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P r e f a c e 

A s o l i d i r o n magnet has been c o n s t r u c t e d under the 

d i r e c t i o n of the author, i n the form of a r e c t a n g u l a r 

transformer core w i t h e x c i t a t i o n windings on opposite 

s i d e s of the core. The design i s based on the r e s u l t s 

of model experiments by Bennet and Nash (1960). The 

author was r e s p o n s i b l e f o r the study of the magnetic 

parameters of the instrument; the r e s u l t s have been 

published by the author and Dr. A.W. Wolfendale i n 

Nuovo Cimento (1960). 

The f i r s t t h r e e months of operation and i n t e r p r e ­

t a t i o n of the data from the Cosmic Ray Spectrograph 

i n c o r p o r a t i n g the above magnet were the main r e s p o n s i ­

b i l i t y of the author, the r e s u l t of which had been pre­

sented i n a p r e l i m i n a r y form by the author and Dr. A.W. 

W.olfendale i n an A.R.D.C. T e c h n i c a l Report (1960). They 

are more f u l l y t r e a t e d i n t h i s t h e s i s . 

O'CONNOR, P.V., and WOLFENDALE, A.W., I96O, 
Suppl. Nuovo Cimento, 15, 202. 
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CHAPTER 1. 

General I n t r o d u c t i o n 

The general p i c t u r e of the Cosmic R a d i a t i o n , con­

s i d e r i n g such a s p e c t s as the nature of the primary 

r a d i a t i o n and the mechanism of i t s i n t e r a c t i o n w i t h 

the n u c l e i a t the top of the atmosphere, i s now mod­

e r a t e l y w e l l understood, although the o r i g i n of t h i s 

r a d i a t i o n remains a t present the s u b j e c t of c o n f l i c t i n g 

p o s t u l a t e and theory. 

The primary r a d i a t i o n i n c i d e n t on the top of the 

atmosphere from outer space c o n s t i t u t e s a f l u x , or 

stream, of atomic n u c l e i of v a r i o u s e n e r g i e s up to a t 

l e a s t 10- 1 eV,. almost i s o t r o p i c i n space and remarkably. 

constant i n time. I t i s composed predominantly of 

protons (^85^, the remainder being«f - p a r t i c l e s and 

he a v i e r n u c l e i . The protons a r e absorbed e x p o n e n t i a l l y 

w i t h an abso r p t i o n l e n g t h of about 120 gm cm" 2 and thus 

the protons may be considered to i n t e r a c t w i t h the 

Oxygen and Nitrogen n u c l e i > o f the atmosphere mainly 
_p 

w i t h i n the f i r s t 200 gm cm pressure band and, i n the 

case of the <* - p a r t i c l e s and heavier n u c l e i , which have 

s h o r t e r a bsorption l e n g t h s , a t higher l e v e l s . I n con­

sequence most of the Cosmic R a d i a t i o n i n t e r a c t s w i t h the 
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atmosphere above 50,000 f t . from sea l e v e l . The 

i n t e r a c t i o n s give r i s e t o secondary r a d i a t i o n c o n s i s t i n g 

of charged (both p o s i t i v e and ne g a t i v e ) and n e u t r a l 

^-mesons, heavier mesons and hyperons. These secondary 

p a r t i c l e s produce f u r t h e r mesons and nucleons by i n e l a s ­

t i c c o l l i s i o n s w i t h a i r n u c l e i , and a l s o e l e c t r o n s and 

photons by a v a r i e t y of pr o c e s s e s . 

The charged^-mesons have a mass of 273 times t h a t 
-8 

of the e l e c t r o n and a mean l i f e of 2.6 x 10~ sec and 

e i t h e r decay i n f l i g h t into/*-mesons and n e u t r i n o s , or 

i n t e r a c t w i t h n u c l e i and u n d e r g o . i n e l a s t i c c o l l i s i o n s . 

The/K -mesons, p a r t i c l e s of mass 207 times t h a t of the 

e l e c t r o n , are weakly i n t e r a c t i n g p a r t i c l e s and have the 

comparatively long l i f e t i m e of 2.2 x 10"^ s e c . T h i s 

long l i f e t i m e enables many of them to reach s e a - l e v e l 

and the more e n e r g e t i c of them penetrate to great 

depths under the ground. They t h e r e f o r e form the pre­

dominant pa r t of the s o - c a l l e d hard or p e n e t r a t i n g 

component. 

