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Abstract 

There is an ever increasing need for the development of new antibiotics to fight the 

emergence of antibacterial resistant strains of pathogens. Developing antimicrobials with 

‘novel scaffolds’ and modes of action is an effective way to combat pathogens that are 

resistant to compounds currently in clinical use. The pacidamycins are a member of the 

uridyl peptide class of antibiotics that are produced by the soil dwelling bacterium 

Streptomyces coeruleorubidus. They show specific activity against the pathogen 

Pseudomonas aeruginosa, using a currently unexploited mode of action against a cell wall 

biosynthetic enzyme target. This thesis reports the investigation into the biosynthesis of 

pacidamycin, more specifically, into the function of the hypothetical protein genes present 

in the pacidamycin gene cluster and the biosynthesis of the non-proteinogenic amino acid, 

(2S, 3S)-diaminobutyric acid (DABA), which is at the core of the pacidamycin structure and 

other related antimicrobials. 

 

A multidisciplinary approach has been taken in this investigation, utilising biophysical, 

biochemical and genetic approaches. Protein crystallographic studies have deduced the 

structure of Pac17, postulated to be a lyase involved in DABA biosynthesis along with 

structural determination of the protein bound to the proposed substrate aspartate.  Site 

directed mutagenesis of a number of the Pac17 active site amino acids also showed their 

essentiality for aspartate binding. In vitro biochemical approaches to study the enzymatic 

activity of the DABA biosynthetic proteins were inconclusive, with no activity observed. 

Genetic disruptions of the genes under investigation revealed the function of pac13 as a 

dehydratase, responsible for dehydrating the furan ring of the uridyl nucleoside present in 

the pacidamycin structure. Further to this, these studies established the essentiality of the 

DABA biosynthetic genes pac19 and pac20 for pacidamycin production in the native 

producer.  
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1.1 Natural products 

1.1.1 General introduction  

Natural products can be subdivided into three classes: primary and secondary metabolites 

and high molecular weight polymeric material. Primary metabolites are compounds 

essential for cell survival. Secondary metabolites are not essential for cell survival but 

benefit the organism in some way, often offering a selective advantage to the producing 

organism (Stone and Williams, 1992). High molecular weight polymeric material includes 

cellulose and chitin. These are generally responsible for the structural integrity of the 

organism. Primary metabolites are highly structurally conserved, however, secondary 

metabolites often have many unique and unusual features. The regulation of primary and 

secondary metabolite production is tightly controlled as gene expression and natural 

product production is energetically expensive. As a result, an organism will generally 

produce secondary metabolites at a later stage of its life cycle or at a time when 

competition for survival is high. 

 

1.1.2 Secondary metabolites 

For millennia secondary metabolites have been exploited by humans in the form of natural 

remedies and poisons (Newman et al., 2000). Even so, it was not until the 1920’s - 40’s, 

with the research of Fleming, Florey and Chain, and the eventual mass production of 

penicillin that the ‘secondary metabolite boom’ began. Since then, many diverse classes of 

secondary metabolites have been isolated from an assortment of bacteria, fungi and 

plants, and many have formed the basis for a wide selection of clinically important drugs, 

including anti-bacterials, anti-fungals, anti-oxidants and anti-inflammatories (Clardy and 

Walsh, 2004). The majority of secondary metabolites discovered and utilised in the clinic 

have been isolated from actinobacteria, particularly from the streptomycete family 

(Newman and Cragg, 2012). The first antibiotic identified from this family was actinomycin 

from Streptomyces antibioticus which was found to inhibit transcription. This was also the 

first secondary metabolite found to have anticancer activity (Waksman and Woodruff, 

1941, Hollstein, 1974).   

To date more than 20,000 secondary metabolites have been identified as having some 

form of bioactivity (Marinelli, 2009), however, due to a decrease in novel structures and 

chemical classes being discovered, the techniques used in natural product discovery have 
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become more and more elaborate. A need for new potent compounds that can fight an 

array of infections and ailments has resulted in exploration of the seas and the most 

extreme natural environments (Desbois et al., 2009). 

 

1.1.3 Secondary metabolite classification 

Secondary metabolites can be separated into a number of chemical classes. These include 

the polyketides, the terpenoids, the phenylpropanoids, the alkaloids and the ribosomal and 

non-ribosomal peptides. The polyketides (Figure 1.1) are formed from the decarboxylative 

condensation of malonate or methyl/ethyl malonate building blocks obtained from acetyl 

co-enzyme A; their assembly is mediated by polyketide synthases in a similar fashion to 

fatty acid synthesis by the fatty acid synthase. The terpenoids (Figure 1.1)  include the 

steroids and are constructed from the assembly of five carbon isoprene units. The majority 

of these compounds contain characteristic cyclic structures. Phenylpropanoids (Figure 1.1) 

as their name suggests contain aromatic ring structures with a three carbon chain attached 

to the ring (Hanson, 2003). These secondary metabolites are commonly synthesised in 

plants and are often found as a component of essential oils (Desbois et al., 2009). The 

alkaloids (example Figure 1.1) are a chemical class characterised by the presence of a base 

containing a nitrogen and, again, are synthesised by plants. Many alkaloids have neuro-

active properties, a property which has been frequently exploited. Finally the ribosomal 

and non-ribosomal peptide class (Figure 1.1)  consists of the ribosomal peptides, where the 

peptide is directly encoded in the DNA and produced by the ribosome, and the non-

ribosomal peptides that are synthesised by non-ribosomal peptide synthetases, which, like 

the polyketide synthases are multifunctional enzymes (Hanson, 2003).  
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Figure 1.1 Examples of structures of the different secondary metabolite classes, (a) erythromycin is a 
macrolide polyketide antibiotic, (b) geraniol is a mono-terpenoid and (c) 4-hydroxycinnamic acid is 
one of the simpler plant phenylpropanoids. A commonly consumed alkaloid is (d) caffeine which is a 
type of purine alkaloid and (e) zwittermicin A is an antibacterial and antifungal non-ribosomal 
peptide used in agriculture. 

 

1.1.4 Ribosomally synthesised peptides 

Ribosomally synthesised peptides are synthesised by the same machinery as proteins 

required for primary metabolism. After the synthesis of the linear peptide, it can undergo 

additional modification (post translational modification) such as hydroxylation, 

decarboxylation, proteolysis and the formation of disulphide bridges. An example of 

ribosomally synthesised secondary metabolites are the lantibiotics (Asaduzzaman and 

Sonomoto, 2009). These natural products are characterised by the presence of lanthionine 

and 3-methyllanthionine bridges. Examples of lantibiotics include nisin (commonly used in 

food preservation) and the potent antimicrobial microbisporicin (Sang and Blecha, 2008, 

Castiglione et al., 2008, Foulston and Bibb, 2010).  

 

b. 

c. 

d. e. 

a. 
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Figure 1.2 Diagrammatic representation of (a) microbisporicin and (b) nisin, two lantibiotics. The 
peptides are made ribosomally and are modified post translationally to form lanthione bridges. 
Certain amino acids are modified to form derivatives such as 2,3-didehydroalanine (Dha), 2,3-
didehydrobutyrine(Dhb), 2-amino butyric acid (Abu), chlorinated tryptophan (Cl-Trp) and 3,4-
dihydroxyproline. 

 

1.1.5 Non-ribosomal peptides and non-ribosomal peptide biosynthesis 

The non-ribosomal peptides are a diverse class of secondary metabolites, with many having 

valuable anti-bacterial and anti-fungal properties (Schwarzer et al., 2003). In nature, non-

ribosomal peptides are synthesised by complexes known as non-ribosomal peptide 

synthetases (NRPS’s). NRPS’s are similar in organisation to the polyketide synthases in that 

they are multi-enzyme complexes containing modules and domains (Hanson, 2003, Challis 

and Naismith, 2004). Each module within the NRPS results in the addition of an amino acid 

to the growing peptide. A module contains a number of individual domains. The number of 

domains within the module will vary, from comprising of the ‘core’ domains alone (an 

adenylation domain, condensation domain and peptidyl carrier protein (PCP)) to also 

including many ‘tailoring enzymes’ whose functions are to catalyse different modifications 

to the peptide. Some of these enzymes include cyclases, ketoreductases, 

a. 

b. 
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methyltransferases, epimerases and glycosyltransferases (Dieckmann et al., 1995, Hanson, 

2003). 

The adenylation domain’s role is to control specificity of amino acid selection and to 

‘activate’ the amino acid (Marahiel et al., 1997, Dewick, 2003). The amino acid is activated 

by converting it to an aminoacyl adenylate, using adenosine triphosphate (ATP). The 

activated amino acid can then be transferred to the co-factor of the PCP domain, forming a 

aminoacyl thioester (Dieckmann et al., 1995, Dewick, 2003). The ability of the adenylation 

domain to be specific yet diverse (in terms of what it may activate) has allowed for a huge 

catalogue of suitable substrates, including non-proteinogenic  amino acids, a characteristic 

of the product that has made them very useful to humans (Marahiel et al., 1997, Lautru 

and Challis, 2004). 

 

 

Figure 1.3 The adenylation domain ‘activates’ a specific amino acid, converting it to its aminoacyl 
adenylate derivative. 

 

The peptidyl carrier protein of the NRPS has a role analogous to that of the acyl carrier 

protein (ACP) of the polyketide synthase. The PCP originally exists in its inactive or apo- 

form and must be ‘primed’ to its active or holo- form by addition of its co-factor 

4’-phosphopantethiene (4-PP) (Lambalot et al., 1996). The co-factor is transferred to a 

conserved serine residue of the PCP by a 4’-phosphopantetheinyl transferase (Lambalot et 

al., 1996). 
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Figure 1.4 The activated amino acid is uploaded as a thioester onto the 4’-phosphopantetheinyl 
appendage of the PCP, which will act to chaperone the amino acid to the various enzymatic domains 
for subsequent incorporation into the peptide and modification with the aminoacyl. 

 

The final ‘core’ domain of each module is the condensation domain. The condensation 

domain is responsible for the peptide bond formation between the peptide chain and the 

activated amino acid (Stachelhaus et al., 1998, Bergendahl et al., 2002). Studies have 

shown that the condensation domain also has substrate specificity and is able to 

distinguish between enantiomers and differentiate between different side chains (Belshaw 

et al., 1999). It is worth mentioning that the first module of a NRPS often lacks the 

condensation domain as no peptide bond needs to be formed, this module is normally 

named the ‘initiation module’ (Hanson, 2003). 

 

 

Figure 1.5 The condensation domain mediates amide bond formation between the activated amino 
acid and the growing peptide chain tethered to two neighboring PCPs. 

 

Studies by Stein et al. (1996) have suggested that the affinity of the 4’-PP cofactor of the 

PCP alters depending on which state it is in (Figure 1.6) (Stein et al., 1996). Without a 

loaded amino acid, the 4’-PP has a higher affinity for the adenylation domain. When loaded 

with an amino acid, its affinity changes, being higher for the condensation domain, where a 

peptide bond is formed. The peptidyl-loaded PCP then changes its affinity again for the 

donor site of the condensation domain of the next module (Marahiel et al., 1997). 
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The final module of the NRPS tends to be a thioesterase or TE domain. This domain allows 

the release of the peptide by cleaving the thioester bond between the peptide chain and 

the 4’-PP cofactor of the PCP domain (Hanson, 2003). After the release of the peptide 

product, many go through macrocyclisation to leave the peptide in its final structural state 

(Marahiel et al., 1997). 

 

Figure 1.6 Diagrammatic representation of the synthesis of the peptide by the core domains of the 
NRPS (adapted from Marahiel et al. 2003). Originally the 4’-PP cofactor has highest affinity for the 
adenylation domain (a), and is loaded with the amino acid. Once loaded, its affinity changes for the 
acceptor site of the module’s condensation domain (b) and a peptide bond is formed between the 
growing peptide and the activated amino acid. Finally, the affinity of the PCP loaded with the 
growing peptide changes for the donor site of the condensation domain of the next module (c), at 
which point the process begins again. 

 

Some non-ribosomal peptides also contain acetate and propionate units (the building 

blocks of the polyketides) and are known as non-ribosomal peptide/polyketide hybrids 

(Newman et al., 2000). 

 

1.2 Bacteria  

1.2.1 The bacterial cell 

Bacteria and archaea are the two most abundant kingdoms on earth. Bacteria form the 

basis of the majority of the World’s ecosystems and therefore have an essential role for the 

continuity of life. 

The bacterial cell consists of the cytoplasm which contains most of the cellular material, 

such as plasmids, ribosomes and other essential cell features (the bacterial cell not being as 

ordered as a eukaryotic cell) (Pollard and Earnshaw, 2008). The cytoplasm of the cell is 

contained by the cytoplasmic membrane. Bacterial cell walls differ between Gram positive 

and Gram negative bacteria. Gram negative bacteria have a thinner peptidoglycan layer 

 C C C C C C 

A A A 

PCP PCP PCP 

Module 

 

SH 
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than that of Gram positive bacteria, but they also have an additional outer layer consisting 

of an assortment of lipopolysaccharides and proteins which has been found to be an 

effective barrier against the uptake of secondary metabolites (Kimura and Bugg, 2003, 

Madigan and Martinko, 2005). 

 

1.2.2 Bacterial infection and resistance 

The majority of bacterial species are harmless to humans and other eukaryotic organisms, 

many are even beneficial, for example the microflora in the gut which aids digestion (Sears, 

2006). However, pathogenic bacteria have plagued the health of humans and animals alike 

for millennia and include members of the Mycobacterium, Pseudomonas, Streptococcus, 

Staphylococcus and Escherichia genera (Heise, 1982, Saiman, 2004).  

The era of antibiotics has played an important role in medicine. The discovery of antibiotics 

has allowed for successful treatment of infections that were previously untreatable and 

often led to death (Cirz et al., 2005, Payne et al., 2007). Today, due to overuse and misuse 

of these compounds, many common pathogens have developed resistance to common 

antibiotics (Overbye and Barrett, 2005). Some examples of bacterial resistance emergence 

have been astonishingly rapid, for example, the introduction into the clinic of derivatives of 

penicillin, such as methicillin to circumvent bacterial resistance to penicillin resulted in the 

isolation of methicillin resistant Staphyloccocus aureus (MRSA) within a year. The resistance 

was caused by the bacteria’s ability to acquire a hydrolytic enzyme that is able to 

breakdown the antibiotic (Friedmann, 1948). The emergence of resistance to other 

antibiotics has been less swift, for example, it took almost 30 years for pathogenic bacteria 

to acquire resistance against vancomycin. This was due to the bacteria needing to acquire a 

cassette of five genes to become resistant (Fan et al., 1994, Walsh, 2003a).  A method to 

combat the emergence of antibacterial resistance is to discover and develop new 

secondary metabolite classes and clinical targets, however, recently very few new 

structural classes of secondary metabolites have been identified, with only four new 

structural classes being discovered in the past fifty years (Fischbach and Walsh, 2009). 

 The Infectious Disease Society of America (IDSA) reported in 2004 that two million patients 

developed bacterial infections, 90,000 of which were fatal. Of the two million cases, more 

than 70% of the pathogens found to be causing the infections had resistance to one or 

more of the most commonly used antibiotics (Overbye and Barrett, 2005).  
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Bacteria can acquire resistance in a number of ways. Firstly, resistance may develop 

passively from existing innate responses. Secondly, it can develop actively, normally by the 

acquisition of genetic material by horizontal transfer (Wright and Sutherland, 2007). A 

number of different mechanisms for antibacterial resistance have been identified. These 

mechanisms include enzymatic modification of the drug, mutation of the drug target, 

sequestration of the drug, preventing drug entry and the active transport of the drug from 

the cell interior via efflux pumps (Wright, 2005, Walsh, 2003b). Other studies into 

antibacterial resistance in pathogens have shown that prolonged exposure of these 

organisms to certain anti-bacterials can accelerate the development of resistance, primarily 

by horizontal transfer and via mutation caused by the SOS response (Wright and 

Sutherland, 2007).  

 

1.2.3 Pseudomonas aeruginosa 

Pseudomonas aeruginosa is an aerobic Gram negative bacterium (Lyczak et al., 2000, 

Driscoll et al., 2007). It can colonise a wide range of environments including aquatic 

habitats, the phyllosphere of plants and the rhizosphere of soil (Lyczak et al., 2000, Kerr 

and Snelling, 2009). The ability of this pathogen to form biofilms helps it to survive in these 

environmental niches (Kerr and Snelling, 2009). The common occurrence of P. aeruginosa 

in nature, particularly water, and its ability to utilise a variety of energy sources, gives it an 

opportunistic position to cause infection in humans (Lyczak et al., 2000). These 

characteristics cause problems in eradicating the pathogen within hospitals using general 

cleaning procedures. The ability of P. aeruginosa to form biofilms within the host, for 

example, within the lung cavity, makes the treatment against this pathogen more difficult 

(Kerr and Snelling, 2009). Furthermore, P. aeruginosa has been found to develop resistance 

more efficiently than many other Gram negative and Gram positive pathogens. Its most 

common resistance being against β-lactams and antibiotics such as tertracycline and 

chloramphenicol, making this pathogen particularly problematic (Li et al., 1994, Lambert, 

2002, Livermore, 2002, Walsh et al., 2005). 

It needs to be iterated that infection in healthy individuals by this pathogen is rare. 

Infection commonly occurs in burn patients, individuals with cystic fibrosis (lung condition) 

and others with a compromised immune response (Lyczak et al., 2000).  Even so,                 

P. aeruginosa was the etiological infection (original infection) of 18.1% of hospital acquired 



Chapter 1 - Introduction 

 

 

  
Page 11 

 
  

pneumonia, 3.4% of bloodstream infections, 16.3% of urinary tract infections and 9.5% of 

surgical site infections in USA hospitals in 2003, according to IDSA reports (NNIS, 2004).  

In recent years, a number of antibiotic therapies have been developed to fight 

pseudomonal infections (Doering and Pier, 2008). Among these are the lipopolysaccharide, 

surface polysaccharide and polysaccharide-protein conjugate antigen vaccines (Doering 

and Pier, 2008). However, none have gained market approval and very few have reached 

clinical trials (Doering and Pier, 2008). 

P. aeruginosa has a broad range of virulence mechanisms. Among these are secreting 

toxins and forming biofilms (Driscoll et al., 2007). In recent years, studies into resistance by 

this organism have alarmed scientists and medical staff alike. A study by the National 

Nosocomial Infections Surveillance group revealed that resistance of the pathogen to 

commonly used anti-bacterials such as flouroquinolones, imipenem and third generation 

cephalosporins had increased to 29.5%, 21.1% and 31.9%, respectively, in 2003 (NNIS, 

2004). The virulence of P. aeruginosa has been found to be both multi-factorial and 

combinatorial. A study in 2006 showed that the virulence genes in one strain of the 

pathogen may not be present in another strain (Lee et al., 2006). The study also suggested 

that the presence of pathogenicity islands (clusters of virulence related genes), can be 

acquired via horizontal transfer (Lee et al., 2006). Antibacterial resistance by P. aeruginosa 

can consist of a number of mechanisms. The pathogen has been found to have a variety of 

efflux pumps, allowing it to pump the antibacterial agent from the cytosol to the cell 

exterior (Lee et al., 2006). Furthermore,  inactivating enzymes are used to deactivate the 

activity of the antibacterial agent (Lee et al., 2006). 

 

1.2.4 Streptomycetes 

Streptomycetes are soil dwelling Gram positive bacteria which have a characteristically high 

GC content (≥70%) in their genomes. The life cycle of Streptomyces sp. is similar to that of 

fungi whereby a free spore, when located on favorable medium, germinates. Spore 

germination is then followed by the formation of vegetative mycelium (mycelium grows 

into solid phase) and the eventual formation of aerial hyphae from the sporophores formed 

by the vegetative mycelium. The aerial hyphae become spiraled, finally forming strands of 

mature spores, thus allowing the life cycle to begin again. As previously stated, the 

streptomycete family are prolific producers of secondary metabolites. Secondary 
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metabolism in Streptomyces sp. is tightly regulated, with the formation of secondary 

metabolites occurring during the generation of aerial hyphae (Kieser et al., 2000, Bibb, 

2005).  

 

Figure 1.7 The life cycle of Streptomyces coelicolor (most streptomycetes have similar life cycles) 
(adapted from Kieser et al. 2000). The point in the life cycle where formation of aerial hyphae occurs 
(and production of secondary metabolites) has been labeled. 

 

1.2.5 Targets for antimicrobial therapy 

There are a number of antimicrobial targets in bacteria that are exploited for medicinal 

purposes. These include bacterial cell wall biosynthesis, the control of DNA topology and 

protein and nucleic acid synthesis (Fischbach and Walsh, 2009). A favoured target for 

antimicrobial action is the bacterial cell wall due to there being no homologous structure in 

humans and therefore targeting the cell wall biomachinery of a bacterial cell is less likely to 

have undesirable side-effects on the host. 

Spore 

Formation of aerial hyphae 

(secondary metabolite production) 

 

 

Spore formation 
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1.2.6 Peptidoglycan biosynthesis 

The peptidoglycan layer of the cell wall of bacteria is an essential part of the cell. This mesh 

of amino sugars and pentapeptides protects the bacterial cell from bursting open by 

osmotic lysis. The layer also gives the cell its structural integrity, allowing for the shape of 

the cell to be maintained (Bouhss et al., 2004). 

The peptidoglycan layer of the cell wall consists of two amino sugars: N-acetylglucosamine 

(GlcNAc) and N-acetylmuramic acid (MurNAc) linked by a β-1,4 linkage and crosslinked by a 

pentapeptide, giving a mesh-like structure (Bugg and Walsh, 1992). The pentapeptide 

sequence differs depending on whether the bacterium is a Gram positive or Gram negative 

species. The general consensus is that, for Gram negative bacteria such as P. aeruginosa, 

the pentapeptide sequence is: L-Alanine-γ-D-Glutamate-meso-diaminopimelicacid-D-

Alanine-D-Alanine (L-Ala-γ-D-Glu-m-DAPA-D-Ala-D-Ala). The cross linking is achieved by the    

L-Ala residue of the pentapeptide bonding to the C3 of MurNAc and the penultimate D-Ala 

of the same pentapeptide becoming linked by a enamide bond to the m-DAPA residue of 

an adjacent pentapeptide (Bugg and Walsh, 1992). 

 

 

Figure 1.8 The organisation of the peptidoglycan layer of the cell wall of Gram negative bacteria. The 
glycan β-1,4 linkage is shown by the solid line, the peptide cross-link between the amino group of 
DAPA and D-Alanine shown by a broken line. 
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Peptidoglycan biosynthesis involves various enzymes and takes place in two locations in the 

cell. Biosynthesis begins in the cytoplasm and finishes by forming the peptidoglycan layer 

on the outer edge of the periplasmic space. Biosynthesis begins with the production of the 

core components in the cytoplasm; UDP-GlcNAc and UDP-MurNAc. UDP-MurNAc is 

synthesised from the addition of an enolpyruvyl group to the 3’-hydroxy of UDP-GlcNAc by 

MurA, a cytoplasmic transferase. The pentapeptide is synthesised by the addition of amino 

acids to UDP-MurNAc,  by a series of Mur ligases, at the expense of ATP (Bugg and Walsh, 

1992). MurC, MurD and MurE add L-Ala, D-Glu and m-DAPA respectively, with MurF ligase 

linking the final two amino acids (already a dipeptide by the actions of a D-Ala-D-Ala ligase)  

to the growing chain to produce UDP-MurNAc-L-Ala-γ-D-Glu-m-DAPA-D-Ala-D-Ala (Ward, 

1984, Bugg and Walsh, 1992).  At this stage, UDP-MurNAc–pentapeptide needs to be 

transported across the cytoplasmic membrane, which is done by means of a undecaprenyl 

phosphate lipid carrier. UDP-MurNAc–pentapeptide is transferred to the lipid carrier by the 

transferase;  translocase I, also known as MraY, forming lipid intermediate I (Struve et al., 

1966, Bugg and Walsh, 1992). Another transferase, translocase II (MurG) catalyses the 

addition of the GlcNAc aminosugar to UDP-MurNAc–pentapeptide, which results in the 

formation of lipid intermediate II (Bugg and Walsh, 1992, Bupp and Vanheijenoort, 1993). 

At this stage, the intermediate is flipped, by an unknown mechanism, from the cytoplasm 

to the external surface of the cell (Marahiel et al., 1997). On the cell surface, lipid 

intermediate II is transglycosylated by members of the penicillin-binding family, leading to 

the polymerisation of the sugar backbone of the peptidoglycan layer (Bupp and 

Vanheijenoort, 1993). The mesh structure of  the peptidoglycan layer is completed by 

peptide bond formation between the carbonyl group of the penultimate D-Ala residue of 

one pentapeptide with the terminal amino group of the m-DAPA residue of an adjacent 

pentapeptide (Bugg and Walsh, 1992).  
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Figure 1.9 Outline of the initial stages of cell wall biosynthesis (prior to the transglycosylation). 

 

1.2.7 Translocase I 

As previously described, translocase I (MraY) is an enzyme involved in the transfer of 

UDP-MurNAc-pentapeptide to the undecaprenyl phosphate lipid carrier to form lipid 

intermediate I during peptidoglycan biosynthesis (Bugg and Walsh, 1992). For many years 

translocase I has been identified as a possible target for novel antibiotics for a number of 

reasons (Brandish et al., 1996). Firstly, it is known that translocase I plays an important role 

in the biosynthesis of the cell wall, a component of the bacterial cell which, if not present, 

would result in viability issues for the cell (Brandish et al., 1996). Secondly, the location of 

translocase I in the bacterial cell means accessibility by antimicrobial agents is relatively 

easy (Bouhss et al., 2004). Furthermore, there is no similar homolog within eukaryotes, 

suggesting activity against this enzyme would specifically target bacterial cells, without 

affecting any processes within the human patient (Bouhss et al., 2004). Nevertheless, to 

date this enzyme is clinically unexploited, despite the discovery of antibiotics, including the 
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mureidomycins, liposidomycins and pacidamycins that have been found to have activity 

against this target (Inukai et al., 1993, Winn et al., 2010). 

Studies of translocase I have elucidated its structures within Escherichia coli (E. coli) and 

Staphlycoccus aureus. Both structures show strong homology, suggesting the structure of 

translocase I is well conserved between Gram positive and Gram negative bacteria (Bouhss 

et al., 2004). One of the more recent studies by Al-Dabbagh et al. (2008) describes the 

structure of this enzyme as consisting of ten transmembrane helices, five cytoplasmic loops 

and four periplasmic loops, with the N- and C- termini residing in the periplasm of the 

bacterial cell (Bouhss et al., 1999, Bouhss et al., 2004, Al-Dabbagh et al., 2008). From 

topological studies, it has been found that the five cytoplasmic loops are highly conserved, 

containing a total of 34 conserved amino acids, 19 of which are polar residues and 14 found 

to be essential for the activity of the enzyme (Bouhss et al., 2004, Al-Dabbagh et al., 2008). 

 

1.2.8 Antibacterial cell wall targets 

A number of antibiotics target the cell wall biomachinery (Ward, 1984). The most famous 

example is that of penicillin, which has activity against the transpeptidase by binding into 

its active site. Other examples include fosfomycin which inhibits the first enzyme in the 

pathway; MurA, and tunicamycin that shows activity against the cell wall enzyme MurG 

(Woodyer et al., 2006, Price and Tsvetanova, 2007).  
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Figure 1.10 Diagrammatic representation of antibacterial targets in the cell wall biomachinery, also 
highlighting the target of the uridyl peptide class of metabolites (red). 

 

1.3 Nucleoside antibiotics 

1.3.1 General introduction 

The nucleoside antibiotics are a group of antibiotics, all of which, as the name suggests, 

contain nucleoside residues (Kimura and Bugg, 2003). They inhibit the action of the cell wall 

enzyme translocase I, an enzyme encoded by mraY that catalyses an important stage in 

peptidoglycan biosynthesis and is as yet clinically unexploited. The antibacterial properties 

of the majority of the nucleoside antibiotics are non-specific, a property believed to be 

attributed to the fact that nucleoside metabolism is a primary process (Kimura and Bugg, 

2003). A common and unfortunate characteristic of this family of antibiotics is that many 

are cytotoxic towards eukaryotic cells as well as prokaryotic cells, therefore making them 

Penicillin, Cephalosporins, 

Moenomycin and Vancomycin 

Tunicamycin 

Fosfomycin 
inhibits formation of 

MurNAc 

 

Bacitracin 
inhibits recycling of 

the lipid carrier 

 

Uridyl Peptides 



Chapter 1 - Introduction 

 

 

  
Page 18 

 
  

redundant for clinical use (Nishimura et al., 1956). For example, the nucleoside antibiotic 

toyocamycin (Figure 1.11), one of the first in this class to be isolated, has good antibacterial 

activity against common pathogens such as Mycobacterium tuberculosis, but has been 

found to be toxic to eukaryotes during studies in mice. The toxicity is likely to be caused by 

its structural resemblance to adenosine, resulting in this anti-bacterial agent being 

inappropriate for clinical exploitation (Nishimura et al., 1956).  

 

 

Figure 1.11 Structure of the nucleoside antibiotic toyomycin (left), a nucleoside antibiotic found to 

be toxic in mice, its toxicity likely to be due to its striking resemblance to the ubiquitous nucleoside 

adenosine (right). 

 

The nucleoside antibiotics are subdivided into three classes (Kimura and Bugg, 2003, Winn 

et al., 2010). The first class includes the natural products tunicamycins, streptoviridins and 

corynetoxins. These are characterised by the presence of a GlcNAc residue, O-linked sugar 

residues, a long fatty acid chain and the presence of the nucleoside uracil (Takatsuki et al., 

1977, Eckardt, 1983, Winn et al., 2010). The second class are the structurally complex 

liposidomycins. They contain the aminosugar, aminoribose, the nucleoside, uridine, and 

fatty acyl units (Isono et al., 1985, Winn et al., 2010). The final class is the uridyl peptides 

and includes the napsamycins, sansamycins, mureidomycins and pacidamycins (Winn et al., 

2010).  

 

1.3.2 Discovery of the uridyl peptides 

The first group of molecules discovered in the uridyl peptide class of metabolites were the 

mureidomycins and pacidamycins in 1989 when Chen et al. discovered pacidamycins 1-7 
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and Isono et al. discovered mureidomycins A-D (Chen et al., 1989, Isono et al., 1989a). 

Another member of the class, the napsamycins were first isolated in 1994 and most 

recently the sansamycins were discovered (Chatterjee et al., 1994, Winn et al., 2010). 

The uridyl peptides share a structurally  common framework (shown in Figure 1.12) 

consisting of a central N-methyl (2S,3S)-diaminobutyric acid (DABA) residue, linked by a 

4’-5’ enamide bond to the nucleoside, 3’-deoxyuridine (Winn et al., 2010). The fourth 

amino acid in the peptide backbone is attached to the α-nitrogen of the DABA residue. An 

urea motif attaches to the fifth amino acid, which contains an aromatic side chain (Winn et 

al., 2010). Found linked to the Cβ of DABA, depending on the natural product, is  the N-

terminal amino acid or dipeptide (Winn et al., 2010).  

 

 

Figure 1.12 Diagrammatic representation of the structures of the different groups of uridyl peptides 
to re-iterate the significant similarities in their structures; (a) Mureidomycin A, (b) Sansamycin A, (c) 
Napsamycin A and (d) Pacidamycin D. 

 

1.3.3 Uridyl peptide antibacterial activity  

The uridyl peptides show a relatively narrow spectrum of activity. In general they show 

some activity against the pseudomonads, however, members of the class, such as the 

pacidamycins, only show activity against specific species within the pseudomonad family, 
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with the pacidamycins having activity in vivo against Pseudomonas aeruginosa only (Isono 

et al., 1989b, Isono et al., 1992, Fernandes et al., 1989). Studies have found that for the 

majority of P. aeruginosa strains, the pacidamycins have minimum inhibition 

concentrations (MIC) of between 0.1 and 100 μg mL-1 depending on the functionality at the 

N- and C- termini of the peptide (Fronko et al., 2000). Studies into the use of the uridyl 

peptides as antibiotics have predominately been carried out using the mureidomycins. 

Mureidomycins A-D were found to protect mice against P. aeruginosa infection, however, 

parallel studies using the pacidamycins were not as successful (Fernandes et al., 1989, 

Isono et al., 1989a). Although it is stated that the pacidamycins show exclusive activity 

against P. aeruginosa, at high concentrations it has been found that pacidamycins can 

affect the growth of other bacteria, including members of the Pseudomonas and 

Streptococci genera and Staphylococcus aureus (Chen et al., 1989, Karwowski et al., 1989). 

 

1.3.4 Uridyl peptides and their postulated inhibition mechanism 

Studies into the inhibition mechanism of the uridyl peptides using mureidomycin A have 

suggested that they act as competitive inhibitors (Gentle and Bugg, 1999). It was 

postulated that the 4’5’-enamide and the nucleoside were important to the activity of 

these peptides (Gentle and Bugg, 1999). Further studies using a synthetic uridine analogue 

with the 4’5’-enamide was found not to inhibit translocase I (Gentle and Bugg, 1999). Later 

studies using pacidamycin D concluded the opposite, leaving a question mark over the 

necessity of this enamide (Winn et al., 2010).  Other studies using mureidomycin A deduced 

that the N-terminal end of the peptide chain may have some significance to their ability to 

inhibit translocase I (Howard and Bugg, 2003). Studies showed that the N-terminus 

competes for the Mg2+ cofactor binding site of translocase I (Howard and Bugg, 2003). The 

core DABA residue has also been suggested to be an important component of these natural 

products, potentially improving their ability to prevent lysis of the peptide (Winn et al., 

2010).  
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Figure 1.13 Showing the similarity of the reactive component of MraY substrate (a) and the 
nucleoside moiety of the uridyl peptide (b) suggesting why the nucleoside was originally believed to 
be important in the antimicrobial activity of the uridyl peptides. 

 

1.3.5 The pacidamycins 

1.3.5.1 Introduction 

The pacidamycins are uridyl peptide natural products produced by the bacterium 

Streptomyces coeruleorubidus. Pacidamycins 1 through to 7 were first isolated from            

S. coeruleorubidus strain AB 1183F-64 in 1989 by Chen et al. (Karwowski et al., 1989, Chen 

et al., 1989, Fernandes et al., 1989). Further pacidamycins were later isolated from              

S. coeruleorubidus strain NRRL 18730 and included pacidamycins D, 5T and 4N (Fronko et 

al., 2000). The structure of the pacidamycins has already been described. Figure 1.14 shows 

a more exhaustive list of pacidamycins. The total synthesis of pacidamcyin D and a number 

of pacidamycin analogues has recently been reported by Okamoto et al. (Okamoto et al., 

2011, Okamoto et al., 2012a, Okamoto et al., 2012b). 



Chapter 1 - Introduction 

 

 

  
Page 22 

 
  

 

 

Figure 1.14 Diagram showing the structures of the naturally occurring pacidamycins.  

 

1.3.5.2 The pacidamycin gene cluster  

The pacidamycin gene cluster was the first uridyl peptide gene cluster to be characterised. 

The discovery was first reported by Rackham et al. (2010) and supported by the findings of 

Zhang et al. (2010) shortly after. Since 2010, gene clusters for napsamycins and 

sansamycins have also been identified (Kaysser et al., 2011, Wang et al., 2012). The 

pacidamycin gene cluster was identified using 454 sequencing which provided adequate 

genome coverage and ‘systematic’ gene disruption (using degenerate primers). By 

disrupting putative DABA synthases (six identified in total), Rackham et al. (2010) were able 

to determine which disruption eradicated pacidamycin production from S. coeruleorubidus 

(Rackham et al., 2010). They identified a 22 ORF gene cluster of the size 30.3 Kb that was 

believed to be responsible for the biosynthesis of pacidamycin. This hypothesis was 

confirmed by the heterologous expression of the gene cluster in a heterologous host          

(S. lividans TK24). Further analysis of the products of the heterologously expressed cluster 

showed that pacidamycin D and pacidamycin S were produced, but the most commonly 

produced pacidamycins that were usually generated by the native producer (pacidamycins 

4, 4N, 5 and 5T) were not observed to be produced by the heterologous host. These 

 

Pacidamycin D Pacidamycin 4N   R = Indolyl 

Pacidamycin 5N   R = Phenyl 

Pacidamycin 1      R
1
 = Ala         R

2
 = Indolyl 

Pacidamycin 2      R
1
 = Ala         R

2
 = Phenyl 

Pacidamycin 3      R
1
 = Ala         R

2
 = 3-Hydroxyphenyl 

Pacidamycin 4      R
1
 = H            R

2
 = lndolyl 

Pacidamycin 5      R
1
 = H            R

2
 = Phenyl 

Pacidamycin 5T    R
1
 = H            R

2
 = 3-Hydroxyphenyl 

Pacidamycin 6      R
1
 = Gly         R

2
 = Indolyl 

Pacidamycin 7      R
1
 = Gly         R

2
 = Phenyl 
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pacidamycins contain the non-proteinogenic amino acid meta-tyrosine. It was postulated 

that the cluster is only the minimal pacidamycin gene cluster and that there were 

additional genes in the genome of S. coeruleorubidus that complement the minimal gene 

set to produce the suite of pacidamycins that are seen in the native producer (Rackham et 

al., 2010). Further to this, the minimal pacidamycin gene cluster showed significant 

similarity to a 25 ORF cluster found in S. roseosporus strain NRRL 15998/11379 (Rackham et 

al., 2010). Initial annotation of the 22 ORFs suggested there were three modular NRPSs at 

pac12, pac14 (lacking an adenylation domain) and pac16 (Rackham et al., 2010). Further 

NRPS domains were annotated at pac15 and 21, pac4 and 9 and pac8 being adenylation 

domains, condensation domains and acyl carrier proteins respectively (Rackham et al., 

2010). Further to this pac17  through pac20 were believed to be responsible for the 

biosynthesis of the core DABA residue with pac22, the final ORF of the cluster catalysing 

the N-methylation of this residue (Rackham et al., 2010). Four hypothetical proteins were 

also annotated in the cluster as pac1, 2, 7 and 13 (Rackham et al., 2010). Rackham et al. 

