W Durham
University

AR

Durham E-Theses

An analysis of pion-nucleon scattering at intermediate
and high energies

Ogden, Peter J.

How to cite:

Ogden, Peter J. (1971) An analysis of pion-nucleon scattering al intermediate and high energies, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10385/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk


http://www.dur.ac.uk
http://etheses.dur.ac.uk/10385/
 http://etheses.dur.ac.uk/10385/ 
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

AN ANALYSIS OF PION-NUCLEON SCATTERING
AT

INTERMEDIATE AND HIGH ENERGIES






MY PARENTS



ABSTRACT

A phenomenological analysis of pion nucleon scattering at intermediate
and high energies is presented.

The intermediate energy range (2-5 GeV) is discussed in terms of a 'new'
phase shift analysis which has been constructed from a series of single
energy fits to an energy dependent model partial wave analysis. This 'new'
phase shift solution exhibits a similar resonance structure to the energy
dependent model but enjoys a much better fit to the scattering data, com-
parable with previous single energy analyses. We discuss the difficulties
encountered in previous single energy analyses and illustrate the advantages
and feasibility of the energy dependent analysis in which the partial waves
satisfy the required smoothness criteria,by construction.

The high energy scattering data is discussed with reference to the Regge
pole model and we exploit the analytic properties of the scattering ampli-
tudes by the use of the Continuous Moment Sum Rules (C,M.S.R.). The sum
rules provide a set of ' consistency equations between the high energy Regge
parameters and the low and intermediate energy data which is represented by
the phase shifts.

In previous analyses of the C.M.S.R., the energy at which they are
evaluated has been taken as 2 GeV which corresponded to the maximum energy
of available phase shift data. 2 GeV is a long way from the region where
we expect the Regge representation to be valid and the saturation of the
C.M.S.R. with only those trajectories identified in the high energy region
is not obvious,since we may expect lower lying trajectories to be important
at these energies.

We construct the C.M.S.R. at a higher cut off (5 GeV) from the 'new'
phase shift solution and compare the results from a simultaneous analysis

of the scattering data and C.M.S.R. at the two cut offs.



Several differences are apparent between the two analyses in particular
we show that it is not possible to construct the A'— and B amplitudes at
2 GeV via the C.M.S.R. without considering trajectories other than those
identified in the high energy scattering region. We present evidenae for
a new vacuum trajectory which we associate with the o+ (700) meson and this
single vacuum trajectory alone constructs the amplitude B at high energies.

The total cross-section data is adequately described by the three
trajectories P,P' and p in the energy range 5-20 GeV but the extrapolations
of their contributions to the energy range (20-70 GeV) does not exhibit the
energy dependence of the recent Serpukhov pion-nucleon total cross=section
data.

There have been several models to account for this apparent change in
behaviour at 20 GeV which involve the addition of further contributions to
the conventional Regge pole terms and all these models give an adequate des-
cription of the total cross-section data over the whole energy range,which
is not surprising considering their increased parameter freedom.

We consider two different possibilities of asymptopia which involve the
addition of multi-pomeron cuts and dipole contributions respectively to the
P,P',p Regge polesand we increase our information input to the analysis by
the use of the F.E.S.R. as a series of constraint equations on the parameters
of the fit.

We show that the size of the multi-Pomeron cuts identified from the
scattering data and the C.M.S.R. are incompatible whereas a dipole solution
satisfies both the scattering data and C.M.S.R.. We consider the possibil-
ity of Pomeranchuk theorem violation by the inclusion of an odd-signature
dipole like term in the amplitude A'- but we are unable to reach a decisiwe
conclusion on the possible violation because of the large experimental

errors on the Serpukhov data.
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INTRODUCTION

At our present level of understanding, there are four basic interact-
ions which are characterised by their relative strengths. If we take the
strength of the strong interaction as one unit, then its relation in strength
to the other three interactions, electromagnetic, weak and gravitational is
given by the ratio 1 : 1072 : 10-!3 : 10-39,

