones were screened, and nine putative 

PexRD2-insensitive MAPKKKε mutants were identified. Putative hits were repeated 

to confirm the results and sequenced to identify the mutated residues. The success 

rate of this primary screen (~3%) provided a manageable number of candidate 

mutants, that following additional rounds of screening and confirmation in a 

secondary screen, could be tested for their ability to confer increased resistance to P. 

infestans. Knowledge of the identity of the mutated residues, combined with 

structural information from homology modelling of the kinase domain, may also 

give key insights into the PexRD2-MAPKKKε-interaction interface. This 

information could also provide a unique perspective on the potential molecular 

mechanism of PexRD2’s inhibition of MAPKKKε signalling.  
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5.3 Conclusion 

Plant MAP kinase cascades are increasingly being recognised as key components of 

immunity signalling; transmitting and amplifying signals following the perception of 

a diversity of PAMPs and effectors to result in altered gene expression and anti-

microbial defence responses (Pitzschke et al., 2009). They have also been identified 

as a prominent target for interference by effector proteins leading to the suppression 

of PAMP-triggered immunity (Zhang et al., 2007, Cui et al., 2010, Wang et al., 

2010). MAPKKKε is a known positive regulator of cell death responses associated 

with plant immunity, being shown to be required for resistance to virulent and 

avirulent bacterial phytopathogens, and for signalling following the recognition of 

elicitors from bacterial and fungal pathogens (Melech-Bonfil and Sessa, 2010). 

A yeast two-hybrid screen revealed that the potato ortholog of MAPKKKε interacts 

with the RXLR effector PexRD2. This interaction was independently confirmed in 

planta, and shown to be specific. Silencing of this host gene in infection assays using 

the Phytophthora infestans-Nicotiana benthamiana model pathosystem has revealed 

that this kinase is also required for some level of resistance against the late blight 

pathogen. 

Transient over-expression of the effector in planta prior to infection was able to 

phenocopy the effect of silencing MAPKKKε. However, infection of tissue 

expressing two PexRD2-like effectors, which do not interact with MAPKKKε, did 

not have the same effect. This potentially highlights the importance of this effector-

target interaction for the outcome of infection by P. infestans. 

The requirement of MAPKKKε for the HR triggered by the AvrPto/Pto and 

Avr4/Cf4 recognition events was confirmed. The cell death events triggered by the 

recognition or activity of P. infestans proteins tested, so far, were, on the other hand, 

shown to be MAPKKKε-independent. However, a large number of other oomycete 

elicitors are yet to be tested. 

Perception of the PAMP-like elicitin, INF1, is known to activate MAPK cascades 

(Asai et al., 2008); however, INF1-induced cell death was shown to not require 

MAPKKKε. The involvement of MAPKKKε in signalling other oomycete PAMP 
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responses, such as the peptide Pep-13 from a cell wall transglutaminase (Halim et 

al., 2004, Halim et al., 2009), or the cell wall glycoprotein, CBEL (Gaulin et al., 

2002, Khatib et al., 2004) that also elicit necrosis and defence response in planta, is 

yet to be tested. 

The recognition of Avr3a
KI

 by R3a was one of the cell death events that was 

confirmed to be independent of MAPKKKε, however, to date, 68 R genes from 

Solanum spp. that confer resistance to potato late blight have been identified 

(Rodewald and Trognitz, 2013), and MAPKKKε could theoretically be required for 

the downstream signalling that leads to resistance for any one of them. Alternatively 

MAPKKKε may be required for signalling following the recognition of an as yet, 

unidentified recognised effector (avirulence factor) or for signalling following a 

recognition event that contributes towards resistance without the typical cell death 

associated with the hypersensitive response. 

In addition, although, the cell death triggered by the translocated kinase effector, 

CRN8, was also shown to be MAPKKKε-independent, four other domains within 

the CRN family of effectors are also known to elicit cell death responses in planta.  

Finally the previously published weak cell death activity of PexRD2 itself is also not 

dependent on the activity of MAPKKKε. This cell death response was only robustly 

seen when PexRD2 was expressed from viral-based binary vectors that deliver high 

levels of protein expression. The biological relevance of PexRD2-triggered weak cell 

death has yet to be characterised, and it is unclear if it represents a plant immune 

response following a recognition event, or simply a more general toxic effect as has 

been proposed for the Phytophthora cell death–inducing Nep1-like proteins (NLPs) 

(Kanneganti et al., 2006). 

The virulence function of PexRD2 appears to be as an inhibitor of MAPKKKε-

mediated signalling. PexRD2 specifically suppresses the cell death and ion leakage 

associated with the HR, as well as the activation of MAPKs for events that are 

dependent on MAPKKKε. Cell deaths that are independent of MAPKKKε-signalling 

were, generally, not suppressed by PexRD2. One point of potential confusion 

appears to be the cell death induced by INF1. Pre-agroinfiltration, but not co-

agroinfiltration, of PexRD2 completely suppressed INF1-induced cell death, when 
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INF1 was expressed subsequently by agroinfiltration. Similar activity has been 

reported for other RXLR effectors including PexRD2-like effectors from 

Phytophthora sojae (Wang et al., 2011). Pre-agroinfiltration of PexRD2 had no 

effect on the cell death triggered when crude culture filtrate, containing INF1 

protein, was delivered directly into plant tissue. It is possible that this cell death may 

result from the recognition of pathogen-derived molecules other than INF1 (which is 

also suppressed by AVR3a
KI

); however, another plausible explanation for this 

discrepancy is that prior expression of PexRD2 appears to inhibit delivery or 

expression of subsequent transgenes. Although, this observation raises questions as 

to the best current practices in the field of plant pathology for assessing effector-

mediated cell death suppression, it might also provide interesting insights into the 

mechanisms of Agrobacterium-mediated transformation of plants. These bacteria 

have been reported to ‘hijack’ MAPK cascade signalling, by using the MPK3-

induced translocation of VIP1
§§

 to shuttle their T-DNA into the nucleus (Djamei et 

al., 2007). As such, if PexRD2 can interfere with T-DNA transfer it could implicate 

MAPKKKε as an important component in this delivery process. However, the ability 

to transiently express proteins via agroinfiltration in MAPKKKε-silenced plants 

would suggest otherwise. 

Whether the responses triggered by over-expression of MAPKKKε kinase domain 

alone are the same as those that follow activation of the full length protein during 

normal immunity signalling remains to be determined. This is important since the C-

terminal, non-catalytic regions of MAPKKKs are often implicated in regulatory roles 

and mediating substrate specificity (Suarez-Rodriguez et al., 2007). Regardless of 

this, the ability of PexRD2 to inhibit the cell death triggered by over-expression of 

the MAPKKKε KD provides strong support for its proposed function as a specific 

inhibitor of MAPKKKε-mediated signalling at this level of the cascade. 

Furthermore, although epigenetic experiments have positioned MEK2, SIPK and 

WIPK as the downstream components for MAPKKKε-mediated signalling that leads 

to cell death, whether these proteins represent the minimal functional signalling 

cascade is also yet to be determined. The proposed three-tier modules of MAPK 

                                                 
§§

 VIP1 = VirE2-Interacting Protein 1 
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cascades are increasingly being recognised as an oversimplification. Hashimoto et 

al., (2012) revealed that two novel phylogenetically annotated MAPKKKs, 

MAPKKKβ and MAPKKKγ from N. benthamiana, formed a linear signalling 

pathway upstream of the previously identified MAPKKKα, with signalling through 

this pathway leading to HR-like cell death. Furthermore, Kong et al., (2012), 

identified MEKK2 from Arabidopsis as an annotated MAPKKK that is 

phosphorylated and negatively regulated by MPK4. MEKK2 in turn was implicated 

as a positive regulator of plant immune responses. These recent studies highlight the 

prevalence of sequential or parallel signalling in, and cross-talk between, MAPK 

cascade modules, suggesting that their signalling should more accurately be 

interpreted as networks. Screens to identify additional interactors of MAPKKKε: 

combined with more in planta epigenetic experiments and in vitro protein 

biochemistry assays; would be useful in identifying the true extent of the 

MAPKKKε-mediated signalling network. 

Uncovering the molecular mechanism behind PexRD2-mediated inhibition of 

MAPKKKε represents the next big challenge. Unlike the examples of bacterial 

effectors discussed in the introduction (see Section 5.1 and Figure 5.1), PexRD2 is 

not predicted to display enzymatic activity. As such PexRD2 might be predicted to 

interact with MAPKKKε to either block or promote interactions with other host 

proteins that interfere with this host kinases activity. Interestingly, other RXLR 

effectors are being implicated as inhibitors of MAPK-mediated signalling responses. 

