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Abstract

Non-native species and habitat degradation are two major catalysts of environmental change and often occur
simultaneously. In freshwater systems, degradation of adjacent terrestrial vegetation may facilitate introduced species by
altering resource availability. Here we examine how the presence of intact riparian cover influences the impact of an
invasive herbivorous snail, Tarebia granifera, on nitrogen (N) cycling in aquatic systems on the island of Trinidad. We
quantified snail biomass, growth, and N excretion in locations where riparian vegetation was present or removed to
determine how snail demographics and excretion were related to the condition of the riparian zone. In three Neotropical
streams, we measured snail biomass and N excretion in open and closed canopy habitats to generate estimates of mass-
and area-specific N excretion rates. Snail biomass was 2 to 8 times greater and areal N excretion rates ranged from 3 to 9
times greater in open canopy habitats. Snails foraging in open canopy habitat also had access to more abundant food
resources and exhibited greater growth and mass-specific N excretion rates. Estimates of ecosystem N demand indicated
that snail N excretion in fully closed, partially closed, and open canopy habitats supplied 2%, 11%, and 16% of integrated
ecosystem N demand, respectively. We conclude that human-mediated riparian canopy loss can generate hotspots of snail
biomass, growth, and N excretion along tropical stream networks, altering the impacts of an invasive snail on the
biogeochemical cycling of N.
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Introduction

Species introductions and habitat degradation are two major

components of environmental change [1]. Numerous studies have

documented the impacts of invasive animals at various levels of

biological organization [2], [3], [4]; however, consequences of

species invasions on nutrient fluxes have been relatively under-

studied despite the potential significance for fundamental ecosys-

tem processes. Animals can directly influence ecosystem-scale

nutrient fluxes through consumption and excretion of biologically

important compounds [5]. Non-native species may alter nutrient

fluxes by: (1) altering the biomass of consumers that recycle

nutrients at given mass-specific rates [6], or (2) altering assem-

blages of organisms and their corresponding mass- and species-

specific nutrient excretion ratios [7], [8].

Previous studies have shown that individual species can play

important roles in nutrient cycling, even in tropical aquatic

systems with diverse communities [9], [10], [11]. This lends

support to the argument that the addition of new species can have

potentially large consequences on tropical biogeochemical cycles

(e.g. Pomacea canaliculata) [12]. Also, nutrient cycles and controls on

primary production may differ between tropical and temperate

systems, with nitrogen more limiting in tropical freshwaters and

phosphorus more limiting in temperate waters (though the

strength of this correlation is in question) [13], [14]. Differences

in nutrient limitation of producers across temperate and tropical

zones suggests that biogeochemical consequences of invasive

species studied in temperate zones cannot necessarily be extrap-

olated to analogous invasions in tropical zones.

Contemporary species invasions occur in the context of rapidly

changing landscapes. Habitat degradation caused by land

conversion is a prevalent agent of environmental change that

can occur simultaneously with invasive animal dispersal and

establishment, often with facilitating or unknown effects on

invaders [15], [16]. Yet consequences of habitat loss and animal

invasions are most often studied independently of one another,

without consideration of potential interactions [17]. Lack of

understanding of interactive effects hinders efforts to predict and

manage invasions at multiple scales. Identification of land use

changes that unintentionally facilitate invaders, yet can be

reasonably curtailed or reversed, is useful for developing feasible

mitigation strategies. Degradation of riparian forests adjacent to

water bodies may be of heightened importance for aquatic
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ecosystem dynamics because of the potential for disruptions to

resource flux between terrestrial and aquatic ecosystems [18], [19].

Aquatic non-native species can also decouple nutrient exchange

between terrestrial and aquatic ecosystems [4], although it remains

unclear whether the combination of invasive species and riparian

degradation can have interactive properties that exceed the

additive impacts of individual threats.

Here we studied how riparian canopy cover alters the impacts of

an introduced herbivore/detritivore, the quilted melania snail

(Tarebia granifera), on nitrogen (N) cycling in tropical streams.

