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a  b  s  t  r  a  c  t

The  development  of  multimetric  indices  (MMIs)  as a means  of  providing  integrative  measures  of ecosys-
tem condition  is  becoming  widespread.  An increasingly  recognized  problem  for  the  interpretability  of
MMIs is controlling  for the  potentially  confounding  influences  of  environmental  covariates.  Most  com-
mon  approaches  to handling  covariates  are  based  on simple  notions  of statistical  control,  leaving  the
causal  implications  of  covariates  and  their  adjustment  unstated.  In this  paper,  we  use graphical  models
to  examine  some  of  the  potential  impacts  of environmental  covariates  on the  observed  signals  between
human  disturbance  and  potential  response  metrics.  Using  simulations  based  on  various  causal  networks,
we  show  how  environmental  covariates  can  both  obscure  and  exaggerate  the  effects  of human  dis-
turbance  on  individual  metrics.  We  then  examine  from  a causal  interpretation  standpoint  the  common
practice  of adjusting  ecological  metrics  for environmental  influences  using  only the  set  of  sites  deemed
to be  in  reference  condition.  We  present  and  examine  the  performance  of  an  alternative  approach  to
metric  adjustment  that  uses  the  whole  set  of  sites  and  models  both  environmental  and  human  dis-
turbance  effects  simultaneously.  The  findings  from  our  analyses  indicate  that  failing  to  model  and  adjust
metrics  can  result  in  a  systematic  bias  towards  those  metrics  in  which  environmental  covariates  function
to artificially  strengthen  the  metric–disturbance  relationship  resulting  in  MMIs  that  do  not  accurately
measure  impacts  of human  disturbance.  We  also  find  that  a “whole-set  modeling  approach”  requires
fewer  assumptions  and  is  more  efficient  with  the  given  information  than  the  more  commonly  applied
“reference-set”  approach.

©  2013  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The enterprise of bioassessment (evaluation of the condition
of an ecosystem using biological surveys – Barbour et al., 1999)
has had a long history and is increasingly relied upon to guide the
management of natural resources. One tool of bioassessment that
is increasingly being used is the multimetric index (MMI,  Hering
et al., 2006). MMIs use biological or ecological measurements, often
compiled into metrics, to quantify and serve as a surrogate for
the degree to which human disturbance has influence on bio-
logical communities. While originally applied to streams under
the name Indices of Biological Integrity (IBI) (Karr, 1981, 1991),
MMIs have now been developed for a number of different systems,
including wetland plants (Mack, 2001; Rocchio, 2006), terrestrial

∗ Corresponding author. Tel.: +1 337 266 8653.
E-mail address: schoolmasterd@usgs.gov (D.R. Schoolmaster Jr.).

invertebrates (Kimberling et al., 2001) and lakes (O’Connor et al.,
2000) and have been applied at a range of spatial scales from local
(Wallace et al., 1996) to continental (Pont et al., 2006). Indeed the
concept represented by MMIs  has been suggested to represent an
important integrative concept in ecology (Ford and Ishii, 2000).
To be useful to resource managers, an index must meet at least
three criteria; (1) it must be sensitive to human disturbance (2) it
should measure variation in metrics and disturbance at a scale that
is useful for management and (3) it should include interpretable
metrics. Individual metrics are typically combined into a “multi-
metric” index (MMI), which provides an overall score of integrity
for a system (see Kurtz et al., 2001 and Andreasen et al., 2001 for
discussion of criteria for MMIs)

The development of a MMI  requires a number of decisions.
These decisions relate to, for example, the criteria for selecting
metrics (Karr and Chu, 1997; Barbour et al., 1999; Stoddard et al.,
2008) and the scaling of metrics (Blocksom, 2003). One particu-
lar aspect of MMI  development that has been receiving increasing

1470-160X/$ – see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ecolind.2013.01.015
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attention is the potential impacts of environmental covariates on
the interpretability of individual biological or ecological metrics
(Wiley et al., 2003; Baker et al., 2005; Cao et al., 2007; Whittier
et al., 2007; Stoddard et al., 2008; Hawkins et al., 2010). In this con-
text, environmental covariates refer to natural gradients such as soil
texture, elevation, aspect, etc., that may  affect the degree of human
disturbance at a site and/or aspects of the biological community.

