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ABSTRACT

Soil temperature can exhibit considerable memory fromweather and climate signals and is among the most

important initial conditions in numerical weather and climate models. Consequently, a more accurate long-

term land surface soil temperature dataset is needed to improve weather and climate simulation and pre-

diction, and is also important for the simulation of agricultural crop yield and ecological processes. The North

American Land Data Assimilation phase 2 (NLDAS-2) has generated 31 years (1979–2009) of simulated

hourly soil temperature data with a spatial resolution of 1/88. This dataset has not been comprehensively

evaluated to date. Thus, the purpose of this paper is to assess Noah-simulated soil temperature for different

soil depths and time scales. The authors used long-term (1979–2001) observed monthly mean soil tempera-

tures from 137 cooperative stations over the United States to evaluate simulated soil temperature for three

soil layers (0–10, 10–40, and 40–100 cm) for annual and monthly time scales. Short-term (1997–99) observed

soil temperatures from 72 Oklahoma Mesonet stations were used to validate simulated soil temperatures for

three soil layers and for daily and hourly time scales. The results showed that the Noah land surface model

generally matches observed soil temperature well for different soil layers and time scales. At greater depths,

the simulation skill (anomaly correlation) decreased for all time scales. The monthly mean diurnal cycle

difference between simulated and observed soil temperature revealed largemidnight biases in the cold season

that are due to small downward longwave radiation and issues related to model parameters.

1. Introduction

Climaticmodeling studies have demonstrated that soil

moisture plays an important role in land–atmosphere

interactions at different time scales (Avissiar and Pielke

1989; Betts et al. 1996; Dirmeyer et al. 2000; Koster and

Suarez 2003; Koster et al. 2004). It provides a key link

between the atmosphere and land surface moisture and

energy partitioning through soil evaporation and tran-

spiration processes (Robock et al. 2000). However, the

role of soil temperature and its influence on weather and

climate, especially its effect on short-range weather

processes, have been underestimated in the past (Godfrey

and Stensrud 2008). Soil temperature directly affects the

surface radiation budget through upward longwave radi-

ation and ground heat flux as both depend on soil tem-

perature. In addition, ground heat flux also affects

sensible heat flux, boundary layer dynamics, turbulence,

and air temperature. Recent studies from the National

Centers for Environmental Prediction (NCEP) opera-

tional Eta model (Godfrey and Stensrud 2008) and

Weather Research and Forecasting Model (Fan 2009)

show that soil temperature has significant effects on

short-term model forecasts of near-surface variables

such as precipitation and lower-atmospheric circula-

tion fields. A modeling study from Xue et al. (2001)

demonstrated that subsurface soil temperature over the
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western United States in late spring has an impact on

summer precipitation. Mahanama et al. (2008) used the

NationalAeronautics and SpaceAdministration (NASA)

atmospheric general circulation model to investigate the

impact of subsurface soil temperature variability on sur-

face air temperature variability. The results show that

allowing an interactive subsurface soil temperature sig-

nificantly increases surface air temperature variability in

most regions, which provides some skill to subseasonal

and seasonal forecasts. Hu and Feng (2004) used ob-

served soil temperature over the continental United

States (CONUS) to find evidence of a connection be-

tween late spring soil temperature and summer pre-

cipitation. On the other hand, shallow soil temperature

anomalies may affect short-term weather processes

because soil heat anomalies with daily or weekly time

scales are released to the overlying atmosphere before

they transfer to deep soil layers. Deep soil temperature

anomalies affect regional climate processes through

gradual and slow release the extra heat to shallow soil

layers (Hillel 1980). Therefore, soil temperature, in ad-

dition to soilmoisture, is gaining consideration as another

important initial condition for both weather and climate

models.

Soil temperature anomalies at various depths also

directly influence yield of agricultural crops such as corn,

beans, and oats. Soil temperature can impact an array

of ecological processes, in particular vegetation growth

(McMichael and Burke 1998), soil biological, and chem-

ical activity (Kirschbaum 1995). For agriculture, soil

temperature affects plant growth directly including nu-

trient uptake as well as indirectly in soil water and gas

flow, soil structure, and nutrient availability (Tindall

et al. 1990); for instance, a warm near-surface soil dur-

ing spring speeds up crop growth while cooler soil tem-

peratures do the opposite, making soil temperature a

useful predictor for crop growth and yield. The combi-

nation of soil temperature and soil moisture strongly

affects soil CO2 efflux. Therefore, high-quality soil tem-

perature observations are needed for both weather and

climate models as well as for plant models as initial con-

ditions and forcing data.

Despite the need for these data, there are currently

very few high-quality, in situ soil temperature obser-

vations available. Thus, model-based soil temperature

products often serve as alternatives for observations.

