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a b s t r a c t

Between A.D. 1181 and 1200, in the early part of a climatically wet period, corn was imported to Chaco
Canyon from a region outside the Chaco Halo (defined in this paper as the region between the base of the
Chuska Mountains and Raton Wells). Strontium-isotope (87Sr/86Sr) analyses of 12 corn cobs dating to this
period match 87Sr/86Sr ratios from five potential source areas, including: the Zuni region, the Mesa
Verde-McElmo Dome area, the Totah, the Defiance Plateau, and Lobo Mesa. The latter two areas were
eliminated from consideration as possible sources of corn in that they appear to have been unpopulated
during the time period of interest. Therefore, it appears that the corn cobs were imported from the Zuni
region, the Mesa Verde-McElmo Dome area, or the Totah area during a time when the climate was
relatively wet and when a surplus of corn was produced in regions outside Chaco Canyon. Based on
proximity to and cultural affiliation with Chaco Canyon, it is hypothesized that the corn probably was
imported from the Totah.

Published by Elsevier Ltd.

1. Introduction

In a recent paper, Benson et al. (2009) presented calibrated 14C
(calendar) ages for 36 corn cobs (hereafter referred to as cobs) from
Chaco Canyon archaeological contexts, including ages for seven
Pueblo Bonito cobs dated by Cordell et al. (2008). Twenty-one of
the cobs from three great houses (Pueblo Bonito, Kin Klizhin, and
Chetro Ketl) and Gallo Cliff Dwelling yielded a pooled 14C age of
870� 5 years (yr) and a mean calibrated age of A.D. 1176�12 yr.
Fifteen of the 21 cobs came from Gallo Cliff Dwelling. In the present
study, an additional 10 cobs from Gallo Cliff Dwelling were 14C
dated with nine of them yielding a pooled 14C age of 857� 7 yr and
a mean calibrated age of A.D. 1196�15 yr. Thirty cobs from both
studies yield a pooled 14C age of 865� 4 yr and a mean calibrated
age of A.D. 1180�10 yr.

These cobs date to the beginning of a wet period that followed the
mid-12th-century megadrought (Fig. 1). At about A.D. 1130, during
the initial phase of the mid-12th-century megadrought, the Chacoan
system appears to have collapsed (Judge,1989; Lekson,1991). At that
time all great house construction in Chaco Canyon ceased (see, e.g.,
Time Line 3 on p. 34 of Vivian and Hilpert, 2002) and most of the
great houses in the San Juan Basin were abandoned (see Fig. 2 in
Benson et al., 2007). However, it should be noted that great houses
are not necessarily good indicators of population density; e.g.,
Windes (2003) has suggested that that the resident population of
the 800-room Pueblo Bonito never exceeded 100 individuals.

Some Chaco Canyon great houses were used as habitation sites
after A.D. 1130; e.g., Pueblo Bonito indicates limited evidence for
habitation and substantial evidence for the use of kivas, some of
which are Mesa Verdean in style (Windes, 2003). In addition,
ceramic dating indicates that small houses may have occupied in
the lower reaches of Chaco Canyon during the early A.D. 1100s and
that there also was occupation of small houses in the Chaco East
Community in the late A.D. 1100s (Windes et al., 2000).

It is not apparent, whether the people occupying Chaco Canyon
in the A.D. 1180s represented a residual population, whether they
had migrated to the Canyon during the mid-12th-century mega-
drought or at the beginning of a late-12th-century wet period
(Fig. 1) or whether they were composed of a combination of
residual-Chacoan and immigrant groups.

A comparison of the tree-ring-cutting-date distribution for the
southern Colorado Plateau with a normalized tree-ring-based
precipitation record for the southeastern Colorado Plateau (Fig. 1)
shows that, in general, spikes in construction activities occurred
during wet periods and that little or no construction occurred
during the mid-12th- and late-13th-century megadroughts. These
data indicate that climate change impacted prehistoric Native
American populations in the southeastern Colorado Plateau and it
is possible that people from outside Chaco Canyon in the A.D. 1180s
attempted to reoccupy the Canyon during the early stages of a very
wet period.

The objective of this study is to determine the source area(s) of
Chaco Canyon cobs which date to the late A.D. 1180s. Were the cobs
grown within the Chaco Halo – an area herein defined as stretching
from Raton Wells on the east to the base of the Chuska Mountains
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on the west (Fig. 2)1 – were they imported from an area within the
southeastern Colorado Plateau to or from which Chacoans had
previously migrated, or were they imported from one of the Great
House communities that dominated the southeastern Colorado
Plateau between A.D. 1050 and 1130? To answer these questions,
87Sr/86Sr ratios of cobs from the Chaco Canyon Gallo Cliff Dwelling
structure and the Chetro Ketl great house, that date to the late A.D.
1180s, were compared with 87Sr/86Sr ratios of synthetic soil waters
from 174 sites within the southeastern Colorado Plateau area
(Benson et al., 2009) and with synthetic soil waters from 30 sites
within the Zuni Reservation.

