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ABSTRACT.

This thesis is in two parts. 1In the first chapter
we.consider the problem of the laminar mixing of two
different gases in a wall jet. Solutions of the boundary
layer equations governing the radial laminar flow of a
mixture of two different gases forming é wall jet are
obtained. Attention is centered on that part of the flow
where the concentration of one gas in the mixture is small.
Further, to investigate what effect the dlffu31on of one
gas into the other has on the velocity profile, the
dominant perturbation term in the stream function is
obtained by expanding the latter in terms of a parameter
whose magnitude depends upon .the concentration of the
gas from the reservoir in the mixture.

The second problem, discussed in Chapter two, 1is
that of heat transfér in a radial liquid jet. The
technique used to study this problem is similar to that
employed by Watson in his investigations into the velocity
distribution in a radial liquid jet. Two specific
'examples;are treated in detal and the resulté obtained,
for the temperature distribution in the jet and heat-

transfer across the wall, are presented graphically.
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GENERAL INTRODUCTION.

This thesis is in two parts. In the first chapter
we consider the problem of the laminar mixing of two
different gases in a wall jet. Solutions of the boundary
layer equations governing the radial laminar flow of a
mixture of two different gases forming a wall jet are
obtained. Attention is centered on that part of the flow
where the concentration of one gas in the mixture is small.
Further, to investigate what effect the diffusion of one
gas into the other has on the velocity profile, the
dominant perturbation term in the stream function is
obtained by expanding the latter in terms of a parameter
whose magnitude depends upon the concentration of the gas
from the reservoir in the mixture.

The second problem, discussed in chapter two, is
that of heat transfer in a radial liquid jet. The
technique used to study this problem is similar to that
employed by Watson in his investigations into the velocity
distribution in a rédial liguid jet. Two specific examples
are treated in detail and the results obtained, for the
temperature distribution in the jet and heat transfer

across the wall, are presented graphically.



CHAPTER _ONE.

LAMINAR WALL JET MIXING OF TWO DIFFERENT GASES.

1. INTRODUCTION.

This chapter is concerned with the laminar mixing of
two different gases in forming what has been described by
Glauvert as a "wall jet", namely, a jet of gas striking a
wall at right angles and spreading out radially over it in
the atmosphere of a second gas at rest. Glauert (1) first
drew attention to such Jets of incompressihle fluid spread-
ing out radially and mixing with a similar fluid at rest,
he set up the appropriate momentum and continuity equations
and obtained exact solutiong for the radial and plane flows
in the form of similarity solutions. Later Riley (2)
extended thé concept and studied the influence of
compressibility on a laminar radial wall jet.

In the present problem, besides the usual variables
such as the velocity components, density, viscosity,
pressure and temperature, a further variable, namely, the
concentration of one gas in the other must be introduced
since the fluid in the jet is taken to be different from
that in the surrounding stream. Thus, to the fundamental
equations governing fluid motion, one has to add a new
equation, namely, the equation of diffusion. Chou (3)

first introduced this additional equation into the study of

PN
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laminar jet mixing of two incompressible fluids. In
addition to the boundary layer assumptions and that of
incompressibility of the fluid, certain other assumptions
are made about the constituent gases that enable us to
ﬁresent the diffusion equation in a convenient form, These
arey, (1) that the constituent gases are perfect gases,
(ii) that there is no chemical reaction between them, and
(1ii) that their mixture is a continuous medium. Thus
they obey Dalton's law of gas mixtures which now states
that the volume of a mixture of two or more perfect gases
is equal to the sum of the volumes which they would
separately occupy when subjected to the same pressure.
For our purposes, it is therefore sufficient to use the
relations for the viscosity and other properties of gases
and gas mixtures given by simple kinetic theory.

In this chapter the appropriate equations of motion
for flow in a radial wall jet are formulated and reduced
to those for plane flow by a transformation embodying the
Howarth and Mangler transformations. We then consider a
solution at a large distance from the jet axis where the
molecular concentration of the gas from the reservoir is
small, so that, as a first approximation we take the density
of the'mixture to be equal to that of the surrounding gas

there. This further simplifies the equations of motion.

3.



In fact, the momentum equation then becomes identical with
that in Glauert's paper and his solution of the momentum.
equation is appropriate and is made use of in solving the
diffusion equation after choosing a suitable form for the
molecular concentration.

In order to determine the effect of diffusion on the
velocity profile, a method similar to that employed by
Crane and Pack (4) for two-dimensional free jet mixing of
two different gases i1s used. By this method the stream
function is expanded in terms of a parameter which depends
on the concentration of the gas from which the jet is
initially formed in themxture. Only the first term in
the perturbation to the stream function is considered in
detail,

Throughout this chapter we assume that the two gases
are incompressible, that as in (1) and (2),the boundary
layer equations are appropriate for describing wall-jet
flow and that the pressure and temperature are everywhere
constant.

