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CHAPTER 1

INTRODUCTION

Ionic polymer-metal composites (IPMC) have been studied during the past
two decades for their potential to serve as noiseless mechanoelectrical and
electromechanical transducers. The advantages of IPMC over other elec-
troactive polymer actuators are low voltage bending, high strains (> 1%),
and an ability to work in wet environments. The main focus has been on
the electromechanical transduction property – the material’s ability to ex-
hibit large bending deformation in response to a low (typically 1 . . . 5 V)
applied voltage.

In order to describe both electromechanical and mechanoelectrical trans-
duction properties of IPMC, an advanced physics based model of the ma-
terial is necessary. In this dissertation, a fundamental physics based model
that is based on novel hp-FEM (finite element method) is proposed. Full
derivation of the equations with an in-depth study of the benefits of using
higher order FEM with automatic adaptivity is presented.

The rest of the introduction chapter gives a thorough overview of IPMC
materials, the latest models, and detailed research objectives of this disser-
tation.

1.1 IPMC research overview

IPMC consists of a thin ionomeric polymer membrane with thickness of
upwards of 100 μm [1]. Typical membrane material is Nafion, however,
other types of polymers such as Teflon and Flemion [2] are used as well.
The membrane is coated with a thin layer of a noble metal electrode, such
as platinum. Sometimes, an additional layer of gold is added on the surface
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(a) (b)

Figure 1.1: IPMC electromechanical transduction in response to an applied volt-
age.

to improve the electric conductivity. The polymer membrane contains fixed
anions and solvent with freely movable cations, so the overall charge of the
material is balanced. Typical cations are Na+, K+, Li+, and Cs+ in water
solution. Dry forms of IPMCs, where an ionic liquid is used instead of
water based solvents have also been studied [3] (see Figure 1.1).

An IPMC actuator is shown in Figure 1.1 (a) and bending deformation
in response to an applied voltage in Figure 1.1 (b). General conceptual
design of IPMC was first described by Shahinpoor et al. in 1992 [4, 5]. In
the following years, Segalman et al. also published a finite element analy-
sis of the polymeric gel materials [6, 7]. Thereafter, attempts to formulate
the electromechanical theory for IPMC materials were made. Shahinpoor
and his co-workers presented a non-homogeneous large deformation the-
ory of ionic polymer gels in electric and pH fields. The proposed model
considers the spatial distribution of cations and anions inside the material
due to the applied electric field. Deformation of IPMC was defined as a
function of electric field strength, dimensions, and the material’s physical
parameters [8–10].

In 2000, De Gennes and his coworkers presented the first phenomenological
theory of sensing and actuation of IPMC [11]; also, Nemat-Nasser and Li
proposed a model of the electromechanical response of IPMC that considers
the electrostatic forces inside the material and the cluster morphology of
Nafion [12]. Soon after in 2002, Nemat-Nasser stressed the role of hydrated
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cation transport within the clusters and polymeric networks of IPMC [13].
Few years later, Weiland and Leo published a model, where the rotation
of individual dipoles within a cluster was studied and related to the actu-
ation of IPMC [14]. In 2003, Nemat-Nasser presented an extensive study
of actuation properties of IPMC with different membrane materials and
cation types [2]. To summarize the study, typical Nafion based IPMC in
most cation forms, when subjected to a small voltage, undergoes a fast
bending towards the anode, followed by a slow relaxation towards the cath-
ode. However, when some large alkyl-ammonium cations are being used
(e.g TBA+), the initial bending is rather gradual and the back relaxation
is only partial. When subjected to a DC voltage, Nafion-based IPMCs
generally do not maintain their initial displacement towards the anode and
relax back towards the cathode. For some cations, the back relaxation goes
even beyond the initial position [15,16].

In the recent years, research of the IPMC materials has been mainly fo-
cused on getting higher efficiency, better adaptability to the environment,
and applicability. Paquette and Kim investigated the low temperature be-
havior of IPMC and showed the material’s capability to operate even below
-20◦C [17]. They also studied IPMC materials in a multilayer configura-
tion and constructed an equivalent circuit model [18]. In 2006, Kim and
Kim presented an electrochemical analysis of IPMC. They showed that
the performance degradation of IPMC over time is possibly linked to Pt-
oxide formation; they also suggested that the equivalent circuit of IPMC
should include an inductive component to describe the actuation physics
more accurately [19]. Later, they showed that the relaxation phenomena
of the IPMC actuators are primarily caused by the overpotential of the
surface electrodes and resulting platinum oxide formation [20]. In regard
to IPMC’s applicability, Anton analyzed the usability of the material for
practical applications and demonstrated performance of IPMC using the
inverted pendulum control [21]. He also published a detailed description of
the quasi-static mechanical behavior of IPMC actuator at large deforma-
tion and showed that a short actuator with a rigid elongation behaves more
linearly than a long one [22]. In 2007, Kim et al. showed that IPMC oper-
ation in a saltwater environment is feasible and naval applications could be
considered [23]. In the same year, Dogruer et al. showed that, the hydro-
dynamic forces do not significantly affect the performance of the IPMC in
aqueous environment and could be omitted from models [24]. In the follow-
ing years, Kim and Kim conducted an extensive study of IPMC materials
exhibiting self oscillations [25–27]. The physics behind the phenomenon
is an electrochemical reaction on the Pt electrodes of IPMC that is im-
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mersed in H2SO4 solution. A year later, Pugal et al. published a finite
element model that couples actuation to the equations describing the oscil-
lations [28, 29]. Recently, Dogruer et al. showed that IPMCs could be use
for energy harvesting purposes. Shortly after, Tiwari studied IPMCs with
different electrodes to understand the effectiveness of the energy harvest-
ing process. Platinum IPMCs showed better charging in the bending and
shear modes, whereas IPMCs with gold electrodes showed better battery
charging in the extension mode [30]. A comprehensive research in regard
to characterization of IPMCs for power harvesting was reported by Brufau-
Penella et al. in 2008 [31] – a generic model that works with the IPMC
material in dehydrated conditions was developed.

Conventional water solvent based IPMCs have also downsides – rather low
efficiency, back-relaxation under DC voltage, electrode degradation over
time, and water decomposition in the electrolysis reactions, to name a
few [32]. To overcome some of these shortcomings, different polymer materi-
als are being considered. For instance, some sulfonated polymers have high
water uptake property, proton conductivity, ionic exchange capacity, and
low cost [33–37]. Also, different electrode materials, manufacturing tech-
niques, and more stable solvents have been studied. Akle et al. proposed
a new manufacturing technique – Direct Assembly Process (DAP) – where
an electrode material is sprayed onto ionic-liquid swollen Nafion and then
hot-pressed [38]. In order to ensure large electrode surface area, Akle et al.
used porous RuO2 electrodes with ionic liquid 1-ethyl-3-methylimidazolium
trifluoromethanesulfonate (EMITF) as solvent. The actuators showed good
actuation performance and stability in air [39]. Fukushima and Asaka in-
troduced a manufacturing technique to assemble bucky gel actuators – a
dry actuator is fabricated layer-by-layer casting of bucky gel – a gelatinous
room-temperature ionic liquid that contains single-walled carbon nanotubes
(SWNTs). The actuator adopts a bimorph configuration with a polymer-
supported internal ionic liquid electrolyte layer sandwiched by bucky-gel
electrode layers. The advantage of the actuator is durability in air [40,41].
Very quick response and large bending actuation was achieved by using
’super-growth’ millimeter long SWNTs [42]. Palmre et al. introduced car-
bon aerogels [43] as a less expensive alternative material for assembling
the EAP actuators [44]. Based on the same materials, Torop et al. pro-
posed linear actuators capable of high force under low strain actuation [45].
Also, carbide-derived carbon (CDC) based electrodes have been studied as
a simple, cost effective, yet very effective electrode material, that results
high actuation strains [46, 47]. The CDC electrode based actuators with
additional gold foil were demonstrated to have fast response under low ac-
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A considerable effort has been put into modeling the physics of the elec-
tromechanical transduction of IPMC. One way to divide the models is by
how the underlying physics is described. The first group is consists of rather
empirical current-displacement relation models, often based on the electric
circuit equivalent description. The second group of the models explicitly
consider the ionic flux inside the material. Thus, both types of the models
are based on the currents, however, the latter relates the calculated charge
directly to the output deformation or force, whereas the former relates only
the overall current (or applied voltage) to the tip displacement or couples
the current to the torque in a mechanical beam.

1.1.1 Circuit equivalent models

Newbury and Leo developed an electric circuit model of IPMC. All the
terms of the model are frequency dependent and a viscoelastic model is
directly incorporated into the equations. The model provides means to an-
alyze both actuation and sensing properties of the material [49]. Bonomo et
al. introduced so-called grey box equivalent electric circuit model [50] that
consists of two phases [51]. The first phase is to calculate the absorbed cur-
rent based on the input voltage and the second is used to estimate either
the blocking force or the tip displacement. Cabonetto et al. proposed a
fractional order model using Marquardt method for the least squares esti-
mation [52]. Brunetto et al. coupled the applied voltage to the stress in
the IPMC and additionally considered the effect of viscous fluids (such as
water) on the actuation performance of the material [53]. McDaid et al.
developed a three-stage model that consists of equivalent electric circuit,
electromechanical coupling term, and a mechanical actuation stage [54].
The model describes IPMC actuation response for various applied voltages
up to 3 V. Punning et al. used the open-end transmission line presentation
in order to model kinematics of IPMC in a linked manipulator applica-
tion with IPMC based joints [55]. Interestingly, the work also suggests
that using a rigid elongation instead of a long IPMC strip increases both
efficiency and control precision. The detailed mathematical derivation of
lossy RC distributed line model of IPMC was proposed by Punning and
colleagues [56,57].

Some models, however, consider both the electric circuit and also the un-
derlying physics. For instance, Branco and Dente presented a continuum
model of IPMC where a lumped-parametric circuit was derived to predict
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relationship between applied voltage and current [58]. Rather novel ap-
proach was taken by Nishida et al. – they modeled IPMCs by using the
distributed port-Hamiltonian (DPH) systems on multiple spatial scales [59].
The DPH systems represent systems of conservation laws in canonical way.
More precisely, the system is described by effort and flow variables, called
port variable pairs whose product has the dimension of power. The port
variable pairs of the system can be used as boundary connections for var-
ious reduced models, e.g. numerical models with approximations such as
electric circuit equivalent double layer, diffusion equations, and mechanical
model.