The unrelated RXLR effector, Avh238 from P. sojae P7076, has been shown to 

suppress the pathogen-independent cell death triggered by over-expression of a 

MAPKKK, NPK1, and a MAPKK, MKK1; as well as INF1-induced cell death 

(Wang et al., 2011). Avh238 is not predicted to contain a WY-domain (Boutemy et 

al., 2011), and the host targets of Avh238, and hence the mechanism by which this 

effector achieves this cell death suppression, remain unknown. However, since 

Avh238 can suppress cell death triggered by both a MAPKKK and MAPKK, it is 

plausible that its activity is targeting downstream signalling components (Wang et 

al., 2011). A second P. sojae RXLR effector Avh331, which does contain predicted 

W and Y motifs (Wang et al., 2011), was also shown to be able to suppress a number 

of responses known to be downstream of MAPK cascade signalling (Cheng et al., 
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2012). However, activation of MPK3 and MPK6 was unaffected in Arabidopsis 

expressing Avh311 suggesting that the actual mechanism of action is also 

downstream of the MAPKs. 

The structure of the WY-domain of PexRD2 has been invaluable in guiding the 

design of structurally informed mutants that no longer interact with MAPKKKε, nor 

suppress in vivo responses that are dependent on MAPKKKε-mediated signalling. 

This work has shown that the nature of a number of the surface exposed residues and 

the N- and C-termini of the WY-fold are flexible with regards mediating the 

interaction with MAPKKKε. In contrast, mutation of residues within the 

dimerisation interface or variable loop region caused a reduced or complete loss of 

interaction with MAPKKKε. This could be correlated with a loss of cell death 

suppression and enhancement of pathogenic growth. These results further strengthen 

the model that MAPKKKε is a genuine virulence target for PexRD2. 

One non-interacting mutant, PexRD2
L109D

, showed dominant negative activity, 

although the exact mechanism by which it achieves this still remains unclear. This 

result might indicate that the mechanism of inhibition might be more complex than 

initially proposed. Furthermore, since this mutant effector was also unable to interact 

with either the PM4K1 or PUB38-like proteins, it highlights the need to characterise 

these host proteins potential involvement in plant immunity. 

It would be interesting to see if the dominant negative activity of this mutant effector 

could be exploited to enhance resistance to late blight. If so, the identification of this 

mutant effector, in addition to potential PexRD2-insensitive variants of the virulence 

target, could open new avenues for the engineering of resistance to the challenging 

late blight pathogen in economically important crop species. 
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6 Heterologous Expression of CRN8 

6.1 Introduction 

6.1.1 CRN8, a translocated effector with homology to protein kinases  

CRN8 is a member of a second major family of host translocated effectors, the 

CRNs (crinkling and necrosis, or 'Crinklers' (Torto et al., 2003)). It was identified in 

an comparative analysis of 150 full length cDNA sequences from Phytophthora 

infestans (Win et al., 2006). It was shown to possess the hallmark feature of this 

family, a conserved N-terminal LFLAK domain (Haas et al., 2009). CRN8, in 

common with most CRN and RXLR effectors has modular domain architecture 

(Figure 6.1). The LFLAK domain harbours a LXLFLAK translocation motif 

(Schornack et al., 2010) (46-LQLFLAK-52). This domain is preceded by an N-

terminal signal peptide (residues 1 - 13) and followed by the DWL domain, which 

ends with conserved HVLVXXP motif (110-HVLVALP-116). 

The C-terminal effector domain of CRN8 was designated a D2 domain by Haas et al 

(2009). The D2 domain shows significant similarity to serine/threonine protein 

kinases. CRN8 is an RD kinase since the predicted catalytic domain, including 

residues 454 to 573, has an arginine residue (Arg469, or R469) preceding the 

conserved catalytic aspartate (Asp470, or D470) (van Damme et al., 2012). In 

CRN8, the D2 domain is followed by a predicted nuclear localisation signal (NLS, 

590-KGVRKKHRRA-599), which is observed in 5 out of the 10 paralogs of CRN8 

in the P. infestans reference genome strain (T30-4). Three paralogs of CRN8 are also 

present in the P. ramorum reference genome, all of which also have a similar 

predicted NLS, but, in contrast, preceding the D2 domain. The P. infestans paralogs 

show a high degree of sequence conservation in their D2 domains (97 – 99% 

identity). 
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6.1.2 CRN8 triggers cell death in planta 

The D2 domain of CRN8 was also identified as one of five conserved C-terminal 

domains from CRN effectors that were capable of triggering the eponymous necrosis 

phenotype when expressed inside host cells (Haas et al., 2009). Deletion analysis 

conducted by van Damme et al., (2012) lead them to conclude that an intact D2 

domain and C-terminal NLS (residues 118 – 599) was required for cell death 

induction (Figure 6.2 A). Any further truncation at the N-terminus resulted in no cell 

death; whilst deletion of the NLS, by truncating the C-terminus back to residue 582 

caused a partial loss of activity, which was again completely abolished by any 

further truncation. The requirement of the NLS for cell death induction suggests that 

CRN8 triggers cell death by acting within the plant nucleus. This is consistent with 

the observation that CRN8, and other CRN effectors, accumulate in the plant nucleus 

(Figure 6.2 B), and that the addition of a functional nuclear export signal (NES) to 

exclude CRN8 from the plant nucleus also abolishes its ability to cause cell death 

(Schornack et al., 2010). 

6.1.3 CRN8 is an active kinase, and phosphorlyated in planta 

In vitro assays demonstrated that CRN8 was a functional kinase, with auto-

phosphorylation activity (Figure 6.2 C). Epitope-tagged wild-type and mutant CRN8 

(where the catalytic residues had been substituted for non-functional residues 

(D470N or R469A/D470A)); were expressed in planta, and purified by 

Figure 6.1 CRN8 displays modular domain organisation. 

Cartoon of domain organisation of CRN8 from Phytophthora infestans isolate 88069 

highlighting the signal peptide (yellow), LFLAK domain (light green) and DWL 

domain (dark green). The C-terminal D2 domain (red), with the catalytic kinase 

domain (dark red) and positions of the catalytic residues are also highlighted, as is 

the predicted nuclear localisation signal (orange). Numbers indicate the residues at 

the boundary between domains. 
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immunoprecipitation. In vitro kinase assays with γ-P
32

-ATP revealed detectable 

phosphorylation only with the wild-type CRN8, and not the mutant variants (van 

Damme et al., 2012). Similarly, only the wild-type effector was stained using 

phosphorylation-specific staining of crude extracts and immunoprecipitated material. 

In planta expression of kinase inactive mutants of CRN8, revealed that whilst the 

R469A/D470A double mutation abolished the cell death activity, the D470N mutant 

still caused the characteristic cell death response. This suggests that kinase activity, 

per se, is not required for CRN8-induced cell death. 

Mass spectrometry revealed five phosphorylated serine residues within the D2 

domain of CRN8 expressed in planta (van Damme et al., 2012). The substitution of 

either three or five of these serines for alanines either greatly reduced or abolished 

CRN8’s cell death activity, suggesting that this activity is the result of the 

phosphorylated state of CRN8 rather than its kinase activity directly (Figure 6.2 D). 

Interestingly, co-expression of the kinase inactive mutant CRN8
R469A/D470A 

with the 

wild-type CRN8 interfered with CRN8-induced cell death suggesting that this 

mutant may have dominant negative activity (Figure 6.2 E), through an effect of the 

mutant protein destabilising the wild-type protein in planta (van Damme et al., 

2012). This observed destabilisation suggested an interaction between CRN8 and 

CRN8
R469A/D470A

, which was confirmed by co-immunoprecipitation experiments. 

This self association in planta lead van Damme et al., (2012) to conclude that, in 

similarity with other kinases, CRN8 forms dimers. 

6.1.4 CRN8 enhances virulence of P. infestans 

Pathogenicity assays using detached leaves from the model host Nicotiana 

benthamiana revealed that Agrobacterium-mediated transient expression of CRN8 

enhanced infection by the P. infestans (van Damme et al., 2012). Infiltration of 

Agrobacterium harbouring CRN8, two days after zoospore infection, increased the 

growth rate of the pathogen, compared to infiltration of Agrobacterium harbouring a 

vector control (Figure 6.2 F). In contrast, transient expression of the kinase inactive 

mutant CRN8
R469A/D470A

 caused a reduction in the growth rate of the pathogen, 

consistent with the dominant negative activity of this mutant. 
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To assist development of a mechanistic understanding of the kinase activity of 

CRN8, and its relationship to its virulence activity, conditions for the heterologous 

expression and purification of CRN8 protein were assessed. If successful, the 

resultant pure protein would then be used for in vitro biophysical analysis and 

structural characterisation to support the in vivo and enzyme assays already 

conducted and described above. 