Simulated soil temperature products can be derived from

coupled climate models or offline land surface models.

Zhu and Liang (2005) examined the capability of the

fifth-generation Pennsylvania State University–National

Center for Atmospheric Research Mesoscale Model

(MM5)-based regional climate model in simulating the

U.S. soil temperature annual cycle and interannual

cycle. Comparisons between simulated and observed

soil temperature at a 10-cm depth over the central United

States for the period during 1982 and 2001 showed large

cold biases in summer and fall. Robock et al. (2003)

evaluated the North American Land Data Assimila-

tion phase 1 (NLDAS-1) soil temperature products

generated from two land surface models [Noah, Ek

et al. 2003; Variable Infiltration Capacity (VIC), Liang

FIG. 1. Locations of the 137 U.S. cooperative stations (closed

circles) and 72 Oklahoma Mesonet stations (open circles).

TABLE 1. Locations and measurement system of 14 ARM/CART stations in Oklahoma.

Station name Lat (8) Lon (8) Vegetation cover SIRS EBBR

Byron 36.881 298.285 Alfalfa Yes No

Pawhuska 36.605 297.485 Native prairie Yes Yes

Lamont 36.431 298.284 Pasture and wheat Yes Yes

Ringwood 36.061 299.134 Pasture Yes Yes

Vici 35.687 295.856 Wheat Yes No

Morris 35.564 296.988 Pasture Yes Yes

El Reno 35.615 296.065 Pasture Yes Yes

Meeker 35.354 298.977 Pasture Yes Yes

Okmulgee 34.883 298.205 Forest Yes No

Cordell 34.957 298.076 Rangeland Yes Yes

Fort Cobb 36.841 296.427 Pasture No No

Cyri 35.557 298.017 Wheat Yes No

Seminole 35.153 298.461 Pasture Yes Yes

Cement 35.245 296.736 Pasture No Yes
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et al. 1994] derived by given atmospheric forcing. They

compared simulated daily soil temperature with obser-

vations averaged at 72 Oklahoma Mesonet stations for

a period from 1 January 1998 to 31 December 1999. The

results showed that both land surface models simulated

the near-surface soil temperature (5-cm depth) well (bias

is smaller than 5 K). At greater depth (25-cm depth), the

models were still fairly close to observations, with a

maximum difference less than 5 K.

Recently, NLDAS-1 was extended from a 3-yr simu-

lation (1 October 1996–30 September 1999) to a 30-yr

simulation [NLDAS phase 2 (NLDAS-2), 2 January

1979–31 December 2008] using four upgraded land sur-

face models [Noah, Mosaic, the Sacramento soil mois-

ture accounting model (SAC), and VIC] and improved

atmospheric forcing data (Xia et al. 2012a), derived

from the North American Regional Reanalysis (NARR;

Mesinger et al. 2006) and the NCEP Climate Prediction

Center (CPC) gauge-only precipitation. NARR down-

ward shortwave radiation was corrected by using a ratio-

based (Berg et al. 2003) bias correction technique and the

University of Maryland’s Surface Radiation Budget data-

set (Pinker et al. 2003). The CPC gauge-only precipitation

was corrected using a topographic adjustment based

on the widely applied Parameter-Elevation Regressions

on Independent Slopes Model (PRISM) climatology

(Daly et al. 1994). Among the four land surface models,

SAC does not include soil temperature calculations,

and Mosaic has only one soil temperature for its force-

restore calculations; that is, the soil temperature is not

tied to a particular layer. The VIC soil temperature was

not available for NLDAS-2 because it had no output.

Therefore, only Noah produced a 30-yr hourly soil tem-

perature with a 1/88 spatial resolution at 5-, 25-, 70-, and

150-cm depth, which was available for this study. To date,

the model-simulated soil temperature products in the

NLDAS-2 have not been rigorously evaluated and vali-

dated against in situ measured soil temperature because

of the lack of long-term soil temperature over CONUS.

Hu andFeng (2004) generated a long-term (from January

1967 toMarch 2002) monthly observed soil temperature

dataset over the CONUS using a set of quality control

methodologies (Hu and Feng 2002, 2003). There are

only about 60 stations at all five depths (i.e., 5, 10, 20,

50, and 100 cm) except for the 10-cm depth where there

are over 292 stations. This in situ monthly soil temper-

ature observation dataset provides an opportunity to

evaluate the seasonality and interannual variability of

long-term NLDAS-2 soil temperature products. In ad-

dition, this dataset will be applied to assess Noah simu-

lation skill, simulation errors, andmemory characteristics

of simulated soil temperature. Meanwhile, we use the

FIG. 2. Interannual variability of observed (solid line) and simulated (dotted line) annual

mean soil temperature anomaly averaged over 137 stations of the CONUS at (top to bottom)

the first layer soil layer: 0–10 cm, the second soil layer: 10–40 cm, and the third soil layer: 40–

100 cm during the period from 1979 to 2001.
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3-yr (from 1 January 1997 to 31 December 1999) in situ

soil temperaturemeasurements at 72OklahomaMesonet

stations to evaluate simulated daily and hourly soil tem-

peratures from the NLDAS-2.

