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Abstract

We study the dyngmicalnproperties of rising Regge'
trajectories. :";n_phis dynamics crossing symmetry is
an essential qynémica} ingredient and-uniparity_is used
only in some approximate form. The'crossing is used
through the finite energy sum rules. We first work in
the narrow resonance approximation (whgn”uniparity is not
used) and consider the questions qf”scalar meson bootstrap
and the bootstpap ofjo in - scattering. Next we
consider Phe question ofJo bootstrgplby using gniparizgd“ _
Regge parameters through the solution of Cheng-Sharp equations.
Two approximate forms of unitarity aré gqnsidered - one
corresponding to a single_Regge po;e_term representation of
the amplitude anq phg opher“corresppnding to thri_rgpregenta-
tion. In either case unitarity seems to mske only a small
difference“to'the.gesglts of narrow resonance approximation.

/
We find that the values o( = l“Ger? an@ ]ﬂ = lhO'M?V for

e
the slope and width of the jD are self-consistent when the
cut-off parameter is chosen sq@ewhgré_between the (7 and the

5% on the degenerateJQ.f% trajectorye.
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CHAPTER 1

Introduction.

The Bootstrap Philosophy and Classical Bootstraps

The concept of analyticity occupies a céhtral place -
in present day stroﬁg interaction physics. The postulate
of maximal analyticity of the first kind (1) enables wus
to find all singularities of the S matrix, given the
bound state and resonance poles. However, it does not
restrict the poles themselves. This ambiguity is manifested
in the undetermined subtractions in the Mandelstam represent-
ation of the scattering amplitude. Because of the Froissart

(2)

bound thg.undgtermiped_§ubp;agtions ar¢ confined to

the lower ({ = o0, 1) partial waves. Thus we see that the
maximal ana;yyiciFy 9?_th? first kipd.dgtermineg_thg amp}ipude-
up to the fir§t two waves. ?he postulate of'maximal_apglyp--
icity of the second kind ‘1) permits contiﬁuatign in angular
momentum, thg only singularities being the isolated ones,
and enables us to determine the 1owep partial waves of the
amplitude from the higher ones by analytic continuation.

We can thgrefope determine the amplitude completely by using

the maximal analyticity of the first and the second kinds.
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The two postulates together impose self-consistency require-
ment on the poles of the S“_matri"x. This can be seen as
follows: Starting with an arbitrary pole of the amplitude,

we can generate a whole new set of singu;aritigs (and in
particular}double'spectral functiops) via unitaritye. The
divergehces of phesg doublg spectral functions require a

new set of poles via the maximal analyticity of the second
kind. We can keep on repeating this operation until self-
consistency is achieved i.e. the set of poles of the
matrix is complete and no new.po}es can be generated by -

the above process. The bootstrap hypothesis (3) postulates
that the only.set_of strongly interacting particles satisfying
the above-mentioned self-gonsistency criterion and therefgrg
consistent with the maximal analyticity of the first and the
second kinds is the actual set of strongly interacting particles
fognd in nature. The bootstrap hypothesis accords equal
status to all strongly'interacting“particles which are
composite systems of”each other, each pwing its existence

to the rest. This apparently simple and aesthetically
satigfying idea of a 'nuclear democracy' of hadrons is however
well-nigh impoSsible_ﬁo test as a whole. The bootstrap
problem is intrinsically a multi-channel problem and to
implement it would involve the solution of an infinité set

of coupled iptegrg} qu?t;ogq arising from unitarity condition.

However we can hope that a small subsgt of the set of strongly
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interacting particle§ is approximately decoupled from the
rest and demand self-consistency between the butput. and

the inpﬁt.. The simplest and best studied example is the
bootstrap of the Rho meson in pi-pi scattering. There is
ample experimental evidence that low enérgy ']T-T'L sc'at.tering
is dominated by the f’ resonances Since 7T—;1T system is
crossing symmetric 'one can ask whether the force arising

from the exchange of theJUTi in the crossed channel is
sufficient to produce thef in the direct channel. Or

in other words, can the )0 bootstrap itself ? [ 4¢€ ﬁca i\

™ 03

FigA. Foatea ™ the T-N  s4tkem
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This and similar ca;culations “have been performed in
various degrees of approximation and with varying degrees
of success. One good feature of thege calculations is
that the correct signs of the masses apd coupling strengths

(4)

of the output particles are reproduced; however in
most of these calculations the magnitudes of the output
quantities are bigger_phan those of the input by a facter
of 2 to 6. . ' _ B

In the so-called classical bootstrap calculations
unitarity is an essential dynamical ingredient and crossing
is applied only in some approximation. ”The input is taken
as the farce_arising from a fgw sing;e particle exchange
graphs and output mass and coupling are calcula.i_:ed by solving
the N/D equations. _ Apart from the basic drawback of not
treating the input and output parpicles on an equal footing,
(the input consists of an elementary particle exchange whereaé
the output_is phe'composite particle corresponding to a zero
of the denominater function DQ (s) ) this approach has the
additional drawback of introducing arbitrary cut offs to'
‘circumvent diﬁergence of integrals“arising_frpm the exchange
of spin 2 1 particles (the exchange of a pérticle of spin
{ gives a contribution propertional to Pg(zft )which goes

. L .

as Zé or A for large S —~ 4y )e  Also the

results are dependent on the choice of subtraction constant
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and if it is taken somewhere in the nearby part of the

left hand cut (LHC), the distant part of the L HC is not
taken into consideration and consequently the approximation
is meaningful only if the short range forces are unimportant.
Alternative treatments of the LHC contributions, as for

(5)

example in Balaz's method s overcome some of the
disadvantaggg of fhg other methods but they have their own
shortcomings. In all such calculations the widths of the
resonances come out too large and the output masses a bit
too small. |

.An alternative approach to bootstrap dyngmics is the
bootstrapping of a whole trajectory rather than a single
particle on it. The Chew-Jones' "new form" of the strip
gpproximation'is based on such aﬁ épproach. Here the
amplitude is repr;sented as the sum of Regge pble contribu-
tions in each channel and the output trajéctory is obtained
by solving the N/D equations. The trajectory OK (t) re-
produces itself self consistently for small \t| . Using
this method with some improvements Collins and Johnson (6)
have recently succeeded in bootstrapping the JQ and  the
Pomeranchuk'trajectories in 7J7-7U scattering. They find
self-consistent trajectories with correct physical mass,
width and intercept, but their solution is not unique since

self-consistency can be achieved with trajectory Céﬂ(t)

having intercept anywhere from X (e} = 0.32 to %(o) =




 bm

0.69. The main drawback of this method is that an

arbitrary parameter (the strip width) is introduced and

it is assumed that the trajectory falls off after this

widthe The Chew-Jones strip approximation is therefore

not suitable for bdotstrapping infinite;y rising trajectories.
Another method of calculating self-consistent Regge

trajectories starts with_dispersion relations for the Regge

pargmeters,(7) and involves the solution 6£;coupled integral

equations._ Th;s method has already y;elded successful results

in potential scattering ‘8). The dynamical scheme that we

will discuss in the following pages (due to Manﬁelstgm 8) is

an applicat;oq of the method based on dispersion relations

for Regge parameters to thg relativistié scattgring involving

infinitely rising_Régge_trajectories. In'this schgme Cross-

ing is an es§entiai‘dynamical ingredient and it is applied

(9)

via the so called Finite Energy Sum Rules Unitarity
will be appliéd in different degrees of approximatioé.
The”applicatidn of unitarity leads to coupled integral
equ-ationg for the Regge parameters O( (t) and (3 (t) — the

(10). “In'most previous ?alculations

Cheng-Sharp type equations
only_ﬁhe narrow resonance approximation where the trajectory
A (t) is strictiy linear, has been used.

In the next chapter we will describe the dynamics based

on the rising trajectories, discuss the application of cross-

ing through finite energy”sum rules, and consider some simple
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applications of these dynamics, in the narrow resonance
approximation. In the third chapter the effect of un-
itarity on the linearity of the trajectories, and on the

consistency of the bootstrap will be investigatede



B

CHAPTER II

Bootstraps of Linearly Rising Trajectories.

- In this ghgpter-we'will“discgs§ a dynamical scheme
based on the coﬁcépp of linearly rising trajectories $8)
and study how the ﬁse of finite energy sum rules (9) to
apply crossing can yield somé result; on phe_slopes of
trajectories and the gogplings of resonances. We will
concentrate on the scalar meson and -1 scaptering |
problems. These being crossing symmetric reactions it

will be possible to do bootstrap calcglations. Unitarity

will not be used in such calculations.

II. 1 (a) Analytic Properties of Regge Parameters:

Before obtaining the dynamical equations for the
Regge parameters, we need to know the analytic properties
of these parameters. We start from the Froissart-Gribou

projection for the partial wave amplitude

, | ’ , y )
ACL ,t) - = G){(z) Dy (s,t) dZ
2.