1.1.2 Physics based models

The physics based models explicitly consider the ionic current in the poly-
mer and relate calculated current or charge to the deformation of IPMC.
Some models additionally include the physics of the electrodes. De Gennes
introduced a transport model of ion and water molecules based on the
linear irreversible thermodynamics [11]. Nemat-Nasser developed a com-
prehensive theory of IPMC actuation in 2000 [60] and further improved it in
2002 [13] – he used fundamental equations to describe the ionic current, in-
duced forces in Nafion clusters, and corresponding bending of IPMC. Asaka
and Oguro developed a model based on electro-osmotic flow and pressure
driven water flux description also in 2000 [61].

More recently, Porfiri studied the charge dynamics and capacitance of
IPMC [62]. He proposed an analytical solution to the initial value problem
based on matched asymptotic expansions; thereafter, based on the analyt-
ical model, a circuit model of IPMC was derived. Capacitance dependence
on the applied voltage was also discussed. Chen and Tan used somewhat
similar approach to develop a control design for IPMC – they solved the
physics-governed partial differential equation (PDE) based model in the
Laplace domain and incorporated it in a control design by using model
reduction [63]. Wallmersperger et al. showed that the large surface area
effect of the electrode can be incorporated in the ion transport model by
significantly increasing dielectric permittivity value and diffusion constant
in respective equations [64]. This helps to avoid calculating highly non-
linear and very steep cation concentration and electric potential gradients
near the polymer boundaries – challenging to model with FEM. Akle et
al. studied both numerically and experimentally high surface area effect on
the induced current and showed that higher electrode surface area results
in more stored charge and also different charge accumulation dynamics [65].
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water

hydrated cation

polymer backbone 
with anions 
attached to it

(a) (b)

Figure 1.2: IPMC model consisting of solvent (water) with hydrated cations and
polymer backbone with anions (a); deformation induced mechanoelectrical trans-
duction with cation concentration C, electric potential φ and pressure P field
gradients (b).

1.2 Research motivation and contributions

Ongoing research on the electromechanical and mechanoelectrical trans-
duction of IPMC materials has been focused on thorough understanding
of the underlying physics. The model of mechanoelectrical transduction
is illustrated in Figure 1.2. More precisely, from the fundamental aspect,
a physics based model has been derived that is based on the boundary
conditions that can be easily measured and applied to reduce the number
of unknown parameters. From the mathematical aspect, various methods
were actively researched to model the equations efficiently. This disser-
tation focuses mainly on the mathematical aspect. After introducing the
model, it will be demonstrated in detail how a novel hp-FEM method can
be applied in modeling the phenomenon.

The physics based modeling of IPMC transduction can be divided into two
different problems: modeling the ionic flux inside the polymer and modeling
the deformation in response to the ionic flux or as a cause of the flux.
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(a)
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x
y
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Figure 1.3: IPMC electromechanical transduction modeled with cation concen-
tration C, electric potential φ and pressure P field gradients. (a); optimized
model with calculated variables C and φ with x -directional displacement u1 and
y-directional displacement u2 (b).

The ionic flux is calculated by solvent the system of Poisson-Nernst-Planck
equations (further abbreviated PNP); the optimized Nernst-Planck equa-
tion for the mobile cations has the form

∂C

∂t
+∇ · (−D∇C − μFC∇φ) = 0, (1.1)

where C stands for cation concentration with the initial value of C0, D is
diffusion constant, μ mobility, F Faraday constant, and φ voltage. The
Poisson equation has the form

−∇2φ =
Fρ

ε
(1.2)

where ε is the absolute dielectric permittivity. The charge density ρ =
C − C0 where C0 is a constant anion concentration. Deformation can be
expressed by using the Navier’s equation in the vector form [66]

(λ+ μ)uk,ki + μui,jj + Fi = 0, (1.3)

where ui is a component of the displacement vector, Fi body force, and λ
and μ are Lame’s constants. The model with all the variables is illustrated
in Figure 1.3.
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Figure 1.4: Sample concentration C and voltage φ in a 1D domain Ω ⊂ R. Dirichlet
boundary conditions (V∂Ω1 = 0 V and V∂Ω2 = 4 V) were applied to the Poisson
equation (1.2) and Neumann conditions to the Nernst-Planck equation (1.1).

The ionic flux calculated with (1.1), (1.2) and deformation (1.3) can be
solved as decoupled in many optimized cases [28, 29, 67], however, this can
result in loss of overall calculation precision and complicate the simula-
tion procedure [68]. Regardless of the approach, solving for the variables
imposes a number of challenges on the model and a solution method.

Figure 1.4 depicts a solution for the fields C and φ at t = 0.1 s and t = 3.0 s
in a cross-section of IPMC (denoted by the dashed line in Figure 1.3 (b)).
It can be observed that the solution has two notable characteristics: for the
most part of the calculation domain (denoted by Ω), the gradient ∇C = 0.
Close to ∂Ω2, ∇C is nonzero and moving in time, and ∇C is very large at
∂Ω1. At the same time, φ is a ”nice” smooth function for the most part of Ω
but it has a large gradient at ∂Ω2. Additionally, the displacement fields u1
and u2 are rather smooth functions in the entire domain of Ω as illustrated
in Figure 1.5. The nature of the problem makes the choice of an optimal
mesh highly problematic. When a chosen mesh is too coarse, solution
CPU (central processing unit) time and memory are lower, however, the
approximation error of the solution can be high. When a too fine mesh
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Figure 1.5: Calculated C and φ (on the main graph), u1 and u2 (on the subgraph)
in IPMC cross-section (see Figure 1.3 (b)).

is chosen, the relative error is reduced, however, CPU time and memory
usage could become overly high, especially if the problem is solved in a 3D
domain. In fact, it has been shown that the computing power required for
a full scale problem is significant [69].

The challenge is to optimize the solution for CPU time and required mem-
ory, while maintaining a prescribed maximum relative error. Even if the
solution shown in Figure 1.4 was a stationary, an optimal mesh for C could
never be optimal for φ and vice versa. Considering also the transient na-
ture of the solution, it is not possible to find a mesh that would be suitable
for each calculation step while maintaing a prescribed precision when using
the conventional FEM. Furthermore, the shape of the solution in Figure 1.4
suggests that besides optimizing the size of the elements of the mesh, the
polynomial degree of finite elements in the middle of the domain Ω and near
the boundaries ∂Ω1, ∂Ω2 should be different — large low-degree elements
should be used in the middle of the domain while small higher degree ones
should be used in the boundary layers.

In this dissertation, a comprehensive study of solving PNP and PNP-
Navier’s system of equation using adaptive algorithms is presented. First,
the explicit weak-form of the PNP system for Newton’s method is presented.
Thereafter, a brief overview of a novel adaptive multi-mesh hp-FEM is in-
troduced and the residual vector and Jacobian matrix of the system is
derived and implemented using hp-FEM library Hermes. It is shown how
such problem benefits from using individual meshes with mutually indepen-
dent adaptivity mechanisms. To begin with, a model consisting of only the
PNP system is solved using different adaptivity algorithms. For instance,
it is demonstrated that the PNP problem with set of constants that results
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Debye’s length in nanometer scale can be successfully solved. Based on
those results, the complete PNP-Navier’s system of equations is studied.
It is shown how hp-FEM helps to keep the problem geometrically scalable.
Additionally, it is shown how employing a PID controller based time step
adaptivity helps to reduce the calculation time.

The outline of the work is as follows. The modeling method is explained in
Chapter 2 (article I). The comprehensive study of hp-FEM calculations of
the PNP system of equations is presented in Chapter 3 (article I). There-
after, IPMC deformation is model (the PNP-Navier’s system of equations)
is studied in Chapter 4 (article II). Finally, some possible optimizations for
solving the problem more efficiently are explored in Chapter 5 (articles I
and III). The work is concluded in Chapter 6.
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CHAPTER 2

MODELING METHOD

The hp-FEM is a modern version of the finite element method (FEM) that
attains very fast convergence rates by combining optimally finite elements
of variable size (h) and polynomial degree (p) [70, 71]. The main princi-
ples of exponential convergence are that very smooth, polynomial-like func-
tions are approximated using large high-order elements and non-analytic
functions such as singularities are approximated via small low-order ones.
The superiority of the hp-FEM over standard (low-order) FEM has been
demonstrated, for instance, by [72–74]. Although the implementation of
the hp-FEM is involved, the method is becoming increasingly popular. An
overview of the method and comparison with the traditional FEM is pro-
vided in this chapter.

2.1 Adaptive hp-FEM

The hp-FEM is a modern version of the finite element method that is
capable of exponential convergence (the approximation error drops expo-
nentially as new degrees of freedom are added during adaptivity) while
standard FEM can only attain algebraic (polynomial) convergence rates
which are much slower [70].

In traditional low-order FEM (based on piecewise-linear or piecewise
quadratic elements), refining an element is not algorithmically complicated,
and so the most difficult part is to find out what elements should be refined.
To do this, various techniques ranging from rigorous guaranteed a-posteriori
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Figure 2.1: Many possible refinement candidates for a fourth-order element.

error estimates to heuristic criteria such as residual error indicators or error
indicators based on steep gradients are employed.

However, these approaches are in general not very well suited for multi-
physics coupled problems or higher-order finite element methods: Rigorous
guaranteed error estimates only exist for very simple problems (such as
linear elliptic PDE) and only for low-order finite elements. Heuristic tech-
niques are usually somehow doable for all problems, but they fail in more
complicated situations. Moreover, they lack a transparent relation to the
true approximation error and thus they may give wrong results.

Automatic adaptivity in higher-order finite element methods (hp-FEM) is
much different from adaptivity in low-order FEM. Firstly, analytical error
estimates capable of guiding adaptive hp-FEM do not exist even for the
simplest linear elliptic equations, not speaking about nonlinear multiphysics
coupled systems. Secondly, a higher-order element can be refined in many
different ways, as illustrated in Figure 2.1.

The number of possible element refinements is implementation dependent.
In general it is very low in h-adaptivity and p-adaptivity, and much higher
in hp-adaptivity. Moreover, this number grows very fast when anisotropic
refinements are enabled.