The validation data details used in this study are de-

scribed in the next section. Results from the validation

of annual, monthly, daily, and hourly soil temperature

are presented and discussed in section 3. Section 4 con-

tains a summary of the study and some remarks on the

most relevant findings and future work.

2. Validation data description

This study uses datasets of two in situ soil temperature

measurements. The first is of long-term monthly soil

temperature that was derived from daily soil tempera-

ture observations at 137 sites over the CONUS (Fig. 1).

A monthly mean value was calculated for a given month

and depth if 1) the daily data had fewer than 10 missing

values and themissing values were scattered in the given

month, and 2) the daily series had less than 5 consec-

utive missing values. Otherwise, the monthly mean

value was considered as missing (Hu and Feng 2004).

NLDAS-2 soil temperature extends from January 1979 to

December 2008, while in situ monthly soil temperature

measurements cover from January 1967 to March 2002.

Thus, we selected the period of overlap from January

1979 to January 2002 as the temporal domain for this

study. The number of stations varied depending on depth

andmonth of interest because ofmissing records. The 292

stations used in Hu and Feng (2003) were reduced to 137

stations by removing stations with no measurements for

all 5 measurement layers and the stations with only re-

cords at a 10-cm depth. We used a simple linear inter-

polation algorithm to interpolate soil temperature from

measurement layers to facilitate comparison with Noah

model layers of 25 and 70 cm. The accuracy of measured

soil temperature was within61.0 K for all soil layers (Hu

and Feng 2002).

The second dataset is the Oklahoma Mesonet moni-

toring network (Brock et al. 1995) that includes 115 au-

tomated stations covering every county of Oklahoma.

Soil temperature was measured at more than 72 sites

(Fig. 1) at depths of 5, 25, 60, and 75 cm to provide con-

tinuous observations of soil temperature change. The

accuracy of measured temperature was within 60.5 K

(Robock et al. 2003).

The Noah model has four soil layers: 0–10, 10–40,

40–100, and 100–200 cm. The soil temperature was sim-

ulated at themidpoint of each soil layer (i.e., 5, 25, 70, and

FIG. 3. Monthly variation of the observed (solid) and simulated (dotted line) (left) monthly mean soil temperature

anomaly and (right) monthlymean soil temperature climatology in the (top to bottom) three soil layers. Themonthly

mean soil temperature was averaged from 137 stations over the United States. The time period covers from January

1979 to January 2002.
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150 cm). The spatial resolution of simulated temperature

is 1/88 and its temporal resolution was hourly.

Observed downward shortwave radiation, downward

longwave radiation, upward longwave radiation, and

ground heat fluxes from 14 Atmospheric Radiation

Measurement Program/Cloud and Radiation Test Bed

(ARM/CART; Robock et al. 2003) stations in Oklahoma

(Table 1) were used to compare model-simulated results.

The purpose was to diagnose whether model forcing er-

ror was a possible reason for Noah-simulated soil tem-

perature error. Downward and upward shortwave and

longwave radiation were measured by the Solar and In-

fraredRadiation Stations (SIRS) instruments and surface

energy fluxes were measured by in situ sensors—an en-

ergy balance Bowen ratio (EBRR) system (Robock

et al. 2003). The corresponding downward shortwave and

longwave radiation were obtained from NLDAS forcing,

whichwere derived fromNARRreanalysis products (Xia

et al. 2012a), and upward longwave radiation and ground

flux were obtained from Noah model output. Since ra-

diative skin temperature was more often used to explain

soil temperature biases, both observed and simulated

upward longwave radiation were converted to radiative

skin temperature with the assumption that surface emis-

sivity was 1.0 for a consistency.

3. Validation of simulated soil temperature

Given the lack of coincident soil temperature mea-

surements, a direct comparison between simulated soil

temperature and observations at each individual station

was not possible because this kind of comparison suffers

from scale incompatibility. Since soil temperature spa-

tial variation related to soil characteristics was highly

heterogeneous (Vinnikov et al. 1996; Crow and Wood

1999; Entin et al. 2000), site observations could not

represent simulated soil temperatures at a 1/88 grid box.

Therefore, there are inherent inconsistencies in making

a direct comparison between simulations and observa-

tions using a gridbox value and a point value. A simple

spatial average could reduce this uncertainty and has

been used in many similar validations (Robock et al.