Z, (sg0,t) s (1)

for {? Z;N(t)



-9-

where Dy (s,t) is the s.discontinuity of the scattering
amplitude A(s,t) and N(t) denotes the number of subtractions
required in the Mapdelst.am representation for this amplitude.
Noting that the trajectory function O( (t) is a _poie of the
continued partial wave amplitude A(Q ,t) such that A(f{,t) =
B(t) /({—0((t))we can derive the analyticity properties

of X (t) and @'(t)_ as follows:

We write Iy ,t) as

A(Q ,£) = E(f,t) + F(JQ,t)
(04
where p ,
E(Q,t) = L1 Q@ by (dht) az

7r S ‘e Sy ey s T (2)

and F(f ,t) is given by the same integral from s = so to

s =8 Since F(L st) is defined by a finite integral it
must be helomorphic in Re ﬂ)- 1 with just poles at thé
negative integers due to _Qﬁ(z). The other 2 plane
singularieies of A( Q?t_)_ are due to the asymptotic s o
behaviour of the integrand in equation (1) and are therefore

contained in E(ﬂ st)e The position of a pole is given by
. -1 ' _ :
[ E(f ,t) ] 0 at ﬁ = o (t) e (3)

but because of singu%arity at threshold it is better to,use

the reduced amplitude 6 ( Qlt) - Al st) / (G\It 12 T{Bh) and


http://fi.it

=10
therefore write (3) as

4 g N
(avt 12 C(/t_ 34) \E(l ,t)] = Oat =K (t) ~~~~ (&)
Therefore the residue (4(t) of the pole at 2=O((t) defined
by A( E,t) = ﬁ(t)/ (Q- (t))is by Cauchy's theorem

(3(1;) L hal EQ e L (s
I | |
| B =P
. Y (¢) = @/tlz al/t 3% ﬁ (t) s = -t (6)

- Y
. L al (Y12 %34) Elg(t)

Im et (7)

where the integral is taken in a path around the point £=O((t)_.
Equatiqns (%) and (7) -enable us to find the analytic properties
in t of ({(t) and the reduced residue Y (t)e If Re 2 >

Re ﬁ‘:(t) where.O(M (t) 1is the highest lying f, plane
singula.-rity', the integral (2) converges and so E£ (_t)(ﬂ/-t 12
ﬂ)& BLPY has t plane sipgularities of the full partial wave
amplitude viz. a right-hand cut starting at t = to, the
th_i:-eshold, and the usual left-hand cut (due to crossed

channel singularities of the total amplitude A( s, t) =~ .

Since we are integrating from s = 3 rather than so in (2)



the left-hand branch point is at t & -§ for large s
and by taking S  large enough we can cause the left-hand
branch point to recede as far to the left as we pleese;
This means that the singularities of (X(t) and\((t-)'which
stem from those of E( Q/_,_t)_ do'_not include the left-hand
branch points of the partial wave amplitgde. So the only
relevant sipgu;l.erities__are for t >/ to. lIt. can further
be shown that as long as the tfe.jector'ies__do_ not cross,
the Regge parameters()((t) and Y(t,)__ are real analytic

functions of t with only right-hand cutse"
II. 1 (b) Dynamical Equations for Regge Parameters

To obtain dynamical equations for the Regge trajectory
X (t) and the residue function _(1;)', we note that Regge para-
meters X (t )and ’X(t) are real analytic functions of t .
Demanding aI liﬂear dependence of o((t) on t , the explicit

form of O{(t) should be

X - b e @
To obtain an expre551on forﬂ(t) we use the fact that

t) .
’\((t) @(t) / (hq/-(_ t-) is a real analytic function

of t and so we can write

I 2 Xt) |
pm - WqQy ) - E®) e (9)
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where E (t)is also real and analytic. ~ Noting further
that fa(t)SQOuld have zeros at Méndelstam'symmetry points
\7T2-é§”negative half integral valueS'QECth)other than
- l/2, and requiring thap.ﬁ(t) should go asymptotically as
1/, we can rewrite (9) as h '

2 W)

.[‘))-.(t) | = .Lp_a.e;v_t_\ ‘-.. tO((t) +3/2)

E(t)

e ¢ L)
The exponential factor together with the gamma function
ensures the aSympt?piq behaviour 1/t.. The_§lope 'al
appears in K;O) because all prajgctqrieé éppear to Hafe the
same slope and tberefore we are assuming that l/a is tbe
scale factor which Qetgrmines“the_asymptgtic behavioure

E(t) will be takep as a constant in scalar meson case and
=O{(t) x constant forf traje_étory_in JI=IT scattering
whereXX(t) is the gho§t-killing factor. It's value depends
on the coupling constant (or width)“of the particle. The
narrow resonance_approximap;on ﬂor a strictly }inear form

for (X (t) ) requires the saturation of the scattering
amplitude wiph zero width resonances lying on linear traject-

ories. This gives

A A s,t) = Z;T (223 + 1) ﬁ(mzR) fR .(1 . :—E—u"_.‘f)
A 2
x5 mﬁ)/o(’
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To do dynamical calculatipns wé“need Fd aéply crossing.

In fact crossing is the essential dynamical: ingredient of
such a dynamicse . This is achieved by means of the so called
finite_energy sum rules (FESE): ‘In the next section we
‘aiscuss the formalism of FESR énd the.related concepf of |
duality, and then turn to a discussionﬂof_their appficatiens

to the scalar meson and JI-JU bootstrapse.

II. 2 Finite Energy Sum Rules and Duality

(a) Derivation of FESR:

(9) Lo '
_ To derive the FESR 7 we begin with a function F(V)
analytic in theV - ﬁlane with a right<hand cut from Yo to 00

and satisfying the dispersion relation

O
1 / 7
F(Y) - — Jn r(¥) av |
| T ¥ =V S~ st (11)

(We have written annﬁnsubstraq;ed“di§p§r§ipn re}apion:“h_“
If F(Y) .7L§_o as V-')OO__v_vg can write down a subtracted
dispersion relation in the usual wgy.) The variable ¥V
might represent some physical variable like the energy or
momentum transfer in some scattering process. The FESR
are consistency“qogditiéns that'haye_to be obeyed by.the
function F(V) _as a result of its analytic structure and

asymptotic expansion. Suppose F(V) is a real analytic



oy 7

function in the cut y - plane that can be expanded in an
asymptotic power series. We note that each term in the
series can be written in such a.forrq tha_t, _it is also a
real analytlc function in the cut V- plane. .The function
-ur

- (e
cut from% to (o ¢ IS We can therefore write asymptotically

V) /sin ol has the imaginary part Vo( at the

i.e. for Y /,N
>/ (say)

a .
—ino
F(V) X2 Z - Ci ( ‘_ \J ) | /sin Xy ivs- ot (12)

_Let us now for?ﬂ the 1ntegral F(V) dvy along the

contour of figure 2.

Fiq-2 Conlows of {«\\Q%I\a\"\w\- Son, e
deaivation o  FESR
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The 1ntegrat:|.on from N - 16 to Vo and then to N.+ iBwill
give 21&\' 4 nF dV ~ For the integration along the contour
we use (12). The whole integral along the contour is zero,
by Cauchy's theorem. On performing'this'calcﬁlation we

get |

N ' ' O(i + 1
% Am F(y) av r~ Ci N (13)
Vo L T j;]' /4bé*l)

In general we can write down the nthmoment sum rule
N . O<1+ n+1
m F(V) dV NZ‘ cn-
S V 4 0( +n+1 - (1h)
Vo

" The higher moment sum rules 'emphas:.ze_‘h_l-gh energy region of

thevintegral_anq therefore it is preferable to use lower
moﬁent sum rules as far as possible. The sum rules (lé)
and (1%) holo_for any function with the above mentioned
analytic behaviour and asymptotic empansion. it should. be
noted that the form of thé sum roles is independent‘of'the
oosition ofcﬁ_ . Consequently any function that obeys a
dispersion relation with an arbitrary number of subtractions
will also obey FESR. If the leading power in the asymptetic
series is low enough (efg.cﬁ {itn - 1 in equation (7)) we
can find from (7) the superconvergence relations |

Y Am F(V) a¥ = 0
by letting N =00 .
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As far as thg“application of_FESR is concerned, we
may note that we can write down even or odd moment sum
rules for the scattering amplitudes which are odd or even
under crossing V¢ -Y (or s €« u, at fixed ¢, =3(s - u).
The amplitudes of a definite signature have only a right
pand,éut and we can write dowp.gll moment sum.rules for such
amplitudes. The signatured amplitudes, however, have fixed
poles at wropgﬂsigngtgre unphysical values of angular momentum
and it is not always possible to ignore the contributions
of these fixed poles. It is therefore advantageous to work

with the total amplitudes.