Nitrogen is an important and potentially limiting or co-limiting

nutrient for primary production in tropical streams [13], [14], [20]

and impacts on N cycles may therefore have consequences on

aquatic food webs and the services they provide for tropical

regions, such as food production for local people. We measured T.

granifera biomass, growth rates, and N excretion in locations where

riparian vegetation was present or removed to determine how

these variables were related to the condition of the riparian zone.

Phosphorus (P) excretion by snails can also be significant in aquatic

systems [12], but P excretion by T. granifera in our study system was

not detectable from background levels of dissolved P in stream-

water (J. Moslemi, unpublished data). We also compared total snail N

excretion to ecosystem N demand to estimate the degree to which

T. granifera influences N cycling in tropical streams, and how that

influence may be mediated by riparian canopy cover. Lack of

riparian vegetation could be hypothesized to have opposing

impacts on food resource availability and, subsequently, on snail

biomass, growth, and excretion rates - it may augment sunlight

availability and lead to increases in algal productivity and biomass,

but also inhibit subsidies of allochthonous food resources from

terrestrial ecosystems. We determined the overall quantity and

quality of food resources available to invasive snails in habitats

where riparian vegetation was present and removed, and discuss

the potential implications for snail demographics, metabolism, and

impact on ecosystem-scale N cycling.

Methods

Study Species
Introduction of Tarebia granifera (Gastropoda: Thiaridae) to the

West Indies occurred via both accidental and intentional pathways

(Fig. 1). Initial introduction of this parthenogenetic snail to the

Neotropics from Asia is presumed to have been a consequence of

the aquarium trade, though intentional introductions have

occurred in an attempt to reduce schistosomaisis outbreaks [21].

Tarebia granifera is now found worldwide throughout the topics and

subtropics, though the ecological impacts of invasion remain

largely unknown.

Study Site
We focused on three streams for this study–Ramdeen Stream

(RAM), Aripo River (ARI), and Yarra River (YAR)–from separate

drainage basins in the Northern Range Mountains on the island of

Trinidad, West Indies (10u419 N, 61u179 W). Nutrient diffusing

substrates [22] placed in RAM in 2007 indicated N and

phosphorus co-limitation of primary production (Supporting

information S1, Fig. S1).

Field and Laboratory Methods
Percent riparian canopy cover over streams was determined

using a densiometer (Type A convex, CSP Outdoors, Shreveport,

LA, USA). ‘‘Open canopy’’ habitat was designated as 25% canopy

cover or less, ‘‘closed canopy’’ habitat was 75% canopy cover or

greater, and remaining values (26–74% canopy cover) were

categorized as ‘‘partially closed canopy’’. Quantity and quality of

food resources for invasive snails were characterized in open and

closed canopy habitats by measuring biomass of organic matter

(chlorophyll a and ash-free dry mass) and carbon:N composition of

epilithon, respectively. Epilithon was collected by scrubbing the

entire surface area of rocks on the stream bottom with a plastic

bristle brush, generating a slurry of organic and inorganic matter

(3 to 5 rocks scrubbed per slurry, 5 slurries per site). A subsample

of known volume was removed from the slurry using a pipette and

filtered (Pall-Gelman, Type A/E 25 mm or 47 mm) for analysis of

chlorophyll a (as an indicator of algal biomass) and ash-free dry

mass (AFDM; as an indicator of organic material biomass). Upon

filtration, chlorophyll a samples were extracted in 90% buffered

ethanol for 24 hours and analyzed using standard fluorometric

techniques [23] (Turner Designs Aquafluor, Sunnyvale, Califor-

nia, USA). AFDM samples were processed following methods in

[24]. To generate areal estimates of algal biomass and AFDM, we

traced rocks used for each slurry and calculated areas of tracings

using ImageJ software (National Institutes of Health, Bethesda,

Maryland, USA). The remaining slurry volume was settled in

refrigerated conditions over a 24 h period after which water was

decanted and the remaining concentrated sample dried in a drying

oven (temperature = 55uC) for subsequent elemental composition

analysis at Cornell University. Once transported to the laboratory,

samples were homogenized and weighed on a microbalance

(Mettler Toledo MX5, Columbus, OH, USA) to the nearest ug.

Carbon (C) and N content of samples were analyzed using an

elemental analyzer (Elementar Vario EL III, Frankfurt, Germany).