1998, 2003; Entin et al. 1999; Zhu and Liang 2005; Fan

et al. 2006). Spatial and temporal averaging reduces the

spatial and temporal noise and therefore provided amore

meaningful comparison.

To make a consistent comparison between model out-

put and observations, the spatial averaging was done only

when and where both modeled and observed values

were present simultaneously. Since the number of sta-

tions used for averaging was different for each layer

FIG. 4. Variation of four statistical metrics with month and depth for (a) monthly mean soil temperature anomaly

COR, (b) RMSE between simulated and observed monthly soil temperature, (c) MAE between simulated and

observed soil temperature, and (d) ME between simulated and observed soil temperature.
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and month because of missing data, we average all

available observations to maximize the sample size as

used inRobock et al. (2003). In the following sections, we

validated modeled soil temperature at annual, monthly,

daily, and hourly time scales, respectively.

a. Validation of annual mean soil temperature

Figure 2 compares the observed and Noah-simulated

1979–2001 variations of annual mean soil temperature

anomaly at 5, 25, and 70 cm. The interannual variations

of soil temperature anomalies were well captured by the

Noah land surface model (LSM), with an overall mean

absolute error of 0.3 K at 10 cm, 0.42 K at 25 cm, and

0.51 K at 70 cm. Observed annual mean soil tempera-

ture was 285.6, 285.0, and 283.6 K and simulated annual

mean soil temperature was 283.1, 282.1, and 280.6 K for

0–10-, 10–40-, and 40–100-cm soil layers, respectively.

The Noah model captured all cold and warm events for

three soil layers. There was a positive (negative) bias

before (after) 1993. The reason for the systematic bias

may be inconsistency in the timing of soil temperature

observations resulting from using three different data

sources (Hu and Feng 2003) that cover different periods,

as the same issue was noted by Zhu and Liang (2005).

The inconsistency is largely attributed to a change in the

instrument measuring soil temperature that occurred in

1993 (X. Liang 2011, personal communication). The

correlation coefficients between mean annual simulated

and observed soil anomaly were 0.85 at 10 cm, 0.63 at

25 cm, and 0.60 at 70 cm, respectively. All anomaly cor-

relations were statistically significant at the 95% confi-

dence level and theNoah LSMhad larger simulation skill

in the top soil layer versus the bottom layer.

b. Validation of monthly mean soil temperature

The seasonal cycle and monthly variability of the ob-

served and simulated averaged soil temperature in three

soil layers (0–10, 10–40, and 40–100 cm) for the period

from January 1979 to December 2001 is shown in Fig. 3.

The time evolution of the simulated anomalies of all three

soil layers followed the observations quite well, and most

warm and cold events were captured very well. However,

exceptions can be seen, such as the 1996 and 1997 cases

where the simulated soil temperature anomaly was too

cold when compared with the observed soil temperature

anomaly for lower two layers. The phase of the seasonal

cycle of three soil layers was also well simulated, but the

simulated mean was colder than observations by 2–5 K,

subject to different soil layers and months. This discrep-

ancy was associated with potentially unrepresentative

model parameters that were chosen for Noah model

(discussed in section 4). The anomaly correlation be-

tween the observed and simulated soil temperature were

0.87, 0.77, and 0.69 for 0–10, 10–40, and 40–100 cm, re-

spectively, showing decreasing trend with increasing

depth. Figure 4 shows the seasonal variation of monthly

FIG. 5. Observed and simulated vertical distribution in top 100 cm of monthly mean soil

temperature anomalies (K) averaged over the United States, as time series from January 1979

to January 2002.
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anomaly correlation (COR) and errors for different soil

depths. As soil depth increases, the anomaly correlation

decreases (Fig. 4a). The largest anomaly correlation oc-

curred during November and May in the top 10-cm soil

layer, and the smallest anomaly correlation occurred

during July and August in the bottom two soil layers (10–

40, 40–100 cm). Smaller anomaly correlations in summer

and larger anomaly correlations in winter were is in

agreement with the results of Zhu and Liang (2005).

Root-mean-square error (RMSE) and mean absolute

error (MAE) between observed and simulated soil tem-

perature showed a similar spatial–temporal pattern (Figs.

4b,c). Large errors exist in the bottom two layers for the

period from April to July, and small errors exist in the

bottom two layers for the period during September and

November. For all soil layers andmonths, Noah LSMhad

significant negative biases [mean error (ME)] when com-

pared with the observations. Small biases exist in all soil

layers during the period fromSeptember toDecember and

in the top two layers during February and May, and large

biases exist in the bottom two layers during May and July

(Fig. 4d). These soil temperature biases may have been

caused by deficiencies in Noah model representations of

physical processes in atmospheric surface and soil layers.