(2010) postulate that an ORF in the similar S. roseosporus homologous cluster encoding a 

phenyl alanine hydroxylase may have a homologue in S. coeruleorubidus, which was not 

present in the pacidamycin gene cluster, explaining the absence of production of any 

pacidamycin containing meta-tyrosine during heterologous expression (Rackham et al., 

2010).  

 

 

Figure 1.15 Illustration of the minimal pacidamycin gene cluster from S. coeruleorubidus. The genes 
have been coloured depending on their original functional designation, as established through 
sequence comparison to genes of known function in the database. Also included are both the 
Rackham et al. (2010) and Zhang et al. (2010) gene nomenclature. 

 

pac1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
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1.3.5.3 Additional genes identified to be involved in pacidamycin biosynthesis 

Further work reported by Grüschow et al. (2011) identified the presence of a phenyl 

alanine hydroxylase (phhA) elsewhere in the S. coeruleorubidus genome that was 

responsible for the formation of the meta-tyrosine found at the N and C termini of a 

number of the pacidamycins. The work also identified a homologue of pac21, a gene in the 

minimal gene cluster of pacidamycin which was subsequently designated as pac21h. The 

paper reported that pac21 was responsible for the activation and incorporation of alanine 

at the N terminus of the pacidamycin structure and pac21h was responsible for the 

activation and condensation of the meta-tyrosine produced by phhA at this position.  

 

1.3.5.4 Further evidence in the assembly of pacidamycin 

Work published by Zhang et al. (2011) showed that, in vitro, nine enzymes produced from 

the expression of genes in the pacidamycin gene cluster were essential for the assembly of 

pacidamycin. The work showed that Pac8 was responsible for the tethering of the core 

methylated non-proteinogenic amino acid DABA, the tethering being assisted by Pac16. 

DABA was methylated by Pac22 (DABA being tethered to Pac8 was not essential for its 

methylation). Pac10, 12 and 15 were found to be responsible for the assembly of the C- 

terminus of the peptide (ureido-dipeptide) and its assembly onto the DABA residue with 

the aid of Pac4. The N- terminus was incorporated into the structure by Pac21, and Pac9 

was responsible for the addition of the nucleoside derivative.  
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Figure 1.16 Diagrammatic representation of the enzymes involved in the assembly of pacidamycin. 

 

1.4 Diamino acids and studies into their biosynthesis 

Diamino acids have become of interest to biochemists in recent years due to their presence 

in many bioactive compounds. The simplest of these amino acids found in natural products 

is diaminopropionic acid (DAP) which has two enantiomeric forms and can be found in the 

tuberactinomycins and zwittermicin A. Diaminobutyric acid (DABA) has a total of four 

enantiomeric forms and is found in natural products such as the fruilimicins and the uridyl 

peptides. Even so, the full biosynthesis of these precursors of secondary metabolites are 

not fully understood. Some work has taken place into the biosynthesis of DAP (Carter et al., 

1974). Studies by Carter et al. (1974) on the incorporation of diaminopropionic acid (DAP) 

into viomycin showed, by feeding experiments, that a variety of compounds could be used 

as a precursor for DAP, but the efficiency of incorporation of serine and glucose was ten to 

Pac4 

Pac9 

Tethered to Pac8 (Pac16 

assists in tethering), 

methylated by Pac22 

Pac21 

Pac10, 12 and 15 
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twenty fold higher (Carter et al., 1974). Suffice it to say, a likely candidate for a precursor of 

DABA would be threonine, an amino acid very similar to serine but with an additional 

methyl group, DABA having an additional methyl group compared to DAP. Bioassays 

conducted by Lam et al. (2008) showed that production of the antibiotic mureidomycin A in 

Streptomyces flavidovirens was significantly enhanced by the addition of 10 mM 

L-threonine or 100 mM L-phenyalanine to the growth media, however addition of uracil, 

L-methionine, meta-tyrosine, sodium acetate, or the D-enatiomers of phenylalanine or 

threonine, caused no increase in production (Lam et al., 2008). It was postulated that three 

possible pathways existed for the biosynthesis of DABA (Lam et al., 2008). The first is the 

condensation of glycine and acetyl coenzyme A by 2-amino-3-ketobutyrate ligase (KBL) and 

then transamination of the product (2-amino-3-ketobutyrate) to give DABA. A second 

plausible pathway is  for L-threonine to be oxidised by threonine dehydrogenase, forming 

2-amino-3-ketobutyrate followed by the transamination step. The final pathway would be 

via a β-replacement reaction, converting L-threonine to DABA in a PLP-dependent fashion 

(McGilvray et al., 1969, Lam et al., 2008). Lam et al. (2008) concluded that DABA is most 

likely to be biosynthesised via a PLP dependent β-replacement reaction of L-threonine. 

Their studies further showed that DABA is synthesised prior to the assembly of the 

antibiotic using UV/Vis assays of the phenylglyoxal derivative DABA (Lam et al. 2008). 

Absorbance (indicating presence of DABA) was highest two to three days after the 

beginning of growth of the native producer, where production of mureidomycin A was 

found to be highest at day six (Lam et al., 2008). 

 

1.5 Proposed biosynthesis of DABA  

Initial interrogation of the pacidamycin gene cluster by Rackham et al. (2010) suggests that 

four genes are responsible for the biosynthesis of the non-proteinogenic diamino butyric 

acid residue found at the core of the pacidamycin scaffold. These genes are pac17 through 

pac20. Analysis of these genes suggest that pac17, 18 and 19 are translationally coupled 

and are annotated as an argininosuccinate lyase, a kinase and a DABA synthase, 

respectively, with the kinase requiring ATP as a substrate and the synthase requiring PLP as 

a cofactor. The final gene; pac20 is annotated as being a PLP-dependent threonine aldolase 

(Rackham et al., 2010). From this evidence and work carried out by Lam et al. (2008) a 

mechanism has been postulated. 
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It is believed that Pac20 is the link between primary and secondary metabolism. The 

enzyme is postulated to produce an excess of L-threonine, or produce threonine during the 

secondary metabolite production stage of the Streptomyces life cycle. It is believed that the 

threonine is phosphorylated at the hydroxyl position to produce O-phospho-L-threonine. 

This product is then utilized by the DABA synthase (Pac19) in a PLP-dependent 

β-replacement reaction, replacing the phosphate group for that of an amino group to 

produce (2S, 3S)-diaminobutyric acid (DABA), the amino group being supplied by the 

actions of Pac17 by breaking down a substrate such as aspartate to fumarate and 

ammonia. A diagrammatic representation of this postulated mechanism is shown in Figure 

1.17.  

 

Figure 1.17 The postulated biosynthesis of DABA by the pacidamcyin enzymes Pac17, 18, 19 and 20. 

 

1.6 Project aims 

This PhD project had two main aims: 

1. To determine the mechanism by which the DABA moiety of pacidamycin is 

biosynthesised in S. coeruleorubidus.  

2. To determine the functions of the four hypothetical proteins (pac1, pac2, pac7 and 

pac13) that are present in the pacidamycin gene cluster. 

Progress towards these aims will be reported in the subsequent chapters. 
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2.1 General 

2.1.1 General comments 

All components used for media and buffers, along with any biological or chemical reagents 

were purchased and supplied by commercial retailers and stored as advised by the 

manufacturer. All microorganism stocks were stored at – 80 oC. Streptomyces sp. were 

stored as spore suspensions in 25% (v/v) glycerol and E.coli strains were stored as cell 

suspensions in 25% (v/v) glycerol. 

 

2.1.2 General reagents 

Unless otherwise stated, all reagents were purchased from Sigma Aldrich. 

1 Kb DNA gel marker – Promega 

12 % Amersham precast protein gels – GE Healthcare 

37 % Acrylamide – Severn Biotech Limited 

Agarose – Melford 

BigDye v 3.1 – Applied Biosystems 

Carbenicillin disodium - Formedium 

Chloramphenicol – Melford 

dNTP’s – Novagen 

DAPase – Qiagen 

DNA purification kit – Qiagen 

Hi-trap chelating column – GE Healthcare 

IPTG – Melford 

Kanamycin sulfate – Melford 

Pfu DNA polymerase – Invitrogen 

Protease inhibitor cocktail tablets (EDTA free) – Roche 
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Instant Blue protein stain – Expedeon 

Restriction enzymes – Roche / New England Biolabs 

Taq polymerase - Roche 

Thrombin – ICN 

Tris base – Melford 

 

2.1.3 General equipment 

Äkta FPLC and Äkta FPLC express – GE Healthcare 

Bench top centrifuge – Sorvall Legend RT (Heraeus rotor 75006445) 

Cell disruptor – Constant Cell Disruption Solutions 

Cell electroporator – Biorad Gene Pulser 

Centrifuge – Sorvall Evolution RC 

Crystallisation supplies – Hampton Research, Molecular Dimensions and Qiagen 

Incubators (shaking) – New Brunswick Scientific and Infors HT 

Incubators (static) – LTE 

LC-MS – Agilent 1100 series for general LC-MS analysis and Thermo Scientific Finnigan 

Surveyor for LC-MS2 analysis 

Microcentrifuge – Heraeus Instumenation (rotor PP 1/97 #3324) 

Microscope – Nikon SMZ800 

pH meter – Hanna Instruments 

Pipettes – Anachem 

Protein casting apparatus and tank – Biorad mini protean II or GE Healthcare Amersham 

ECL tank 

Sonicator – Sonics Vibra Cell 
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Spectrophotometer – Perkin Elmer Lambda 25 

Thermal Cyclers – Eppendorf Mastercycler and MJ Research PTC 200 (gradient PCR) 

Transilluminator – Uvitec 

Vortex – Stuart Autovortex Mixer 

Water bath – Grant 

 

2.1.4 Medium 

Components to produce medium were purchased from retailers including Fisher Scientific, 

Sigma-Aldrich, BD Biosciences, Melford, Formedium, and Alfa-Aesar unless stated 

otherwise. 

 

Table 2.1 Recipes for all medium (solid and liquid) used during this study 

Medium Components (L-1) 

Luria-Bertani (LB) 10 g tryptone, 5 g yeast extract, 10 g NaCl 

Lennox (Len) 10 g tryptone,5 g yeast extract, 5 g NaCl, 1 g glucose 

Auto-Induction Media LB 

broth based (AIM) 

10 g tryptone, 5 g yeast extract, 3.3 g (NH4)2SO4, 6.8 g KH2PO4, 

7.1 g Na2HPO4, 0.5 g Glucose, 2 g α-lactose, 0.15 g MgSO4,   

0.03 g trace elements 

ISP-2 4 g yeast extract, 10 g malt extract, 4 g glucose, pH 7.2 using 

NaOH 

Soy Flour Mannitol (SFM) 20 g mannitol, 20 g soy flour, tap water 

Tryptone Soy Broth (TSB) 30 g tryptone soya broth powder 

SOB 20 g tryptone, 5 g yeast extract, 0.5 g NaCl 

Difco Nutrient Agar 

(DNA) 

23 g Difco Nutrient Agar 

INA5 (modified) 15 g soya flour, 5 g CaCO3, 2 g NaCl, 30 mL glycerol 

Minimal Media (MM) 2.14 g NH4Cl, 0.6 g MgSO4, 4.41 g K2HPO4, 20.99 g MOPS, 0.2 

mL 50 mg mL-1 FeSO4·2H2O, 0.2 mL 50 mg mL-1 MnCl2·4H2O, 0.2 

mL 50 mg mL-1 ZnSO4·7H2O, 0.2 mL 50 mg mL-1 CaCl2, made 

upto 950 mL with distilled water at pH 7.0    
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Maltose Solution 20% (m/v) maltose, dissolved at 40oC 

R5 103 g sucrose, 0.25 g K2SO4, 10.1 g MgCl2·6H2O, 10 g glucose, 

0.1 g Difco aminoacids, 2 mL trace element solution(40 mg 

ZnCl2, 200 mg FeCl3·6H2O, 10 mg CuCl2·2H2O, 10 mg MnCl2, 10 

mg Na2B4O7·10H2O, 10 mg (NH4)6Mo7O24·4H2O in 100 mL), 5 g 

Difco yeast extract, 5.73 g TES buffer, 10 mL KH2PO4 (0.5 %), 4 

mL CaCl2·2H2O (5 M) 15 mL L-proline (20 %) 7 mL NaOH(1 N), 

made up to 1000 mL with distilled water  

 

All medium were made up to the required volume with distilled water unless otherwise 

stated, followed by autoclaving at 121 oC, 1.3 bar for 20 min to ensure the medium were 

sterile. Heat-sensitive components were sterilised by filtration through a 0.2 μm 

membrane. If the medium were required in solid form, agar was introduced at 1.5 % (w/v) 

for standard media, 0.5 % (w/v) for soft medium and 2 % (w/v) for SFM agar. 

 

2.1.5 Antibiotics 

Table 2.2 Recipes for antibiotics used in this study 

Antibiotic Stock soultion 

(mg mL-1) 

Solvent Concentration in 

media (µg mL-1) 

Kanamycin sulfate (kan) 50 H2O 50 

Carbenicillin sodium salt (carb) 100 H2O 100 

Tetracyclin hydrochloride (tet) 5 70 % ethanol 5 

Apramycin sulphate (apr) 50 H2O 50 

Chloramphenicol (chl) 25 Ethanol 25 

Hygromycin B (hyg) 100 H2O 25 - 100 

Naladixic acid sodium salt (nal) 25 H2O 25 

All antibiotic solutions other than chl were sterilised by filtration through a 0.2 µm 

membrane. As chl was in ethanol no sterilisation was required. Stocks were stored at            

– 20 oC in 1.5 mL aliquots. 
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2.1.6 Buffers and stock solutions 

Components to produce buffers and stock solutions were purchased from retailers 

including Fisher Scientific, Sigma-Aldrich and Alfa-Aesar unless stated otherwise. 

 

Table 2.3 Recipes of general reagents used in this study 

Buffer/stock 

solution 

Components 

DNA preparation 

Sodium dodecyl 

sulphate (SDS) 

2 (w/v) SDS, dissolved at room temperature in distilled water 

Alkaline lysis solution 

I 

50 mM glucose, 25 mM Tris-HCl pH 8.0, 10 mM EDTA, 100 µg mL-1 

RNAse A 

Alkaline lysis solution 

II 

0.2 N NaOH, 1 % (w/v) SDS  

Alkaline lysis solution 

III 

3 M potassium acetate, 11.5 % (v/v) acetic acid  

Tris-EDTA (TE) 10 mM Tris-HCl pH 8.0, 1 mM EDTA  

DNA gel electrophoresis 

TAE 50x 2 M Tris-base pH 8.0, 1 M glacial acetic acid, 0.05 M EDTA, 

autoclaved. 

Preparation of competent cells 

KMES buffer 20 mM KMES pH 5.8, 60 mM CaCl2, 5 mM MgCl2, 5 mM MnCl2, 10 % 

(v/v) glycerol, autoclaved. 

Cell lysis 

Cell lysis buffer 50 mM Tris-HCL pH 8.0, 25 mM NaCl, 2.5 mM EDTA, 5 % (v/v) 

glycerol 

 

Protein purification 

FPLC loading buffer 

(A) 

50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 40 mM imidazole 

FPLC elution buffer 

(B) 

50 mM Tris-HCl pH 8.0, 0.5 M NaCl, 0.5 M imidazole  
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Gel filtration buffer 

(GF) 

20 mM Hepes pH 7.5, 150 mM NaCl 

SDS polyacrylamide gel electrophoresis 

SDS PAGE solution A 30 % (w/v) acrylamide, 0.8% (w/v) bisacrylamide 

SDS PAGE solution B 0.4 % (w/v) SDS, 1.125 M Tris-HCl pH 8.8 

SDS PAGE loading 

dye (2x) 

100 mM Tris-HCl pH 6.8, 4 % (w/v) SDS, 0.2 % (w/v) bromophenol 

blue, 20 % (v/v) glycerol, 200 mM dithiothreitol 

SDS PAGE running 

buffer 

250 mM glycine, 25 mM Tris-base, 3 % (w/v) SDS 

Liquid chromatography - mass spectrometry  

LC-MS buffer A 0.1 % (v/v) formic acid in H2O 

LC-MS buffer B 0.1 % (v/v) formic acid in acetonitrile 

 

2.1.7 Plasmids 

Table 2.4 List of plasmid names and genotypes used in this study 

Plasmid Relevant genotype Supplier 

Cloning and protein expression 

pLysS LysS cat Invitrogen 

pLysE LysE cat Invitrogen 

pGroESL GroESL tet Takara 

pET28a(+) oriT-bla carb Invitrogen 

pET21a(+) oriT-carb Invitrogen 

Gene disruption and heterologous expression 

pIJ773 oriT-acc(3)IV JIC 

pIJ790 λ-RED (gam bet exo) cat araC repA101ts 

 

JIC 

pUZ8002 neo tra JIC 

BT340 F-, Δ(argF-lac)169, φ80dlacZ58(M15), 

glnV44(AS), λ-, rfbC1, gyrA96(NalR), recA1, 

endA1, spoT1, thi-1, hsdR17, pCP20 

 

JIC 
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Expression constructs 

pDT001 pET28a(+) pac1 This project 

pDT002 pET28a(+) pac2 This project 

pDT003 pET28a(+) pac7 This project 

pDT004 pET28a(+) pac13 This project 

pDT005 pET28a(+) pac17 This project 

pDT006 pET28a(+) pac18 This project 

pDT007 pET28a(+) pac19 This project 

pDT008 pET28a(+) pac20 This project 

pDT009 pET21a(+) pac17 This project 

pDT010 pET21a(+) pac19 This project 

pJC001 pET28a(+)pac22 (start 31098) Mr J. Clouston 

pJC002 pET28a(+)pac22 (start 31125) Mr J. Clouston 

pDT011 pET28a(+) pac17 (Arg108 – Ala108) This project 

pDT012 pET28a(+) pac17 (Asn109 – Ala109) This project 

pDT013 pET28a(+) pac17 (His155 – Ala155) This project 

pDT014 pET28a(+) pac17 (Met279 – Ala279) This project 

pDT015 pET28a(+) pac17 (Lys282 – Ala282) This project 

pDT016 pET28a(+) pac17 (Asn284 – Ala284) This project 

 

pLysS, pLysE and pGroESL were used to attempt to improve the expression of recombinant 

protein in the heterologous E. coli host. pLysS and pLysE both encode for T7 lysozyme 

which is a natural inhibitor of T7 RNA polymerase allowing for tighter control of protein 

expression (reduces ‘promotor leakiness’). pLysE produces larger amounts of T7 lysozyme 

in comparison to pLysS and therefore offers tighter control of recombinant protein 

expression. pGroESL encodes for chaperone proteins that aid in the correct folding of the 

recombinant protein in the heterologous host. pIJ773 was used as a template for 

amplification of the gene replacement cassette, pIJ790 in the homologous recombination 

of DNA and pUZ8002 in the conjugal transfer of cosmids from E. coli to Streptomyces sp. 
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2.1.8 Cosmids 

Table 2.5 List of cosmid names and genotypes used in this study 

Cosmid Relevant genotype Supplier 

pIJ10702 Supercos I Δneo::aac(3)IV-oriTintΦC31-

attPΦC31 

JIC 

2H-5 cos neo blacarb UEA 

8G-5 cos neo blacarb UEA 

Gene disruption and heterologous expression 

2H-5-Δpac7 Δpac7::aac(3)IV-oriT This project 

2H-5-Δpac13 Δpac13::aac(3)IV-oriT This project 

2H-5-Δpac19 Δpac19::aac(3)IV-oriT This project 

2H-5-Δpac20 Δpac20::aac(3)IV-oriT This project 

2H-5-Δpac17-pac20 Δpac17-pac20::aac(3)IV-oriT This project 

2H-5-integration 2H-5Δneo::aac(3)IV-oriT-intΦC31-attPΦC31 This project 

2H-5-Δpac17-

integration 

2H-5 Δpac17 Δneo::aac(3)IV-oriT-intΦC31-

attPΦC31 

This project 

2H-5-Δpac18-

integration 

2H-5 Δpac18 Δneo::aac(3)IV-oriT-intΦC31-

attPΦC31 

This project 

2H-5-Δpac19-

integration 

2H-5 Δpac19 Δneo::aac(3)IV-oriT-intΦC31-

attPΦC31 

This project 

2H-5-Δpac20-

integration 

2H-5 Δpac20 Δneo::aac(3)IV-oriT-intΦC31-

attPΦC31 

This project 

2H-5-Δpac17-20-

integration 

2H-5 Δpac17-pac20 Δneo::aac(3)IV-oriT-

intΦC31-attPΦC31 

This project 

The pIJ10702 cosmid contains a streptomycete integration backbone which was used for 

homologous recombination into cosmid 2H-5 allowing for the heterologous expression of 

the genes on this cosmid. Cosmids 8G-5 and 2H-5 were created as part of a cosmid library 

produced by E. Rackham (UEA) and contain the minimal pacidamycin gene cluster (pac1-

pac22). These cosmids were used as template DNA for the amplification of the pac cluster 

genes and also for heterologous expression of the pac gene cluster. 
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2.1.9 Microorganisms 

Table 2.6 List of microorganism strains and their genotypes used in this study 

Strain Genotype Supplier 

Cloning and protein expression 

E. coli XL1-Blue-MR Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 

endA1supE44 recA1 lac 

UEA  

E. coli DH5α F- glnV44 thi-1 endA1 recA1 relA1 deoR gyrA96 

deoR λ80dlaclacZ Δ(lacIZYA-argF) ΔM15 

U169hsR17(rk-rm+) 

Invitrogen  

E. coli BL21 (DE3)  F- ompT gal dcm lon hsdSB (rB
-mB

-) lacI lacUV5 

with DE3 λ prophage 

UEA  

E. coli imp- imp- JIC 

Gene disruption and heterologous expression 

E. coli ET12567 dam-13::Tn9 dcm-6 hsdM hsdR ara14l UEA 

E. coli BW25113 lacIq rrnBT14 lacZWJ16 hsdR514 

araBADAH33 rhaBADLD78 

UEA 

S. coeruleorubidus Wild-type UEA 

S. lividans TK-24 str-6 SLP2- SLP3- UEA 

S. coeruleorubidus DT-001 2H-5Δpac7::aac(3)IV-oriT This project 

S. coeruleorubidus DT-002 2H-5Δpac13::aac(3)IV-oriT This project 

S. coeruleorubidus DT-003 2H-5Δpac19::aac(3)IV-oriT This project 

S. coeruleorubidus DT-004 2H-5Δpac20::aac(3)IV-oriT This project 

S. coeruleorubidus DT-005 2H-5Δpac17-pac20::aac(3)IV-oriT This project 

S. lividans TK-24 DT-006 Cosmid 2H-5- integrated This project 

S. lividans TK-24 DT-007 Cosmid 2H-5 Δpac17 Δneo::aac(3)IV-oriT-

intΦC31-attPΦC31- integrated 

This project 

S. lividans TK-24 DT-008 Cosmid 2H-5 Δpac18 Δneo::aac(3)IV-oriT-

intΦC31-attPΦC31- integrated 

This project 

S. lividans TK-24 DT-009 Cosmid 2H-5 Δpac19 Δneo::aac(3)IV-oriT-

intΦC31-attPΦC31- integrated 

This project 

S. lividans TK-24 DT-010 Cosmid 2H-5 Δpac20 Δneo::aac(3)IV-oriT-

intΦC31-attPΦC31- integrated 

This project 

S. lividans TK-24 DT-011 Cosmid 2H-5 Δpac17-pac20 Δneo::aac(3)IV-

oriT-intΦC31-attPΦC31- integrated 

This project 
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2.2 Basic molecular biology methodology 

2.2.1 Primer design 

Specific primers are needed for the amplification of a desired gene/DNA of interest. 

Primers were designed by using the first 20 nucleotides (forward primer) and last 20 

complementary nucleotides (reverse primer) of the sequence of interest. Suitable 

restriction sites were added to the 5’ ends of the sequences that were compatible both 

with the insert (same restriction site not present in gene) and with the vector (restriction 

site present in the multiple cloning site of the plasmid). The melting temperature (Tm) and 

base stacking values for complementary primers were compared using internet server 

PROMEGA BIOMATH (www.promega.com/techserv/tools/biomath/calc11.html) and the 

number of nucleotides in the primer increased or decreased to allow the forward and 

reverse primer sequences to have similar Tm values. Primers were ordered from Sigma-

Aldrich, they arrived desalted and were made up to a concentration of 100 µM. 

 

2.2.2 Polymerase chain reaction 

2.2.2.1 Primer sequences 

Table 2.7 List of all primers and their sequences used in this study 

Primer Name Sequence (5’-3’) 

1) Gene cloning and protein expression 

Pac1F GGAGATCATATGCACACCAAGATCGAAGCCGAT  

Pac1R CGACTCGAGTCACGAAGGCTGAGCCCTCGA  

Pac2F ACCGGATCCATGGCTATTGGTTTTACCTCGGCTATC  

Pac2R GCAAAGCTTATGATTCGCTACAGGCAAGTC 

Pac7F GGAGATCATATGGCGCAGGTTCTAGCAGAAGC  

Pac7R CTCGAGTCAGTCGAGCCAGGTCAGGAAGT  

Pac13F AGAGCTCATATGACCAAGTACAAATACACACAG 

Pac13R GCTCTCGAGTAGTAAGGGCTCTCGCTTTC  

Pac17F GGACGACATATGGTGAGACTGACCGGTCGACTT 

Pac17R TCCGGATCCTCGTCAGACTCCCCCGG 

Pac18F GGACATATGACGAGCCGGCAGCTC 

Pac18R TCCGGATCCTCATTGAAGATCATTACTTGGTCCG 
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Pac19F CGAGGACATATGATCTTCAATGACCTTGTCGA 

Pac19R TCCGGATCCCCTTGCTCAACCGGCCAACC 

Pac20F AGGATCCATATGGCTGACCTGATCGAAATGAG 

Pac20R TCCCTCGAGTCAGCTCGCCTCGCGTAC 

2) Site directed mutagenesis 

Pac17_108Arg/Ala_F GACCGGAGCGCCAACGACCTC 

Pac17_108Arg/Ala_R GAGGTCGTTGGCGCTCCGGTC 

Pac17_109Asn/Ala_F CCGGAGCCGCGCCGACCTCCAGGC 

Pac17_109Asn/Ala_R GCCTGGAGGTCGGCGCGGCTCCGG 

Pac17_155 His/Ala_R CCGGGTACACGGCCCTCCAGTCGGC 

Pac17_155His/Ala_R GCCGACTGGAGGGCCGTGTACCCGG 

Pac17_279Met/Ala_F CTCCGCGGCCGCGCCCCAGAAGAAG 

Pac17_279Met/Ala_R CTTCTTCTGGGGCGCGGCCGCGGAG 

Pac17_282Lys/Ala_F CCATGCCCCAGGCGAAGAACTACC 

Pac17_282Lys/Ala_R GGTAGTTCTTCGCCTGGGGCATGG 

Pac17_284Asn/Ala_F CCCAGAAGAAGGCCTACCCGCTGC 

Pac17_284Asn/Ala_R GCAGCGGGTAGGCCTTCTTCTGGG 

Pac17_276Ser/Ala_F GGC CGGCATCGCC GCGGCCATGC 

Pac17_276Ser/Ala_R GCATGGCCGCGGCGATGCCGGCC 

3) Gene disruption 

Redirect_Pac1_F CCACAAGTGGTCGAGGAAGACAGGAAGACGCTCTTCATGATTCCGG

GGATCCGTCGACC 

Redirect_Pac1_R CACCGGGAAGCGGCCGCACGGCGGGAGGCCGTCACTTCATGTAGGC

TGGAGCTGCTTC   

Redirect_Pac2_F CTCGCTGGTTGGACACTAGATCATGAGGGCTGATACATGATTCCGGG

GATCCGTCGACC   

Redirect_Pac2_R CCCGGTGGCTGCCGGCGGGTACCAGCCGCCTCCCTCTTATGTAGGCT

GGAGCTGCTTC 

Redirect_Pac7_F CTGGATCGCCAGCATCCAGAAAGGGAGATACAGGCCATGATTCCGG

GGATCCGTCGACC 

Redirect_Pac7_R GGGCACCCGTCCTTGGACGCGAGGCCGCGGCCGGGGTCATGTAGGC

TGGAGCTGCTTC   
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Redirect_Pac17_F CTCATGGCGTGGTCGTCGAGCGCCTACGGGTTGGTCGAGATTCCGG

GGATCCGTCGACC 

Redirect_Pac17_R GGTGGCGAAGTCGACGTAGAAGGCAGTCAGGTGGCCGGTTGTAGG

CTGGAGCTGCTTC 

Redirect_Pac18_F GGCGGCGGCGGATCGCTGAGGCTGAGCGGCTCGCTCCCGATTCCGG

GGATCCGTCGACC 

Redirect_Pac18_R CTCGATCCGACGCAGCAGGTTCTCGATGCCCTGCGGCGGTGTAGGCT

GGAGCTGCTTC 

Redirect_Pac19_F GCCAGGTCATTCGCGAGGCTCGCGAGAACGGGGTGCTGGATTCCGG

GGATCCGTCGACC 

Redirect_Pac19_R TCGCCCGGCCTACGCGCGATCTGGACTTCGGCGACACCGTGTAGGCT

GGAGCTGCTTC 

Redirect_Pac20_F ATGGCTGACCTGATCGAAATGAGAAGCGACACCTTCACGATTCCGG

GGATCCGTCGACC 

Redirect_Pac20_R CCTCCTGTATTTCGAAGAACCATCGGGATTTGCGCTTCATGTAGGCT

GGAGCTGCTTC 

Redirect_Pac17-20F GGTGCCGGCGCCGCTCTCTCCGACATCGCGCTGGCGATGATTCCGG

GGATCCGTCGACC 

Redirect_Pac22_F ACCAGGCATTTTTTCTGATCGAGAAAGGTGACGGGATGATTCCGGG

GATCCGTCGACC 

Redirect_Pac22_R CTACCGAAGGGCCGGACGACGAAAGCCGGTACCGATCTATGTAGGC

TGGAGCTGCTTC   

Pac13+100F TGCTTCGAGTTCTCGTCGC 

Pac13+100R CGACATGCCATCCTCCATCCA 

Pac17-20+100F GGTTCGAGGACGCGGGTCGCT 

Pac17-20+100R CCCGTCAGGTGCATCGGCCTC 

φC31_F GAAGCGGTTTTCGGGAGTAGT 

φC31_R CGTTCATCCACATGGACCAGA 

Pac17R_GC TCCTTAATTAATCGTCAGACTCCCCCGG 
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2.2.2.2 Optimisation of PCR annealing temperature 

A 50 µL PCR master mixture was prepared consisting of: 

 

H2O 36.5 µL 

Pfu Buffer (10 x) 5 µL 

25 mM dNTPs 4 µL 

Template DNA 0.5 µL 

Forward primer 0.5 µL 

Reverse primer 0.5 µL 

DMSO 2.5 µL 

Pfu polymerase 0.5 µL 

 

11 µL of the master mixture was aliquoted into PCR tubes, giving 4 identical reaction 

mixtures. The reactions were placed in a thermal cycler and exposed to the following cycler 

conditions: 

 

Temperature Time (min) 

94 oC 2 

94 oC 1 

55 – 69 oC gradient 1 

72 oC 2 per 1 kb DNA 

Repeated 29 times 

72 oC 10 

4 oC Hold 

 

Once the primer annealing temperatures were optimized, the desired gene was amplified 

by PCR using the protocol above, but by making a single 25 µL reaction and using the 

optimum annealing temperature. 

 

2.2.2.3 Colony PCR using E.coli 

As proof reading activity is not necessary for verifying correct insert size, a Biomix ready 

reaction (Biolabs Ltd) was used.  
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The master mixture contained: 

 

H2O 19 µL 

Biomix 25 µL 

Plasmid preparation 2.5 µL 

Forward primer 0.5 µL 

Reverse primer 0.5 µL 

DMSO 2.5 µL 

 

The reaction mixture was placed in a thermal cycler and exposed to the following cycler 

conditions: 

 

Temperature Time (min) 

94 oC 2 

94 oC 1 

55 oC  1 

72 oC 1 per 1 kb DNA 

Repeated 29 times 

72 oC 10 

4 oC Hold 

 

 

2.2.2.4 Colony PCR using Streptomyces sp. 

A single colony was added to 50 µL of DMSO and vortexed for 30 s. The sample was boiled 

for 10 min, cooled and vortexed for a further 30 s. A colony PCR reaction was set up using: 

 

H2O 7.6 µL 

Biomix 10 µL 

Colony/DMSO mixture 1 µL 

Forward primer 0.5 µL 

Reverse primer 0.5 µL 

DMSO 0.4 µL 
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The reactions were placed in a thermal cycler and exposed to the following cycler 

conditions: 

 

Temperature Time (min) 

94 oC 5 

94 oC 1 

55 oC  1 

72 oC 1 per 1 kb DNA 

Repeated 29 times 

72 oC 10 

4 oC Hold 

 

 

2.2.3 Restriction, ligation and cloning into the pET vector system 

pET28a(+) (obtained from a plasmid preparation of E. coli XL1-Blue containing pET28a(+)) 

and the desired PCR amplified gene were digested using restriction enzymes at 37 oC 

overnight to obtain compatible ends. The restriction mixtures consisted of: 

 

H2O 76 µL 

Plasmid preparation or PCR product 10 µL 

Suitable restriction enzyme buffer (10x) 10 µL 

Restriction enzyme 1 2 µL 

Restriction enzyme 2 2 µL 

 

 

The restriction mixtures of the plasmid and gene were purified using a PCR purification kit 

by the respective spin protocol and analysed by DNA gel electrophoresis.  
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If the restriction digests appeared to be successful, a ligation reaction was set-up consisting 

of: 

 

H2O 8.5 µL 

Ligase buffer (10 x) 2 µL 

ATP (50 mM) 0.5 µL 

DNA T4 ligase 1 µL 

Purified restricted plasmid 0.5 µL 

Purified restricted insert/gene 0.4 µL 

 

The reaction was incubated overnight at 6 oC and the ligation mixture used in a 

transformation reaction. 

 

2.2.4 Site directed mutagenesis (SDM) - adapted from the Stratagene protocol 

Primers were designed that were homologous with the region of the gene containing the 

area to be mutated other than for one or two bases which would alter the amino acid to be 

an alanine residue.  

The primers were used in a normal PCR reaction as previously described with thermal 

cycler conditions of: 

 

Temperature Time (min) 

95 oC 1 

95 oC 0.5 

55 oC  0.5 

68 oC 1 per 1 kb DNA 

Repeated 29 times 

68 oC 10 

4 oC Hold 

 

 

To remove non-mutated original template DNA the PCR reaction was incubated with 1 μL 

of DpnI for 1 h, the DpnI enzyme digesting the methylated DNA template. After DpnI 
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digestion 6 μL of the reaction mixture was used in a chemical transformation reaction into 

a heterologous host as described.  

 

2.2.5 Preparation of competent cells 

2.2.5.1 Preparation of chemically competent cells 

LB agar plates were inoculated with glycerol stocks of the desired cell and incubated 

overnight at 37 oC. Single colonies were used to inoculate 10 mL LB broth and incubated 

overnight at 37 oC, 200 rpm. The overnight cultures were 50 fold diluted into 10 mL LB 

broth and grown for 2-3 h at 37 oC, 200 rpm until OD600 reached approximately 0.4. The 

cultures were chilled on ice for 10 min and centrifuged at 4000 rpm using a bench top 

centrifuge (Heraeus rotor 75006445) for 10 min at 4 oC. The supernatant was removed and 

the pellet resuspended in 10 mL of KMES buffer and incubated on ice for 1 h. The mixture 

was centrifuged at 4000 rpm (Heraeus rotor 75006445) for 10 min and resuspended in        

1 mL KMES buffer 1 containing 10 % (v/v) glycerol. The cells were then aliquoted (in 100 µL 

volumes) into sterile 1.5 mL tubes and stored at – 80 oC until needed. 

 

2.2.5.2 Transformation of chemically competent cells 

Approximately 2 - 6 µL of a desired plasmid construct was added to 100 µL of E. coli 

competent cells and incubated on ice for 30 min. The mixture was then heat shocked at    

42 oC for 30 s and returned to ice for approximately 2 min. 250 µL of room temperature LB 

was added to the mixture and the mixture incubated at 37 oC, 200 rpm for 1 h. Then 250 µL 

and 50 µL (5 x dilution) of the mixture was used to inoculate LB agar plates containing an 

antibiotic for selection and incubated overnight at 37 oC. Colonies from the incubated 

plates were selected and grown overnight in 10 mL LB broth containing the desired 

antibiotic selection. The culture was then used for plasmid purification and analysed by 

agarose gel electrophoresis. 