6.2 Results and Discussion 

6.2.1 Cloning and mutagenesis in pOPIN expression vectors 

The sequence of the C-terminal effector domain of CRN8 (the D2 domain and NLS) 

was synthesised and codon optimised for E. coli expression by GenScript USA Inc 

(Figure 6.3).  This synthesised DNA was then used as a template to clone sequences 

encoding either the full effector domain (CRN8
-
D2, residues 118 – 599) or a 

truncated version encompassing the predicted, structured, catalytic kinase domain 

(CRN8-KD, residues 337 – 599 (Figure 6.4)) into either pOPINF, pOPINJ or 

pOPINM expression vectors (Berrow et al., 2007), as described in Section 2.4.8.1. 

The N-terminal regions, containing the translocation motifs, were omitted because 

work by van Damme et al, (2012) had shown they were dispensable for function, and 

because adopting a similar approach had proved successful with other cytoplasmic 

effectors (Boutemy et al., 2011). As described previously (Section 3.2.1), proteins 

cloned into pOPINF are expressed with an N-terminal hexa-histidine affinity tag that 

is cleavable owing to the presence of a 3C protease site in the linker region (see 

Figure 3.6 B). pOPINJ confers an N-terminal dual hexa-histidine Glutathione S-

transferase (GST) affinity tag, whilst pOPINM confers an N-terminal dual hexa-

histidine maltose binding protein (MBP) affinity tag. As in pOPINF, the affinity tags 

from pOPINJ and pOPINM are cleavable by 3C protease. As well as aiding 

purification, the addition of these larger affinity tags has been shown to improve the 

solubility of the protein of interest fusion partner (Esposito and Chatterjee, 2006). 

The over-expression of functional kinases is often toxic to bacterial cells (Haacke et 

al., 2009). As such, site-directed mutagenesis of the codon optimised CRN8-D2 was   
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Figure 6.3 Wild-type vs. codon optimised CRN8 DNA sequences  

A sequence alignment of effector domain coding sequence (CDS) for CRN8 from  

P. infestans 88069 against the synthesised codon optimised DNA sequence. Conserved 

nucleotide bases are shaded in black. 



6    Heterologous Expression of CRN8 

227 

 

 

 

F
ig

u
re

 6
.4

 
A

li
g
n

m
en

t 
o
f 

ca
ta

ly
ti

c 
d

o
m

a
in

 w
it

h
in

 C
R

N
8

-D
2
 d

o
m

a
in

 w
it

h
 P

D
B

 p
ro

te
in

 k
in

a
se

 s
tr

u
ct

u
re

s 
 

A
 p

ro
te

in
 s

eq
u

en
ce

 a
li

g
n
m

en
t 

in
cl

u
d
in

g
 t

h
e 

re
g
io

n
 o

f 
D

2
 d

o
m

ai
n

 o
f 

C
R

N
8
 t

h
at

 s
h
o

w
s 

it
s 

h
o
m

o
lo

g
y
 t

o
 s

er
in

e/
th

re
o

n
in

e 
p

ro
te

in
 

k
in

as
es

. 
M

u
lt

ip
le

 s
eq

u
en

ce
 a

li
g
n
m

en
t 

w
as

 p
er

fo
rm

ed
 u

si
n
g
 C

O
B

A
L

T
 
(P

ap
ad

o
p
o
u

lo
s 

an
d

 A
g

ar
w

al
a,

 2
0
0

7
),

 f
o
ll

o
w

in
g

 B
L

A
S

T
P

 

(A
lt

sc
h

u
l 

et
 a

l.
, 

1
9

9
0
) 

se
ar

ch
 o

f 
p
ro

te
in

 s
eq

u
en

ce
s 

o
f 

st
ru

ct
u
re

s 
d
ep

o
si

te
d
 i

n
 P

D
B

. 
C

o
n

se
rv

ed
 r

es
id

u
es

 a
re

 s
h

ad
ed

 i
n

 b
la

ck
, 

si
m

il
ar

 

re
si

d
u

es
 a

re
 s

h
ad

ed
 i

n
 g

re
y
. 

G
ln

3
3
7
, 

w
h
ic

h
 w

as
 c

h
o
se

n
 a

s 
th

e 
N

-t
er

m
in

u
s 

fo
r 

C
R

N
8

-K
D

 c
o

n
st

ru
ct

s,
 i

s 
in

d
ic

at
ed

. 
T

h
e 

p
o

si
ti

o
n

s 
o

f 
th

e 

ca
ta

ly
ti

c 
re

si
d
u

es
, 
A

rg
4

9
6

 a
n
d
 A

sp
4
7
0
, 
ar

e 
h
ig

h
li

g
h
te

d
 w

it
h
 a

st
er

is
k
s.

 



6    Heterologous Expression of CRN8 

228 

 

 

used to specifically substitute both the catalytic arginine and aspartate residues in 

positions 469 and 470, respectively, with alanines to generate the kinase inactive 

CRN8
R469A/D470A

. Using an overlap extension polymerase chain reaction (oe-PCR) 

strategy, CRN8-D2
R469A/D470A

 PCR product was generated (Section 2.4.6.2, Figure 

6.5) and subsequently cloned into the pOPIN expression vectors outlined above. A 

mutagenesised CRN8-D2 construct was used as a template to sub-clone CRN8-

KD
R469A/D470A

 into the same expression vectors. All CRN8 E. coli expression 

constructs created as described above are listed in Table 6.1 and Appendix Table D. 

 

 

 

 

 

Figure 6.5 Overlap extension PCR to generate CRN8-D2
R469A/D470A

 

The left panel shows the two PCR fragments amplified using either primers 141F and 

146R, or 145F and 143R. The two fragments have homologous overlap in the region 

containing the desired mutation. The middle panel shows the products formed following 

the overlap extension reaction and subsequent amplification using primers 141F and 

143R. The main product (*) is the full length CRN8-D2
R469A/D470A

 fragment. The right 

panel shows the purified final product. L indicates lanes containing 1kb DNA ladders.  

* 
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6.2.2 Small scale expression screening in E. coli 

The CRN8 expression constructs listed in Table 6.1 were transformed into the 

BL21(DE3) expression strain, and small scale expression tests of recombinant 

proteins were conducted as described previously (Section 2.4.3). Protein expression 

was tested in LB media or auto-induction media (AIM) using either post-induction 

incubation at 37ºC for 3 – 4 h, or 18ºC for approximately 16 h. 

SDS-PAGE analysis of whole cell extract and soluble fraction samples from each 

expression condition revealed that whilst fusion proteins were clearly over-

expressed, no protein was visible in the soluble fraction (Figure 6.6). This indicates 

that the protein was likely folding incorrectly and being localised to inclusion bodies. 

Table 6.1 Constructs for E. coli expression of CRN8 proteins 

Construct name Expressed Fusion Protein
a.b.c.d.

 
Predicted molecular 

weight (kDa)
e.
 

pOPINF:D2 His6-3C-CRN8-D2 56.6 

pOPINF:D2-AA His6-3C-CRN8-D2
R469A/D470A

 56.5 

pOPINF:KD His6-3C-CRN8-KD 32.1 

pOPINF:KD-AA His6-3C-CRN8-KD
R469A/D470A

 32.0 

pOPINJ:D2 His6GST-3C-CRN8-D2 82.4 

pOPINJ:D2-AA His6GST-3C-CRN8-D2
R469A/D470A

 82.3 

pOPINJ:KD His6GST-3C-CRN8-KD 57.7 

pOPINJ:KD-AA His6GST-3C-CRN8-KD
R469A/D470A

 57.6 

pOPINM:D2 His6MBP-3C-CRN8-D2 97.2 

pOPINM:D2-AA His6MBP-3C-CRN8-D2
R469A/D470A

 97.1 

pOPINM:KD His6MBP-3C-CRN8-KD 72.6 

pOPINM:KD-AA His6MBP-3C-CRN8-KD
R469A/D470A

 72.5 

a.  His6- indicates a hexa-histidine affinity tag 

b. GST indicates a Glutathione S-transferase affinity tag 

c.  MBP indicates a maltose binding protein affinity tag 

d.  -3C- indicates a cleavable linker containing the 3C protease cleavage site (LEVLFQGP) 

e. Molecular weight predictions, given to 1 dp, were calculated using “Compute pI/Mw” tool 

via the ExPASy Proteomics Server 
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Performing IPTG induction at higher cell densities has been suggested as a possible 

method of enhancing soluble over-expression of heterologous proteins in E. coli 

(Berrow et al., 2006). To investigate whether this technique would improve soluble 

expression of CRN8 fusion proteins in BL21(DE3); scaled-up over-expressions of 

His6-CRN8-D2 or His6-CRN8-KD were conducted in 50 mL cultures of LB 

media at 37°C. The method used was the same as that for the small scale expression 

tests, with minor alterations. Cultures were incubated to either a cultural density of 

OD600 = 0.5, as was used in previous expression tests, or the higher OD600 = 1.2, 

prior to induction. Samples were subsequently taken at regular intervals post 

induction and analysed using SDS-PAGE as before. 