The strong interaction forces provide the binding forces in nuclei,
they are short range forces ~ 107!3¢m-and beyond this the range of the inter-
action falls off exponentially. The electromagnetic interaction force is
a long range force with the well known inverse square law behaviour. It is
the electromagnetic force which binds the electrons in an atom to the nucleus
and at these distances the strong interactions are negligible. The weak
interactions are also short range forces, but from the foregoing their magni-
tude is reduced by a factor of 107!3¥ over strong interaction forces. Cert-
ainly weak interactions can not compete when strong interactions are poss-
ible, however, selection rules forbid certain strong interaction transitions
and these interactions can proceed via the weak interaction. The gravitat-
ional force has the same inverse square law behaviour as the electromagnetic
interaction, but from its relative magnitude compared to the other-three
interactions, it enters very little into our considerations of elementary
particle reactions at sub-atomic distances.

This differentiation in types of interaction provides the first divis-
ion in the classification of particles, those which interact via strong in-
teractions, known as hadrons and those which do not, known as leptons and
photon;,

There are further classifications of the elementary particles which are
associated with the various symmetries of the interactions. There are

certain conservation laws which appear to be satisfied by all the interact-




ions, among these is the space-time symmetry of 'Lorentz invariance', which
implies energy,momentum and angular momentum are conserved. Other quantum
numbers which appear to be conserved are charge Q, baryon number B and
lepton number L.

With any elementary particle we have an associated type of statistics,
depending on whether the state vector describing a system of identical
particles is symmetric or antisymmetric under the interchange of any two
particles. The statistics describe a fundamental property of the particles;
particles for which the state vector is symmetric are called 'bosons' and
antisymmetric 'fermions'. There is a simple connection between the particle
statistics and spin which gives bosons integral spin and fermions half-odd
integral spin.

Hadrons include both fermions and bosons. Those hadrons which are also
fermions are termed baryons, the lightest of these is the proton, and those
which are also bosons are termed meson of which the pion is a spin zero
meson.

There are other symmetries which may not be exact for all interactions
but are satisfied by strong interactions. Charge conjugation operator C
replaces particles by their anti-particles, parity operator P corresponds
to space inversion and the operator T defines time reversal. The symmetries
associated with these operators C, P and T is such that all strong interact-
ions are invariant under a combination of all three taken together.

It has long been observed that the neutron and proton although differ-
ing in charge are indistinguishable in strong interactions. This property
of the strong interaction is termed 'charge independence'. As further
strongly interacting particles have been observed these too occurred in
multiplets of differing charge but with similar strong interaction propert-

ies. The symmetry associated with charge independence is the symmetry of
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the group SU(2). With each SU(2) multiplet, there are two corrésponding
quantum numbers I and I3 (I is the total isotopic spin, analgous to J for
ordinary spin and I3 indicates the position of a particle in a multiplet in
analogy with JZ for ordinary spin). I3 or the 'z' component of isotopic

spin is related to the charge Q by the following relation:

Q=1, « Y2 Y= B+5 I

where B is the baryon number, Y the h}Yu‘o\Amx and S e S\W\Tt\zﬁs (zo,\cm\um aumoe ¢

It would be very fortunate if there was a basic theoretical model which
covered such a large range of interaction strengths, a priori,no distinct-
ion in the types of interaction would be necessary. The theoretical treat-
ment of the electromagnetic interaction using the formalism of quantum field
theory is based on the construction of an interaction Hamiltonian, the fine
structure canstant and electron mass appearing as fundamental constants of
the theory.

Attempts to construct an interaction Hamiltonian, which could be applied
in a field theoretic framework to describe strong interactions, have so far
been unsuccessful. The approach which has enjoyed most success in describ-
ing the strong interactions of elementary particles is based on the unitar-
ity, analyticity and crossing of the so-called S matrix. Because of its
short range, any strong interaction can be regarded as a transition between
an ingoing state |i» and an outgoing state |f>, each describing a system of
non interacting physical particles. The amplitude for such a transition is

denoted by

Ses = <f|S|i- 1T

The S matrix is constructed of all possible transition amplitudes and so in

principle each element is a directly observable quantity. The 'conservation



of probability' require that the S-matrix is unitary, i.e.