 

2.2.5.3 Preparation of electrocompetent cells 

A LB agar plate was inoculated with glycerol stocks of the desired cell type and incubated 

overnight at 37 oC. Single colonies were used to inoculate 10 mL LB broth and incubated 

overnight at 37 oC, 200 rpm. The overnight cultures were 50 fold diluted into 10 mL LB 

broth and grown for 2-3 h at 37 oC, 200 rpm until OD600 reached approximately 0.4. The 



Chapter 2 – Materials and Methods 

 

 

  
Page 46 

 
  

cultures were chilled on ice for 10 min and pelleted at 4000 rpm using a bench top 

centrifuge (Heraeus rotor 75006445) at 4 oC. The supernatant was removed and the pellet 

resuspended in 10 mL 10 % (v/v) glycerol and centrifuged at 4000 rpm for a further 10 min. 

The supernatant was removed and the pellet again resuspended in 10 mL 10 % (v/v) 

glycerol. The suspension was pelleted a final time, the pellet being resuspended in 100 µL 

of 10 % (v/v) glycerol and immediately being used in an electrotransformation reaction. 

 

2.2.5.4 Transformation of electrocompetent cells 

Approximately 5 µL of the desired plasmid/cosmid construct was added to 50 µL of E. coli 

electrocompetent cells. The cells were briefly chilled on ice and then electroporated under 

the condition; 200 Ω, 25 μF and 2.5 kV. The mixtures were returned to ice and 250 µL of ice 

cold LB medium added to the mixture and the mixture incubated at 37 oC, 200 rpm for 1 h. 

The entire mixture was used to inoculate 20 mL LB agar with correct antibiotic selection 

and incubated overnight at either 30 or 37 oC. Colonies from the incubated plates were 

selected and grown overnight in 10 mL LB broth containing the desired antibiotic selection 

and the plasmids purified by alkaline lysis or Qiagen plasmid purification and analysed by 

agarose gel electrophoresis. 

 

2.2.6 DNA purification and analysis 

2.2.6.1 Alkaline lysis – adapted from Sambrook et al. (2001) 

An overnight culture (10 mL LB broth kan) was microcentrifuged for 1 min at 13000 rpm 

(rotor PP 1/97 #3324) and the supernatant removed. The pellet was re-suspended in        

100 µL of ice cold alkaline lysis buffer I by vortexing. 200 µL of alkaline lysis buffer II was 

added to the mixture, mixed by inversion and incubated on ice for 5 min. 150 µL of alkaline 

lysis buffer III was added to the mixture, mixed by inversion and stored on ice for a further 

5 min. The mixture was centrifuged at 13000 rpm (rotor PP 1/97 #3324) for 5 min. The 

supernatant was collected and transferred to a sterile 1.5 mL tube, treated with 2 vol of 

ethanol, vortexed and left to stand for 2 min. The mixture was centrifuged for a further 30 

min at 13000 rpm (rotor PP 1/97 #3324) and the ethanol removed by aspiration.  The pellet 

was washed with 1 mL 70 % ethanol and centrifuged for a final 5 min at 13000 rpm. After 

centrifugation the supernatant was removed and residual ethanol removed by room 

temperature evaporation. The pellet was re-suspended in 50 µL of milli-Q water. 
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2.2.6.2 DNA purification (Qiagen protocol) 

Five volumes of Qiagen buffer PB was added to the restriction mixture and placed into a 

QIAquick spin column which was inserted into a 2 mL collection tube. The mixture was 

centrifuged at 13000 rpm (rotor PP 1/97 #3324)  for 1 min, the flow through removed and 

750 µL of Qiagen buffer PE added to the spin column. The column and collection tube were 

centrifuged at 13000 rpm (rotor PP 1/97 #3324) for 1 min, the flow through discarded and 

the column centrifuged for a second time at 13000 rpm for 1 min. The remaining ethanol 

was evaporated from the column by allowing the column to stand at room temperature for 

5 min. 40 µL of EB buffer was added to the spin column and the column placed in a 

sterilised 1.5 mL eppendorf and centrifuged for 1 min at 13000 rpm (rotor PP 1/97 #3324)  

and the eluant collected. 

 

2.2.6.3 Gel filtration (Qiagen protocol) 

Gel purification is used to purify linear DNA. The mixture of DNA was loaded on a freshly 

prepared 1 % agarose gel, run at 120 V and the band representing the desired DNA excised 

using a scalpel. The gel fragment was weighed in a sterile 1.5 mL tube and 100 µL of Qiagen 

buffer QG added for every 100 mg of gel. The mixture was incubated at 50 oC for 10 min to 

allow the gel fragment to dissolve. One gel vol of isopropanol was added, the sample 

inserted into a spin column and the spin column placed into a collection tube and 

centrifuged for 1 min at 13000 rpm (rotor PP 1/97 #3324). The flow through was removed 

and an additional 500 µL of Qiagen buffer QG added to the spin column. The column was 

centrifuged for a further 1 min at 13000 rpm (rotor PP 1/97 #3324). 750 µL of Qiagen 

buffer PE was added to the spin column and the column centrifuged at 13000 rpm (rotor PP 

1/97 #3324) for 1 min, the through flow discarded and the column centrifuged again at 

13000 rpm (rotor PP 1/97 #3324) for 1 min. The spin column was dried for 5 min at room 

temperature to remove residual ethanol and placed in a sterile 1.5 mL tube. 40 µL EB buffer 

was added to the column and the column centrifuged for a final 1 min at 13000 rpm (rotor 

PP 1/97 #3324) and the eluant collected. 
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2.2.6.4 Restriction digest for plasmid analysis 

A restriction reaction mixture was prepared: 

 

H2O 16 µL 

Plasmid with desired gene 1 µL 

Suitable restriction enzyme buffer (10x) 2 µL 

Restriction enzyme 1 0.5 µL 

Restriction enzyme 2 0.5 µL 

 

The mixture was incubated at 37 oC for ≥1 h and analysed using DNA agarose gel (1 %) 

electrophoresis. 

 

2.2.6.5 Agarose gel electrophoresis 

The agarose gel electrophoresis apparatus was assembled as per manufacturer’s 

instructions and a 0.8 % (general analysis) or 1 % (gel extraction)  agarose gel prepared with 

0.8 g and 1 g agarose, respectively, 2.5 µL ethidium bromide and 100 mL 1 x TAE buffer. 

Gels were loaded with 6 µL 1 kb DNA ladder and 5-20 µL of sample containing 6 x DNA 

loading dye. Samples were run at 120 V in 1 x TAE buffer for 20 – 40 min and visualized 

using a transilluminator. 

 

2.2.6.6 DNA sequencing 

Sequencing of plasmid constructs was undertaken either by the DNA Sequencing Facility, 

Department of Biochemistry, University of Cambridge or by The Genome Analysis Centre 

(TGAC), Norwich Research Park, Norfolk. 100 ng μL-1 of plasmid construct was submitted for 

sequencing to the Cambridge facility. When using TGAC, the sequencing reaction was 

carried out in the laboratory using the Big Dye method.  
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The 10 μL Big Dye 2.0 sequencing reaction mixture consisted of: 

 

H2O 1 μL 

BigDye sequencing buffer 1 μL 

BigDye v.1 2 μL 

Plasmid-insert template 5.5 μL 

T7 Forward Primer (20 mM) 0.5 μL 

 

Using thermal cycling conditions: 

 

Temperature Time (min) 

95 oC 1 

95 oC 0.5 

50 oC 0.5 

60 oC 4 

Repeated 29 times 

72 oC 10 

4 oC Hold 

 

The sequencing results were visualised using the SEQUENCE SCANNER software (Life 

Technologies). 

 

2.2.7 Bioassay of pacidamycin activity 

A solid medium bioassay approach was taken. The indicator organism was E. coli imp- and 

E. coli DH5α used as the control strain. The E. coli strains were grown overnight at 37 oC at 

200 rpm. The cultures were diluted 100 fold into 10 mL broth and grown for approximately 

4 h. They were 10 fold diluted into DNA agar (0.5 % agar) and 10 mL used to overlay DNA 

agar plates.  Bioassay discs were placed onto the solid media and 10 μL of pacidamycin 

extract placed onto each disc along with a control of 50:50 H2O:CH3OH. The bioassays were 

incubated overnight at 37 oC and the ring of inhibition around the discs analysed. 
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2.3 Protein methodologies 

2.3.1 Cell lysis 

2.3.1.1 Cell lysis using cell lysis buffer (for SDS-PAGE analysis) 

The pelleted cell culture was resuspended in 500 µL cell lysis buffer containing lysozyme    

(1 mg mL-1), agitated until viscous and stored at 4 oC for 10 min followed by room 

temperature for 30 min. The viscous mixture was passed through a G23 needle (Terumo) 

until it became less viscous and centrifuged at 13000 rpm (rotor PP 1/97 #3324) for 15 min 

at 4 oC. The supernatant (soluble protein) was separated from the pellet (insoluble protein) 

by centrifugation ready for SDS-PAGE analysis. 

 

2.3.1.2 Cell lysis by sonication 

The induced cell culture was centrifuged at 4000 rpm (Heraeus rotor 75006445) for 10 min 

and the pellet resuspended in 0.05 vol (of original culture vol) FPLC loading buffer A. An 

EDTA-free protease inhibitor tablet was added to the resuspension and the suspension was 

lysed by sonication (40 % intensity, 1 s on, 3 s off, 8 min). The pellet and supernatant were 

separated by centrifugation for 30 min at 16 000 rpm using a SS-34 rotor at 4 oC. 

 

2.3.1.3 Cell lysis by cell disruption 

The induced cell culture was centrifuged at 6000 rpm (Rotor SLC 4X1000y) for 10 min and 

the pellet resuspended in 0.05 vol FPLC buffer A. An EDTA free protease tablet was added 

to the resuspension and the suspension was loaded into the cell disruptor and the cells 

lysed at a pressure of 25 Kpsi (E. coli) or 30 Kpsi twice (S. coeruleorubidus). The lysed 

suspension was returned to ice and centrifuged at 18000 rpm (rotor SS-34) at 4oC. The 

supernatant was then removed and used for protein purification. 

 

2.3.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

For ‘home-made’ SDS-PAGE gels, the SDS-PAGE apparatus was prepared as per the 

manufacturer’s instructions and a 12 % acrylamide running gel prepared by mixing 4 mL of 

SDS-PAGE solution A with 2.5 mL SDS-PAGE solution B, 3.5 mL of water, 50 μL of 

ammonium persulfate (APS) and 10 μL of tetramethylethylenediamine (TEMED). The gel 

was loaded into the apparatus and allowed to set. Once set, the iso-butanol layer was 

removed and a 5 % acrylamide loading gel prepared with 660 μL of solution A, 1 mL 
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solution C, 2.7 mL water, 50 μL APS and 5 μL TEMED. The loading gel was loaded on top of 

the running gel and combs inserted to form wells for loading the samples. Once set, the 

prepared protein samples were boiled for 10 min at >90 oC  with 2 x SDS loading dye. The 

samples (10 µL) and a marker (6 µL) were loaded into the wells and SDS-PAGE running 

buffer was added to the running apparatus. The samples were run at 50 V – 200 V for 

approximately 1.5 h. Precast gels were loaded into a suitable running tank, loaded as per 

‘home-made’ gels and run at 50 V – 200 V for ~ 1 h. The gels were stained for 2 h using 

Instant Blue.  

 

2.3.3 Protein production trials 

Colonies from overnight LB agar plates were selected and grown overnight in 10 mL LB 

broth containing antibiotic selection at 37 oC, 200 rpm. Plasmids were purified from the 

cultures by alkaline lysis and analysed on a DNA agarose gel. If the desired plasmid 

construct was present, the colony was reselected and grown overnight in LB broth as a 

starter culture. Overnight starter cultures were 1000 fold diluted into fresh LB broth and 

incubated for 4-5 h until OD600 was approximately 0.6-0.8. A 1 mL pre-induced sample was 

taken and the culture induced using 0.1 mM IPTG (final concentration) and incubated at 

either 37 oC for 4 h or 16 oC for 16 h. After the incubation time the culture was pelleted by 

centrifugation for 10 min at 13000 rpm (rotor PP 1/97 #3324). The pellet was lysed using 

cell lysis buffer and the supernatant obtained. The pre-induced, induced and supernatant 

samples were analysed by SDS-PAGE to determine the successfulness of the trial. 

 

2.3.4 Protein production 

Protein production was carried out differently for each protein produced dependent on the 

outcome of the initial protein production trials. The initial protein production trials allowed 

for the analysis of the best conditions to produce the maximum amount of viable, soluble 

protein. These conditions were then repeated on a larger scale to produce enough protein 

for subsequent studies. 

 

2.3.5 Protein purification by affinity and size exclusion chromatography 

A protein that has been produced to contain a hexa-histidine tag can be purified using 

metal chelate affinity chromatography. When a column containing a chromatographic 

matrix has been charged with a suitable metal, such as Ni2+, the hexa-histidine tag and 
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other histidines found on the surface of the protein structure are able to bind. Proteins that 

do not contain the hexa-histidine tag will not bind to the matrix or will bind to a lesser 

affinity and be washed away from the matrix during a wash step in the purification process. 

As the protein of interest has reversibly bound to the matrix, a competitor (such as 

imidazole) can be used to elute the purified protein of interest away from the column for 

collection. Size exclusion chromatography allows for the separation of proteins and protein 

species (oligomeric state) on the basis of their size (and less importantly shape). Size 

exclusion chromatography can be used to estimate the oligomeric state of the protein 

when the column has been calibrated with molecular weight standards. 

 

2.3.5.1 Protein purification using the ÄKTA express FPLC 

The supernatant from cell lysis was loaded onto the ÄKTA Express automated FPLC system 

which contained a 5 mL His-Trap column (GE Healthcare) loaded with nickel and a Superdex 

75 26/60 or Superdex 200 26/60 (GE Healthcare) gel filtration column. Buffers used were a 

loading/binding/wash buffer (buffer A), a nickel column elution buffer (buffer B), which was 

used to elute the protein of interest from the nickel column in a step wise fashion and a gel 

filtration buffer (GF buffer). Fractions of protein were collected and run on an SDS-PAGE gel 

to determine the purity of the sample. Fractions of high purity were pooled and 

concentrated. The concentrated samples were stored in gel filtration buffer for protein 

crystallography trials or gel filtration buffer with 10 % (v/v) glycerol for biochemical use. All 

samples were stored at -80 oC. 

 

2.3.5.2 Protein purification using the ÄKTA FPLC 

The supernatant from cell lysis was loaded onto a 1 mL His-Trap column (GE Healthcare) 

that had been charged with NiCl2 prior to use. Buffer A was used to load the crude protein 

samples onto the affinity column and wash the column prior to the elution step. Any 

protein retained by the column was eluted using buffer B, the elution of the protein from 

the affinity column being caused by the increase in imidazole present due to the increase in 

volume of buffer B used. The elutant was collected in 1 mL fractions and the absorbance at 

280 nm was recorded. Fractions containing protein were pooled and analysed by SDS-PAGE 

analysis. Purified protein was concentrated after purification and stored in gel filtration 

buffer for protein crystallography trials or gel filtration buffer with 10 % (v/v) glycerol for 

biochemical use. 
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2.3.6 Bradford assay 

The Bradford assay (Bradford, 1986) was performed to determine the protein 

concentration of a given sample. A series of protein concentration standard solutions 

(using BSA) were prepared in a 0.15 M NaCl solution. A 2 mL cuvette was filled with 1 μL of 

the standard solution, 999 μL of water and 1 mL of Bradford reagent and the mixture 

inverted and incubated for 5 min. After 5 min the absorbance of the solution was measured 

at 595 nm, using a cuvette containing 1 mL water and 1 mL Bradford reagent as a blank 

control. This was repeated for each of the series of protein standards to produce a 

standard curve measuring absorbance against protein concentration. This standard curve 

was then used to determine the protein concentration of an unknown protein sample using 

the same preparation method as described.   

 

2.3.7 Dynamic light scattering (DLS) analysis 

The protein sample in solution was analysed by dynamic light scattering to deduce if any 

protein aggregation had occurred which could become problematic for crystallisation 

and/or enzymology studies. 25 µL of the purified protein solution was passed through a 

centrifugal 0.1 µm filter (Millipore) to remove any particulate material and 12 µL of the 

filtered solution was added to the microsampling cell of a DLS. A total of twenty scattering 

measurements were taken at 20 oC and the results analysed using DYNAMICS V6 software 

computer package (Wyatt Technology). 

 

2.3.8 Dialysis 

Dialysis was used to change the constituents and pH of the buffer of a protein sample. The 

protein solution was placed into 3.5 kDa cut-off dialysis tubing (Thermo Scientific). The 

tubing was sealed using clips and placed into a 2 L beaker containing a magnetic flea and 

approximately 1.5 L of desired new buffer. The setup was stirred at a low RPM overnight at 

6 oC. 

 

2.3.9 His-tag removal 

On occasion it is necessary to remove the affinity tag (in this case a hexa-histidine) tag from 

the N- or C- termini of the protein of interest in order for the protein to successfully 

crystallise or for it to be active in vitro. In the case of this work the pET vector system was 

used for gene cloning. This vector system as well as containing the hexa-histidine tag also 
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contains a thrombin cleavage site to enable removal of the tag. Other vector systems use 

other proteases to cleave affinity tags such as 3C protease (pOPIN vector system) and 

Tobacco Etch Virus (TEV) protease. 

 

2.3.9.1 Removal using thrombin 

Purified protein was dialysed overnight into 2.5 mM CaCl2, 150 mM NaCl, 20 mM Tris HCl, 

pH 8.4 at 4 oC. Approximately 5 units of thrombin was added to the protein sample for 

every mg of protein and incubated for 4 h at room temperature, mixing at 100 rpm. 

Following cleavage, the mixture was purified by affinity chromatography (removing the 

lysed hexa-histidine tag) and the flow through applied to a Superdex 75 26/60 filtration 

column to separate the thrombin from the cleaved protein. The column was washed 

through with gel filtration buffer and the eluted peaks collected separately allowing for the 

separation of the desired His-tag free protein and thrombin. 

 

2.3.9.2 His-tag removal using DAPase (Qiagen) 

Thrombin is often not successful in cleaving the histidine tags from proteins and can very 

often cause degradation of the recombinant protein. DAPase is an enzyme belonging to the 

TAGzyme series of enzymes from Qiagen. The TAGzyme system will efficiently remove 

N-terminal His-tags from purified proteins. As the TAGzyme has a C-terminal histidine  tag, 

once the hisitine tag has been removed from the desired protein, it can be purified again by 

passing it through a nickel column (all histidine tagged proteins and his tags will be retained 

by the column) leaving the flow through containing just the His-tag free protein of interest. 

The DAPase enzyme will remove dipeptides from the N-terminus of the desired protein 

until it reaches a termination sequence.  
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The termination sequences it recognizes are: 

 

Xaa-Xaa…Xaa-Xaa Lys-Xaa Xaa-Xaa 

Xaa-Xaa…Xaa-Xaa Arg-Xaa Xaa-Xaa 

Xaa-Xaa…Xaa-Xaa Xaa-Xaa Pro-Xaa 

Xaa-Xaa…Xaa-Xaa Xaa-Pro Xaa-Xaa 

Xaa-Xaa…Xaa-Xaa Gln-Xaa Xaa-Xaa 

 

One or more of these recognition sites are generally found within the thrombin cleavage 

site and therefore DAPase is a perfect substitute for thrombin. 

The purified protein of interest was dialysed into 20 mM MOPS pH 6.9, 100 mM NaCl at      

4 oC overnight. 10 mg of the dialysed protein was then added to activated DAPase (60 µL 

DAPase, 1050 µL water, 120 µL cysteamine HCl and 540 µL DAPase buffer) and incubated at 

room temperature for 3 to 4 h. The mixture was then purified using a 1 mL His-Trap 

column. The column was equilibrated using the dialysis buffer and the protein solution 

loaded and washed with 8 vol dialysis buffer and  the flow through was collected (protein 

without His tag). The His tagged protein and the DAPase enzyme were removed from the 

His-Trap column using 10 vol of 50 mM Tris HCl, 0.5 M NaCl, 0.5 M imidazole at pH 8.0.  

 

2.3.10 In vitro protein activity methods 

2.3.10.1 Determination of Pac17 activity (reported by Weiner et al., 2010) 

The activity of Pac17 was assessed by either the formation of or disappearance of 

fumarate. A standard curve of 1 mM fumarate and 1 mM L-aspartate (in 50 mM Na2PO4 pH 

8.5) between wavelengths 200 and 500 nm at 20 oC was produced using a UV/Vis 

spectrometer (Perkin Elmer). This was then used to determine suitable wavelengths to 

measure.  A continuous assay was carried out using a variety of co-factors, protein 

concentrations, buffers and metals. The activity of Pac17 was either determined by the 

formation of fumarate (at 240 nm), where L-aspartate was the substrate used, or the 

depletion of fumarate (at 270 nm), where fumarate and either ammonia chloride or 

ammonia bicarbonate were used as the substrate. 
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2.3.10.2 Determination of Pac19 activity (reported by Lam et al., 2008, adapted from 

Tripier et al., 2003) 

The activity of Pac19 was assessed using a stopped assay, where derivatisation of the 

diamino acid product, DABA, with phenylglyoxal produced a derivative with an absorbance 

at 345 nm. Using DAP as a supplement for DABA, a standard curved was produced using a 

UV/Vis spectrometer (Perkin Elmer), varying the concentration of DAP from 0.1 mM to 3.0 

mM and dervatising it with 0.2 vol phenyglyoxal solution (250 mM phenylglyoxal, 1:1 acetic 

acid:H2O pH 6.0). The assay was carried out in gel filtration buffer with a pH varying 

between 6.0 and 8.0. A variety of conditions were used to determine the activity of Pac19 

and included changing the concentration of the protein used, the concentration of 

substrates, the addition of co-factor (PLP) and incubation time. Derivatisation of the 

product was carried out by incubating the assay solution with 0.2 vol phenyglyoxal solution 

and the absorbance measured at 345 nm. 

 

2.3.11 Protein crystallographic methods 

2.3.11.1 Protein crystallisation 

A number of different approaches can be used to crystallise proteins, however, all methods 

work on the similar principle which is to bring the protein in solution to a state of 

supersaturation. At this state nucleation and crystal growth can occur. In this study, 

crystallisations were set up using the vapour diffusion method. This method consists of 

mixing the protein of interest (in solution) with a precipitant solution in the form of a drop. 

This drop is then equilibrated against the precipitant solution present in a reservoir, the 

concentration of the precipitant solution being greater in the reservoir than in the drop, 

therefore the concentration of the precipitant increasing in the drop over time. As the 

concentration of the precipitant solution in the drop increases, hopefully a point at which 

the protein will begin to nucleate will be achieved, this nucleation being the first step to the 

formation of a protein crystal. Protein nucleation is dependent on the concentration of 

both the protein and the precipitant. 
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Figure 2.1 A basic solubility phase diagram providing a visual representation of the general 

observation that to produce protein crystals (metastable phase) a balance between the precipitant 

concentration and the protein concentration is necessary. 

 

Figure 2.1 depicts a general solubility phase diagram. The objective of protein 

crystallisation is to produce a metastable solution of the protein and precipitant. If this can 

be achieved there is the possibility that the solution will separate into protein (in the form 

of crystals) and a saturated precipitant solution. If when crystal trials are set up, the protein 

or precipitant concentration are too high or too low, a two-phase region or single phase 

will be produced, respectively. A single phase will produce a clear protein solution, whereas 

a two-phase region will cause spontaneous decomposition (precipitation of the protein out 

of solution). Often in protein crystallisation trials, the protein and precipitant form a clear 

protein solution, but as diffusion takes place, both the protein and the precipitant become 

more concentrated in the solution and the solution moves closer towards a metastable 

phase. 
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Initial protein crystal screens were made using commercially available screens. The 

following screens and manufacturers were used: 

 

JCSG – plus screen (Molecular Dimensions) 

PACT premier screen (Molecular Dimensions) 

Structure screen 1 (Molecular Dimensions) 

Ammonium sulphate screen (Qiagen) 

PEG suite screen (Qiagen) 

Morpheus screen (Molecular Dimensions) 

 

The screens were aliquoted into 96 well MRC plates (Molecular Dimensions) using the 

Freedom Evo liquid handling robot (Tecan), filling each reservoir with 50 μL of the desired 

condition. The screen solutions and protein of interest were then mixed in sitting drops at a 

1:1 ratio (total volume 0.6 µl) using an OryxNano robot (Douglas Instruments Ltd). The 

screens were then sealed and stored at 20 oC.  

Screens were checked regularly to observe any changes. Any conditions where crystals 

were observed were optimised using 24 well VDX optimisation plates (Molecular 

Dimensions) with a reservoir volume of 1 mL and a hanging drop volume of 2 – 3 µL on a 

plastic cover slip which was used to seal the well. Optimisation of the conditions included  

changing the concentration of precipitate, the concentration of the protein, the ratio of 

protein to screen condition, changing the pH,  co-crystallisation with other proteins or likely 

ligands and the addition of cryoprotectant. 

 

2.3.11.2 Protein crystal cryo-protection and data collection 

Before data collection, the crystal was protected against ice formation. Cryoprotectant can 

be added to the screen during optimisation or prior to crystal cooling by making up a buffer 

that contains the condition in which the protein crystallised plus 10 – 20 % (v/v) 

cryoprotectant (unless enough cryoprotectant is already present in the crystallisation 

condition). The most common cryoprotectantants used are glycerol and ethylene glycol. If 

necessary, crystals were placed into the cryoprotectant for approximately 10 s and then 

mounted onto litholoops (Molecular Dimensions). Mounted crystals were either used 

in-house for initial analysis using a Rigaku RU-H3RHB rotating anode X-ray generator (50 kV 
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and 100 mA) fitted with osmic confocal optics and a copper target (Cu Kα; λ = 1.542 Å) and 

Mar-345 image plate detector (X-ray Research) or plunged into liquid nitrogen and stored 

and taken to Diamond Light Source Synchrotron, Harwell, Oxfordshire. 

 

2.3.11.3 Data collection 

X-ray data were collected at the Diamond Light Source synchrontron, Oxfordshire either on 

the macromolecular crystallography beamlines (i02, i03, i04 and i04-1) or the microfocus 

beamline (i24). The diffracted X-rays were recorded on either a charge couple device (CCD) 

or a Pilatus detector at the beamline. Initially three test images were collected at phi = 0, 

45 and 90o to determine the quality of the diffraction and also to estimate the resolution. 

These images were indexed to deduce the crystal symmetry and processed using MOSFLM 

(Leslie and Powell, 2007) and EDNA (Diamond Light Source) to calculate the most suitable 

collection conditions (such as starting orientation and the number of degrees needed to be 

collected) to produce a full and highly resolved dataset. The recommendations from these 

analyses were then used to collect complete datasets at the synchrotron. 

 

2.3.11.4 Data processing 

Data collected either in-house or at Diamond Light Source was integrated using MOSFLM 

(Leslie and Powell, 2007), XIA2 or XDS (Kabsch, 2010) and scaled and merged using SCALA 

(Evans, 2006). Model building and refinement was carried out using the CCP4 suite (Winn 

et al., 2011). When a dataset was collected, a subset of data consisting of 5 % of the total 

number of reflections was set aside to be used for the free R factor (Kleywegt and Brünger, 

1996) calculation during model building and refinement. 

 

2.3.11.5 Molecular replacement 

Molecular replacement is a crystallographic technique that can use information from 

similar protein structures to calculate estimates for the phase and is one of the methods 

used to overcome the phase problem. The method can often be used when a already 

solved molecule is in a different crystallographic form (isomorphous replacement) or when 

a known protein structure has a high sequence identity to the protein of interest. In 

isomorphous replacement, generally the difference in phases are so small that the phases 

from the search model can be used directly to compute the electron density (ρ) for each 
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point (x,y,z) in the unit cell from the native intensities of the new protein to produce an 

electron density map of the new protein query. If the search protein is isomorphous to the 

query protein, molecular replacement can be done via REFMAC5 (Murshudov et al., 1997), 

entering the merged data as the .mtz file and the .pdb file of the search protein, differences 

between the two structures can then be identified by the use of a visualising software such 

as COOT (Emsley and Cowtan, 2004). When the query and the search proteins are not 

isomorphous it is necessary to identify the position and orientation of the query model in 

the new unit cell by rotating and translating the model to deduce the phases that are most 

likely to be that of the query protein. Two programs in the CCP4 suite are able to do this; 

PHASER (McCoy, 2007) which calculates both the rotation and translation functions and 

gives you a result that has the highest likelihood of being correct and MOLREP (Vagin and 

Teplyakov, 1997)  which can be commanded to calculate the most likely rotation and 

translation functions together automatically or calculate one and then the other. In this 

study both methods explained above were used for initial structure determination. 

 

2.3.11.6 Phase improvement, model building and refinement 

Model building and refinement can be done both automatically and manually using a series 

of programs from the CCP4 suite. The use of these tools allows for the improvement of the 

electron density map and therefore the protein model that was produced during molecular 

replacement or by other phase solving techniques. A number of automated model building 

programs can be used and include BUCANEER (Cowtan, 2006), which once given the 

primary sequence of the query protein can begin to use the electron density map to build 

more of the protein structure and ARPwARP (Perrakis et al., 1999) which can add water 

molecules into the model. By using a structure visualisation program such as COOT (Emsley 

and Cowtan, 2004), manual building/rebuilding of the protein structure can be done which 

allows the user to build the protein structure to complement the electron density map 

produced by phase solving and/or refinement. Model refinement can be carried out using 

PARROT which can modify electron density and REFMAC5 (Murshudov et al., 1997) which 

will automatically refine a structure using rigid body or restrained refinement depending on 

which parameters the program has been commanded to execute. Cycles of manual and 

automated model building and refinement of these alterations is carried out until the user 

is happy that no more improvement of the model can be done. The improvement of the 

model is traditionally monitored using the Rwork and Rfree values, however, in recent years it 
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has become common to also use the Mean I/(I) and FOM as it is believed these give a 

more accurate representation of the accuracy of the built model, model improvement was 

also monitored by the ‘fit’ of the structure into the electron density and the stereochemical 

properties of the model. 

 

2.3.11.7 Structural validation 

Validation of the built structure is important to confirm that no bias has been built into the 

structure and that the resulting electron density maps from initial data collection have 

been interpreted accurately. A number of programs and software can be used for 

validation. The building software COOT (Emsley and Cowtan, 2004) has a number of 

validation tools which including production of Ramachandran plots (Ramachandran et al., 

1963) (assessment of the torsion angles of the amino acid chains), assessment of the 

electron density for the built in waters and the position of amino acids in the protein in 

correlation to the electron density map.  Further validation can be done externally of COOT 

via a number servers and programs. One online server commonly used is MOLPROBITY 

(http://molprobity.biochem.duke.edu) (Chen et al., 2010) which analyses the sterics and 

the geometry of the completed protein model by analysing Ramachandran outliers, 

energetic clashes in bonding, bond angle distortions and rotamer outliers. MOLPROBITY 

also supplies the user with a score indicating, based on the results, how accurate the 

structure would be in comparison to the structures currently deposited in the Protein Data 

Bank (PDB). 

 

2.4 Streptomycete genetic methodologies 

2.4.1 Culturing Streptomyces 

2.4.2 Culturing Streptomyces sp. on solid medium 

Two species of Streptomyces were used in this study. Streptomyces coeruleorubidus was 

grown on ISP2 solid media and Streptomyces lividans was grown on SFM solid media. 

Cultures were produced by the inoculation of the agar plate with Streptomyces spores. 

After initial growth, a single colony from the plate was used for a subsequent inoculation of 

a fresh agar plate to ensure all colonies on a single plate had originated from the same 

colony. If possible a selectable marker was used to reduce the risk of contamination. 
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2.4.2.1 Culturing S. coeruleorubidus in liquid medium 

Liquid ISP2 (10 mL) in a spring baffled glass vial was inoculated with 50 μL of the desired 

spore stock and incubated at 30 oC, 250 rpm for 2 d. To produce the main Streptomyces 

culture, 500 μL of the starter culture was used to inoculate a further 10 mL ISP2 in a spring 

baffled vial and the culture incubated for 5 – 6 d until a ring of spores was observed 

forming on the glass vial at the liquid-gas interface. 

 

2.4.2.2 S. coeruleorubidus feeding experiments in liquid medium 

From a 2 d 10 mL ISP2 starter culture, 10 mL ISP2 in a baffled vial was inoculated with        

500 μL of the starter culture to produce the main culture and grown for 3 d at 30 oC, 250 

rpm. After 3 d, the cultures were inoculated with the desired compound with a final 

concentration of 10 mM and incubated for a further 3 d at 30 oC, 250 rpm. 

 

2.4.2.3 Culturing S. lividans in liquid medium 

Liquid R5 medium (10 mL) in a spring baffled glass vial was inoculated with 50 μL of the 

desired spore stock and incubated at 30 oC, 250 rpm for 2 d. To produce the main 

Streptomyces culture, 500 μL of the starter culture was used to inoculate a further 10 mL 

R5 in a spring baffled vial and the culture incubated for 5 d. 

 

2.4.3 Generation of genetic mutants by homologous recombination in                                 

S. coeruleorubidus 

A method to determine the function of a gene is to disrupt/delete that gene within the 

genome of the native host. This can be done by the gene disruption method (REDIRECTTM 

Technology, outlined in Figure 2.2) developed at the JIC (Gust et al., 2003). The method 

relies on two naturally occurring processes; recombination and conjugation. By creating a 

PCR product that contains an antibiotic resistant gene sequence and flanking regions which 

complement the DNA sequence either side of the gene to be disrupted, recombination can 

be used to replace the gene of interest with that of the antibiotic gene cassette on a 

cosmid, the cassette allowing for a means of selection. The mutated cosmid can then be 

introduced into a non-methylating E. coli host containing a plasmid which allows for the 

formation of a pilus by E. coli and therefore conjugation of the cosmid from itself into 

another bacteria, this being either the gene of interest’s natural host or a heterologous 

host. 
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Long primers (58 and 59 nucleotides (nt) in length) were designed to flank the replacement 

region (the gene of interest). The 39 nt sequence at the 5’ end (forward primer) of the gene 

to be replaced and 39 nt of the complementary sequence of the 3’ end (reverse primer) 

were taken. A designated 20 nt sequence of the interruption cassette (5` ATT CCG GGG ATC 

CGT CGA CC 3`) was added to the 3’ end of the forward primer sequence and a designated 

19 nt sequence of the interruption cassette (5` TGT AGG CTG GAG CTG CTT C 3`) added to 

the 3’ end of the reverse primer sequence.  

The interruption cassette containing the complementary sequence for recombination 

(obtained from the primer sequences) was prepared using a normal PCR reaction recipe 

with the disruption cassette template provided by Dr S. Grüschow (UEA).The mixture was 

exposed to thermal cycler conditions: 

 

Temperature Time (min) 

94 oC 2 

94 oC 0.75 

55 oC  0.75 

72 oC 6 

Repeated 29 times 

72 oC 5 

4 oC Hold 

 

The PCR product was analysed by agarose gel electrophoresis to ensure correct 

amplification and the remainder of the product purified by Qiagen PCR purification.  

 

E. coli BW25113/pIJ790 containing specific S. coeruleorubidus cosmids (2H-5 or 8G-5) were 

cultured overnight at 30 oC in 10 mL LB broth containing chl and 100 µL of the culture used 

to inoculate 10 mL LB conatining carb, kan, chl and 100 µL 1 M L-arabinose and incubated 

at 30 oC for 3 – 4 h until OD600  was approximately 0.4. The L-arabinose induces the 

promoter, allowing for the λ red genes responsible for recombination to be expressed. The 

culture was pelleted by centrifugation at 4000 rpm (Heraeus rotor 75006445), 4 oC and the 

pellet resuspended in 10 mL 10 % (v/v) glycerol, centrifuged for a further 10 min at 4000 
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rpm (Heraeus rotor 75006445), 4 oC, the glycerol removed and the pellet resuspended in 5 

mL 10  % (v/v) glycerol, which was again centrifuged at 4000 rpm (Heraeus rotor 75006445) 

for 10 min at 4 oC. The glycerol was removed and the pellet re-suspended in 100 µL 10 % 

(v/v) glycerol. 50 µL of the resuspended mixture was inoculated with approximately 100 ng 

of the amplified disruption cassette with primer ends and transformed by electroporation. 

After electroporation, 250 µL of liquid LB was added to the transformation mixture and 

incubated at 37 oC, 200 rpm for 1 h and the entire culture used to inoculate 20 mL LB agar 

containing kan and apra. Gene disruption was confirmed by inoculating 5 mL LB broth 

containing kan and apra with colonies from the plates, incubating overnight at 37 oC, 200 

rpm and analysing with alkaline lysis, using the purified plasmid for colony PCR analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2.2 An illustration of the Re-direct protocol. The resistance cassette is amplified using specific primers (a) and by recombination replaces the gene of 

interest on a cosmid containing the pacidamycin gene cluster (b). The cosmid containing the resistance cassette in the place of the gene of interest is then 

conjugated in to the pacidamycin producer where another recombination event occurs (c) and the gene of interest in the native producers genome is replaced 

with the resistance cassette (d), eliminating the expression of the gene 

 

a. 

c. d. 

b. 
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2.4.4 Conjugation into Streptomyces sp. 