Figure 6.6 Small scale expression tests with CRN8 fusion proteins  

17% SDS-PAGE analysis of whole cell (WC) and soluble fractions (S) collected 

following small scale expression trials of CRN8 fusion proteins. Protein expression was 

tested in LB or auto-induction media (AIM) using either post-induction incubation at 

37ºC for 3 – 4 h, or 18ºC for approximately 16 h. Asterisks indicate an over-expressed 

protein of the predicted size. In all cases, this was present in the whole cell, but absent in 

the soluble fraction, indicating insoluble protein. Data shown are for wild-type CRN8 

proteins, although expression trials with the kinase inactive CRN8
R469A/D470A 

showed 

qualitatively the same results of insoluble expression (data not shown). 
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The results showed that expression of CRN8 fusion proteins was successfully 

enhanced following IPTG induction, although in all cases, CRN8 fusion proteins 

remained insoluble (Figure 6.7). Therefore, under these conditions, inducing at a 

higher cell density did not enhance solubility of the expressed proteins. Interestingly, 

a band corresponding to the fusion protein was also visible in protein samples taken 

prior to induction (0 h), indicating that there is ‘leaky’ expression from the T7 

promoter in the pOPIN vectors. 

 

6.2.3 Denaturation and refolding studies 

The use of strong denaturants, such as 6–8 M urea, to solubilise insoluble protein 

present in inclusion bodies followed by the subsequent removal of the denaturant to 

promote refolding of denatured proteins has been demonstrated as a valid technique 

to obtain soluble protein suitable for crystallographic analysis (Badarau et al., 2008). 

Interestingly, inclusion bodies tend to show high polypeptide purity, and the addition 

of temperature promoted aggregation tags to drive inclusion body formation has 

been suggested as one method for the purification of  recombinant proteins (Meyer 

and Chilkoti, 1999). To investigate whether denaturation and refolding of insoluble 

CRN8 fusion protein represented a suitable strategy for generating stable, soluble 

Figure 6.7 Expression tests using high OD600 induction  

17% SDS-PAGE analysis of time series of whole cell (WC) and soluble fractions (S) 

collected following over-expression of His6-CRN8 fusion protein in LB media (AIM) at 

37ºC. IPTG induction was conducted at a cultural density (OD600) of 0.5 or 1.2. Asterisks 

indicate an over-expressed protein of the predicted size. In all cases, this was present in 

the whole cell, but absent in the soluble fraction, indicating insoluble protein. Data 

shown are for wild-type D2 domain, although expression trials with the CRN8-KD 

showed qualitatively the same results of insoluble expression at all time points (data not 

shown). 
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protein, large scale over-expressions of His6-CRN8-KD
R469A/D470A

 were conducted 

using 1-litre cultures of AIM. These were initially grown at 37°C for 4 h, prior to 

overnight incubation at 18°C for approximately 20 h. The cells were harvested by 

centrifugation, and lysed using a cell disrupter (Section 2.5.4). The resultant lysate 

was centrifuged, and the supernatant discarded, to obtain an insoluble cell pellet 

including protein-containing inclusion bodies. 

Purification of inclusion bodies, and subsequent solubilisation in urea, was 

conducted as described in Section 2.5.6. His6-CRN8-KD
R469A/D470A

 was highly 

enriched in the solubilised inclusion bodies (Figure 6.8, Lane 3). Although some 

remained in the insoluble material that was then removed by centrifugation (Figure 

6.8, Lane 4).  The solubilised material was purified by IMAC using buffers 

containing 8.0 M urea at room temperature. The eluted protein co-eluted with a 

number of contaminants, although His6-CRN8-KD
R469A/D470A 

was clearly the most 

dominant species (Figure 6.8, Lane 6). Interestingly, a significant proportion of 

CRN8-fusion protein was visible in the unbound flow through (FT) (Figure 6.8, 

Lane 5) and this was likely due to saturation of the metal ions
 
in the IMAC column; 

since subsequent re-purification of this FT showed that the denatured CRN8-KD 

protein could indeed bind a Ni
2+-

charged affinity column (data not shown). 
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 The eluted fractions containing the denatured protein were then pooled and a small-

scale screen of refolding buffers was completed to determine the conditions that 

should minimise aggregation during the refolding stage (Figure 6.9). A range of 

different pH levels: 4.0, 6.0, 8.0, and 10.0; as well as two different salt 

concentrations: 150 mM sodium chloride and 500 mM sodium chloride; were tested 

using a fully factorial design. Aggregation during refolding was measured in three 

ways: by observing the turbidity of the diluted protein solutions; through visual 

comparison of insoluble material pellet size following centrifugation; and by 

performing SDS-PAGE analysis on the supernatant to determine relative soluble 

protein content. 

  

Figure 6.8 Denaturation and purification of kinase inactive CRN8-KD 

17% SDS-PAGE analysis of solubilisation and purification under denaturing 

conditions of CRN8-KD
R469A/D470A

 expressed from pOPINF. Lane 1: whole cell 

lysate. Lane 2: soluble fraction of cell lysate. Lane 3: solubilised inclusion bodies 

Lane 4: pelleted insoluble material. Lane 5: unbound flow-through (FT) after 

passing through nickel affinity column (IMAC). Lane 6: pooled elution from 

IMAC. Lanes 3 – 6 represent samples collected under denaturing conditions (in the 

presence of 8.0 M urea). The size of His6-CRN8-KD
R469A/D470A

 is indicated by the 

black triangle. 
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The results of this screen indicated that the lower levels of aggregate formation 

during refolding were associated with the higher pH conditions with a possible 

beneficial effect of high salt concentration. As such the pooled protein was refolded 

by rapid dilution, in a refolding buffer containing 50 mM Tris-HCl pH 8.5 and 

500 mM sodium chloride. The ‘refolded’ protein solution was then clarified by 

centrifugation and the supernatant purified using IMAC at 4°C (Section 2.5.4.1, 

Figure 6.10) and size exclusion chromatography (Section 2.5.4.2) 

At all stages, samples were taken and the protein content visualised using 

SDS-PAGE (Figure 6.8, Figure 6.10). Protein was detectable at all stages prior to the 

final size exclusion chromatography – however, the only discernible peak on the 

A280 absorbance trace for this stage corresponded to the void volume of the column 

(data not shown), suggesting that the ‘refolding’ method had generated incorrectly 

folded protein, which was forming soluble aggregates. 

Figure 6.9 Refolding condition screen using rapid dilution method 

and denatured kinase inactive CRN8-KD
 
fusion protein 

17% SDS-PAGE analysis of ‘refolded’ His6-CRN8-KD
R469A/D470A

 (32.0 kDa) using 

refolding buffer conditions at varying pH and sodium chloride concentration 

[NaCl] as indicated above. Visual scoring for buffer turbidity and pellet formation 

following centrifugation are scored below each lane. 
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6.2.4 Cloning and expression tests using pEAQ-HT expression system 

As all attempts to produce soluble CRN8 fusion proteins in E. coli had proved 

unsuccessful, a different expression system was tested. CRN8 D2 domain was 

known to be stably expressed and active in planta, and said activity was known to be  

unaffected by N-terminal tagging of this domain (Schornack et al., 2010, van 

Damme et al., 2012). As such, the domains that had been used for E. coli expression 

attempts were cloned into the plant binary expression vector pEAQ-HT (Sainsbury et 

al., 2009). This vector uses a modified 5’UTR and the 3’UTR from Cowpea mosaic 

A. 

B. 