The neutral f r-meson has a mass of 26^ times t h a t 

of the e l e c t r o n , a mean l i f e of about 10 - 1 ^ sec and 

decays i n t o two photons. These photons i n i t i a t e cascade 

showers of e l e c t r o n s and photons to form an important 

p a r t of the s o f t component of the r a d i a t i o n a t s e a - l e v e l . 
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Many s t u d i e s have been made of the v a r i a t i o n s of 

the components of the cosmic ray f l u x w i t h r e s p e c t to 

time and d i r e c t i o n . Such v a r i a t i o n s a r e important f o r 

a v a r i e t y of reasons, and these can best be ap p r e c i a t e d 

by c o n s i d e r i n g the l i f e h i s t o r y of the cosmic ray 

p a r t i c l e s from t h e i r c r e a t i o n i n outer space to t h e i r 

d e t e c t i o n or the d e t e c t i o n of t h e i r progeny i n the 

la b o r a t o r y . 

I t seems l i k e l y t h a t a f r a c t i o n , a t any r a t e , of 

the cosmic r a d i a t i o n i s produced i n the envelopes of 

super-novae and other very hot s t a r s . Then on i t s 

passage to the e a r t h the r a d i a t i o n i n t e r a c t s w i t h the 

g a l a c t i c m a t e r i a l and i s acted upon s u c c e s s i v e l y by the 

g a l a c t i c magnetic f i e l d , the sun's magnetic f i e l d i f 

any, and the e a r t h ' s magnetic f i e l d . F i n a l l y i t enters 

the e a r t h ' s atmosphere as a high energy primary p a r t i ­

c l e , t o i n i t i a t e the sequence of the events d e s c r i b e d 

i n the preceding paragraphs, the end product being the 

s e a - l e v e l f l u x ; the^r -meson c o n s t i t u t i n g the v a s t 

m a j o r i t y of t h i s f l u x . 

I n p r i n c i p l e , v a r i a t i o n s of any of the f a c t o r s 

e n t e r i n g i n t o the l i f e - h i s t o r y of the cosmic r a y s ; 

g a l a c t i c f i e l d s e t c . , w i l l a f f e c t the f t -meson f l u x a t 
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s e a - l e v e l . I n p r a c t i c e , however, t h e r e are m i t i g a t i n g 

f a c t o r s . For example, a/<-meson of average energy a t 

s e a - l e v e l of say 2 GeV, was probably produced ( v i a ~tr 

meson decay) by a primary proton of energy 20 GeV, and 

the f a c t o r under c o n s i d e r a t i o n might not a f f e c t p r i ­

maries of as high an energy as t h i s . V a r i a t i o n s i n the 

f l u x of low energy primary p a r t i c l e s a r e obviously best 

s t u d i e d a t great h e i g h t s , i . e . b a l l o o n or rocket a l t i ­

tudes. On the other hand phenomena a s s o c i a t e d w i t h high 

energy p r i m a r i e s can best be s t u d i e d i n l a b o r a t o r i e s 

where the operation of apparatus of great s i z e , weight 

and complexity i s p o s s i b l e . For example d i r e c t measure­

ments of p a r t i c l e momenta i n v o l v i n g ' i r o n cored or perma­

nent magnets can be made. 

V a r i a t i o n s i n the secondary cosmic ray f l u x , a r i s i n g 

from changes i n the atmospheric parameters - p r e s s u r e , 

temperature e t c . , a r e obviously best s t u d i e d i n the 

lower l e v e l s of the atmosphere, and many l a b o r a t o r y 

experiments have been c a r r i e d out on t h i s t o p i c . 