Environmental covariates can interfere with effective metric
selection in two ways: (1) Certain patterns of causal connec-
tions between environmental covariates and ecological metrics
can obscure the true effect of disturbance, resulting in the non-
selection of ecosystem components that are in fact strongly affected
by human activities, (2) some patterns of causal connections among
covariates and metrics can exaggerate the true effects of human dis-
turbance and result in selection of metrics that are not informative
measures of system response. Explaining how each of these may
occur is a goal of this work and is described in later sections. But, we
should expect that in most environments, complex environmental
influence on bioassessment measures will exist and both obscur-
ing and exaggerating influences may  be occurring simultaneously,
with unknown net effects.

Currently, there are at least three strategies employed to
mitigate the effects of environmental covariates on MMIs. The
apparently oldest and most frequently used approach is to attempt
to avoid problems by developing separate indices for (presumably)
different homogeneous sub-regions of the study area (Barbour
et al., 1999). We  do not address this approach here, except to note
that it may  be impractical at smaller spatial scales where sample
sizes are not large, it cannot address interactions among environ-
mental covariates and it results in multiple MMIs  where one, more
general MMI  would be preferable. Another prominent approach is
to use a “minimally impacted” reference set of sites to develop mod-
els of the effects of environmental covariates on metrics and then
use these models to remove such effects in the entire (reference and
non-reference) set of sites (Cao et al., 2007; Whittier et al., 2007;
Stoddard et al., 2008; Hawkins et al., 2010). A third, less-commonly
applied approach uses the set of all sites to simultaneously model
the effects of disturbance and environmental covariates on metrics
and then adjusts metrics based on model parameters (Wiley et al.,
2003; Baker et al., 2005).

Controlling for confounding effects so that focal relationships of
interest (e.g., the effects of human disturbance on biotic conditions)
can be interpreted causally is a long-standing dilemma in statistics
(e.g., Pedhazur, 1997; Cohen et al., 2003; Pearl, 2009). Increas-
ingly, it is recognized that a structural equation approach is needed
(Grace, 2006) and that such an approach should be informed by a
graphical modeling perspective that compensates for the absence
of a causal language in probability theory (Pearl, 2010). Absent
a graphical specification of causal assumptions, statistical adjust-
ment oversimplifies the interpretive implications and fails to guide
the scientist as to the various options available for modeling their
data. These ideas are expanded upon and an example of the use of
causal networks for metric adjustment is described in Appendix A.

Our goals in this paper are (1) to demonstrate the negative
impact that the effects of environmental covariates can have on
producing effective and interpretable MMIs  and (2) to evalu-
ate the efficacy of different methods of metric adjustment. We
believe it is important for the conceptual development of this large
and complex topic that underlying assumptions be conveyed as
clearly as possible and we use graphical models of causal networks
(Grace, 2006; Pearl, 2009) to describe various scenarios so that
we can better interpret the effects of various relationships among
covariates, human disturbance and biological metrics (Fig. 1). We
end our treatment with a suggested set of steps for modeling
relationships and adjusting metrics to aid in their selection for
MMIs.

E D

m

Fig. 1. Causal network showing situation where an environmental covariate (E)
influences both patterns of human disturbance (D) and metric expressions (m). The
network on the right side of the figure implies the equations given for the statistical
relationships on the left. See Appendix A for more details.

2. Effects of environmental covariates

2.1. Scenario methods

In order to examine the potential effects of environmental
covariates on the MMI  construction process and to test methods of
metric adjustment, it is necessary to construct scenarios where the
effects of all factors are known. For this reason, we have simulated
a series of data sets based on a variety of causal situations com-
monly encountered in real data. Each simulated data set includes
a measure of human disturbance (D) and one or more biological
metrics (m). For each scenario, we  embed the essential relation-
ships in a causal network that includes one to many environmental
covariates (E) that may be associated with the metric and/or the dis-
turbance measure as well as with one another. For the purpose of
this paper, we consider environmental covariates to be factors that
are exogenous with respect to D and m (i.e., the covariates have
no arrows pointing to them from other variables in the model).
In other words, we will consider systems described by graphical
models in which E may  influence D and m,  but not vice versa (Note
that in cases where D influences E, adjusting for E will remove part
of the effect of D; thus, this situation is one where adjustment is
not appropriate.). This is the typical assumption for metric adjust-
ment (e.g. Stoddard et al., 2008). We  examine (1) linear networks
of increasing complexity, (2) networks that include multiplicative
effects and (3) networks that include non-linear relationships.