Figure 6.10 Refolding and purification of kinase inactive CRN8-KD 

(A.) 17% SDS-PAGE analysis of Lane 1: denatured ‘refolded’ His6-CRN8-

KD
R469A/D470A

. Lane 2: soluble protein following refolding by rapid dilution. 

Lane 3:  unbound flow-through (FT) after passing through nickel affinity column 

(IMAC). Lane 4: pooled elution from IMAC. (B.) Representation of A280 elution 

profile for refolded CRN8-fusion profile. Red dashed line indicates switch to 

elution buffer. The black arrow spans the fractions that were pooled and analysed 

by SDS-PAGE (see A, Lane 4) 
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virus (CPMV) RNA2 to increase mRNA stability and translation (Sainsbury and 

Lomonossoff, 2008) as well as incorporating the P19 suppressor of post-

transcriptional-gene-silencing within the same T-DNA region. Co-infiltration with 

P19 had previously been shown to increase expression of a number of transgenes in 

planta (Voinnet et al., 2003). However, its inclusion onto the same T-DNA region as 

the transgene of interest eliminates the need to co-infiltrate a separate Agrobacterium 

strain. This ensures that all transformed plant cells will possess both the transgene 

and P19.  

PCR products encoding CRN8-D2 and CRN8-KD were amplified from a wild-type, 

non-codon optimised sequence as a template, and subsequently ligated into XmaI- 

and StuI-digested pEAQ-HT binary expression vector (Section 2.4.8.2). The cloning 

of inserts between these restriction sites results in the expression of N-terminal hexa-

histidine-tagged proteins. 

These two constructs, along with an empty vector and GFP control vector (Table 

6.2), were then transformed into electrocompetent Agrobacterium tumefaciens 

GV3101 (Section 2.402), and infiltrated into N. benthamiana using an OD600 of 0.3 

(Section 2.9.2). For preliminary expression trials, leaf discs from tissue infiltrated 

with Agrobacterium harbouring either pEAQ-HT:D2 or pEAQ-HT:KD were 

Table 6.2 Constructs for in planta expression of CRN8 proteins 

Construct name Expressed Fusion Protein
a.
 

Predicted molecular 

weight (kDa)
b.
 

pEAQ-HT:EV n/a (empty vector) n/a 

pEAQ-HT:GFP His6GFP 28.0 

pEAQ-HT:D2 His6CRN8-D2 55.4 

pEAQ-HT:KD His6CRN8-KD 31.1 

a.  His6- indicates a hexa-histidine affinity tag 

b.. Molecular weight predictions, given to 1 dp, were calculated using “Compute pI/Mw” tool 

via the ExPASy Proteomics Server 
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collected at 2, 3 and 4 days-post-infiltration (dpi). In parallel, strains harbouring all 

four construct listed in Table 6.2 were individually infiltrated into sections of other 

leaves to investigate the development of phenotype development following protein 

expression. 

Only leaf tissue infiltrated with Agrobacterium harbouring pEAQ-HT:D2 developed 

the characteristic leaf crinkling and necrosis phenotype, which was fully developed 

as early as 4 dpi (Figure 6.11). This is consistent with the work of van Damme et al., 

(2012), who identified the full D2 domain (residues 118 – 599) as the minimal 

region of CRN8 required induction of cell death. 

CRN8 fusion protein expression in leaf extracts (Section 2.9.3) were separated using 

12% SDS-PAGE, and detected using an α-HIS primary antibody followed by a HRP-

conjugated secondary antibody (Sections 2.7.1 and 2.7.4). His6CRN8-D2 was 

detected in infiltrated leaf tissue, with higher levels of protein detectable at 2 dpi 

compared with 3 dpi (Figure 6.12). No His6-tagged protein was detected in the 

pEAQ-HT:KD infiltrated tissue, which indicates that the protein may either not be 

being expressed or, if expressed, is not stable. 

Figure 6.11 Effect of transient expression of CRN8 domains in planta 

Phenotypes of Nicotiana benthamiana leaf tissue infiltrated with Agrobacterium 

harbouring the constructs as labelled. Only CRN8-D2-expressing tissue displays 

necrosis. Image taken at 7 dpi. 
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Follow-up expression tests were conducted using pEAQ-HT:D2 and confirmed that 

optimal expression of His6-CRN8-D2 occurred at 2 dpi (Figure 6.13). For these 

follow up trials a pEAQ-HT:GFP-agroinfiltrated tissue was used as an positive 

control, and un-infiltrated and pEAQ-HT:EV-agroinfiltrated tissue were used as 

negative controls. Detection of His6-tagged was conducted using western blots or 

InVision™ His-Tag In-Gel Stain (Invitrogen) in accordance with manufacturer’s 

protocols. This in-gel stain displayed a high level of unspecific background staining. 

In particular a strong band corresponding to the ribulose-1,5-bisphosphate 

carboxylase/oxygenase large subunit (52.9 kDa) was observed. However, a slightly 

larger band which corresponded to the HisCRN8-D2 fusion protein (55.4 kDa) was 

detected in pEAQ-HT:D2 infiltrated tissue, and absent in the control samples. The 

reduced protein levels for the pEAQ-HT:D2 sample taken 4 dpi are likely a result of 

the occurrence of CRN8-induced cell death at this time point. 

Figure 6.12 Preliminary expression test for CRN8 in N. benthamiana 

α-HIS western blot (TOP) of protein extracts taken from leaf tissue infiltrated with 

Agrobacterium harbouring the constructs as labelled, at between 2 - 4 dpi. 

Predicted sizes of fusion proteins are marked with black triangles and labelled 

appropriately. 4 dpi sample for pEAQ-HT:D2 infiltrated tissue was not collected 

due to occurrence of extensive cell death. The bottom panel shows the band 

corresponding to the RuBisCO large subunit on Coomassie stained SDS-PAGE gel 

to confirm protein loading. 
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Figure 6.13 Expression test for His6-tagged CRN8-D2 in  

N. benthamiana 

Protein extracts taken from un-infiltrated (Nb) or leaf tissue infiltrated with 

Agrobacterium pEAQ-HT:EV, GFP or D2. His6-tagged proteins were visualised 

using α-HIS western blot (TOP) or InVision™ His-tag in gel stain (MIDDLE). 

Total protein is stained by Instant Blue (BOTTOM). Predicted sizes of D2 domain 

and GFP are marked with black or green triangles, respectively. M indicates 

BenchMark™ His-tagged Protein Standard. 
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6.2.5 Purification of CRN8-D2 expressed in planta  

Based on the results of initial expression tests with CRN8 fusion proteins using the 

pEAQ-HT vector and N. benthamiana, a larger scale agroinfiltration was conducted 

to generate pure of CRN8-D2 suitable for further biophysical and potentially 

structural characterisation. Leaf material from ten 4- to 5-week old plants was 

infiltrated with Agrobacterium harbouring pEAQ-HT:D2, and harvested as before 

(Section 6.2.4) A small sample of this material was analysed by western blotting and 

in-gel staining, as above, and confirmed expression of the correct sized fusion 

protein. Large scale protein extraction and IMAC purification of protein using a 

gradient elution was conducted as described in Section 2.9.5. Samples corresponding 

to the crude protein extract prior to loading on the Ni
2+

-IMAC column (LOAD), the 

unbound proteins in the flow-through (FT) and eluted protein from the A280 peak 

(ELUATE) were prepared for SDS-PAGE analysis followed by Coomassie staining 

for total protein and α-HIS western blotting to detect affinity-tagged protein. 

His6CRN8-D2 purified by IMAC from plant extracts eluted as a single peak starting 

at a concentration of ~116 mM imidazole (Figure 6.14 A). The concentration of 

protein within the pooled peak was too low to be visible on the Coomassie stained 

gel. However, the α-HIS western blot showed a distinct band at around 55 kDa, 

which corresponded to the purified fusion protein (Figure 6.14 B). No such band was 

present in the FT sample indicating good recovery of protein. Longer exposure of the 

α-HIS blot, revealed unspecific smaller bands that were present in the crude extract 

sample, and the FT, but not the pooled fractions of eluted CRN8-D2 supporting the 

conclusion that IMAC had successful purified away the contaminating proteins. 