Tarebia granifera densities were estimated for each habitat type

from randomly assigned transects (RAM) or quadrats (ARI and

YAR) using a hand net (2 mm mesh size; 5 total sites for each

habitat type). Cross-stream transects of a constant width (0.15 m)

from the edge to the midpoint of stream wetted width were used in

RAM (n=16). Quadrats (0.33 m2) in ARI (n=16) and YAR

(n=12) were divided evenly between random locations across the

width of streams to account for edge effects. Total length of

individual snails was measured to the nearest 0.1 mm using digital

calipers. Snails smaller than 2 mm were not included in the study.

Snail biomass was measured as mg of ash-free dry mass (AFDM)

and calculated using a length-mass regression (log AFDM =2.35L

–1.83, where L is log of shell length in mm; n=34, r2=0.98) or an

aperture-mass regression if shell tips were eroded or broken (log

AFDM =2.45A –0.08, where A is log of shell aperture width in

mm; n=25, r2=0.96).

We measured T. granifera N excretion rates using methods

modified from [6]. In 2008, individual snails were placed into

20 ml, clear plastic vials filled with filtered stream water. Snails

were collected during daylight hours and immediately incubated in

vials for 1 h in the field. After the incubation, water samples were

filtered (Pall-Gelman A/E) and analyzed for NH4 concentration

using fluorometric methods described in [25]. We focused on NH4

because it is the dominant N compound excreted by aquatic snails

and is readily available for uptake by primary producers and

microorganisms. Sampled snails represented the size distribution

of T. granifera found in each stream (RAM: n=124, ARI: n=40,

YAR: n=40). We controlled for background NH4 concentration

in stream water and any vial effects by subtracting the background

NH4 concentration in vials incubated without snails (RAM: n=16,

ARI: n=4, YAR: n=4). Some fraction of calculated NH4-N

excretion rates may have been due to leaching from egested fecal

matter. Egestion was not quantified but fecal production was low

over the course of incubations. We estimated areal N excretion by

multiplying mass-specific excretion rates by average snail density

Snail Invasion and Tropical Streams
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per unit streambed area for each snail size class, then aggregating

across all size classes.

To determine if T. granifera growth rates differed between

canopy types, we measured growth rates of snails using a reciprocal

transplant design in RAM. We chose an open canopy and closed

canopy site separated by 30 m. This was considered sufficient

distance between independent open and closed canopy sites as

previous work determined that average longitudinal movement

rates for T. granifera individuals in RAM were 3.760.15 m/week

(n=220 individuals) [26]. We collected 50 snails in each open and

closed canopy site; of those, half were placed in the same site (as

a control) and the remaining half were transplanted to the

reciprocal site. Snails were collected over a broad area within each

canopy site to ensure that the sample was representative of the

source population. Snails were placed in groups of five into

separate flow-through containers along with substrate collected

from the incubation site to alleviate potential starvation effects.

Length of each snail was measured before the experiment and

after 10 days of incubation. Growth rates were calculated as (ln Mt

– ln M0)/t where Mt was the mass of an individual snail after

incubation and M0 was the mass of the same snail before

incubation [27]. We used response ratios to estimate effect sizes

and 95% confidence intervals of biomass-specific snail growth

rates: ln(Xt/Xc), where Xt is the mean growth rate for transplanted

snails and Xc is the mean growth rate for control snails [28].

To put T. granifera NH4-N excretion into the context of

ecosystem-level NH4-N demand, we measured area-specific NH4-

N uptake rate in RAM in February 2008 and 2010 [29]. Due to

lack of open canopy sites in 2010 caused by regrowth of riparian

vegetation, comparisons of snail N excretion and ecosystem

demand for that year are between partially and fully closed canopy

habitats as opposed to open and closed canopy habitat. NH4-N

demand was measured using a short-term solute addition [22] in

which known concentrations of NH4 (as NH4Cl) and a conserva-

tive tracer (NaCl) were simultaneously released at a constant rate

via a peristaltic pump. The decline in concentration of NH4 was

measured after correction for background concentration and

dilution (using the decline in conservative tracer as an estimate).