For simulations, exogenous variables in networks were instan-
tiated by drawing normally distributed pseudo-random numbers,
using the “Mersenne Twister” algorithm of Matsumoto and
Nishimura (1998).  Values for endogenous variables (i.e., those
affected by other variables in the model and thus having arrows
pointing to them in the graphical models) were calculated by
applying the network-implied equations, plus normally distributed
random error (Fig. 1). Unless otherwise stated, an arrow in a net-
work diagram indicates a linear effect of the variable at the tail on
the variable at the head. Specific equations used for simulation are
given in Appendix B.

The disturbance variable (D) was transformed to have a uniform
distribution of values between 0 and 9. The transformation function
used was  F(D) = min  (I > rank(Di) × 10/n) − 1, where I is the set of
integers and n is the number of simulated sample sites. The function
F(x) = min(I > x) is implemented on many programming platforms
as the “ceiling” function. We  chose this form of D to provide even
coverage across potential values.

In this section, we demonstrate the variety of effects that dif-
ferent scenarios can have on the observed correlation between
disturbance and the metric. We chose correlations as the parame-
ter of interest because it is the summary statistic most often used in
the MMI  construction process to detect the association between a
metric and disturbance. We  quantify the effects of environmental
covariates as the difference in strength of correlation between D
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Fig. 2. Causal networks representing different scenarios for environmental covari-
ates. Network (a) represents Scenarios I and III. Network (b) and (c) are different
cases of Scenario II. Networks (d) and (e) have both direct individual effects and an
interactive effect and are discussed in Scenario IV.

and m with and without the effects of the network of covariates
E. That difference is expressed as �cor = cor(mE=0,D) − cor(m,D),
where mE=0 refers to a metric unaffected by covariates. For this
analysis, we assume that biological metrics are adversely affected
by disturbance; thus, we expect cor(mE=0,D) < 0. For real data, raw
metrics may  be positively or negatively related to D and in such
cases, those that are positively related to D are often “reflected”
(reversed) before being included in a MMI.  Values of �cor < 0 indi-
cate that the network of environmental covariates obscures the true
strength of effect of D on m.

For the simulation method described above, the possible out-
comes for measured association between D and m can be described
analytically by recognizing that a correlation can be understood
as the magnitude of the bivariate relationship standardized by the
total variation in the system. We  use this insight to develop analyt-
ical models of the potential effects of environmental covariates on
the measured association between D and m.  Those analyses, which
follow the scenarios described below, can be found in Appendix
B. Since there are many ways that environmental covariates may
affect the relationship between human disturbance and biologi-
cal metrics, we proceed in this paper by presenting a number of
instructive hypothetical scenarios to examine the types of effects
environmental variables can have on the observed correlation
between D and m. In these scenarios, we assume only a single
covariate is involved for simplicity.

Scenario I: Only the metric is affected by environmental covari-
ate (Fig. 2a). For example, small scale variation in soil properties
that affect plant growth, but do not affect the probability or degree
of human disturbance.

Scenario II: Metric and disturbance are both influenced by envi-
ronmental covariate (Fig. 2b). For example, elevation can affect both
accessibility to humans and be strongly correlated with factors that
affect plant and animal communities.

Scenario IIa: A special case of Scenario II is spurious correlation
(Fig. 2c), in which the covariate affects both the metric score and
Human disturbance, but human disturbance does not directly affect
the metric. Spurious correlation can result in selecting metrics for
a MMI  that are not responsive to disturbance.