Protein concentration calculations using purified His6CRN8-D2 estimated an overall 

yield of 6.2 ng per gram of fresh leaf tissue. This yield was rather disappointingly 

low as previous proteins had been expressed to levels three orders of magnitude 

higher (up to 1.0 mg of fusion protein per gram of fresh leaf tissue), using the same 

expression system (Sainsbury et al., 2009).  The low yield obtained confirmed that 

obtaining sufficient material for further biophysical or structural characterisation of 

CRN8 using this expression system was not feasible. 
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6.3 Conclusion 

CRN8 is a host translocated enzyme effector, with protein kinase activity (Schornack 

et al., 2010, van Damme et al., 2012). This kinase activity could be predicted based 

on sequence homology. Although translocated serine/threonine kinases have been 

identified as important virulence determinants for the human parasite Toxoplasma 

gondii (Boothroyd and Dubremetz, 2008), CRN8 is in contrast to the vast majority of 

oomycete host-translocated effectors, which lack sequence similarity to known 

proteins (Schornack et al., 2009, Oliva et al., 2010). One other notable exception is 

the RXLR effector AVR3b from Phytophthora sojae. This effector contains a Nudix 

motif in its C-terminal domain and was shown to have phosphohydrolase activity 

(Dong et al., 2011). The Nudix motif was shown to be crucial for the virulence 

activity although was dispensable for AVR3b-dependent activation of the resistance 

protein Rps3b. Nevertheless, since CRN8 is unusual in that it was known to possess 

catalytic kinase activity, it was an exciting potential target for characterisation by 

structural biology. 

Although it is well established that the catalytic domains of kinases adopt similar 

folds, subtle differences confer specificity (Scheeff and Bourne, 2005). Identifying 

these differences by solving the three-dimensional structure of CRN8 could give 

insights into important characteristics such its mechanism of activation. Furthermore, 

analysis of the solvent exposed surface features of the structure could indicate which 

residues mediate CRN8 oligomerisation, or its interaction with substrate proteins. 

The structure would also provide a useful tool for the interpretation of either 

naturally occurring polymorphisms or engineered mutations that affect CRN8 

function, similar to insights gained from the structures of PexRD2 (see Chapter 4, 

and Boutemy et al., 2011), HpaATR1 (Chou et al., 2011) and AVR3a homologs 

(Boutemy et al., 2011, Yaeno et al., 2011).  

Unfortunately, structural characterisation of CRN8 has been hampered by a number 

of problems. Heterologous expression of recombinant CRN8 in E. coli expression 

strain BL21(DE3) consistently yielded only insoluble protein. Expression of CRN8-

D2 domain or the truncated predicted kinase domain as GST- or MBP-fusion 

proteins did not improve solubility. Expression at low temperatures also had no 
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effect on protein solubility. The insolubility of CRN8 was unlikely to be due to toxic 

effects of kinase activity, as the kinase inactive mutant, R469A/D470A, was also 

consistently insoluble. Attempts to purify correctly folded recombinant CRN8 

protein from E. coli inclusion bodies also proved fruitless. Although significant 

material could be obtained by solubilisation of purified IB in 8.0 M urea, subsequent 

refolding by rapid dilution of the denaturant did not yield stable, folded protein. 

The insoluble expression of CRN8-fusion proteins in E. coli was disappointing, 

although not surprising. Bacterial protein expression systems are popular because of 

their simplicity and ability to produce high yields of recombinant protein. However, 

multi-domain eukaryotic proteins expressed in bacteria often are non-functional 

because these cells are not equipped to accomplish the required post-translational 

modifications or molecular folding (Geisse et al., 1996). Eukaryotic expression 

systems are preferable in these cases. Previous studies outlined above had confirmed 

soluble expression of active CRN8-D2 domain in Nicotiana benthamiana, and hence 

this seemed a promising alternative to E. coli based expression. A number of binary 

vectors are available that allow high expression levels of recombinant proteins in 

planta (Lindbo, 2007, Sainsbury et al., 2009). The pEAQ-HT expression system was 

chosen since it was shown to achieve high expression of transgenes, up to 1.0 mg per 

gram of fresh leaf weight. It also allowed N-terminal tagging with a hexa-histidine 

tag to aid subsequent purification. Although CRN8-D2 domain expressed from the 

pEAQ-HT expression vector was soluble and could be easily purified from plant 

extracts by IMAC, the low yields prohibited use of this expression system to produce 

material for structural characterisation. 

The difficulties described above deterred further work in this area. Furthermore, 

solving the structure of PexRD2 effector domain lead to the prioritising the 

functional characterisation of this RXLR effector, as described in the previous 

chapters. However, there are a number of options that could have been pursued to 

potentially solve the problems that impeded structural characterisation of CRN8. 

The low yield in planta was possibly a result of having to harvest infiltrated material 

only 2 days post infiltration, whereas other proteins that have been expressed using 

this vector have typically been obtained from tissue harvested 5 – 8 dpi, to allow 
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greater accumulation of transgene mRNA and hence higher recombinant protein 

levels. CRN8-induced cell death necessitated the 2 dpi harvest, and as such, the 

expression of a mutant CRN8 that is deficient in its cell death activity may prove 

beneficial, by allowing tissue to be harvested at later time points. Although the 

dominant negative kinase inactive mutant CRN8
R469A/D470A

 does not cause host cell 

death, van Damme et al., (2012) demonstrated it to be less stable in planta. A more 

suitable alternative may be provided by the quintuple serine to alanine mutant, also 

characterised by van Damme et al. This mutant was also deficient in cell death 

induction; however it accumulated to wild-type levels when expressed transiently in 

planta.  

Another alternative approach could also be devised, based on the observation that the 

ubiquitin associated protein SGT1 has been shown to required to trigger a wide 

variety of cell death responses in planta (Peart et al., 2002, Oh et al., 2009). If SGT1 

is also required for CRN8-induced cell death, expression of wild-type CRN8-D2 

domain in plants that had been silenced for SGT1 using virus-induced gene silencing 

may also allow tissue to be harvested at latter time points. This, again, would allow 

greater time for protein accumulation. To my knowledge, the silencing of SGT1 or 

other host genes required for diverse cell death responses (e.g. HSP90 (Lu et al., 

2003a)) has not been used to enhance transient expression of cell-death inducing 

proteins to date. This could be because silencing these genes often has significant 

developmental effects, typically reduced growth, that may negate any potential 

benefits. In turn, a possible way of overcoming these detrimental pleiotropic effects 

would be to transiently silence the genes in mature expanded leaves using RNA 

hairpin vectors (Watson et al., 2005). 

Although a small number of published structures in the Protein Data Bank have been 

solved using protein expressed in Nicotiana benthamiana (15 at the point of writing 

this thesis), it is unlikely that the measures described above would be sufficient to 

increase the obtained yield to allow structural characterisation of full length CRN8-

D2 domain. They should, however, allow further analysis such as partial trypsin 

digests to remove flexible regions of the protein and identify suitable sub-domains 

that could be more amenable to structural characterisation. If such a sub-domain 

could be identified, this could be used to redesign expression constructs for 
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heterologous over-expression in plants, E. coli, or other eukaryotic expression 

systems, such as yeast, mammalian or insect cells. 

In addition to re-designing constructs to eliminate unstructured regions of the 

protein, cloning into expression vectors that use other fusion partners to aid 

solubility could be used to re-investigate E. coli expression. The small ubiquitin-like 

modifier (SUMO) is being increasing recognised as a good choice to enhance 

expression and solubility of recalcitrant proteins (Butt et al., 2005, Panavas et al., 

2009). The pOPIN suite of vectors now includes the vector pOPINS3C, which 

includes a hexa-histidine tagged SUMO fusion partner for IMAC purification, and a 

3C protease site to remove the tag from the protein of interest (Bird, 2011). 

Additionally, expression could be screened using different strains of E. coli. Strains 

that have mutations to increase protein expression (BL21 Star™(DE3) (Invitrogen)) 

or enhanced solubility (SoluBL21(DE3) (GenLantis, Inc.), or strains carrying a 

second vector producing the chaperonin GroEL/GroES (Yan et al., 2012) would be 

good choices. Alternatively cells that have tighter regulation of protein expression 

(BL21(DE3)pLysE) should reduce the observed ‘leaky’ expression of proteins from 

the pOPIN vectors (Figure 6.7), which may be impairing E. coli growth and protein 

folding. Furthermore the reducing conditions of the E. coli cytoplasm impair 

disulphide bond formation (de Marco, 2009). Disulphide bonds can stabilise protein 

structure, and the sequence of the D2 domain of CRN8 contains six cysteine 

residues. The correct folding of proteins that require disulphide bond formation can 

be increased by targeting the expressed protein to the oxidising environment of the 

bacterial periplasm or by expression in strains that have mutations that alter the 

redox state of their cytoplasm (Derman et al., 1993, Stewart et al., 1998, Bessette et 

al., 1999) (e.g. Origami (Novagen)). 