Solutes were released until conductivity reached plateau at the

downstream end of the study reach (,1 h). Sampling stations were

set up every 10 m along a 100 m study reach; NH4 samples and

conductivity measurements were taken at all stations before solutes

were added (to establish background concentrations) and once

conductivity had reached plateau (n=3 per station). Conductivity

was measured using a YSI 85 meter (Yellow Springs, OH, USA).

Water samples were analyzed fluorometrically within 4 hours of

sampling. Mass of NH4 added to the stream was calibrated to be

detectable using fluorometric techniques but not in sufficient

quantities to alter pathways of uptake over the time period of the

addition (,2 h). We used data from the solute addition to

calculate NH4-N uptake length (the length an NH4
+ ion travels

downstream before biotic uptake), uptake velocity (the velocity at

which biotic uptake removes N from the water column), and areal

uptake rate (Supporting information S2). Short-term nutrient

releases can underestimate demand of algae and microbes [30].

To minimize this potential error we kept N addition low (2–5 times

ambient NH4-N concentrations) while still allowing for detection

at downstream transects.

Tests for significance of riparian canopy effect across streams

were conducted using a mixed effects ANOVA model using

canopy cover as a fixed effect and stream as a random effect. Tests

of canopy effects within individual streams were conducted using

Student’s t (SAS Institute, 2009). Data on T. granifera biomass

density and N excretion rates were log10-transformed to satisfy

ANOVA assumptions of normality and equal variance.

Results

Food quantity, measured as algal biomass (chlorophyll a) and

organic matter (AFDM), was significantly greater in open canopy

habitats (chlorophyll a: F1,28 = 33.52, p,0.001; AFDM:

F1,28 = 18.84, p,0.001; Fig. 2). Within-stream comparisons in-

dicate that food quantity as measured by epilithon molar C:N

ratios was greater in RAM (chlorophyll a: t1,8 = 9.05, p,0.001;

AFDM: t1,8 =24.14, p,0.003) and YAR (chlorophyll a:

t1,8 = 4.89, p,0.001; AFDM: t1,8 =24.72, p,0.002) but not

ARI. Epilithon molar C:N ratios did not differ among canopy

types in RAM and ARI, but were greater where canopy was

removed in YAR (t1,8 =23.73, p,0.01; Fig. 2). Elemental analysis

of T. granifera body C:N and C:P content (shell removed) in RAM

and ARI showed no difference among canopy types (Supporting

information S3, Table S1).

Average snail density ranged from 23 individuals/m2 (ARI

closed canopy, 2008) to 1424 individuals/m2 (RAM partial

canopy, 2010). Canopy cover negatively influenced T. granifera

biomass across the three study streams (F1,38 = 22.06, p,0.001),

Figure 1. Tarebia granifera. The quilted melania snail has invaded freshwater habitats throughout much of the Neotropics. Photo credit: S. B. Snider.
doi:10.1371/journal.pone.0038806.g001

Snail Invasion and Tropical Streams
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and the range of snail size distributions varied among streams

(Fig. 3). Within-stream comparisons indicated that snail biomass

was greater in open canopy habitats in all streams, ranging from 2

to 8 times the densities found in closed canopy habitats (RAM:

t1,10 =24.84, p,0.001; ARI: t1,14 =22.16, p=0.047; YAR:

t1,10 =22.67, p=0.028). In 2010, no open canopy sites remained

in the RAM study site due to riparian vegetation growth; however,

snail densities were higher in habitats that were only partially

Figure 2. Quantity and quality of snail food resources by canopy cover state. Mean (61 SE) chlorophyll a (A), ash-free dry mass (AFDM) (B),
and molar C:N ratios of epilithon (C). RAM = Ramdeen Stream, ARI = Aripo River, YAR = Yarra River. Gray and white bars represent data collected in
closed and open canopy sites, respectively (‘‘closed’’ is $75% and ‘‘open’’ is #25% canopy cover). Asterisks above bars represent significant
differences (p,0.05) among canopy types within streams.
doi:10.1371/journal.pone.0038806.g002

Snail Invasion and Tropical Streams
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closed compared to those with a fully closed canopy (Mean

individuals/m261SD: partially closed canopy = 14246357, fully

closed canopy = 5786218; t1,10 =22.02, p=0.071).