2.2 The Hermes library

Hermes1 is a free and open-source C++ library that implements higher-
order finite elements approximations and adaptive hp-FEM. It supports

1http://hpfem.org/hermes
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8 different adaptivity modes – three isotropic and five anisotropic. The
isotropic refinements are h-isotropic (H ISO), p-isotropic (P ISO), hp-
isotropic (HP ISO). Anisotropic refinement modes are h-anisotropic (H -
ANISO), hp-anisotropic-h (HP ANISO H), p-anisotropic (P ANISO), hp-
anisotropic-p (HP ANISO P), and hp-anisotropic (HP ANISO). The eight
adaptivity modes are summarized in Figure 2.2. It must be noted that in
case of HP ANISO H, only element size is adapted anisotropically whereas
polynomial degree is adapted isotropically. The opposite holds true for
HP ANISO P.

Note that triangular elements do not support anisotropic refinements. Due
to the large number of refinement options, classical error estimators that
provide a constant error estimate per element, cannot be used to guide
automatic hp-adaptivity. For this, one needs to know the shape of the
approximation error. Hermes uses a pair of approximations with different
orders of accuracy to obtain this information: coarse mesh solution and
fine mesh solution [75]. The initial coarse mesh is read from the mesh file,
and the initial fine mesh is created through its global refinement both in h
and p. The fine mesh solution is the approximation of interest both during
the adaptive process and at the end of computation. Global orthogonal
projection of the fine mesh solution on the coarse mesh is used to extract
the low-order part from the reference solution. The adaptivity algorithm
is guided by the difference between the reference solution and its low-order
part. Note that this approach to automatic adaptivity is PDE-independent
and thus naturally applicable to a large variety of multiphysics coupled
problems.

2.3 Multimesh hp-FEM

In multiphysics PDE systems such as Poisson-Nernst-Planck it can happen
that one physical field is very smooth where others are not, as it was illus-
trated in Figure 1.4. If all the fields are approximated on the same mesh,
then unnecessary refinements will be present in smooth areas where they
are not necessary. This can be very wasteful.

Hermes implements a novel adaptive multimesh hp-FEM [76–78] that makes
it possible to approximate different fields on individual meshes, without
breaking the monolithic structure of the coupling mechanism. For prac-
tical reasons, the meshes in the system are not allowed to be completely
independent – they have a common coarse mesh that is called master mesh.
The master mesh is there for algorithmic purposes only and it may not even
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Figure 2.2: Refinement candidates for every refinement mode for quad type ele-
ments.
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be used for discretization purposes. Every mesh in the system is obtained
from the master mesh via an arbitrary sequence of elementary refinements.
Assembling is done on a union mesh, a geometrical union of all meshes in
the system (imagine printing all meshes on transparencies and positioning
them on top of each other).

The union mesh is not constructed physically in the computer memory – it
merely serves as a hint to correctly transform the integration points while
integrating over sub-elements of elements in the existing meshes. As a re-
sult, the multimesh discretization of the PDE system is monolithic in the
sense that no physics is lost — all integrals in the discrete weak formula-
tions are evaluated exactly up to the error in the numerical quadrature.
The exact preservation of the coupling structure of multiphysics coupled
problems makes the multimesh hp-FEM very different from various inter-
polation and projection based methods that suffer from errors made while
transferring data between different meshes in the system.
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CHAPTER 3

hp-FEM MODEL OF
POISSON-NERNST-PLANCK

EQUATIONS

In this chapter, Poisson-Nernst-Planck (PNP) system of equations is mod-
eled using hp-FEM. The system of equation is used to calculate charge
transport in IPMC material. To make the results easily reproducible, com-
plete mathematical basis of the model with detailed derivation is presented.
In order to find the best adaptive mode for this type of coupled problem,
a large numerous computations were performed using various adaptivity
modes in single-mesh and multi-mesh configurations. A number of these
comparative calculation results will be presented.

3.1 Model

A rectangular 2D domain Ω ⊂ R
2 with boundaries ∂Ω1...4 ⊂ ∂Ω, shown in

Figure 3.1 is considered. The domain presents the cross-section of IPMC.
As there is no flow through the domain’s boundary, Eq. (1.1) is equipped
with a Neumann boundary condition

−D
∂C

∂n
− μFC

∂φ

∂n
= 0. (3.1)
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Figure 3.1: Calculation domain Ω ⊂ R
2 with boundaries ∂Ω1...4 ⊂ ∂Ω.

Furthermore, a positive constant voltage Vpos is prescribed on Ω1 and zero
voltage on Ω3:

φ∂Ω1 = Vpos, (3.2)

φ∂Ω3 = 0. (3.3)

On the rest of the boundary, φ has zero normal derivatives, and thus a
Neumann boundary condition is prescribed

∂φΩ2

∂n
=

∂φΩ4

∂n
= 0. (3.4)

3.1.1 Weak form of the PNP system

In the following, derivation of weak forms of Eqs. (1.1) and (1.2), as well
as formulas for the Jacobian matrix and residual vector that are used in
actual computations are derived. To simplify notation, a dimensionless for-
mulation of Eqs. (1.1) and (1.2) will be used in calculations. The following
new notations for the independent variables x, y, t and for the dependent
variables C and φ are used [79]:

X =
x

l
, Y =

y

l
, τ =

tD

λDl
, ϕ =

φF

RT
, c =

C

C 0
. (3.5)

Here λD is the Debye screening length and it is expressed as follows [79]:

λD =

√
εRT

2F 2C0
. (3.6)
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After inserting variables (3.5) into Eq. (1.1) the Nernst-Planck equation
and Poisson equation become:

DC0

λDl

∂c

∂τ
+

1

l
∇d ·

(
−DC0

l
∇dc− c

DC0

l
∇dϕ

)
= 0 (3.7)

− εRT

l2F 2C0
∇2

dϕ = c− 1, (3.8)

where

∇d =

(
∂

∂X
,

∂

∂Y

)
. (3.9)

After simplifying Eqs. (3.7) and (3.8) and denoting

ε =
λD

l
, (3.10)

the dimensionless form of the PNP system of equations becomes

∂c

∂τ
− ε∇2

dc− ε∇d · (c∇dϕ) = 0, (3.11)

−∇2
dϕ =

c− 1

2ε2
. (3.12)

Boundary condition Eq. (3.1) has the form

− ∂c

∂n
− c

∂ϕ

∂n
= 0. (3.13)

As the second derivatives of both c and ϕ are present in the equations, the
appropriate function space for them is the Sobolev space V = H1 (Ω) where

H1 (Ω) =
{
v ∈ L2 (Ω) ; ∇dv ∈ [

L2 (Ω)
]2}

.

In order to derive the weak form of the Nernst-Planck equation, Eq. (3.11)
is first multiplied with a test function vc ∈ V and integrated over the
domain Ω,

ˆ
Ω

∂c

∂τ
vcdx−

ˆ
Ω
ε∇2

dcv
cdx−

ˆ
Ω
ε∇dc·∇dϕv

cdx−
ˆ
Ω
εc∇2

dϕv
cdx = 0. (3.14)

Thereafter, the Green’s first identity is applied to the terms that contain
second derivativesˆ

Ω

∂c

∂τ
vcdx+ ε

ˆ
Ω
∇dc · ∇dv

cdx− ε

ˆ
Ω
∇dc · ∇dϕv

cdx

31



+ ε

ˆ
Ω
∇d (cv

c) · ∇dϕdx− ε

ˆ
∂Ω

∂c

∂n
vcdS−

ˆ
∂Ω

ε
∂ϕ

∂n
cvcdS = 0. (3.15)

Expanding the nonlinear term and using the boundary condition (3.13)
results in ˆ

Ω

∂c

∂τ
vcdx+ ε

ˆ
Ω
∇dc · ∇dv

cdx− ε

ˆ
Ω
∇dc · ∇dϕv

cdx

+ ε

ˆ
Ω
∇dϕ · ∇dcv

cdx+ ε

ˆ
Ω
c (∇dϕ · ∇dv

c) dx = 0. (3.16)

After the third and fourth terms cancel out, the final weak form of the
Nernst-Planck equation is obtained

ˆ
Ω

∂c

∂τ
vcdx+ ε

ˆ
Ω
∇dc · ∇dv

cdx+ ε

ˆ
Ω
c (∇dϕ · ∇dv

c) dx = 0. (3.17)

Analogously, the weak form of the Poisson equation (3.12) is also derived

−
ˆ
Ω
∇2

dϕv
ϕdx− 1

2ε2

[ˆ
Ω
cvϕdx−

ˆ
Ω
vϕdx

]
= 0. (3.18)

After performing integration by parts and taking into account the boundary
conditions for ϕ, the final weak form of Poisson equation is

ˆ
Ω
∇dϕ · ∇dv

ϕdx− 1

2ε2

[ˆ
Ω
cvϕdx−

ˆ
Ω
vϕdx

]
= 0. (3.19)

3.1.2 Jacobian matrix and residual vector for the
Newton’s method

To employ the Newton’s method for the nonlinear system (3.17), (3.19), for-
mulas for the Jacobian matrix and residual vector need to be derived. Time
discretization will be performed using the second-order Crank-Nicolson
method. The unknown solution components cn+1 and ϕn+1 at the end
of the time step δτ are expressed as linear combinations of finite element
basis functions vck and vϕk with unknown coefficients,

cn+1 = c(Y n+1) =

Nc∑
k=1

yckv
c
k, (3.20)

ϕn+1 = ϕ(Y n+1) =

Nϕ∑
k=1

yϕk v
ϕ
k . (3.21)
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Here Y n+1 is a coefficient vector of length N c+Nϕ comprising the unknown
solution coefficients yck and yϕk (in this order). We will also be using cn =
c(Y n) and ϕn = ϕ(Y n) for the previous time step solutions.