Other conditions that could be tested would include the choice of expression media 

and the use of additives. The slower growth in minimal media could improve 

solubility, whereas the addition of chemical chaperones, such as DMSO or glycerol 

(Papp and Csermely, 2006), or induction of molecular chaperones, by stressing the 

cells with ethanol (Winter et al., 2000), have also been shown to enhance 

recombinant protein solubility.  
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7 General Discussion 

One of the most intriguing features about effectors is that although their genes reside 

in the genome of the pathogen, the proteins function outside the pathogen within the 

tissues, or even cells, of the host. Therefore effectors provide some of the most vivid 

examples of genes with extended phenotypes (Dawkins, 1982). Effectors have been 

uncovered in the genomes of phytopathogenic microbes including bacteria, fungi, 

oomycetes, viruses and viroids (Amari et al., 2012, Bozkurt et al., 2012, Deslandes 

and Rivas, 2012, Rafiqi et al., 2012), as well as arthropod and nematode pests (Bos 

et al., 2010a, Haegeman et al., 2012), and even in parasitic plants (Lee et al., 2013).  

The evolution of effectors has been shaped by their interaction with host plants. 

Natural selection would favour arsenals of effectors that benefit the pathogen by 

interacting with host targets and subverting host processes, whilst also evading 

recognition or nullifying elicited defence responses. The plant immune system has in 

turn evolved to continue to recognise invading pathogens and counteract this 

manipulation. As such, an adaptation in either the pathogen, or the host, would in 

turn change the selection pressure experienced by the other. This would give rise to 

antagonistic co-evolution, or a co-evolutionary arms race; a concept that was 

perhaps most elegantly described by the Red Queen Hypothesis (Van Valen, 1973, 

Clay and Kover, 1996). 

Since effectors play pivotal roles in determining the outcome of an infection, 

understanding the mechanistic basis of their function should lead to novel strategies 

for enhancing crop species’ resistance to pathogen infection. Genomics approaches 

have been extremely successful in identifying a plethora of putative effectors. 

However, many effectors have eluded functional annotation on the basis of primary 

amino-acid sequence data alone. As described in previous chapters, solving the 

three-dimensional structures of effectors, as well as identifying host proteins that 

interact with specific effectors, has been critical to assigning putative virulence 

activities to several effector proteins. 

This thesis describes structure-function studies aimed at understanding the virulence 

functions of two translocated effector proteins from the late blight pathogen. Prior to 

starting this project, extensive screening of conditions for the heterologous 
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expression of oomycete translocated effectors had been conducted by Dr. Laurence 

Boutemy and Dr. Richard Hughes in the Banfield group. This initial screening had 

provided significant insights into E. coli expression construct design, as well as 

determining conditions that permitted the soluble expression of the effector domain 

of the RXLR effector PexRD2. This significantly accelerated the start of this aspect 

of the project, since obtaining pure, well-folded, soluble protein amenable for 

crystallography often represents a bottleneck in the structural characterisation of 

proteins. Some of the potential techniques that can be utilised to promote protein 

solubility are discussed in Chapter 6 of this thesis, with regards heterologous 

expression of the P. infestans translocated effector CRN8.  

For PexRD2, following scaling-up of the pre-determined expression conditions and 

subsequent purification of the recombinant protein, the crystal structure of this 

protein’s effector domain was solved to 1.75 Å resolution (see Chapter 3). Around 

the same time, Dr. Laurence Boutemy was performing NMR characterisation of 

another RXLR effector PcAVR3a11, which eventually led to a re-designed 

expression construct that crystallised to yield sub-angstrom resolution data. 

Comparison of the solved structures of PexRD2 and PcAVR3a11 with each other, 

and eventually with the structures of other RXLR effectors, which were solved by 

other research groups, led to the discovery of the conserved WY-fold (Boutemy et 

al., 2011, Win et al., 2012b). This fold was postulated to represent a stable, yet 

adaptable, protein scaffold. PexRD2 was crucial in identifying a three-helix bundle 

as the minimal conserved structural motif, as well as providing a unique example of 

how WY-domains might oligomerise to increase their functional diversity. 

Searches for structurally similar proteins for PexRD2 and the other RXLR effectors 

did not provide clear insights into assigning a function for these proteins; however, 

the deposition of these structures’ co-ordinates into the Protein Data Bank allows 

comparison with future deposited structures that may shed light onto these proteins’ 

activities. These published co-ordinates may also assist in the solving of other 

protein structures by molecular replacement, and have already allowed structural 

predictions of PexRD2-like effectors from several Phytophthora spp.  
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Yeast two-hybrid (Y2H) screening identified four potato proteins that interacted with 

PexRD2 (see Chapter 4). These interactions were shown to be specific and two of 

these interactions were also re-confirmed using independent protein-protein 

interaction techniques. This provides validation for the Y2H screening approach, 

which has frequently been criticised as yielding high levels of false positives (Bartel 

et al., 1993, Serebriiskii et al., 2000). PexRD2-interacting proteins were also shown 

to interact with one another, highlighting the possibility that this effector is targeting 

host protein complexes involved in plant immunity. 

The biological relevance of interaction between PexRD2 and the potato MAPKKK, 

MAPKKKε, was characterised further and suggested a potential virulence activity 

for PexRD2 as an inhibitor of this host kinase (see Chapter 5). MAPKKKε homologs 

had previously been identified as positive regulators of cell death events associated 

with plant immunity (Melech-Bonfil and Sessa, 2010), with pleoitropic roles in cell 

division and expansion, and hence plant development (Jouannic et al., 2001, 

Chaiwongsar et al., 2006, Chaiwongsar et al., 2012). Gene silencing experiments 

have implicated MAPKKKε as required for mediating at least partial resistance in the 

P. infestans–N. benthamiana model pathosystem. Transient expression of PexRD2 in 

planta, appeared to phenocopy silencing of MAPKKKε, and also enhanced virulence 

of the pathogen. PexRD2 was shown to inhibit a diverse range of read-outs of 

MAPKKKε activity, supporting this effector’s role as a specific inhibitor. 

The biological relevance of other PexRD2-interacting proteins remains to be 

investigated, but one could speculate that they may also regulate plant immunity. If 

this is so, this would provide an example of how effector proteins can be used as 

molecular probes to identify novel components of plant immunity signalling and 

defence responses (Bozkurt et al., 2012).  

The structure of PexRD2 WY-domain provided a useful framework for the rational 

design of structurally informed mutations to interrogate this effector’s function in 

planta (see Sections 5.2.10 – 5.2.13). Mutational analysis showed that the ability to 

suppress MAPKKKε-mediated signalling could be positively correlated with the 

ability of PexRD2 mutants to interact with MAPKKKε kinase domain; and non-

interacting mutants of PexRD2 no longer enhanced growth of the pathogen in planta. 



7   General Discussion 

250 

 

 

These mutational studies highlighted specific residues in the dimer interface and the 

so-called variable loop region as important for PexRD2 functioning. One non-

interacting mutant, PexRD2
L109D

, was further shown to possess dominant negative 

activity and potential mechanisms by which this could occur were discussed (Section 

5.2.13). Further work is required to determine the exact mode of action of both the 

wild-type PexRD2 and this dominant negative mutant. 

Future work in this project will be focused at characterising this interaction in vitro 

using a range of biochemical, biophysical and structural biology techniques. 

Specifically, structural characterisation of an oomycete translocated effector in 

complex with its host target would be a significant achievement and likely have high 

impact within the scientific community. Such data would provide an atomic level 

resolution of the molecular frontline of the co-evolutionary arms race between 

pathogen and host. Furthermore ongoing work will investigate the potential to 

exploit knowledge gained regarding this effector-target interaction to enhance late 

blight resistance in crop plants, such as tomato and potato. In particular, the 

possibility of deploying structurally-predicted dominant negative mutants of 

effectors, and/or effector-insensitive variants of host targets (Section 5.2.14) could 

represent novel management strategies. Whether these previously unexploited 

methods would provide durable, effective resistance against Phytophthora infestans 

would only be revealed in the field in due course. However, these additional 

resources might help crop breeders and growers to at least keep pace with this 

devastating plant destroyer in the continued co-evolutionary arms race.
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Table F PCR primers used in this study 

 

Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

141F 
AAGTTCTGTTTCAGGCCCGGGGACCAGCTC...  