This conjugation method was used for recombination into both S. coeruleorubidus and       

S. lividans. 

 

On confirmation of successful interruption, 100 µL of electrocompetent E. coli   

ET12567/pUZ8002 was inoculated with 2 µL of plasmid preparation and incubated on ice 

for 30 min. The E. coli was transformed using electroporation. 250 µL of LB broth was 

added and the culture incubated at 37 oC, 200 rpm for 1 h. The culture was used to 

inoculate 20 mL LB agar with apra and carb and incubated overnight at 37 oC. 10 mL LB 

broth containing kan, apra and chl was inoculated with colonies from the overnight plates 

and incubated overnight at 37 oC, 200 rpm. The overnight culture was 50 fold diluted into 

10 mL LB broth with kan, apra and chl and incubated at 37 oC until OD600 was approximately 

0.4. The culture was then pelleted by centrifugation at 4000 rpm (Heraeus rotor 

75006445), 4 oC and the pellet washed twice with 10 mL Lennox broth, finally being 

resuspended in 1 mL Lennox broth. 200 µL of the re-suspended culture was used to 

inoculate 40 mL SFM agar with 10 mM MgCl2 along with 200 µL of Streptomyces sp. culture 

(produced from    100 µL spore stock in 900 µL TSB, incubated for 5 h at 30 oC, 250 rpm) 

and incubated at 30 oC overnight. Negative control plates containing 200 µL of 

Streptomyces sp. and positive control plates containing the E. coli cultures were also 

produced. After 20 h the plates were overlayed with 2 mL soft TSB agar with apra (500 µg 

mL-1) and nal (500 µg mL-1) and incubated at 30 oC for approximately 5 d. Once adequate 

growth of the Streptomyces sp. had appeared (and spores could be seen) colonies from the 

plates were used to inoculate agar plates of the correct growth medium (SFM for S. lividans 

and ISP2 for S. coeruleorubidus) containing apra and nal and incubated at 30 oC. Once 

colonies of sufficient size appeared, they were used to inoculate (in patches) new plates of 

growth medium containing either apra or kan. The replicates allowed for the observation of 

colonies in which recombination and double cross-over had occurred. Colonies that were 

resistant to apra and sensitive to kan indicated that kan resistance available on the 

recombinated cosmid backbone had been lost and therefore the gene of interested had 

been replaced with the apramycin resistance cassette. 

 

 

 



Chapter 2 – Materials and Methods 

 

 

  
Page 67 

 
  

2.4.5 Heterologous expression in Streptomyces 

Sometimes it is necessary to study the function of a gene in a heterologous host. Examples 

of this is when a scar must be introduced in place of the gene of interest, meaning there 

would be no antibiotic selection if introduced into the natural producer, therefore an 

integrated backbone can be inserted in place of the original cosmid backbone so that an 

antibiotic selection is reintroduced. The PCR product that was produced during the original 

PCR step, as well as containing flanking complementary regions and the antibiotic 

resistance gene also contains flippase recognition target (FRT) regions that are recognised 

by a flippase that will remove anything in between the two FRT sites. The loss in antibiotic 

resistance can then be selected for. A second round of recombination is then necessary to 

replace the original backbone of the cosmid with that of an integrative cosmid backbone 

containing an antibiotic resistance gene. The cosmid, once conjugated into the 

heterologous host is then able to integrate into a phage integration site and become 

incorporated into the genome of the heterologous host. 

 

2.4.5.1 FLP-mediated recombination 

For heterologous expression studies, it was necessary to remove the apramycin resistance 

cassette and replace it with a FLP scar (81 bp). This is because, for heterologous expression 

the cosmid backbone would eventually need to be replaced to allow for integration of the 

cosmid into the ΦC31-attB site of the Streptomyces host, as the resistance gene on the 

backbone is the same as that of the cassette. 

 

E. coli DH5α/BT340 was grown in selective 10 mL L broth containing chl overnight at 30 oC , 

200 rpm. A 1 in 100 dilution of the overnight culture was used to inoculate 10 mL selective 

L broth and grown at 30 oC for 4 h. Electrocompetent cells were produced and 100 ng of 

the cosmid was added to 50 μL of the cells and electroporation transformation was carried 

out.  A 500 μL aliquot of the transformation mixture was plated onto DNA selective 

medium (chl and  apra) and incubated for 2 d at 30 oC. Two colonies from each plate were 

selected and streaked onto L agar without any selection and incubated over night at 42 oC 

to promote flippase production and FLP-recombination. Single colonies from these plates 

(approximately 15) were streaked onto replica L agar plates containing either apra or kan 

and incubated overnight at 37 oC. The plates were compared to identify colonies that 

retained kan resistance but lost apra resistance which indicated that the FLP-recombination 
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event had been successful. Successful FLP-recombination was subsequently reconfirmed by 

PCR analysis. 

 

2.4.5.2 Recombination of SspI fragment into cosmid backbone  

E.coli DH5α/pIJ10702 was incubated overnight at 30 oC, 200 rpm in 10 mL LB broth 

containing apra. The culture was pelleted by centrifugation at 4000 rpm (Heraeus rotor 

75006445) for 10 min and the plasmid purified by Qiagen plasmid purification. The plasmid 

was digested using restriction enzyme SspI and a fragment of approximately 5247 bp 

purified by Qiagen gel extraction. Electrocompetent cells of E. coli BW25113/pIJ790 

containing the 2H-5 cosmid with the FLP scar in the place of the gene of interest and 

expressing the λ red genes were produced and approximately 100 ng of the SspI fragment 

were mixed together and transformed by electroporation. Recombination of the new 

backbone was confirmed by the cosmid obtaining apra resistance.  

 

2.4.5.3 Cosmid integration into a Streptomyces heterologous host 

Integration of the cosmid containing both the FLP scar in place of the gene of interest and 

the integration backbone from pIJ10702 was performed using the same methodology as for 

the conjugation of a resistance cassette into a Streptomyces sp. The cosmid of interest was 

introduced into a non-methylating strain of E. coli (ET12567/pUZ8002) and conjugated with 

the Streptomyces sp. as previously described. Exconjugates were selected for by their 

resistance to apra and subsequently confirmed by colony PCR, checking for both the 

presence of the mutated gene and for the presence of the integration site by using primers 

ΦC31_F and ΦC31_R. 
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Figure 2.3 Illustration of the integration of the cosmid (2H-5*) into the genome of S. lividans TK24, 

and the position of the primers ΦC31F and ΦC31R which are use to confirm integration of the 

cosmid into the integration site. 

 

2.4.6 Pacidamycin extraction and analysis 

2.4.6.1 Pacidamycin extraction 

After culturing the Streptomyces sp., the mycelia and broth were separated by 

centrifugation at 3000 rpm (Heraeus rotor 75006445), 10 min, 4 oC. The medium was 

incubated with 50 % (v/v) XAD-16 overnight at 4 oC on a shaker. The resin was collected and 

washed with approximately 10 mL milliQ-H2O and metabolites eluted from the resin using 

approximately 10 mL methanol. The solvent was removed in vacuo at 40 oC and the residue 

dissolved in 1 mL milliQ-H2O and used for LC-MS analysis. 

 

2.4.6.2 Detection of pacidamycin by LC-MS analysis 

The extract components (5 µL) were separated by reverse phase high pressure liquid 

chromatography with a C18 X-Bridge column, flow rate 0.35 mL min-1, 10-95 % LC-MS buffer 

B for 11 min and the masses of a number of the most commonly observed pacidamycins 

monitored (for pacidamycin in the natural producer) and the mass of pacidamycin D (m/z 

712.0) monitored for all heterologous expression extracts. 
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2.4.6.3 Confirmation of pacidamycin production by LC-MS/MS analysis 

On occasion, to ensure that what was observed during LC-MS analysis is in fact the 

expected product, LC-MS/MS analysis is necessary. MS2 allows for the analysis of a 

fragmentation pattern from a parent ion, in this case the parent ion being that of a 

pacidamycin. A distinct fragmentation will occur to a molecule depending on its structure, 

therefore MS2 analysis allows for a more confident assessment that the correct mass that 

was detected during LC-MS is in fact the molecule you were searching for. The extract 

components (10 µL) were separated using reverse phase high pressure liquid 

chromatography with a C18 column, flow rate of 0.2 mL/min, 10-90 % LC-MS buffer B for 24 

min and then 10 % LC-MS buffer B for a further 7 min. The parent ion of pacidamycin D 

(m/z 712) was monitored and MS2 carried out on this ion to confirm the fragmentation 

pattern is the same as that expected for the fragmentation of pacidamycin D. 
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3.1 Introduction 

As described in the aims of this thesis, the function of four hypothetical protein genes and 

five genes believed to be responsible for the biosynthesis of (2S,3S)-diaminobutyric acid 

present at the core of the pacidamycin structure are being investigated. This chapter 

discusses the initial bioinformatics analysis of pacidamycin gene cluster genes along with 

bioinformatics interrogation of each of the genes of interest. The over expression of these 

genes and production and purification of their respective proteins will also be discussed. 

 

3.2 Results 

3.2.1 Bioinformatics analysis of the proteins of interest 

An initial bioinformatics analysis was conducted on each of the proteins of interest to 

deduce some parameters. The bioinformatics analysis of the Pac17 protein will be 

discussed in detail and a summary of the outcome of the analysis for all other query 

proteins will be presented in Table 3.1.  

The pac17 nucleotide sequence was translated into the amino acid sequence using the 

EXPASY TRANSLATE server (http://web.expasy.org/translate/). The amino acid sequence 

(sequence in Appendix 1) was used in a number of online servers such as NCBI BLAST 

(http://blast.ncbi.nlm.nih.gov/) (Altschul et al., 1990), PROTPARAM 

(http://web.expasy.org/protparam/) and XTALPRED (http://ffas.burnham.org/XtalPred-

cgi/xtal.pl) (Slabinski et al., 2007a, Slabinski et al., 2007b). Pac17 was annotated by 

Rackham et al. (2010) as an argininosuccinate lyase like enzyme and was postulated to be 

involved in the biosynthesis of the core DABA residue found in pacidamycin. Analysis of the 

amino acid sequence by PROTPARAM estimated that the molecular weight of the 498 

residue protein is 53564.6 Da and its isoelectric point (pI) is 5.51. Interrogation of the 

amino acid sequence by FOLDINDEX (http://bip.weizmann.ac.il/fldbin/findex) (Prilusky et 

al., 2005) suggested that the protein is predominately folded with a small region predicted 

to be unfolded near the centre of the protein (Figure 3.1) 

 

http://web.expasy.org/translate/
http://blast.ncbi.nlm.nih.gov/
http://web.expasy.org/protparam/
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://ffas.burnham.org/XtalPred-cgi/xtal.pl
http://bip.weizmann.ac.il/fldbin/findex
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Figure 3.1 FOLDINDEX output when the Pac17 amino acid sequence was used as the query 
sequence. Pac17 is predicted to be predominately folded. 

 

Further analysis of the Pac17 amino acid sequence was carried out using the PSIPRED 

server (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999). PSIPRED prediction of the 

secondary structure of Pac17 suggested that the protein would contain 18 α-helices and 1 

β-sheet in each monomer, the β-sheet appearing near the centre of the protein at residues 

267-268 (Figure 3.2).  

 

 

 

 

 

http://bioinf.cs.ucl.ac.uk/psipred/
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Figure 3.2 PSIPRED output of the Pac17 amino acid sequence. The protein is predicted to consist of 
18 α-helices and 1 β-sheet near the centre of the structure.  

 

To complement the secondary structure prediction of the protein, the Pac17 sequence was 

then analysed by the PHYRE2 server (http://sbg.bio.ic.ac.uk/phyre2) (Kelley and Sternberg, 

2009). The PHYRE2 server predicts the 3D structure of the query protein using the 

information from previously solved protein structures that have homology to the query 

protein. The analysis identified that Pac17 is likely to be a member of the L-aspartase 

superfamily, which is consistent with the hypothesis for the protein’s function as an 

aspartase. 

http://sbg.bio.ic.ac.uk/phyre2
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Figure 3.3 PHYRE2 output when the Pac17 sequence is used as the query sequence. The structures 
of the highest sequence homologs are first collected (top) and the structural information from these 
hits is then used to predict the 3D structure of the query sequence (Pac17), shown at the bottom. 
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A final bioinformatics analysis was carried out using XTALPRED 

(http://ffas.burnham.org/XtalPred-cgi/xtal.pl). XTALPRED analyses the probability that a 

protein would crystallise based on eight characteristics of the protein including the 

protein’s length, isoelectric point and regions of predicted order. 

 

 

Figure 3.4 XTALPRED output for Pac17. From analysis of 8 characteristics of the protein, the server 
predicts that the protein is likely crystallise, suggesting that the chances of obtaining X-ray 
diffraction quality crystals are possible 

 

Table 3.1 shows a summary of the bioinformatics analysis carried out on the other proteins 

of interest in this study; the four hypothetical proteins (Pac1, Pac2, Pac7 and Pac13) and 

the other proteins hypothesised to be involved in the biosynthesis of DABA (Pac18, Pac19, 

Pac20 and Pac22) 

 

 

 

 

 

 

 

 



 
 

Table 3.1 Summary of the bioinformatics analysis carried out on the proteins investigated in this study 

Protein Uniprot 
Entry 

Annotated by 
Rackham et al. 

(2010) 

No of 
αα 

Molecular 
weight 

(Da) 

Calculated 
pI 

BLAST ‘ hits’ – 
accessed Jan 2010 

Secondary structure 
prediction 

PHYRE2 ‘hits’ result XTALPRED 
result 

Pac1 E2EKN3 Hypothetical protein 
 
 

258 28655.8 8.97 Putative 
uncharacterised protein 

Folded. 11 β-sheets 
towards N-terminal and 

5 α-helices at C-
terminal 

No significant hit Difficult 

Pac2 E2EKN4 Hypothetical protein 
 
 

350 39445.1 5.23 Putative 
uncharacterised protein 

Folded. 14 α-helices 
and 4 β-sheets 

Acyl-CoA N-
acyltransferase 

Average 

Pac7 E2EKN9 Hypothetical protein 
 

 

244 27332.8 5.62 Putative 
uncharacterised protein 

Folded. 8 α-helices and 
10 β-sheets in centre of 

protein 
 

Rmlc-like cupins Suboptimal 

Pac13 E2EKP5 Hypothetical protein 
 

121 13815.3 5.27 Cupin-2 domain 
containing protein 

Folded. 10 β-sheets and 
a C-terminal α-helix 

 

No significant hit Difficult 

Pac17 E2EKP9 Argininosuccinate 
lyase 

498 53564.6 5.51 Argininosuccinate 
lyase/aspartase/fumara

se 

Folded. 18 α-helices 
and 1 β-sheet in centre 

of protein 

L-aspartase/fumarase 
family 

Optimal 

Pac18 E2EKQ0 Kinase 
 

 

318 33635.2 8.42 Putative 
kinase/homoserine 

kinase 

Folded. 13 β-sheets 
(mainly at termini) and 

7 α-helices 
 

Kinase Suboptimal 

Pac19 E2EKQ1 Synthase 
 

755 79256.1 5.61 PLP-dependent 
synthase/lyase 

Folded. 22 α-helices 
and 28 β-sheets 

 

N-terminal synthase, 
C-terminal ligase 

Difficult 

Pac20 E2EKQ2 Threonine aldolase 
 

 

350 36584.7 4.98 Threonine 
aldolase/allo-threonine 

aldolase 

Folded. 16 α-helices 
and 10 β-sheets 

 

PLP-dependent 
transferase 

Suboptimal 

Pac22 E2EKQ4 N-methyltransferase 250 27999.2 4.61 SAM-dependent 
methyltransferase 

Folded. 9 α-helices and 
6 β-sheets 

S-adenosyl-L-
methionine-
dependent 

methyltransferases 

Optimal 
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3.2.2 Pac17 

3.2.2.1 Gene cloning of pac17 

The pac17 gene of S. coeruleorubidus was amplified by PCR using cosmid 2H-5, which 

contained the minimal pacidamycin gene cluster, with Pac17F primer containing a NdeI 

restriction site and Pac17R primer containing a BamHI site. The amplified DNA was 

NdeI/BamHI digested and ligated into the NdeI/BamHI digested expression vectors 

pET28a(+) and pET21a(+) to produce expression constructs pDT005 which encoded for the 

Pac17 protein (amino acid sequence Appendix 1) tethered to an N-terminus hexahistidine 

tag and thrombin cleavage site and pDT009 which encoded for the native Pac17 protein 

(pDT009 was used in expression studies of Pac18), respectively. The addition of this tag 

added an additional twenty amino acids onto the N-terminus of the protein with the 

sequence MSSHHHHHHSSGLVPRGSH giving a total molecular weight of 55724.9 Da. The 

protein without the additional amino acid residues having a molecular weight of 53564.6 

Da. The sequence of the constructs were confirmed by analysis by the DNA sequencing 

service at Cambridge University, UK. The pDT005 expression vector was introduced into      

E. coli BL21(DE3) cells by chemical transformation.  

 

3.2.2.2 Expression studies of pac17 

Protein production studies were carried out as described in chapter 2. The cells were lysed 

using the cell lysis buffer method and the supernatant analysed by SDS-PAGE to deduce the 

relative protein solubility and yield. The study suggested that the optimum expression 

conditions for the pDT005 construct was using AIM broth medium at 37 oC for 4 h followed 

by 16 oC for 16 h. 

 

3.2.2.3 Large scale expression and purification of Pac17  

An overnight starter culture (40 mL) was used to inoculate 4 L AIM broth and incubated 

using the same conditions as deduced from the pac17 expression studies. After expression 

the cells were harvested and the pellet resuspended in FPLC loading buffer A and lysed by 

sonication. The supernatant was collected by centrifugation and loaded onto a ÄKTA 

express FPLC using a programme consisting of affinity chromatography purification and  

size exclusion chromatography, using a pre charged Ni2+ column and a Superdex 200 Hiload 

HP gel-filtration column which had been previously calibrated using molecular weight gel-

filtration standards (as described in chapter 2), respectively. From gel filtration, the 
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molecular size of the homo-multimeric protein was estimated as approximately 150 kDa 

which would suggest the protein to be a trimer.  The fractions containing the Pac17 protein 

which were confirmed by analysis using SDS-PAGE were pooled and concentrated to 

approximately 11 mg mL-1 (determined by the Bradford assay). The purity of Pac17 was 

greater than 95% as determined by SDS-PAGE analysis (Figure 3.5). The protein yield was 

calculated to be approximately 24 mg L-1 of culture. DLS analysis showed a monomodal 

distribution with 16 % polydispersity and an estimated molecular size of 108 kDa.  
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Figure 3.5 Showing (a) the gel filtration chromatogram from the purification of Pac17. Using a 

calibration curve for the gel filtration column it was estimated that the molecular weight of the 

protein was approximately 150 kDa (b) the SDS-PAGE result showing the soluble protein profile in 

the cell culture before and after induction and the purified Pac17 (size approx. 55.7 kDa) and (c) The 

DLS profile of the purified protein, which shows a predominant monomodal, monodispersed species 

(>99 %) within the solution with an estimated size of 108 kDa. 
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3.2.2.4 Crystallisation of Pac17 

As the purity of the protein preparation was high (above 95 %), crystallisation trials were 

undertaken using the sitting drop vapour diffusion format in 96-well MRC  plates, using five 

commercially available screens (as explained in chapter 2) at a temperature of 20 oC. Each 

drop consisted of 0.3 µL of well solution and 0.3 µL of protein solution and a well volume of 

50 µL. The final protein concentration was approximately 6.5 mg mL-1. Crystals grew within 

24 h at 20 oC from a number of crystallisation conditions. The full crystallographic analysis 

of Pac17 is described in chapter 4. 

 

Figure 3.6 showing three examples of crystals observed from the initial crystallisation screens of 

Pac17. Optimisation of these conditions is discussed further in chapter 4.  

 

3.2.3 Pac18 

3.2.3.1 Gene cloning of pac18 

The pac18 gene of the pacidamycin producer was amplified by PCR using primers Pac18F 

and Pac18R which contained the restriction sites NdeI and BamHI, respectively, and cosmid 

2H-5 as the template DNA. The amplified DNA was restricted with the aforementioned 

restriction enzymes and ligated into the NdeI/BamHI restricted plasmid pET28a(+) to 

produce plasmid construct pDT006 which encoded for the Pac18 protein (amino acid 

sequence Appendix 1) along with a twenty amino acid extension at its N-terminus of 

sequence MGSSHHHHHHSSGLVPRGSH to allow for the expression of a hexa-histidine 

affinity tag for purification and a thrombin cleavage site. The addition of the affinity tag and 

cleavage site gave the expressed protein a total molecular weight of 35667.3 Da. The 

sequence of the construct was confirmed by analysis by the DNA sequencing service at 

Cambridge University, UK. The pDT006 expression vector was introduced into E. coli 

BL21(DE3) cells by chemical transformation.  
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3.2.3.2 Expression studies of pac18 

Initial protein production studies were carried out as described in chapter 2. The cells were 

lysed using the cell lysis buffer method and the supernatant analysed by SDS-PAGE to 

deduce relative protein solubility and yield. From this original small scale production of 

Pac18, it was determined that Pac18 protein was being produced, however, none of this 

protein appeared to be soluble and therefore problematic for protein purification. 

 

A new approach was taken to try and obtain soluble amounts of the protein. The plasmid 

construct pDT006 was introduced into a number of different E. coli expression strains 

(BL21(DE3) pLysS, Solu BL21, BL21 containing the GroESL plasmid and BL21 Arctic Express). 

Expression studies were carried out as explained previously, using both LB and AIM media 

in an attempt to produce soluble Pac18, however all of these conditions and E. coli strains 

failed to produce any soluble Pac18 protein.  

 

Due to the difficulty of producing soluble Pac18, the more aggressive method of in vitro 

denaturing and refolding was attempted. As the protein was being produced by the 

expression host, the insoluble protein found in the pellet of the lysed cell could be 

denatured in an 8 M solution of urea (6 M guanidine-HCl can also be used). The denatured 

protein can then be purified using the same affinity chromatography method (however the 

buffers contain 8 M urea) and the urea can be removed from the solution either by step 

dialysis (gradually reducing the concentration of urea) or by rapidly reducing the urea 

concentration by injecting the protein solution into a large quantity of buffer that does not 

contain urea. Both of these methods were carried out, however neither produced soluble 

Pac18, with the protein precipitating out of the solution immediately with the ‘quick urea 

change’ method and at a concentration of about 2 M urea in the gradual dialysis method. 

 

One final approach was attempted to try and produce soluble Pac18. It has been previously 

stated that the pac17, pac18 and pac19 genes are translationally coupled within the 

genome of S. coeruleorubidus which suggests that the proteins are likely to be produced in 

stoichiometric quantities. The fact that the genes are translationally coupled could also 

suggest that the resulting proteins produced from the expression of these genes may form 

a complex. This would be consistent with the hypothesis that they work together to 

produce DABA. As a result, it was thought that if pac17 or pac19 was co-expressed with 

pac18, it may allow for the two proteins to form a complex and stabilise the Pac18 protein 
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so that it will remain soluble. Both the pac17 and pac19 genes had been cloned into a 

pET21a(+) plasmid for native expression (i.e. without a tag), giving expression constructs 

pDT009 and pDT0010, respectively. Both of these plasmids could be selected for by their 

resistance to carb. Competent cells of E. coli BL21(DE3) containing pDT006 were prepared 

(as described in chapter 2) and pDT009 and pDT010  introduced into the cells by chemical 

transformation. Both plasmid constructs in the desired strains could be identified by using 

50 μg mL-1 kan to select for the presence of pDT006 and 100 μg mL-1 carb to select for the 

presence of either pDT009 or pDT010. Expression trials were carried out in the same way as 

previously described and the presence of soluble Pac18 analysed. Unfortunately, when 

Pac18 is produced with either Pac17 or Pac19, no soluble Pac18 protein was detected. 

 

A number of reasons could explain why the methods described have been unsuccessful in 

producing soluble Pac18. Firstly Pac18 is believed to be a kinase, a class of protein that is 

notoriously difficult to solubilise. Further explanations for the failure to produce soluble 

Pac18 could be that as three genes are believed to be translationally coupled, all three 

genes need to be produced together to obtain soluble Pac18, however as Pac17 and Pac19 

can be produced on their own, with no issues of insolubility, this may not be the main 

cause. Another explanation could be that the heterologous host is lacking some factor that 

is essential for protein solubility. 

 

Since the insolubility of Pac18 could be caused by the use of heterologous expression, a 

large scale culture (2 L) of S. coeruleorubidus was produced and the cells pelleted and lysed 

by cell disruption. The optimum conditions for lysis of S. coeruleorubidus cells had been 

deduced previously by conducting a series of cell disruption experiments and determining 

the concentration of soluble protein present by Bradford analysis. The supernatant 

produced from the lysis was then incubated with hexa-hisitidine tagged Pac17 and Pac19 in 

the hope that if an association occurred between Pac18 and one of these proteins, one 

would be able to purify Pac18 away from the supernatant and, possibly, with a co-factor 

that is essential for the solubility of Pac18. Unfortunately, this attempt was unsuccessful 

and so no further attempt was made to try and solubilise Pac18 for biochemical and 

biophysical analysis. 
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3.2.4 Pac19 

3.2.4.1 Gene cloning of pac19 

The pac19 gene of S. coeruleorubidus was amplified by PCR using cosmid 2H-5 as the 

template DNA and primers Pac19F and Pac19R containing restriction sites NdeI and BamHI, 

respectively. The amplified DNA was restricted using the two specified restriction enzymes 

and ligated into a NdeI/BamHI restricted pET28a(+) and pET21a(+) plasmid to produce 

plasmid constructs pDT007 and pDT010, respectively. pDT007 encoded for the Pac19 

protein (amino acid sequence Appendix 1) with a N-terminus hexa-histidine tag and a 

thrombin cleavage site adding an additional twenty amino acids onto the protein with 

sequence MGSSHHHHHHSSGLVPRGSH, giving the protein a mass of 81288.3 Da. The 

pDT010 construct encoded for the native Pac19 protein with a mass of 79125.0 Da. The 

sequence of the constructs were confirmed by analysis by the DNA sequencing service at 

Cambridge University, UK. The pDT007 expression vector was introduced into E. coli 

BL21(DE3) cells by chemical transformation.  

 

3.2.4.2 Expression studies of pac19 

Protein production studies were carried out as previously described. The cells were lysed 

using the cell lysis buffer method and the supernatant analysed by SDS-PAGE to deduce 

relative protein solubility and yield. The study suggested that the optimum expression 

conditions for the pDT007 construct were using either LB or AIM broth medium at 37 oC for   

4 h and 16 oC for 16 h, for ease, it was decided to grow the expression host (E. coli 

BL21(DE3)) in AIM medium. 

 

3.2.4.3 Large scale expression of pac19 and purification of Pac19  

An overnight starter culture (10 mL) was used to inoculate 1 L AIM broth which was 

incubated using the same conditions as deduced from the pac19 expression studies. After 

expression, the cells were harvested and the pellet resuspended in FPLC loading buffer A 

and lysed by sonication. The supernatant was collected and loaded onto a ÄKTA express 

FPLC using a programme consisting of an affinity chromatography purification step and a 

size exclusion chromatography step using a pre charged Ni2+ column and a Superdex 75 

Hiload HP gel-filtration column which had been previously  calibrated using  molecular 

weight gel-filtration standards (as described in chapter 2). From the gel filtration, it was 

suggested that Pac19 exists in a monomeric state as it was estimated that the molecular 
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weight of protein being eluted from the column was 100 kDa.  The fractions containing the 

Pac19 protein which were confirmed by analysis using SDS-PAGE were distinctly pale yellow 

in colour, which suggested that its predicted co-factor, PLP, was purified with the protein. 

The Pac19 fractions were pooled and concentrated to approximately 10 mg mL-1 

(determined by Bradford analysis). The purity of Pac19 was greater than 90% which was 

determined by SDS-PAGE analysis (Figure 3.7). DLS analysis suggested that 10 % of the 

sample was aggregated.  Analysis using the Bradford assay determined that the protein 

yield was approximately 19 mg L-1 of culture.   
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Figure 3.7 Showing (a) the gel filtration chromatogram from the purification of Pac19. Using the 

calibration curve for the gel filtration column it was estimated that the molecular weight of the 

protein was approximately 100 kDa (b) the SDS-PAGE result showing the soluble protein profile in 

the cell culture before and after induction and the purified Pac19 (size approx. 81.0 kDa) and (c) The 

DLS profile of the purified protein suggests approximately 10 % of the protein in the sample is 

aggregated as its hydrodynamic radius is more than 10.0 nm. 
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3.2.4.4 Crystallisation of Pac19 

As the purity of the protein preparation was high (above 90 %), crystallisation trials were 

undertaken using the sitting drop vapour diffusion format in 96-well MRC plates using five 

commercially available screens (as explained in chapter 2) at a temperature of 20 oC. Each 

drop consisted of 0.3 µL of well solution and 0.3 µL of protein solution and a well volume of 

50 µL. The final protein concentration was approximately 5 mg mL-1. No crystals grew 

within six weeks. A number of the crystallisation conditions formed granular precipitate 

(example Figure 3.8) and so a number of other crystallisation trials were setup with 

conditions that included changing the precipitant concentration, increasing and decreasing 

the concentration of the Pac19 protein in the drop to 2.5 mg mL-1 and 7 mg mL-1, 

respectively, and also co-crystallising the protein with its postulated substrates; L-threonine 

and L-phospho-O-threonine. Unfortunately no protein crystals were observed in any of 

these conditions. 

 

Figure 3.8 Examples of granular precipitation in the initial crystallisation screens of Pac19, all three 
conditions contain PEG as a precipitant and a pH of between 6.5 and 8.0 

 

3.2.5 Pac20 

3.2.5.1 Gene cloning of pac20 

The pac20 gene of S. coeruleorubidus was amplified by PCR using primers Pac20F and 

Pac20R which contain the recognition site for the NdeI and XhoI restriction enzymes, 

respectively. The amplified DNA was restricted using these restriction enzymes and ligated 

into a NdeI and BamHI restricted pET28a(+) plasmid to produce plasmid pDT008. pDT008 

encoded for the Pac20 protein (amino acid sequence Appendix 1) with a N-terminal 

hexa-histidine tag and thrombin cleavage site adding an additional twenty one amino acids 

onto the protein with sequence MGSSHHHHHHSSGLVPRGSH, giving the protein a mass of 
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38616.8 Da. The construct sequence was confirmed by analysis by the DNA sequencing 

service at Cambridge University, UK. The pDT008 expression vector was introduced into     

E. coli  BL21(DE3) cells by chemical transformation. 

 

3.2.5.2 Expression studies of pac20 

Protein production studies were carried out as before. The cells were lysed using the cell 

lysis buffer method and the supernatant analysed by SDS-PAGE to deduce relative protein 

solubility and yield. The study suggested that the optimum expression conditions for the 

pDT008 construct was using AIM broth medium at 37 oC for 4 h and 16 oC for 16 h. 

 

3.2.5.3 Large scale expression of pac20 and purification of Pac20 

An overnight starter culture (10 mL) was used to inoculate 1 L AIM broth which was 

incubated using the same conditions as deduced from the pac20 expression studies. After 

expression, the cells were harvested and the pellet resuspended in FPLC loading buffer A 

and lysed by sonication. The supernatant was collected by centrifugation and loaded onto a 

ÄKTA express FPLC using a programme consisting of an affinity chromatography 

purification step and a size exclusion chromatography step using a pre charged Ni2+ column 

and a Superdex 75 Hiload HP gel-filtration column which had been previously calibrated 

using molecular weight gel-filtration standards (as described in chapter 2). Initially, no 

protein was eluted from the chromatographic matrix onto the gel filtration column, 

however, through SDS-PAGE analysis it had been confirmed that soluble Pac20 protein was 

present in the fraction. Two reasons could explain the absence of protein: the protein was 

being retained by the chromatographic matrix (the concentration of chelating agent was 

too low to decrease the interactions between the protein and the matrix) or the protein’s 

hexa-histidine affinity tag was not binding to the column matrix and eluting in the flow 

through. To try to overcome this issue, it was first repeated, increasing the concentration of 

chelating agent (imidazole) in the ÄKTA buffer B from 0.5 m to 1 M. As a result, the protein 

purification was performed using the manual ÄKTA FPLC and so only the affinity 

chromatography step was carried out. The eluted fractions from this purification were 

collected, the protein sample concentrated to approximately 14 mg mL-1 and the presence 

and purity of Pac20 confirmed by SDS-PAGE analysis. Pac20 eluted from the 

chromatographic matrix at an imidazole concentration of approximately 0.7 M, a relatively 

high concentration for a protein that only contains a hexa-histidine affinity tag. The purity 
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of Pac20 was greater than 95% which was determined by SDS-PAGE analysis (Figure 3.9). 

Analysis using the Bradford assay determined that the protein yield was approximately      

30 mg L-1 of culture. Pac20 may have associated to the chromatographic matrix more 

tightly than the majority of other proteins because of a number of reasons; the 

hexa-histidine affinity tag could be more exposed to the chromatographic matrix in 

comparison to other His-tagged proteins, making the histidine:nickel complex more stable, 

or the presence of other basic amino acids such as histidine, arginine or lysine on the 

surface of the protein could be coordinating with the nickel in the matrix. Analysis of the 

amino acid composition of Pac20 using PROTPARAM (http://web.expasy.org/protparam/) 

suggests the protein only contains 2.3 % histidine, 6.3 % arginine and 2 % lysine, which in 

comparison to other proteins, is not remarkably high. 
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Figure 3.9 Showing (a) the gel filtration chromatogram from the purification of Pac20. Using the 

calibration curve for the gel filtration column it was estimated that the molecular weight of the 

protein was approximately 117 kDa (b) the SDS-PAGE result showing the soluble protein profile in 

the cell culture before and after induction and the purified Pac20 (protein size approx. 38.6 kDa) and 

(c) The DLS profile of the purified protein, which shows the protein sample is aggregated. 
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The SDS-PAGE analysis of the purified Pac20 protein was inconsistent with the expected 

size of the protein. To confirm the identity of the purified protein, a sample was submitted 

to the JIC Proteomics Facility for intact mass analysis. The analysis confirmed that the major 

species in the sample had a m/z of 38615.63 Da (Figure 3.10), corresponding closely to the 

expected mass of Pac20 (38616.8 Da). The SDS-PAGE may have suggested a mass higher 

than expected due to the low pI of the Pac20 protein. 

 

 

Figure 3.10 MALDI-mass spectrometry analysis of the purified Pac20 sample showing the most 

abundant mass as 38.615.63 Da, the calculated mass of Pac20 being 38616.8 Da. 

 

3.2.5.4 Crystallisation of Pac20 

As the purity of the protein preparation was high (above 95 %), crystallisation trials were 

undertaken using the sitting drop vapour diffusion format in 96-well MRC plates using five 

commercially available screens at a temperature of 20 oC. Each drop consisted of 0.3 µL of 

well solution and 0.3 µL of protein solution and a well volume of 50 µL. The final protein 

concentration was approximately 7 mg mL-1. Precipitate was observed in the majority of 

the screens. The presence of a lot of precipitant is consistent with the DLS suggesting the 

protein is largely aggregated and not happy in solution. 
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3.2.6 Pac22 

The cloning and initial protein production studies for Pac22 were conducted by J. Clouston, 

UEA. He produced two expression constructs of Pac22; pJC001 and pJC002. pJC001 

encoded for 27 extra bases and encoded a protein of 249 amino acids in length, which also 

contained a N-terminal hexa-histidine tag and thrombin cleavage site adding an addition 

twenty amino acids onto the protein with sequence MGSSHHHHHHSSGLVPRGSH, giving the 

protein a mass of 30031.4 Da. The pJC002 constructs also contained a N-terminal 

hexa-histidine tag, however the gene encoded for a slightly smaller protein of 240 amino 

acids which had a molecular weight of 29032.3 Da. J. Clouston had determined that large 

scale production of either of the Pac22 constructs could be carried out in LB broth with a 

selectable marker (in this case kan as the plasmid backbone was that of pET28a(+)). 

 

3.2.6.1 Large scale expression of pac22 and purification of Pac22  

An overnight starter culture (10 mL) of the smaller Pac22 construct (pJC002) was used to 

inoculate 1 L LB broth, which was incubated using the same conditions as deduced from 

the Pac22 expression studies. After expression, the cells were harvested and the pellet 

resuspended in FPLC loading buffer A and lysed by sonication. The supernatant was 

collected and loaded onto a ÄKTA express FPLC using a programme consisting of an affinity 

chromatography purification step and a size exclusion chromatography step using a pre 

charged Ni2+ column and a Superdex 75 Hiload HP gel-filtration column, which had been 

previously  calibrated using  molecular weight gel-filtration standards (as described in 

chapter 2). From the gel filtration step, it was suggested that Pac22 is a monomer as it was 

estimated that the molecular weight of protein being eluted from the column was 

approximately 32.5 kDa.  The Pac22 fractions were pooled and concentrated to 

approximately 10 mg mL-1 (determined by Bradford analysis). The purity of Pac22 was 

greater than 95%, which was determined by SDS-PAGE analysis (Figure 3.11). Analysis using 

the Bradford assay determined that the protein yield was approximately 16 mg L-1 of 

culture.  DLS analysis suggested that the protein existed as a variety of species.  
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Figure 3.11 Showing (a) the gel filtration chromatogram from the purification of Pac22. Using the 

calibration curve for the gel filtration column it was estimated that the molecular weight of the 

protein was approximately 32.5 kDa (b) the SDS-PAGE result showing the soluble protein profile in 

the cell culture before and after induction and the purified Pac22 (size approx. 29.0 kDa) and (c) The 

DLS profile of the purified protein suggests that the protein exists as a number of species. 