With the notation (3.20), (3.21), the time discretized Eq. (3.17) leads to
the formula for the first part F c of the residual vector F ,

F c
i (Y ) =

ˆ
Ω

c(Y )

δτ
vcidx−

ˆ
Ω

cn

δτ
vcidx

+
1

2
ε

[ˆ
Ω
∇dc(Y ) · ∇dv

c
idx+

ˆ
Ω
∇dc

n · ∇dv
c
idx

+

ˆ
Ω
c(Y ) (∇dϕ(Y ) · ∇dv

c
i ) dx

+

ˆ
Ω
cn (∇dϕ

n · ∇dv
c
i ) dx (3.22)

where i = 1, 2, . . . , N c. Analogously, Eq. (3.19) defines the second part Fϕ

of the residual vector F ,

Fϕ
i (Y ) =

ˆ
Ω
∇dϕ(Y ) · ∇dv

ϕ
i dx− 1

2ε2

[ˆ
Ω
c(Y )vϕi dx−

ˆ
Ω
vϕi dx

]
(3.23)

where i = N c + 1, N c + 2, . . . , N c + Nϕ. The nonlinear discrete problem
that needs to be solved at the end of each time step thus has the form
F (Y ) = 0.

The Jacobian matrix J(Y ) = DF/DY has a 2× 2 block structure,

J(Y ) =

⎛
⎜⎜⎝

∂F c
i

∂ycj

∂F c
i

∂yϕj
∂Fϕ

i

∂ycj

∂Fϕ
i

∂yϕj

⎞
⎟⎟⎠ , (3.24)

and its entries are obtained by calculating the partial derivatives of F with
respect to the components of the coefficient vector Y . For this it is useful
to realize that

∂c(Y )

∂ycj
= vcj ,

∂∇dc(Y )

∂ycj
= ∇dv

c
j , etc..
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The components of the Jacobian matrix are obtained as follows:

∂F c
i

∂ycj
(Y ) =

ˆ
Ω

1

δτ
vcjv

c
idx+

1

2
ε

ˆ
Ω
∇dv

c
j · ∇dv

c
idx

+
1

2
ε

ˆ
Ω
vcj (∇dϕ(Y ) · ∇dv

c
i ) dx, (3.25)

∂F c
i

∂yϕj
(Y ) =

1

2
ε

ˆ
Ω
c(Y )

(
∇dv

ϕ
j · ∇dv

c
i

)
dx, (3.26)

∂Fϕ
i

∂ycj
(Y ) = − 1

2ε2

ˆ
Ω
vcjv

ϕ
i dx, (3.27)

∂Fϕ
i

∂yϕj
(Y ) =

ˆ
Ω
∇dv

ϕ
j · ∇dv

ϕ
i dx. (3.28)

3.1.3 Newton’s iteration

At the beginning of the (n + 1)st time step Y n+1
0 is set to Y n+1

0 = Y n,
where Y n is the coefficient vector that was calculated in the nth time step
(or coming from the initial condition if n = 0). We set k = 0 and run the
Newton’s iteration

J(Y n+1
k )δτY n+1

k+1 = −F (Y n+1
k ),

Y n+1
k+1 = Y n+1

k + δτY n+1
k+1 ,

k := k + 1

over k until it converges. Then we set Y n+1 := Y n+1
k . A combined stopping

criterion is used to make sure that both the norm of the residual vector
‖F (Y n+1)‖ as well as the norm of the increment ‖δY n+1‖ are sufficiently
small.

3.2 Numerical Results and Comparisons

The solutions to the PNP problem exhibit a specific behavior that was de-
scribed in Chapter 1. In order to find the best adaptive method to deal
with this type of problems, a large number of computations were performed
using all adaptivity modes in both the single-mesh and multi-mesh regimes.
In the numerical experiments attention was paid to the relative error, cu-
mulative CPU time, and problem size in terms of number of degrees of
freedom (DOF) in each time step. The scaled variables c and ϕ and the
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unscaled time t are used to present the solutions. The simulations were
performed with physical time step of 0.05 s and the final time of 3.0 s was
chosen as it is close to the time scaling constant τ . The time step was cho-
sen after many numerical experiments in such a way that the error in time
was approximately the same as the error in space. The implementation of
advanced adaptive implicit higher-order Runge-Kutta methods is part of
future work.

Two types of initial meshes were used — a finer mesh shown in Fig-
ure 3.2 (b) was used for p-adaptivity and a very coarse initial mesh shown in
Figure 3.2 (a) was used for h-adaptivity and hp-adaptivity. The constants
used in the calculations are shown in Table 3.1.

Figure 3.2: Initial coarse mesh (a), refined mesh (b), and symmetrically refined
mesh for length scale study (c). The coarse mesh (a) and refined mesh (b) were
used in the initial calculations, the latter one in case of p-adaptivity (including
HP ANISO P).

An example of the solution at t = 0.1 s and t = 3.0 s calculated with the
HP ANISO refinement mode is shown in Figures 3.3 and 3.4.

It can be seen that at t = 0.1 s some ionic migration has already taken place
and large concentration gradients near the boundaries ∂Ω1 and ∂Ω3 have
formed. The figures also show that the meshes at t = 0.1 s and t = 3.0 s
are different.
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Figure 3.3: Scaled concentration c and voltage ϕ at t = 0.1 s.

Figure 3.4: Scaled concentration c and voltage ϕ at t = 3.0 s.

Table 3.1: Constants used in the PNP system of equations.

Constant Value Unit Description

D 10× 10−11 m2

s Diffusion constant
z 1 - Charge number

F 96,485 C
mol Faraday number

R 8.31 J
mol·K The gas constant

μ
(
= D

RT

)
4.11× 10−14 mol·s

kg Electrical mobility

C0 1,200 mol
m3 Anion concentration

ε 0.025 F
m Dielectric permittivity

l 200× 10−6 m Length scale
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3.2.1 Comparison of single mesh low-order FEM and
hp-FEM

First of all, the low-order FEM and hp-FEM were compared. A single
mesh H ANISO with polynomial degrees p = 1 and p = 2 were compared
to HP ANISO mode. The coarse initial mesh as shown in Figure 3.2 (a)
was used in the solutions. The results are shown in Figures 3.5 and 3.6.
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Figure 3.5: Number of degrees of freedom (DOF) as a function of physical time for
single-mesh H ANISO (in case of p = 1 and p = 2) and single-mesh HP ANISO.
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Figure 3.6: Cumulative CPU time as a function of physical time for single-mesh
H ANISO (in case of p = 1 and p = 2) and single mesh HP ANISO.

It can be seen that hp-FEM results in a shorter computing time and smaller
number of DOF than the low-order FEM. The same holds true for H ISO
and HP ISO modes. In fact, in case of H ISO the relative error did not

37

10



converge to the pre-set threshold value of 0.5% within acceptable range
of degrees of freedom of nDOFthreshold = 5000. Therefore, the h-FEM
solutions will be omitted from the further comparisons. Instead, only hp-
FEM solutions on the coarse mesh and p-FEM solutions on the fine mesh
will be discussed.

3.2.2 Comparison of single-mesh and multi-mesh hp-FEM

Running the simulation with different adaptivity modes and meshes showed
that the multi-mesh hp-FEM configuration resulted in the smallest prob-
lems and similar error convergence compared to any single-mesh configura-
tion. However, multi-mesh problems generally resulted in longer computing
times. This is a known shortcoming of Hermes at this point and it is due
to the fact that multi-mesh uses the union mesh where the numerical in-
tegration of high order is done on very small elements. The problem size
and computing time are illustrated for HP ANISO adaptivity mode in Fig-
ure 3.7 and Figure 3.8. The same holds true for HP ISO mode. It must
be also noted that the error converged to or below 0.5% for all p-FEM and
anisotropic hp-FEM results.
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Figure 3.7: Number of DOF as a function of physical time for single-mesh and
multi-mesh configurations with HP ANISO adaptivity mode.

Figures 3.9 and 3.10 show higher-order meshes in the adaptive multi-mesh
hp-FEM computation for c and ϕ at t = 0.1 s and t = 3.0 s, respectively.
Different colors mean different polynomial degrees. A diagonal pattern
inside an element tells that the element has different polynomial degrees in
the horizontal and vertical directions.
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Figure 3.8: Cumulative CPU time as a function of physical time for single-mesh
and multi-mesh configurations with HP ANISO adaptivity mode.

Figure 3.9: Higher-order FEM mesh for c and ϕ at t = 0.1 s.

The results are in good agreement with Figure 3.4 — in the vicinity of
the boundaries ∂Ω1 and ∂Ω3, the concentration gradient is much greater
than the voltage gradient. Therefore at t = 0.1 s, the multi-mesh hp-FEM
adaptivity algorithm has increased the maximum polynomial degree for the
c-space to 6 while the maximum polynomial degree for the ϕ-space is 4. The
meshes are not that different in the beginning of the calculation. However,
one can also see that the mesh refinement for c at t = 3.0 s is notably
different compared to ϕ. For instance, the highest polynomial degree for
c-space is 8 whereas for ϕ-space is 4. Since these results are representative
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Figure 3.10: Higher-order FEM mesh for c and ϕ at t = 3.0 s.

for all adaptivity modes, only multi-mesh configurations are considered in
the following.

3.2.3 Comparison of isotropic and anisotropic refinements

Next, the role of anisotropic mesh refinements is illustrated. Figures 3.11
and 3.12 show typical results for the HP ISO, HP ANISO H, HP ANISO
adaptivity modes in terms of number of DOF and cumulative CPU time.
Figure 3.13 shows corresponding error convergence. It can be seen that
HP ISO is notoriously inefficient as the error does not converge within
the limited number of degrees of freedom of nDOFthreshold = 5000 and
computing time is very large. Due to that fact, the calculation of HP ISO
was canceled before t = 3.0 s.

Figures 3.14 and 3.15 present a similar comparison for the P ISO, P -
ANISO, and HP ANISO P modes. Recall that these computations use
a different initial mesh that was a-priori refined in space.

As a conclusion, the reader can see that the anisotropic adaptivity modes
always perform better than the isotropic ones. In particular, HP ANISO
results into the smallest problem size. In the p-adaptivity group, HP -
ANISO P and P ANISO lead to a small problem size consistently in each
time step, whereas P ISO yields large problems during the first time steps.

HP ANISO also results in the fastest computing time among hp-adaptivity
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Figure 3.11: Number of DOF as a function of physical time for multi-mesh con-
figurations with HP ANISO, HP ANISO H, and HP ISO adaptivity modes (log y
scale).
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Figure 3.12: Cumulative CPU time as a function of physical time for multi-mesh
configurations with HP ANISO, HP ANISO H, and HP ISO adaptivity modes
(log y scale).

group whereas HP ANISO P results in the fastest overall computing time.
This is due to the fact that HP ANISO P calculation is performed on the
refined mesh. Regardless, the HP ANISO adaptivity mode is the most
suitable for the PNP problem due to the small size and relative fastness
compared to the other adaptivity modes. A way to optimize the computing
time of HP ANISO will be considered next.
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Figure 3.13: Relative solution error as a function of physical time for multi-mesh
configurations with HP ANISO, HP ANISO H, and HP ISO adaptivity modes.
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Figure 3.14: Number of DOF as a function of physical time for multi-mesh con-
figurations with P ISO, P ANISO, and HP ANISO P adaptivity modes.