The monthly time evolution of the observed and sim-

ulated soil temperature anomalies averaged over the

CONUS as a function of depth are shown in Fig. 5. In

general, the Noah LSM realistically captured most large

cold and warm events for the top 100 cm of the soil col-

umn. However, the Noah LSM tended to overestimate

warm events and underestimate cold events before 1993.

This was consistent with Fig. 2 in which there was a pos-

itive anomaly before 1993 and a negative anomaly after

1993 for all three soil layers given the observed soil

temperature inconsistency.

The autocorrelation coefficient of observed and sim-

ulated soil temperature anomalies as a function of the

starting month and target month (lag month) for all three

soil layers (Fig. 6) shows that soil temperature persistence

was seasonally dependent. Overall, the general char-

acteristics of observed and simulated soil temperature

persistence were similar. Soil temperature anomalies per-

sisted approximately 1–1.5 months in the first soil layer,

1–3months in the second soil layer, and 1–4months in the

FIG. 6. Variation of (left) observed and (right) simulated soil temperature persistence (month-to-month auto-

correlation) with month for (top to bottom) three soil layers (0–10, 10–40, and 40–100 cm) for 1979–2002 over the

United States. The initial month is along the x axis, and the lead to the target month (lag months) is along the y axis.
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third soil layer, subject to different seasons. Observed soil

temperature displayed stronger persistence than simu-

lated soil temperature in the bottom two soil layers

probably because of inadequate heat storage in the Noah

model. As soil depth increased, persistence of both ob-

served and simulated soil temperature became stronger.

April soil temperature exhibited a strong persistence for

all soil layers. In the first soil layer, the model results

agreed well with observations in both phase and ampli-

tude for all months except for the period of September–

October. During that period, the Noah-simulated soil

temperature displayed stronger persistence. As soil depth

increased, the difference between simulations and ob-

servations became larger. In the second and third soil

layer, Noah-simulated soil temperature exhibited stron-

ger persistence than observations in January, September,

October, and November, while it showed weaker persis-

tence in spring and summer. The reason for this in-

consistency is still unknown. More sensitivity tests are

needed to address this issue in the future.

c. Validation of daily mean soil temperature

We used monthly mean soil temperature observation

from the 137 stations of the CONUS to evaluate Noah

LSM simulations for annual and month time scales. For

daily and hourly time scales, we used 72 Oklahoma Mes-

onet stations to assess Noah LSM simulations. Figure 7

shows the 3-yr (1997–99) averaged soil temperature for

the three soil layers from the Noah LSM. When com-

pared with observations, Noah LSM simulated the near-

surface soil temperature quite well. Even for the second

and third soil layers, Noah LSM simulations were quite

close to the observations, with a maximum mean differ-

ence less than 3 K. This was similar to the results of

Robock et al. (2003) where Noah had maximum mean

difference 5 K. This slight improvement was due to the

upgrade of Noah model and improvement of forcing

data (Xia et al. 2012a,b). Noah LSM soil temperature

followed observations more closely in the fall than in

spring, which was also the case in Robock et al. (2003).

Since they had less than 2 years of data, they could not

confirm whether this is a systematic bias. However, when

we used long-term (1979–2001) monthly mean soil tem-

perature observations over the CONUS (Fig. 3) and

short-term (1997–2000) daily mean soil temperature

observations over Oklahoma, the similar systematic bias

can be seen. The reason leading to this systematic bias

remains unclear, and it is left for future study. Figure 8

shows the variation of soil temperature anomaly cor-

relation andME between simulated and observed daily

soil temperature for three soil layers. The results show

that there was limited anomaly correlation during two

periods—July to August and April to May—and large

correlation in the other months (Fig. 8a). The ME anal-

ysis showed that Noah had larger errors in winter and

smaller errors in summer and early fall for the first layer

(Fig. 8b), while it had larger errors in spring and smaller

errors in late summer and fall for bottom two layers.

Figure 9 shows observed and simulated soil tempera-

ture profile for the period during 1 July and 29 October

of two years (1997 and 1998). In general, observed and

simulated spatiotemporal patterns are similar and over-

all performance of the Noah LSM was quite good.