Nitrogen excretion rates of individual snails ranged from 0.33 to

2.58 ug N/h. Mass-specific excretion of individual snails de-

creased with increasing snail size and ranged from 0.02 to

0.76 ug N/mg AFDM/h. Snail N excretion rates showed

allometric size scaling and differed significantly among canopy

types (Fig. 4; F1,141 = 86.9, p,0.001). Within-stream comparisons

indicated that snails in open canopy habitat exhibited greater

excretion rates than closed canopy snails in RAM and ARI (RAM:

t1,60 = 5.73, p,0.001; ARI: t1,37 = 2.07, p=0.048), but not YAR.

Mass-specific growth rates of T. granifera measured in a re-

ciprocal transplant experiment were greater in open canopy

habitat regardless of treatment (control or transplanted;

F1,89 = 39.82, p,0.001). Response ratios were similar for both

transplants (0.74 for open to closed canopy, 0.68 for closed to open

canopy, Fig. 5). Confidence intervals (95%) did not cross zero,

indicating a strong impact of canopy type on snail growth rates.

Small snails grew faster than large snails across all treatments

(F1,89 = 26.77, p,0.0001) and initial snail size (before incubation)

explained 23% of the variation in growth rates for the entire data

set.

Areal excretion rates of T. granifera in 2008 (RAM, ARI, and

YAR) ranged from 0 to 900 ug N/m2/h and were 3 to 9 times

greater in open relative to closed canopy habitats. Differences in

areal N excretion across canopy types for all three streams were

significant (Fig. 6, F1,38 = 19.4, p,0.0001); within-stream analyses

indicated areal excretion rates were greater in open canopy habitat

across all streams (RAM: t1,14 =26.36, p,0.001; ARI:

t1,10 =22.52, p = 0.025; YAR: t1,10 =23.41, p,0.01).

Estimates of NH4-N uptake rate in RAM in 2008 and 2010

from NH4 release data showed a significant decline in back-

ground-corrected NH4-N with distance downstream from the

nutrient addition site (R2=0.75 and 0.99, respectively; Fig. S2).

Using these data we calculated NH4-N uptake length

(2008:75.8 m; 2010:25.1 m), uptake velocity (2008:5.7 mm/min;

2010:10.2 mm/min), and area-specific uptake (2008:4.19 mgN/

m2/h; 2010:7.18 mgN/m2/h). Mean areal NH4-N excretion rates

in fully closed (2008 and 2010), partially closed (2010 only), and

open canopy (2008 only) sites supplied 2%, 11%, and 16% of

integrated areal NH4-N demand, respectively. In 2010, partially

closed canopy sites were used instead of open canopy sites for

estimates of areal excretion rates and ecosystem N demand, as

riparian vegetation regrowth precluded the presence of open

canopy sites.

Discussion

Our results suggest that invasive snails were heterogeneously

distributed along streams due to differences in light availability.

Human-mediated removal of riparian vegetation can therefore

create hotspots of invasive snail excretion and subsequent impacts

on aquatic N cycling. The greater influence of T.granifera in open

canopy sites was linked to increased snail density and, to a lesser

extent, increased mass-specific excretion rates relative to shaded

sites. Studies have shown that invasive mollusks can alter nutrient

cycles in aquatic systems in temperate [6], [7] and tropical [12]

zones; here, we have shown that the potential of a single invasive

species to impact N cycling in tropical streams is modified by the

removal of vegetation in adjacent riparian areas.

Differences in invasive snail impact among sites with different

canopy cover were likely driven by variation in food resources. In

two out of the three study streams, estimates of algal and organic

matter standing crop were significantly greater in open canopy

sites where direct sunlight reaches the streambed and primary

producers may be released from growth constraints posed by light

limitation (Fig. 2). In the Aripo River, estimates of food quantity

did not differ among canopy types, perhaps due to unusually high

rainfall in the 2008 dry season. The Aripo River is the largest of

Figure 3. Mean T. granifera biomass by size class. Top row of panels are 2007 data and bottom row are 2008 data. Size classes were based on
5 mg AFDM increments. RAM = Ramdeen Stream, ARI = Aripo River, YAR = Yarra River. Gray and white bars represent data collected in closed and
open canopy sites, respectively. Canopy type had a significant impact on T. granifera areal biomass (F= 22.06, p,0.0001). Note log scale. No data
were collected in YAR in 2007.
doi:10.1371/journal.pone.0038806.g003