The type of flow envisaged in this chapter may be
realised in practice on the roof of a mine shaft when a

stream of methane is released from the floor or walls of

the shaft.



2., EQUATIONS OF MOTION.

On boundary layer approximations the equations of
momentum and continuity for a laminar radial wall jet
together with the equation of state, for constant pressure

and temperature, are

ow du 0 u
Puzs vPY % " 53(/”3‘% , (2.1)
_aaz(Pu.x) + %C{Dvx) =0 » (2.2)
and PR = Crustaunt ’ (2.3)

where x}& are the distances measured along the wall from
the jet axis and normal to it respectively; w ,v are the
éorres*ponding velocity components; F}/" the density and
the viscosity respectively and R the gas constant of the
mixture.

We shall refer to the gas issuing from the reservoir
as gas "1" and that occupying the surrounding space as gas
non,  The quantities/"’ and P for the two gases will be
denoted by appropriate suffixes.

If now in the mixture the mass concentration of gas
1 be denoted by C, , we have for the equation of diffusion

of gas 1 into gas 2 .
(c ux) _,_P_(c,—dx)_ D 2¢ (2.4%)



Here D,, is the ac-wise co-efficient of molecular diffusion
and is taken to be constant following Jeans (5).

Let N be the total number of molecules in unit
volume of the mixture under given pressure and temperature,
N, » N, be defined similarly for the two gases and My Ay
be the masses of single molecules of the constituent gases
respectively, then

N = Nl + NZ_ . (205)

The molecular concentration ¢ of gas 1 in the mixture is
now defined as
c=mN/N o,
so that, for gas 2 the molecular concentration is given by
1-¢ = N;/N
The density P of the mixture is given by

P = Niwy + Ny .
- N’“"’z(‘* /bc) (2.6)
- Pz (H' /30' ) ’
where /5 - '”""/’""1 -1 .
According to the kinetic theory of gas mixtures,

the co-efficient of viscosity,/", of a mixture of two

gases is given by (see (5) ) /v;

/ 2
[T (D) TGS (2.7)

c
where 44,1) 142, are constants associated with the two gases.

Since in the region under consideration N,/N is small, ¢

6.



is small there. We can, therefore, write (2.7) in the

form
/m*: ,/:_”/j x (1+¢4¢)

t =0 Cha ) - Ao

Writing (2.6) as
p = N'M’z (1+/3»c);_- N’hv/ ,

the equation of state (2.3) becomes

Nan' R = NQI: Corwotad | (2.8)

where

where 02 is Boltzmann's constant. Equation (2.8) now
shows that in a region of constant pressure and temperature
N:WM,
and consequently C o< ¢, . (2.9)
Equations (2.2), (2.6) and (2.9) are now used to

simplify the diffusion equation (2. 4) which becomes

3c+-o-—- = (/+/3 )?c . (2.10)

&

The equatlon of continuity (2.2) is satisfied by

introducing a stream function %ldefined by

_ Y _ Y.
Pca.x._ 5;; ) f>1ﬁmz S v

Using the Howarth-Mangler transformation

= "'LJLF*”(} (2.11)
3



where fo*: f’/fz s the momentum and the diffusion equations

(2.1) and (2.10) now become respectively

Y _ 2Ty
22 2802 2¢ 92* /2 -az( ’ (2.12)
04 ¢ O @c _ * ac

S R T A 'bz( 213

where O':Dlz.@_//;_’ - D/z/")z is the Schmidt number, YV,
being the kinematic viscosity of gas 2. Equations (2,12)

and (2.13) are effectively the two-dimensional form of our
equations of motion.

Since there is no diffusion of molecules across the
wall, _%_‘;_’ -0 at the wall and for large values of 3 Y
and so, the molecular concentration ¢ - 0 as y - 0.
The boundary conditions on the velocity and the

concentration are, therefore, as follows.

At 3:0, w="yv=0 |, Ef; .
o4 2
and as 3—-)00) w = o , ¢c Do

In terms of the new variables they become
at Zz=0 |, Y=zo , Zl -0, —=20.

and as Z—>°°, ;a__"/J__)o cC —> o .



3. SOLUTION OF THE EQUATIONS.

Since the transformed equations (2.12) and (2.13)
are now reduced to those for two-dimensional flow and since
C 1is small in the region under consideration, we take as a
first épproximation to the solution of (2.12) Glauert's

: *
solution, where P =y, which is

= (4o f16)° ) > v =GR ) 1),
7:(325/::3 3)7}2 ’

where the constant = is the flux of exterior momentum

(3.1)

flux at infinity. It may be noted that this quantity is
constant everywhere if f’/"':f(u)(see (1) and (2) ). The

function f(’l) satisfies the equation

" / /2
f +ff +2f =0 . (3.2)
f(2) :f’(O) =0 , J[/(od) =0
‘with )((oa)zl, Glauert obtained the solution of equation
(3.2) in the following form
f=9" »  §=30-%°)

(+z+21) S RLY (3.3)
7:&? (- 4) + V3 2+F

To our first approximation with p*:h the diffusion

equation (2.13) now becomes

% 9¢ % 2c _ 6-9:9. (3.4)
22 28 2¢& 22 /: zZ?