 

Although the gel filtration estimation of size is consistent with the size of the smaller Pac22 

construct, SDS-PAGE analysis suggested that the protein species was of a larger size 
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(approximately 35 kDa). A sample of the purified protein was submitted to the JIC 

proteomics facility for mass analysis. This gave a mass of 29019.7 Da, which is considered 

within the value calculated from the amino acid sequence of Pac22 (29032.3 Da). 

 

 

Figure 3.12 Mass spectrometry (electrospray spectrum) result for purified Pac22 submission. The 

smaller construct for Pac22 has an expected MW of 29032.3 Da. Additional peaks are present 

approximately +200 larger than the expected mass of Pac22 which may suggest that some of the 

protein is bound to another molecule, for example, PLP (a predicted co-factor for the protein). 

 

3.2.6.2 Crystallisation of Pac22 

As the purity of the protein preparation for both constructs was high (above 95 %), 

crystallisation trials were undertaken using the sitting drop vapour diffusion format in 

96-well MRC plates using five commercially available screens at a temperature of 20 oC. 

Each drop consisted of 0.3 µl of well solution and 0.3 µl of protein solution and a well 

volume of 50 µl. The final protein concentration was approximately 8 mg mL-1. After six 

weeks, no crystals were observed in any of the screens, however, some granular precipitate 

was observed. 
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From bioinformatics analysis using the DISOPRED server 

(http://bioinf.cs.ucl.ac.uk/disopred/)  (Ward et al., 2004) it was determined that the affinity 

tag present on the N-terminus of the protein was rather disordered and could be affecting 

the ability of the Pac22 to crystallise. An unsuccessful attempt to remove the affinity tag 

was attempted using the thrombin cleavage method (outlined in chapter 2) but the tag was 

eventually successfully cleaved using the DAPase method (outlined in chapter 2).  

 

 

Figure 3.13 SDS-PAGE analysis of the DAPase cleavage of the Pac22 N terminus affinity tag. The pre 

treated (Defore DAPase) and post treated (After DAPase) solutions are shown followed by the 

purified tag-less Pac22 (Flow through) and the remaining tagged protein (Eluant). It should be stated 

that the eluent contained both tagged and untagged Pac22 which may suggest the protein 

associates with itself and is not found in a monomeric state. 

 

The tag-cleaved Pac22 protein was concentrated to approximately 16 mg mL-1 and 

crystallisation trials were undertaken using the sitting drop vapour diffusion format in 

96-well MRC plates using five commercially available screens at a temperature of 20 oC. 

Each drop consisted of 0.3 µL of well solution and 0.3 µL of protein solution and a well 

volume of 50 µL. The final protein concentration was approximately 8 mg mL-1.  After a 
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week a crystal was observed in one of the drops with well conditions; 0.2 M zinc acetate, 

0.1 M sodium cacodylate pH 6.5, 10 % (v/v) 2-propanol.  

To determine if the crystal was that of salt or protein, it was assessed for tryptophan 

fluorescence using a UV pen and the fluorescence observed in a dark room. The crystal 

showed fluorescence, suggesting that it was a protein crystal. 

 

 

Figure 3.14 Showing (a) the protein crystal observed in the crystallisation drop condition and (b) the 

same drop under UV radiation, showing weak fluorescence 

 

As it was confirmed that the crystal was likely to be a protein crystal, a series of 

optimisations were carried out, using similar conditions to those of the initial hit, but with 

variations in the concentration of precipitant (PEG), concentration of the protein and 

buffers, the pH and with the addition of ligands (in this case SAM and SAH, as these are 

likely cofactors, and glycine and threonine, which are likely substrates and products) and 

incubating the plates at 20 oC, RT and 4 oC. Although many optimisation attempts were 

carried out, none produced crystals for further analysis. 

 

3.2.7 Gene cloning of hypothetical protein genes 

The cloning of the hypothetical genes to produce expression constructs was carried out in 

the same way. The gene of interest from the pacidamycin gene cluster was amplified from 

a cosmid DNA template, using cosmid 2H-5 which contained the minimal pacidamycin gene 

cluster. Primers were used in a standard PCR amplification procedure to produce a DNA 

a. b. 
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fragment corresponding to the desired gene size. The amplified DNA was digested by two 

restriction enzymes to produce ‘sticky ends’ and ligated into a  restricted pET28a(+) vector 

to produce an expression construct. The construct encoded for the protein of interest 

(amino acid sequence Appendix 1) tethered to an N-terminal hexa-histidine tag and 

thrombin cleavage site. The addition of the tag added an additional twenty amino acids 

onto the N-terminus of the protein with the sequence GSSHHHHHHSSGLVPRGSHM . The 

sequences of the constructs were confirmed by analysis by the DNA sequencing service at 

Cambridge University, UK and introduced into E. coli BL21(DE3) cells by chemical 

transformation. Table 3.2 reports the specific primers used, construct names and the genes 

cloned. 

 

Table 3.2 The parameters used for the cloning of the hypothetical protein genes 

Gene Protein Primers used Restriction 
enzymes used 

Molecular weight 
of protein + tag 
(Da) 

Construct 
name 

pac1 
 

Pac1 Pac1F and Pac1R NdeI and XhoI 30688.0 pDT001 

pac2 
 

Pac2 Pac2F and Pac2R NdeI and XhoI 41477.3 pDT002 

pac7 
 

Pac7 Pac7F and Pac7R NdeI and XhoI 29346.9 pDT003 

pac13 Pac13 Pac13F and 
Pac13R 

NdeI and XhoI 15647.5 pDT004 

 

 

3.2.7.1 Discovery of the function of pac2 and a homolog of pac1 

During this study, a paper was published by the Walsh Laboratory in Harvard, reporting the 

function of pac2 in the biosynthesis of pacidamycin. It was found that Pac2 is a 

tRNA-dependent transferase which catalyses the addition of an alanyl residue to the 

N-terminus of the tetrapeptide of pacidamcyin while it is tethered to Pac8. The alanyl 

group is transferred from alanyl-tRNA and completes the assembly of the pacidamycin 

peptide backbone (Zhang et al., 2011).  
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Figure 3.15 Image from Zhang et al. (2011) paper, illustrating the function of Pac2 (designated PacB 

by Zhang et al.) transferring an alanyl group from tRNA onto the pacidamycin structure as is it 

tethered to the NRPS assemble line. 

 

Further to this, in 2013 a homolog of pac1, ssaA, was found to be a transcriptional 

regulator for the sansamycin gene cluster (sansamycins also being a member of the uridyl 

peptide class of natural products) (Li et al., 2013). 

 

3.3 Conclusions 

Gene cloning and protein production studies were carried out on the four ‘hypothetical 

protein’ genes and the postulated DABA biosynthetic genes of the pacidamycin gene 

cluster found in S. coeruleorubidus. Proteins postulated to be involved in the biosynthesis 

of DABA that were successfully heterologously produced in E. coli were used in protein 

crystallisation trials, and a number of optimisations of initial hits were attempted, 

particularly for Pac19 and Pac22, to attempt to produce protein crystals, however, these 

attempts failed to produce X-ray diffraction quality protein crystals. Protein crystals were 

produced from the Pac17 crystallisation trials. The crystal structure determination of Pac17 

will be discussed fully in chapter 4. 

Further studies into the structure and function of the hypothetical proteins were not 

continued in this study due to problems in producing gene disruptions (discussed in 

chapter 5) and the discovery of the function of Pac2 by Zhang et al. (2011). 
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4.1 Introduction 

Pac17 is a protein encoded for by the gene pac17 in the pacidamycin gene biosynthetic 

cluster of Streptomyces coeruleorubidus. At present the gene is believed to be involved in 

the biosynthesis of the core DABA residue of the pacidamycin structure as previously 

described in the introductory chapter of this thesis (chapter 1). As stated in chapter 3, the 

pac17 gene is 1497 bp in length and has a high GC content of approximately 71 %. It is 

hypothesised that pac17 is translationally coupled to pac18 which in turn is coupled to 

pac19 (illustrated in Figure 4.1). 

 

 

Figure 4.1 Diagrammatic representation of the translational coupling of pac17 through 19, showing 
the bases that are present in the gene overlaps.  

 

From the bioinformatics analysis discussed in chapter 3, the amino acid sequence of Pac17 

suggests that it is a member of the lyase like protein family with the best ‘hits’ in BLAST 

being that of argininosuccinate lyases, aspartases and fumarases. Apparent orthologs of 

Pac17 are observed in a number of streptomycetes, most notably in S. roseosporus which 

possesses a homologous gene cluster to S. coeruleorubidus. 

The gene cloning, protein production and purification and initial crystallisation of Pac17 

were carried out as described in chapter 3. Within this chapter, crystal optimisation and 

X-ray data collection will be discussed, along with the presentation of the apo and ligand 

bound structures of Pac17, the ligand being that of aspartate. Further evidence for the 

likely active site region and substrate is also investigated by the co-crystallisation of the 

protein with other ligands and also site directed mutagenesis studies. 
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4.2 Results 

4.2.1 Optimisation of the crystallisation of Pac17 

From the initial crystallisation screens (described in chapter 3), conditions where crystal 

‘hits’ were observed were optimised in 24 well hanging-drop vapour diffusion plates. The 

best crystals appeared in a precipitant solution consisting of 15 % (w/v) PEG 3350, 0.2 M 

potassium sodium tartrate, 0.1 M bis tris propane pH 7.5. The crystals formed were 

approximately 100 X 50 X 300 µm. This optimisation condition was repeated, with the 

addition of 15 % (v/v) glycerol to the buffer in the well solution in preparation for cryogenic 

data collection at the synchrotron. The resulting crystals were mounted onto litho-loops, 

flash cooled by plunging into liquid nitrogen and stored ready for transport to the 

synchrotron. 

 

 

Figure 4.2 Picture of stereotypical crystals observed in the optimisation screens of Pac17.  

 

4.2.2 Native data collection of a single Pac17 crystal 

For data collection, a single crystal was transferred to the goniostat on station I02 at 

Diamond Light Source (Oxfordshire), maintaining the temperature at -173 oC and diffraction 

recorded.  A total of 1000 images were collected in a single sweep at 0.2o oscillations to a 

maximum resolution of 1.9 Å. The space group was C2 with unit cell parameters a = 214.12, 

b = 70.88, c = 142.22 Å, β = 92.96. The cell parameters were used to predict the contents of 

the asymmetric unit (ASU). The values of 61.8% or 49.0% corresponded to three or four 

monomers present in the ASU, respectively. Given that the biological units of the closest 

structural homologues are tetrameric, it seemed likely that the ASU of Pac17 contained a 

homotetramer. 

100 μM 
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Figure 4.3 Diffraction image of Pac17 native crystal (data collected from station I02 at Diamond Light 
Source). 

 

4.2.2.1 Pac17 data processing 

The data collected were processed using XDS (Kabsch, 2010) and scaled using SCALA 

(Evans, 2006). The subsequent processing and analysis were carried out using the CCP4 

suite of programs (Winn et al., 2011). To be able to calculate the free crystallographic R 

factor (Rfree) value during model refinement, a random 5% of the reflections collected were 

placed in a subset that was not used in refinement (Brünger, 1993). The data collection 

statistics are reported in Table 4.1. 
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Table 4.1 Statistics for X-ray data collection of Pac17. 

Number of crystals 1 

Beamline I02, Diamond Light Source, UK 

Wavelength  (Å) 0.9795 

Detector ADSC Quantum 315 CCD 

Crystal-to-detector distance 

(mm) 

290.7 

Rotation range per image (°) 0.2 

Exposure time per image (s) 0.25 

Beam transmission (%) 27.2 

Total rotation range (°) 200.0 

Resolution range (Å) 67.28 - 1.90 (2.00 - 1.90) 

Space Group C2 

Cell parameters (Å/°) a = 214.12, b = 70.88, c = 142.22, β = 

92.96 

Total no. of measured 

intensities 

672568 (74768) 

Unique reflections 166584 (23088) 

Multiplicity 4.0 (3.2) 

Mean I/(I) 8.5 (2.0) 

Completeness (%) 99.3 (95.1) 

Rmerge
† 0.127 (0.583) 

Rmeas
‡ 0.147 (0.704) 

Wilson B value (Å2) 15.6 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 

for all observations i of reflection hkl and N is the number of observations of reflection hkl. 
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Inspection of the self-rotation function calculated from the experimental data using 

MOLREP (Vagin and Teplyakov, 1997) suggested that the ASU consisted of a 

homo-tetramer with 222 symmetry (Figure 4.4). 

 

 

Figure 4.4 Self rotation function generated in MOLREP for the Pac17 structure showing sections Chi 
= 180.0

o
 and Chi = 90.0

o
. The peaks at Chi=180

o
 indicate mutually perpendicular two-fold axes 

consistent with 222 symmetry and showing that the crystal symmetry is close to orthorhombic. The 
lack of peaks on Chi = 90.0

o
 show that there is no four-fold symmetry. 

 

4.2.2.2 Molecular replacement to solve the Pac17 apo structure  

Through analysis of the primary sequence of Pac17 against entries in the Protein Data Bank 

(PDB) (www.rcsb.org) (Berman et al., 2000), a structure was identified as a potential 

candidate for use in molecular replacement. This candidate was PDB entry 2E9F, an 

argininosuccinate lyase from Thermus thermophilus which had a sequence coverage to 

Pac17 of 71% with an identity of 31% giving an overall identity of 22%. Figure 4.5 shows the 

alignment of Pac17 and 2E9F from CLUSTAL OMEGA (www.ebi.ac.uk/Tools/msa/clustalo) 

(Chenna et al., 2003). 

http://www.rcsb.org/
http://www.ebi.ac.uk/Tools/msa/clustalo
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Figure 4.5 Alignment of Pac17 with 2E9F, generated by Clustal Omega.  

 

Molecular replacement was carried out using the program PHASER (McCoy et al., 2007) 

from the CCP4 suite of programs and the polyalanine monomer and tetramer  structures of 

2E9F (generated by CHAINSAW (Stein, 2008)). A convincing solution was obtained with the 

tetramer model. This gave sensible packing in the unit cell with no clashes and no large 

gaps in the lattice. A self-rotation function calculated from the structure facts was 

comparable to that calculated from the experimental structure factors which suggests the 

orientation is correct. Since one of the model twofold axes was parallel to the 

crystallographic twofold axis, the application of twofold crystallographic symmetry resulted 

in similarly oriented tetramers within the same unit cell which were therefore also related 

by translational symmetry alone (Figure 4.6).  
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Figure 4.6  Showing (a) Self Patterson function (section v = 0) of the experimental data, showing the 
pseudotranslation vector of 0.386, 0.000, 0.491 and (b) and (c) showing that the application of 
twofold crystallographic symmetry and translation by the pseudotranslation vector, respectively, are 
essentially equivalent (these images were used in Tromans et al., 2012). 

 

Analysis of the PHASER (McCoy et al., 2007) output when using the polyalanine monomer 

2E9F model showed that the four subunits were orientated correctly and two dimers would 

form the biological unit, however, PHASER failed to combine these correctly in the 

translation function to form the tetramer. An explanation for PHASER’s failure to do this 

could be due to how densely the tetramer is packed (the subunits form a tight core of 

helices, similar to that of membrane protein), another explanation being the influence of 

the pseudo-symmetry present due to the translation and rotation function giving a copy of 

the tetramer in the exact same orientation. It is worth noting that the estimated oligomeric 

state of Pac17 from gel-filtration was believed to be that of a trimer, with an estimated 

oligomeric mass of approximately 150 kDa. The densely populated core of the tetramer 
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could have caused the molecular mass estimated by size exclusion chromatography to be 

towards a lower oligomeric state. 

 

4.2.2.3 Model building and refinement of the Pac17 Apo Structure 

The structure produced by PHASER using the polyalanine 2E9F tetramer was rebuilt in 

COOT (Emsley and Cowtan, 2004). Density improvement of the resulting map was carried 

out in PARROT (Zhang et al., 1997) and the resulting phases used in BUCANEER (Cowtan, 

2006) for automated model building. Using BUCANEER (Cowtan, 2006) with its default 

settings (5 cycles) was found to be insufficient to produce a workable Pac17 model  with an 

acceptable model being produced after 15 cycles. This was shown by the significant 

improvement in the figure of merit (FOM), Rfree and fractional completeness of the model 

between cycles 5 and 15 (Figure 4.7).  

 

 

Figure 4.7 Showing the change in the Rfree, FOM and fractional completeness of the Pac17 model 
after each cycle of BUCANEER (Cowtan, 2006). 
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The output model from BUCANEER (Cowtan, 2006) was completed by rounds of manual 

building using the program COOT (Emsley and Cowtan, 2004) and refinement carried out by 

the CCP4 suite of programs. Completion of model building was difficult due to the dense 

helical core of the protein with a number of flexible loops within the structure difficult to 

build. Interestingly, these loops lie in the conserved regions of the protein, deduced by 

CONSURF which will be described later in the chapter.  The methods used for the structure 

solution of apo Pac17 is summarised in Figure 4.8. 
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Figure 4.8 Summary of the solving of the apo structure of Pac17. 

 

4.2.3 Higher resolution dataset of apo Pac17 

Further on in this chapter, co-crystallisation of Pac17 with a number of ligands will be 

discussed. One of the datasets obtained from a crystal of Pac17 produced in a condition of 

20 % PEG 3350 (w/v), 0.2 M potassium sodium tartrate, 0.1 M bis tris propane, pH 7.5 and 

1mM asparagine, cryo-protected with a cryo-protectant of the condition containing 15 % 
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glycerol was found to be identical to that of the apo Pac17 model, however the resolution 

of this dataset was 1.8 Å.  

 

 

Figure 4.9 Image showing the crystal used for data collection loaded into a litholoop (top) and an 
example of the diffraction data collected.  

 

The data were collected at the Diamond Light Source (Oxfordshire) on station I04 with the 

temperature maintained at -173 oC and diffraction data recorded. A total of 900 images 
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were collected in a single sweep of the crystal in 0.2o oscillations. The data was integrated 

and merged using XDS and SCALA (Evans, 2006), respectively, and the phases solved by 

rigid body refinement in REFMAC5 (Murshudov et al., 1997) using the slightly lower 

resolution Pac17 model that had been previously built and refined. This resulting model 

was improved by manual model building in the program COOT (Emsley and Cowtan, 2004) 

and refinement using the program REFMAC5 (Murshudov et al., 1997). The statistics for 

this data collection were: 

 

Table 4.2 Statistics for X-ray higher resolution data collection of the Pac17. 

Number of crystals 1 

Beamline I04, Diamond Light Source, UK 

Wavelength  (Å) 0.9795 Å 

Detector ADSC Q315r 

Crystal-to-detector distance 

(mm) 

272.0 

Rotation range per image (°) 0.2 

Exposure time per image (s) 0.25 

Beam transmission (%) 35 

Total rotation range (°) 180.0 

Resolution range (Å) 44.16 - 1.81 (1.84 – 1.81) 

Space Group C2 

Cell parameters (Å/°) a = 213.54, b = 70.56, c = 142.28,                

β =93.05 

Total no. of measured 

intensities 

692761 (34465) 

Unique reflections 191246 (12502) 

Multiplicity 3.6 (2.7) 
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Mean I/(I) 13.0 (1.6) 

Completeness (%) 98.3 (83.8) 

Rmerge
† 0.068 (0.515) 

Rmeas
‡ 0.098 (0.706) 

Wilson B value (Å2) 15.8 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 
for all observations i of reflection hkl and N is the number of observations of reflection hkl. 

 

Completion of model building of the 1.8 Å resolution apo structure for Pac17 was done by 

the building in of waters into the remaining positive electron density by using the CCP4 

program ARP/wARP (Perrakis et al., 2001) and checking manually in COOT (Emsley and 

Cowtan, 2004). The method of structural solution is summarised in Figure 4.10. The final 

structural parameters are summarised in Table 4.3.  

 

 

Figure 4.10 Summary of the solving of the higher resolution apo structure of Pac17. 

 

 

 

 

 

PDB 1.9 Å apo Pac17 
subunit 

Native dataset 
C2 

1.8 Å  

REFMAC5 (rigid body  refinement) –  
At 1.8 Å 

Further model building and refinement 
using COOT and REFMAC5, fitting 

waters using ARP solvent  

R
free

 = 0.210, FOM = 0.880 

R
free

 = 0.190, FOM = 0.899 
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Table 4.3 Final structural parameters of apo Pac17 structure. 

Resolution Range (Å) 44.16 – 1.81 

Rwork 0.1656 

Rfree 0.1897 

Ramachandran plot: favoured/allowed (%) 98.9/99.8 

R.M.S bond distance deviation (Å) 0.015 

R.M.S bond  angle deviation (o) 1.48 

No. of residues in protein: Chain A/B/C/D 477/478/483/482 

No. of water molecules/K+/glycerol 1933/4/4 

Mean B factors (Å2): 

protein/water/K+/glycerol/overall 

15.8/24.9/33.1/38.4/16.9 

 

 

4.2.4 Evaluating Pac17 apo model quality 

Once model building and refinement were complete, the quality of the model was 

determined by analysis of the model with the MOLPROBITY server 

(http://molprobity.biochem.duke.edu/) (Chen et al., 2010). MOLPROBITY analyses a 

number of steric and geometric parameters to determine the quality of the model and 

designates it a percentile score based on a comparison of the parameters determined by all 

current entries in the PDB (Figure 4.11). 
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All-Atom 
Contacts 

Clashscore, all atoms: 5.12 96th percentile* (N=816, 1.81Å ± 0.25Å) 

Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms. 

Protein 
Geometry 

Poor rotamers 0.28% Goal: <1% 

Ramachandran outliers 0.21% Goal: <0.2% 

Ramachandran favored 98.80% Goal: >98% 

Cβ deviations >0.25Å 4 Goal: 0 

MolProbity score^ 1.27 98th percentile* (N=11302, 1.81Å ± 0.25Å) 

Residues with bad bonds: 0.00% Goal: 0% 

Residues with bad angles: 0.00% Goal: <0.1% 

Figure 4.11 MOLPROBITY output for the Pac17 structure. 

 

From the analysis by MOLPROBITY of the finished model of apo-Pac17, it was determined 

that the quality of the model was among the 96th percentile of protein models deposited in 

the PDB. MOLPROBITY also identified each of the Met 199 residues in the tetramer as 

Rhamachandran ‘outliers’.  

 

 

Figure 4.12 The Ramachandran plot produced by MOLPROBITY with the four outliers highlighted, 
these outliers corresponding to methionine (MET) 199 in each chain A, B, C and D. 
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Further investigation was carried out on these  residues using COOT (Emsley and Cowtan, 

2004) and REFMAC5 (Murshudov et al., 1997). Removing the side chains of these residues 

in COOT and refining the structure confirmed the electron density is definitely present and 

not biased by the presence of the amino acid in the model (Figure 4.13). This suggests that 

the conformation of the methionines in the model are correct and that they are genuine 

outliers. 

 

 

Figure 4.13 Showing Fobs – Fcalc density (omit map) for residues Pro 198 – Ala 200, confirming that 
Met 199 is a genuine Rhamachandran outlier; resolution 1.81 Å, contour level 3.0 σ. 

 

Further investigation of the environment in which these Ramachandran outliers exist 

shows that they are at the centre of a GXMXG motif (X being a proline and alanine, 

respectively) and at the interface of two of the four subunits of the Pac17 tetramer.  The 

methionine appears to be at the turn of a looped region of Pac17, the glycines allowing 

there to be more flexibility in the region making the conformation of this methionine more 

energetically favourable, the proline possibly providing the chain with the ability to ‘kink’. 
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Figure 4.14 showing the environment the methionine outlier is present in, the presence of glycines 
either side allowing the region to have more flexibility and the presence of a proline giving the 
region the opportunity to ‘kink’. 2Fobs – Fcalc map; resolution 1.81 Å, contour level 1.0 σ. 

 

4.2.5 Analysis of the Pac17 apo- structure 

Pac17 exists as a tetramer in its crystallographic form. The structure consists of mainly 

α-helices with a total of 20 long α-helices (5 from each monomer) coming together at the 

core of the tetramer.  A secondary structure analysis of the protein using the online server 

PDBSUM (http://www.ebi.ac.uk/pdbsum/) (Laskowski et al., 1997) (Figure 4.15) deduced 

that each monomer within the tetramer consists of 22 α-helices between amino acid 

residues; 11-18, 20-30, 32-48, 54-66, 69-73, 83-94, 108-144, 164-189, 208-214, 224-229, 

232-258, 270-272, 286-309, 318-31, 328-348, 353-362, 367-378, 382-399, 409-418, 426-

429, 436-441 and 451-490. 8 short β-strands are also present in each monomer, 4 of which 

form 2 β-hairpins; 150-153, 157-162 and 274-275, 283-284. 

http://www.ebi.ac.uk/pdbsum/
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Figure 4.15 PDBSUM output showing a graphical representation of the secondary structure of Pac17. 

 

PDBSUM suggests that between residues 11 and 49 in each of the monomers, there are 

three helices, however, on closer inspection of the structure in COOT (Emsley and Cowtan, 

2004) it is likely to be one long α-helix which is slightly bent (see Figure 4.16), which 

explains the discrepancy. 



Chapter 4 – Structural Investigation of the Pac17 Protein 

 

 

  
Page 118 

 
  

 

Figure 4.16 Images of Pac17, showing the Pac17 monomer (top left) coloured from the N (red) to C 
(blue) terminus and three images of the tetramer at different orientations. The bent helix previously 
discussed can easily be seen in the monomer image in red. 

 

C 
N 
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The Pac17 model was used as a template in the PDBeFOLD server 

(www.ebi.ac.uk/pdbe/ssm)  (Krissinel and Henrick, 2004) to identify the closest structural 

homologs. On interrogation of the results, it was found that although model 2E9F was the 

closest primary structure homolog, it was not present in the PDBeFOLD analysis using the 

default parameters and only two models (1TJU; duck delta crystallin mutant and 1K62; 

human argininosuccinate lyase mutant) met the parameters of the search. Superimposition 

of both the 2E9F and 1TJU models onto the Pac17 model (Figure 4.17) show that the 1TJU 

model is more closely related to Pac17 in 3D space, however 2E9F is also similar which is 

likely to be why molecular replacement was successful. Re-submitting the Pac17 model into 

PDBeFOLD and changing the parameters to accept lower matches resulted in the 2E9F 

model being present in the search results along with PDB entry 3R6V which has aspartate 

bound as a ligand. Table 4.4 summarises the comparison of Pac17 to these structural 

homologs.  

 

Table 4.4 Selected structural homologs of Pac17 

Protein PDB code Source PDBeFold output 

Z-score Identity (%) 

Delta2 1TJU Anas platyrhynch 11.5 24.0 

Argininosucinnate 

lyase 

2E9F Thermus thermophilus 9.9 27.9 

AspB 3R6V Bacillus sp. YM55-1 8.3 14.2 

Protein Resolution 

(Å) 

R.m.s deviation (Å)/aligned residues Reference 

Subunit tetramer 

Delta2 2.1 1.79/409 2.30/1620 (Sampaleanu 

et al., 2004) 

Argininosuccinate 

lyase 

2.8 1.86/401 2.16/1590 Goto et al. 

(unpublished) 

AspB 2.6 2.39/335 2.72/1355 (Fibriansah et 

al., 2011) 
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Figure 4.17 Superimpositions of the structure of Pac17 with 2E9F (top); the structure used in 
molecular replacement and 1TJU (bottom); the highest hit from analysis by PDBeFOLD. 

 

4.2.6 Conservation of residues in the Pac17 structure 

Following the determination of the structure of Pac17, an amino acid alignment was 

performed of Pac17 with proteins with a sequence similarity > 50% using CLUSTAL OMEGA. 

The alignment was used in CCP4 QTMG to map conservation onto the surface model of 

Pac17 (Figure 4.18). 

Pac17 and 2E9F 

Pac17 and 1TJU 
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Figure 4.18 mapping the conservation of residues of sequence similar proteins to Pac17 with a 
region highlighted as having a high level of conservation relative to the rest of the structure. Picture 
generated using PYMOL. 

 

A large region of conservation can be seen in four positions on the surface of the tetramer. 

The conserved region was also found to be at the interface of three of the chains of the 

tetramer which is a common position for active sites to be present. Further evaluation of 

the conservation between the proteins shows that Pac17 has very little other conservation 

on the surface of the structure other than at the postulated active site region. Further to 

this, if the substrate for Pac17 is aspartate (as hypothesised through bioinformatics 

 

 

 

Not Conserved Conserved 

90
o
 



Chapter 4 – Structural Investigation of the Pac17 Protein 

 

 

  
Page 122 

 
  

analysis) it would suggest that the conserved region around the active site is much larger 

than one would assume necessary, which may suggest the protein interacts or forms 

complexes with other proteins or uses a co-substrate. 

 

4.2.7 Crystallisation of Pac17 with its hypothesised substrate 

To test the hypothesis that aspartate is the substrate of Pac17, 1 mM of L-aspartate was 

added to the crystallisation conditions in the hope that the protein would co-crystallise 

co-ordinated to the ligand. Initial crystal optimisations produced crystals in all 

co-crystallisation conditions, however, the addition of a cryo-protectant in preparation for 

flash cooling caused the crystals to breakdown. A new set of screens were set-up which 

included 10 % (v/v) glycerol in the condition and all conditions produced crystals. The best 

crystals were found in condition; 10 % (v/v) glycerol, 20 % (w/v) PEG 3350 , 0.2 M 

potassium sodium tartrate, 0.1 M bis tris propane pH 7.5. Crystals were mounted onto 

litho-loops, flash-cooled by plunging into liquid nitrogen and stored prior to transport to 

the synchrotron. For data collection, a single crystal was transferred to the goniostat of 

beamline I04-1 at the Diamond Light Source (Oxfordshire), maintaining the temperature at 

-173 oC.  A total of 1000 images were collected in a single sweep of the crystal in 0.2o 

oscillations. The data were merged and scaled using XDS (Kabsch, 2010) and SCALA (Evans, 

2006), respectively. 



Chapter 4 – Structural Investigation of the Pac17 Protein 

 

 

  
Page 123 

 
  

 

Figure 4.19 Image of the Pac17-Asp crystal in the litho-loop that data were collected on (top) and an 
example of the diffraction data collected (bottom).  

 

4.2.7.1 Solving the structure of co-crystallised Pac17 

The data collected indexed to a different space group (C2221) to that of the apo-Pac17 

structure which was confirmed by analysis of the self-rotation function (Figure 4.20) 

produced in MOLREP (Vagin and Teplyakov, 1997). The solvent content analysis suggested 

that it was most likely that a dimer was present in the ASU. The structure was solved by 

molecular replacement in MOLREP (Vagin and Teplyakov, 1997) using a subunit of the 
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apo-Pac17 structure as the search model.  As expected, two monomers were located in the 

ASU. 

 

Figure 4.20 Self rotation function generated in MOLREP for Pac17-Asp structure showing Chi = 
180.0

o
 and Chi = 90.0. The four peaks aligning with the axes at Chi = 180.0

o
 suggests the space group 

of the unit cell is C2221. On the Chi = 180
o
 section, only peaks corresponding to the crystallographic 

twofold axes are seen. This indicates that the twofold axes of the Pac17 tetramer are aligned with 
these axes. 

 

The statistics for this dataset were: 

Table 4.5 Statistics for X-ray data collection of Pac17 co-crystallised with 1 mM aspartate. 

Number of crystals 1 

Beamline I04-1, Diamond Light Source, UK 

Wavelength  (Å) 0.9173 Å 

Detector Pilatus 2M 

Crystal-to-detector distance 

(mm) 

265.8 

Rotation range per image (°) 0.2 

Exposure time per image (s) 0.2 
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Beam transmission (%) 47 

Total rotation range (°) 140.0 

Resolution range (Å) 53.00 – 2.30 (2.36 – 2.30) 

Space Group C2221 

Cell parameters (Å) a = 71.08, b = 211.94, c = 141.74 

Total no. of measured 

intensities 

216943 (13269) 

Unique reflections 47079 (3392) 

Multiplicity 4.6 (3.9) 

Mean I/(I) 6.8 (2.0) 

Completeness (%) 98.3 (97.7) 

Rmerge
† 0.148 (0.579) 

Rmeas
‡ 0.185 (0.745) 

Wilson B value (Å2) 20.20 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 

for all observations i of reflection hkl and N is the number of observations of reflection hkl. 

 

Rounds of building and refinement using COOT (Emsley and Cowtan, 2004) and REFMAC5 

(Murshudov et al., 1997) were used to complete the ligand bound structure. The structure 

solution and the final structural parameters of the model are summarised in Figure 4.21 

and Table 4.6, respectively. 
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Figure 4.21 Summary of the solving of the ligand bound Pac17 structure. 

 

Table 4.6 Final structural parameters of ligand bound Pac17 structure. 

Resolution Range (Å) 53.0-2.30 

Rwork 0.1947 

Rfree 0.2482 

Ramachandran plot: favoured/allowed (%) 97.4/99.8 

R.M.S bond distance deviation (Å) 0.012 

R.M.S bond  angle deviation (o) 1.45 

No. of residues in protein: Chain A/B 468/483 

No. of water molecules/Asp 443/1 

Mean B factors: protein/water/Asp/overall 29.6/25.0/34.5/29.4 

Co-crystallised dataset 
C2221 
2.30 Å  

Apo-Pac17 tetramer 

Subunit of Pac17 used as search model 

MOLREP 
molecular replacement 

REFMAC5 – Rigid Body refinement 

Quick manual rebuild followed by 
REFMAC5 

Further model building and refinement 
using COOT and REFMAC5, fitting 

waters using ARP solvent  

 R
free

 = 0.450, FOM = 0.473 

R
free

 =  0.316, FOM = 0.739 

R
free

 = 0.286, FOM = 0.782 

  

R
free

 = 0.248, FOM = 0.829 
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The completed model of ligand bound Pac17 was validated using validation tools in COOT 

and running the model through the online MOLPROBITY server, the server’s analysis 

summary is shown below. 

 

All-Atom 
Contacts 

Clashscore, all atoms: 6 99th percentile* (N=355, 2.30Å ± 0.25Å) 

Clashscore is the number of serious steric overlaps (> 0.4 Å) per 1000 atoms. 

Protein 
Geometry 

Poor rotamers 2.97% Goal: <1% 

Ramachandran outliers 0.21% Goal: <0.2% 

Ramachandran favored 97.35% Goal: >98% 

Cβ deviations >0.25Å 2 Goal: 0 

MolProbity score^ 1.81 96th percentile* (N=8909, 2.30Å ± 0.25Å) 

Residues with bad bonds: 0.00% Goal: 0% 

Residues with bad angles: 0.00% Goal: <0.1% 

Figure 4.22 MOLPROBITY output for the Pac17-Asp structure. Again the Met 199 of each subunit is a 
Rhamachndran outlier. 

 

4.2.8 The Aspartate bound structure of Pac17 

Interrogation of the resulting structure showed that when crystallographic symmetry was 

applied to the dimer in the ASU, a tetramer was formed which correlated with that of the 

apo-Pac17 model. Overlaying the apo and co-crystallised models of Pac17 suggested that 

there were a number of conformational differences between the structures. Further to 

this, these regions of conformational change were found around the region of conserved 

residues of Pac17 (when compared to its closest sequence homologs). 
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Figure 4.23 Superposition of apo-Pac17 (grey) and Pac17-Asp (coloured) where the two structures 
differ. 

 

There are two main areas in this region that move; A mobile loop (centre of Figure 4.23 in 

yellow), this loop moves a significant distance from its apo to ligand bound form, the 

largest distance moved by an alanine residue (Ala278) which moves a distance of 5.6 Å 

(comparing position of Cα backbone) and an α-helix (bottom of Figure 4.23 in red). These 

regions are readily recognised if the difference in distance is plotted between the apo and 

ligand bound structure of Pac17. As there are only two chains in the asymmetric unit of the 

ligand bound structure, the change in distances were compared to their counterpart in the 

apo structure of Pac17. It was observed that there is a ‘dynamic’ chain (chain A) and a 

‘static’ chain (chain B) (Figure 4.24), chain A showing the two conformational changes that 

have previously been highlighted. 
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Figure 4.24 Graph showing the difference in distances of chains A and B in the ligand bound model 

of Pac17 in comparison to their chain counterparts in the apo-Pac17 model. Two regions in chain A 

can be seen to move significantly; the first approximately between residues 270 and 284 and the 

second between 390 and 410.  

 

In the centre of this region of conformational change, there is extra density in the ligand 

bound structure in comparison to that of the apo-Pac17 structure. This density is likely to 

be that of the ligand; aspartate. Aspartate was fitted into this density to determine 

whether the ligand was responsible for the extra density (Figure 4.25). Aspartate fits the 

density well which suggests it is this that is causing the extra density in the Pac17-Asp map. 
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Figure 4.25 Two images showing the ligand (aspartate) modelled into its Fobs – Fcalc density map; 
resolution 2.30 Å, contour level 3.0σ. 

 

Evaluation of this site suggests that the active site of Pac17 is at the interface of three of 

the four subunits of the tetramer, a common position for an active site. Another noticeable 

feature of the ligand bound structure is that although in the tetramer there are four active 

sites, only two of the four active sites are occupied by the ligand, suggesting that the only 

two active sites of the tetramer are active at any one time. 