Scenario III: Non-linear environmental covariates. Many
metrics, especially community level metrics are known to vary non-
linearly along environmental gradients. For example, plant species
richness is often found to be a unimodal function of productivity
(Grace, 1999; Gough et al., 2000; Mittelbach et al., 2001).

Scenario IV: Interactive networks. It is possible for environmen-
tal covariates and disturbance to interact in such a fashion as to
have a multiplicative effect on a metric (Fig. 2d,e). This can happen

if the effect of an environmental covariate on a metric is a func-
tion of the degree of disturbance. For example, plant productivity
can be affected by water availability and also by disturbance from
cattle grazing. For physiological reasons, the efficiency with which
plants produce biomass at a given water level depends on the level
of grazing damage sustained by the plants. In symbols,

m = ˇE(D)E + ˇDD and ˇE(D) = ˇE0 + ˇE×DD,

∴ m = ˇE0 E + ˇE×DDE + ˇDD

where ˇD < 0, ˇE×D < 0 and ˇE0 > 0.

2.2. Scenario simulations

2.2.1. Scenario I
The observed relationship in simulations where there were no

environmental covariates affecting either metrics or disturbance
exhibited a correlation of ∼−0.65 (based on a sample size of 200).
In subsequent comparisons, we  will refer to the standardized un-
obscured effect of D on m as the “true” effect for simplicity, where
the true effect is measured as the partial correlation of m and
D. For Scenario I (Fig. 2a), simulation results (Fig. 3) confirm the
analytical expectation (Appendix B) that the influence of an inde-
pendent environmental covariate on a metric will be to decrease
the strength of the observed correlation between disturbance and
metric (holding constant the true effect of D on m,  which is the
case for all of the simulations). Fig. 3a shows that the correlation
between D and m in the absence of the environmental covariate
is stronger than when the effect of the environmental covariate
included on the metric (Fig. 3b). This result will be quite general
because any additional cause of variation in m independent of the
effect of disturbance (such as an E uncorrelated with D) will ele-
vate the unexplained error variance for m, decreasing the observed
strength of association.

2.2.2. Scenarios II and III
For the case where there is an environmental covariate (perhaps

a topographic gradient) that influences both patterns of human
development and native ecosystem characteristics (a situation rep-
resented in Fig. 2b), more complex influences on observed D–m
relationships are possible. Simulation results confirm the analyti-
cal expectations described in Appendix B. If the indirect effect of
E on m via D is of the same sign as the direct effect of E on m, we
can expect a correlation between D and m that is stronger than the
true effect (compare Fig. 4b to Fig. 4a, for an example with real
data see Appendix C: Example 2). In the case where the indirect
effect of E on m via D is of opposing sign to the direct effect of E on
m, the observed correlation between D and m can be substantially
weaker than the true effect (compare Fig. 4c to Fig. 4a) or even of
opposite sign (compare Fig. 4d to Fig. 4a, for an example with real
data see Appendix C: Example 1). Because indirect effects of D on m
can be quite strong, it is possible to observe significant correlations
between D and m even when the true effect is zero. Such relation-
ships are often referred to as spurious (see Fig. 5 for an example).
Such results can be generated regardless of whether effects in the
model are linear or non-linear.

2.2.3. Scenario IV
As in Scenarios I and II, for the interactive case (Scenario IV),

environmental covariates can have a wide range of influences on
the bivariate relationship between D and m (Fig. 6). In general,
the expectations are the same as in Scenarios I and II; however,
the results can include curvilinearities in responses that bring an
additional complexity to the metric adjustment enterprise.
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Fig. 3. Simulation of Scenario I (based on 200 simulations). (a) The true relationship between D and m.  (b) The observed correlation between D and m is weakened by the
environmental effect on the metric (ˇE).

3. Quantitative assessment of metric adjustment
procedures

3.1. Quantitative assessment methods

As stated previously a MMI  should satisfy a number of crite-
ria; two of which being, that it is sensitive to the effects of human
disturbance and that it be comprised of interpretable metrics.
These require that the confounding influences of environmental
covariates are removed from the metrics. Recently, two meth-
ods have been used to quantitatively determine and remove the

effect of environmental covariates from candidate metrics; we  refer
to them as “Reference-set residualization” (RSR) (Whittier et al.,
2007; Stoddard et al., 2008), and “Whole-set residualization” (WSR)
(called “regional normalization” by Wiley et al., 2003).