II. 2(b): Interpretation of FESR and Duality:

~ As we have seen in II.Z(a) the FESR connect the low
?nergy region and the high energy région_9f the sqatte;ing
amplitude.>.;The high.gnergy_;ggipn is described in terms
of the_crossed (t)lcﬁannel Regge_polgs whiqh areﬂobserved
for small t values. - Therefopg one could say that phg FESR
connect the low s channel behaviour with the low t channel
effectss  If the low s channel amplitude is described by
resonance contributions pnly and the high energy behaviour is

given cémpletely-by t channel Regge poles thgh we can speak

9,11

of duality between direct channel resonances and crossed
channel'Regge”trajegto;iés. The Pomeranehuk trajectory

has to be regarded as a special kind of singularity, and is




-17-

not associated with the direct cham_'_lel‘.;-esonan_ces.l2 If
al;.reéonances are supposed to lie on approximately linear
trajectories, then we hgve"a_gcheme where reéonances in
one channel generate resonances in the crossed channels.
Appreciable forces are therefore to be considered only when
resonances exist. Thex do not result from upitarity aloneg!
Though chtroyefsial'this duality idea has received
support from a related phenomenon observed by Schmid.13
If one takes the partlal wave projection in the direct
channel of the Regge exchange amplitude A(s t) ‘the resultlng
partial wave ampl;tude A{(s)' shqws_phase variations glving
rise to loops in the Argand diagram. These loops approxi-
mépe the obse;ved-rgsonancgg. _Tpus it appearé that direct
channel resonances and crossed channel trajectories may be
interlocked. Tbe presence or absence of resonances in one
" channel can be associated with rglations between trajectories
in the crossed channels. Inlchgnnels such as K'N where
there are no observed resonénces, the crossed channel”contains
exchange degenerate trajectories which give purely real
contributions to the amplitude.
The duality idea has implications fr the description of
a scattering amplitude. The so called sprong (or local)
duality implies that the full scattering amplitude for all

energies may be described either in terms of direct chamnel
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resonances or in terms of crossed channel trajectories.

1L

The Veneziano model has this strong duality built into

it. The so called averaged {(or weak) duality on the other
hand implies that averaged sum of resonance ;ontributions is
equal to Regge contributions (through FESR) and therefore

the amplitude should be desgribed.at a given energy by the
sum of direqt ehgnnel resonances and_crossed qhannel Regge '
poles minu§ thé‘average of the resonances A(s,t) = A¥£és,t) +
Agewss,t‘) - <AR¢A(~S«"t)> . The extrapolation of Regge terms
to low energies is taken to give a smooth background_upon
which resonances are éuperimposed.

Duality becomes especially useful in bootstrap palgula—
tions. Taking the same type of Regge trajectories_as an
input on the_}eft hand side of the FESR (via their lpw energy
resonances) as are used for describing‘the h;gh energy regiop
(on the right hand side of FESR), we cen demand self-consist-
ency of the Regge'parameters. Bootstrap calculations with
FESR'are much simpler than the oider N/D programs. In
the narrow resonance approximation the fgrmulation of the
problem with FESR leads to algebraic equations for the
trajectories and their residues. |

We have seen that starting from FESR and assuming
resonance satufation we arrive at the concept of duality.

The inverse procedure would be to start from duality

idea and construct an amplitude, which is a solution of the
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FESR. The so called Veneziano_modellh is such an emplitude
in the zero width approximation. A one term Veneziano

formula is

V(s,t)

F r‘(l;-O((s)\ rl(l- X (£))
- M@ -&s) - Xle))

—

where ‘3 is a co;'lstant.
?his is c;o§31pg'§ymmetg;c>pepweep 8 and t, has
resonance poles'at_l pp_gitj.ve integ_r_'al values of_ o(,__ and gives
Regge asymptotic behaviour in s and t. It also satisfieé
the FESR. S
- These fundamental principles of analyticity, Regge

asymptotics, and crossing gymmg?ry“ophwpich EESR_are based
arg'at_the root of our bootsgrap galcu1ationé that wiil,be

discussed in this and the next chapter.

II. 3 Bootstraps of Linearly Rising Trajectories:

We have seen in the last section how FESR rglgté the
low energy part of an gmplitg@g_with the“Rgggg_parameters
of the crosseq qhannel._ -A§su?iag resonance saturation of
the direct channel low energy amplitude one can relate the
Regge parameters of the s- cﬁanpel with those of the t
chanqel. Thi§ constitutes a (so_called) bootstrap of the
linearly rising trajectory. prever we should note that
when we“speak of boots&rggpingla trajecto;y we really mean

bootstrapping of the parameters of the trajectory. The
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absolute,”magnitudeg of phguwidths qf phe resonances lying

on the trajectory (or the magnitudes of the residue functions)
are not bootstrapped-since.thgy appear linearly on both.sides
gf the sum rplé.__ To boot§trap these quantities we need an
additional principle.such as unitarity, as will be discussed
later. With thisvlimitgdnsgnse of the word bootstrap in
mind, we progeed po.disqugs“somé simple'cases of such boot-

strap calculations fér scalar meson and J‘FJT scatteringe.

II. 3(a) Scalar Meson Bootstrap:

: _The_simplegt pf.all ppssib;e‘world§ of strongly inter-
acting particles is the one consisting solely of scalar
mesopsnin_;'O+”pgrticles). If the concept of nuclear
qé@ocrgcf were applicable Féwsuch a“wgg;d then a §calar meson
would appear as the boﬁpd state of a pair of scalar mesons
sustained by phe_forcg arising from the exchange of a scalar

meson in the crossed channel.

| “‘\ " | octt)
mo " '

-~
e
o X
3
¥
d—

_ Jos, T
i3 @) \b) Fortes in awmlan wedon aqstew

'(C) “ "{\coi\«& meaon  XAujecteA
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HOWeVer as Gressls has showg it is easy to see that a
scalar meson cannot bootstrap itself. Let A(s,t) =
A(V,t) denote the scattering amplitude for scalar meson -
scalar meson scattering. This_amplitude is completely
crossing.symmetriq_in Sy t and u. Moreover A(V,t)
V = 3 (s-W) is even under crossing V&= -V.  Thus we

.can write down the first moment sum rule

- N , . X (¢)
Y Aua,t)av - c(t)(ﬁu:) N -
2 X N2 :
Vo B o % ez, 9)
whgre()((t) . = at + b is the scalar meson trajectory such

thatO((mZ) = 0 and we have used the asymptot.ic form

AY,t) R c(t) g(t) ( l+e Lo o((t)
V} N | “sin ro{(t)

" e - IF T Lo 3 / (o< >

saturating the L.H.S. of (9) by a scalar meson lying on

the straight line trajectory X (s), we have _
2%
Am a(¥,t) 7t (2 + 1) (‘)’(S) Pp (1457 uR) %

é;(s - mz)/c)(

(0(— a)

IFF(S) (s - u?) /oz

so that equatlon (9) glves, on substitution

T (t - 2 nd) @(mz) = )‘L(J;'(mz) lzj _X
2’ Ve
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2

Evalating both sides at t = m we have

xd B - g
N | -~ == (9)
The bootstrap conditionis %S(mz) / t(m ) = 1 which gives a
negative value for the slope of the scalar meson trajectory
e thus implying the 1mp0551b111ty of the scalar meson
bootstrap.15
‘ It is inperestipg hpwever to consider the possibility
that the exchange of an additional trajectory which couples
with the“séalar meson channel might influence our results
i.e. if a world more complex than the scalar meson world
might be seif-consigtgnt. ~ Since the_Poﬁeranchuk trajectory
couples with the scalar meson channel, we try it first.
To simplify calculations we. ‘take the Pomeranchuk ﬁréjectory
parallel W1th the scalar meson one and denote the common
.slope by C)L . Since we now have an additional ‘unknown
quantltyégp(t) we consider both the first moment and the

third moment sum rules

A (t)

5, (t) " = C(t)?(t) (N/a‘/ \ ATl Cﬁ(t)ﬁé(t) x

and :
. ' (t) )
S3(t) = c(t_)(s(t) (N/%z(i( W oe C (8) x
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S| (t) = \ Vém A(V,t) dY = ')Tﬁ(mé') (t - 2 m2)‘
AN 3 : : 2:3
5y (¢) =g ﬁmA(Vt) dv_wﬁ(m)(t-zm)

/
_ Rememberlng that.CXﬁmz) 0, ()( (t) = ¢+ l and taklng

()(- in scalar meson mass units (m° = 1) we obtain from

the two sum rules the equations: ' _
: ' 10 - '
- Zp(mz) = ﬁ(mz) N+ 9 ‘pr(mz) N> e e - (12)
‘ _ _ ; | )
6(6<m2) (3(m2) N z/3p (m2) N e 1)

These equations constitute consistency conditions on the

residues and on the cut off parameter N. Eliminating FBJQ we

obtain the equation:

| 2 N3 +9 N2 15 1= 0
A solution of this equatlon is N _ _%1.2. Now from the
relation _V = 3 (S_- UU)N SN -_Zmz +t/f2 , which gives
for N = 1.2_and t = m? =1, SN =.2-§- The half-way

point between the 0" and 2* ﬁarticles on the scalar meson
trajectory corrégponds to SN ='2, ~ but any value for Sy
lying between 1 and 3 is permissible. However taking N = 1,2

one gets from (12)

B2 /(3>p (m2) = -5/3 RN
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. y y - :
.M)being__positiv_e it follows that ﬂp i‘)s_ negative. '