S« = 8. ITT

The S matrix as postulated, is a powerful tool in the understanding of
elementary particle reactions, but as it stands it is incomplete. In an
analogy with potential scattering, "the force giving rise to the interaction
is not defined".

The exact nature of the strong interaction force is still an unsolved
problem, but several hypotheses are available. Consider a scattering process

in which all the particles are

at+b-c+d (1)

strongly interacting (for simplicity consider the spinless case). The
scattering process is described by a single amplituﬁe which is a function
of two independent variables, e.g. centre of mass energy and scattering
angle. An important consequence of the analyticity of the S-matrix is
'crossing' whereby the processes (1), (2) and (3) are related and can be

described by a single amplitude.

a+b->c+d (1)
d+b->c +a (2)
c+b-a+d (%)

It is customary to define three new invariants s, t andu which corres-
pond to the squares of the centre of mass energies for processes (1), (2)
and (3) respectively. To each process there is a certain range of values
of the respective invariant for which the scattering process corresponds to
a physical energetically possible one. These physical ranges of the vari-

ables s, t and u are non-overlapping, so that an analytic continuation must



be defined to relate the scattering amplitudes in each region.

The Mandelstam representation defines a prescription for continuation,
the scattering amplitude is assumed to be the same analytic function of s,
t and u, with only those singularities demanded by imposing unitarity in
each process channel (1), (2) and (3), for all three processes. This is
referred to as the 'Maximal Analyticity of the first kind' of the S-matrix,
- the singularities resulting from unitarity in one channel, help to deter-
mine the form of the amplitude in the physical region of the other chammels.
These crossed channel singularities, in analogy with potential scattering,
provide the 'force' for the strong interaction.

Maximal analyticity of the S-matrix implies that all other singular-
ities can be found, given the poles but it does not restrict the number of
poles introduced into the S matrix. The question is how much information,
how many particle masses and couplings, if any, must be introduced into the
theory. A self-consistent picture of hadron physics would have all the
hadron couplings and masses ultimately related and all 'particles' would be
composite {i.e. generated by other singularities of the amplitude}. However
if they are 'elementary particles' {analgous to the electron in Q.:E.D.} can
they be distinguished from composite particles? The answer to the problem
is bound up with the angular momentum properties of the S-matrix.

Consider the contribution to the s-channel amplitude of the process (1)
from the exchange of a particle mass myspin o in the crossed channel. At
high energies, elementary field theory indicates that the contribution be-

haves like

q@
A(s,t)~ o v

It can be shown by combining the unitarity and analyticity of partial wave

amplitudes that the amplitude describing high energy forward scattering must



satisfy the 'Froissart Bound' given in equation \'

|A (s,£=0) | < const.s. (logs)? s - = s
/

Certainly the behaviour of the scattering amplitude at high energies,
from the exchange of a fixed spin o = 2 particle in the forward direction
[:t = 0_],violates this bound. The problem has arisen because the spin of
the particle is assumed to be a constant, not only when the particle is
produced and is real (t=m?) but also when it is exchanged and is virtual
(tg0). In terms of the Mandelstam representation particles with spin
greater than one cammot be represented simply by pole terms.

A possible way out of the difficulty was proposed by Chew and Frautschi,
who translated some results of T. Regge in potential scattering to the
relativistic situation. The amplitude is expressed in terms of its singul-
arities in the complex angular momentum plane (f2-plane),these singularities
are supposed to be poles giving contributions to the amplitudes of the form

Equation VI

P (Cosb)
A(s,t) = B(k) £

SRR B(s,Cosb) VI

where » and 8 are the positions and residue of the pole in the complex
plane. As the centre of mass energy 't' varies, the pole moves in the com~
plex &« plane along a trajectory £ = a(t) and when & passes through the
physical integral values we have a bound state pole. The problem, arising
from high spin particles, is then averted by requiring a(t) < 1 in the $
channel physical region {t <O s > 0}.