Both methods are similar in that they consist of two  steps, esti-
mation and residualization. Each models the metric as a function
of environmental covariates and then uses the model to adjust
the observed metric values. However, they differ in how they deal
with human disturbance. The RSR methodology models only the
subset of metric values that come from “reference” sites, which
are presumably free from the effects of human disturbance. This
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Fig. 5. (a) True and (b) observed spurious relationship between disturbance and a metric when they are only causally related through an environmental covariate.

model is then used to adjust metrics from all sites. The rationale
behind this method is that using data only from the reference
sites allows disturbance-free estimates of the effect of the envi-
ronmental covariates. The WSR  methodology models the metrics
from the whole set of sites and includes measures of disturbance
in the model. Metrics are adjusted as the predicted metric values
in the absence of environmental covariates (E = 0). Thus, the new
metric values contain only the portion of the variance attributable
to variation in disturbance plus the variance unexplained by the
model.

In  this section, we examine the ability of both RSR and WSR
to recover the actual relationship between the metric and dis-
turbance in each of the scenarios above. To do this, we  create
a data set corresponding to a causal network, apply the RSR
or WSR  method and measure the percent error as the actual
correlation versus that observed after the metric adjustment proce-
dure, [cov(mE=0,D) − cov(madj,D)]/cov(mE=0,D)×100. Positive values
of this metric indicate that the adjustment method has resulted in
an artificially low correlation; negative values indicate that metric
adjustment resulted in an artificially high correlation.
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Fig. 6. True relationship (a) and the variety of outcomes (b)–(d) that may  result for different values of the interactive effect of an environmental covariate and disturbance
on  the metric.
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For each causal network, we repeated the process 1000 times at
sample sizes ranging from 50 to 3200 to examine accuracy (percent
error), precision (variation in percent error), and efficiency (error
range/sample size) of each method. Because our goal is to examine
the effectiveness of metric adjustment methods, we base the esti-
mated coefficients used for adjusting on the true model. We  did not
add a model selection step in this case, which would be necessary
if the true model were unknown. For the simulations, sites with a
value of D < 3 (D ranged from 0 to 9) were defined as members of
the reference set.

3.2. Scenario I

For situations structured as in scenario I (Fig. 2a), in which the
environmental covariate affects only the metric, both methods of
metric adjustment result in average errors of less than 1%. However,
at all sample sizes, the accuracy of metrics adjusted by Whole-set
residualization is about twice that made by Reference-set residual-
ization. In addition, the precision of WSR  adjusted metrics is much
greater than that of RSR, especially at small sample sizes. The larger
variation of the RSR method results directly from the smaller sam-
ple size used in the models to estimate the effect of the covariate.
For example, for the results shown in Fig. 7a, the standard deviation
of the estimated coefficient (ˇE) was over twice as large as that of
the WSR  method.

3.3. Scenario II

When the environmental covariate affects both the metric and
the disturbance measure (Fig. 2b), RSR results in some bias, even at
very larger sample sizes (Fig. 7b). The average percent error is pos-
itive, indicating that on average the RSR tends to over-adjust, thus
discarding part of the disturbance signal in the metric. As a func-
tion of sample size, the average percent error fell from near 19% at
the smallest sample size to 6.6% at the largest (Fig. 7b). In fact, at
the largest two sample sizes, the 95% confidence intervals of the
simulations do not include zero, suggesting that RSR is asymptoti-
cally biased (i.e., it will never converge to the correct answer even
with infinite sample size). The RSR method also tends to make large
errors, especially at small sample size. At the sample size of 50, RSR
errors of over 100% fall within the 95% confidence interval indicat-
ing that this method may  result in adjusted metrics whose sign of
correlation with D is opposite of the true relationship.