2. Chacoan connections

If the archaeological cobs came from outside Chaco Canyon, it is
reasonable to hypothesize they were imported from a community
(or communities) that had a past or existing connection to people
living in the Canyon. Lekson (2009:98) has suggested that people
moving in to Mesa Verde during Pueblo I were descendants of those
that built two large Chaco Canyon Basketmaker III sites
(Shaik’eschee and site 29 SJ 423). Wilshusen and Van Dyke (2006)
have suggested, using data gleaned from Chaco Canyon and the
Navajo Reservoir area that emigrants from the Mesa Verde region
moved into Chaco during the late-9th and 10th centuries. In an
architectural sense, this concept is supported by the study of Wil-
shusen and Ortman (1999) who have shown that the area around the

Dolores River, in southwest Colorado, was the site of horseshoe-
shaped roomblocks that may have acted as prototypes for early great
houses in Chaco Canyon that began construction around A.D. 850.

Between A.D. 850 and A.D. 1130, twelve great houses were
constructed in Chaco Canyon with accelerated construction occur-
ring between A.D. 1050 and 1130. During the latter time interval,
numerous other great houses were constructed within and outside
the San Juan Basin (see Fig. 5.9 in Kantner and Kintigh, 2006).
Cameron and Duff (2008) have succinctly summarized the debate
regarding the relation of great house communities outside the
Canyon and Chaco. On one side, Kantner and Kintigh (2006) argue
that Chaco was an important religious center but it was not strongly
connected politically or economically to great houses outside the
Canyon. On the other side, Lekson (2006) believes that Chaco was
a chiefdom that exercised ritual and political control of great house
communities outside the Canyon. The author favors Lekson’s
(2006) concept of the Chaco world and accepts the arguments of
Cameron and Duff (2008), which point to the fact that ‘‘Canyon
leaders employed both cooperative and coercive strategies’’ with
regard to communities external to the Canyon.

Even before the collapse of the Chacoan world at about A.D. 1130,
there appears to have been a transfer in regional dominance from Chaco
north to the Totah. Judge (1989: 247) was the first to suggest that ‘‘there
was a shift in the administrative and ritual locus from Chaco to the San
Juan area, perhaps to either Aztec or Salmon .circa A.D. 1090–1100’’.
Reed (2006) has argued that local San Juan residents were recruited by
in-migrating Chacoans to be part of the original Salmon residential
group and that the local indigenes remained in Salmon after A.D. 1125
(Reed, 2008). In addition, personal communication (2009) have argued
that, during the McElmo phase, approximately A.D. 1140–1200, Aztec
West was occupied by a mixed group of Chacoan and local people.

Kintigh et al. (2004) have suggested that some Chacoans
migrated to the Zuni region during the early A.D. 1100s. In the
valleys, surrounding the large prehistoric Zuni town of Hesha-
tauthla, population expanded at an annual rate of w2% during the
period A.D. 1125–1225 and then plateaued between A.D. 1225 and
1275 (Kintigh et al., 2004). While the rate of population increase in
the Zuni region for the A.D. 1125–1225 period cannot be proven to
have resulted from in-migration, megadrought characterized the
southern Colorado Plateau between A.D. 1130 and 1177 (Fig. 1; see,
e.g., Benson and Berry, 2009) and it is doubtful that populations
expanded during this time period by means other than in-migration.

3. Methods

3.1. Strontium isotopes

A radiogenic isotope is one that was produced by the decay of
a radionuclide, but which itself may or may not be radioactive. In
the case of Sr, there are two isotopes of interest, 87Sr and 86Sr. 86Sr is
a stable isotope, whereas 87Sr is a stable radiogenic isotope
produced by the radioactive decay of 87Rb with a half-life of 48.8
billion years. Thus the 87Sr/86Sr ratio of a rock and the soil derived
from it is a function of the initial 87Sr/86Sr ratio of the rock, its age,
and the amount of 87Rb initially present in the rock. However, the
rate of production of 87Sr from 87Rb is so slow that the 87Sr/86Sr
ratio can be considered invariant over archaeological timescales.

The isotopes of Sr are nearly identical in their physical and
chemical properties; therefore, isotopic fractionation does not
occur during chemical and physical transformations. In terms of Sr
delivery to a plant, the soil water takes on the 87Sr/86Sr ratio of the
soil’s soluble mineral components; e.g., calcium carbonate and clay
mineral ion-exchange sites can release Sr to soil water. The Sr in the
soil water is biologically available, and so the 87Sr/86Sr ratio is, in
turn, transferred unchanged to the plant.

Fig. 1. Comparison of pan-regional tree cutting-date distribution with tree-ring-based
precipitation records and archaeological stage boundaries. A. Mean of six normalized
tree-ring-based precipitation records from sites within and at the edge of the San Juan
Basin (data from Benson et al., 2007). For locations of climate records see Fig. 2 (black
squares). B. Distribution of tree-ring dates for the period A.D. 900–1400 (data from
Benson and Berry, 2009). Black values indicate ‘‘death’’ dates and white values indicate
‘‘v’’ dates (dates that are a few years older than the death date). Three megadroughts
(D2–D4) have been colored light grey; two extended wet periods (W1–W2) have been
colored dark grey. D3 is the mid-12th-century megadrought and D4 is the late-13th-
century megadrought. Dashed lines between cutting-date distribution and precipita-
tion records between beginning of W1 and end of W2 indicate correlations of
exceptionally wet times with intense tree harvesting and construction. P indicates
Pueblo cultural stages.