FIG. 7. Time series of 3-yr (1997–99) mean soil temperature for

(top to bottom) three soil layers (0–10, 10–40, and 40–100 cm)

compared with observations at three depths (5, 25, 70 cm). Solid line

is observations and dotted line is simulations. The soil temperature

was spatially averaged from 72 Oklahoma Mesonet stations.
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Meanwhile, comparisons of simulated and observed

soil temperatures revealed that the Noah LSM was able

to catch the response of soil temperature to cold and

warm weather processes and could simulate downward

propagation of soil temperature change, although simu-

lated soil temperature was too cold in fall.

d. Validation of hourly soil temperature

Figure 10 shows a comparison between simulated soil

temperature by the Noah LSM and the observations for

three soil layers. The diagram shows the monthly mean

diurnal cycles of soil temperature averaged over 72

OklahomaMesonet stations and the differences between

the simulated soil temperature and the observations. The

observed soil temperature showed a clear diurnal cycle in

the top soil layer, that is, there was high soil temperature

on midday and low soil temperature in the midnight. As

soil depth increased, the amplitude of monthly mean di-

urnal cycle decreased. The Noah LSM did a good job in

simulating hourly soil temperature in summer for all

three soil layers with an error less than 2 K. It also sim-

ulated daytime soil temperature very well for all season

and soil layers. However, Noah LSM underestimated

midnight soil temperature systematically throughout the

36 months by up to 5 K in the 0–10-cm soil layer for cold

season (October–April). As soil depth increased, the

differences between simulated and observed soil mid-

night temperature decreased from 5 K in the first soil

layer to 3 K in the third soil layer.

The soil temperature dataset from the Oklahoma

Mesonet used for daily and hourly validation was a non-

standard soil temperature dataset. This was a special

dataset created from observations collected by the soil

moisture sensors installed at Oklahoma Mesonet sites,

although it was used in NLDAS-1 validation (Robock

et al. 2003). TheOklahomaMesonet nowhas a number of

soil temperature sensors installed at 5, 10, and 30 cm

under native vegetation (McPherson et al. 2007). These

observations have been collected at over 100 stations

since 1994. Further, these soil temperature observations

receive the full suite of quality assurance and quality

control that the mesonet provides (McPherson et al.

2007).However, a lot ofmissing values were noted before

1999, and thus, we selected 12-yr (1999–2010) hourly

soil temperature at 3 soil layers (5, 10, 30 cm) over 114–

127 stations (subject to different years). The dataset is

FIG. 8. Statistical analysis of daily soil temperature for three soil layers (0–10, 10–40, and 40–100 cm). (a) Variation

of daily anomaly correlation withmonth and depth, (b) variation ofME (bias) between simulated and observed daily

soil temperature withmonth and year for the first layer, (c) variation ofMEwithmonth and year for the second layer,

and (d) variation of ME with month and year for the third layer.
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detailed in the appendix to facilitate further evaluation

of Noah simulations. We interpolated between mea-

sured soil temperatures onto 5- and 25-cm depths to

match Noah’s two model soil layers (middle layers are

5 and 25 cm, respectively). We repeated the hourly vali-

dation process as was done for nonstandard soil tem-

perature. Figure 11 shows the 12-yr averaged diurnal

cycle differences between Noah simulations and obser-

vations at 5 and 25 cm. Noah underestimated soil tem-

perature during nighttime in winter and overestimated

soil temperature during daytime in summer for the top

soil layer. Noah underestimated soil temperature at the

25-cm soil layer for all seasons except for summer. Both

temporal pattern and quantity were in good agreement

with the validation using nonstandard soil temperature

observations. This further demonstrated the robustness

of our validation results in this study.

4. Summary and discussion

This investigation compared soil temperature simu-

lations from the Noah LSM at several soil depths with

observations from U.S. cooperative stations over the

CONUS for annual and monthly time scales and at the

Oklahoma Mesonet for daily and hourly time scales.

The model captured the broad features of observed soil

temperature variations for all three soil layers, in partic-

ular the daily, monthly, and annual anomalies associated

with cold and warm events. Noah skills in simulating soil

temperatures varied with season, soil depth, and time

scale. Noah had lower simulation skill (anomaly corre-

lation) in summer and higher simulation skill in winter

and fall for both monthly and daily time scales. As soil

depths increased, simulation skills decreased. There were

large negative biases in simulated soil temperature for all

time scales and soil layers. The negative bias was 2.5–

3.0 K for annual mean soil temperature and less than 5 K

for daily and monthly mean soil temperature. These

biases varied by season and soil layer. For all soil layers

there was a smaller bias in fall and larger bias in summer

for monthly mean soil temperature. For daily mean soil

temperature in the top shallow layer, there were smaller

errors in summer and early fall and larger errors in late

fall and early winter. In the bottom two layers, small er-

rors arose in late summer and fall and large errors arose in

spring. In contrast to negative bias for monthly mean soil

temperature, daily soil temperature analysis showed that

small positive biases existed over the OklahomaMesonet

in summer and fall for all soil layers. For hourly soil

temperature, Noah LSMhad large negative biases during

nighttime from late fall to early spring.