3.2.4 HP ANISO adaptivity with physically more realistic
boundary conditions

In real physics calculations, the applied voltage on boundary ∂Ω1 is not
constant. This can be, for instance, due to the high resistance of the elec-
trodes as explained in [67,80]. To see how the HP ANISO adaptivity works
for such situations, the voltage on the boundary was applied as follows:

φΩ1 (x) = 0.5 [V ]
x [m]

widthΩ1 [m]
+ 0.5 [V ] , (3.29)

where widthΩ1 is the width of the boundary. The given boundary is ef-
fectively a linear increase of the voltage from φΩ1 (x = 0) = 0.5 V to
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Figure 3.15: Cumulative CPU times as a function of physical time for multi-mesh
configurations with P ISO, P ANISO, and HP ANISO P adaptivity modes.

φΩ1 (x = widthΩ1) = 1.0 V. Now the concentration gradient ∇c and the
voltage gradient ∇ϕ are no longer effectively in 1D.

The calculated scaled values c and ϕ in Ω and corresponding meshes and
polynomial degrees of the elements at t = 0.1 s are shown in Figure 3.16.
Notice that the solution is different to the one in Figure 3.3. The HP -
ANISO adaptivity algorithm has particularly increased the polynomial de-
gree and refined the mesh near Ω1 where a sharp concentration peak exists
(compare to Figure 3.9). At t = 3.0 s, the shape of the solutions c and ϕ
are similar to the one in Figure 3.4 and therefore the polynomial space and
mesh gets adapted accordingly. This example clearly illustrates how the
solution of PNP with non-uniform boundary conditions is very dynamic in
time and how the HP ANISO time dependent adaptivity finds an optimal
mesh and polynomial space to adapt to the dynamics of the problem.

3.2.5 Length scale analysis

The Debye length λD is the screening length in electrolyte solutions. Its
numerical value shows the thickness of the charged layer in the vicinity
of the boundaries ∂Ω1 and ∂Ω2. In all the previous simulations, the De-
bye screening length was determined by the constants in Table 3.1 and
Eq. (3.6): λD = 1.7 μm. It is known that computation gets increasingly
difficult when reducing the value of λD. It was an interest to see how
small screening lengths can Hermes HP ANISO automatic adaptivity han-
dle. The parameter ε was varied as follows:

εn = ε× 0.5n,
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Figure 3.16: Solutions c and ϕ and corresponding polynomial degrees of the
elements at t = 0.1 s. HP ANISO refinement mode was used. The height in the
solution graphs indicates the value.

where ε is taken from Table 3.1. The simulations were run for each εn and
corresponding λD value and maximum number of degrees of freedom and
cumulative CPU time were recorded. The simulation time t for each λD was
chosen to be τ — the characteristic time scale — and each simulation was
divided equally into fifteen time steps. Time step adaptivity was not used.
Figure 3.17 shows the maximum and average number of degrees of freedom
during calculation as a function of the Debye length and Figure 3.18 shows
cumulative CPU time as a function of the Debye length. The simulations
up to 0.52 nm screening length were carried out on the initial coarse mesh.
However, from λD > 0.52 nm, the finer initial mesh had to be used so
the existence of the large gradients of the physical fields c and ϕ near the
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boundaries could be captured in the first place.

The fine mesh allowed simulations with the Debye length down to 0.40 nm.
The calculated c and ϕ at t = τ for λD = 0.40 nm are shown in Figure 3.19.
It appears that when using even finer initial mesh and higher initial poly-
nomial degrees, even smaller Debye lengths could be used when necessary.
The polynomial space of c had consistently higher maximum polynomial de-
gree than that of ϕ, however, the difference was less noticeable for smaller
Debye lengths.
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Figure 3.19: Calculated fields c and ϕ at t = τ = 0.81 ms for λD = 0.4 nm.

3.3 Chapter conclusions

It was shown that using the time dependent adaptivity, multi-mesh con-
figuration, and anisotropic hp refinements, the PNP problem size remains
very small throughout the solving process while maintaining a pre-set rela-
tive error of the solution. Hermes refinement mode HP ANISO resulted in
the smallest and fastest problem solution. Furthermore, using the multi-
mesh configuration for the physical fields c and ϕ — scaled variables for C
and φ, respectively — was justified. The adaptivity algorithm refined the
meshes of ϕ and c and increased the polynomial degrees of the correspond-
ing spaces differently. The mesh was significantly refined for c and also the
maximum polynomial degree was varied in the range of 2 . . . 9 whereas for
ϕ, the maximum polynomial degree remained lower. So it is efficient to use
multi-mesh in terms of the number of degrees of freedom.
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CHAPTER 4

hp-FEM MODEL OF IPMC
DEFORMATION

In this chapter IPMC deformation is modeled via a multiphysics coupled
problem consisting of the PNP equations and Navier’s equations for dis-
placement. These equations are used to calculate charge transport and
resulting electromechanical transduction of the material. In order to find
the best adaptive mode for this type of problems, numerous computations
were performed using various adaptivity modes in single-mesh, multi-mesh
with common mesh for displacement fields, and multi-mesh for all fields
configurations. In the numerical experiments attention was paid to the rel-
ative error and problem size in terms of DOF at each time step. Based on
the maximum relative error was fixed to 1.0%, a number of comparative
calculation results is presented.

4.1 Deformation model

In order to calculate deformation of IPMC, the PNP system of equation is
coupled with Navier’s equation system for linear elastic material. For low
frequency actuation, the time independent Navier’s equation can be used
to calculate deformation of IPMC as a function of time and local charge
density in the material. Based on the strain-displacement relation

eij =
1

2
(ui,j + uj,i) (4.1)
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and equilibrium equation
τij,j + Fi = 0, (4.2)

the constitutive equation of the linear elasticity is as follows:

τij = λδijekk + 2μeij . (4.3)

From there, the Navier’s equation in the vector form can be expressed

(λ+ μ)uk,ki + μui,jj + Fi = 0, (4.4)

where ui is a component of the displacement vector and Fi is a component
of body force ( N

m3 ) [66]. Constants λ and μ are Lame’s constants

μ =
E

2 (1 + ν)
, λ =

νE

(1 + ν) (1− 2ν)
(4.5)

where E is Young’s modulus and ν Poisson’s ratio. In 2D Cartesian coor-
dinates Eq. (4.4) takes the form

(λ+ μ)

(
∂2u1
∂x2

+
∂2u2
∂y∂x

)
+ μ

(
∂2u1
∂x2

+
∂2u1
∂y2

)
+ F1 = 0, (4.6)

(λ+ μ)

(
∂2u1
∂x∂y

+
∂2u2
∂y2

)
+ μ

(
∂2u2
∂x2

+
∂2u2
∂y2

)
+ F2 = 0. (4.7)

In case of IPMC electromechanical transduction model, F2 = 0 and F1 can
be expressed as a function of cation concentration F1 = A (C − C0), where
A is a constant [67]. In the following derivation, we consider a rectangular
2D domain Ω ⊂ R

2 with boundaries ∂Ω1...4 ⊂ ∂Ω, shown in Figure 4.1.
It is similar to the domain shown in Figure 3.1, except it is longer in the
x-direction to present a cross-section of IPMC more realistically.

For the Navier’s Eqs. (4.6) and (4.7), the following Dirichlet BCs are ap-
plied:

u1∂Ω2
= u2∂Ω2

= 0. (4.8)

As no external forces are considered, zero Neumann BCs are applied on
∂Ω:

τijnj |∂Ω = 0. (4.9)

To make the results easily reproducible, in the following we present the
derivation of weak forms of (4.6) and (4.7) as well as formulas for the
Jacobian matrix and residual vector for the entire PNP-Navier’s system of
equations that are used in the deformation computations.
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Figure 4.1: Calculation domain Ω ⊂ R
2 with boundaries ∂Ω1...4 ⊂ ∂Ω.

4.1.1 Weak form of the equations

As in case of the PNP system, a dimensionless formulation of Navier’s
Eqs. (4.6) and (4.7) is derived by denoting the components of displacement
field:

U1 =
u1
l
, U2 =

u2
l
. (4.10)

It could be observed from Eqs. (3.5) and (4.10) that in the dimensionless
formulation, variables with the unit of meter are in the upper case, whereas
other variables are in the lower case. After inserting variables (4.10) as well
as variable c into (4.6), the Navier’s equations become:

(λ+ μ)

(
∂2U1

∂X2
+

∂2U2

∂X∂Y

)
+ μ

(
∂2U1

∂X2
+

∂2U1

∂Y 2

)
= AlC0 (1− c) , (4.11)

(λ+ μ)

(
∂2U1

∂X∂Y
+

∂2U2

∂Y 2

)
+ μ

(
∂2U2

∂X2
+

∂2U2

∂Y 2

)
= 0. (4.12)

As in the case of the weak form of the PNP system, Sobolev space is used
for the test functions. First, we multiply Eq. (4.11) with a test function
vU1 ∈ V and integrate over domain Ω. By applying the zero external
boundary conditions, the resulting final weak form of (4.11) is expressed:

(2μ+ λ)

ˆ
Ω

∂U1

∂X

∂vU1

∂X
dx+ λ

ˆ
Ω

∂U2

∂Y

∂vU1

∂X
dx

+μ

ˆ
Ω

∂U1

∂Y

∂vU1

∂Y
+

∂U2

∂X

∂vU1

∂Y
dx

+lAC0

ˆ
Ω
(1− c) vU1dx = 0. (4.13)

Dimensionless formulation of the equation can be obtained by first writing
constants μ and λ explicitly in terms of ν and E and then multiplying the
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equation by (1 + ν) /E:(
1 +

ν

1− 2ν

)ˆ
Ω

∂U1

∂X

∂vU1

∂X
dx+

ν

1− 2ν

ˆ
Ω

∂U2

∂Y

∂vU1

∂X
dx

+
1

2

ˆ
Ω

∂U1

∂Y

∂vU1

∂Y
+

∂U2

∂X

∂vU1

∂Y
dx

+
1 + ν

E
C0lA

ˆ
Ω
(1− c) vU1dx = 0. (4.14)

Now the LHS consist only dimensionless constants and variables and the
displacements are governed solely by the RHS term that consists of material
properties and is also a function of cation concentration c. Similarly, the
weak form of Eq. (4.12) is:(

1 +
ν

1− 2ν

)ˆ
Ω

∂U2

∂Y

∂vU2

∂Y
dx+

ν

1− 2ν

ˆ
Ω

∂U1

∂X

∂vU2

∂Y
dx

+
1

2

ˆ
Ω

∂U2

∂X

∂vU2

∂X
+

∂U1

∂Y

∂vU2

∂X
dx = 0. (4.15)

4.1.2 Jacobian matrix components and residual vector

To employ the Newton’s method on the entire nonlinear system (3.17),
(3.19), (4.14), and (4.15), formulas for the Jacobian matrix and residual vec-
tor need to be derived. As for the PNP system in Chapter 3, time discretiza-
tion will be performed using the second-order Crank-Nicolson method.