WRS  resulted in average percent error of just over 1% at the
smallest sample size, but well under 1% for all other sample sizes.
As with RSR, the size of the errors that WRS  tended to make was
larger for networks of this structure than Scenario I, although these
tend to decrease quickly as sample size is increased. The increased
variation in the measurement is caused by increased variation in
the metric m which is caused by the covariance between D and E.

3.4. Scenario III

The relative abilities of RSR and WSR  to adjust metrics in the case
of curvilinear environmental covariates and cov(D,E) = 0 is similar
to the linear case; RSR making larger errors on average and gener-
ating greater variation in the distribution of errors (Fig. 7c). Again,
the larger errors come from the smaller sample size used by the
RSR estimating models.

Both the accuracy and precision of the RSR method are greatly
reduced if cov(D,E) /= 0 often resulting in metrics with error over
100% for samples sizes under 400 (Fig. 8). This happens because
the covariance between D and E causes reference sites to only
sample a portion of the environmental covariate, thus making it dif-
ficult for the model to make accurate estimates of the non-linearity
(Fig. 8a). Thus, RSR uses a smaller sample size and a biased sample to

estimate the non-linear effect of the environmental gradient. WSR
performs as well in this case as it did in the simpler linear case
(Scenario II).

3.5. Scenario IV

In the case where D and E interact to determine m,  RSR fails
to make accurate adjustment regardless of sample size (Fig. 7d).
As in the non-linear case, this happens because the relationship
between E and m in the reference set is not representative of the
relationship in the whole set (Fig. 8b). If the interaction term (ˇD×E)
is the opposite sign of the main-effect (ˇE), this effect is even worse,
producing average percent errors well over 100 at all sample sizes.

The WRS  produces accurate adjustments to metrics with
interactive effects, although the WRS  adjusted metrics are less pre-
cise than comparable non-interactive networks. This reflects the
increased variation in the metric relative to non-interactive sce-
narios and the increased difficulty in obtaining accurate estimates
from interactive models.

4. Effect of environmental covariates on MMI  sensitivity to
human disturbance

One reason for combining metrics into MMIs is to gain a more
robust characterization of ecosystem responses than could be
achieved by any of the individual metrics alone. Although one
hopes to assemble metrics that are both sensitive to disturbance
and interpretable, these goals are not the same. We  have shown
how environmental covariates can interfere with both the inter-
pretability and sensitivity of individual metrics. In this section, we
use simulations to examine whether sensitivity to disturbance can
be recovered through the process of creating an index from multiple
unadjusted metrics.

We  generated environmental and disturbance variables as
described above. In addition, for each of the five metrics, 15
candidate metrics were generated as m = ˇDD + ˇEE + ε where
ε∼N(0, 4).  We  generated five sets of metrics corresponding to
the different scenarios described above. The first metric type, m1,
which represents the true relationship, was generated from metric
scores that range from 0 to −∞ and are influenced only by human
disturbance; thus, with −ˇD ∼ � (1, 2), ˇE = 0, where x ∼ � (a, b) indi-
cates that x is gamma-distributed with shape parameter a and scale
parameter 1/b. The next, m2 corresponds to Scenario I, where metric
scores are influenced by both disturbance and an independent envi-
ronmental covariate; thus, −ˇD ∼ � (1, 2), ˇE = � (1, 2), cov(D, E) = 0.
We also generated three metrics related to possibilities of Scenario
II where disturbance and the environmental covariate are corre-
lated either negatively or positively: m3(−ˇD ∼ � (1, 2), ˇE = � (1,
2), cov(D, E) < 0), m4(−ˇD ∼ � (1, 2), ˇE = � (1, 2), cov(D, E) > 0) and
m5(ˇD = 0, ˇE = � (1, 2), cov(D, E) < 0).

Environmental covariates generally strengthen the observed
correlation between D and m in metrics of the m3 type because
of the positive correlation between disturbance and covariate.
For metrics of the m4 type, where disturbance and covariate are
negatively correlated, covariates generally weaken the observed
correlation between D and m.  Metrics of type m5 represent a spu-
rious relationship between D and m due to mutual dependence on
the environmental covariate.