To solve (3.4) we seek a similarity solution for the

concentration in the form
¢ = _Glz) , (3.5)
g”n«

where G(?z) and m are to be determined from
/" / /
cG +fG+h4m{fG =0 ,

Glo) =0 . Gl9=o (3.6)

the primes denoting differentiation with respect to 71 .
All possible values of " are determined below from the
eigenvalue problem posed in (3.6). However, one value

of m is given immediately from

M=(/+/3)sz:w Ly (3.7)

as :é, equation (3.7) merely expressing the fact that
the total mass flux M of molecules of gas 1 is constant.
It will be shown subsequently that the solution (3.5) with
= —’47 is the most important solution as ¢ —> o6 -
With _/m;:z& equation (3.6) becomes

O"G”-f-fG/-f- f,G -6 ,

G/(O):o , G(=8)= o R
with solution.

1
G=Al-g2)° , (3.8)

where /4 is a constant. Solution (3.8) is displayed

graphically in Figure 1 for o =217,2 .,
10.



To find the general solution of (3.6) it is

convenient to change the independent variable from‘Q to ff

where
%.—33
when (3.6) is reduced to the hypergeometric equation

A6 (s'cr LG,
f(/’f) 7y +{ 3)£} 3 G =0,

6

with boundary conditions
2

/3
L6 Y
£ T= ot £ =0,
o~ G zo ot #-.

The solution of equation (3.10) is, using the usual

notation,

G=AF(o,d,% £)+ B A sy L “55254)

where 2
a+ﬁ: —é_—

oh -~ &

3o

¥ o

2

(3.9

(3.10)

(3.11)

(3.12)

(3.13)

and A ég are constants to be determined. The first of the

boundary conditions (3.11) gives 63:0 and using the

second of (3.11) we have

F(“)’ej 73 ; /) =
C3) (1)l
(-a-3)!(-4-3)!

= Y3 + A ,

11.

on ,

therefore,



where v z0,l,2,3, ~~--" The first of the relations

(3+13) now gives

_ = - (T/r"‘“&) >
and hence from the remaining relation in (3.13)
”n:3wéhﬁﬁﬂé+4d : (3.1%4)

Substituting in (3.5) the value of &(?) obtained from
(3.12) with B =0 and the values of a.,£ and s just

obtained, we get,using the identity

FCh w3 737) = -0 T TR (r-ba 05 %),
230G
Z(’-f)%v FE4, 2ok +43,0(%%) . (3.15)
where ‘4k ¢, are constants. The hypergeometric function
in (3.15) is now a polynomial and is related to the Jacobi

,?)
polynomials (1-2 f) by

.3 |
B, (-28)= (‘*")’F( L, Ryiegei ey £) . (3.16)

The Jacobi polynomlals in (3.16) are orthogonal in the
interval (-1, l) with the weight function (7- f)(""f) f_, Ny
Therefore, if the concentration is given at &= §° ,63 c,=C 5;,1))

the constants /4&, are determined as

@-4)@-5+ f)/ww)f LR ALY, 7
s JEST L1 (2 +3)! £F< R

12,



In particular, when £ -o, m_—_{-f and the solution (3.8)
is recovered. This solution is thus seen, from (3.15), to
provide the dominant term in ¢ for large g

To make the velocity profile truly representative of
jet-mixing of two different gases, in other words, to see
what effect the diffusion of gas 1 into gas 2 has on the
velqcity profile, the dominant term in the perturbation to

the stream function is obtained, following Crane and Pack (%),

by writing
Y= (ko /S) [ﬂ’l)* A (c/f) R+ - - - ] © (3.18)

Substituting (3.15) and (3.18) into equation (2.12) and
equating co-efficients, F(]) is found to satisfy the
differential equation
17! 1/ /1 / 3/2

S X (A0 I
where the primes denote differentiation with respect to 71
and ‘n:/3+d—. The boundary conditions on f are

/ /
F;(o)z F;(o) -0 R F,.(od) - 0 . (3.20)

Writing P = }'—"/ and changing the independent variable once
more from 71 to £ wusing (3.3) and (3.9), equation (3.19)

becomes

4
3#(1- f) +z(/— ) Piiop= -2n{ "§( -%) (/—‘#f)} (3.21)