The coefficient vector Yn+1 (see (3.20) and (3.21)) length is N c + Nϕ +
NU1 + NU2 comprising the unknown solution coefficients yck, y

ϕ
k , y

U1
k , and

yU2
k (in this order). Also, cn = c(Yn), ϕn = ϕ(Yn), Un

1 = U1(Yn), and
Un
2 = U2(Yn) will be used for the previous time step solutions. Based

on that, the first and the second component of the residual vector are
unchanged and described with Eqs. (3.22) and (3.23). The third and fourth
component of the residual vector can be respectively written:

FU1
i (Y) =

(
1 +

ν

1− 2ν

) ˆ
Ω

∂U1 (Y)
∂X

∂vU1

∂X
dx

+
ν

1− 2ν

ˆ
Ω

∂U2 (Y)
∂Y

∂vU1

∂X
dx

+
1

2

ˆ
Ω

∂U1 (Y)
∂Y

∂vU1

∂Y
+

∂U2 (Y)
∂X

∂vU1

∂Y
dx

+
1 + ν

E
C0lA

ˆ
Ω
(1− c (Y)) vU1dx, (4.16)
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and

FU2
i (Y) =

(
1 +

ν

1− 2ν

) ˆ
Ω

∂U2 (Y)
∂Y

∂vU2

∂Y
dx

+
ν

1− 2ν

ˆ
Ω

∂U1 (Y)
∂X

∂vU2

∂Y
dx

+
1

2

ˆ
Ω

∂U2 (Y)
∂X

∂vU2

∂X
+

∂U1 (Y)
∂Y

∂vU2

∂X
dx. (4.17)

The nonlinear discrete problem that needs to be solved at the end of each
time step has the form F (Y) = 0. The Jacobian matrix J (Y) = DF/DY
has now a 4× 4 block structure, and its entries are obtained by calculating
the partial derivatives of F with respect to the components of the coefficient
vector Y. New non-zero components of the matrix besides (3.25)–(3.28) are:

∂FU1
i

∂ycj
(Y) = −1 + ν

E
C0lA

ˆ
Ω
vcjv

U1
i dx, (4.18)

∂FU1
i

∂yU1
j

(Y ) =

(
1 +

ν

1− 2ν

)ˆ
Ω

∂vU1
j

∂X

∂vU1
i

∂X
dx

+
1

2

ˆ
Ω

∂vU1
j

∂Y

∂vU1
i

∂Y
dx, (4.19)

∂FU1
i

∂yU2
j

(Y) =
ν

1− 2ν

ˆ
Ω

∂vU2
j

∂Y

∂vU1
i

∂X
dx+

1

2

ˆ
Ω

∂vU2
j

∂X

∂vU1
i

∂Y
dx, (4.20)

∂FU2
i

∂yU1
j

(Y) =
ν

1− 2ν

ˆ
Ω

∂vU1
j

∂X

∂vU2
i

∂Y
dx+

1

2

ˆ
Ω

∂vU1
j

∂Y

∂vU2
i

∂X
dx, (4.21)

∂FU2
i

∂yU2
j

(Y) =

(
1 +

ν

1− 2ν

)ˆ
Ω

∂vU2
j

∂Y

∂vU2
i

∂Y
dx

+
1

2

ˆ
Ω

∂vU2
j

∂X

∂vU2
i

∂X
dx. (4.22)

4.2 Numeric results

The PNP-Navier’s problem was implemented in Hermes and a large number
of calculations were carried out in order to find the best adaptivity mode
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for the problem. Based on the study in Chapter 3, isotropic adaptivities
were not consider as these performed the worst. The study and results are
structured similar to the PNP system study presented in Chapter 3.

Figure 4.2: Example deformation of IPMC calculated with Hermes hp-FEM soft-
ware package. The color indicates local von Mises stress.

The computations were performed using various adaptivity modes in (a)
single-mesh, (b) multi-mesh with common mesh for displacement fields,
and (c) multi-mesh for all fields configurations. The maximum relative
error was fixed to 1.0% in this study. An example deformation of IPMC
calculated with Hermes is shown in Figure 4.2.

4.2.1 Advantages of multi-mesh hp-FEM

Simulations with different adaptivity modes and meshes showed that the
multi-mesh hp-FEM configuration results in the smallest problems com-
pared to any single-mesh configuration. At the same time, the computing
time and error convergence were similar for all cases. For instance, sin-
gle vs. multi-meshes comparison for the HP ANISO adaptivity mode are
shown in Figures 4.3 and 4.4.

Displacement fields U1 and U2 are similar in terms of gradient and very
different from c and ϕ. Therefore, one of the multi-mesh configuration was
based on three different meshes – a mesh for c, a mesh for ϕ, and a common
mesh for U1 and U2. Interestingly, the ”true” multi-mesh (separate mesh
for each field) turned out to be the most efficient configuration compared
to the others – calculation on the optimized meshes balances the CPU cost
of calculate the meshes (Figure 4.4) while keeping the problem size the

52



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Physical time (s)

200

400

600

800

1000

N
u
m

b
e
r 

o
f 

D
O

F

Problem sizes (HP_ANISO)

Multi-mesh

Multi-mesh (common displacement mesh)

Single-mesh

Figure 4.3: Number of DOFs as a function of physical time for single-mesh and
multi-mesh configurations with HP ANISO adaptivity mode.
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Figure 4.4: Cumulative CPU time as a function of physical time for single-mesh
and multi-mesh configurations with HP ANISO adaptivity mode.

smallest (Figure 4.3). Thus, in all of the following simulations, only the
multi-mesh configuration is used.

4.2.2 Anisotropic refinements

The calculations were carried out with three different anisotropic adap-
tivity modes – HP ANISO, HP ANISO H, and HP ANISO P. It was al-
ready shown that the rest of the adaptivity types (isotropic, P ANISO,
H ANISO) do not perform well for this type of multiphysics problems [81].
For instance, in case of p-adaptivities it is necessary to know the problem
and gradients rather well to start with a suitable initial mesh or the error
might never converge below a pre-set limit. At the same time, HP ANISO,
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Figure 4.5: Problem size with different adaptivity modes in the multi-mesh con-
figuration.
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Figure 4.6: CPU time with different adaptivity modes in the multi-mesh configu-
ration.

HP ANISO H, and HP ANISO P all perform relatively well. Thus, in this
study an attempt was made to determine which one of them is the most
suitable for such a coupled problem as is the time dependent IPMC actua-
tion.

It can be seen in Figures 4.5 and 4.6 that both the problem size and CPU
time are consistently smallest for HP ANISO adaptivity. Interestingly, in
the case of HP ANISO P, both CPU time and number of DOF start rapidly
increasing at the point where the other modes stabilize. It can be attributed
to the isotropic h-refinements for the steep boundary gradients. Namely,
Figure 4.7 shows the number of adaptive steps (main plot) it takes to reach
to the desired error level (Figure 4.7 subplot). Although the number of steps
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Figure 4.7: Number of adaptive steps at each time (main plot) and final relative
error between a coarse and fine mesh solutions (sub-plot).

for HP ANISO P stabilizes close to HP ANISO H (13 adaptivity steps per
time step), the latter is more efficient – apparently, isotropic h-adaptivity
is a rather expensive way to reduce the error of a solution.

To illustrate the effectiveness of HP ANISO, a snapshot of the meshes and
polynomial degrees were recorded for each of the fields. Figure 4.8 shows
the magnitudes and meshes for c, ϕ, U1 and U2 at t = 0.1 s. The mesh
is significantly adapted near the ∂Ω1 and ∂Ω3 boundaries for c and ϕ –
this can be explained by the steep gradients of these fields (as shown in
Figure 1.4). On the other hand, the displacement field mesh is rather
coarse. In case of U1, some of the elements are split vertically whereas
in most of the elements, no vertical splits occur. Figure 4.9 shows local
polynomial degrees for the fields at the same time. Again, due to the steep
gradient of c near ∂Ω3, the polynomial degree near that boundary is 8.
For other fields, the maximum polynomial degrees are mostly equal or less
than 4. Overall, the HP ANISO adaptivity mode appears to be the most
suitable for the such multi-field multiphysics problem due to the resulting
small problem size and relative fastness compared to the other anisotropic
adaptivities.