 

4.2.9 Further analysis of the ligand bound structure of Pac17 

Ligand binding is co-ordinated by seven amino acids from three chains of the tetramer 

situated around the active site. From chain A; Ser276, Lys282 and Asn284, from chain B; 

Thr154 and His155, and from chain C; Arg108, Asn109 and Asn316. Ser276, Lys282 and 

Asp284 are found on the mobile loop that closes over the ligand to allow for the 

co-ordination between the residues in the loop and the ligand. Thr154 and His155, are 

found on the α-helix which shows a conformational change between the apo and ligand 

bound models. The other amino acid residues that are found to co-ordinate with the ligand 

are found on chain A which does not seem to change conformation from the apo and 

ligand bound form of Pac17. The co-ordination of these residues with aspartate is depicted 

in Figure 4.26.  
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Figure 4.26 The co-ordination of the ligand (aspartate) with key residues in the active site of Pac17 in 
the context of the model (top) and diagrammatically (bottom). 

 

Interestingly, Asn109 is also co-ordinated to Pro198, which is the amino acid next to the 

Ramachandran outlier Met199 (Figure 4.27). The fact that a residue that co-ordinates with 

His155 (B) 

Lys282 (A) 

Asn109 (C) 

Thr154 (B) 

Lys282 (A) 

Asn284 (A) 

Arg108 (C) 

Asn109 (C) Asn316 (C) 

Asn284 (A) 

Thr154 (B) 

His155 (B) 

Arg108 (C) 

Asn316 (C) 
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the ligand also co-ordinates with a residue next to an outlier is often a reason for the 

outlier being present. 

  

 

Figure 4.27 The co-ordination of asparagine 109 with the ligand (aspartate) present in the active site 
and with other residues in the Pac17 active, particularly proline 198, which is the residue next to the 
Ramachandran outlier methionine 199. 

 

4.2.10 Comparison of Pac17 to AspB 

Since aspartate was specifically recognised by Pac17, the hypothesis that the protein is an 

aspartase is further supported. Referring to the PDBeFOLD analysis shows that an aspartase 

(AspB from Bacillus sp. YM55-1) is present in the search results with PDB accession number 

3R6Q. The apo-protein crystals were also soaked with 100 mM aspartate (a different 

method to that used for Pac17 which was the co-crystallisation of the ligand with the 

protein); PDB 3R6V (Fibriansah et al., 2011). AspB is reported to be a tetramer, however, it 

was observed that the 3R6V structure contained one aspartate per tetramer whereas two 

aspartate ligands are present in each tetramer of ligand bound Pac17. Fibriansah et al. 

(2011) report that the aspartase contains a characteristic signature sequence of GSSxPxKxN 

for the Aspartase/Fumarase superfamily members which they designate the SS loop. 

Further to this they report that this loop region is highly mobile in the apo structure. 

Interrogation of the Pac17 sequence showed that  the ‘SS loop’ in Pac17 is characterised by 

the sequence ISAxxPxKxN, I and N being residues 275 and 284, respectively. This sequence 

differs from the AspB sequence at residues one and three, again this loop being disordered 

Asp (ligand) 

Asn (109) 

Pro (198) 

Met (199) 
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in the apo structure and containing three amino acids that are found to co-ordinate with 

the ligand. Fibriansah et al. (2011) also report that the second residue (serine) in the 

sequence is essential for the enzymatic activity, the serine being responsible for the 

deprotonation of the aspartate to form an enediolate intermediate, which, via an electron 

rearrangement, causes the release of ammonia from aspartate, the other product being 

fumarate. In the Pac17 structure, the putative catalytic serine candidate is Ser276. Further 

analysis of Ser276 shows that the residue is perfectly placed (the Cβ oxygen of Ser276 

being 3.1 Å away from the Cβ of the aspartate ligand) to be the catalytic residue. The serine 

is on the highly mobile active site loop and the Cα backbone of this residue moves a 

distance of 3.5 Å between its apo and ligand bound position, the Cβ oxygen moving even 

further (4.3 Å). This movement is shown in Figure 4.28. 

 

 

 

Figure 4.28 Overlay of the apo and Asp bound model of Pac17, showing the position of the ligand in 
the bound structure and the movement of Ser276 from its apo position (on the grey chain) to its 
ligand bound position (yellow chain). 

 

Comparison of the amino acids that coordinate with the ligand in Pac17 and AspB are 

shown in Table 4.7. 

 

3.5 Å 

Aspartate (ligand) 
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Table 4.7 Comparison of the active site residues in Pac17 and AspB. 

Pac17 (chain) AspB (chain) 

Serine 276 (A) (catalytic serine) Serine 318 (C) 

Lysine 282 (A) Lysine 324 ( C) 

Asparagine 284 (A)  

Threonine 154 (B) Threonine 187 (A) 

Histidine 155 (B) Histidine 188 (A) 

Asparagine 316 (C)  

Asparagine 109 (C) Asparagine 142 (B) 

Arginine 108 (C) Serine 319 (C), Threonine 101 (B), Threonine 

(B) and Serine 140 (B) 

 

 

AspB does not appear to have a residue in the active site that shows similar co-ordination 

as residues Asn284 and Asn316 in Pac17. Further to this there are differences in the 

coordination of active site residues with the carboxy group of the amino acid ligand. The 

ligand bound Pac17 structure shows that Arg108 coordinates with each of the oxygens in 

the Cβ carboxylic acid, whereas AspB appears to coordinate with these atoms of the ligand 

with a series of threonine and serine residues. The co-ordination of arginine with this group 

would seem to be a better candidate for the subsequent reaction, allowing for better 

stabilisation of the enediolate intermediate that is postulated to be part of the enzymatic 

mechanism according to Fibriansah et al. (2011). The mechanism suggested by Fibriansah 

et al. (2011) is depicted in Figure 4.29 in the context of the Pac17 active site. 
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Figure 4.29 Postulated enzymatic mechanism for Pac17 (based on Fibriansah et al., 2011). 
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4.2.11 Further interrogation of Pac17 substrate 

As will be described in chapter 6, in vitro enzymatic studies of Pac17 failed to detect 

enzyme activity. It was decided that further substrate interrogation of Pac17 may be 

possible using protein crystallography. As a conformational change was seen when Pac17 

was co-crystallised with aspartate, and with the bioinformatics evidence that the protein 

was likely to be an argininosuccinate lyase or aspartate lyase, further co-crystallisations 

were set up using structurally similar amino acids to aspartate (asparagine, glutamine and 

glutamate) and argininosuccinate. The conditions used were identical to those for the 

co-crystallisation of Pac17 with aspartate using the same concentration of ligand (1 mM). 

Crystals formed in the asparagine (data shown in the apo-Pac17 structure earlier in this 

chapter), glutamate and glutamine screens, however, co-crystallisation of Pac17 with 

argininosucccinate failed to produce any crystals. Crystals were mounted onto litho-loops, 

flash cooled by plunging into liquid nitrogen and stored prior to transport to the 

synchrotron. For data collection, a single crystal was transferred to the goniostat of station 

I04-1 at the Diamond Light Source (Oxfordshire), maintaining the temperature at -173 oC.  

The data collection statistics are reported in Table 4.8. 

 

Table 4.8 Statistics for X-ray data collection of Pac17 co-crystallised with L-glutamate and 
L-glutamine. 

Co-crystallised with 1 mM L-glutamate 1 mM L-glutamine 

Number of crystals 1 1 

Beamline I04-1 I04-1 

Wavelength  (Å) 0.9173 0.9173 

Detector Pilatus 2M Pilatus 2M 

Crystal-to-detector distance 

(mm) 

340.7 297.1 

Rotation range per image (°) 0.2 0.2 

Exposure time per image (s) 0.4 0.3 

Beam transmission (%) 100.0 100.0 

Total rotation range (°) 240.0 200.0 
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Resolution range (Å) 60.70-2.32 (2.38-2.32) 53.67-2.00 (2.05-2.00) 

Space Group C2 C2 

Cell parameters (Å/°) a = 214.8, b = 71.2,                 
c = 142.4, β = 92.86 

a = 214.96, b = 71.32,              
c = 142.41, β = 92.87 

Total no. of measured 

intensities 

417400 (29065) 530030 (30015) 

Unique reflections 92148 (6791) 141427 (9388) 

Multiplicity 4.5 (4.3) 3.7 (3.2) 

Mean I/(I) 8.4 (2.7) 12.1 (3.4) 

Completeness (%) 96.9 (95.9) 93.8 (82.3) 

Rmerge
† 0.122 (0.500) 0.069 (0.290) 

Rmeas
‡ 0.156 (0.639) 0.093 (0.392) 

Wilson B value (Å2) 20.7 15.5 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 

for all observations i of reflection hkl and N is the number of observations of reflection hkl. 

 

Inspection of the refined datasets of the co-crystallisation of Pac17 and L-glutamate and 

L-glutamine showed that Pac17 was present in its apo conformation (the models were 

isomorphous), and the maps produced showed no evidence for bound ligands. These 

datasets were therefore not considered any further. The absence of these structurally 

similar amino acids to asparatate in the co-crystallisation datasets further supports that 

aspartate is likely to be the natural substrate for Pac17.  

As a further study, the co-crystallisation of Pac17 with its likely enzymatic product, 

fumarate was also attempted. The conditions used for crystallisation were the same as that 

for the other co-crystallisation attempts. Although crystals were obtained in this 

optimisation, no useful data was obtained at the syncotron. 
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4.2.12 Site directed mutagenesis (SDM) 

From the structural determination of the active site of Pac17, a number of active site 

mutants were produced to determine the importance of the presence of these residues. 

Primers were designed to mutate residues in the active site to alanine residues (method 

described in chapter 2). The table below shows the residues intended to be mutated and 

the primers used in the SDM method to produce the alanine mutants. 

Table 4.9 Showing primers used to produced Pac17 active site mutants. 

Mutant Forward Primer Reverse Primer 

Arginine 108 to Alanine Pac17_108Arg/Ala_F Pac17_108Arg/Ala_R 

Asparagine 109 to Alanine Pac17_109Asn/Ala_F Pac17_109Asn/Ala_R 

Serine 276 to Alanine Pac17_276Ser/Ala_F Pac17_276Ser/Ala_R 

Methionine 279 to Alanine Pac17_279Met/Ala_F Pac17_279Met/Ala_R 

Lysine 282 to Alanine Pac17_282Lys/Ala_F Pac17_282Lys/Ala_R 

Asparagine 284 to Alanine Pac17_284Asn/Ala_F Pac17_284Asn/Ala_R 

 

Mutagenesis of four of the residues were successful (Asn109, Met279, Lys282 and Asn284), 

determined by DNA sequencing, but mutagenesis was unsuccessful on the hypothesised 

catalytic serine (276) and arginine (108). The mutants were expressed and purified then 

used in crystal trials, using the same conditions as used for the ligand bound structure 

(including 1 mM L-aspartate). The addition of the aspartate was to determine whether 

Pac17 could still bind the ligand when one of the amino acid mutations were present. 

Crystals formed in all of the mutant trials. The crystals were mounted onto litho-loops, 

flash cooled by plunging into liquid nitrogen and stored prior to transport to the 

synchrotron. For data collection, a single crystal was transferred to the goniostat of either 

station I04 or I04-1 at the Diamond Light Source (Oxfordshire), maintaining the 

temperature at -173 oC.  The data collection statistics and the final model parameters for 

each of the datasets are reported in the subsequent tables. 
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Table 4.10 Statistics for X-ray data collection of Pac17 mutants Asn109Ala and Met279Ala. 

Mutant Asn109Ala Met279Ala 

Number of crystals 1 1 

Beamline I04 I04-1 

Wavelength  (Å) 0.9795 0.9173  

Detector ADSC Q315r Pilatus 2M 

Crystal-to-detector distance (mm) 323.3 369.5 

Rotation range per image (°) 0.2 0.4 

Exposure time per image (s) 0.5 0.4 

Beam transmission (%) 49.97 100.0 

Total rotation range (°) 180.0 240.0 

Resolution range (Å) 106-2.00 (2.05-2.00) 44.17-2.30 (2.36-2.30) 

Space Group C2 C2 

Cell parameters (Å/°) a = 214.0, b = 71.3,                 
c = 142.0, β = 92.94 

a = 214.50, b = 71.56,             
c = 143.34, β = 92.95 

Total no. of measured intensities 490079 (19734) 373468 (14878) 

Unique reflections 137089 (7254) 88533 (4685) 

Multiplicity 3.6 (2.7) 4.2 (3.2) 

Mean I/(I) 8.6 (2.4) 8.9 (5.7) 

Completeness (%) 94.9 (68.8) 90.9 (65.5) 

Rmerge
† 0.124 (0.590) 0.099 (0.114) 

Rmeas
‡ 0.175 (0.832) 0.127 (0.158) 

Wilson B value (Å2) 11.7 9.2 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 

for all observations i of reflection hkl and N is the number of observations of reflection hkl. 
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Table 4.11 Final structural parameters of Pac17 mutants Asn109Ala and Met279Ala. 

Mutant Asn109Ala Met279Ala 

Resolution Range (Å) 106.0 – 2.0 44.17 – 2.30 

Rwork 0.1899 0.1662 

Rfree 0.2466 0.2260 

Ramachandran plot: favoured/allowed (%) 98.1/99.8 97.9/99.8 

R.M.S bond distance deviation (Å) 0.020 0.017 

R.M.S bond  angle deviation (o) 1.811 1.69 

No. of residues in protein: Chain A/B/C/D 478/477/475/476 478/478/482/481 

No. of waters/K+/glycerol 1953/4/3 1939/4/3 

Mean B factors: protein/water /overall 15.4/24.0/17.3 10.7/20.9/12.2 

 

Table 4.12 Statistics for X-ray data collection of Pac17 mutants Lys282Ala and Asn284Ala. 

Mutant Lys282Ala Asn284Ala 

Number of crystals 1 1 

Beamline I04-1 I04-1 

Wavelength  (Å) 0.9173  0.9173 

Detector Pilatus 2M Pilatus 2M 

Crystal-to-detector distance (mm) 383.8 369.5 

Rotation range per image (°) 0.2 0.2 

Exposure time per image (s) 0.5 0.3 

Beam transmission (%) 100.0 100.0 

Total rotation range (°) 200.0 200.0 

Resolution range (Å) 51.06-2.50 (2.56-2.50) 60.45 – 2.80 (2.87-2.80) 

Space Group C2 C2 



Chapter 4 – Structural Investigation of the Pac17 Protein 

 

 

  
Page 141 

 
  

Cell parameters (Å/°) a = 214.82, b = 71.39,             
c = 142.56, β = 92.93 

a = 213.7, b = 71.3,                 
c = 141.9, β = 92.86 

Total no. of measured intensities 264696 (14296) 151951 (8192) 

Unique reflections 72567 (4532) 48638 (3090) 

Multiplicity 3.6 (3.2) 3.1 (2.7) 

Mean I/(I) 7.0 (2.7) 7.3 ( 3.0) 

Completeness (%) 90.8 (78.2) 91.9 (80.3) 

Rmerge
† 0.123 (0.387) 0.131 (0.357) 

Rmeas
‡ 0.166 (0.514) 0.176 (0.480) 

Wilson B value (Å2) 20.3 18.5 

†
 Rmerge = ∑hkl ∑i |Ii(hkl)  I(hkl)|/ ∑hkl ∑iIi(hkl). 

‡ 
Rmeas = ∑hkl [N/(N  1)]

1/2
 × ∑i |Ii(hkl)  I(hkl)|/ ∑hkl 

∑iIi(hkl), where Ii(hkl) is the ith observation of reflection hkl, I(hkl) is the weighted average intensity 

for all observations i of reflection hkl and N is the number of observations of reflection hkl. 

 
Table 4.13 Final structural parameters of Pac17 mutants Lys282Ala and Asn284Ala. 

Mutant Lys282Ala Asn284Ala 

Resolution Range (Å) 51.06 – 2.50 60.45 – 2.80 

Rwork 0.1837 0.2115 

Rfree 0.2680 0.3250 

Ramachandran plot: favoured/allowed 96.7/99.6 94.9/99.5 

R.M.S bond distance deviation (Å) 0.013 0.013 

R.M.S bond  angle deviation (o) 1.48 1.48 

No. of residues in protein: Chain A/B/C/D 479/479/482/481 482/481/480/479 

No. of waters/K+/glycerol 1938/3/4 1930/2/3 

Mean B factors: protein/water/overall 13.6/28.979/15.4 25.7/19.1/25.6 
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The residue mutations were confirmed through a combination of inspecting                    

Fobs(wild type) – Fobs(mutant) difference maps phased on the wild type model, and refining the 

structure with the introduced mutation against the mutant dataset. 

 

Figure 4.30 Showing 2Fobs – Fcalc maps of the mutated residues; the full residue seen in blue showing 
that density for the non-mutated residue is absent. 

 

Analysis of the four Pac17 mutants suggest that all are in the apo conformation, suggesting 

that these four residues are essential for the successful co-ordination of aspartate with the 

protein. Interestingly, Met279 does not directly co-ordinate with the ligand, however 

hydrogen bonding is present between this residue and Lys282. The later does co-ordinate 

with the ligand and as such may be being stabilised by the presence of Met279. 

 

4.3 Conclusions 

The structure of the protein Pac17, a lyase encoded for by the pac17 gene in the gene 

cluster for pacidamycin from Streptomyces coeruleorubidus has been determined. An 

L-aspartate bound structure of this protein has also been produced, which has enabled 

further analysis of the protein. Co-crystallisation of Pac17 under the same conditions used 

for the crystallisation of the protein with the ligand, with structurally similar ligands 

showed no change to the apo structure. Furthermore, site-directed mutagenesis of 

residues (when co-crystallised with L-aspartate) within the postulated ‘active’ site also 

resulted in the protein taking the apo conformation rather than the ligand bound, 

suggesting that these residues are essential for the recognition and/or the co-ordination of 

Asn109 Met279 Lys282 Asn284 
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the ligand with the protein. The comparison of Pac17 to AspB (Fibriansah et al., 2011) 

showed a number of similarities and differences, particularly in the stoichiometry of 

number of ligands per protein tetramer, and also the residues that co-ordinate with the 

ligand in the active site. This comparison however has shed some light on the likely mode 

of action for the protein, highlighting a serine residue that is likely to be the catalytic 

residue. A mechanism for the enzymatic reaction has been suggested (adapted from 

Fibriansah et al (2010)); the catalytic serine causing the deprotonation of the aspartate, 

forming an enediolate intermediate, which, via a rearrangement of electrons, causes the 

release of ammonia from the intermediate to form fumarate, the by-product of the 

reaction. A number of questions do arise over this suggested mechanism such as how the 

deprotonation of the serine would occur due to serine’s high pKa (approximately 9.5) and 

whether the deprotonation of the asparate ligand is via a 1,2-elimination (Mohrig, J., 2012) 

Site direct mutagenesis attempts on the ‘likely’ catalytic serine (Ser276) and an active site 

arginine (Arg108) were unsuccessful in this study. This would represent a good starting 

place for continuing the study of the protein, as well as more attempts to obtain a ligand 

bound structure of the protein with the enzymatic reaction product, fumarate. 

Additionally, in vitro activity studies of this protein to obtain kinetic data for the native 

protein and the mutants produced would also complement the study. This in vitro study 

has been attempted and will be discussed further in chapter 6 of this thesis.  
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5.1 Introduction 

In vivo analysis of genes can offer fundamental insights into the biosynthesis of metabolites 

and natural products.  

PCR mediated gene disruption (Gust et al., 2003) was considered a suitable approach for 

the disruption of candidate genes within the pacidamycin biosynthetic gene cluster of 

Streptomyces coeruleorubidus. This method allows for the replacement of a gene on a 

bacterial chromosome with a selectable marker and the accurate replacement of genes in 

vivo, removing the need to carry out laborious in vitro methods.  

A number of genes within the pacidamycin biosynthetic gene cluster were of interest in this 

study; the four genes hypothesised to be involved in the biosynthesis of DABA (pac17 

through 20), the gene cluster’s four hypothetical proteins (pac1, 2, 7 and 13) and a 

N-methyltransferase (pac22) responsible for the methylation of the DABA residue. Previous 

studies into pacidamycin biosynthesis had determined that disruption of the 5’ half of 

pac19 eliminated the production of pacidamycin in the native producer S. coeruleorubidus 

(Rackham et al., 2010). The study by Rackham et al. (2010) also showed that the chemical 

complementation of this disruption with the diamino acid reinstated pacidamycin 

production.  It has previously been stated that a function for pac2 has been elucidated 

(Zhang et al., 2011), however, prior to publication of this paper, a disruption of this gene 

was attempted (along with the 5’ and 3’ genes of the cluster; pac1 and 22, respectively) but 

was unsuccessful.  

In this chapter, the disruption of the DABA biosynthetic genes and two hypothetical protein 

genes (pac7 and pac13) will be reported. Disruption in the native producer                            

(S. coeruleorubidus) and in the cloned gene cluster expressed heterologously (in S. lividans 

TK24) will be discussed. A number of considerations will also be raised including, the 

translational coupling of pac17-19 and the implications this has on the disruption study, the 

polar effects of genes in close proximity, and the essentiality of the genes being studied to 

pacidamycin biosynthesis. 
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5.2 Results 

5.2.1 Gene disruption studies in the pacidamycin native producer S. coeruleorubidus 

To ensure that the methods for growth, metabolite extraction and detection reported by 

Rackham et al. (2010) were suitable for this study, an initial test using wild type                     

S. coeruleorubidus was carried out as described in chapter 2. After metabolite extraction, 

both LC-MS and LC-MS/MS were carried out. LC-MS analysis consisted of monitoring the 

detection of five of the most abundant pacidamycins produced by S. coeruleorubidus and 

included; pacidamycin 1 (m/z = 875), pacidamycin 4 (m/z = 804), pacidamycin 4N             

(m/z = 816), pacidamycin 5T (m/z = 781) and pacidamycin D (m/z 712). LC-MS/MS analysis 

consisted of isolation of ions with m/z = 712 in MS1 (pacidamycin D parent ion) and analysis 

of the parent ion fragmentation by MS2. 

 

 

Figure 5.1 The LC profile produced by extraction of metabolites from wild type S. coeruleorubidus. 
The profile shows the UV absorbance produced by the ion masses of pacidamycins 1, 4, 4N, 5T and 
D. The pacidamycins have an elution time of approximately 3.7 – 4.7 min using the method 
described in chapter 2. 

Pacidamycins 



Chapter 5 – Pacidamycin Cluster Gene Disruption Studies 

 

 

  
Page 147 

 
  

 
Figure 5.2 The fragments predicted to be observed by MS2 analysis of pacidamycin D (top) and those 
observed upon MS2 analysis, the major peaks in the experimental profile (highlighted in red) match 
those predicted to be present. 

  

From analysis of the metabolite profile of the wild type of S. coeruleorubidus, the methods 

outlined by Rackham et al. (2010) were found to be robust and suitable for use in this gene 

disruption study. 

 

5.2.1.1 Gene disruption studies of hypothetical protein genes  

As discussed in the introduction of this chapter, the disruption of all four postulated 

hypothetical genes was initially attempted, however, although a number of attempts to 

disrupt pac1 and pac2 were undertaken, each recombination attempt of the gene of 

interest with that of the selectable marker failed. The study of these two genes was 
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therefore not taken further. As discussed in chapter 3, the function of pac2 has 

subsequently been identified (Zhang et al., 2011) and the function of a pac1 homolog in the 

sansamycin gene cluster also reported (Li et al., 2013). 

 

5.2.1.2 Disruption of pac7 and pac13 in S. coeruleorubidus 

Primers were designed as per the procedure outlined in chapter 2 for replacement of the 

entire pac7 and pac13 (no part of the gene would remain in the S. coeruleorubidus 

genome). Primers Redirect_Pac7_F and Redirect_Pac7_R and Redirect_Pac13_F and 

Redirect_Pac13_R were used for amplification of the cassette for the disruption of pac7 

and pac13, respectively. The cassettes were introduced into E. coli strain BW25113. 

Recombination of the cassettes in place of the gene of interest on the 2H-5 cosmid was 

selected for by growth of the E. coli strains on selective medium and PCR analysis. The 

disrupted cosmids were isolated from the E. coli strains by alkaline lysis and the cosmid 

introduced into the non-methylating E. coli  ET12567/pUZ8002. E. coli clones containing the 

mutagenised cosmids were selected for on selective medium and used for conjugal transfer 

of the mutant cosmid into S. coeruleorubidus. Exconjugates were restreaked onto selective 

medium to ensure isolation of single exconjugates, and spore stocks were produced. The 

resulting S. coeruleorubidus strains were designated strain ID’s of DT-001 and DT-002 for 

the pac7 and pac13 disruptions, respectively.   
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Figure 5.3 The predicted size of the PCR products produced by the amplification of the chromosomal 
regions of the pac7 and pac13 genes in the wild type and disrupted strains along with the PCR 
analysis. 

  

5.2.1.3 Liquid growth and LCMS analysis of the extracted metabolites of strains S. 

coeruleorubidus DT-001 and DT-002 

The S. coeruleorubidus DT-001 and DT-002 strains were cultured in ISP2 liquid medium as 

per the procedure outlined in chapter 2. Once cultured, the cell free extracts were used in a 

metabolite extraction method that is outlined in chapter 2 which allowed for the extraction 

of the pacidamycins for subsequent analysis. After metabolite extraction of the cultures, 

LC-MS analysis was carried out to confirm the presence or absence of pacidamycin 
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production in the different S. coeruleorubidus strains. The LC-MS parameters were identical 

to those described in the method in chapter 2.  

 

Figure 5.4 The LC profiles for (a) wild type S. coeruleorubidus and the two disrupted strains;                   
(b) S. coeruleorubidus DT-001 and (c) S. coeruleorubidus DT-002. Comparison of the three profiles 
shows that pacidamycin production is eliminated by the disruption of either pac7 or pac13. 

 

b. 

c. 

a. Pacidamycins 

DT-001 (Δpac7) 

DT-002 (Δpac13) 

S.coeruleorubidus wild type 
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Analysis of the LC-MS spectra suggests that disruption of either pac7 or pac13 in                  

S. coeruleorubidus results in the loss of pacidamycin production. Both genes are annotated 

as hypothetical proteins, but the results from this investigation suggest that they play an 

essential role in the biosynthesis of pacidamycin. 

 

5.2.1.4 Further work carried out on S. coeruleorubidus DT-001 and DT-002 

In parallel with the investigation of the hypothetical proteins and DABA biosynthetic genes 

of the pacidamycin gene cluster, A. Ragab was investigating the biosynthesis of the 

nucleoside derivative found in the uridyl peptides that gives them their name.  

 

Figure 5.5 Pacidamcyin D, with the uridyl nucleoside derivative highlighted. 

 

Prior to this study, A. Ragab had determined, through both in vivo and in vitro analysis, that 

the function of pac11 was the conversion of the carboxy-group of uridine to an aldehyde, 

and that pac5 was responsible for the replacement of the aldehyde with an amine. To 

produce the uridine derivative found in the uridyl peptides, a dehydration event needs to 

occur across the furan ring. Most of the genes in the gene cluster of pacidamycin had a 

determined function and therefore A. Ragab used S. coeruleorubidus DT-001 and DT-002 to 

investigate whether either of the genes could be responsible for this step. It was believed 

that the pacidamycins should still be produced in the absence of the dehydration event 

across the furan and so, further LC-MS analysis of the DT-002 strains was carried out by A. 

Ragab, looking for pacidamycins with masses 18 Da greater than those of the naturally 
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produced pacidamycins, corresponding to the hydrated form of the molecules. LC-MS/MS 

analysis confirmed that in fact, the S. coeruleorubidus DT-002 did produce hydrated 

pacidamycin species and this was further supported with in vitro work carried out by          

A. Ragab (Ragab et al., 2011). Thus, pac13 was deemed to be responsible for the 

dehydration of the furan ring. 

 

5.2.1.5 Gene disruption studies of the DABA biosynthetic genes 

To complement the biochemical and biophysical approaches to deduce the biosynthesis of 

DABA, a genetic approach was also undertaken.  Rackham et al. (2010) had determined 

that replacement of the 5’ half of pac19 eliminated the production of pacidamycin in the 

native producer, S. coeruleorubidus. The approach to this study was to determine whether 

any of the other genes believed to be involved in the biosynthesis of DABA were also 

essential. 

 

5.2.1.6 Gene disruption studies in S. coeruleorubidus of the DABA biosynthetic genes  

The initial approach took into account the difficulty of the translational coupling of pac17 

through pac19 and potential polar effects from single disruptions. The first part of the 

approach consisted of using PCR mediated gene deletion of the four genes believed to be 

responsible for the biosynthesis of the diamino acid (pac17 through pac20)(Gust et al., 

2003). The deletion of the four genes could then be complemented with different 

combinations of the four genes that had been removed and pacidamycin production 

monitored using LC-MS and LC-MS/MS analysis. This approach was initially taken as it 

allowed for the majority of the laborious genetic work to be carried out in E.coli strains 

rather than in Streptomyces; E. coli being a much easier organism to manipulate. The 

second part of the approach was to disrupt the stand alone gene, pac20, and also pac19, as 

disruption of the 3’ portion of this gene should not have any polar effects on the upstream 

genes that pac19 is translationally coupled to. 

For the study of the disruption of the entire DABA biosynthetic gene set, primers 

Redirect_Pac17-20_F and Redirect_Pac20_R were designed as per the procedure outlined 

in chapter 2. The primers were used to amplify the resistance cassette using the PCR 

conditions specified in chapter 2. After successful amplification of the disruption cassettes, 

the fragments were introduced into E. coli  BW25113 containing the recombination plasmid 
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pIJ790. Recombination of the cassette in place of genes of interest on the 2H-5 cosmid was 

selected for by growth on the selective medium and PCR analysis. The disrupted cosmid 

was isolated from a culture of the E. coli strain by alkaline lysis and the cosmid introduced 

into the non-methylating E. coli  ET12567/pUZ8002 via electroporation to ensure successful 

conjugation.  E. coli containing the mutagenesised cosmid was selected for on selective 

medium and used for conjugal transfer into S. coeruleorubidus on SFM agar containing no 

antibiotics. Exconjugates were streaked onto antibiotic selective SFM agar and finally DNA 

agar to produce spore stocks from a single excojugate. Spore stocks were collected of the 

isolated S. coeruleorubidus strain containing the desired replacement and designated         

S. coeruleorubidus DT-005.  

The same procedure as described above was also used for the replacement of pac19 and 

pac20, but using primers Redirect_Pac19_F and Redirect_Pac19_R for the pac19 

replacement and Redirect_Pac20_F and Redirect_Pac20_R for the pac20 replacement.       

S. coeruleorubidus strains produced during the replacement of pac19 and pac20 were 

designated DT-003 and DT-004, respectively. 
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Figure 5.6 The predicted size of the PCR products produced by the amplification of the chromosomal 
region of the pac17-pac20 genes in the wild type and disrupted strains along with the PCR analysis. 

 

pac17 

acc(3)IV-oriT 

 

 
 

pac18 pac19 pac20   

  

  

 
DT-005 1561 bp 

1.5 Kb 
2 Kb 

3 Kb 
4 Kb 
6 Kb 

M
arker  

B
lan

k  

D
T-0

0
5 

M
arker  

W
ild

 typ
e  

wt 5694 bp 

1 Kb 



Chapter 5 – Pacidamycin Cluster Gene Disruption Studies 

 

 

  
Page 155 

 
  

 
 

 

Figure 5.7 The predicted size of the PCR products produced by the amplification of the chromosomal 
regions of pac19 and pac20 in the wild type and disrupted strains along with the PCR analysis. 
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5.2.1.7 Liquid growth, metabolite extraction and LC-MS analysis of the                              

S. coeruleorubidus DT-003, DT-004 and DT-005 and metabolite extraction 

The S. coeruleorubidus DT-003, DT-004 and DT-005 strains were cultured in ISP2 liquid 

medium as per the procedure outlined in chapter 2. Once cultured, the cell free extracts 

were used in a metabolite extraction method that is outlined in chapter 2 which allowed 

for the extraction of the pacidamycins for subsequent analysis. After metabolite extraction 

of the cultures, LC-MS analysis was carried out to confirm the presence or absence of 

pacidamycin production in the different S. coeruleorubidus strains. The LC-MS parameters 

were identical to those described in the method in chapter 2.  
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Figure 5.8 LC profiles for (a) wild type S. coeruleorubidus, (b) S. coeruleorubidus DT-005,                          

(c) S. coeruleorubidus DT-003 and (d) S. coeruleorubidus DT-004. 
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LC-MS analysis of S. coeruleorubidus strains DT-003. DT-004 and DT-005 suggested that 

deletion of the four hypothesised DABA biosynthetic genes of the pacidamycin gene cluster 

(pac17-20) or the disruption of pac19 or pac20 eliminated the ability of S. coeruleorubidus 

to produce pacidamycins. 

 

5.2.1.8 Chemical complementation analysis 

As no production of pacidamycin was seen in the pac19, pac20 or pac17-20 deletion 

mutants, an attempt to complement these mutants with potential products of the genes or 

structurally similar compounds as the gene products was undertaken. Rackham et al. 

(2010) had previously shown that either protected or unprotected DABA could 

complement the deletion of the 5’ half of pac19. Unfortunately for this study, no 

2S,3S-diaminobutyric acid was available for this investigation.  Chemical complementation 

of pac19 and the pac17-pac20 was attempted using the closest structural homolog to 

DABA; DAP, which is a C3 diamino acid whereas DABA is a C4 diamino acid. Chemical 

complementation of pac20 disruption was attempted using L-threonine and L-allo-

threonine, which, from bioinformatics analysis, were the two likely products of the gene’s 

activity (Altschul et al., 1990). None of these chemical complementation attempts were 

successful. Potential reasons for this include: the compounds were unable to pass into the 

cell, the compounds were not pathway intermediates or the compounds were metabolised 

by other cellular enzymes. 

 

5.2.2 Gene disruption studies in the heterologous host S. lividans TK-24 

As described in chapter 2, heterologous expression in streptomycetes requires the 

conjugation into bacteria of either a plasmid that can replicate in streptomycetes or a 

plasmid that can integrate into the genome of the organism. For the heterologous 

expression of the 2H-5 cosmid, which contains the minimal pacidamycin gene cluster, the 

backbone of the 2H-5 cosmid needs to be targeted with a SspI fragment (as outlined in 

chapter 2) and integrated into the ΦC31 attB site of the S. lividansTK24 genome. When 

integrating the 2H-5 cosmid with disrupted genes present, another step must be carried 

out prior to the replacement of the 2H-5 backbone with the SspI fragment. The disruption 

cassette, which in this case contains the apramycin resistance gene, needs to be replaced 

with a 81 bp scar so that the replacement of the backbone with the SspI fragment can be 
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selected for (the SspI fragment also contains the apramycin resistance gene as the 

selectable marker). Replacing the disruption cassette with the scar uses a flippase enzyme 

and the protocol is outlined in chapter 2. 

 

5.2.2.1 Integration of the non-disrupted 2H-5 cosmid into S. lividans TK24 and 

metabolite extraction and analysis 

To ensure that integration of the 2H-5 cosmid into S. livdans TK24 was possible, the 

backbone of the 2H-5 cosmid was replaced with the SspI fragment. As described in chapter 

2, the cosmid was conjugated into the heterologous host (S. lividans TK24) and the 

integration of the cosmid into the ΦC31 site of the S. lividans genome confirmed by 

resistance to apra and PCR analysis, using colony PCR analysis as described in chapter 2. 

PCR analysis confirmed integration of the cosmid into the correct location and the strain 

was designated the name S. lividans DT-006. S. lividans DT-006 was cultured as described in 

chapter 2, the metabolites extracted as described in chapter 2, and LC-MS and LC-MS/MS 

analysis carried out to determine whether pacidamycin D was produced, using S. lividans 

TK24 as the negative control. During heterologous expression, only a subset of the 

pacidamycins (predominately pacidamycin D) are produced due to the absence of phhA, 

which is found elsewhere in S. coeruleorubidus genome. phhA has been found to be 

responsible for the synthesis of the meta-tyrosine found in a number of the pacidamycins 

(Gruschow et al., 2011). 

 

Figure 5.9 The LC profile for the negative control strain (S. lividans TK24). The profile shows the 
absorbance for ions of mass m/z = 712.0. 
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 Figure 5.10 (a) The LC profile of metabolites extracted from S. lividans when heterologously 
expressing the minimal gene cluster of pacidamycin. The profile shows the absorbance for ions of 
mass m/z = 712.0 (pacidamycin D), (b) the predicted fragmentation pattern of pacidamycin D and (c) 
the MS2 spectrum produced by the analysis; the major peaks in this profile (highlighted in red) 
correspond to the peaks predicted to be present. 
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5.2.3 New approach to analysis of gene function 

Due to the translational coupling of pac17, pac18 and pac19 it was decided that the gene 

disruption of pac17 and pac18 would need to be carried out in a heterologous host such as 

Streptomyces coelicolor or Streptomyces lividans. 

An approach was taken whereby a ‘scar’ (adaptation from Gust et al., 2003) would be 

introduced into pac17 and pac18 such that the mutated gene and the wild type gene would 

be of the same size (to minimise the chances of polar effects during transcription or 

translation), but with the function of the gene abolished. 

The method involved using the same strategy as previously described in this chapter, 

however, as the scar that is introduced is only 81 bp in size, only 81 bp from each of the 

genes would be removed. This method posed the problem of which 81 bp to remove as the 

removal of these bases needed to eliminate the gene’s functionality. 