13.
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Since (/-7@)(/-—4;(-) is a complementary function of
equation (3.21), the substitution
P=(-#)(1-4£)H

reduces 1t to

3£(r £)(/-4£) +2[/—£)(18£-za£+:)
:‘2"’:&34{(/ £) (/ ‘ff)}

- which on integration gives
, :

z-

1_
AH_—anf(-2)_ 4o (87 s (I- f)
Mo "9 472 (I+29) {‘/30-4@ (+26)(1+ ES) f%(, ut)*

Therefore,

' = (-2)(-4t) H
:_——(/ £)(1- 4£)£B£<3)6')+§[£)J

where Bf(ﬁ)%)zf 7L (,_ x) a(x_, and @ is defined

as

L+
I (/ £) ot j (/ :é) "ot 4.1
4( 1/30 t/f)’- (/+7_0‘) "_—""z_/3(,_4£) ’ 1§v\/ &

é - (t+20)(1+35)

) 16 (/—f) aéf (’ f) dt 7'.1)!‘
—(I+z<r)((+3o')fl fa/g(,_t,‘f)l (/+7.o*)i fys(/ Qf) K 60‘/ 4

the constant K being determined from the condition that £

/

has continuous derivative at f :{}

In particular, when ¢ =1, the solution simplifies

t JA
’ Fle - 22450 4)(1- 34)
/



At each stage of the solution results for the radial
wall jet may be deduced from the transformations (2.11),

(3.1).

15.



4. RESULTS.

The wall jet function (3.3) found by Glauert is
shown in Fig. 2. 1In Fig. 3 the perturbation profile
is shown for 6 =21,2. The parameter ¢ is defined as Dl?—/”z
and interpreting this quantity as the ratio of two
diffusivities, we would expect the jet to thicken as a
increases, Fig. 3 indicates that this is so.

It can be shown (see ref. 5) that ¢ is a decreasing
function of #nyfm,. Thus, as ¢n,/n¢2 increases, the
velocity profile sharpens and we would expect the increment
of skin friction to increase. To test this hypothesis we
choose a simplified model in which the radii of the

molecules of the two gases are the same and in which

1
Diy= 01848 , (14 »rafomy)? . (4.1)
Equation (%.1) exhibits the correct dependence of Dy, on
/»@1/¢n%,, the numerical factor is chosen so that the
co~efficient of self-diffusion suggested by Chapman
(see ref. 5) is recovered when Py =y . With these
simplifying assumptions the increment in the skin friction

is proportional to & where

’4‘071« 0'(1"‘6—)

T (1+29)(1+ 30)
For values of g in the neighbourhood of unity in

which case the masses of the molecules in the mixture do

not differ greatly3AA is an increasing function of 4u,/%¢2

as we anticipated. 16.
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CHAPTER TWO.

HEAT TRANSFER IN A RADIAL LIQUID JET,

INTRODUCTION.

A radial liquid‘jet is formed when a smooth jet of
liquid falls vertically onto a horizontal plane and spreads
'out radially over it, as for example, water falling from a
tap to the bottom of an empty sink. The liquid spreads
out in a thin layer until the depth increases suddenly
forming a hydraulic jump. In order to discuss the motion
of the fluid in the thin layer before the hydraulic jump,
the aésumptions of boundary layer theory are applied which
require that the Reynold's number of the impinging jet should
be large. The radial liquid jet was first studied by
Watson (1) who found a similarity solution of the laminar
boundary layer equations governing such flow. He also
considered the initial growth of the boundary layer from
the stagnation point where the similarity solution does
not hold, by approximate methods. These results are
briefly discussed in Section 2. Later it was investigated
by Riley (2) in his detailed study of radial jets with
swirl. The boundary layer originating from the central
stagnation point gradually grows in thickness, as more and

more liquid is affected by viscous shear stress, until it

absorbs the whole flow. In studying the velocity

18.



distribution, Watson divided the flow into four different
regions which pass continuously into one another.

(i) The region near the central stagnation point
where the radial distance x = 0(6!4) ) a, being the
radius of the impinging jet. In this region the boundary
layer thickness is O(”“‘/Uj/z where U, is the speed of the
impinging jet and Y 1is the kinematic viscosity.

(ii)  When x> o, , the conditions in region (i)
are not important and the boundary layer grows like the
Blasius boundary layer on a flat plate.

The approximate method ﬁsed by Watson for this region
is briefly discussed in Section 2. A similar method is
used in Section U4 ﬁo describe the temperature distribution
in this region.

(iii) As 2 increases, the viscous stresses affect
more and ﬁore fluid across the flow and the boundary layer
increases in thickness until it absorbs the whole 1ayer of
fluid.. The velocity profile then gradually changes from
Blasius type to the similarity profile mentioned earlier.

(iv) At large distances from the stagnation point,
the way in which the flow originéted becomes unimportant
and the final similarity form is attained.

The hydraulic jump associated with this type of flow
will ultimately>terminate the region of flow under

consideration.

19.