The differences between Noah LSM and the observa-

tions were attributed to soil temperature measurement

error, interpolation error (i.e., measured soil temperature

was interpolated to model soil layers), model soil pa-

rameters (i.e., soil texture may have been different from

that used in the Noah LSM), atmospheric forcing data

errors, and model structural errors.

FIG. 9. Observed and simulated daily soil temperature profile for 1 Jul–29 Oct 1997 and

1 Jul–29 Oct 1998.
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Brock et al. (1995) noted that the shadow of the solar

panel from the mesonet tower occasionally affected soil

temperature reading at the 5-cm depth. In addition,

vegetation cover may have moderated the response of

the soil temperature sensors. These effects resulted in

measurement errors. The soil temperatures in the Noah

model physically represent an average for that layer. A

more strict comparison with observations therefore re-

quires an integrated soil temperature throughout a layer

rather than point measurement at a specific depth. Fur-

thermore, soil temperature and moisture were closely

related. As indicated by Robock et al. (2003), soil texture

classification problems definitely contributed to soil

moisture errors in the Noah model (Y. Xia et al. 2012c,

manuscript submitted to J. Hydrol.). Soil moisture errors

would affect the composite soil volumetric heat capacity

and soil thermal conductivity used in the Noah LSM

(Chen and Dudhia 2001) because heat capacity is the

function of soil moisture and soil porosity and thermal

conductivity is the function of soil moisture. All these

errors can interact together, making this issue complex.

In general, a soilmoisture error of 0.1 m3 m23may lead to

an error of more than 1.6 K for maximum or minimum

daily soil temperature (Godfrey and Stensrud 2008).

It should be noted that soil texture and vegetation

classification problems definitely contributed errors to

Noah-simulated soil temperature as well as to Noah-

simulated soil moisture (Robock et al. 2003) as they

could not correctly represent the vegetation and soil

texture conditions at some validation sites. In addition,

the Noah model predefined vegetation conditions as

a constant value by month rather by day (i.e., monthly

greenness fraction, vegetation fraction), this would have

also introduced errors into the Noah-simulated soil

temperature. These errors were associated with mis-

representations of NLDAS vegetation and soil texture

conditions, which will be addressed in a future effort.

Errors attributed to forcing data may have also con-

tributed to the biases of Noah-simulated soil temperature.

Positive summertime temperature biases in the top 10-cm

FIG. 10. Comparison of observed and simulated soil temperature for three soil layers (0–10, 10–40, and 40–100 cm). Time series of

diurnal cycle of the observed soil temperature estimated from 72 Oklahoma Mesonet stations at (a) 5, (b) 25, and (c) 70 cm; differences

between the model and observation for Noah at the (d) first soil layer, (e) second soil layer, and (f) third soil layer.
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soil layers likely stemmed from the documented excess

of solar radiation during the daytime (Fig. 12a), while

negative wintertime soil temperature biases may have

partly resulted fromunderestimated downward longwave

radiative fluxes during nighttime hours (Fig. 12b). The

effect of model parameters on soil temperature was in-

vestigated by Robock et al. (2003), Godfrey and Stensrud

(2008), and Chen et al. (2010). Model parameters such as

aerodynamic conductance may have greatly affected soil

temperature simulations through modifying the effi-

ciency of surface turbulent fluxes to the atmosphere.

Robock et al. (2003) indicated that a larger aerodynamic

conductance can reduce the warm bias in midday skin

temperature for the Noah LSM through heat loss from

the land surface. This large aerodynamic conductance has

been implemented to Noah LSM for NLDAS-2 run.

NLDAS-1 also found that Noah LSM displayed a small

snow water equivalent and early snowmelt due to large

sublimation on snow surface. To reduce large sublima-

tion, the value of the surface exchange coefficient (CH)

was modified to reflect atmospheric boundary layer sta-

bility as quantified by the Richardson number RiB. In

particular, if RiB is greater than 0.0 (stable conditions)

but is less than or equal to 2.0, CH 5 CH 3 max[1.0 2
(RiB/0.5), 0.05]. This leads smaller aerodynamic con-

ductance for stable boundary cases, which often occurs

in cold season (from late fall to early spring). This ap-

proach, called an ‘‘intermediate fix,’’ was originally

tested in polar regions (Slater et al. 2007) and U.S.

western mountainous regions (Livneh et al. 2010) to

reduce large aerodynamic conductance values in winter,

which were generating large sublimation. This approach

has improved simulation of snow water equivalent, snow

cover, and other water variables related to snowpack

over the western mountainous region (Livneh et al.

2010). At present, this was implemented within the

Noah LSM for NLDAS-2 for all stable cases. However,

this approach produced erroneously small aerodynamic

conductance values such that little sensible heat was

transferred to the land surface from the atmosphere.