4.2.3 Calculations with more advanced BCs

In the previous section, HP ANISO, HP ANISO H, and HP ANISO P
adaptivity modes were compared for constant voltage BCs. In more prac-
tical calculations, the applied voltages on the boundaries ∂Ω1 and ∂Ω3

have to be considered as gradients rather than constants. This can be, for
instance, due to electrical resistance of the electrodes or underlying elec-
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Figure 4.8: c, ϕ, U1, and U2 field meshes and magnitudes at t = 0.1 s in (a), (b),
(c), and (d), respectively. Notice that the meshes are optimized for the particular
fields.
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Figure 4.9: c, ϕ, U1, and U2 field polynomial degrees at t = 0.1 s in (a), (b), (c),
and (d), respectively. Higher order elements are used in case of c and ϕ due to
steep boundary gradients.
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Figure 4.10: Problem size with different adaptivity modes in the multi-mesh con-
figuration and applied potential gradient BCs.
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Figure 4.11: CPU time with different adaptivity modes in the multi-mesh config-
uration and applied potential gradient BCs.

trochemical currents as explained in [67]. In regular FEM calculations, a
rather fine mesh has to be used as the boundary gradients can result in so-
lution instability – the concentration gradient can peak in the corner of Ω
(see Figure 4.1). To see how the anisotropic adaptivity modes perform, the
potentials on these boundaries were applied as linear gradients. On ∂Ω1,
the potential had linear drop of 25% from x = 0 toward the tip. Thus, for
1 V applied voltage, the tip voltage was 0.75 V. The same gradient was
applied on ∂Ω3, i.e. from 0 V to 0.25 V at the tip. With the gradient BCs
the concentration gradient ∇c and the voltage gradient ∇ϕ are no longer
effectively in 1D. The goal of running simulations with multiple adaptivity
types was to explore if additional x-directional gradients of c and ϕ would
result in different adaptivity performances. It must be noted that in more
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Figure 4.12: Calculated scaled ϕ field magnitude, mesh, and polynomial degrees
with applied potential gradients along ∂Ω1 and ∂Ω3 at t = 0.1 s.

advanced calculations, the gradient is also dynamic, however, this would
require considering the electrode domains and is not in the scope of this
work.

Figures 4.10 and 4.11 show problem sizes and CPU times for different adap-
tivity modes with potential gradient BCs. It could be reasoned that HP -
ANISO P can be a suitable as the x -directional gradient can require also
vertical mesh refinements. However, as in the previous case, the HP ANISO
results in the smallest CPU time and problem size.

To illustrate, calculated ϕ in Ω and corresponding meshes and polynomial
degrees of the elements at t = 0.1 s are shown in Figure 4.12. Notice
that the solution and polynomial degrees are notably different to the ones
in Figures 4.8 (b) and 4.9 (b). The HP ANISO adaptivity algorithm has
particularly increased the polynomial degree and refined the mesh near Ω1

where a sharp concentration peaks occur due to the x-directional applied
potential gradient. Also, the mesh is more refined. The effect is similar in
case of c; however, it is easier to observe ϕ as the boundary is wider for the
latter. This example clearly illustrates how the solution of the equations
with non-uniform electric potential boundary conditions is dynamic and
how the HP ANISO time dependent adaptivity calculates an optimal mesh
and polynomial space to adapt to the dynamics of the problem.
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4.3 Chapter conclusions

IPMC electromechanical transduction was modeled by solving the system
of PNP-Navier’s equations using hp-finite element method with adaptive
multi-mesh configuration. The meshes were significantly refined for c and ϕ
and also the maximum polynomial degree was varied in the range of 2 . . . 8
whereas for the displacement fields U1 and U2, the mesh variations were
smaller; however, the polynomial degrees of the elements were increased
where necessary. By using hp-FEM with adaptive multi-mesh configuration
the problem size can be possibly reduced significantly while still maintaining
a prescribed precision of the solution.
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CHAPTER 5

SCALABILITY AND
OPTIMIZATIONS

In this chapter it is shown how hp-FEM helps to keep the IPMC deforma-
tion model geometrically scalable while solutions maintain pre-set relative
error. Additionally, it is shown how employing a PID controller based time
step adaptivity helps to reduce the calculation time. Data presented in
Chapters 3 and 4 shows that HP ANISO adaptivity results in the best
performance compared to other anisotropic adaptivity types. Therefore,
HP ANISO adaptivity was chosen as the adaptivity type for all the calcu-
lations in this chapter.

5.1 Geometric scalability

Geometric scalability study is presented for the PNP-Navier’s system of
equations (Chapter 4). The derived model was applied on domains with
different aspect ratios to study how hp-FEM performs in terms of numbers
of degrees of freedom and CPU time.

Although the typical length of an IPMC is in the range of 1 cm and above,
the calculations were carried out for 1 mm long IPMC. It turns out that
increasing the length of the calculation domain will not result in significant
penalty both in problem size and CPU time. For the most part, the gradi-
ents in the longitudinal direction are small – even in case a potential drop
along the boundaries ∂Ω1 and ∂Ω3 is considered (see Figure 4.1).
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Figure 5.1: 0.2 mm thick IPMC initial mesh.

Figure 5.2: 1.0 mm thick IPMC initial mesh.

On the other hand, very steep gradients form in the thickness direction
of IPMC. To study how hp-FEM performs for different IPMC dimensions,
calculations were carried out for 0.2 mm, 0.5 mm, and 1.0 mm thick IPMCs.
The initial mesh was same for each thickness (see Figure 5.1 for 0.2 mm
long domain and Figure 5.2 for 1.0 mm long domain).
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Figure 5.3: Problem size each time step for 0.2 mm, 0.5 mm, and 1.0 mm thick
calculation domains.
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calculation domains.
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Figure 5.5: Number of adaptivity steps time with final relative error (sub-plot) at
each time step for 0.2 mm, 0.5 mm, and 1.0 mm thick calculation domains.

Figure 5.3 shows that the problem size depends on the domain thickness
only slightly. It can be expected as the major field gradients (∇dc and
∇dϕ) still form near the electrode boundaries. However, the CPU time does
increase noticeably with the thickness – see Figure 5.4. To investigate the
reasons for it, the number of adaptivity steps it takes to reach to the desired
error level (Figure 5.5 subplot) was recored at each time step (Figure 5.5
main plot). Interestingly, it takes almost twice as many steps to reach to
the pre-set 1.0% error for 1.0 mm IPMC compared to that of 0.2 mm IPMC.

Automatically refined meshes, field magnitudes, and polynomial spaces
were captured for 0.2 mm and 1.0 mm thick IPMCs at t = 0.1 s to un-
derstand why the thicker IPMCs require that many extra adaptivity steps
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Figure 5.6: 0.2 mm thick IPMC calculation snapshot at t = 0.1 s. Mesh and
magnitudes of ϕ and U2 (left); polynomial degrees of ϕ and U2 (right).

(Figures 5.6 and 5.7). It can be seen that the displacement field calculation
for 1.0 mm IPMC requires considerably finer mesh and higher polynomial
degrees near ∂Ω2 – the effect of the fixed boundary is far more significant for
a thick IPMC than for the 0.2 mm one with the same length. Refinements
of the y-directional displacement field occur near the corners and inside the
domain for the 1.0 mm IPMC and some elements have the polynomial de-
gree of 7. At the same time, potential field ϕ has the maximum polynomial
degree of 4 and the meshes have been refined only near the boundaries ∂Ω1
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Figure 5.7: 1.0 mm thick IPMC calculation snapshot at t = 0.1 s. Mesh and
magnitudes of ϕ and U2 (left); polynomial degrees of ϕ and U2 (right).

and ∂Ω3 for both thicknesses, but the refinements are more significant near
∂Ω1 for 1.0 mm IPMC.

This example demonstrates how hp-FEM adaptive algorithm can be benefi-
cial in determining an optimal mesh and polynomial space for such dynamic
multi-physics problem. Using a static mesh that is refined near the bound-
aries can work for some cases, but comparison of Figures 5.6 and 5.7 show
how it might not be always sufficient to get precise calculation results while
maintaining a small problem size.

5.2 PID time step control

Although hp-FEM adaptive algorithms help to maintain a relatively small
problem size in terms of number of DOF during a time dependent calcu-
lation process, the CPU time can be potentially very high due to a large
number of adaptivity steps. This is especially noticeable in case of the
dynamic problems where the base mesh (such as shown in Figure 3.2) is
loaded in the beginning of each time step. To optimize the calculation time
of HP ANISO, an adaptive time step control is employed. The classical
PID controller is used [78]. Since c, ϕ, U1, and U2 change differently in
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Figure 5.8: Relative difference enc and enϕ.
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Figure 5.9: Number of DOF as a function of physical time for HP ANISO with
and without time step adaptivity. The markers on the graphs indicate the time
steps.

time, the relative changes between the solutions at different time steps are
monitored:

enc =

∥∥cn − cn−1
∥∥

‖cn‖ , (5.1)

enϕ =
‖ϕn − ϕn−1‖

‖ϕn‖ , (5.2)

enU1
=

∥∥Un
1 − Un−1

1

∥∥
‖Un

1 ‖
, (5.3)

enU2
=

∥∥Un
2 − Un−1

2

∥∥
‖Un

2 ‖
. (5.4)
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Figure 5.10: Cumulative CPU times as a function of physical time for HP ANISO
with and without time step adaptivity. The markers on the graphs indicate the
time steps.

The relative changes to control the time step are calculated as follows:

en = max
{
enc , enϕ, enU1

, enU2

}
. (5.5)

If en < δ where δ > 0 is a defined tolerance, then the time step for the next
iteration is increased smoothly to

δτn+1 =

(
en−1

en

)kP (
δ

en

)kl
[(

en−1
)2

enen−2

]kD

δτn, (5.6)

where parameters are [82]:

kp = 0.075, kl = 0.175, kD = 0.01. (5.7)

The tolerance δ was set to δ = 0.25 in the current optimization case. At this
time, the implementation does not support adaptive time stepping if en ≥
δ. However, the implementation of advanced adaptive higher-order time-
stepping methods is in progress. First, the optimization calculations were
carried out only for the PNP system of equations, i.e. en = max

{
enc , enϕ

}
.

The calculated enc and enϕ are shown in Figure 5.8. The PNP problem
size and computing time with and without time step control are shown in
Figures 5.9 and 5.10. The CPU time was reduced more than two times
when the time step control was employed.

Similarly, the problem size and CPU time with and without the time step
control for PNP-Navier’s equations (IPMC deformation calculation with
en = max

{
enc , enϕ, enU1

, enU2

}
as defined in (5.5)) are shown in Figures 5.11

67



and 5.12 for 0.2 mm and 1.0 mm IPMCs. It can be seen that the computing
time was reduced more than two times when the time step control was
employed. At the same time, the problem size was not affected almost at
all.
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Figure 5.11: Problem sizes of 0.2 mm and 1.0 mm thick IPMCs with and without
PID time step control.
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Figure 5.12: CPU times of 0.2 mm and 1.0 mm thick IPMCs with and without
PID time step control.