The prohilem of the distribution of temperature in
a radial liquid jet is studied here by conforming to a
similar division of the flow. In Section 2, the equations
of motion are stated and the similarity solution of the
momentum equation first found by Watson is briefly
discussed. In Section 3 similarity sodutions of the
energy equation appropriate to region (iv) are obtained
for a wide variety of temperature conditions.

In the first of the two examples described in
Section 4 part of the wall is assumed to be thermally
insulated, the rest being maintained at a constant
témperature; a solution of the energy equation is found
for this latter part which is chosen to correspond to
region (iv) described above. In the second example the
whole wall is maintained at a constant temperature so
that both the temperature and velocity distributions
have to be studied in all the four regions described
earlier. Regions (i) and (iii) are neglected following
Watson and Riley (3). In region (ii) an approximate
method involving the heat flux equation and two poly-
nomials of the fourth degree for the temperature and
the velocity functions are employed. The neglect of
regions (i) and (iii) and Watson's approximate method

for the velocity distribution in region (ii) are discussed

at the end of Section 2.
20.



We assume that the contribution to the temperature
of the'liquid in the jet due to viscous heating is
negligible compared'to the applied heating and it is ,
therefbre,ignored while calculating the temperature
distribution in the liquid in the examples discussed
above. Throughout this problem the boundary layer
equations are assumed to be appropriate, temperature
differences are taken to be small and /”, the co-
efficient of viscosity, and f, the density, are assumed

tq be constant.

21.



2. EQUATIONS OF MOTION.

Using boundary layer approximations the momentum,
continuity and ehergy equations governing the incompressible
laminar flow of a ligquid jet striking a plane horizontal
wall at right angles and spreading out radially over it ,

are respectively

2
“%—i+ﬁ%;= 9%(—;’3 ) (2.1)
—D—B-;C(LLZ) +§a-g('\91.) =0 ) (2.2)
ST 2T _» 2T  »fouY
_— e e _____'(L .
and u-é;_+—135_3_ = 3’1+ S(T')X) R (2.3)

where x,4 are the distances measured along the wall from
the jet axis and normal to it respectively; «,V are
the corresponding velocity components, and ¥ ,T,9, S
denote respectively the kinematic viscosity, temperature,

Prandtl number and specific heat af—constant—pressure of

the liquid in the jet. The boundary conditions are

w=v=0 a2 a, =20 ’ (2.%)

2%’ = 0 ot 4= ) (2.5)

an ol _, af = N (2.6)
d o= d=¢()

22,



Other boundary conditions on | necessary to specify the
problem completely will be introduced later. Condition
(2.5) expresses the fact that the shearing stress falls to
zero at the free surfa'ce_ Yy=¢(») and (2.6) states that
there is no heat transfer across the free surface. With
the boundary conditions (2.k4) aﬁd (2.5) Watson has shown
thgt a similarity solution of the momentum equation is

available. This may be written as

= 228¢0)

(2.7)
_ 3/3&1
7[ T Y(x? f’)éf' ?
where (Y is the stream function defined as
wx=2F 1)9(_——2! ’ (2.8)

oY ? —T 2%
and ,Z is an arbitrary constant length which depends on
the initial development of the boundary layer. Watson
estimates
L= 0567 a, R
where R is the jet Reynolds number 2re | The

Ya,
constant & 1is given by the condition of constant volume

flux per radian, namely
P(*)

S u.x—olgzaz . (2.9)

(<]

The function jf satisfies the ordinary differential

equation

23.



1744 / 2
f + 3f =0 ,

4 "
f(e) = {»(o) =0 j'(’)z o , (2.10)
the free surface having been chosen to be 11;1 . It is

convenient, for what follows, to make the transformation
«F
=
=1, > (2.11)
where o, 1s a constant chosen so that
/
£,00=1 - (2.12)
Thus the equation satisfied by f is
' pr A
f 2 2 f =o (2.13)

with the same boundary conditions as for f in (2.10).

Integrating equation (2.13) once
/ 13\ '

— — 2.1)-+

£-d1(1 f1 ) , (2.1%)

‘ 1

| 3) (2.15)

and so %72 O_w‘)¢w , 2.15

[
which with (2.12) gives

((7 “’3) 1”“" r4o2 . (2.16)

Also from (2 1),

SV |
_()‘(’2)"“1 qffO J‘ 1"3‘/7;0(’2 . (2.17)

The velocity function f is displayed graphically in

Figure 1.

o4,



If x»a,, conditions prevailing in the region (i)
where 7c::O(aQ are not important and in fhe approximate
analysis discussed below and in Section 4 region (i) is
ignored. For his approximate solution in region (ii),