This implementation resulted in colder nighttime skin

temperatures (1–3 K) than in the original version of

Noah over winter (Fig. 13). In the test, the same version

of Noah as NLDAS-2 was used except that the inter-

mediate fix approach was removed. The results show

that this approach contributed to part of a 3–5-K nega-

tive bias in simulating skin temperature when compared

with the observations during the nighttime in winter

(Fig. 12c). The other part of the 3–5-K negative bias in

simulating skin temperature may have come from the

other error sources mentioned above. Since surface skin

temperature has a close relationship with upper-layer

soil temperature and ground heat flux, the cold bias for

skin temperature will no doubt have affected the soil

temperature in the shallow soil layer (i.e., 0–10 cm). The

error in simulated soil temperature for the top soil layer

would have spread to soil temperature in deeper soil

layers via heat conduction processes, although the dif-

ferences between Noah-simulated and observed ground

heat flux were small (Fig. 12d). The sensitivity tests show

FIG. 11. Comparison of 12-yr (1999–2010) mean monthly simulated and observed diurnal cycles over

Oklahoma Mesonet. Differences between Noah-simulated and observed soil temperature at (a) 0–10-

and (b) 10–40-cm soil layers. We used 12-yr standard soil temperature measurements over 114–127

stations over Oklahoma Mesonet for this validation.
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that model-simulated soil temperatures were closer to

observations when a 1–3-K negative bias led by the fix

approach was removed (Figs. 14a–c). Therefore, this

intermediate fix approach improved snowpack simula-

tion, while it deteriorated skin temperature and soil

temperature simulations when compared with observa-

tions. To solve this issue, more studies into how to use

the intermediate fix approach to improve both snow-

pack and soil temperature simulation (i.e., conditioned

by snow cover and/or snow water equivalent) will be

addressed in a future paper.
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APPENDIX

A Long-Term Hourly Soil Temperature Dataset
from the Oklahoma Mesonet

The Oklahoma Mesonet (Brock et al. 1995; Illston

et al. 2008; McPherson et al. 2007) is an Oklahoma-wide

network ofmeteorological stations (Fig.A1). The network

provides observations of air temperature, relative hu-

midity, wind speed, wind direction, barometric pressure,

precipitation, soil temperature (5-, 10-, and 30-cm depths),

solar radiation, and soil moisture, which are archived by

the Oklahoma Mesonet and the External Data Center

(XDC) of the DOE ARM Climate Research Facility

(http://www.archive.arm.gov), to enhance the capability

of the ARM data archive for supporting climate and

Earth system research.

As pointed out by Holmes et al. (2012), the soil tem-

perature observations from the Oklahoma Mesonet

are one of the few datasets that meet most of the re-

quirements for robust assessment of the soil tempera-

ture simulations from numerical weather prediction

models, which serve as a dynamic ancillary resource for

next-generation soil moisture retrievals from L-band

(1.4 GHz) satellites such as the NASA Soil Moisture

Active Passive (SMAP) mission. Such observations are

also crucial for evaluating simulations from climate and

Earth system models as discussed in the introduction

section of this paper.

In the Oklahoma Mesonet, the soil temperature at

each location is measured with thermistor probes in-

stalled horizontally at depths of 0.05, 0.1, and 0.3 m

under native sod and at depths of 0.05 and 0.1 m under

bare soil. The sampling rate of the sensors is 30 s, but the

15-min averages are reported with an accuracy of 0.5 K

for a temperature range from 230 to 55 K. Various au-

tomated and manual quality control checks are per-

formedby theOklahomaMesonet, including a site visit at

least three times per year (Shafer et al. 2000).

To generate the long-term hourly soil temperature

dataset used in this study, we further processed the

15-min records at 114–127 stations during the period of

1999–2010 from the ARM archive by removing ‘‘bad’’

data points and obvious spikes (i.e., .63 standard

deviations departure from the mean diurnal cycle in

any given month) and aggregating to an hourly time

step. Missing data values at the hourly time step are

flagged for any further processing as needed in in-

tended applications.

FIG. 13. (a) Difference between simulated (Test) and observed monthly mean diurnal cycles of radi-

ative skin temperature Tskin (K), and (b) difference between skin temperature simulated from NLDAS

Noah and sensitivity test (test).
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FIG. 14. Comparison between simulated and observed soil temperature diurnal cycle for

three soil layers (0–10, 10–40, and 40–100 cm). Difference between simulated (Test) and ob-

served soil temperature at (a) 5, (b) 25, and (c) 70 cm; differences between soil temperature

simulated from NLDAS Noah and sensitivity test (Test) at the (d) first soil layer, (e) second soil

layer, and (f) third soil layer.

FIG. A1. Distribution of active soil temperature stations in the OklahomaMesonet in all years

between 1999 and 2010.
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