It is now generally believed that the strong interaction forces are
due to the exchange of these 'Regge Poles'. Such a prescription gives
definite predictions for the behaviour of the high energy scattering ampli-

tude and the Regge hypothesis has been successful in the correlation of much



high energy scattering data.

Most of the interest in Regge theory has centred on the phenomenologic-
al implications of Regge theory rather than its relation to the fundamental
dynamical principles, In fact it can be argued that our understanding of
the fundamental dynamics lying behind the success of Regge phenomenology has
made very little if any real progress since the introduction of Regge's
ideas into the S-matrix. Such a situation is not surprising when we hope
to arrive at the dynamics through phenomenology and the latter is in no way

complete.,



CHAPTER 1



GENERAL KINEMATICS

In high energy scattering experiments, a beam of charged particles is
scattered off a fixed proton or neutron target. In a diagramatic represent-
ation of the scattering event, for a non-production two body process, there
are two particles entering the interaction region in the initial state and

two particles emerging in the final state.

The single diagram can describe the three processes I, II and III

a+b->c+d I
c->b+ad II
a+d-c+b III

It is convenient to label all the particle momenta as ingoing and pa, pb,

pc, pd denote the four momenta of particles a, b, c, d respectively.




pa pc

pb pd

FIG.2

(11 2]

The following three invariants s, £t and u are defined as below,

where the second equality in each case follows from energy momentum conserv-

ation:

pa +pb+pc+pd=0 1.1
s = - (patpb)? = - (pc+pd)? (a)
t = - (patpc)? = - (pb+pd)? (b) 1.2
u = - (pa+pd)? = - (pc+pb)?2 (c)

It is usual to discuss the scattering process in a particular frame of ref-
erence, the two most used being the centre of mass frame (c.m. system) and

the laboratory frame (lab. system).

CENTRE OF MASS FRAME

In the centre of mass frame the total three momentum of the ingoing

particles is zero and hence also of the outgoing.
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FIG.3

The three momenta of the ingoing particles are denoted by q and -q and
similarly those of the outgoing by q' and -q'. Writing the four momenta

explicitly.

pa = (-Ea,q) pc = (Ec,-q')
1.3

(Ed,q")

pb = (-Eb,-q) pd

where Ea, Eb, Ec, Ed denote the centre of mass energies of the particles.

The mass shell constraints require that:

ma?2

|

Q
[N

1]

_paZ = EaZ

_pr = Eb2 - q2 = mb?
1.4

pc? = Ee? - q'2 = me?

_de E4d2 - qv2 = md?2

where ma, mb, mc, md denote the particle masses. The invariants s, t and

u, expressed in terms of the foregoing are given in equations 1.5

s = - (pat+pb)? = (Ea+Eb)?2
t = - (patpc)? = (Ea-Ec)? ~ (g-q')2 1.5
u = - (patpd)? = (Ea-Ed)2 ~ (g+q')?



11.

LABORATORY FRAME

In the laboratory frame the target particle is at rest. The energy,
three momenta of the incident and outgoing particles are denoted by WL, q,

and WL', qL' respectively.

FIG.4

The four vectors pa, pb, pc, pd are written explicitly as

1]
]

pa ('WL,qL) pc (WL' ’-qL' )

1.6

pb (-Mb :O) pd (wL+ Mb_wL' ’qL' -qL)

The invariants s and t are given in terms of the laboratory parameters in

equations 1.7

wn
i

- (pa+pb)? = (W +Mb)? - qp? = Ma? + Mb? + 20, Mo

L
1.7

fe X
\

- - 2 - ' 2 '
(pat+pc) ZWL WL + 2Ma‘ + 2ngL CoseL

qp and o (the laboratory scattering angle) are expressed in terms of the

centre of mass parameters by equating the invariants as defined in each frame

of reference. Simple manipulation yields

=W
= 5 q 1.8

where W = Vs is the centre of mass energy .
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s=M2+u2+2MwL 1.12

where WL is the pion laboratory energy.