Watson used the Kdrmdn-Pohlhausen method with

U= U°f,(’l) s "z = —g-' ) (2.18)

where f: (q) is the similarity profile defined by (2.15)
and 5‘ is the boundary layer thickness. This technique
has the effect of suppressing region (iii) in which the
velocity profile changes to its final similarity form. 1In
fact,Riley (3) has shown that in region (iii), when the
boundary layer fills the whole of the moving layer of
fluid, any disturbance to the similarity velocity profile
in a radial liquid jet is ()( -45) thus the final
similarity form is attained very rapidly. Substitution

of the approximate velocity profile (2.18) in the

momentum integral equation for radial flow

§
(D), o e

gives, using (2.17),

(= Jox)y (L8, Sy 2

373 oﬁ )
and hence  »“”.$44' _‘“A _ :
(3 L3 _
NI/ LIS T 2 , (2.20)

(N-\/30() U

where ( 1is a constant. A consideration of the order
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3
a
of magnitude shows that C = O(—;ﬁ relative to the

other terms there and hence can be neglected when x)d)a, .

Thus when 2%,> XM @,

§* /oo vxal , (2.21)
S (- /3,) 26

where x, 1s the station at which the boundary layer just
absorbs the whole flow., Watson calculated the value of x,
from the condition that the volume flux through‘the
boundary layer regches the value @, there, and thus

obtained on the basis of the above épproximate solution

/K|

x, = 0-3165a., R (2.23)
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3. SIMILARITY SOLUTIONS OF THE ENERGY EQUATION.

" In region (iv) where the solution of (2.1) and (2.2)
is given by (2.7) and (2.8), the energy equation (2.3).

may be writteh as

DT d‘(x +£3) 27 Q, o (3.1)
’a-’z f Tr‘f ’)1$<13+£3) f
with the boundary condltlon
°T

Th ot n=1. (3.2)
At the wall either the wall temperature T, or heat
transfer which is proportional to CQI) , may be prescribed.
In the examples discﬁssed in Section 4, we shall restrict
ourselves to the case of constant wall temperature or, if
the wail is thermally insulated, zero heat transfer.

A particular integral of (3.1) can be found in the

form
-2
T= T7_+ Co(xz+£3)eo(7) 9 (3.3)
where T;.is the constant wall temperature and (C, is a

constant. Equation (3.1) also has complementary functions

-of the form
~
T=c,+C,(x*+2> 6,(7) > (3.1)
with 8, satisfying

0! ¢ 3k f0, =0 - (3.5)
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A complete picture of the temperature distribution
prevailing in a particular problem can thus be obtained
by adding to the particular integral (3.3) appropriate
complementary functions of the type (3.4).

The effects of viscous heating, wall heating and
initial heating will now be studied separately.

(1) Viscous Heating.

To study the effects of viscous dissipation on the
temperature diétribution in the jet, we require a particular

integral of (3.1) in the form (3.3) where, with

e - _ 21%a
. o - 77,[/ ))15 ’_
Q(Q) satisfies
2
" / 4
with boundary conditions
either 8,(c) =0 if the wall is maintained
° at constant temperature, (3.7)
or, 9'(°)=o for thermally insulated wall,
(-]
and 90’(1) -0 from (3.2).

It is convenient to change the independent variable in

(3.6) and (3.7) from 7 to a new variable £ with

/9 ' 8)
{- =f1 . - (3.
From (3.8) and (2.11) we have
13 U
A osat(-4) L, (3.9)
d'TL- 3 1£—C1 £) df |
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which when substituted in (3.6) gives, as the equation

for B, ,

£6-H) LB (2 1) %0y 50, “‘weo £ . G0

The boundary conditions (3.7) now become

A}

o, ()= o ’
2
[fgfj =0 , | (3.11)
o d [(1 0L9° = ° ’

A series solution of equation (3.10) gives

O‘o(# ':% o(~ %- adc
0= T £ 2H0- £ [1+ 25 L 4

+a(a+9,ﬁ(£+1)c(c+1)i o _:)

oL (4+1) e(e+1) 2!

where

a._A: ”_2_(9.1+./1+4g<r) , b :115_(21— ./1+4ao—)

e =1 , 0(.:—37— o -Q,-:.—g—-.

The infinite series inside the square bracket on the right-
hand side of the solution above is the generalised hyper-
geometric series, With the usual notation the solution

can, therefore, be wrltten as>
2

4
> » C ' '£'
0 = 0'0<1£ +30"0<1<1 q-),@ (“' L. e ). (3.12)
z

° ’

For o =1 solutiop (3.12) gives g, —_f as indicated

by the quadratic term in the well known Crocco relation,

29.



for o=1 ,
L

T+-23'§=A+'Bu, , 3.13)

where A and B are constants.

We expect the effects of viscous dissipation in a
liquid jet to be small and indeed in what follows we shall
assume that it can be neglected compared with the applied
heating.

(ID) Wall Heating.