Snail Invasion and Tropical Streams
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the three study streams, and intense scouring in this river relative

to the other two study streams could have eroded spatial structure

in algal biomass. Our results are consistent with studies linking

invertebrate production and food resource quantity [31], [32],

[33]. In a landscape with heterogeneously deforested riparian

zones, increased food availability in open canopy sites may act as

spatial resource subsidies, driving increases in snail densities that

‘‘spill over’’ to less desirable closed canopy sites [34]. Due to the

subsidizing effect of riparian deforestation on aquatic primary

producers, it seems possible that continued removal of riparian

canopy cover could facilitate other herbivorous invasive species,

though additional research is necessary to confirm this hypothesis.

We found that increased light availability was more often

associated with quantity as opposed to quality of snail food

resources. Yarra River was the only one of three study streams in

which food quality was significantly greater in closed canopy

habitat, and interestingly, the only stream for which the effect of

canopy type on mass-specific excretion rates was not significant. In

this stream, increased algal quality in closed canopy sites may have

diminished the benefits of open canopy habitat where food was

more plentiful but of poorer quality. These results partially support

the light-nutrient hypothesis, which states that increased light

intensities should be associated with decreased nutrient content in

algal communities [35]. However, as corroborated by our results,

support for the light-nutrient hypothesis has not been consistent in

Figure 4. Influence of canopy state on nitrogen excretion by T. granifera in three streams. Panels from top represent Ramdeen Stream
(RAM), Aripo River (ARI), and Yarra River (YAR). Open and closed circles represent individual snails collected in open and closed canopy habitats,
respectively. Solid lines represent trends in closed canopy habitats, and broken lines represent trends in closed canopy habitats. All data were log-
transformed.
doi:10.1371/journal.pone.0038806.g004

Snail Invasion and Tropical Streams
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benthic systems and several studies have not found a negative

effect of light availability on epilithon nutrient content [36], [37],

[38], [39]. This may be due to interacting factors such as the

availability of dissolved nutrients and the intensity of nutrient

limitation of epilithon. Epilithon communities less limited by

nutrient availability may be less likely to exhibit decreased nutrient

content as a result of high photosynthesis rates [38].

Invasion by T. granifera likely has altered a suite of ecosystem

properties within our study area. Lack of preinvasion datasets or

comparable reference sites uninvaded by snails prohibited direct

analysis of ecosystem-level effects of invasion. However, results

from this study have shown that primary production in

Trinidadian lotic systems can be co-limited by availability of N

and phosphorus. Changes in absolute and relative availability of

these nutrients mediated by invasive snail excretion may influence

the identity of the nutrient that limits primary productivity, as well

as the growth and community composition of primary producers

[5]. These impacts on basal resources may alter food web

dynamics, with unknown consequences on aquatic consumers. In

addition, since few predators have been observed to consume

T. granifera in Trinidadian streams despite dense and conspicuous

aggregations (S.B. Snider, unpublished data), these primary con-

sumers may act as a trophic dead end for aquatic communities,

diverting energy fixed by primary producers away from higher

trophic levels [40].

Snail size distributions influenced aggregate N excretion among

study streams. Small-bodied organisms generally exhibit greater

mass-specific excretion rates due to higher metabolism relative to

large-bodied organisms [41]. Differences in snail size distributions

among our study streams influenced areal excretion rates, as

smaller snails excreted relatively more per unit mass than larger

snails. In Ramdeen Stream, snail size distribution was character-

ized by dense aggregations of smaller individuals, whereas the

Yarra population contained smaller aggregations of larger snails

(Fig. 3). The difference in size structure led to increased areal

excretion rates in Ramdeen open canopy habitat despite greater

total snail biomass in Yarra (Fig. 4).