The range of the variables s, t and u, which correspond fo a physical,
energetically possibible ffocess, is termed the 'physical region' for that
process, A Mandelstam ’ diagram can be constructed for the three invari-

ants in two dimensions by drawing the axes s = O, t = 0 and u = O to form

an equilateral triangle., Fig.5.
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The s-chamnel physical region is defined for ag 7 O and -1 ¢ cosd < 1. The

values of the invariants for this range are:

n_p—>n_p S}(M+u)2'4<1;\<t\<0 oeno- 1

Similarly the physical regions of process 2 is given by

n+p > n+p u 2 (M+u)? t

/A

and the physical regions of process 3:

7T > pp t > 4 M2 S

/A

SCATTERING AMPLITUDES - T MATRTX

The S matrix element <f|s|i> is the probability amplitude for an init-
ially observed free particle state |i> to be observed as the final free
particle state |f>., There are two distinct ways in which this result can
come about: the first is that the particles do not interact at all, the
amplitude for this being simply <f|i>; the other way is through an actual
interaction of the particles and the amplitude for this is denoted‘by i

times the so called T matrix element <f|T|i>. The total amplitude is written

as a sum of these separate amplitudes.

<f|S|i> = <f|i> + 1 <f|T|i- 1.13

The aggregate of T matrix elements defines an operator T in terms of which

Equation 1.13 can be written

S=1+1iT 1.14

C4]

For pion nucleon scattering the S matrix can be written
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C M2 T =
S = §f1 - J_(2TT)L+ 64 (p2+QZ"pl'Q1) E1E2W1W2J U2 T Ul la.].5

where pE, pyE, denote the four momenta and energy of the ingoing and out-
going nucleon and q;W,, g,W, denote the four momenta and energy of the in-
going and outgoing pion.

U; and U, are the spinors in the intial and final state. Momentum con-
servation: pj + Q) = pp + Q, permits only three independent four vectors

to be constructed

P=1Y (;p1+p2), Q = )b (@1+a2)s K = )5 (@1-a2) = }o (p2-p1)
1.16

The mass shelf constraints (see equation 1.4) allow two scalars only to be

constructed from P, Q and K, and these are:

v=E2 g | 1.17

Consequently the T matrix can be expressed as a function of v + K? only.
Since the T matrix must be invariant under Lorentz transformations, it
is necessary to express it in terms of invariants constructed from the in-

dependent four vectors P, Q and K and the Dirac matrices Yu where:

"
O

{1 y.p; t M} u;
1.18

t
O

{i YDy + M} Uy

The invariants constructed from i y.P, and i1 y.K can be taken through the
matrix element until they act on the final and initial state spinors, Equat-
ion 1.15, where from equation 1.18, they give a constant. {The spinor norm-
alisation is upu, = uyu; = 1},

The only independent scalar that can be constructed is i y.Q and the

T matrix is written:
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T = -A + iy.Q B 1.19

where A and B are ‘nvariant scalar functions of v and K? {simply related to
s and t}. A is independent of the nucleon spin and B is associated with

nucleon spin by the factor v.Q.

HELICITY AMPLITUDES

The free particle states |i> and |f> in equation 1.13 are constructed
from the combination of non-interacting single particle states. A single
particle state can be labelled by |j,m ; 5,T> where m is the particle mass,
p the momentum, j the total spin and t the spin index. ’These vectors
correspond to an irreducible representation of the Lorentz Group and rep-

[2]
resent the direct product:

jsm 3 Pyt> = |pom> O |j,1> = |P> @ | g 1.20
| Ips | | |

where a labels the states of the little group of P.
It is necessary to correlate the spin index with the direction of
spin of the particles. It is not possible to construct simultaneous eigen-

states of the momentum operator with the z component of spin since.
[p.7] #0.

However it is possible to construct simultaneous eigenstates of the momentum

operator and the projection of spin along the direction of motion.

i.e. J.P Im:j > 5’T> = T.|p| ]m’j 3 53T>
and A= J.p is termed the helicit 1.21
TBT‘ ; yn o

A non-interacting two particle state can be describzd by the direct product
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