Again evaluating the sum rules (10) and (11) at t = o we

obtain: .
' 2 /
(o . X W-8) W
)/ﬁ(o - 6l+ ( ' ) - N~ (]l.;.)
Now for ¢t = 0y \ =.SN -2 e With _SN_ lYing anyWhere

4.

between the masses of thenof and 2% particles on the scalar
meson trajectory, the equation (11) givés- )
W&(O)/ﬁ> (o)<0 o N ¢ £ )
Nowfab(o) is related with the total cross-sectlon in the
forward direction for an elastic scattering process (by
optical theorem) and therefore it ﬁgsp'be positive. Thus
(15) implies that (O)is negative. Hence from equations
(14) and (15) we conclude that the consistency conditions

for the bootstrap of scalar meson and Pomeronchuk traJectorles
require that [D (t)- andﬁgp (t) should have opposite signs

at t = o apd_ t = m2 lf €. they shou;d change signs

simultaneoursly somewhere between t = 0 and t = m2. This
is obviously very implausible. Thus we conclude that-gﬁén
with the inclusion of the Pomeranphuk trajectory the scalar

meson trajectory does not bqotstrap itself,
II. 3(b) The Case of Signatured Amplitude
”An ampLitudg of definite signature has only a right-hand

cut and we can write down all moments sum rules for such an’
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amplitudes We will consider the zeroth moment sum rule

for the positive signatured amplitude A* (¥, t) | of

§calar meson-§calar meson scattering. ‘This amplitude has

a fixed pole at Q(:'O(‘E -1 whiF:h is the. first v;rrong |
signature unphysical _value, of angular momentum. . Correspond- -.

ing to equétion (9) we will have the sum rule.

o(-{¢-)

v, (16)

where € (t) | ]""' (0(1- 3/2) /r'@é 1) and the
last term ‘denoi_:es the c_o_ntr:!.butlon of the fixed pole at
X = o(, = -1, ‘Saturating ‘the left-hand side of (16) vy

“the scalar meson and evaluating both sides at t = m?.

@(mz) = 57T (g(mz) N + X(m ) N°
as e ap)

Without the last term, the sum rule (17) will give a posltlve
value for the slope OZ in contradiction with the result
obtained from the sum rule (9) for the total amplitude.
Demanding that the two sum rules (9) and (17) for the
amplitudes A(V,t) and A+(_'V,t) respectively should be
consistent, we can obtain a condition for the "residue"
Y (t)  of the fixed pole at (X = -1 . _
Taking @A(mz) = ﬁt(mz) in (17) we obtain from

(9) and (17): ' | -

X(mZ) = - ‘%T\N'(\)J(mz) (1'+ 2 N)
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Since ) and N are positive -X(m ) 1s negatlve. Also
it is obvious thatl){(m is larger in magnitude thanfg(
Thus for the two sum rules to be compatlble we require that
the residue of the flxed pole at the wrong signature unphy51cal
value of the angular momentum should be large.and negative.
It is also obvious that the higher moment sum rules for
the amplitude A(v,t) Wil; continue to give a negative value
for the slope C*Z (becaﬁse of the factors_VB, Vs_ etc.)
and the higher moment sum rules for the signatured amplitude
A* (y,t) | _will‘yavelmore fixed poles at other wrong N
signature upphyéical values of () i.e. at (}( = -~ 3, =5  etc.
By requiring.that the two kinds of sum pgles be compatible
we could obtain more conditions on the residues of the fixed

polese

II. L, Bootstrap of Rho Meson in =T Scatteringe.

(a) FESR for the total Amplitude:

It is well-known that the rho meson is a prominent
resonance of the ]‘[-][‘ system and since the -7
reaction is completeiy crossing symmetri;, it contains tﬁe 19
in all channels. Through the FESR we can relate the Iy =1
JU-TU amplitude wi;h all isospin states of the S - channel.

low energy amplitude. We can then ask, following Gross 15.
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énd Schmid}6'whether the input and output parameters are
consiétént. ~In the narrow resonance approximation, where
the dirgct channel amplitude wi;; be §a#ﬁrated With phe
contributions of“direCt channel resonancés lying on. a
straight line trajectory and the crossed channel amplitude
will be the Regge amplitude with a linear trajectory, the -
rgsidue fgnction_will appear linearly on both sides of the
sum rule and consequenply it will not be possible to determine
the absolute maénitudes“of the widths (or couplings) .of
resonances; only the ratios will be determined.} '
We work at fixed ‘t' and begin with the I, =1 T-T

amplltude AIt(v,t), V = 2(s - UQ and remembering that

Iy = Iy =1

A (- Vst) = = A v,t),
we can only write down even moment sum rules. We will

consider only the zeroth and the second moment sum rules viz.

R Xie) R
So <N’-‘=)§S m ale= 1 (v t)dv = C(t)é(t) N, LNy
Vo _ 1 _, o

A 41 Ve

and

: N I L -QYt)
=1 @
S, (N,t’):—:&' VzﬂmA v (v,t)crv c(t N ) N
o]

X+ cﬁ'
where ¢ (1) = m \—‘@G 3/2)_3 /r' (O 1)
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and we have used the asymptotic form

I
AY (v,t) A, PKOG 3/9}6(1:1 () X
: + 1) 'sin t
- V2N (& v 0(&‘?(
for the amplitude (:———2'\)
Y+
(vyt) = + v (20 1) ﬁ(t}) Py (Zt) = P (= Zt)
: _ ' : 2 sin-jr(>(
X(t) = O = 1is of course the degenerate

trajectory.

Tp=1 o
The amplitude A v (v,t)on the left-hand sides of equations
(18) and (19) can be related. to the S8 - channel amplitude

I
A"S(v,t) by the crossing relation

AIt= 1 (v,8) = 2 @(Ii -1, I, ) A%(0) ~s o (20)

GB(It Ig) 1is of course the isospin crossing matrixe
=1

Now the resonances in the S - channel are the Is

‘9 - resonance and the I_ = 0_{; resonance (we assume that

there is no I' = 2 reso@ance). First we consider‘the case
when the left-hand sides of (18) and (19) are saturated by
the j’ resonance only. ' In this case
Apats=1(ve)=1 T (2Q,+ 1)‘8(3) Py (1 +. 2t 3
| X’
/ x1gl s - m?
) (where O is the slope.)

2
snﬁ(s) (1_‘_+ 2 ¢ hmﬂ Sts-m ol

Also FS(S) is related to the resonance width at the resonance
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mass

@‘mz’/cx VAL

where K(s) [(s - LW\) / —‘ ~and re | is the elastic
width = ‘—'x, X being 1nelast1c1ty (=1 for P ) and [
the total widthe Using ﬁ20) and meking substitutions in
sum ruies (18) and (19), and evaluating both sides at t = ?ﬁ

we obtain:

: | _ / /
t/f“ (3‘;‘02'7‘+Iﬁ)/1“20< saaov (18)

A2 53 4 7/ /
rf‘,/Y} - 2 3mﬁ-ug‘ )/wo{ e (19)

Now we can check the _consistency of our sum rules (18) and
(19) in various ways. First we consider (18) and (18) only.
We choose N at the half-way point between the )0 and :Fo

so that because of the relation

' ' 2
Vob(s-W=3 e 1) |
R ' 2 s ,
N = 3m /2-2m_,r +1/ 20( SN S (21)
(at t= m ) corresponds to the half-way value = m2 /
. ,P 2 y 0(

Taking experimental values of P 3°Trand O( 0.02 q-

we obtain from (18)
l"‘ 1n ' S
/ 0093

.4

This result depends cruc1a11y on the cr0351ng matrix element

F)(It-l»:[.s-l)‘: % and onf spine It also depends on N,
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in ' i
This value for out/ ‘; . should be compared with the

corresponding value in classical bootstrap calculations
where in most cases ‘1out Y‘ = 5 - 10, .

_ Another way to chj;ck con31stency is t.o take r/‘:—_- ‘—/.’A
as a bootstrap condition 1n_.(l_8_)_ and then to find N from a
knowledge of the experimental values of the other parameters. °
This g;ves__ N = 65.5 m2 which should be compared with the

2
half-way value of 68 T .