1 Doyel et al. (1984) first used the term ‘‘Chaco Halo’’ to indicate a high-density
zone of occupation with a 5-km radius that surrounded Chaco Canyon and sug-
gested that sites around the periphery of the Canyon acted to support the main
Chaco megacommunity. This study assumes that the principal interaction ellipsoid
(Halo) was composed of 12 great houses within the Canyon, the great houses and
communities along the Rio Chaco east and west of the Canyon and the Chuska
slope, the latter which has been shown to have supplied corn, timbers, chert, and
pottery to the Canyon (Fig. 2) (Toll, 1991; English et al., 2001; Benson et al., 2003).
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3.2. Maize processing

Chemical analyses of 22 cobs from Chaco Canyon (19 from Gallo
Cliff Dwelling, two from Chetro Ketl, and one from Pueblo Bonito)
are utilized in this study (Table 1). These analyses include 14C, trace
metal, and 87Sr/86Sr data for 12 cobs previously studied by Benson
et al. (2009).

An additional 10 cobs from Gallo Cliff Dwelling were processed
in this study prior to trace metal and 87Sr/86Sr analyses, using the
cleaning procedure successfully tested on burned cobs by Benson
et al. (2010). The procedure consists of first treating pieces of
crushed cob with hydrochloric (HCl) acid to dissolve carbonate
minerals. The cob pieces were then thoroughly rinsed to remove
dissolved solids (especially Ca, which could react and precipitate
with F introduced in the subsequent procedure) and then treated

with hydrofluoric (HF) acid to dissolve silicate minerals. The cob
pieces were rinsed again and the sample ashed in a muffle furnace.
After ashing, deionized (DI) water, nitric acid (HNO3), and HCl were
added to the sample and the solution was filtered to remove
residual mineral particles.

Benson et al. (2010) have shown that unburned cobs tend to
‘‘leak’’ metals when exposed to a liquid for more than a few
minutes. In this paper, the application of the cleaning procedure to
the unburned Gallo Cliff Dwelling cobs was done in order to test
whether sufficient Sr, originally bound to weak ion-exchange sites
in the cob, remained after cleaning. The cleaning procedure
employed in this study differs from that used to treat the 12 cobs
previously reported in Benson et al. (2010) (first set in Table 1 plus
Chetro Ketl and Pueblo Bonito cobs); i.e., in the previous study,
cleaning was confined to two physical processes: (1) the cupules

Fig. 2. Locations of soil sampling sites in the southeastern Colorado Plateau. White squares indicate locations of Nutria (N), Bear Canyon (BC), and Pescado (P) field systems in the
Zuni region. White circles refer to water sampling sites discussed in Benson et al. (2009). Small black dots indicate the location of soil sites. Thick black line marks the periphery of
the San Juan Basin. The ellipse indicates the location of the Chaco Halo as defined in this paper. Large black squares indicate locations of tree-ring records used to construct the
precipitation history shown in Fig. 1. North is at the top of the figure.
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and outer part of the cob were removed with a titanium knife, and
(2) visible contamination (sediment) also was removed. In that
study, acids were not applied to the cobs to remove mineral
particles; therefore, dissolution of some residual silicate particles
(containing Sr) with HF after ashing may have slightly biased the
87Sr/86Sr data obtained on the original 12 cobs.

3.3. Radiocarbon dating of the archaeological cobs

Radiocarbon (14C) analyses of the 22 cobs (Table 1) examined in
this study were performed at the Keck Carbon Cycle Accelerator
Mass Spectrometer (AMS) Facility at the University of California,
Irvine campus, under the supervision of John Southon. The 14C ages
of the cobs were calibrated (converted to calendar years) using
CALIB 5.0.1 (Stuiver et al., 2005). Radiocarbon ages of cobs that
dated to the A.D. 1180s and early 1190s were pooled in order to
determine mean calibrated ages for various cob sets (Table 1).

3.4. Soil collection and processing

This study combines previously published 87Sr/86Sr analyses of
soils from approximately 174 sites within the southeastern Colo-
rado Plateau area with new 87Sr/86Sr analyses of soils from 30 sites
within the Zuni Reservation (Figs. 2, 3).

At Zuni, 10 sites in each of three field areas (Bear Canyon, Nutria,
and Pescado) were sampled by hand auger. These sites were some of
those previously sampled by Homburg et al. (2005) in a study of the

relative productivity of cultivated and uncultivated fields in the Zuni
region. At each of 30 locations (Fig. 3) (Supplementary Table 1), four
samples, each 225 cm3 in volume, were collected at depths of 10–16,
40–46, 70–76, and 100–106 cm. In order to produce a synthetic soil
water2 containing bioavailable Sr, soils were air dried, homogenized,
and a 5-g subsample of soil combined from the four depth intervals
was leached for 48 h with constant agitation, using 500 mL of 1-M
acetic acid prepared from distillation-purified glacial-acetic acid.
These samples were sequentially filtered through 0.4- and 0.2-mm
pore-size membrane filters prior to analysis.

3.5. Comparison of synthetic soil water 87Sr/86Sr values with
87Sr/86Sr values of cobs grown from those soils

In this study we also retested the hypothesis that the dissolution
of soils with a weak acid produced 87Sr/86Sr ratios that are nearly
identical to the biologically available 87Sr/86Sr ratios fixed by the
maize plant. The 87Sr/86Sr ratios of four Southwestern Native
American cobs grown out at Farmington, New Mexico, in a project
headed by D. Muenchrath, Iowa State (Adams et al., 2006), were
obtained on clean samples that were freeze dried and ashed. These
data were compared with the 87Sr/86Sr ratios of synthetic soils
waters produced by reacting soil samples composited from each

Table 1
87Sr/86Sr ratios, ages, and Al and Sr concentrations of Gallo Cliff Dwelling and Chetro Ketl cobs.