The candidate metrics were scaled to unitless quantities using
the Blocksom CAUL method (Blocksom, 2003), which scales metrics
to values between 0 and 10. Metrics were then screened for
sensitivity to disturbance. Scaled metrics exhibiting significant cor-
relation with D at  ̨ = 0.05 were accepted for inclusion in the
index. Selected metrics exhibiting a positive relationship with D
were reflected as m′ = 10 − m to ensure an index with a negative
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Fig. 7. Average, 5th and 95th percentiles of percent error resulting from adjusting metrics using Reference-site residualization methodology (filled circles) and Whole-set
residualization (open circles).

relationship with disturbance. The MMI  was created by calculat-
ing the mean of the (up to) 10 metrics with the highest observed
strength of correlation metrics. The sensitivity of the index was
measured as its correlation with D. This process was repeated 1000
times to allow us to estimate the variability of the result.

The average sensitivity of the simulated indexes varied in ways
that could be predicted from the ways that environmental covari-
ates affected the component metrics. Fig. 9 shows the mean, 5th and
95th percentiles of the sensitivity of each metric type. These MMIs

were composed of metrics generated by Scenarios I and II. MMI  m1
consists of metrics in which there were no environmental covari-
ates. MMI  m2 consists of metrics simulated by Scenario I. MMIs
m3–m5 were generated from Scenario II in cases where environ-
mental covariates strengthen observed correlation between D and
m (m3), weakened it (m4) or resulted in purely spurious relation-
ship (m5). Numbers at top show values of correlation of individual
metrics and D averaged over all simulations and suggest that
MMIs  with relatively high sensitivities are possible with unadjusted
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Fig. 8. Fits of models used by RSR (dashed) and WRS  (models) to adjust metrics in non-linear (a) and interactive (b) scenarios.
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relationship. Numbers at top show values of correlation of individual metrics with
D  averaged over all simulations.

metrics even if the average correlation between candidate metrics
and D is low.

The difference in sensitivity between m1 (not obscured by
covariates) and the others at each realization of the simulation indi-
cates the effect not adjusting metrics would have on the sensitivity
of the MMI.  Failing to adjust metrics of the m2-type (Scenario I) for
environmental covariates led to a MMI,  on average, 13% less sen-
sitive than an index constructed with correctly adjusted metrics
and resulted in an index that was just as or more sensitive than the
unobscured index 0.6% of the time. Simulated metrics of the m3-
type, in which covariates inflate the correlation between D and m,
also increased average sensitivity of the MMI  (by 7.1%) to lead to a
more sensitive MMI  than those constructed from correctly adjusted
metrics 99.3% of the time. Metrics of type m4, which are similar to
m3 but with a change in sign of one path, result in MMIs that are
8.1% less sensitive on average, but would result in an index as strong
or stronger than one made with correctly adjusted metric 7.8% of
the time. Finally, indexes made with metrics that had only spuri-
ous correlation with D, were 17.5% weaker on average and could
be expected to produce a MMI  as sensitive as one constructed with
adjusted metrics 4.5% of the time.

5. Discussion

Our analyses show that the network of environmental covari-
ates can affect the observed relationship between a biological or
ecological metric and human disturbance. Environmental covari-
ates may  strengthen or weaken observed relationships depending
on the structure of the network and the functional form of the rela-
tionships. This poses serious problems for effective metric selection
and interpretability of MMIs. Because most MMI  construction pro-
cedures (Karr and Chu, 1997; Barbour et al., 1999; Stoddard et al.,
2008) involve selection of metrics that show the strongest relation-
ship with the measure of human disturbance, failing to model and
adjust candidate metrics will result in a systematic bias towards
those metrics that are products of causal networks that artifi-
cially strengthen the metric–disturbance relationship and are most
strongly affected by environmental covariates.

As evidence of this potential problem, we were able to simulate
a MMI  with what would be regarded as satisfactorily correlated
with human disturbance, from metrics that have only purely spuri-
ous relationships to disturbance (m5-type MMI). While the metrics
in those simulated MMIs  each had some ability to predict local
disturbance, there was  no direct causative relationship between
disturbance and the metrics (these metrics fail to satisfy Pearl’s
back-door criterion for causal relations (Pearl, 2009)). As a result,
the MMI  (and its component metrics) would be insensitive to any
management action taken to reduce human disturbance. As levels
of human disturbance were reduced, one would not find that metric
scores improved, but that they no longer were predictive of human
disturbance.