: ’ . /.
We can also determine self-consistent ‘slope from (18)
provided we express N in terms of (X by relation (21), take

t 2 2
r‘j, r‘ A-: _ and substitute "}o 30 . . (from experi-

ment). We obtain the equation (AB()( 1/2)=.0 which glves_
oL = .om6 w2, '

Next, we use the second sum rule (19-) as well. Taking

s

rm/.\ and other parameters from experiment we obtain
= 63.1 m_ﬁ_ which is not far from the value N = 65.5 n_l,f'
obtained from the zeroth moment sum rule. .
Using both the sum rules (18) and (19) s:Lmultaneously,

we obtain the consistency condition

' 2 2 \2
¥ (B - ) /2
Taking the experimental value of m§ We obtain
) , _2 E _ A
N = ’2 L3 m = 60.8 m
. T T
which compares fairly well with the previous values of N
- o - R 2 - -

as well as the half-way value of 68 WM .
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In the above calculations we have saturated the left-
hand side of the sum rule by jJ resonance only. However we
can also include the contribution of J(; (1260). The sum rule

(18) then gives

@ ek (e B ol

2t.‘.L,Lm2 ) Ff J’:)))ez/d

% T C(t) plt) T(
= t t
'—(Eﬁ‘l
where ((y) _ J—-rz(x: 3/2)/ (0(«:1); g o[’t a (22)

(t) is the degenerate fj jC trajectory,

+ B 2]+ 1) B (1+

and we have taken the correct matrix elements ,
(I =1, Is=1) =3, 5(It=1’ Ig=o0) =3

We will evaluate (22) at t = m? and take N at the hélf-way
point between :E., ~and g '(_3 ) resonances on the trja.;]ectory

O< (t) « On simplification we obtain:

| @(mfo)/@(m - 555.2 / 356.6
Further on reexpressing /_\ in terms of the widths rJ;
and \—} by the relation: '

(t = m°R) / K (¢t = ®°R)
(3 -_./o( = e

we finally obtain:
(x \_\); /x T = 0.999 n
where where p ¢ 1s the 1nelast1c1t and the
re 2xf) y

total width. The experlmenpal ratio given by Rosenfeld et al
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is 1.2 . ) .
IT. 4(b): EE_S_R. for the Signatured Amplitude:

_ We w1ll cons:.der the It.='l TI-T .amplitude of
negatlve signature, __A Ly (- )( ,t)_ ( ) (vyt) . This
amplitude w:Lll be approxlmated by the contribution of P
trajectory for large V i.e. ¥ >/ . This amplitude
. 'has only a righﬁThand cut and we can write down all moment
sum rules for it. However the even moment sum rules are
identical with those for the total amplitude A %v,t) and
therefore we _w111 consider only the odd moment sum rplee. -
The amp'litude_' A(-z\.;_,t,_) 'is_‘a_lsc')_.en_cpected to have fixed poles
at wrong-signature unphysj.eal velﬁes of O( i.e. at O( -
0 -2,.;.LF.We will shcm however that the contributions of these

fixed poles are negllglble.- Neglectlng the fixed pole terms,

the nth moment sum rule for A( )(V,t) can be written as

O(\(t) n+l

N I '
g 'Vn 4m A L (- )(v,t)dV C(t) F(t)((_z N
'S S | Y/ O+ (53)

o |
Saturatir;g the lefp-hand__51de of (23) by the contribution of

. 2
P resonance only and evaluating both sides at t = ;no we

obtain . - Cn | ) 2r9§.
X m2 ' %) {1+ LM
Ex(ﬂoghmﬁ) 2, [}lé},)( ;3-1»%)
' ' g m +2 . 2
' = i {SF (‘f)z ) N /( n +2)(—-%——-—2' il

L
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2 ‘o
Using ﬁ)/)( ﬁ (jo )n the bootstrap condition
‘and s:.mpllfylng, we get
' 2yn + 1
N D2 =  (2n+ 1) (3'“2 - m) /
| o 2’ o w(28)
If we consider the 1lst and 3rd moment sum rules (n = 1, 3),
we have |
3 _ m - m 2
N i~ (3ﬁ b Tr) ceavr (28a)
" (383 - 42y ¢
.%66(/ Lo sy (24b)

From (24a) and (24b) we can obtain an additional consistency
condition on N: .. o .
: 3m m<e \2 ’
R ( ) ) ~suys (2he)

From (24a,b,c) we will check whether the diff_erent values of

N are consistent.__ We will take experlmental values for the

-2
unknown quantltles' ?3 = 30m and ()( .02 m
0 .
(24a) gives N = 64. 96 E‘;\_ ' ) (24b) gives = 65.3 mn_
and (24c) gives N = 65.7 m:r . - In fact we see from

‘_(21+) that N varies only slow;l.'y\_with n. These values of N
are not only consistent with each other but they are also
consistent with values of N found from ‘the FESR for the total
amplitude. This shows that the contributions of fixed poles

of A( )(v t) are negllglble. '
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II. 5 The Limitations of FESR Bootstraps:

The bootstrap calculatlons that we have performed
depend on the Regge pole dominance of the RHS, and on the
saturation by narrow width resonances of the LHS, In other
words we assume duality between 'chapné} resonances and t |
channel Regge trajectories. The resonapcé saturation dgmaﬁds
a small value for the cut off N because at:large N more and |
more resonances will contribute ahﬁ/or the'non-resonating
background will also become important. On the other hand,
the Regge form of the RHS requiréé a large value for N.
Thus N should be chosen wheré.the resonance region matches
with the Regge region. We have chosen N at the half-way
point bepween the highest resonance kept and_the lowest one
left out. If N is varied from this middle point to half
the distgncé”from the nearest resonance on'eithep side, the
results are changed by not more than“lo per cent.l6 Another
difficulty is in the choice of the value_of momentum ;rénsfer
't' at which both sides of the sum rule are evaluatéd; In
our calculation we evaluated both sides at t = m?R where ?h
is the resonance mass. Th1_s.1s_ so because we_kriow that @(mzR.').
is related to the width of the resonance. Desai et_a117.'
have performed calculations to bootstrap the dgggnerate‘ja—f;
trajectory_iq JI-T'  scattering at diffgrent_vglues of t.

The results are dependent on the form forf%(t). For any:
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given value of t they find there is not a unique solution
for the s;ope and the interceﬁt but a continuous range of
solutions. _ | _'

It should be notgd.that Regge dominance on the RHS of
the sum rule demands a small value of t (t {L N)whereas
the neglect of lower partial waves on the LHS requires large
t. Iﬁ is therefore not pﬁssible to ensure the accuracy of
both sides in a”qalculation where ;ower“partial waves are
;gnored. We haYe pgrformed our calcu}ations only for t = m2R
and our results are a check of thé consiSpency of the Regge
parameters raﬁher than a complete bootstrap calculation.

In more general terms the bootstrap of an infinitely
rising trajectory should arise from an anéweg to thé.fpllowing
question: . Can we sum,. in an averégehsepsef a set of narrow
resonances in the s channel in such 2 way as to rgpfoducé
the Regge.high energy pehaviour"in the‘samg channel ?'

If we assume that all airegt channel resonances lie on a
single trajéﬁtory (){lA)_and take the ngrrpw width épprox—
imation thenv%hgucbntributipn>of all these resonances to

the absorptive part of the amplitude will be a sum of delta
functions in s . Thus the LHS of the‘FESB will be a step

function in ,é»(or in thé'cut off N) whereas the RHS is a

smoothly varyingufgnct;on of N, We can however smooth out
the narrow resonances and then demand consistency of the RHS

and LHS of the FESR. Explicit calculations performed by
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1?’19 show that the two sides of FESR are

different authors
still inconsistent. The L.H.S. does not grow fast enough
with energy and more resonances are needed. However if we
allow the resonances to have non-zero widths, .the overlapping

19’2oato generate

of the resonance conpribut;ons can be made
Regge behaviour, by a suitable choice of the variation of the
widths.  An alternative approach to the satisfaction of the
FESR is based on the represehtation of the scattering ampliw-
tude in terms of the contributions of resonances lying on a
sequence of trajectories having non-zero spacing. The sum
of such contributions leads to the Regge asymptotic behaviour
and thus to the solution of the FESR 21"22. Such a solution

of the FESR imposes constraints on the residue function.

1

The Veneziano formula is an example of such & representation
having a sequence of parallel trajectories in each channe;.

It satisfies the FESR. ) This‘so}ution Qowever'ig not uniQue,
and this is typical of all approaéhes based on the FESR and
the narrow width approximation. . In SrQer to pin down the

Regge parameters we need to impose unitaritye
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CHAPTER III

‘Unitarized Regge Parameters and Bootstraps

e

In the previous chapter we considered the question of
bootstrapping a lingarly"rising ?rajectory. There we worked
in the narrow resonance approximation with 4m O =0 and
consequently the unitarity condition was hot used., We
found that whereas we could determine self-consistent values
for the slope OZ and the cut-off parameter N, the absolute
magnitude of the width (or coupling)of the resonance lying
on the trajectory remained undetermined. In the pfesent
chapter we will invoke unitarity and try to determine self-
consistenly boﬁh the slope and the coupling of thej5 in NfTT°
We will be particularly interested in seeing how far upitarity
alters the results of the previous chapter. We will also
study the related question of the effect of unitarity on the
linearity of the trajectory and on the t- dependence of the
residue function. o . - .

We begin With_the derivatipn of“tpe so‘galled Chengf

Sharp_lo’8 equations for the Regge parameters.