Cob No. 87Sr/86Sr Error (2 SD) Al (mg/g) Sr (mg/g) UCIAMS No. 14C age 14C Error Cal. age range (1 SD, yr) Cal. age midpt. (AD)

Avg SD Avg SD (yr BP) (yr)

Gallo Cliff Dwelling Cobs (First Set)
CHCU43684-1 0.710880 0.000014 243 10 3.4 0.0 23981 845 25 1170–1220 1195
CHCU43684-3 0.709638 0.000011 106 2 4.7 0.1 23984 850 25 1170–1218 1194
CHCU43684-5 0.709586 0.000015 50 2 4.1 0.0 23985 880 20 1156–1210 1183
CHCU43684-6 0.709412 0.000011 133 1 8.0 0.1 23987 870 25 1160–1212 1186
CHCU43684-8 0.709759 0.000011 101 4 3.5 0.0 23990 880 25 1155–1212 1184
CHCU43684-9 0.710010 0.000014 171 7 3.1 0.0 23991 855 30 1162–1219 1190
CHCU43684-10 0.709961 0.000014 102 2 4.5 0.1 23992 865 20 1167–1209 1188
CHCU43684-15 0.710143 0.000015 114 0 3.5 0.0 23998 875 20 1160–1208 1184
CHCU43684-16 0.710094 0.000013 187 2 3.9 0.0 23999 885 20 1155–1208 1182

Avg� SD 0.7099 0.0004 134 57 4.30 1.49 Pooled 14C¼ 869� 8 Pooled calib¼ 1177� 12
Range 0.7094–0.7109

Gallo Cliff Dwelling Cobs (Second Set)
CHCU43684A 0.71155 0.00016 2.9 0.0 0.024 0.001 51908 900 20 1048–1085 1066
CHCU43684B 0.71000 0.00024 0.66 0.05 0.0077 0.0011 51896 855 20 1175–1214 1194
CHCU43684C 0.71103 0.00013 1.2 0.0 0.013 0.001 51897 860 20 1171–1211 1191
CHCU43684D 0.71335 0.00005 11 0 0.059 0.002 51898 865 20 1167–1209 1188
CHCU43684E 0.71467 0.00005 4.8 0.0 0.022 0.001 51909 850 20 1176–1217 1196
CHCU43684F 0.71250 0.00027 1.5 0.0 0.012 0.001 51899 855 20 1175–1214 1194
CHCU43684 G 0.71089 0.00010 0.96 0.00 0.011 0.000 51900 840 20 1177–1222 1200
CHCU43684H 0.71005 0.00005 1.6 0.0 0.015 0.002 51901 855 20 1175–1214 1194
CHCU43684I 0.71302 0.00011 3.5 0.1 0.028 0.001 51902 870 20 1163–1208 1186
CHCU43684 J 0.71183 0.00003 3.6 0.1 0.031 0.002 51903 865 20 1167–1209 1188

Avg� SD 0.7119 0.0016 3.1 2.9 0.02 0.02 Pooled 14C¼ 857� 7 Pooled calib¼ 1196� 15
Range 0.7100–0.7147

Chetro Ketl Cobs Room 92
CHCU32288-1 0.709523 0.000014 131 7 11 0 23975 880 20 1156–1210 1183
CHCU32288-2 0.709350 0.000009 91 2 22 0 23976 870 20 1163–1208 1186

Avg� SD 0.7094 0.0001 111 29 16 8 Pooled 14C¼ 875� 14 Pooled calib¼ 1170� 10
Range 0.7094–0.7095

Pueblo Bonito Room 3
H254/258A 0.709394 0.000010 160 10 18 1 Beta-188112 890 40 1151–1211 1181

2 Synthetic soil waters are produced by leaching a soil sample with a weak acid in
order to reproduce a soil–water composition that contains biologically available
metals. See Methods section for details of this procedure.
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root zone with purified acetic acid (Section 3.3) (Table 2). Trace-
element data for the Farmington cobs and their synthetic soil
waters can be found in Benson et al. (2008).

3.6. Trace-metal analysis of cob digests and soil leaches

Multi-element trace-metal determinations were performed
using inductively coupled plasma-mass spectrometry (ICP–MS) and
inductively coupled plasma-atomic emission spectrometry (ICP–
AES) (Garbarino and Taylor, 1993; Boss and Fredeen, 1999; Taylor,
2001). All measurements were made on aqueous sample solutions
without preconcentration, using direct pneumatic nebulization
with a Perkin–Elmer Elan 6000 instrument (ICP–MS) or a Perkin–
Elmer Optima 3300 DV (ICP–AES)3. Trace metals in the cobs are
listed in Supplementary Table 2.

3.7. Strontium-isotope analysis of cob digests and soil leaches

Strontium chemical separations and isotopic determinations
were conducted in a Class 1–10,000 clean room at the University of
Colorado, Boulder, Colorado by Emily Verplanck. Strontium sepa-
rates were obtained using a Sr-specific resin (Sr resin SPS, Eichrom
Technologies, Inc.). The value of the total procedural blank for Sr
was w30 pg. Strontium isotopic measurements were obtained

using a Finnigan-MAT 261 thermal-ionization mass spectrometer
in 4-collector static mode.