5.3 Chapter conclusions

Due to hp-FEM automatic adaptivity, the PNP problem and more com-
plex PNP-Navier’s problem are well scalable for different geometry config-
urations. In the latter case, various IPMC thicknesses were modeled and
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the problem size did not increase significantly with the change of thickness
and aspect ratio of the calculation domain. However, the adaptivity can
consume a lot of CPU time. It was shown that calculation times can be
reduced more than twice by employing a simple PID controller based time
step adaptivity.
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CHAPTER 6

CONCLUSIONS

In this work the system of Poisson-Nernst-Planck (PNP) equations was
solved using hp-finite element method with adaptive multi-mesh configu-
ration. The weak form, residuals and the Jacobian matrix of the system
were explicitly derived and implemented in Hermes hp-FEM time depen-
dent adaptive solver. The solution for PNP problem with two field variables
C and φ results in very different field gradients in the space and time. When
using a conventional low order FEM, finding an optimal mesh for this type
of problem such that both the error of the solution and problem size remain
small throughout the time dependent solving process is difficult.

It was shown that using the time dependent adaptivity, multi-mesh configu-
ration, and anisotropic hp refinements, the problem size remains very small
throughout the solving process while maintaining a pre-set relative error
of the solution. Namely, Hermes refinement mode HP ANISO resulted in
the smallest and fastest problem solution. Furthermore, using the multi-
mesh configuration for the physical fields c and ϕ — scaled variables for C
and φ, respectively — was justified. The adaptivity algorithm refined the
meshes of ϕ and c and increased the polynomial degrees of the correspond-
ing spaces differently. The mesh was significantly refined for c and also the
maximum polynomial degree was varied in the range of 2 . . . 9 whereas for
ϕ, the maximum polynomial degree remained lower. So it is efficient to use
multi-mesh in terms of the number of degrees of freedom.

Thereafter, IPMC electromechanical transduction was modeled by solving
the system of PNP-Navier equations using the same method. The weak
form, residuals and the Jacobian matrix of the system were again explic-
itly derived – so the result could be used with other finite element software
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packages. Here, Hermes hp-FEM time dependent adaptive solver was again
used. The solutions for the problem with four dimensionless field variables
– cation concentration c, electric potential ϕ, x -directional displacement U1,
and y-directional displacement U2 – result in very different field gradients
in the space and time. It was shown that using the time dependent adaptiv-
ity, multi-mesh configuration, and anisotropic hp-refinements, the problem
size remains very small throughout the solving process while maintaining
a pre-set relative error of the solution. As in case of the PNP problem,
Hermes refinement mode HP ANISO resulted in the smallest and fastest
problem solution. The meshes were significantly refined for c and ϕ and
also the maximum polynomial degree was varied in the range of 2 . . . 8
whereas for the displacement fields U1 and U2, the mesh variations were
smaller; however, the polynomial degrees of the elements were increased
where necessary.

Additionally, IPMC thicknesses were modeled and the problem size did not
increase significantly with the change of thickness and aspect ratio of the
calculation domain. However, the automatic adaptivity can consume a lot
of CPU time. It was shown that calculation times can be reduced more than
twice by employing a simple PID controller based time step adaptivity.

Conclusively, by using hp-FEM with adaptive multi-mesh configuration the
problem size of the Nernst-Planck-Poisson equation system can be possibly
reduced significantly while still maintaining prescribed precision of the so-
lution. The same holds true for the more complicated problem: the Nernst-
Planck-Poisson-Navier’s system of equation for IPMC deformation. Based
on those results, and this is yet to be demonstrated, that this is especially
important when dealing with 3D problems in a large physical domain with
non-uniform boundary conditions and different geometry configuration.
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[72] I. Babuška and M. Suri, “The p and h-p versions of the finite element
method, basic principles and properties,” SIAM Review, vol. 36, no. 4,
pp. 578–632, 1994.

[73] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for
CFD. Oxford University Press, 1999.

[74] L. Demkowicz, Computing with hp-Adaptive Finite Elements: Volume
1 One and Two Dimensional Elliptic and Maxwell problems. CRC
Press, 2006.

[75] P. Solin, D. Andrs, J. Cerveny, and M. Simko, “Pde-independent adap-
tive hp-FEM based on hierarchic extension of finite element spaces,”
Journal of computational and applied mathematics, vol. 233, no. 12,
pp. 3086–3094, 2010.

[76] P. Solin, J. Cerveny, L. Dubcova, and D. Andrs, “Monolithic discretiza-
tion of linear thermoelasticity problems via adaptive multimesh hp-
FEM,” Journal of Computational and Applied Mathematics, vol. 234,
no. 7, pp. 2350 – 2357, 2010.

[77] P. Solin, L. Dubcova, and J. Kruis, “Adaptive hp-FEM with dynamical
meshes for transient heat and moisture transfer problems,” Journal of
Computational and Applied Mathematics, vol. 233, no. 12, pp. 3103 –
3112, 2010.

[78] L. Dubcova, P. Solin, J. Cerveny, and P. Kus, “Space and time adaptive
two-mesh hp-finite element method for transient microwave heating
problems,” Electromagnetics, vol. 30, no. 1-2, pp. 23–40, 2010.

[79] M. Z. Bazant, K. Thornton, and A. Ajdari, “Diffuse-charge dynamics
in electrochemical systems,” Phys. Rev. E, vol. 70, no. 2, p. 021506,
2004.

[80] D. Pugal, A. Aabloo, and K. J. Kim, “Dynamic surface resistance
model of IPMC,” in Proceedings of SPIE (Z. Ounaies and J. Li, eds.),
vol. 7289, p. 72891E, 2009.

79



[81] D. Pugal, P. Solin, K. J. Kim, and A. Aabloo,“Modeling ionic polymer-
metal composites with space-time adaptive multimesh hp-FEM,”Com-
munications in Computational Physics, vol. 11, no. 1, pp. 249–270,
2012.

[82] A. M. P. Valli, G. F. Carey, and A. Coutinho, “Control strategies for
timestep selection in simulation of coupled viscous flow and heat trans-
fer,” Communications in Numerical Methods in Engineering, vol. 18,
no. 2, pp. 131–139, 2002.

80



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisors, Dr. Alvo
Aabloo and Dr. Kwang Kim for their guidance and valuable advice. This
dissertation would not have been possible without their support throughout
the years I have been working on IPMC research. I’m also very grateful
to Dr. Pavel Solin for introducing me the hp-FEM and his invaluable
help and guidance in the research. I am very grateful for my opponents
for taking their time and effort to read my work and provide interesting
discussions. Also, I’d like to thank Dr. Kalev Tarkpea for getting me
interested in joining the Physics Department of University of Tartu, to
begin with. I would like to thank my former colleagues, in no particular
order, Dr. Andres Punning, Dr. Maarja Kruusmaa, Dr. Viljar Palmre, Dr.
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SUMMARY IN ESTONIAN

IPMC MATERJALI hp-FEM
MUDEL

Ioonjuhtivaid polümeer-metall komposiitmaterjale (edaspidi lühendatud
IPMC ehk ionic polymer-metal composite) on uuritud juba vähemalt
kaks aastakümmet nende huvipakkuvate omaduste tõttu. Võimalikeks
kasutusaladeks on vaiksed aktuaatorid või sensorid. IPMC eelised teiste
elektroaktiivsete polümeeride ees on töötamine madalal pingel (1...5V),
suur paindeulatus, ja toimimine veekeskkonnas. Kuigi põhiliselt on
uuritud materjalide omadusi aktuaatoritena, on hiljuti materjalide sensor-
omadused rohkem tähelepanu saanud. Et materjali toimimisest aru
saada ning seda kirjeldada erinevate rakenduste tarbeks, on vajalik
füüsikal baseeruvat mudelit. Sellest lähtuvalt on välja töötatud
Poisson-Nernst-Planck-Navier võrranditel baseeruva IPMC mudel. See
baseerub füüsikalistel printsiipidest, ehk et saab kasutada võimalikult
palju mõõdetavaid suurusi ääretingimustena (nagu materjali paindumine,
rakendatud pinge jne). Lisaks on oluline, et meetod millel mudel
baseerub, oleks efektiivne ning võimaldaks arvutusi väikese või vähemalt
teadaoleva maksimaalse arvutusveaga. Käesoleva töö keskendub peamiselt
just arvutusmeetodil ja annab ülevaate uudsest hp-FEM (finite element
method) ehk hp lõplike elementide meetodist ja sellel baseeruvast IPMC
mudelist. Kõigepealt on täielikult tuletatud võrrandid ja nende integraalne
esitus Newtoni meetodi jaoks. Seejärel antakse lühike ülevaade hp-FEM
meetodist adaptiivse väljapõhise võrguga ning kogu süsteemi Jakobiaani
tuletus hp-FEM tarkvara Hermes jaoks. On näidatud kuidas automaatne
adaptiivne hp-FEM võimaldab probleemi suuruse hoida väiksena (süsteemi
vabadusastmeid ja kasutatud mälu silmas pidades). Kõige pealt
on lahendatud Poisson-Nernst-Plancki võrrandisüsteem ja on käsitletud
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erinevaid adaptiivusalgoritme. Üks huvitav tulemus on, et adaptiivsed
algoritmid võimaldavad lahendada probleemi tingimustel, kus Debye pikkus
jääb nanomeetri suurusjärku – seda süsteemis mille mõõtmed on millimeetri
skaalas. Nendest tulemustest lähtuvalt esitatakse lahendus terve Poisson-
Nernst-Planck-Navier võrrandite süsteemile IPMC paindumise arvutustes.
Taaskord on lõplikud võrrandid koos tuletuskäiguga esitatud. Lisaks on
analüüsitud suur hulk simulatsiooni tulemusi arvutusprobleemi suurust
ja kulutatud arvutusaega silmas pidades ja sellest lähtuvalt leitud parim
adaptiivuse algoritm seda liiki probleemide jaoks. On ka näidatud kuidas
meetod võimaldab arvutusdomeeni geomeetriat arvesse võtta – domeeni
pikkuse ja laiuse suhtest tulenevad ääreefektid on automaatselt arvutustes
käsitletud. Kokkuvõtteks, käesolevas töös on detailselt kirjeldatud
kuidas kasutades uudne hp-FEM meetod koos adaptiivsete algoritmide
ja väljapõhise võrguga võimaldab Nernst-Planck-Poisson-Navier probleemi
lahendada efektiivselt, samal ajal hoides lahenduse arvutusvea etteseatud
piirides.
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