Others have recognized that environmental covariates could
interfere with MMI  performance and have suggested methods for
adjusting the metrics (e.g., Stoddard et al., 2008). Of the meth-
ods we  tested, we find that metrics can be adjusted for known
covariates most effectively with a “Whole-set” adjustment method
that uses all available data to model metrics as a function of the
known gradients and disturbance. This method not only produced
more accurate, precise and efficient adjustments, but it also elim-
inates the need for classification of the disturbance state of sites
into “reference” and “impacted” sites (another source of potential
error). Such an approach does, however, require the ability to esti-
mate human disturbance scores for individual sites (which may
not be compatible with certain large-scale surveys). These models
of metrics can be used to make predictions of the disturbance-free
range of variation of the metric (Dodd and Oakes, 2004; Kilgour
and Stanfield, 2006). While this approach has been criticized for
extrapolating beyond the data, it makes predictions based on the
largest set of data available and allows the assumptions going into
the designation of “reference sites” to be identified. In fact, the WSR
methodology could be characterized as using the set of all available
data to extrapolate one point on the disturbance gradient. Consid-
ering it as such is helpful for understanding why it is more effective
than “Reference-set” adjustment methods.

Where “Reference set” residualization fails, one reason it does
so is because it takes the opposite approach of WSR  to extrapo-
lation; it uses a subset of data from one point on a disturbance
gradient to extrapolate to the rest of the gradient. This leads to two
kinds of errors, those associated with producing accurate model
estimates from the reduced sample size, and those made because
reference samples systematically fail to sample the variation in the
environmental covariates. An example of this latter effect comes
from the multiplicative example described in Scenario IV. Where
disturbance and the environmental covariate interact to determine
the metric, the relationship between the metric and the covariate in
the reference set will not accurately represent the relationship else-
where along the disturbance gradient (Fig. 8), resulting in highly
biased adjustments. This does not only happen in interactive cases,
but wherever there is covariance between environmental covariate
and disturbance. The negative effects of this phenomenon tend to
be small when all relationships are linear, but can be very large if
any are non-linear.

6. Suggestions for constructing MMIs

Our analyses and simulations suggest that in order to produce an
interpretable MMI,  one should model the metrics for known envi-
ronmental covariates. This approach requires that before data are
collected, one considers what the major environmental covariates
are and how to collect data on them. It is also helpful for one to
consider potential causal networks for the system. Using graphical
models, such as Fig. 2 (and Appendix A), to represent the hypothet-
ical causal structure of the system will help determine how data



D.R. Schoolmaster Jr. et al. / Ecological Indicators 29 (2013) 411–419 419

should be collected and which factors may  be usefully modeled as
environmental covariates.

Having a causal network hypothesis is important to determine
which variables may  usefully be included in the analysis as envi-
ronmental covariates. As stated earlier, we consider only exogenous
variables that may  affect either disturbance or metrics, but not the
other way around. An environmental measure that is affected by
disturbance and in turn affects the metric does not function merely
as a covariate, but as a causal mediator (Judd and Kenny, 1981;
Grace, 2006) or mechanism through which disturbance affects the
metric. Adjusting for variables that act as mediators would result in
discarding part of the true relationship between D and m,  a serious
error of a different sort. This provides yet another reason why the
development of a causal network for a system can guide the MMI
development process.

Failing to adjust for environmental covariates can lead to
biased metrics and MMIs. However, these effects can be miti-
gated by modeling and adjusting metrics. Both reference-set and
whole-set residualization can be effectively used when the causal
relationships among the metrics, human disturbance and the envi-
ronmental covariates are simple. But, where the relationships are
complex, only Whole-Set Residualization results in robust, precise
and efficient adjustment of metrics.

Appendix A. Supplementary data

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.ecolind.
2013.01.015.
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