...TGCACCGAT 

Cloning CRN8-D2 into 

pOPIN vectors starting 

from residue 118 

142F 
AAGTTCTGTTTCAGGCCCGCAGCATGCAC... 

...CGGAACGTTTT 

Cloning CRN8-KD into 

pOPIN vectors starting 

from residue 337 

143R 
ATGGTCTAGAAAGCTTTATGCACGAC... 

...GATGTTTTTTACGAAC 

Cloning CRN8 into pOPIN 

vectors ending at C-

terminus 

145F 
CGTAATGGTTGGATGCATgcgGcgATTCGT... 

...TGGAGCAATGTG 

SDM of Arg469 to 

Ala/Asp470 to Ala in 

CRN8 

146R 
CACATTGCTCCAACGAATcgCcgcATGCAT... 

...CCAACCATTACG 

SDM of Arg469 to 

Ala/Asp470 to Ala in 

CRN8 

147F 
GAGAGACCCGGGACAAGTAGTGCGCCTATT... 

...TCTGATGGGACG 

Cloning CRN8-D2 into 

pEAQ-HT starting from 

residue 118, contains XmaI 

site 

148F 
GAGAGACCCGGGCAGCATGCGCCGGAACG... 

...TTTTCGACTTGTAC 

Cloning CRN8-KD into 

pEAQ-HT starting from 

residue 337, contains XmaI 

site 

149R 
GAGAGACTCGAGTCAGGCACGTCTGTGCTT... 

...CTTGCGCACACC 

Cloning CRN8 into pEAQ-

HT ending at C-terminus 
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Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

266F CACCATGCTCTCGACGAACACGGGTGTTCAG 

Cloning PexRD2 into 

pENTR™/D-TOPO
® 

starting from residue 21 

267R 
TCAAACTGCTGTGTGTTCAGCCACATAG... 

...TTGAGG 

Cloning PexRD2 into 

pENTR™/D-TOPO
® 

 

ending at C-terminus 

268F 
CACCATGAAACACTACACGGCAGCTGA... 

...AAACGACG 

Cloning PexRD2 into 

pENTR™/D-TOPO
® 

 

starting from residue 42 

269F 
CACCATGGCCCTGAATACAGAGAAGAT... 

...GAAAACG 

Cloning PexRD2 into 

pENTR™/D-TOPO
® 

 

starting from residue 57 

379F GAACCAGCGGTACCTCTGATC 

Cloning P. mirabilis 

homolog of PexRD2, 

primes in 5' flanking 

sequence 

381R CAACCGCAGCGGTGTAG 

Cloning P. mirabilis 

homolog of PexRD2, 

primes in 3' flanking 

sequence 

386F 
CGTTAATTAAATGGACTACAAGGACGACGA... 

...TGACAAAGTCAAGCTTCTCGAGAATTCC 

Adding N-terminal FLAG 

tag with linker for cloning 

into pTRBO, contains PacI 

site 

388F 
TCAAGCTTCTCGAGAATTCCGCTCTGAA... 

...TACAGAGAAGATGAA 

Adding linker PexRD2 for 

cloning into pTRBO with 

N-terminal FLAG tag, 

starting at residue 57 
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Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

389R 
CGGCGGCCGCTCATTTGTACAAGAAA... 

...GCTGGGTC 

Universal cloning from 

pENTR into pTRBO, 

contains NotI site 

411R 
AGAAAGCTGGGTGTCACAAATAATCATGT... 

...CCTCGTGCTTGT 

Cloning StPM4K1 into 

pENTR™/D-TOPO
® 

 

ending at residue 286 

438F CACCTCTAGGCAAATGGCAAATGCTG 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

starting from residue 2 

439R TTACAAAACTGTGTTTATGTGGAGAGC 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

ending at C-terminus 

440F CACCGAACAGCTAACAGAGAAAAAGTTC 

Cloning StPM4K1 into 

pENTR™/D-TOPO
® 

 

starting from residue 2 

441R TCAGCGATTCAATTTCTTTTCCAACTG 

Cloning StPM4K1 into 

pENTR™/D-TOPO
® 

 

ending at C-terminus 

462aR TTATCAAGCCGATCCATCTTCTTCTATATT 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

ending at residue 300 

463F CACCGTCAGAGAGGCATCAAATGA 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

starting from residue 301 
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Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

464F CACCATGGCACGTACAATCCTTGATGG 

Cloning StPM4K1 into 

pENTR™/D-TOPO
® 

 

starting from residue 287 

475R TTATCACCTTGAATTTTGTATCCAAGGATG 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

ending at residue 278 

476R TTATCACTCATGAATTGCTAAAGTTGGAAC 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

ending at residue 373 

481F CACCCGTGCTTTGCAGTCCTCACTC 

Cloning StMAPKKKε 

into pENTR™/D-TOPO
® 

 

starting from residue 279, 

482R TTATCAATACATTGCCTGGTTCTGTAAAAG 

Cloning StPM4K1 into 

pENTR™/D-TOPO
® 

 

ending at residue 319 

523F CGCTTAATTAATCCTTACCCATACGACGTTC 

Cloning C-terminal HA-

tag into pER8, contains 

PacI site 

524R GTGACTAGTTCAAGCGTAGTCTGGAACGTC 

Cloning C-terminal HA-

tag into pER8, contains 

SpeI site 

527F CACCGCTGAAGGCGCAAAC 

Cloning SlMAPKKKα 

KD into pENTR™/D-

TOPO
® 

 starting from 

residue 192 
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Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

528aR TTATTAAGCAACTTTTGCTGTAC 

Cloning SlMAPKKKα 

KD into pENTR™/D-

TOPO
® 

 ending at residue 

467 

576R TTATAAATGGTAGAAAGTAGGTGGCTTC 

Cloning PexRD2-like-2a 

into pENTR™/D-TOPO
® 

 

ending at C-terminus 

578R TTATGAGTAGTAGACAAGATTCGGCTTC 

Cloning PexRD2-like-1a 

into pENTR™/D-TOPO
® 

 

ending at C-terminus 

579F CACCATGCTCGTGAACTCGAAC 

Cloning PexRD2-like-2a 

into pENTR™/D-TOPO
® 

 

starting from residue 21 

580F CACCATGCTCGTGAGCTCAAAGC 

Cloning PexRD2-like-1a 

into pENTR™/D-TOPO
® 

 

starting from residue 21 

612F GATATTGCACACGCAGcAACTTCTGCAGGCGCG 

SDM of Glu90 to Ala in 

PexRD2
vloop8

 to produce 

PexRD2
vloop7

 

613R CGCGCCTGCAGAAGTTgCTGCGTGTGCAATATC 

SDM of Glu90 to Ala in 

PexRD2
vloop8

 to produce 

PexRD2
vloop7

 

614F 
CAGCTCGAGCTATGTCTAGGCAAATGG... 

...CAAATGC 

Cloning StMAPKKKε KD 

into pERCH starting from 

N-terminus, contains XhoI 

site 
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Primer 
ID

a
 Sequence (5' → 3')

b
 Purpose 

615R 
GGATTAATTAAAGCCGATCCATCTTCTT... 

...CTATATTTC 

Cloning StMAPKKKε KD 

into pERCH ending at 

residue 300, contains PacI 

site 

618F 
CAGCTCGAGCTATGGCGCGGCAAATGA... 

...CGTCATCTC 

Cloning AtMAPKKKε 

into pERCH starting from 

N-terminus, contains XhoI 

site 

619R GGATTAATTAAACTTGCAGTGGCTTCCTTC 

Cloning AtMAPKKKε 

into pERCH ending at 

residue 300, contains PacI 

site 

682R GGATTAATTAATTCAGGTGGTGCCAAT 

Cloning StMAPKKKε KD 

into pERCH ending at 

residue 332, contains PacI 

site 

 

a 
‘F’ refers to a forward primer,  ‘R’ refers to a reverse primer, with regards to the 

orientation of the coding sequence 

b
 DNA sequence of primers. Start codons are coloured in green and termination 

codons in red. Bold type indicates CACC sequence required for directional TOPO
® 

cloning. Underlined sequences indicate restriction sites used for cloning. Double-

underlined sequences indicate homologous linker sequence used for epitope-tagging 

of PCR products. Italics indicate sequences homologous to In-Fusion sites. Lower 

case letters indicate substitutions introduced by site-directed mutagenesis (SDM). 
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BLUMENSCHEIN, T. M., KAMOUN, S. & BANFIELD, M. J. 2011. 

Structures of Phytophthora RXLR effector proteins. Journal of Biological 

Chemistry, 286, 35834-35842. 
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