I11I. 1 Cheng-Sharp Equations for the Regge Parameters:

We have seen in section II.1l(a) that provided two

singularities do not cross the Regge trajectory function(X (t)




~-38-

5] | o X(¢)
and the reduced residue function (3 (t) = (3('5) /c‘t') _

are real analytic functions of t with a right hand cut only.
Requiring -tha.tO((t)should be linearly rising asymptotically,

We can represent it by the dlspersion relation

o) = woen v 2| e el
/! t/-t
cens (1)

where we have assumed that AmO(——) c ast > 00 .
It is obvious that the effect of unitarity represented by
the integral term in (1) will be to give a small curvature
to the trajectory. |

To obtain an equation for(e)(t) we first consider the
case of potential scattering from a superposﬂ;;on of Yukawa
potentials. prn(t) is the residue of the nth tra.j‘_ec_:tory
O(n(_t) ) it is found to have (n-1) zer_'os.7;_ Let ti, i =1,

2y --- 4, Nn=1be the locations of these‘zeros, then the function

Nel

¢n(t) = ﬂn Xn(t) Tr (t = t4)
i=1 -
: S w s (2)
satisfies the dispersion relation: g
¢n (t) = ;él (003 i ﬂ'mgé (t ) at’
)

t/— ¢
e (3)
t,




where

O(n(t)

Yaw - @n(ty( )

Butjw\¢ )

phase of ‘Xn (t)

phase oan (t) ~ §moy —Q/Y»O\/
{4 mBn(t)-)'} - ﬂmoo{/n‘ﬁ

We can therefore rewrite equatlon (3) as

Pae) - Plao) j\: - ms: : i}
| 4nOntt w 1. /(t—t)dt}

which in virtue of (3) gives

}(n-_(t) = (conét;ntl ;xi)[' | ,dt/ .t:an ;1 mé (tl )3
| "“‘(t-t) jv-t (Reﬁh(t/)

- -up, CI//.ﬂmO((t )}‘X (L)

This is the requlred equatlon for_t.he residue funct:n.on
wit) ‘

\Kn(t) =ﬁ (t) /(%23( -, the constant factor is

proportlonal to the’ coupling. ‘I_‘o obtain the corresponding

equation forﬂ(p)ln the relativistic case, we note that ‘6 (t)
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should have zeros at the Mandelstam symmetry points and
n-1

therefore we replace the factor T\'l (t = ti) in equation
.- 1=

(4) by an entire functioen G_r(1_:) which produces zeros ofﬁ(t)

at the required points. As an exané%le we could take

t%(t)qykc(t) .1 " -Y\ - tn

(at + b +3/2) n=1 (at+b+n+1/2)

where tn, n=1,2,... are those values of t for which
X{(t) = =n - 1/2 y 0= 1,2...., but this form for _G(t) is
not convenient for computational purposes. Alternately we

could take
. 1 - _
Gt) = [ (XCT+3/2)

which has zeros at the required points but since®X(t) develops
an imaginary_ for t> to this is not an entvire functj.on. Bﬁt
for t { to,(X(t)= Re(((t)and it is convenient to use the
form G(t)= 1 \""(Re_o( + 3/2) even though it is hot strictly
an a.nalyt.;l_c functic_m.

We can now write down an equation for (3(1:) . By
regquiring, as in t}jle case of narrow .resongnce approximation,
that@ (t) without a factor E(tkhould go asymptotically as

1/t we obtain, by analogy with equation (L), the equation
, o)

(-)""" ; (‘*‘XW ) E (t) .- 'exp. r _ )

e ‘—"(Reo(+ 3/5)

vt (5)



with
O {gmw:)yﬂ; ) s 5
— ( T - tan (t
At e
ty | | t)
X’x,dg
t' - t st - (6)

where the expongntia; facppr, e , has been inserted.in (5) to
ensure the asymptotic behaviour 1/t (without the“facto;-E(t))
Here()g is the slppe of the trajectory and since all traject-
ories appear to have the same slope of 1 GgV’?, ?402 gives

the scale of energy. E(t) is an entire faction and we will .
take E(t) =_E._R¢CK (for the f?trajegtqry in J{- scatter-
ing)e This ensures thap the trajectgry chooses non-sense at

()<== o « The constant E is related to the coupling.
Equations (1) and (5) do not form a coupled set of

;ntegrgl equations. _They must be supplemented by an addition-
al equation connecting Qm o( withP(t) . Such an equation

is given by unitarity.

I1II.2 (Coupled Integral Equations for the Regge Parameters:

IIIa. 2(a) The Case of a Sihgle Regge Term Rep;esentation
_;f we represent the-amp}@tude'by a single Regge pole,
the partial wave amplitude has the form

afe,) - @(t) /(Q'-—-O((t)>

\\\\\~“(7)
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and if this is substituted in the qnitarity equation:

S ' *
acle) - Al = k) ade)  al) e
e (8

N

where K (t) i ((t - to)/y )

we obtain the equatioh:

4 O((t) = K(t) (:’,(t) t > to
N (9)
This shows that@(t)ls real for t >’co and therefore_gmg o fort)to

Equatlon (9) together with ‘equations (1), (5) and (6)
constitute a closed set of integral equations for the Regge
parameters, where now

oG / /7 2/
1 émO((t) ,P,n(’-*o( '{t ) /
T & T adt
Y
AT

I(t) =

t = ¢t / .
LSRR (6) ‘

I1I.2 (b): The Case of Khuri Representation

The.ordi_nary_ Rgggt_e repfesenta.tion of the amplitude of

definite signature viz.

A Z(s,t) = _]T(20((t) + 1) ﬁ(t) By (- Zf,)/z /_Srnﬂ-(y(-t)
- (10) -

does not possess Mandelstam analyticity, it has a cut in

Zt = 2t(s )& ) from Gy =1 | toOG instead of the cut
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from 7t = Zt,(so_., | t) to0Q, where so is the threshold
of the_s_fchannel. In terms of the variable s, the amplitude
in equation (10) has a cut from s:_hct,i. to s = 0O whereas
the Mandelstam analyticity requires it to have a cut from
sg to 00' .  The basic idea of the Khuri representation22
i8 to remove frorr_l the Reg_ge term the pért. corresponding to
_t_.he cut b_e_t.ween s_-_—-hﬂ/: and s = 8y e To this end we invoke

an integral representation for the Legendre function

Pb( (:- Z¢) = - .[E— sin TTOX coshf(0(+'%)3‘-].0(’)(,

JT (cosh (.- Z) &
- 1 <Re O(< 0
e~ =(11)
which can also be writteh as OO
o ze) = - sig MO (O 3)X
P0<( t) S8 — N c sinE-‘X.d,’X.
2 7 12(0('!- 2) (\coshx- 2 /2
~00 . '
avv s (12)

Using this we can produce a representation of the Regge term

(10) with a cut beginning at s = sy viz.



Ly
o0
(X + 3)X

+ : _
A- ( s,t) -1 (?)(t) c sin h x dx
. 2 [2 ; N

F (coshx-‘-Z{.) 3/_2

O S S (13)

where

A —l sl - RN N\ (M)
? =cosh (1 + —j) vynestE

| - _ 2%
Equation (13) is'valid only for Re O(<O but we can use (12)

to defihe the analytic continuation fo 'ReO(>O and find

A (s,t) = .;'T((20(+ 1)?(1:) Po(( .. 221;)/2 sin WX

f (x }X
o 1 (3(;) € _ sinbxax
.2 F kcosh‘x - Z:) 3/2
~Q

The partial wave projection of this . can be shown to be
B ) = ade) - ﬁ&)f @XPK-[(Q-O(W;\ f(t%
- ,Q - Y (¢)
il’his pa.rtiaglj wave _ampliyude_has a righ'g hand cut due to _‘(t)

. , 2
a.ndﬁ (¢t) and a left hand cut fromt = - s + 4 “';t to t = =00

due to the behaviour of %(t,).
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Here we may discuss the question of '_t_he choice of sy »
eorresponding to a Re_gge bole in the t channel,s ; must
lie in the high energy region of thes chgnnel, therefore
we may take s) = sy where sy is the cut-off in the FESR.
Wlth this ch01ce of s3, the boundary of the elastic t double
spectral funct:.qn will be ‘given by t = to and S = 8],
Ncw_we want to see how ;he boundary of phe double__spectral
function is sh_i_fted if we invoke the dua;ity idea. - Accord.;
ing to the concept of duality the_t", - channel Regge pole is
generated by the S channel resonances, and the S ch_annel
resonances are important for s <SN- (where sy marks the
boundary of the high gnez}gy _region)_. Thus the forces or
potential which generates the t ch_a,x-me_l' Regge pole (which
contributes to the amplitude for s>'le) is given by the
' part of the double spectral function lying between S = 8¢
and s = sy. Symbolically we can write the partial wave

amplitude A(Q't) as _ .
AQ (t) = AReége (s> sy) + Potentiél( AL AN\

Now since duality implies that the _integral over resonance
contributions»from_,so.t_q Sy is equgl to the_inpegral over
Regge contributions "(via‘ the FESB) Wwe may replace the reson-
ance (or potential) term in the above expression for Aﬂ(t)

by ARegge ( s°< < sy ) so that we may write

AB (t) = ARegge (s > SN) + ARegge (So( < SN)

= Khuri amplitude with s3] = So
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Thus duality implies that in the Khuri representation
for the partial wave amplitude we must take Sy coincident

with the boundary of the elastic s channel double spectral

function (for t > 16 m ,{/ Now the boundary of the o
double spectral function / /
A:\L"';:_
A
/
- T T T — — = = = = = —-A=4,

flgo Lo
boundary of the double
spectral function in W-N

fesay _ _
in JU~JU scattering is'given by the curves (see figure h)
8 = 4 +6h/(t-l+) for to v { 161
and . {2 .

