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Frontispiece

Concord waterfalls - columnar-jointed transitional
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ABSTRACT

Grenada is the southermmost volcanic island of the
Lesser Antilles. A series of volcanic centres ranging from
Pliocene to Recent in age are present overlying a folded
Lower to Middle Tertiary volcano-sedimentary formation.
Eruptions of silica-undersaturated alkali basalt and picrite
magmas have occurred repeatedly during the cvolution of these
centres. Calc-alkaline andesites and dacites show a close
field association with the basalts and picrites. Recent

activity on the island has been explosive in nature.

A model of variable volumes of Upper Mantle partial

melting is proposed to account for the diversity of major,

trace and Rare Earth element compositions and strontium isotope
ratios of the basalts and picrites. Geochemical, petrographic
and mineralogical criteria suggest that the andesites and
dacites are related to these basic melts by fractional crystall-
isation processes. 1In addition the chemical compositions and
strontium isotope ratios of the andesites and dacites reflect

the diverse compositions of the parental basalt magmas.

The petrography and mineralogy of the andesites and dacites
is similar to calc-alkaline suites elsewhere in the arc. Some
of the basalts and picrites contain abundant olivine and sector
and oscillatory zoned clinopyroxene phenocrysts. In some

basalts, phenocryst amphibole is present.

An origin by partial melting of an Upper Mantle pericotite

source is proposed. Alternative sources are examines bhut partial



melting of a subducted lithospheric plate does not appear to

be a significant petrogenetic process in Grenada.

Fractional crystallisation of olivine, clinopyroxene and
spinel is mainly responsible for the development of a normal
calc-alkaline trend towards increasing silica-saturation in
the magmas. Subsequent crystallisation of plagioclase
feldspar and then amphibole is also important in the development
of a trend towards silica- rather than alkali-enrichment in

the residual melts.

The significant feature of the Grenada vulcanicity 1is
the occurrence within a restricted geographic range of magmas
of contrasted geochemical characteristics. The local volcanic
and tectonic history of the southern part of the Lesser Antilles
island arc are probably the most important factors in the

development of these unusual characteristics.

1
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INTRODUCTION

The island of Grenada is the southernmost volcanic
island of the Lesser Antilles island arc (Fig.1). This
study is based on the results of two field seasons spent
on the island comprising a total of 20 weeks during 1971
and 1972. Reconnaissance-style mapping of the separate
volcanic centres and a synthesis of the volcanic history
of the island was completed. Rocks dated by K-Ar methods
by Dr. J. Briden and Dr. D. Rex (Leeds University) (Fig.12 )
were used to determine the absolute ages of some of these

centres.

Laboratory study of the samples was carried out mainly
at Durham University. Some experimental studies were
completed at the Grant Institute of Geology, Edinburgh
(Cawthorn et _al., 1973). Rare Earth element and strontium
isotope ratios were determined at the Department of Geology

and Mineralogy, Oxford University (O'Nions et al. in MS).

<M UNIVER
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Fig.1

Map of the Lesser Antilles island arc.
(After Robson and Tomblin, 1966).






CHAPTER 1

THE DURHAM DEPARTMENT OF GEOLOGICAL SCIENCES RESEARCH PROGRAM

IN THE WEST INDIES

A program of research into the problems of island arc
volcanology, petrology and geochemistry was initiated in 1960
by the late Professor L.R. Wager and Dr. G.M. Brown of Oxford
University together with Dr. G.R. Robson of the Seismic Research

Unit, University of West Indies, Trinidad.

Regional Studies of St. Kitts (Baker, 1963), St. Lucia
(Tomblin, 1964) and Montserrat (Rea, 1970) were carried out by
research students at Oxford together with a petrological and
mineralogical examination of the plutonic blocks of the Soufriere

volcano (St. Vincent) by Lewis (1964).

The program of research has continued under the leadership of
Professor G.M. Brown at Durham University where this study of the
volcanic geology of Grenada has been completed. In addition,

Mr. E.B. Curran has studied aspects of the ferromagnesian mineral
assemblages of St. Kitts, Montserrat, St. Lucia and St. Vincent
and Mr, K.J.A, Wills has completed a regional study of southern
Dominica, and is currently engaged in an inter-~island comparison

of the plutonic blocks.

A program of geophysical research in the Eastern Caribbean
is in progress under Professor M.H.P. Bott (Department of Geological
Sciences, Durham) and the results of these studies combined with
data obtained by geological investigations of the islands of the
Lesser Antilles may hopefully lead to an integrated analysis of

the evolution of the island arc.



Bathymetry of the Eastern Caribbean region.
(After Hess, 1966).

Submarine contour interval every 1CO0 fathoms






CHAPTER 2

REGIONAL SETTING OF THE LESSER ANTILLES ISLAND ARC

The Lesser Antilles island arc forms an arcuate ridge
separating the Caribbean Sea to the west from the Atlantic Ocean
on the east. The main features of the submarine bathymetry are
shown in Fig. 2 and the division of the Caribbean into a series
of ridges and basins can be seen. The overall crustal structure
is atypical of normal oceanic crust but comparable to that found
in many areas of the western Pacific (Edgar et _al., 1971). 1In
general the crust is thicker with additional layers of intermediate

velocity in comparison with oceanic crust (Fig. 3 ).