4. Results

4.1. Comparison of 87Sr/86Sr ratios in Farmington synthetic soil
waters and cobs

The data listed in Table 2 indicate that Farmington cobs have
slightly higher values (0–4 units in the fourth decimal place) than
in synthetic waters produced from the soils in which the cobs grew.
This suggests that the weak acid used to release metals from
soluble mineral phases in the soils leaches a minor amount of Sr
from mineral sources that are normally not biologically available.

4.2. 14C ages of the new set of Gallo Cliff Dwelling cobs

Nine of the 10 cobs in the new (second) set from Gallo Cliff
Dwelling have nearly identical 14C ages with a mean calibrated age
of A.D. 1196�15 yr (Table 1), which is nearly the same as the mean
calibrated age of 21 cobs (A.D. 1180� 9 yr) previously dated by
Benson et al. (2009). This indicates that most of the Gallo Cliff
Dwelling, Chetro Ketl, Pueblo Bonito, and Kin Kletso cobs, dating
individually to the A.D. 1180s and early 1190s, were probably
brought into Chaco Canyon at about the same time and may have
come from a single source area.

The cobs date to the beginning of a 25-yr wet interval that began
in A.D. 1185 and which followed the mid-12th-century

Fig. 3. Locations of soil sampling sites in the Zuni region of New Mexico. North is at the top of the figure. Zuni region location relative to study area is shown in Fig. 2.

3 Use of trade names is for descriptive purposes only and does not imply
endorsement by the U.S Geological Survey.
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megadrought (Fig. 1). This may indicate that the corn was imported
during a time in which people outside Chaco had a sufficient
surplus that could be shared with kin groups that had remained in
the Canyon during the drought or that corn was being successfully
grown within the Canyon.

The anomalous A.D. 1066 date obtained on Gallo Cliff Dwelling
cob CHCU43684A (Table 1) is similar to an A.D. 1070 date previously
obtained on another Gallo Cliff Dwelling cob CHCU43684-4 dated
by Benson et al. (2009). Gallo Cliff Dwelling itself appears to date to
the late A.D. 1100s based on ceramic and other data sets (Tom
Windes, personal communication, 2009); thus, the two older cobs
may have been taken from an older structure in Chaco and placed in
Gallo Cliff Dwelling at a later time.

4.3. Sr contamination of cobs: insights from trace-element and
87Sr/86Sr data sets

Archaeological cobs are often contaminated with mineral dust.
This dust will usually contain aluminosilicate mineral particles (e.g.,
feldspar–KAlSi3O8–NaAlSi3O8–CaAl2Si2O8). Sr can substitute for K,
Na, or Ca in the aluminosilicate minerals; therefore, the 87Sr/86Sr
ratio of the mineral Sr can mask the 87Sr/86Sr ratio of the cob Sr in
the mineral contaminant 87Sr/86Sr ratio differs greatly from the
87Sr/86Sr ratio of the cob. One way to determine if the 87Sr/86Sr ratio
of an archaeological cob is being overwhelmed by mineral Sr is to
plot Sr versus Al for several cobs from the same location or cache. If
Sr is correlated with Al, it suggests that most of the Sr is due to

mineral contamination and, therefore, the measured 87Sr/86Sr ratio
is not representative of the cob 87Sr/86Sr ratio.

Chemical data (50 metals) for 19 Gallo Cliff Dwelling and two
Chetro Ketl cobs are listed in Supplementary Table 2. Strontium-
isotope ratios, Al, and Sr values of the cobs are listed in Table 1. It is
apparent from the data in Table 1 that the 10 cleaned cobs (referred
to as the second set in Table 1) have Al and Sr values that are
approximately two orders of magnitude less than the Al and Sr
values of the cobs that were analyzed previously by Benson et al.
(2009) (referred to as the first set in Table 1). The 87Sr/86Sr ratios of
7 of 10 cobs in the second set are also substantially higher than the
87Sr/86Sr ratios of cobs in the first set.

Comparisons between Sr versus Al and 87Sr/86Sr versus Al for
both cobs sets with Sr versus Al and 87Sr/86Sr versus Al for cobs and
synthetic soil waters from the Farmington study (Benson et al.,
2008) (Fig. 4) indicate the following:

1. The Al and Sr values for the first set of Gallo Cliff Dwelling/
Chetro Ketl cobs are uncorrelated (Fig. 4A); however Sr is
highly correlated with Al (R2¼ 0.74 when the outlier is
excluded and R2¼ 0.93 when the outlier is included) in the
second set of Gallo Cliff Dwelling cobs (Fig. 4B). Sr is also
uncorrelated with Al in clean Zuni Blue cobs from the Farm-
ington study (Fig. 4D).

2. Sr and Al in synthetic soil waters created from root-zone soils of
Acoma Yellow and Zuni Blue corn produced in the Farmington
study are highly correlated (Fig. 4C) (R2¼ 0.69 and 0.72). These

Table 3
Zuni synthetic soil–water 87Sr/86Sr values.