When the wall is maintained at a constant temperature
T}_, we need a complementary function of the form (3.4)
with K=o . Thus |
T=T, +(Tn."T1) & ("l) ’
where T, is the temperature of the incident jet. From

(3.5), §(n) now satisfies
/"

E%Cq):o ?

which, with the boundary conditions
!
6()=1 , l)=o0 ,

has the trivial solution

61:' 1 .
This solution reflects the physical situation that
ultimately all the fluid is raised to temperature Ty .
The manner in which the fluid attains this constant

temperature depends upon the initial heating of the fluid

the effects of which we now consider.
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(IID) Initial Heating.

We now require further complementary functions of
the type (3.4). Thus when viscous dissipation effects
are negligible we may write the temperature as

T=T,+C(x ls)-oéz(’z)
where 8,(%)  satisfies the differential equation (3.5).

We may note that if the liquid from which the jet is
formed is, as we shall assume, at a uniform temperature T,
and the wall over which the fluid flows is thermally
insulated then the fluid remains at constant temperature
as no heat is transferred to or from the fluid across
either fhe wall or free surface.

When the wall is maintained at constant temperature Ti,
the appropriate boundary conditions for 6, are the firgt
and third of those in (3.7). The transformation (3.9)

reduces (3.9) to the hypergeometric equation
£ (1- :é)é%-t-(—— £)°L32+°'°‘ez-o ) (3.14)
the boundary conditions now being the first and third of

those in (3.11). The determination of & in equation

(3.14) is an eigenvalue problem and in view of the form
of the boundary condition at f.—.1, it is convenient to

choose the following as the solutions of (3.14%)
1
21=F(P ?/J"i)' - ) ’

o~ 6,,= (1 ﬁ) F<_— ’—-7) 7_,1_;6) 7
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where f:,q/ are given by

P+7/:Z1' ? /97/ O(

The boundary condition at the free surface determines 0,1

o

(3.15)

as the required solution and that at the wall requires

that

1D
(0], 2 Er iy

which with (315) gives p,q,and x as
,b:aﬁ,-a--;-_— ’ ?)‘:—('z--v"%) ?

&= (1+24)(1+34) /o )
where 4_01 2,3, ~-—- . Therefore
0, = Z} aF(&+7,-4-5,101-4)
=0
/

24&F<£ L+2 ._.1-:é) ,

€525
where As are constant‘s. Thus writing J(x):(x3+,£3)/(1?+£3),

and including other constants in ,44, we have
..(1 +2R)(1+3R)fo
T=T,+# ZA" FCR.4+5,10-2) . (3.16)

£=e
For =1 the leadlng term in (3.16) is given by the

linear term in W in the Crocco relation (3.13). The
hypergeometric function in (3.,16) is a polynomial and is
related, by (3.16) of Chapter 1, to the Jacobi polynomials
B,U)?é?-f‘o which are orthogonal in the interval (-1,1)

with the wight factor (1-§)L(1+§)} » §= 2#-1. Therefore,

if the temperature distribution is known at any station x = X, ,

32.



the constants ‘44, can be calculated from

1 1
Az _GR+T)R-TI)IE-YI[T-T \ sy 42> 5
= . (== )(1- LR A+ 2. L $)dt(3.17)
T-T,  T&ICk+7)] °<T' Tz)z(:x,{) Feet iy

The heat transfer across the wall per unit area

is given by
_(1+28)(1+32)_,

=-(°T :“‘3‘/3(-3" ."g)!ﬁazxoﬁa‘zliig T
Qw (ﬁ 29 - — Cx,3+ ) (&_1/2)!(‘&-4/3)! , (3.18)

£ =0

where 'ﬁ is thermal conductivity.
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4, EXAMPLES.

Ars a first example we take the case where part of
the wall , x ¢ Xy, is assumed fo be thermally insulated
and the rest of it maintained at a constant temperature T, .
The end-point , X=X, of the thermally insulated part
is assumed to be in region (iv) as described in the
introduction. Therefore, in the regions (i), (ii) and
(iii) and in particular at =x = x, the temperature is
uniform everywhere and equal to T, , Thus the constants

1
As  occuring in (3.16) may be determined from (3.17),
1

with [(T T.)/(To- )] 1, as .

e 2+ DRI Vel s 2.5 1 .
T WE!CM%)! ( £) FERA+2 L £)elt . (h1)

The first six values of A4 are given in Table. 1 and

the temperature, calculated from the solution (3.16)
with these values of 44,, is shown as a function of 7,
in Figure 2 for different A(x)., A value , o =5
appropriate to water, has been chosen for the Prandtl
number. The heat transfer across the wall for x )%,
is also displayed graphically in Figure Y% where, for
convenience we have taken x,=x,