: : ) (W\“ =\ .\AY\\\Q )

/S=16+6l../(t-16) for t > 16

The parsmeter §; in equation (14) will be taken coincident

with this boundary.




Now we can derive the Cheng-Sharp equations for the

Khuri representation substituting

A de) - P(t) ex‘{ (aﬁ - (t))g(t)tl

9 - ()

in the unltarlty equatlon
A (L) -A(Qt) - 21 K(t) A(!Lt) A(JL t)
we obtain at Q CX\*\

(Z)(t) | .-_3 4 oL ex\;Y 2 16 o(vf(t)]

(15) °
where . ) L
O R LR A
This gives the phase of (t) as
van-L ( 4Rfm 1533) . L2 4m.o( ) . §L*c
. . “Re L
The equations (5) 'and (6) therefore give
. O((t) .
(3('6) - ho(C[/ !} Ele) [_ I] -
U (Reo(+ 3/2) | (15)
. _ 00 o
where 4 )
_ : m(X_(t) A 2 / ,
: B :1,‘,' ' -t K‘e“( (.Xﬂ/t )+ 2?(1: )] dt
to :

Using the relation (15) these equations give an integral
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equation for é_\mﬁ((t) .
Re(W
o L,
m () = K(t) w(_ﬂ,i E (t)
— T (retts 3/2) *

o
P X
exI') [ ~ 43"‘__&&_ (/Q/ L,o(fkt + ZEU\)
_ to o~~~ (16)
with S
. | )y,
0((1-,) =at + b+ i gm()(,(t). dt
| -7 tl- ¢ ~esee (17)
to

The equatlons for Re@and 4 (2;are given by (15) for 't> to
7/
and by (15) for all t. We can solve the equations (16)

and (17) as will be discussed in the following sections.

III. 3 The Solution of the Qheng-Sharg Equations:

III. 3(a) The Case of a Single Regge Term Representation

To facilitate convergence of the integrals and to ensure
that the trajectory passes__t_:h:rjough the mass of the _P we
rewrite the equations of section III.2(a) for the pérameters
O((t) and[H(t) with a subtraction at t = m? (where Re(X = l).
and obtain Y, ' -

. ' 2 P /
Re (X =0((t-r}1o)+l'+ Al 3m0((t).dt
T \(-1t) (-2 ) _
"to i f (l'8a)




' /
(t) = lv(x A E(t) . .
! e \_1 (Re0(+ 3/2) exp ( - :F)

<« £ (18b)

where
I = P_ (t;nZ) ému(t)ﬁ, (AO(OL )dt
x Ty
o (- t) (& -u2)
-~ (18c)
and | |
. ~ _
dudie) - x (t)_ﬁ(t) . s  (184)

where E(t) is an entire function, enq as discussed in section
III.1 we require it to have a ghost-killing factorX(t) or
rather Re (X(t) to keep it real above threshold. Hence we take
E(t) = (Rel{) « E (E = constant) - . With this choice of E(t),
2(t) goes to a constant as t->00 . In virtue of equation
(9) this means that 4—W\0{—>constant which prevents the
convergence of the integrals in (16) and (17); so instead we
use K (t) = K(t)/ F(t) where F(t) is the Fermi function,
F(e) = 1 + exp[(t - _?.) /A_] | « It is used to cut-off
Unitarity and hence make f)m O(-——) © as t goes beyond a certain
value, t ’ where elastlc unitarity is no longer valide

Using the relation between (S(t) and the width r‘ viz.

Bre Bl - ol e
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we find that (in pion mass units)

E-'—' 0082\—_‘;_) . .\\~~.‘. ----- (19)-
. w ' - : '
Taking \f -;'ll._.___O MeV = 1 W}‘ y, B = 0.82
To solve the equations (18) we note that we have two free
parameters X and E - whose physical values are respectively
; e t e X
_ m
0‘ 02 -,T
the linearity of the trajectory we start with the -physical

and 0.82. To study the effect of unitarity on

values 'of.these parameters and solve the equations (18) by
iteratiop. T}qey con'verge a.fte_r about 4 iterations. To
demonstrate that the solutions are independent of the cﬁt-off
t we solve the equatlons for two values of the cut-off,

t = 200 “.;3 and © = 300 -" (w1th_A_ 20 m“i in either ca’se)..
In figure 5 we display the self-consistent values of QW\O(
corresponding to thesei two c'hoices of © . We éée that the o
values ofé\mO(agree fairly well over the region t < G < léoﬁ%\
In figures 6 (a),(b) we exhibit the plots of Re O and X ReY
S IORRCE /2)4t | e ”\/ZYeb_(and the plot of 4m X

is shown in figure 5.° We see tha gm()( has the usual form
and tﬁis form is consistent with the behaviour of the widths
of higher beson resonances found by Foccaci et al.23 an&
discussed by Collins et al?l'. The graph for Reo(shows that
it is almost linear and that the effect of unitarity ;s smalle.

In figure 6(b) the graph of X(t)is shown. It fluctuates
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;round”tr}e v'alde__of E = 0.82but -;'Ls__algr_lost gonstant over a
wide range of t as in »thc'e»nar;jow resonance approximation
(NRA). To demonstrate further the difference of these
results from those of the NRA we plot in figure 7 the }3— :

discontinuity of the Regge term viz,

XK(e)
(N t) l r‘ L0(+ 3/2) (t) N
m (0(4- 1) . q/g
versus t in the NRA (A) and in the case when unitarity is
imposed on Regge parameters (B), We observe that the two
curves resemble each other very _closély for all values of t
’ . " - - 2 " T )
between t = 30 I.;T and t ='._-20_m,,,r y and therefore we conclude
that unitarity makes only a small difference.

IIT. 3(b): ‘I!'he Case of Khuri Representation

As before we rewrite the equations of section III.2(b)
with a subtraction at ¢ = ?)2 and solv'e“tpe‘m by ) iterét._ion.
We start with physica}. values of the parameters O(/ and E
and obtain self-consistént solutions after L iterations.

In figures 8(a), (b) and (c) we plot self-consistent valu;so(
2> Re

ofémo( Re X andX (5(11) xr'(ReO(+ B/ZVRGO( ho(oi/ 3
versus t. . _ e -
The graph ofg O( has the usual form; Re(X' appears to have
a small curvature for srpglq.__ya:1u§s of t but ot;,he;'yvise it is

a straight line_,'X(t_) fluctuates -about, the NRA - value of 0.82

: 2
and is almest a constant for t > 200 m“ . The g e
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discontinuity of phg Regge term is plotted in figure 9.
Agaig the two curves are close to each other and therefofe
unitarity seems to make a_sma}l differgnce, a;though_by-
comparison with figure 7 we can see that unitarity makes a
little more difference in'the case of Khuri representation

than in the case of a single Regge term representation.

III. 4, "Bootstrap" Calculations and Consistency of the FESR

- To do bootstrap caiculations using thenunitgfized Regge
parameters obtained by solving the Cheng-Sharp equations of
the previous section, we note that we.have three free parameters
at our disposal viz. the slopeCél, tbe;constant E(proportional
to the width Yﬁ ) and the cut-off parameter N. In the NRA,
we had only two free parameters - cjf and N, and wé found that
the self-qansistent.values of these_quantipies obtained from
the FESR are ($Z= 0.02 m;? » N = 65.5 mi . The constant E
could not be determined in the NRA. To do bootstrap calcula-
tions with the‘unitarizgd Regge parameters, we étart with the
values of (ﬁzhand N obtained in the NRA and for the constant E
we take the value given by equation (19) viz. E = 0.82.
We then solve the Cheng-Sharp equations as explained in section
III.3 and obtain values for the unitarized Regge parameters

O (t) and (3(1-,). Next we insert these values in the FESR viz.



N
@(It _ 1, Ig = 1) é\ n A3 (v,t) dv
Yo
| T 3 (t)
]‘ (X 3/2) Be) n
T+ 2) 132 | xN
Tl
cas s ~ovs (20a)
with

1n0(( ))

2 51n11}(
b3 | P‘>< (Zs_,_)

A5 w,e) = TU(2 (X(8) + 1) (3(/s>
~ =~ == (20D)

- and see whether the FESR is consistent. To achieve satis-
faction or near sgt;sfactipn of the sum_rulg we may vary any
one of our free parameters, in pafticularaN; ‘ |
Beforeudiscussing the actual calculations in the two
cases vizi a single Regge term representation and Khuri
representation we first discuss some related questionse. ﬂ&e
two sides of the sum rule (20a) have to be evaluated at some
va.;ue of t. For t> to the R.H.S. of (20a) will have an
imaginary part in t due to the fact that(X(t) is complex.