Site No. 87Sr/86Sr Error (2s) Site No. 87Sr/86Sr Error (2s) Site No. 87Sr/86Sr Error (2s)

Bear Canyon fields Nutria fields Pescado fields

BA1A 0.710172 0.000013 NA2A 0.70962 0.000016 PA1A 0.710303 0.000014
BA1B 0.710606 0.000013 NA2B 0.70955 0.000016 PA1B 0.710090 0.000011
BC1A 0.710878 0.000016 NA3A 0.71027 0.000015 PA2A 0.710997 0.000015
BC1B 0.711364 0.000011 NA3B 0.71022 0.000012 PA2B 0.710707 0.000010
BC5A 0.710443 0.000008 NC1A 0.70944 0.000015 PC1A 0.711229 0.000015
BC5B 0.710426 0.000016 NC1B 0.71102 0.000015 PC1B 0.711122 0.000013
BU1 0.711121 0.000015 NC2A 0.70978 0.000010 PC2A 0.710932 0.000010
BU3A 0.711083 0.000016 NC2B 0.70959 0.000014 PC2B 0.711349 0.000009
BU3B 0.710873 0.000015 NC3A 0.71075 0.000011 PC3A 0.710209 0.000014
WE1 0.711199 0.000015 NC3B 0.71058 0.000008 PC3B 0.710264 0.000014

Avg� 1s 0.7108 0.0004 0.7101 0.0006 0.7107 0.0005
Range 0.7102–0.7114 0.7094–0.7110 0.7101–0.7113

Overall range 0.7094–0.7114

Table 2
Al, La, Sr, and 87Sr/86Sr values of Farmington cobs and soils.

Site Cob/Soil No. Sample type Al (mg/g) Sr (mg/g) 87Sr/86Sr

Avg SD Avg SD Avg 2SD

Farmington, NM 3042-11A Acoma Yellow cob 2.9 0.1 0.77 0.05 0.70963 0.00002
Farmington, NM 3042-11S Soil 6.3 0.1 1.5 0.0 0.70929 0.00001
Cob–Soil water 87sr/86Sr difference 0.00034

Farmington, NM 3068-9A Hopi Blue cob 2.5 0.0 1.7 0.0 0.70945 0.00001
Farmington, NM 3068-9S Soil 6.0 0.1 0.84 0.03 0.70938 0.00001
Cob–Soil water 87Sr/86Sr difference 0.00008

Farmington, NM 3089-3A Zuni Blue cob 2.7 0.0 0.94 0.00 0.70940 0.00002
Farmington, NM 3089-3S Soil 6.0 0.1 0.76 0.01 0.70940 0.00002
Cob–Soil water 87Sr/86Sr difference 0.00000

Farmington, NM 3122-2A Acoma Yellow–Orange cob 4.4 0.1 1.3 0.0 0.70967 0.00002
Farmington, NM 3122-2S Soil 7.3 0.4 1.6 0.0 0.70931 0.00002
Cob–Soil water 87sr/86Sr difference 0.00036

Cob overall AVG� SD 0.70954 0.00013
Soil water overall AVG� SD 0.70934 0.00005
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R2 values are similar to the R2 value (0.74) of the unlevered
correlation of Sr and Al in the second cob set (Fig. 4B).

3. 87Sr/86Sr and Al are weakly correlated (R2¼ 0.22) in the first set
of Gallo Cliff Dwelling/Chetro Ketl cobs; but are relatively well
correlated (R2¼ 0.45) in the second set of Gallo Cliff Dwelling
cobs (Fig. 4E, F).

4. No correlation exists between 87Sr/86Sr and Al in synthetic
Farmington soil waters and cobs grown from those soils
(Fig. 4G, H).

The fact that Sr and Al in the second Gallo Cliff Dwelling cob set
are highly correlated and that Sr and Al in the modern Zuni Blue
cobs are uncorrelated (compare Fig. 4B with Fig. 4D) indicates that
Sr and Al in the second cob set do not, for the most part, derive from
the organic matter that comprised the cob. Instead, the fact that Sr
and Al in synthetic soil waters from the Farmington study also are
well correlated (Fig. 4C) suggests that the Sr and Al in the second
cob set derive from residual mineral contamination, either a single
mineral (or mineral colloid) or a homogeneous mixture of minerals
with a fixed Sr/Al ratio. This suggestion is supported by the fact that
the 87Sr/86Sr ratio of the second set of cobs increases with
increasing Al (Fig. 4F); i.e., increasing mineral content of the
sample. This relationship does not hold in the four Farmington cobs

that were analyzed for 87Sr/86Sr in this study (Fig. 4H). Therefore, it
appears that the cleaning process has stripped the second set of
cobs of their organically bound metals and that a small amount of
Sr-containing mineral matter or mineral-rich colloidal material
escaped the filtration step that preceded chemical analysis. In
addition, the relatively elevated 87Sr/86Sr ratios (>0.7109) of 70% of
the second set of cobs (Table 1) are consistent with values of the
most mineral-contaminated cobs previously analyzed by Benson
et al. (2009). Thus, the 87Sr/86Sr ratios of the second set of cobs
mostly result from mineral/colloid contamination and cannot be
used to determine where the corn was grown.

A question arises as to why the burned cobs processed in the same
manner by Benson et al. (2009) were able to retain sufficient organ-
ically bound Sr for 87Sr/86Sr analysis. According to B.R.T. Simoneit at
Oregon State University (personal communication, 2009), corn is full
of starch, cellulose and sugars, which all char upon roasting/grilling to
activated carbon with charcoal. These materials are coated with lignin
and lipid breakdownproducts. The activated carbon together with the
fatty acid and methoxyphenol breakdown products are excellent
scavengers for trace metals and the metal-organic bond strengths
which characterize burned cobs are much stronger than the weak ion-
exchange sites that characterize unburned cobs.