£ 0 1 o 3 4 5
;44/(7;_1;) +1.188 | -0.280 | +0.150 | -0.086 |+0.075 |-0.059

Table 1. Values of the constants Ag calculated

from (4.1). 7
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- As a second example, we consider the case when
the wall is maintained at a constant temperature
throughout; thus the temperature distribution in the
liquid passes smoothly through the stages (i) - (iii)
before attaining the similarity form in region (iv).
We have explained in Section 2 why regions (i) and (iii)
may be ignored and we have also discussed there the
’method employed by Watson for an approximate solution
in region (ii). To determine the temperature distribution
in region (ii), we use here an approximate method in
which both the momentum integral equation and the heat
flux equation - an integrated form of the energy equation -
are used. In order to simplify the calculation,poly-
nomials of the fourth degree are assumed for the velocity
and the temperature functions. The heat flux equation
may be obtained by integrating the enefgy equation with
respect to ¥ from y=0 to I neglecting frictional
heat. Thus

00
i(mx(T—'l’,)oCJ:Q—%x<%-; ). (4.2)

The velocity agg temperature distributions are assumed

to have the forms

w = Uo("’l" 7-7154- '7'4 ) , (%.3)
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T-T,= (Tz T)('-”zﬂ’z - ) (1.4)

where Q:—g; and TL 5. 5 and 5:,, being the velocity

and thermal boundary layer thicknesses respectively. The
ratio gT/S will be denoted by A., The form of the
temperature distribution function in (4%.4) is so chosen
as to ensure identical velocity and temperature dist-

ributions required for thé case of negligible frictional

heat with o=1,8.=8§ . ~  Inserting (4.3) and
(4.%) in (4.2) we obtain, on performing the integration,
2 d 2 1)1'_2.
AH(B) % (6x) = Iy 2X (4.5)
where H(A):..i _..?_A 1 A[f dm’ A1,
15 T4o0 180

Siole e Tt cnon i Tt ek bo fatmid frowe ol

' _3 3 9 3 3 11 '
and H'é‘é’)-—z){ ;—O/’Zg-i-# %ﬁ+1«30/;5’ W
Knowing g’ (%.5) is an equation for A, To determine §

we .substitute (4.3) in the momentum integral equation

for radial flow (2.19) to get
37 U, (o(g 5‘
315

2 420 vz
and hence 8 Uo -+ G ’

where C’3 is a constant whlch is zero for the reasons
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given in section 2. Thus

2 20 x
8 = %-_7 ‘Z)U ) (’4‘.6)

analogous to the result (2.21) obtained by Watson.
Equation (4.5) with (4.6) now gives
2 371 1
AH(A)= 315 o (%.7)

To solve (4.7) for A we agadin choose o =§  which
demands that we use that value of H(8) for which A<1,

as ST<S when o >1. This gives

A ~o570. (4+.8)

Since = we have, from (4.,4)
27/ S
LG -1+ %) *9

where A is given by (4.8).

For the reasons given at the end of Section 2,
region (iii) cén'be ignored and the approximate result
obtained in (%.9) may be matched with the solution (3.16)
at the station x=x, where the flow attains its
similarity form. Thus, in this case, x,2 X, and the
quantity x, is determined by the condition that the volume

flux through the boundary layer attains the value @y

there. Thus (2.9) with (4.3) and.(’+.-6_) gives
3
x,=02427 R, (4.10)
analogous to the result in (2.23) ‘Aobtained by Watson.
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To estimate £ we apply the condition that the jet thick-
ness is continuous at *x =X, Thus .
1
k20 9, 12 wu(xles)
. A Cv— - ? ()'+'ll)
37 Uo 3 3a/ xo
which, with (4.10) and remembering that an,:': 20 , gives

1
2:0-5‘5‘77 a_o@/a . (4+.12)

The constants ;44, in this case are given bvy (3.17) where

(H-) is evaluated from (%.9). The values of Az

T1 ~T1 x =X, '

found by numerical integration, are shown in Table 2 and

the temperature distribution calculated from (3.16) with -
. ’$

" these values of the /4;, is displayed graphically for

different values of A(®) in Figure 3.

0 1 2 3 n

+1.165 | -0.220 |+0.072 | -0.018 [-0.001

‘Table 2. Values of the constants Ag obtained
numerically from (3.17).

The heat transfer across the wall in this case is
also displayed graphically in Figure 4. For x L Xo
it is caiculated from the approximate solution described
above and for x> %, from equation (3.18).

The approximate method described here is inferior
to that of Watson's, described in section 2, since the
assumed quartic profile (%+.3) does not join on smoothly
with the similarity solution at »=x,. However, as
indicated earlier, the transition region (iii) in which
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the velocity profile attains its final similarity form
will be small and it is sufficient for our purposes,
especially in view of the enormous simplifications in
the analysis, to assume the quartic profiles (%.3) and
(1) |

The thin layer of fluid in which we have been
~investigating the temperature distribution is terminated
by a sudden increase in depth at a station x=x, , say.
This is a hydraulic jump. An estimate of 2, has been
made by Watson by equating the rate of loss of momentum
to the thrust of the pressure. Watson also extends his
analysis to the case of turbulent flow which is outside

the scope of the present work,
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