 

Figure 5.11 The strategy for mutation of pac17 and pac18, replacing a 81 bp sequence with a scar of 
the same size, to reduce the chances of polarity. 
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5.2.3.1 Construction of the disrupted pac17 and pac18 integration cosmids 

Determining the ideal 81 bp to replace in pac17 and pac18 was carried out in two different 

ways. For pac17, the structure of the protein had previously been determined (described in 

chapter 4). The structural elucidation of the protein had shed some light on the active site 

and which residues were key for the activity of the enzyme. The section of the gene that 

encoded for this key region was therefore identified and primers designed 

(Redirect_Pac17_F and Redirect_Pac17_R) to enable the replacement of 81 bp of this 

region with the resistant cassette and ultimately with the FRT scar on cosmid 2H-5, the 

cosmid then integrated into the ΦC31 attB site of the S. lividansTK24 genome as previously 

described, being designated strain number S. lividans DT-007. 

For pac18, the amino acid sequence was aligned with sequence homologs using BLAST and 

a well conserved region of 27 amino acids identified (Altschul et al., 1990). Using cosmid 

2H-5, the corresponding nucleotide sequence (81 bp in total) of pac18 was replaced with 

the resistance cassette and ultimately by the FRT scar and the cosmid integrated in the 

ΦC31 attB site of the S. lividansTK24 genome as previously described (primers used: 

Redirect_Pac18_F and Redirect_Pac18_R), being designated strain number S. lividans 

DT-008.  
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Figure 5.12 The predicted size of the PCR products produced by the amplification of the pac17 wild 
type and disrupted strains along with the PCR analysis. 
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Figure 5.13 The predicted size of the PCR products produced by the amplification of the pac17 wild 
type and disrupted strains along with the PCR analysis. 
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analysis 

The S. lividans strains were incubated in R5 liquid medium as described in chapter 2. The 

metabolites were extracted as previously described and analysed by LC-MS analysis, 

searching for pacidamycin D ions (m/z 712) using S. lividans DT-006 as a positive control 

and S. lividans TK24 as a negative control. 

 

pac17 

pac18 

acc(3)IV-oriT 

    

        pac18 
  

  
  

0.8 Kb 

1 Kb 

2 Kb 

   

wt 975 bp 

DT-008 975 bp With cassette 2276 bp 

M
arker  

M
arker  

W
ild

 typ
e  

W
ith

 cassette  

D
T-0

0
8

  

C
o

sm
id

 + scar  

1 Kb 

0.8 Kb 



Chapter 5 – Pacidamycin Cluster Gene Disruption Studies 

 

 

  
Page 165 

 
  

 

Figure 5.14 The LC profiles for (a) negative control (S. lividans TK24), (b) positive control              (S. 
lividans DT-006), (c) S. lividans DT-007 and (d) S. lividans DT-008 
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protein was complemented by other proteins present in the organism. A BLAST analysis of 

the Pac17 amino acid sequence suggests that homologs are common among the 

streptomycetes and bacteria in general (Altschul et al., 1990). LC-MS/MS analysis of the S. 

lividans DT-008 metabolite extraction was undertaken as there appeared to be absorbance 

at the correct retention time for pacidamycin D. LC-MS/MS analysis showed that in fact 

pacidamycin D was still being produced by the heterologous host when pac18 had been 

disrupted, although at a much lower level compared to the positive control. 

 

 

Figure 5.15 Showing the fragments predicted to be observed by MS2 analysis of pacidamcyin D (top) 
and the MS2 spectra produced by the analysis of S. lividans DT-008. 
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To determine if S. lividans TK24 contains a protein that could be complementing the gene 

disruption, a nucleotide search was carried out on the partial nucleotide sequence of the    

S. lividans TK24 genome (supplied by G. Chandra, JIC) using the nucleotide sequence of 

pac18 as the query sequence. Unfortunately no ‘hits’ were found in this search. As              

S. lividans TK24 is extremely homologous to S. coelicolor, it was decided that a protein blast 

on the known S. coelicolor sequence could be carried out and any ‘hits’ could be 

confidently assumed to also be present in S. lividans TK24 (Leblond et al., 1993). A BLAST 

search resulted in the identification of a protein produced by S. coelicolor with a 83 % 

coverage and 30 % identity to Pac18. This protein could be complementing the disruption 

of pac18, allowing for the continued production of pacidamycin even when the gene is 

disrupted. Further to this, the pacidamycin biomachinery may still be able to produce 

pacidamycin even when Pac18 is not present. As Pac18 is predicted to be a kinase which 

phosphorylates threonine at the β-hydroxy position to create a better leaving group for the 

downstream reaction, it is plausible that Pac19 is able to process both the phosphorylated 

and non-phosphorylated forms of threonine. It must be reiterated that although Pac18 

does not appear to be essential for pacidamycin production or it is being complemented by 

other cell machinery, the amount of pacidamycin produced when the gene is disrupted 

appears to be greatly reduced, suggesting that although the protein is not essential, it has a 

drastic impact on the quantity of pacidamycin produced by the organism. 

 

5.2.4 Gene disruption studies of the DABA biosynthetic genes pac19 and pac20 in the 

heterologous host S. lividans TK-24 

5.2.4.1 Construction of the disrupted pac19 and pac20 integration cosmids 

For the construction of the integrated cosmids containing disruptions of pac19 and pac20, 

the cosmid constructs 2H-5Δpac19 and 2H-5Δpac20 were used. The apramycin cassette 

was replaced with an 81 bp scar and the backbone was replaced with the SspI fragment to 

produce cosmids 2H-5Δpac19-integration and 2H-5Δpac20-integration, respectively.           

S. lividans TK-24 containing the integrated 2H-5 cosmid with the scar in place of pac19 or 

pac20 were designated strain numbers DT-009 and DT-010, respectively. The integration of 

the cosmids into the S. lividans TK-24 ΦC31 attB site was confirmed by the ability of the 

transformants to grow on apramycin supplemented medium and by PCR analysis. 
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Figure 5.16 The predicted size of the PCR products produced by the amplification of the pac19 wild 
type and disrupted strains along with the PCR analysis. 
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Figure 5.17 The predicted size of the PCR products produced by the amplification of the pac20 wild 
type and disrupted strains along with the PCR analysis. 
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Figure 5.18 LC profiles for (a) negative control (S. lividans TK24), (b) positive control (S. lividans DT-
006), (c) S. lividans DT-009 and (d) S. lividans DT-010. 
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From the LC-MS analysis of S. lividans DT-009 and DT-010 which heterologously express the 

minimal pacidamycin gene cluster with disruptions of pac19 and pac20, respectively, the 

first observation is that the peak corresponding to pacidamycin D is absent. Further 

investigation of the spectra suggested that pacidamycin D is being produced by these 

strains, but at a much lower level. LC-MS/MS analysis was carried out to determine 

whether fragmentation of the parent m/z = 712 ions resulted in a pattern that was 

consistent with the expected fragmentation of pacidamycin D. LC-MS/MS analysis showed 

that no pacidamycin D was being produced by S. lividans DT-009 (disrupted pac19 gene), 

which is consistent with the previous studies in S. coeruleorubidus and by Rackham et al. 

(2010). LC-MS/MS analysis of S. lividans DT-010 showed that pacidamycin D was being 

produced by this strain (Figure 5.19), which is inconsistent with the parallel study carried 

out in S. coeruleorubidus which is reported earlier in this chapter. These results suggest 

that pac20 is complemented in the heterologous host, therefore allowing for the continued 

production of pacidamycin D, whereas, the disruption of this gene cannot be 

complemented in the native pacidamycin producer. 

A nucleotide search was carried out on the partial nucleotide sequence of the S. lividans 

TK24 genome (supplied by G. Chandra, JIC) using the nucleotide sequence of pac20 as the 

query sequence. Unfortunately no ‘hits’ were found in this search. As S. lividans TK24 is 

extremely homologous to S. coelicolor, it was decided that a protein BLAST on the known S. 

coelicolor sequence could be carried out and any ‘hits’ could be confidently assumed to 

also be present in S. lividans TK-24 (Leblond et al., 1993). The BLAST analysis retrieved two 

proteins produced by S. coelicolor that showed maximum identities of 30 and 26 % to the 

amino acid sequence of pac20. These corresponded to a L-allo-threonine aldolase and 

aldolase, respectively (Altschul et al., 1990). Interestingly, the highest ‘hit’ was a 

L-allo-threonine aldolase, which may suggest that the starting substrate for the production 

of pacidamycin is in fact the L-allo rather than the L- form of threonine. This could also 

explain why a gene that is highly homologous to one associated with primary metabolism is 

found in a secondary metabolism gene cluster. Even so, it was previously reported in this 

chapter that the feeding of both L-threonine and L-allo-threonine to S. coeruleorubidus 

DT-004 failed to reinstate pacidamycin production in the natural producer, however, this 

could be a result of the organism being unable to take up the compounds from the liquid 

medium. 
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Figure 5.19 The fragments predicted to be observed by MS2 analysis of pacidamycin D (top) and the 
MS2 spectra produced by the analysis of S. lividans DT-010. 
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Current analysis of the role of pac17 – pac20 in the biosynthesis of DABA and pacidamycin 

suggest that both pac19 and pac20 are essential for pacidamycin production in the native 

producer. The disruption of pac19 has previously been found to be complemented by 

feeding the disrupted strain a combination of DABA and protected DABA (Rackham, 2010). 

The disruption of pac17 in a heterologous host does not show a significant change in the 

organism’s ability to produce pacidamycin, however, a BLAST search suggests that there 

are potential candidate genes that could complement this disruption. In order to fully 

assess the role of pac17 in pacidamycin production it will be necessary to take a different 

approach which allows for the study of gene in the context of the native producer. The 

disruption of either pac18 or pac20 does not seem to eliminate pacidamycin production in 

a heterologous host, however, disruption of pac20 in S. coeruleorubidus does appear to 

stop pacidamycin production. However, in both cases in the heterologous host, the ability 

of the organism to produce pacidamycin is drastically reduced. BLAST analysis of the amino 

acid sequence of the proteins expressed by these genes suggest that both have homologs 

in S. coelicolor and are therefore likely to have homologs in the heterologous producer        

S. lividans TK24. Although the disruption of pac20 in the heterologous host appears to be 

complemented in some way, feeding the pac20 disrupted S. coeruleorubidus strain with 

potential products of pac20, i.e. L-threonine and L-allo-threonine did not appear to 

reinstate the production of pacidamycin.  

To complement this current study a number of future investigations could be carried out. 

Firstly, using a new approach to allow the disruption of all four DABA biosynthesis genes in 

the natural producer, S. coeruleorubidus, would allow for a more robust analysis to study 

the function and the importance of the genes. As previously explained in this chapter, a 

heterologous study approach was carried out on pac17 and pac18 to overcome the issue of 

pac17-pac19 being translationally coupled. Further to this, genetic complementation of the 

gene disruptions would enable a more in depth analysis, providing greater confidence that 

the observed chemotypes are direct effects of the gene disruptions. Genetic 

complementation was attempted within this study, however, due to the lack of available 

plasmids that can be integrated into S. coeruleorubidus (being only pIJ10257), the attempts 

failed either during the cloning or conjugal transfer stages.  
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6.1 Introduction 

When investigating the biological function of a gene, the gold standard is to observe the 

activity of the protein encoded for by the gene in vitro. This allows for the investigation of 

the protein in a simpler environment, away from other cellular functions which would 

otherwise make the results difficult to interpret. A potential danger of in vitro studies is 

that a protein may become separated from some component that is essential for its correct 

activity, eg. an enzyme might lose its cofactor with a concomitant loss of catalytic activity. 

It has previously been described in this thesis that a number of the proteins postulated to 

be involved in the biosynthesis of DABA were successfully cloned, produced and purified. 

Further to this, studies have been undertaken into the structure of the proteins produced 

(most successfully with Pac17) and the study of the genes that encode the proteins has 

been investigated in vivo, both in the natural host and by heterologous expression. 

In this chapter, the attempts to obtain in vitro activity for Pac17, Pac19 and Pac20 will be 

discussed. A number of different approaches will be discussed and possible future 

developments also suggested. 

As previously described, the activities of the DABA biosynthetic enzymes found in the 

mureidomycin gene cluster have been investigated (Lam et al., 2008). Further to this, work 

has been carried out on the structurally similar amino acid DAP (Wang and Gould, 1993, 

Beasley et al., 2011). Other than the results of these studies, little is known about the 

biosynthesis of DABA. 

 

6.2 Pac17 

6.2.1 Introduction 

Pac17 has been the most studied of the four DABA biosynthetic genes within this study. Its 

structure, obtained through an X-ray crystallographic approach has already been discussed 

(chapter 4). Prior to a more in-depth crystallographic study, a number of attempts were 

made to elucidate the activity of the protein in vitro. An analysis of the gene cluster of 

pacidamycin reported by Rackham et al. (2010), had postulated the protein was likely to be 

a lyase, with its closest sequence homologs being argininosuccinate lyases, fumarases and 

aspartases. From this work it was hypothesised that Pac17 was likely to be an aspartase, 

catalysing the lysis of aspartate into fumarate and ammonia, the ammonia subsequently 
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being used by Pac19 to convert a stereoisomer of threonine to DABA (Rackham et al., 

2010). 

Further to this, the study into the structure of Pac17 also shed some light into the likely 

substrate of the protein. Co-crystallisation of the protein with aspartate resulted in the 

observation of a ligand bound structure, with aspartate being found in what appears to be 

the active site. Further analysis of this structure using the PDBeSUM server found a 

structural homolog which also has aspartate bound as a ligand (Laskowski, 2001, Fibriansah 

et al., 2011). The study into this homolog of Pac17, along with other studies, reported in 

vitro activity of the protein as an aspartase and the importance of a number of active site 

residues (Weiner et al., 2008, Veetil et al., 2009). The studies used a simple but effective 

method for observing activity. Since the absorbances of aspartate and fumarate are 

different, one is able to measure the increase or decrease of either the substrate or 

product over time using a spectrophotometric assay. Weiner et al. (2008) report that the 

formation of fumurate can be measured at a wavelength of 240 nm. The study suggests 

that the activity is best observed at the alkaline pH of 8.5 (Weiner et al., 2008). An alkaline 

pH would be expected due to the postulated catalytic mechanism for the lyase that was 

discussed in chapter 4. The basic conditions being required for the deprotonation of the 

catalytic serine in preparation for the subsequent downstream steps in the mechanism 

(Fibriansah et al., 2011). 

 

6.2.2 Results of the investigation into the activity of Pac17 

To ensure that the method for measuring fumarate concentration was robust, two 

standards (one of L-aspartic acid and one of fumarate) were prepared and diluted to 1 mM 

concentration in 50 mM NaH2PO4 buffer pH 8.5. The absorbance of the two solutions was 

measured across a wavelength range of 200 – 500 nm. The resulting spectra suggested that 

measuring the formation of fumarate at 240 nm was a viable approach. 
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Figure 6.1 Spectra produced by the 1 mM L-aspartate and fumarate standards to determine whether 
measuring the formation of fumarate at 240 nm was appropriate for the study. 

 

The continuous assay for measuring the activity of Pac17 was set-up as per the parameters 

outlined by Weiner et al. (2008) and reported in chapter 2. Unfortunately at the basic pH of 

8.5, no formation of fumarate was observed by Pac17. 

In an attempt to obtain any such activity from Pac17, a systematic approach was 

undertaken which included investigating the effects of pH, potential co-factors and varying 

the concentration of the substrate added (between 1 mM and 500 mM) to the reaction. It 

was previously reported that magnesium may play a role in the activity of the aspartase, 

AspB, and potassium was found bound to Pac17 during structural studies, therefore the 

addition of different metals was also considered. Table 6.1 shows the different conditions 

which were investigated in an attempt to observe Pac17 activity. Unfortunately, none of 

these conditions gave rise to measurable Pac17 activity. 
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Table 6.1 List of the different conditions that were used in an attempt to observe Pac17 activity 
using the spectrophotometric assay described in chapter 2. The concentration of co-factors and 
metals used was 10 mM. 

Buffers pH Cofactors Metals 

50 mM NaH2PO4 6.0 PLP Potassium (KCl) 

50 mM KH2PO4 6.5 ATP Sodium (NaCl) 

20 mM Hepes 7.0  Iron (FeCl2) 

 7.5  Magnesium (MgCl2) 

 8.0  Cobalt (CoSO4) 

 8.5  Zinc (ZnCl2) 

 9.0  Manganese (MnCl2) 

   Nickel (NiCl2) 

 

Another approach for observing the activity of Pac17 is by studying the reverse reaction 

(i.e. the formation of L-aspartate), which may be more favourable under the experimental 

conditions used. Crystallographic observations found that when co-crystallised with 

L-aspartate, Pac17 was found bound to the ligand. The fact that aspartate and not fumarate 

was found bound suggests that aspartate was not being turned over by the protein, and 

that maybe the formation of aspartate from fumarate and ammonia was more favourable. 

Weiner et al. (2008) report measuring the kinetic parameters for the addition of ammonia 

onto fumarate (as well as the breakdown of aspartate), but using different experimental 

conditions (outlined in chapter 2). This method was also attempted, but all attempts failed 

to show Pac17 activity (by measuring the depletion of fumarate at 270 nm).  

 

6.2.3 GC-MS 

Since no activity for Pac17 was observed using spectrophotometric methods, a mass 

spectrometric approach was attempted which was hoped to allow for a more sensitive 

analysis. For GC-MS analysis, which was carried out by the Metabolomics Facility (JIC), 

Pac17 was incubated overnight in NaH2PO4 buffer pH 8.5 and 1 mM of either L-aspartatic 

acid or fumarate and ammonia (in the form of ammonium chloride). GC-MS analysis was 

then carried out on the two incubations in an effort to determine whether any turnover of 

the substrates had occurred. Unfortunately this analysis did not indicate any activity in 

either direction. 
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6.2.4 Use of cell free extract and incubation with S. coeruleorubidus 

Two crude methods were undertaken in an attempt to obtain in vitro activity of Pac17. 

These crude approaches may give the protein access to an unusual cofactor or 

environment that may have been omitted from the assays performed with purified 

enzyme. The first was to use a cell free extract from E. coli pDT005 (the Pac17 expression 

construct). The second approach was to incubate purified Pac17 with a S. coeruleorubidus 

extract. The detection method was the same as previously described. Neither of these 

approaches appeared to help in observing enzyme activity, however, due to the complexity 

of the mixtures, there is a possibility that the activity could have been missed.  

 

6.3 Pac19 

6.3.1 Introduction 

Pac19 (DABA synthase), has been shown via genetic analysis to be essential for the 

formation of pacidamycin (Rackham et al., 2010). Work into the in vitro activity of DABA 

biosynthetic enzymes in the mureidomycin  producer, S. flavidovirens had determined that 

DABA biosynthesis proceeds by an ammonia-dependent β-replacement reaction, rather 

than the other hypothesised pathway of oxidation of threonine to a 3-keto-2-aminobutyric 

acid followed by a transamination event (Lam et al., 2008). Lam et al. (2008) used a 

stopped colorimetric assay to determine formation of DABA, whereby addition of 

phenyglyoxal at an acidic pH derivatises diamino acids such as DABA to form a 2,3-

dihydropyrazine derivative that can be measured at a wavelength of 345 nm. 

  

 

Figure 6.2 The derivatisation of DABA with phenylglyoxal forms a 2,3-dihydropyrazine derivative that 
can be measured at 345 nm. R = CH3 in DABA and H in DAP 
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6.3.2 Results of the investigation into the activity of Pac19 

To determine whether using the derivatisation of DABA method  previously reported was 

viable, a small quantity of DABA was obtained from A. Fayad (UEA) and the derivatisation 

undertaken as described in chapter 2 (Lam et al., 2008, Tripier et al., 2003). The 

derivatisation appeared to be successful, as indicated by the appearance of a reddish 

colour. Unfortunately, no more DABA was readily available to confirm the derivatisation.  

DAP is structurally similar to DABA, containing one less methyl group. As DAP is readily 

available from commercial sources, it was decided that a standard curve could be produced 

using DAP, which could then be used as a reference for the subsequent experiments into 

the activity of Pac19. A standard curve was produced by using set concentrations of DAP 

and derivatising DAP with the phenyglyoxal solution as outlined in chapter 2. The resulting 

standard curve is shown in Figure 6.3. 

 

 

Figure 6.3 Standard curve produced by derivatising known concentrations of DAP 

 

To determine activity of Pac19, assays were set up as outlined in chapter 2 (Lam et al., 

2008). Initially the assays were carried out exactly as reported by Lam et al. (2008), 

however, no activity was seen after numerous attempts. As a result, a number of 

modifications were made to the method, including using L-allo-threonine and 

O-phospho-L-threonine as starting substrates, along with different sources of ammonia, 
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including; ammonium bicarbonate, ammonium chloride and ammonium acetate. A range 

of pH values were also tested between pH 6.0 and 8.0, along with the addition of PLP as a 

cofactor (PLP being postulated to be essential for the reaction) (Lam et al., 2008). 

Unfortunately DABA formation was not detected in any of these experiments. 

To determine whether any turnover had occurred, an assay solution that had been 

incubated overnight at 30 oC was submitted to the Metabolomics Facility (JIC) for analysis. 

This found no evidence of DABA in the mixture. 

 

6.3.3 Use of cell free extract and incubation with S. coeruleorubidus 

Two crude approaches were undertaken in an attempt to obtain in vitro activity of Pac19. 

These crude approaches may give the protein access to an unusual cofactor or 

environment that may have been omitted from the assays performed with purified 

enzyme. The first was to use a cell free extract from E. coli pDT007. The second approach 

was to incubate purified Pac19 with a S. coeruleorubidus extract. Neither of these 

approaches demonstrated enzyme activity.  

 

6.3.4 Coupling of Pac17 and Pac19 

In a final attempt to obtain in vitro enzymatic activity from either Pac17 or Pac19, a coupled 

approach was undertaken. The rationale behind this approach was that as pac17-19 are 

translationally coupled, perhaps the expressed proteins need to work together or even 

form a complex. Purified Pac17 and Pac19 were incubated together for 1 h and a series of 

assays set up which covered the spectrum of potential substrates, co-factors and pH values 

previously reported in this chapter. Two measurements were taken from these assays. 

Initially a continuous assay was undertaken in an attempt to observe the formation or 

depletion of fumarate (and in turn Pac17 activity). The second was a stopped assay 

measurement, adding the phenyglyoxal mixture which would derivatise any DABA present 

and therefore measure the activity of Pac19. Again, no activity was observed with either 

approach. 

 

6.4 Pac20 

It has previously been stated that through bioinformatics analysis that Pac20 is postulated 

to be a threonine aldolase. Genetic investigation reported in this study showed that within 
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the native producer, disruption of Pac20 appears to eliminate pacidamycin production. 

Further to this, heterologous expression studies showed that the gene disruption can be 

complemented by a gene present in S. lividans. A number of candidates for this 

complementation were found including a threonine aldolase and an allo-threonine 

aldolase. These findings leave a question mark over the product produced by Pac20 as 

feeding L-threonine or L-allo-threonine to the native producer did not reinstate 

pacidamycin production. 

An assay for threonine aldolase was previously reported by Karasek et al. (1956), however 

due to the instability of the purified Pac20 (reported in chapter 3), no assays could be 

carried out. 

 

6.5 Discussion 

In conclusion, all attempts at obtaining in vitro activity from any of the proteins from the 

pacidamycin gene cluster hypothesised to be involved in the biosynthesis of DABA were 

unsuccessful. As previously discussed, formation of DABA has been reported during studies 

into the mureidomycin biosynthetic cluster (Lam et al., 2008). This study differed from the 

in vitro studies undertaken in this investigation in that Lam et al. (2008) used a cell free 

extract from S. flavidovirens. However, this method did not determine what was present in 

the active fraction used. This raises a number of questions about their study, for example - 

was the activity observed attributed to a single protein (such as a homolog of Pac19) or a 

collection of proteins? Further to this, due to the method used by Lam et al. (2008), the 

exact environmental conditions of the reaction are not known, for example, what the 

optimal pH is or whether there were co-factors involved (other than additives that they 

showed to increase DABA production, such as PLP). As previously discussed, activity for a 

structural homolog of Pac17 has been reported. From the structural analysis it was 

determined that Pac17 is likely to have a similar catalytic mechanism to that of the 

structural homolog, however, attempts to reproduce the method used by Weiner et al. 

(2008) with Pac17 gave no activity. 

There are a number of explanations to why the in vitro study of the DABA biosynthetic 

proteins of pacidamycin failed. The fact that Pac17 through 19 are translationally coupled 

could suggest that the three proteins require each other for activity. That said, the current 

evidence from genetic studies suggest that only the disruption of pac19 appears to 
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eliminate pacidamycin production. Unfortunately, as reported in chapter 3, this study was 

unsuccessful in obtaining stable and purified Pac18 (the middle protein encoded for on the 

pac17-19 mRNA). The successful production of this protein may be the key to unlocking the 

activity of either Pac17 or Pac19. Further to this, the substrates used in these studies may 

not have been the natural substrates, for example, aspartyl-CoA may be the substrate of 

Pac17 as this would allow for a more stable intermediate during its breakdown. This 

hypothesis was not tested due to aspartyl-CoA not being commercially available. 

A number of new approaches could be used in an attempt to observe in vitro activity of the 

DABA biosynthetic proteins of pacidamycin. One approach would be to assume that there 

is some activity taking place but at such a low rate that the current methodology for 

detection is not sensitive enough. An assay using radiolabelled substrate would enable low 

levels of turnover to be detected. Another approach would be to re-clone the enzymes, 

perhaps in a different expression system or with different affinity tags. This approach may 

allow for Pac18 to be expressed in a soluble form and improve the stability of Pac20, for 

example. Furthermore, the removal of affinity tags may be necessary as they could be 

hindering activity. This approach could also allow for the co-expression of the 

translationally coupled genes pac17-19, which may be important to the activity of the 

proteins. Another approach would be to express the proteins in a Streptomyces host. This 

may improve the stability of the proteins, as it would reduce issues with codon bias, and 

also supply the proteins with Streptomyces specific chaperones and cofactors that may also 

be important to protein stability and activity. Finally, new methodologies to observing 

activity could be explored, for example, using coupled assays. This approach may remove 

any form of product inhibition that may be occurring, by converting the products of the 

DABA enzymes into other products. This method would also allow for other means of 

detecting activity, for example the reduction of NAD+. 
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The work presented in this thesis describes a series of investigations into 1. The function of 

the hypothetical protein genes found in the pacidamycin gene cluster and 2. The 

biosynthesis of the central DABA residue of the pacidamycin structure.  This work took a 

multidisciplinary approach, tackling the questions at a biochemical, genetic and structural 

level. 

Pacidamycin in an uridyl peptide antibiotic which is produced by S. coeruleorubidus. The 

antibiotic shows specific activity against the Gram negative pathogen Pseudomonas 

aeruginosa with its mode of action reported as acting as an inhibitor of the cell wall 

biosynthetic enzyme translocase I (Fernandes et al., 1989). The pacidamycins have an 

intriguing structure which contains a tetra- or pentapeptide backbone that is inverted twice 

by the presence of a non-proteinogenic diamino acid (DABA) and a urea motif. They also 

contain an uridyl nucleoside derivative which gives this class of antibiotic its name. 

At the beginning of this study, there were four hypothetical protein genes annotated within 

the 22 ORF gene cluster of pacidamycin, produced by S. coeruleorubidus.  These genes 

were pac1, pac2, pac7 and pac13. During this investigation, functions have been discovered 

for two of these (i.e. pac2 and pac13) and a function for a homolog of pac1 also reported 

(Zhang et al., 2011, Ragab et al., 2011, Li et al., 2013). Genetic studies reported in this 

thesis, along with work carried out by A. Ragab (UEA) identified the function of pac13, the 

gene expressing the protein Pac13 which is responsible for a dehydration event that occurs 

across the furan ring of the uridine nucleoside derivative of pacidamycin (Ragab et al., 

2011). 

The function of pac2 was reported by Zhang et al. (2012), the gene being found to be 

responsible for the incorporation of the glycyl or alanyl moiety at the N-terminus of the 

pacidamycin peptide backbone. Most recently the function of a homolog of pac1, ssaA 

from the sansamycin gene cluster of Streptomyces sp. SS, has been found to be a 

transcriptional regulator of a number of genes in this cluster that are homologous to genes 

within the pacidamycin gene cluster (Li et al., 2013). 

The biosynthesis of DABA is essential for pacidamycin production. A disruption of a 

synthase found within the pacidamycin gene cluster (pac19) had been found to eliminate 

pacidamycin production in the native producer S. coeruleorubidus (Rackham et al., 2010). 

Further to this, it was postulated that the biosynthesis of DABA was the responsibility of 

four genes found in the pacidamycin gene cluster: pac17 through 20. These genes were 
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annotated to be a lyase, kinase, synthase and threonine aldolase, respectively, based on 

sequence alone. Moreover, pac17 through 19 were shown to be translationally coupled. 

The postulated mechanism for the biosynthesis of DABA by these four genes in shown in 

Figure 7.1. 

 

 

Figure 7.1 The postulated biosynthesis of DABA by Pac17 through 20, four proteins encoded for in 
the pacidamycin gene cluster. 

 

Gene disruption studies showed that pac19 and pac20 were essential for the biosynthesis 

of pacidamycin in S. coeruleorubidus, however the disruption in pac20 in the heterologous 

host, S. lividans TK24, appeared to be complemented by the organism. BLAST analysis of 

the homologous S. coelicolor genome suggested that there were two genes; a threonine 

aldolase and a L-allo-threonine aldolase, that were likely candidates for this 

complementation event (Altschul et al., 1990). Attempts to chemically complement these 

disruptions in S. coeruleorubidus with L-DAP for the pac19 disruption, and L-threonine and 

L-allo-threonine for the pac20 disruption, failed to reinstate pacidamycin production. 

Gene disruption of pac17 and pac18 was carried out in the heterologous host S. lividans 

TK24 due to the likelihood of polar effects in the native producer. In both cases, the 

disruptions did not eliminate pacidamycin production, however, pacidamycin production 

appeared to be drastically reduced in the disruption of pac18. Bioinformatics analysis 

suggested that pac17 was likely to be readily complemented by a number of candidates, 

and there were also potential candidates for the complementation of the pac18 disruption. 
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Further to this, pac18 is a kinase, and kinases are often used in biosynthetic pathways to 

produce substrates with better leaving groups (i.e. phosphates) for downstream reactions. 

The decrease in pacidamycin production seen in the pac18 disrupted strain could therefore 

be due to the turnover of the non-phosphorylated form of the substrate. 

The conclusions drawn from the genetic work which is reported in this thesis suggest that 

both pac19 and pac20 are essential in the native pacidamycin producer, however pac20 is 

complemented in some way in the heterologous host S. lividans. This investigation also 

suggests that the roles of pac17 and pac18 are likely to be in maximizing the pathway 

throughput, whether by increasing the availability of a substrate for a particular step (i.e. 

Pac17) or by producing a substrate that has a better leaving group for the downstream 

reaction (ie. Pac18). 

Pac17, Pac19 and Pac20 were successfully produced in an E. coli BL21 and purified using 

affinity chromatography. Pac20, however, was found by DLS analysis to be unstable. 

Further to this, attempts to overproduce Pac18 resulted in mainly insoluble protein. 

Structural studies carried out in this investigation resulted in the determination of the 

structure of Pac17 to a resolution of 1.8 Å, using molecular replacement. Pac17, in its 

crystallographic form exists as a tetramer. Each monomer consists of 22 α-helices and 8 

short β-strands. Along with the apo structure, a ligand-bound structure was determined by 

co-crystallisation of the protein with aspartate. This identified the active site of the protein. 

The aspartate bound Pac17 structure was found to show similarities to that of the protein 

AspB from B. subtilis (Fibriansah et al., 2011). Further structural studies found that 

aspartate was the likely substrate of Pac17 as structurally similar compounds, such as 

asparagine, glutamate and glutamine, were not found bound to the protein in equivalent 

co-crystallisation studies.  
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Figure 7.2 The structure of Pac17 and the active site of Pac17 with the ligand aspartate bound 

 

Using site direct mutagenesis on amino acids within the active site, it was shown by further 

co-crystallisation studies that Asn109, Met279, Lys282 and Asn284 were also essential for 

ligand binding, these results being consistent with observations reported by Fibriansah et 

al. (2012). 

This thesis describes attempts to observe in vitro activity for a number of the proteins 

implicated in the biosynthesis of DABA (namely Pac17 and Pac19). Unfortunately, although 

numerous attempts were made, no activity was seen. 

In conclusion, this thesis reports a variety of techniques used in an attempt to elucidate the 

biosynthesis of DABA in S. coeruleorubidus and also investigations into the function of a 

number of hypothetical proteins annotated as being present in the pacidamycin gene 

cluster. Even though good progress has been achieved during this study, there is still 

further work that could be undertaken in the future to complete the story. 

Further work needs to be carried out on producing more stable Pac20, along with 

producing soluble Pac18. Approaches that could be considered to tackle this include 
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truncating the proteins of interest to try and remove any unstable regions at the N- or C-

termini of the proteins. Further to this, investigations into different protein expression 

systems, along with different affinity tags may be a beneficial approach to this problem. As 

pac17 through pac19 are translationally coupled, the co-expression of these genes may 

help in acquiring active protein and soluble Pac18. Further to this, the removal of the 

affinity tags may help to produce active proteins. 

Genetic studies reported in this thesis indicate that pac19 is essential for the production of 

pacidamycin and pac20 is also essential in the native producer. These studies also reveal 

the function for one of the hypothetical proteins (pac13). This study also reported that a 

disruption of pac7, another postulated hypothetical protein, eliminates pacidamycin 

production. More work is necessary to determine the actual function for this gene being 

discovered. Further analysis of the DABA biosynthesis genes could shed more light on DABA 

biosynthesis. Firstly, as chemical complementation did not appear to reinstate DABA 

biosynthesis, it would be sensible to carry out genetic complementation of the pac19 and 

pac20 disruption to ensure that the chemotype observed is attributed to the expected 

disruption and is not caused by other effects, such as polarity on other gene functions. The 

development of an approach to study the disruption of pac17 and pac18 in                            

S. coeruleorubidus may also be a sensible next step in this study. Observations in the 

heterologous host, S. lividans TK24, showed that neither disruption eliminated pacidamycin 

production. However, the disruption of pac18 reduced production in comparison to the 

heterologous expression of the non-disrupted pacidamycin gene cluster. Since the 

chemotype of the pac20 disruption differed between the native producer and heterologous 

host, this could also be happening in the pac17 and pac18 disruptions. Therefore a 

determination of function of these genes may only be possible in S. coeruleorubidus. 

Attempts to observe activity of a number of the proteins believed to be involved in the 

biosynthesis of DABA reported in this thesis were unsuccessful. A number of explanations 

for this were discussed including the possibility of missing cofactors and that the 

translational coupling of pac17-19 may indicate that all three proteins need to be present 

together for activity to be observed. Future work in this area may benefit from the use of 

different expression systems and purification protocols, as described above. Moreover, 

alternative assays could be used, perhaps using radiolabelled substrates. 
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To summarise, this thesis has reported a number of findings into aspects of the 

biosynthesis of the antibiotic pacidamycin, produced by the soil bacterium                             

S. coeruleorubidus. In collaboration with A. Ragab (UEA), a function for pac13 has been 

identified. Efforts to understand the biosynthesis of DABA have been discussed and an in 

vivo and in vitro approach taken. Furthermore, the structure of apo- and ligand-bound 

Pac17 has been reported.  

The findings reported in this thesis, along with work carried out by others on the 

pacidamycin gene cluster and the gene clusters of over uridyl peptides, offer a wealth of 

knowledge into the biosynthesis of these compounds. A better understanding of these 

natural products may one day be fundamental in the fight against bacterial infection from 

Pseudomonas aeruginosa. 
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Amino acid sequences for the each of the proteins discussed in this thesis. 