4.4. Comparison of 87Sr/86Sr values in the first set of Gallo Cliff
Dwelling, Chetro Ketl, and Pueblo Bonito cobs with 87Sr/86Sr values
of synthetic soil waters from the southern Colorado Plateau

The locations of soil samples collected from the southern Col-
orado Plateau are shown in Fig. 2 and Zuni region soil sample
locations also are shown in Figs. 2 and 3. In Fig. 5, 87Sr/86Sr box-
and-whisker plots for 12 Gallo Cliff Dwelling, Chetro Ketl, and
Pueblo Bonito cobs (GC/CK/PB) are compared with 87Sr/86Sr box-
and-whisker plots for synthetic soil waters from each of 14 sample
regions (data from Benson et al., 2009). The soil sample locations
are enclosed by rectangles in Fig. 2 and include the three Zuni field
systems shown in Fig. 3. In Fig. 5, the first and third quartiles are at
the lower and upper ends of the box, the median (second quartile)
is indicated with a horizontal line in the interior of the box, and the
maximum and minimum are represented by bars at the ends of the
whiskers. The black dots in the Mesa Verde-McElmo Dome box-
and-whisker plot represent outliers in the data sets.

It would be reasonable to expect that some of the cobs had been
grown in the Canyon, especially along Gallo Wash which borders
Gallo Cliff Dwelling; however, the Gallo Wash synthetic soil–water
87Sr/86Sr ratios range from 0.7090 to 0.7093 (Supplementary Table 1
in Benson et al., 2009) whereas the Gallo Cliff Dwelling cob 87Sr/86Sr
ratios range from 0.7094 to 0.7109 (Table 1). In addition, none of the
87Sr/86Sr box-and-whisker plots for soils within the Chaco Canyon
Halo (which includes samples from the Chuska Slope (CS)), the Rio
Chaco floodplain (CFP) within the Canyon, side-valley alluvial fans
within the Canyon (CSV), and floodplain and side-valley tributaries
along the upper Rio Chaco both east and west of the Canyon (URC) are
a good match for the A.D. 1180s cob 87Sr/86Sr box-and-whisker plot
data. These data rule out the Chaco Halo as a source of the cobs.

On the other hand, the 87Sr/86Sr data (Fig. 5) indicate that the
Nutria field area in the Zuni (ZN) region, the Mesa Verde-McElmo
Dome (MVMD) area, the Totah (TO) area, the Defiance Plateau (DP),
and Lobo Mesa (LM) are candidate source areas for the cobs that
date to the A.D. 1180s.

Some of the possible cob source areas apparently were not
inhabited during the A.D. 1180s. The Lobo Mesa sites of Kin Ya’a,
Peach Spring, and Red Willow are Chacoan in age; i.e., they were
occupied from approximately A.D. 1000 to 1150 and the Corn Field
Ruin, Kin Lichee, Kin Tiel, and Wide Reed Ruin sites in the Defiance
Plateau were occupied after the A.D. 1180s; i.e., approximately A.D.

Fig. 4. Strontium isotope, Sr, and Al values for cobs and synthetic soil waters discussed
in this study. GCD¼Gallo Cliff Dwelling; CK¼Chetro Ketl, First Set refers to cobs
published in Benson et al. (2009); Second Set refers to cobs analyzed in this paper.
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1250–1300 (Fowler and Stein, 1992). Tree-ring cutting dates from
Wide Reed Ruin indicate that construction occurred there between
A.D 1220 and 1300 (data from Benson and Berry, 2009). In the area
around Wide Reed Ruin, construction occurred between A.D. 800
and 1030, A.D. 1070 and 1140, and between A.D. 1220 and 1290.
These data confine possible source areas for Gallo Cliff Dwelling and
Chetro Ketl cobs to the Zuni region, Mesa Verde-McElmo Dome,
and Totah areas.

Chronometric data for the three potential source areas indicate
that they were occupied in the A.D. 1180s. For example, population
was on the rise in the Mesa Verde-McElmo dome area between A.D.
1050 and 1225 (Varien, 2002; Varien et al., 2007). In the Totah area,
both Salmon Ruin and Aztec West were established on or before A.D.
1100 and populations persisted in this area until about A.D 1300
(Brown et al., 2008; Reed, 2008). The Zuni region was populated well
before A.D. 1100 and remained so until at least A.D. 1275 when
Heshatauthla was built (Kintigh et al., 2004). Thus, we are left with
three areas which could have supplied corn to Chaco Canyon in the
A.D. 1180s – the Zuni region, the northeastern San Juan Basin (Mesa
Verde-McElmo Dome), and the middle San Juan Basin (the Totah).

4.5. Choosing between the three potential source areas

It is difficult to objectively choose between the three potential
source areas; however, the Totah area is nearest to Chaco Canyon
(Fig. 2) and appears to be the area to which many Chacoans
migrated in the early 12th century.