The theory of plate tectonics (Isacks et al., 1968) suggests
that the Caribbean forms an isolated lithospheric plate between
the Americas, Cocos and Nazca Plates (Fig. 4 ). Seismic evidence
suggests that different types of structural boundary form the
margins of the Caribbean Plate (Molnar and Sykes, 1969; Tomblin,
1971). Along the northern margin (Cayman Trough - Puerto Rico
Trench) there is transform faulting. Active underthrusting of the
Cocos Plate beneath the Middle America arc and the Americas Plate
beneath the Lesser Antilles arc forms the western and eastern
boundaries respectively. The relationship of the Caribbean and
Americas Plates along the southern margin is more camplex.
Alternative models of temporary absence of movement and hinge
faulting have been proposed (Ball et al., 1969; Molnar and Sykes,

1969; Ball and Harrison, 1970; Tomblin, 1971).

The volcanic ridge of the Lesser Antilles extends northwards



Fig.3

Comparison of the velocity structure of Caribbean basins
and ridges with those of continents and ocean basins.

(After Edgar et al. 1971),

( P~\,\/0v< V&‘OCI’\"\&S)






Fig.4
Plate tectonic map of the Middle Americas region.

(After Molnar and Sykes, 1969).

Bold arrows show direction of motion of the plates
relative to the Americas Plate. Fine arrows show
possible direction of relative plate motion at

boundaries.






from the continental slope of South America to the Anegada Trough.
wast of the arc, a depth of 3300 m is attained in the Grenada
Trough wi. .a is isolated from the Venezuela Basin by the nor th-
south striking Aves Ridge. One of the characteristic features of
island arcs, a deep frontal trench, is only present east of the
northern half of the Lesser Antilles. However, the belt of negative
gravity anomaly associated with the Puerto Rico Trench continues
southwards along the deformed sediments of the Barbados Ridge
(Chase and Bunce, 1969) before bifurcating nearer the South
American continent (Fig. 5 ). Major submarine features (scarps
and troughs) transverse to the axis of the Lesser Antilles have
been recognised. Fink (1972) has suggested that transverse
faulting north of Dominica has taken place and Westbrook (Ph.D.
thesis, Durham, in prep'n) has recognised a transverse tectonic
lineament east of St. Lucia on the basis of bathymetric, gravity
and magnetic evidence. It is suggested that some differential

movement of segments of the arc may have taken place (Fink, 1972).

The Lesser Antilles have been divided into the Limestone and
Volcanic Caribbees on the basis of the prominent surface rock
exposure in the islands north of Dominica (e.g. Martin-Kaye, 1969).
The exposed basement of the Limestone Caribbees is formed of Lower
Tertiary (Eocene to Oligocene) calc~alkaline volcanics (Christman,
1953; Martin-Kaye, 1969). Erosion, truncation and late Oligocene-
early Miocene transgression followed with deposition of a thin
sequence of shallow-water marine facies units. 1In the late Miocene,

this part of the arc was uplifted with minor faulting and folding.



Fig.5

Location of possible axes of volcanic activity (after
Martin-Kaye, 1969) and of the maximum negative gravity
anomaly (after Sigurdsson et al., 1973).
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In the Volcanic Caribbees to the south of and including
Dominica, late Miocene to Recent calc-alkaline volcanics are
exposed. At the southern end of the arc in Grenada and the
Grenadines, the Lower Tertiary history appears to be similar to
the Limestone Caribbees (Martin-Kaye, 1969). However, in the
Volcanic Caribbees north of Dominica, only the Late Miocene to
Recent volcanism appears to be present. Thus, in general two
major periods of vulcanicity appear to have formed the Lesser
Antilles island arc. The axis of the Miocene to Recent activity
’appears to have migrated westwards in the north but in the south
the centres of Tertiary and Quaternary volcanism appear to
coincide (Fig. 5 ). The periods of volcanic activity may be
related to the major changes occurring in the spreading rate of
the Mid-Atlantic Ridge and resultant changes in relative velocity
of collision of the Caribbean and Americas Plates (Vogt et _al., 1969).
Thus the Lesser Antilles appear to be predominantly of Tertiary
origin, but the discovery of a late Jurassic (142 m.y.) volcanic
sequence on Desirade, east of Guadeloupe (Fink, 1968) may indicate
structural continuity of the northern half of the arc at least,

with the Greater Antilles.

At present, the seismicity of the Lesser Antilles suggests
that the depth to the Benioff zone centre is shallower at the
southern end of the arc (115 km beneath Grenada) than further
north (160 km beneath Dominica). In addition the dip of the
Benioff zone is steeper (50°) in the north than in the south (30°).
The configuration of the seismic zone beneath Grenada is shown

in Fig. 6 . The relative velocity of collision of the Caribbean



























Fig.8

Surface Geology of Grenada.


















































































































































































































Fig. 16

Hot spring localities in northern Grenada.
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Fig.17

Locality map of explosion craters.
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