Temporal dynamics likely moderate the impact of invasive

snails on N cycling. This study was conducted during the dry

season in the Caribbean, when stream discharge is relatively low

and flooding events are typically infrequent. These conditions

facilitate growth of primary producers that provide food resources

for T. granifera. If snail biomass is associated with food quantity as

our results suggest, areal snail excretion rates will be more

pronounced during the dry season. In contrast, hydrologic

variability due to frequent rain events in the wet season can

Figure 5. Canopy state and snail growth rates. Effect sizes of canopy state on snail growth rates as measured in a reciprocal transplant
experiment. Error bars represent 95% confidence intervals and effect sizes were measured as response ratios (Hedges et al. 1997). ‘‘Open to closed
canopy’’ represents snails collected from open canopy habitat and moved to closed canopy habitat where growth rates were measured after 10 days,
and ‘‘closed to open canopy’’ is vice versa.
doi:10.1371/journal.pone.0038806.g005
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diminish the impact of snail excretion through dilution and

dislodgment of snails, reducing snail biomass and eroding spatial

structure by washing individuals downstream. An analysis of

shrimp N and P excretion [42] showed that variability in stream

discharge constrained the influence of shrimp excretion rates on

ambient NH4-N pools in Puerto Rican streams, providing

evidence that temporal fluctuations in discharge can modulate

the importance of excretion. Frequent scouring and streambed

movement can also continually reset algal growth on benthic

substrate, further diminishing the influence of riparian canopy

during the wet season.

Understanding direct links between impacts of species introduc-

tion and habitat degradation is important for understanding the

spatial dynamics and spread of invasive species as well as for

prioritizing use of limited funding for control efforts. Eradication–if

possible–is often arduous and costly, and careful examination is

necessary to identify the most urgent cases that have potential for

success. Habitat degradation can unintentionally create patches of

favorable habitat that act as spatial resource subsides to invasive

species at landscape scales. Our study suggests that populations ofT.

granifera can have a variable influence on nutrient cycling in tropical

systems, dependant on light availability. Mitigation efforts focused

on curtailing habitat degradation in adjacent riparian corridors may

therefore ameliorate the magnitude of impacts. In this case,

a management strategy involving restoration and/or protection of

riparian buffer zones along stream corridors may decrease the

biogeochemical impacts of an established non-native mollusk.

Further investigation into interactive effects of human-mediated

habitat degradation and introduced animals on nutrient cycles may

uncover pragmatic management opportunities.

Supporting Information

Figure S1 Nutrient limitation in Ramdeen Stream.Mean

chlorophyll a on nutrient diffusing substrates after a two-week

incubation in RAM. Asterisk indicates significantly greater

chlorophyll a relative to controls using a randomized block

ANOVA (p,0.001). Results revealed that algal accrual was co-

limited by N and P availability, as substrates containing both N

and P were the only treatment with significantly greater algal

biomass than controls.

(TIF)

Figure S2 Short-term NH4 addition in Ramdeen stream
in 2008 and 2010. Tracer NH4-N and conductivity are

concentrations at plateau corrected for background concentra-

tions. Distance from injection site indicates location downstream

from site where solutes were added using a peristaltic pump.

(TIF)

Table S1 Stoichiometry of T. granifera body tissue.
Mean (61SE) body tissue C:N and C:P of T. granifera (shell

removed) in open and closed canopy habitat. RAM = Ramdeen

Stream, ARI = Aripo River.

(DOCX)

Supporting Information S1 Nutrient limitation in Ramd-
een Stream as measured using nutrient diffusing sub-
strates.

(DOCX)

Supporting Information S2 Calculation of NH4-N uptake
length, uptake velocity, and areal uptake rate in
Ramdeen Stream.

(DOCX)

Figure 6. Influence of canopy state on areal snail excretion rates in three streams. Mean (61 SE) areal N excretion by T. granifera in 2008.
RAM = Ramdeen Stream, ARI = Aripo River, YAR = Yarra River. Closed and open bars represent data collected in closed and open canopy sites,
respectively. Canopy effect was significant across all streams (p,0.0001).
doi:10.1371/journal.pone.0038806.g006
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Supporting Information S3 Measurement of C, N, and P
stoichiometry of T. granifera body tissue.
(DOCX)
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