The L.H.S. of (20a) will also have an imaginary part due to
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the cut of Py (Zg) for Zé < ;1 . We will compare only

the real parts (in the NRA both sides héve only real parts).
For t} to (and in particular for negative t) the R.H.S. of
(20a) is real but the L.H.S. has an imaginary part due to the
cut of P (Z,) for a certain range of s( s =so to say 8 = S e
To mske the L.H.S. real we take only the resl part of P (Zg)
in this range. i.e. writing

: ~ov®® -
P (Zg) > P,(-2.) e for 2
we take ~ x s 2 S <

Re Ty(Zs) 7 cos T1 O+ By (-Zs) , 25 (-1 (21)

i.e. we remove the spurious cut of the Regge term. For
negative values of t we expect the L.H.S. of the sum rule to
change sign from positive to negative due to the zero of the
Legendre function. On the right-hénd side this change of

sign should take place due to a zero of ‘/r( (_og) factor (Schmid.
hypothesis)_. For a bootstrap the two sides should ch ange
sign simultaneously at a given value of t... To see this clearly
let us consider this question in the NRA. On the L.H.S. we

will have
Im 4 (»,t)

| | ,
'3(4)(2& 1) Bp 12) & (s - n?) /04

and _for_dN/e = 1

[ﬁm A(3,t) as _3_/5(“12) (14- t )
m? —h-m
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The zero of the L.H.S. will therefore occur when

2 ¢ _ - _13 m?
1l + El:i-—_—zm’s = oort =-13 m“,
Now for the R.H.S. we write Y, o

{]m AR (s,t) =

(gO(N N
e O<+l

E
JTFr1GR(t))
with / : 2

X (t) = Xt -%) +1
and we require 0((-13) = 0 _

/
=2

which gives 0( _ l/l+3 - 0.023 mﬂ

which is very close to the physical value. Similarly in

the non-zero width approximation we expect that by adjusting

the slope it may be possible to make both sides change signs

similtaneously.
In the following, however. the results for t 7/ O are presented.

»
oeN »
e

/£
:
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I1I. L(a) Bootst ap Calculatlons with a Slngle Regge
- Term Representations

~ Starting with_di=;0.92h@;2 and E = 0.82 we solve the
equations (18 (a,b,c) and calculate both sides of the sum
r'ule (20,a,b) for a range of Yallues of t, Oét \( 30 'mi with
cut-off N = 65.5 m? ( = its value of NRA) as shown in figure
10. We flnd'ggf most of the values of t both sides of the
sum rule agree up to an accuracy of 20 per cent. For_t = 0
the two 31des are exactly equal. Thus we eohclgde-tpat the

m-2 E = 0,82 (which corresponds. to a width

values CK = 0. 02
of 140 MeV) and N = 65.5 m (which 11es close to the half-
way point between the ( and f' on the degenerate £- };
trajectory) are nearly self-consistent. "Ip figure 11 we
again plot the two sides of the sum rule against t with a
different cut-off N = 55.5 ﬁf,u We e?serve that we have a
bettep agreement between the two sides of the sum rule ih
this case. _ S ) o _
To“study the_eupfoff_depepdepcengf_phe eum_pu}e at a
given value of t we plot the two sides of the sum rule against
N in figures 12(a), (b)s For t = O we see from figure _
12 (a) that as N varies from_55.5 ﬁs to 7545 m? (these values
of N lie between F and 7C;_'_tbn the degenerate _P- ﬁ_,
trajectory) the two curves are always close to each other.

From figure 12(b) (t = 30 ?;)we see that the two curves are
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close to each othgr only when N <:70.5 ﬂs . Thus we conclude
that our results are to some extent dependent on the cut-off
as well as on the value of t at which both sides of the sum

rule are evaluated.

ITII. 4(b) Bootstrap Calculations with Khuri Representation:

As before we solve the Cheng-Sharp equations in the case
of Khuri representation starting with input (5Z= 0,02 @;2,.
E = 0.82 and then calculate both sides of the sum rule'(20,a,b)
for.a range of values of t, O é:t fé 30 ﬁs and with different
cut-offs, 55.5 { N {75.5 ™. We displsy the two sides of ,
the sum rule as functions of t in figure 13(a) with N = 65.5";
and in figure 13(b) with N = 55.5 ?ﬁ « In both cases the
two curves are close to each other over a fairly large range
of t although the two siges_dq not seem to agree over the .
whole rangevbf te. Our conclusion therefore is that the
values(*{=¥0.02 ﬁ:z and E = 0,82 (i.e. 5; = 140 MeV) are
consistent; althoggh our results are to some extent dependent
on the value of t at which both sides of the sum rule are
evaluated.

To study the cut-off dependence of the sum rule we plot
the two sides of tpe sum rule against N at a given value of
te In figure 14(a) the two sides are plotted at t = O
whereas in figure (14b) they are plotted at t = 30 ﬂf .« Ve
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notice that for a better agreement between the two sides of
the sum.rule we require N‘2}v70.5m when t = 0 (fig. L (a))
and N <:70 5 m when t = 30 m2 (fige 1lh(b)).  Again we
conclude that with a suitable choice of N (lying s omewhere
between 1:,helf> and gaon the degenerate JfL.J% trajectory)
at a given value of t the values -()( 0.02m =2 and E = 0,82

are self-consistent.
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CHAPTER IV

Conclusion -

We have studied the Qynamicai properties of rising
‘Regge trajectory in the narrow resonance approximation and
in the approximation of unitarity. In the NRA we found
that our dynamics_bgseq on_phe'concept of rising trajectories
and the finite energy sum rules predicts the impossibility
of scalar meson bootstrap - a result already proved to be
true on the basis of N/D approach 25. It also predicts
the possibility of phe bootstrap ofJ;)in Tpﬂéfattering.z
Further we found that in the NRA the values o = 0.02 "7
(=1 GeV—%) and N = 65.5 m: of the slope _O_Z(_off trajectory)
and the cut-off parémeter N are self-consistent. .We could
not however determine the absolute mégnipude'of the width
(on coupling) in the NRA.  An attempt was made to determine
this parameter together with the slope by imposing unitarity
on the Regge parameters through"the éolgtion of Cheng-Sharp
equations. We considered two approximations to unitarity -
one corresponding to”q_sipgle Begge pole term rgprgsenpa@iop
of the purdiphdeaxs amplitude and the other corresponding to
Khuri representgtion-n We found that_?he_rgsultsmin both
approximations are qualitatively the same, and that_unitarity

makes only a small difference on the results of NRA. We
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also found that the. phy31cal values of the slope and width
oij v1z.c{— 0,02 M~ ? and rﬂ 1 m = 140 MeV are consistent
with a (reasonable) value of the cutpoff parameter N lying
somewhere between theJD and }2, on the degenerate JQ— f;
trajectorye. _ -

In the end we may note that our ca;culation§ are not
strictly speaking bootstrap calculatipp; they rather check
the consistency of ;he finite energy sum rules in phé NRA
and in the approximation when unitarized Regge parameters

are usede.
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Figure Captions

Fige5 The graphs of ﬂ'mol against t in the -case of one

Regge pole represenpation cprresp@nqing.to two values of the

put-off'f'in the Fermi function viz. t = 200 @: (curve A)

and'E 3'300 n? (burve B) with /\ = 20 %‘ in either case,

and (X{= 0.02 7% , E = 0.82

F1g.6 (a), (b): The graphs of Reo( and X agalnst t in the

case of one Regge pele representation w1tk1(>< = 0, 02m2 and
= 0.82 o o o ) B _

Fige7 The graph of the s - discontinuity of the Regge term,

Ds“(N, t),_agalnst t in the casg_gf_narrownresonance approx-

imation (curve NB)'and in the case of upitarity using one

Reggg pole term approximation (curve U); N = 65.5 mﬁ and

X = 0.02 @ 2_, E=0.82.

Fige8 (a),(b),(c): The graphs ofﬁmd ReO(, and'?f in the

case of Khuri representat:!.'on? with o( = 0,02 _."2 , B = 0.82.

Fige9 _The“plop of the s-discontinuity of the Regge term,

Ds(N,t), against t in the case of narrow resonance approxima-

tion (the curve NR) and in the case of unitarity using Khuri

representation (curve U), N = 65.5 ff , (SZ 0.02 m -2 ;
0.82

Flg.lq The plots of the L.H.S. and the R.H. S..of the sum

rule agalnsB‘t,_ln the qase_of_one Regge pole term representa-

=2
tion with d: 0002 er ’ E = 0.82 and N = 6505 Hf




Figell the same as in figure 10 with N = 55.5 mi |
Fig.12 (a),(b): The plots of the L.H.S. and the R.H.S. of
the sum rule against the cut-off N ( in the case of a single
Regge pole term representatlon) w1th()(-— 0.02 ™ 2, E = 0.82
and (a) t = 0.0, (b) t = 30 “}w .

Fige13 (a),(b): The plots of the L.H.S. and the R.H.S. of
the sum rule against t (1n_the“casehof Khurl_representatlon)
with O = _0.022"‘;"_'2 y B = 0,82 and (a) N = 6545 m: R

(b) N = 55.5 "%

Fig.14 (a),(b): The plots of the L.H.S. and the R.H.S. of

the sum rule against the cut-off N, in the case of Khur1
m— 2

w2 B = 0.82 and (a) t = 0O,

representation with CK~ 0.02
2
(b) t = 30’“1T .
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