Hypothetical proteins: 

Pac1 

10 20 30 40 50 60 
MHTKIEADVE VIVTWRNKTR HPGGPVAKER INLKVGDRLN FGISSYTGEF QPGATPSIGA 

70 80 90 100 110 120 
FEVSDHHLLF SNFTTSTTFV IENLEGGTEL VKARPRQLGM VIPFEMSRVL IPSGASISEL 

130 140 150 160 170 180 
TVFTPPPRLL GPDQAATVAE SAMTKLDPES KYFAVLVALC EPRLRGSSMA AVPSVQEVVE 

190 200 210 220 230 240 
RLKGIKQFRG ANRSSINYHI DYLTDQKLPV SQWAKYVDEG RMHSKREALV AFSLRFDLVR 

250      
EEHLGLLPDL KRSRAQPS     

 

Pac2 

10 20 30 40 50 60 
MAIGFTSAIA DFDQKQFDAL DTTAGAASAY SRLRQHEQDA RWTSRYLGWF DGDEVRAAIP 

70 80 90 100 110 120 
VYRYRMRSWP DPSYDPRSWG LPDGIAEECS PRASLMVGGC IDRRTGFHVD AEARTPRELQ 

130 140 150 160 170 180 
RLLVEIAKHA ADEDMCLTFP YMYADAQSAL AAATDDRIVW AELAREAHLF GLSDAQWESS 

190 200 210 220 230 240 
LSAKIRYRLR QDQRKIAAVP MTVGEVSWPE VDTWASELIS HHNASKGAHE HPEFVSFRYS 

250 260 270 280 290 300 
GWQDNPDIDL MAFTARSAGL RGVETILLWE NELEVYEVGM TGEESDERFA LYLNLLFHLP 

310 320 330 340 350  
IQYARARGID HIRLGSKAET PKALRGAAFE NLYGGVLSRA ETKRLACSES  

 

Pac7 

10 20 30 40 50 60 
MAQVLAEATL QEIKDHLEVV VDSGRGTTFQ GSESVVRHLA EPKELRSLIG QIISDDTALA 

70 80 90 100 110 120 
DIAARSYYHA NNFLKVVLLA GDKNPWRLRL HMWHPQPNAS GTITEDIHSH RWDFTTALVV 

130 140 150 160 170 180 
GEYFAQEFKI GPGTEYYHFK YLPIGQGKTF SLEAQGKEQL SSVFEALLPA GTVYHINHEV 

190 200 210 220 230 240 
LHCISRSAGK AAASLVLQPP AVEDFTNVYR TSPVGEQTKT EIEVQRPSVA QLREELEHFL 

250      
TWLD      

 

 

Pac13 

10 20 30 40 50 60 
MTKYKTVEES ERFNKHGIDL TVYGQVDPSA TVVRVSVERG HFQEFFNVRS SYTYYVVSGQ 

70 80 90 100 110 120 
GVFYLNSEAV PAGATDLITV SMEMVLTVAP AFNEQDERHV RFISESESPY  
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DABA biosynthesis proteins: 

Pac17 

10 20 30 40 50 60 
VRLTGRLAAA PDDFIRQEFL EPQFRHEVAH LLRWYVLIEK ALLREYHRLG VLSARQVEQL 

70 80 90 100 110 120 
AGALDGLTPE ELTAGAGAAL SDIALAMETR VAKALPEPVP AWHVDRSRND LQACAQLLYG 

130 140 150 160 170 180 
REQVSEIAAM LGELAEVAHE RAAHDVTSPM PGYTHLQSAQ IITPGFYLSA VVEHALRASS 

190 200 210 220 230 240 
RLLGTYDRIN FSQLGAGPMA GQELAWDRDW LAQAIGCAGP VPHALAAVAS REWLLDVAAD 

250 260 270 280 290 300 
IASAGVGFSR FLTDLMAWSS SAYGLVELPD ELAGISAAMP QKKNYPLLER LRGRTGHLTA 

310 320 330 340 350 360 
FYVDFATGQR NTPYSNMVEV SKEAGLHAST MFGAIRAVLT GFTLVVDKLQ WRTDRMRAVC 

370 380 390 400 410 420 
EEDHFGGFSL ANELTLRAGV PWRTAQVIAG RYVTAVLAEG DGRAGHSNPA ALDSAAREAG 

430 440 450 460 470 480 
YPLDDPASYL TNSVDVDAQL RAKVSAGSAS PDSVVALLAE QRQRLDALTA EWNARTATVR 

490      
DAIAATDAAV RPTAGGVV     

 

 

 Pac18 

10 20 30 40 50 60 
MTSRQLVQQP ARDHGSPARA VAVSSAFGTF GELLQGALPD DGPDFLVTLP IARWATATFE 

70 80 90 100 110 120 
YESAHDRVEV FPATKTKARR VAEAVLARHS GGGGSLRLSG SLPEGKGLAS SSADLVATAR 

130 140 150 160 170 180 
AVASAVGVDL PPQGIENLLR RIEPTDGVMY PGVVAFEHRN VALLARCGVL PPMTIVGIDE 

190 200 210 220 230 240 
GGTVDTVAFN RIPKNFTAAE REEYARLLDE VQTAVRAGDA AAIGRVATRS AHLNQRLCRK 

250 260 270 280 290 300 
RTLNAMTALS AEIGGVGVVT AHSGSTIGLM LPHDVPGFRS RLAEAINRCG QLVHRERVLC 

310      
YQTLGFERTG SGPSNDLQ     

 

Pac19 

10 20 30 40 50 60 
MIFNDLVDAI GHTPAVRLRA APTDVTVVAK LELQNLFAMK DRVARQVIRE ARENGVLAPG 

70 80 90 100 110 120 
APIIESSSGT MALGLALAGH ALGHPVHIVT DPRIDAITLA KLKALGCSVH VVEGMTSNGW 

130 140 150 160 170 180 
QSARLERLAA LRAEYPGAFW PRQYSNPQNP LAYAALAGEL VADLGRIDVL VGAVGSGGSL 

190 200 210 220 230 240 
CGTARALRRA LKAAGHDGPL RVIGVDAVGS VLFGQPDQPG RKQSGIGNSL IPGNLDYAHI 

250 260 270 280 290 300 
DEIHWLNDRE AFVATRDLAR DEGIFAGNSS GSVYQVLKHL AATVAPGTRV VGIFPDRGDR 

310 320 330 340 350 360 
YVDSIYDDGY WQQAGLAELP LRTEPLEVSY GTEVSSWARA EVPSTPRKRL VFVESNTTGT 
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370 380 390 400 410 420 

GMLALARARD LGLAPVLLTS RPSRYPGIGE ADCEIIRCDT NSADTLAAAL RAHFAPDEVA 
430 440 450 460 470 480 

GITTTSEFYL EAAASLAASL GLPGNPPAAV GACRRKSATR RLLADAGLPQ PVSMPVTRVA 
490 50 510 520 530 540 

EVPGAVAATG LPCVVKPASD SASTGVLLCT SVEQAQEHAA KLLAITHNVR EQAVPPEVLV 
550 560 570 580 590 600 

EELVQGPEFS VETIFVDAAL HLVGITRKSV SPPPSFVELR HAFPASLDEA ESREIEQVVR 
610 620 630 640 650 660 

AAIQAIGLRH GACHTELRLT AAGPTIIEIN ARLAGGMIPE LIRLAGGPDL LTQQLRAAAG 
670 680 690 700 710 720 

MAVELPRGAL TPTGVAFITS SAEGRLASLD GVESARQSAG VAEVQIARRP GDPVRPATDA 
730 740 750    

YDRIGYIIAS GDSVSQLDQS LDSALDSITV RLAND   

 

        

Pac20 

10 20 30 40 50 60 
MADLIEMRSD TFTLPTEQMV SAMTQAVLGD DVYGEDPTAN RLEELAAKSV GKPAACLMPS 

70 80 90 100 110 120 
GTMANLAALL VHVPRGGKVL VGNESDIYLY EAGGASVCGG IVYEPIPTRP DGTLALDDLA 

130 140 150 160 170 180 
AAFPPDPDDP QFALPGLICV ENTHNRMGGR VLSQAYLAEL KRFATGHGIP VHMDGARIFN 

190 200 210 220 230 240 
AAVATGVAAE QIAAHADSIQ FCLSKGLSAP IGSLAGEADF IEKARRIRKM LGGGMRQAGV 

250 260 270 280 290 300 
FAAAGLVALT SMIDRLAEDH QRAAQLAAGL AEVDGIDVDP SSVTTNIVLF RVTANGLDDD 

310 320 330 340   
RFLRAVEQRG LVMGEFGHGR IRAVTHRGLS SADVSAAVAI VADVVREAS  

 

 

Pac22   

10 20 30 40 50 60 
MSDNDARARL LRAMEYRQQF DERLGRIEQE TPFDSVLDVD TTESVELWDL PDADQLWVGR 

70 80 90 100 110 120 
NARYSPTPVR TVRSALGKCD VHEEVTFVDV GCGKGRVLLL AAELPFRRIV GVEASEALCD 

130 140 150 160 170 180 
IARSNVEKAS VARDGCDRIE VCHADATKFD IPDDAGLFYF YEPFSVDVSL AVLERIEDSV 

190 200 210 220 230 240 
RRHPRNVVLC FTGRGQPDGQ GSDLEKTPVA ASEMRAHWNL VEIVPSPDAE FYDSFLYEYV 

      
ENGAPQA 
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ABSTRACT: The pacidamycins belong to a class of anti-
microbial nucleoside antibiotics that act by inhibiting the
clinically unexploited target translocase I, a key enzyme in
peptidoglycan assembly. As with other nucleoside antibio-
tics, the pacidamycin 40,50-dehydronucleoside portion is an
essential pharmacophore. Here we show that the biosynthe-
sis of the pacidamycin nucleoside in Streptomyces coeruleo-
rubidus proceeds through three steps from uridine. The
transformations involve oxidation of the 50-alcohol by
Pac11, transamination of the resulting aldehyde by Pac5,
and dehydration by the Cupin-domain protein Pac13.

Nucleoside antibiotics exhibit versatile biological properties
such as antibacterial, antifungal, antiviral, and antitumor

activity.1,2 The wide scope of such activities stems from the
structural similarity of these compounds to nucleosides and
nucleotides, which play key roles as energy donors, metabolite
carriers, and enzyme cofactors. Puromycin is probably the best
known example because of its widespread use in the study of the
ribosome and in protein evolution through mRNA display.3,4

Here we report the first insights into the biogenesis of the
pacidamycin aminonucleoside 1 and demonstrate that the un-
usual dehydroaminonucleoside can be formed in vitro from
uridine by three enzymes. The enzymes involved in the genera-
tion of this rare aminonucleoside demonstrate substrate flex-
ibility and have the potential to be utilized for biotransformations
that will enable access to series of new bioactive compounds.

Figure 1 shows the chemical structures of aminonucleoside
moieties found in peptidyl nucleoside antibiotics. The peptide
portions of these compounds share no similarities. Despite all the
differences, however, the biosyntheses of all the aminonucleo-
sides characterized to date begin with their corresponding
nucleotides. Puromycin and the related antibiotic A201A contain
a 30-amino-30-deoxyadenosine moiety 4 that has been shown to
be derived from adenosine-50-triphosphate (ATP).5 The bio-
syntheses of the 50-deoxynucleoside 3 (found in nikkomycins)
and the bisaminonucleoside 2 (found in liposidomycins) begins
with uridine-50-monophosphate (UMP).6�8

The biosynthesis of the aminonucleoside moiety 1 of the
pacidamycin group of uridyl peptide antibiotics has not been
investigated until now. The uridyl peptide antibiotics, such as
pacidamycin, napsamycin, and mureidomycin, are translocase I
inhibitors. This mode of action is shared with the liposidomycins.
The aminonucleoside motif 1 of the pacidamycin-like antibiotics

differs from other aminonucleosides in that it lacks the
30-hydroxyl group and has an exocyclic double bond. The unique
features of 1 imply a novel biosynthetic pathway.

On the basis of sequence analysis of the pacidamycin biosyn-
thetic cluster, we had suggested the involvement of the flavin-
dependent oxidoreductase Pac11 and the aminotransferase Pac5
in the biosynthesis of the aminonucleoside.9 These two enzymes
together could potentially provide 50-amino-50-deoxyuridine 7
from uridine or UMP. We postulated that at least one additional
enzyme was needed to account for the double bond in the

Figure 1. Aminonucleoside portions of peptidyl nucleoside antibiotics.

Received: July 3, 2011
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pacidamycin aminonucleoside 1. Of the 22 genes in the pacida-
mycin core cluster, only pac6, pac7, and pac13 had not been
assigned a function. Pac6 shows sequence homology to non-
heme iron dioxygenases belonging to the TauD family of
enzymes10 and was therefore an alternative candidate for forma-
tion of the uridyl aldehyde. However, none of the strictly
conserved iron-binding residues are found in Pac6 [see the
Supporting Information (SI)], indicating that the enzyme may
not be active as a dioxygenase. Pac7 has no significant homo-
logies to characterized proteins, and Pac13 belongs to the Cupin
family of proteins. The Cupin family is characterized by a metal-
binding motif, and members of this protein family have a diverse
set of functions.11

In order to determine which of these genes were involved in
the biosynthesis of the aminonucleoside, knockout mutants for
each of the five genes were constructed. Analysis of the culture
extracts by liquid chromatography�tandem mass spectrometry
(LC�MS/MS) showed that none of themutant strains were able
to generate the typical pacidamycin suite of compounds. Upon
closer inspection of the metabolite profile of the pac13 mutant,
hydrated pacidamycins 6 were detected (Figure 2). These
pacidamycins were not detected in any of the other mutant
strains or in the wild-type organism. The presence of hydrated
pacidamycins strongly suggests that Pac13 acts as the dehydra-
tase. Furthermore, this finding indicates that the aminonucleo-
side 7 is a chemically competent substrate for attachment to the
pacidamycin peptide portion in vivo, as had been previously
demonstrated in an in vitro study with the pacidamycin non-
ribosomal peptide synthetases.12

The origins of the aminonucleoside portion in primary
pyrimidine metabolism were established by synthesizing and

feeding deuterated ribose, uracil, and uridine to the wild-type
pacidamycin producer. All three compounds resulted in the
incorporation of the deuterium label into the nucleoside portion
of 5, as established through MS/MS (Figures S7�S9 in the SI).
Next, we sought to re-establish pacidamycin biosynthesis in the
mutant strains through chemical complementation. To this end,
putative biosynthetic intermediates for the aminonucleoside
portion were synthesized (see the SI) and fed to cultures of
the S. coeruleorubidus mutants.

Production of wild-type pacidamycins 5 was restored in the
pac5 and pac11 mutants through addition of aminonucleoside 7
(Scheme 1a,b). The hydrated pacidamycins 6 were detected

Figure 2. (a) Structures of pacidamycins found in wild-type S. coeruleorubidus (5) and the pac13 mutant (6). (b) MS/MS analyses of 5 and 6.

Scheme 1. Feeding of Precursors to Pacidamycin Mutants
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alongside the enamide-containing pacidamycins 5 in both of
these extracts. In contrast, no change in metabolite profile was
observed in culture extracts of the pac6 or pac7 mutants (Figure
S10). Further chemical complementation experiments were
planned with the protected 50-uridylaldehyde 8. We decided to
use the protected aldehyde because of stability issues with
unprotected 50-uridylaldehyde 9, which slowly dehydrates under
mildly acidic conditions. We reasoned that deprotection of 8
would occur during culturing, either spontaneously or enzyma-
tically. To test the chemical competence of 8 as a pathway
intermediate, we administered its deuterated form [5-2H]-8 to
wild-type S. coeruleorubidus. This resulted in the detection of
deuterated pacidamycins . Rather surprisingly, however, the
deuterated form of the hydrated pacidamycin 6was also detected
(Figure S18). When aldehyde 8 was administered to cultures of
the pac11mutant, pacidamycin production was restored (Figure
S10 and Scheme 1c). Again, hydrated pacidamycins 6 were
detected alongside 5 in the pac11 mutant. Supplementing
cultures of the pac6 and pac7mutant strains with 8 did not result
in the production of any pacidamycins (Figure S10).

Taken together, the data suggest that pac5, pac11, and pac13
are involved in the biosynthesis of pacidamycin aminonucleoside
1. The involvement of pac6 or pac7 in the generation of the
aminonucleoside is not supported by our findings. Our experi-
ments clearly indicate that the pac13-mediated dehydration is not
required for pacidamycin biosynthesis to go to completion. The
results obtained from the chemical complementation experi-
ments are consistent with initial action of Pac11 to generate
uridyl aldehyde 9 followed by Pac5-catalyzed transamination to
give the 50-aminouridine derivative.

In order to test whether Pac5, Pac11, and Pac13were sufficient
to generate aminonucleoside 1 in vitro, we heterologously
expressed the three enzymes in Escherichia coli BL21(DE3) as
His6-fusion proteins. The enzymes were purified by affinity
chromatography. The putative uridine dehydrogenase Pac11 is
homologous to flavin-dependent oxidoreductases of the vanillyl

alcohol oxidase family. Many enzymes of this family covalently
bind their flavin cofactor.13 Spectroscopic and mass spectro-
metric analysis of purified Pac11 confirmed the presence of a
covalently attached flavin cofactor (Figures S4 and S5). For the
putative aminotransferase Pac5, spectral analysis indicated that
pyridoxal-50-phosphate (PLP) did not copurify with the enzyme
(Figure S3). Addition of Pac5 to PLP, however, did result in the
shifts characteristic for Schiff base formation between the Pac5
active-site lysine (Lys270) and PLP.14

Enzyme reactions were allowed to incubate at 28 �C for 18 h
prior to LC�MS or HPLC analysis of the products. The
identities of 7, 9, and 10 were established through comparison
of their MS and MS/MS data to those obtained from synthetic
standards (Figures S22�S24) andHPLC coinjections with these
synthetic standards (Figure S21). Pac11 was capable of oxidizing
uridine to uridyl aldehyde 9 (Figure 3). Traces of dehydrated
aldehyde 10 were also detected (Figure S22). Although rare,
molecular oxygen can act as a terminal electron sink for flavin,
thus bypassing the need for nicotinamide-mediated cofactor
recycling. No conversion was observed when UMP was used as
the substrate instead of uridine (Figure S21). This is the first firm

Figure 3. HPLC and LC�MS analyses of (a) standards and (b�e) in vitro assays. The structure of the main product for each enzyme combination is
shown. In the LC�MS chromatograms, the extracted ion trace for the main product is shown.

Scheme 2. Biosynthesis of Pacidamycin Nucleoside 1
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experimental evidence that the biosynthesis of pacidamycin
nucleoside 1 starts from a different precursor than for liposido-
mycin-type nucleoside 2 or nikkomycin-related nucleoside 3.
The reaction of Pac13 with uridine did not yield any product
(Figure S21), which strongly suggests that Pac11 is the first
enzyme to act in aminonucleoside biosynthesis. The reaction of
Pac11 in combination with Pac13 generated 10 as the major
product from uridine, and uridyl aldehyde 9 was detected as a
minor product (Figure 3 and Figure S22). Enzyme assays using
Pac5 were performed in the presence of PLP and alanine (see
section 4.3 in the SI). As expected, aminonucleoside 7 was
obtained when uridine was incubated with Pac11 and Pac5.

When all three enzymes were incubated together, a new peak
appeared as the major product. Though under the conditions of
the HPLC its retention time was similar to those of 9 and 10, in
LC�MS it differed (Figure 3 and Figure S24). Its molecular ion
and MS/MS fragmentation pattern were consistent with pacida-
mycin nucleoside 1 (see the SI). This product was detected only
when Pac5, Pac11, and Pac13 were present. The new compound
exhibited extreme tailing under the acidic conditions employed
for LC�MS, possibly because of the presence of interconverting
isomers. Acetylated nucleoside 1model compounds were shown
to be surprisingly stable toward double-bond isomerization, but
the free amine 1was never tested in those studies.15 Interestingly,
in the three-enzymemixture, aminonucleoside 7was also present
alongside residual amounts of aldehydes 9 and 10 (Figure S24).
Pac13 showed the ability to convert 7 to 1 (Figure S21). Pac13
was also incubated with hydrated pacidamycins purified from a
pac13 mutant, but the enzyme was unable to mediate the
dehydration of these species (Figure S25).

In summary, we have identified the genes that are required for
formation of pacidamycin nucleoside 1. The biosynthesis of the
nucleosidic portion follows a pathway that is different from
previously characterized nucleoside antibiotic pathways. The
biogenesis of the nucleoside has been demonstrated to start
from uridine, which is converted to its aldehyde 9 by the flavin-
dependent dehydrogenase Pac11. This is in contrast to the first
step in the biosynthesis of liposidomycin nucleoside 2, where
UMP is oxidized to aldehyde 9 through the action of LipL, a
non-heme iron α-ketoglutarate-dependent enzyme.8 To the best
of our knowledge, this is the first example wherein the biosynth-
esis of a nucleoside antibiotic starts from the nucleoside and not
the nucleotide. Furthermore, we have demonstrated that the
dehydration is mediated by the Cupin family enzyme Pac13 and
that the transamination is catalyzed by Pac5. Both enzymes are
relatively flexible in their substrate requirements, allowing the
biosynthesis of 1 to follow a randomized order, as shown in
Scheme 2.

The generation of the unnatural pacidamycin 6 that occurs upon
feeding of aldehyde 8 and amine 7, hints at the inherent substrate
flexibility within the pathway.16,17 While the observed metabolic
plasticity leads to problems in pinpointing the timing of the
dehydration step, it will facilitate the generation of pacidamycin
analogues with altered nucleoside portions. We are carrying out
further structural and biochemical assessment of the enzymes on
this pathway and exploring the use of these enzymes in the
generation of nucleoside analogues for antiviral therapies.
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Pac17 is an uncharacterized protein from the pacidamycin gene cluster of the

soil bacterium Streptomyces coeruleorubidus. It is implicated in the biosynthesis

of the core diaminobutyric acid residue of the antibiotic, although its precise

role is uncertain at present. Given that pacidamycins inhibit translocase I of

Pseudomonas aeruginosa, a clinically unexploited antibiotic target, they offer

new hope in the search for antibacterial agents directed against this important

pathogen. Crystals of Pac17 were grown by vapour diffusion and X-ray data

were collected at a synchrotron to a resolution of 1.9 Å from a single crystal.

The crystal belonged to space group C2, with unit-cell parameters a = 214.12,

b = 70.88, c = 142.22 Å, � = 92.96�. Preliminary analysis of these data suggests

that the asymmetric unit consists of one Pac17 homotetramer, with an estimated

solvent content of 49.0%.

1. Introduction

The pacidamycins (Fig. 1) are a suite of secondary metabolites

produced by the Gram-positive bacterium Streptomyces coeruleo-

rubidus. These compounds show an exquisitely narrow range of

activity against the pathogen Pseudomonas aeruginosa by inhibiting

the action of translocase I. Although peptidoglycan biosynthesis is

a validated target for antimicrobial agents such as penicillin and

vancomycin, to date compounds that specifically inhibit translocase I

have not seen clinical application (Winn et al., 2010). Thus, the

pacidamycins offer scope for the development of new antibiotics in

the fight against multidrug-resistant bacteria.

At the core of the structure of the pacidamycins is a (2S,3S)-

diaminobutyric acid (DABA) moiety (Fig. 1), a nonproteinogenic

amino acid that is found in a number of other natural products

including the related uridyl peptide antibiotics, namely the mureido-

mycins (Isono & Inukai, 1991) and napsamycins (Chatterjee et al.,

1994), and the lipopeptide antibiotic friulimicin (Vértesy et al., 2000).

The pacidamycin-biosynthetic gene cluster has recently been identi-

fied in the antibiotic producer and the functions of a number of gene

products have been inferred (Rackham et al., 2010; Zhang et al.,

2010). Amongst these are Pac18 and Pac19, which are implicated

in DABA biosynthesis, specifically catalysing the ATP-dependent

phosphorylation of l-threonine and the conversion of the resultant

phosphothreonine to DABA by a pyridoxal-phosphate-dependent

�-replacement, respectively. The precise biological function of Pac17

# 2012 International Union of Crystallography
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Figure 1
The pacidamycins have a common core that is decorated by groups R1 and R2,
where R1 is alanine, glycine or hydrogen and R2 is indolyl, phenyl or
3-hydroxyphenyl. The central diaminobutyric acid (DABA) moiety is highlighted
in red and shown separately on the right. This figure was created using ChemDraw.
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in pacidamycin biosynthesis is uncertain. It shares significant amino-

acid sequence homology to argininosuccinate lyases and the putative

catalytic His and Ser residues are conserved in Pac17, whilst all of

the substrate-binding residues are not (Sampaleanu et al., 2002). The

observation that pac17 is translationally coupled to pac18 and pac19

suggests that it also plays a role in the synthesis of DABA (Rackham

et al., 2010; Zhang et al., 2010). Homologues of Pac17 exist in the

genomes of several other actinomycetes, and in at least two cases

these occur in gene clusters for uridyl peptide antibiotic biosynthesis

(Müller et al., 2007; Kaysser et al., 2011), but none of these proteins

have been characterized to date.

The closest known structural homologue of Pac17, with an amino-

acid sequence identity of 33% over 74% of the sequence, is arginino-

succinate lyase from Thermus thermophilus HB8. This was used as

a template to solve the Pac17 structure by molecular replacement.

Here, we report the crystallization and preliminary X-ray analysis of

Pac17, which represents the first of the pacidamycin-biosynthetic

enzymes to be crystallized.

2. Materials and methods

2.1. Protein expression, purification and crystallization

The pac17 gene of S. coeruleorubidus (UniProtKB entry E2EKP9;

synonym pacQ) was amplified by PCR from the cosmid 2H-5

(Rackham et al., 2010), which contained the minimal pacidamycin

gene cluster, using a forward primer containing an NdeI restriction

site (50-GGACGACATATGGTGAGACTGACCGGTCGACTT-30)

and a reverse primer containing a BamHI site (50-TCCGGATCC-

TCGTCAGACTCCCCCGG-30). The amplified DNA was NdeI/

BamHI-digested and subsequently ligated into NdeI/BamHI-digested

expression vector pET28a(+) to produce the expression construct

pET28a(+)Pac17, which encodes the native 498-residue Pac17

protein preceded by a thrombin-cleavable N-terminal hexahistidine

tag. The inclusion of this tag appended an additional 21 amino acids

onto the N-terminus of the protein with the sequence MGSS-

HHHHHHSSGLVPRGSHM, giving a total molecular weight of

55 859.1 Da. The pET28a(+)Pac17 expression vector was introduced

into Escherichia coli BL21 (DE3) cells by transformation. For protein

production, 10 ml of an overnight culture of these cells was used to

inoculate 1 l autoinduction medium broth containing 50 mg ml�1

kanamycin. The culture was grown at 310 K for 4 h and for a further

16 h at 289 K. The cells were harvested by centrifugation using a

Sorvall Evolution centrifuge (15 min, 5000 rev min�1, 277 K, SLC-

4000 rotor) and stored at 253 K prior to purification.

All purification steps were performed at 277 K. The cell pellet was

resuspended in buffer A (50 mM Tris–HCl pH 8.0, 500 mM NaCl,

40 mM imidazole) containing a Complete EDTA-free protease-

inhibitor cocktail (Roche) and lysed by sonication. The supernatant

and pellet were separated by centrifugation in a Sorvall Evolution

centrifuge (45 min, 18 000 rev min-1, 277 K, SS34 rotor). Pac17 was

purified from the supernatant using a two-step procedure performed

in series using an ÄKTAexpress FPLC (GE Healthcare). The sample

was applied onto a 5 ml Ni2+-charged His-Trap Chelating HP column

(GE Healthcare), washed with 20 column volumes (CV) of buffer A

and then eluted with 5 CV buffer A containing 500 mM imidazole at

a flow rate of 4.0 ml min�1. The major protein peak (based on an

absorbance of >100 mAU at 280 nm) was automatically applied onto

a Superdex 200 HiLoad HP gel-filtration column (GE Healthcare)

in buffer B (20 mM HEPES pH 7.5, 150 mM NaCl) and eluted over

1.3 CV at a flow rate of 3.2 ml min�1. Fractions containing the Pac17

protein (as confirmed by SDS–PAGE) were pooled and concentrated

to approximately 11 mg ml�1 (as measured using the Bradford assay)

in buffer B using an Amicon Ultra-15 30 kDa cutoff centrifugal

concentrator (Millipore) for crystallization. The N-terminal His tag

was not cleaved from the purified protein. Approximately three

quarters of the protein sample was flash-frozen in liquid nitrogen as

50 ml aliquots in PCR tubes and stored at 193 K for subsequent use.

The remainder was used immediately in crystallization trials.

Crystallization trials of His-tagged Pac17 were set up using an

OryxNano robot (Douglas Instruments Ltd) in sitting-drop vapour-

diffusion format with 96-well MRC plates (Molecular Dimensions)

using a variety of commercially available screens (Hampton Research

and Molecular Dimensions) at a constant temperature of 293 K.

Drops consisted of 0.3 ml protein solution mixed with 0.3 ml precipi-

tant solution and the reservoir volume was 50 ml. A number of

conditions produced crystals, which were then optimized in a 24-well

hanging-drop vapour-diffusion format using VDX plates (Hampton

Research) with a reservoir volume of 1 ml and drops consisting of

1 ml protein solution and 1 ml precipitant solution. For each optimi-

zation, a fresh aliquot of frozen protein was used. In preparation for

cryogenic data collection at the synchrotron, crystals were grown

from precipitant solution supplemented with 15%(v/v) glycerol.

2.2. X-ray data collection and analysis

Crystals were mounted for X-ray data collection using LithoLoops

(Molecular Dimensions), flash-cooled by plunging them into liquid

nitrogen and stored in Unipuck cassettes (MiTeGen) prior to trans-

port to the synchrotron. Crystals were subsequently transferred

robotically to the goniostat on station I02 at the Diamond Light

Source (Oxfordshire, England) and maintained at 100 K with a

Cryojet cryocooler (Oxford Instruments). Diffraction data were

recorded using an ADSC Quantum 315 CCD detector with the

wavelength set to 0.9795 Å and were integrated using XDS (Kabsch,

2010) and scaled using SCALA (Evans, 2006). Further data analysis

was performed using the CCP4 program suite (Winn et al., 2011).

3. Results and discussion

The His-tagged Pac17 construct was overproduced and purified to

greater than 95% purity as determined by SDS–PAGE analysis, with

a final yield of approximately 24 mg per litre of culture. The gel-

filtration column had previously been calibrated using molecular-

weight gel-filtration standards (GE Healthcare). Pac17 eluted at a

volume that corresponded to a molecular weight of �150 kDa, being

indicative of a multimeric species and closest to the expected value

for a homotrimer (�168 kDa).

Crystals grew within 24 h at 293 K from a number of crystallization

conditions. These conditions were optimized to improve crystal size,
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Figure 2
Crystals of Pac17 with approximate dimensions of 150 � 50 � 30 mm.



with the largest crystals appearing in a precipitant solution consisting

of 15%(w/v) PEG 3350, 0.2 M potassium sodium tartrate, 0.1 M bis-

tris propane pH 7.5, 15%(v/v) glycerol. The largest crystals formed

were approximately 150 � 50 � 30 mm in size (Fig. 2).

Native X-ray diffraction data were collected from a single Pac17

crystal: 1000� 0.2� oscillation images were recorded in a single sweep

to a maximum resolution of 1.9 Å. Indexing of the data was consistent

with a C-centred monoclinic lattice with unit-cell parameters

a = 214.12, b = 70.88, c = 142.22 Å, � = 92.96�. The resultant reduced

data set was 99.3% complete to a resolution of 1.9 Å. Data statistics

are given in Table 1.

Solvent-content analysis suggested that the asymmetric unit was

most likely to contain three or four His-tagged Pac17 monomers,

giving estimated solvent contents of 61.8 and 49.0%, respectively

(Matthews, 1968). Inspection of a self-rotation function calculated

using MOLREP (Vagin & Teplyakov, 2010) revealed a noncrys-

tallographic twofold axis perpendicular to b in the ac plane which,

when combined with the crystallographic twofold, generates apparent

222 symmetry. This would be consistent with an asymmetric unit

comprised of a 222-symmetric homotetramer. Further analysis of

the data with SFCHECK (Vaguine et al., 1999) revealed a pseudo-

translation vector of 0.386, 0.000, 0.491 (fractional coordinates) at

28% of the origin peak (Fig. 3c).

Interrogation of the Protein Data Bank (http://www.rcsb.org/pdb)

using a protein BLAST search revealed that the closest structural

homologue was argininosuccinate lyase from T. thermophilus HB8

(PDB entry 2e9f; M. Goto, unpublished work), which shows 74%

sequence coverage and 33% sequence identity to Pac17. The bio-

logical unit (and asymmetric unit) of the former is a homotetramer

with 222 symmetry. Both monomer and tetramer polyalanine

molecular-replacement templates were created from this structure

using CHAINSAW (Stein, 2008). These were used as inputs to Phaser

v.2.3.0 (McCoy et al., 2007), which was run at 4.5 Å resolution using

the default cutoffs for peak selection. With the monomer template

Phaser reported only two solutions, each with four molecules per

asymmetric unit (TFZ-equivalent scores of 36.0 and 33.4, respec-

tively). Inspection of these solutions using Coot (Emsley & Cowtan,

2004) revealed them to be very similar, differing only in the place-

ment of the subunits relative to the origin. In both cases the

asymmetric unit was comprised of two equivalent ‘dimers’ arranged

in a back-to-back fashion; after the application of crystallographic

symmetry one of these dimers generated a homotetramer
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Figure 3
Preliminary crystallographic analysis of Pac17. Self-rotation functions calculated to 4.5 Å resolution from (a) the experimental data and (b) the molecular-replacement
solution, showing the same noncrystallographic twofold axes (� = 180� section). Note the alignment of one of these with the crystallographic twofold axis (y axis). (c) Self-
Patterson function (section v = 0) calculated to 4.5 Å resolution from the experimental data, revealing a clear pseudotranslation vector of 0.386, 0.000, 0.491 (fractional
coordinates). The alignment of crystallographic and noncrystallographic twofold axes gives rise to similarly oriented tetramers in the unit cell. Specifically, (d) the application
of twofold crystallographic symmetry (operator: 1� x, y, 1� z) generates tetramer B from tetramer A, which is essentially equivalent to (e) the translation of molecule A by
the pseudotranslation vector to give molecule B0. For clarity, only two of the four copies of the tetramer in the unit cell are shown in (d) and (e). (d) and (e) were created using
PyMOL (DeLano, 2002).



corresponding to the biological unit of the template structure, whilst

the other dimer did not generate a homotetramer and in fact partially

overlapped with crystallographically related dimers (PAK scores of

73 and 68 for the two solutions, respectively). With the tetramer

template, only a single solution was reported (TFZ-equivalent score

of 49.4). This was judged to be a correct solution because (i) the

packing looked reasonable, i.e. there were no clashes (PAK score = 0)

and no large gaps in the lattice, (ii) a self-rotation function calculated

from the model structure factors (Fig. 3b) was consistent with that

calculated from the experimental structure factors (Fig. 3a), indi-

cating that the twofold axes of the model were correctly oriented, and

(iii) since one of the model twofold axes was parallel to the crystallo-

graphic twofold axis (Fig. 3a), the application of twofold crystallo-

graphic symmetry resulted in similarly oriented tetramers within the

same unit cell (Fig. 3d), which were therefore also related by trans-

lational symmetry alone (Fig. 3e). The corresponding translational

vector agreed with that reported by SFCHECK (Fig. 3c). Rigid-body

refinement of this model at 4.5 Å resolution using REFMAC5

(Murshudov et al., 2011) gave an Rfree value of 0.547, a free correla-

tion coefficient of 0.525 and a figure of merit of 0.393.

Subsequent analysis of the Phaser solutions generated from the

monomer template indicated that in both cases all four subunits were

correctly oriented and the two dimers corresponded to halves of the

biological unit. It is not clear why Phaser failed to correctly combine

the two dimers in the translation function, but it may have been

influenced by the pseudo-symmetry, or perhaps in some way

‘confused’ by the densely packed core of the homotetramer, which

is comprised of 20 long roughly parallel �-helices (five per subunit).

Indeed, this densely packed core, and the distinctly nonspherical

overall shape of the assembly, could account for the anomalously low

estimate of the multimeric state from the gel-filtration column.

Rebuilding and refinement of the preliminary Pac17 model are

under way. A full description of this process and analysis of the

resultant structure will be reported elsewhere. This work represents

the first step towards a full structural and functional characterization

of Pac17.
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Rackham, E. J., Grüschow, S., Ragab, A. E., Dickens, S. & Goss, R. J. M.
(2010). Chembiochem, 11, 1700–1709.

Sampaleanu, L. M., Yu, B. & Howell, P. L. (2002). J. Biol. Chem. 277, 4166–
4175.

Stein, N. (2008). J. Appl. Cryst. 41, 641–643.
Vagin, A. & Teplyakov, A. (2010). Acta Cryst. D66, 22–25.
Vaguine, A. A., Richelle, J. & Wodak, S. J. (1999). Acta Cryst. D55, 191–205.
Vértesy, L., Ehlers, E., Kogler, H., Kurz, M., Meiwes, J., Seibert, G., Vogel, M.

& Hammann, P. (2000). J. Antibiot. 53, 816–827.
Winn, M., Goss, R. J. M., Kimura, K. & Bugg, T. D. (2010). Nat. Prod. Rep. 27,

279–304.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242.
Zhang, W., Ostash, B. & Walsh, C. T. (2010). Proc. Natl Acad. Sci. USA, 107,

16828–16833.

crystallization communications

974 Tromans et al. � Pac17 Acta Cryst. (2012). F68, 971–974

Table 1
Summary of X-ray data for Pac17.

Values in parentheses are for the outer resolution shell.

No. of crystals 1
Beamline I02, Diamond Light Source
Wavelength (Å) 0.9795
Detector ADSC Quantum 315 CCD
Crystal-to-detector distance (mm) 290.7
Rotation range per image (�) 0.2
Exposure time per image (s) 0.25
Beam transmission (%) 27.2
Total rotation range (�) 200.0
Resolution range (Å) 67.28–1.90 (2.00–1.90)
Space group C2
Unit-cell parameters (Å, �) a = 214.12, b = 70.88,

c = 142.22, � = 92.96
Estimated mosaicity (�) 0.2
Total No. of measured intensities 672568 (74768)
Unique reflections 166584 (23088)
Multiplicity 4.0 (3.2)
Mean I/�(I) 8.5 (2.0)
Completeness (%) 99.3 (95.1)
Rmerge† 0.127 (0.583)
Rmeas‡ 0.147 (0.704)
CC1/2§ 0.994 (0.706)
Wilson B value (Å2) 15.6

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ. ‡ Rmeas =

P
hklfNðhklÞ=

½NðhklÞ � 1�g1=2 P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where Ii(hkl) is the ith observa-

tion of reflection hkl, hI(hkl)i is the weighted average intensity for all observations i of
reflection hkl and N is the number of observations of reflection hkl. § CC1/2 is the
correlation coefficient between intensities from random halves of the data set.
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