It is not clear whether people residing in Chaco during and
shortly after the mid-12th-century drought were indigenous or had

in-migrated. McElmo-style structures, such as Kin Kletso, built
shortly after A.D. 1125 (Lekson, 1986), were originally attributed to
the movement of people from the northern San Juan region to
Chaco (Vivian and Matthews, 1965); however, Lekson (1986) has
argued that the building traits that Vivian and Matthews (1965)
considered uniquely McElmo in style also were associated with
Chaco Canyon great houses that had been constructed long before
the early A.D. 1100s.

To further complicate the issue, McElmo Black-on-white
ceramics, which originated in the Mesa Verde area, were intro-
duced to Chaco Canyon and the middle San Juan Basin during the
mid-12th-century drought and appear to have persisted in the
Canyon until at least the late A.D. 1100s (Windes, et al., 2000).
Whether introduction of this pottery involved the actual move-
ment of people from the northern San Juan region to Chaco or
whether the ceramic design was simply adopted by a residual
Chacoan population remains unresolved.

If people moved from the northern San Juan region to Chaco, in
an effort to reoccupy the Canyon in the late A.D. 1100s, one might
expect that they would have received support from the people they
left behind, especially after the mid-12th-century drought ended
and maize became more abundant. But this is no more than
conjecture, and more data are needed to convincingly support or
refute the idea of an in-migration of a ‘‘McElmo’’ people to the
Canyon if we are to under understand who was supplying corn to
the Canyon during the A.D. 1180s.

5. Summary and conclusions

Thirty cobs from Chaco Canyon great houses (Pueblo Bonito, Kin
Klizhin, and Chetro Ketl) and Gallo Cliff Dwelling were found to have
a pooled calibrated age of A.D. 1180�10. Nine of the 30 cobs were
subjected to an intense cleaning procedure that unfortunately
removed most of the metals attached to weak ion-exchange sites
within the cob’s organic matrix. This experiment effectively proved
that the cleaning procedure that had been developed to treat burned
cobs by Benson et al. (2009) is not applicable to unburned cobs.
Metal loss from the cleaned cobs effectively negated the possibility
of obtaining 87Sr/86Sr ratios that were representative of the
bioavailable Sr associated with the field(s) in which the corn was
grown. An additional nine of the 30 cobs were judged to be
contaminated with mineral matter to the point that their 87Sr/86Sr
ratios were not considered reliable (Benson et al., 2009).

The 87Sr/86Sr ratios of the remaining 12 cobs (Table 1) were
compared with the 87Sr/86Sr ratios of synthetic soil waters (Fig. 5)
from 14 regions within the southeastern Colorado Plateau (Fig. 2).
For the purposes of this study, soil samples from 10 locations in
each of three field areas (Pescado, Nutria, and Bear Canyon) within
the Zuni region also were collected (Supplementary Table 1).

The 87Sr/86Sr data indicate that the Chaco Canyon archaeological
cobs that date to the late A.D. 1100s did not come from the Chaco
Halo, instead the data suggest five potential source areas for the
cobs, including: the Nutria field area in the Zuni region, the Mesa
Verde-McElmo Dome area, the Totah area, the Defiance Plateau,
and Lobo Mesa. The latter two areas were eliminated from
consideration in that they appear to have been unpopulated during
the time period of interest. Therefore, it appears that the cobs were
imported from the Zuni region, the Mesa Verde-McElmo Dome
area, or the Totah area during a time when the climate was rela-
tively wet and when a surplus of corn was being produced in
regions outside Chaco Canyon. It is suggested that the Totah area is
the most likely source of the corn based on the Totah’s proximity to
Chaco Canyon and also with regard to the Chacoan origin of the
people that had migrated to the Totah area in the early A.D. 1100s.

Fig. 5. 87Sr/86Sr box-and-whisker diagrams for clean cobs that date to the A.D. 1180s
compared with 87Sr/86Sr box-and-whisker diagrams for 14 soils areas depicted in
Fig. 2. CS¼ Chuska Slope, CFP¼ Chaco Canyon floodplain, CSV¼ Chaco Canyon side-
valley tributaries (alluvial fans), URC¼Upper Rio Chaco; ZBC¼ Zuni Bear Canyon,
ZN¼ Zuni Nutria, ZP¼ Zuni Pescado, MVMD¼Mesa Verde-McElmo Dome (north-
eastern San Juan Basin); TO¼ Totah, NWSJ¼Northwestern San Juan Basin,
MC¼Middle Chinle, Di¼Dinetah; DP¼Defiance Plateau, WRP¼Western Rio Puerco,
LM¼ Lobo Mesa, Rm¼ Red Mesa Zuni Sr-isotope measurments are listed in (Table 3).
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The data presented in this paper do not rule out contribution of
maize to Chaco from other satellite communities nor does it
demonstrate that maize was not being grown in Chaco Canyon either
before or after the mid-12th-century drought. Unfortunately, avail-
able archaeological cobs from Chaco Canyon contexts are few in
number and are not evenly distributed over time. As a result, we
probably will never have sufficient cobs to determine a complete set
of possible source areas from the inception of the earliest great houses
(Pueblo Bonito, Una Vida, and Penasco Blanco) in the A.D. 850s until
the complete abandonment of the Canyon in the A.D. 1290s.

The fact that available cob 87Sr/86Sr data indicate that the corn
was grown outside the Canyon suggests that the residual Canyon
population was receiving food from external sources. Unfortu-
nately, these data are not sufficient in themselves to reveal the
relationship of the group(s) that supplied corn to Chaco after the
mid-12th-century drought to those still residing in Chaco.
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