The scope of the present work i s the study of f l u x 

v a r i a t i o n s of t h e / t -meson component at s e a - l e v e l w i t h 

r e f e r e n c e to time and d i r e c t i o n , and t h e i r i n t e r p r e t a t i o n 

i n terms of contemporary t h e o r i e s of atmospheric v a r i a ­

t i o n e f f e c t s . The s t u d i e s have been made u s i n g a spec-
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trograph comprising a s o l i d i r o n magnet w i t h a r r a y s of 

Geiger counters as the d e t e c t i n g elements. T h i s l a t t e r 

instrument has been designed i n conjunction w i t h Bennett 

and Nash (1960) and i t r e p r e s e n t s the only reasonably 

economical means of obtaining a high uniform magnetic 

f i e l d over a r e l a t i v e l y l a r g e a r e a , f a c t o r s which are 

e s s e n t i a l f o r s t a t i s t i c a l i n v e s t i g a t i o n of the p. -meson 

f l u x a t s e a - l e v e l . 



CHAPTER 2. 

V a r i a t i o n s i n the I n t e n s i t y of theyc-meson Component a t 

S ea-Level. 

2.1 H i s t o r i c a l I n t r o d u c t i o n . 

E x h austive review papers on the f l u x v a r i a t i o n s 

i n general have appeared ( E l l i o t , 1952; Sarabhai and 

Nerurkar, 1956; Dorman, 1957) and these a l l show t h a t the 

l a r g e s t v a r i a t i o n s are due to v a r i a t i o n s i n the meteoro­

l o g i c a l parameters. I t i s these v a r i a t i o n s t h a t w i l l be 

d i s c u s s e d here. The e x i s t e n c e of a c o r r e l a t i o n between 

the i n t e n s i t y of s e a - l e v e l cosmic r a y s and m e teorological 

f a c t o r s appears to have been f i r s t pointed out by 

Myssowsky and Tuwiin i n 1928. These workers found t h a t 

a change i n barometric p r e s s u r e of 1 mm Hg produced a 

change i n i n t e n s i t y of 3.^5%, the changes being i n 

opposite d i r e c t i o n s . T h i s v a r i a t i o n was c o r r e c t l y i n t e r ­

preted as being due to the i n c r e a s e d a b s o r p t i o n and 

t h e r e f o r e lower i n t e n s i t y a t higher atmospheric p r e s s u r e 

and v i c a v e r s a at lower p r e s s u r e . 

With the development of cosmic ray d e t e c t o r s having 

high counting r a t e s and improvements i n the c o l l e c t i o n of 

m e t e o r o l o g i c a l data, p a r t i c u l a r l y r e g u l a r measurements of 

upper atmosphere data w i t h b a l l o o n s , f u r t h e r c o r r e l a t i o n s 

became apparent. 
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2.2 The Equation of Duperier. 

These c o r r e l a t i o n s can be most conveniently under­

stood from the e a r l y work of Duperier (19^9)- Duperier 

showed, by a n a l y s i s of the day to day changes i n the 

i n t e n s i t y a t s e a - l e v e l , t h a t " t h e changes could be 

c o r r e l a t e d w i t h the f o l l o w i n g meteorological f a c t o r s . 

1. The barometric p r e s s u r e - P. 

2. The height of the 100 mb l e v e l i n the 

atmosphere - K. 

3. The average temperature of the atmosphere between 

the 100 mb and 200 mb l e v e l s - T. 

Thus, c o n s i d e r i n g the f r a c t i o n a l change i n i n t e n s i t y 

I / I a t s e a - l e v e l and the parameters P, H and T, they may 

be r e l a t e d by the f o l l o w i n g equation. 

= etA-p* «.„ A" + «.r AT 

where P, H and T represent the changes i n the respec­

t i v e parameters, t hem's being t h e i r r e s p e c t i v e co­

e f f i c i e n t s . 

Considering the p h y s i c a l s i g n i f i c a n c e of the v a r i o u s 

parameters i t can be seen t h a t o(.p r e p r e s e n t s the mass 

ab s o r p t i o n e f f e c t ; an i n c r e a s e i n p r e s s u r e w i l l cause 

more low energy ̂ -mesons to be absorbed by the atmosphere 

before they reach s e a - l e v e l w i t h the corresponding 
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decrease i n i n t e n s i t y . oCH r e p r e s e n t s the decay c o e f f i c i e n t , 

and may be i n t e r p r e t e d as the change i n s u r v i v a l prob­

a b i l i t y a r i s i n g from a change i n height of the meson 

formation; an i n c r e a s e i n H causes more^w -mesons t o decay 

i n t o e l e c t r o n s before reaching s e a - l e v e l , thus a g a i n the 

i n t e n s i t y f a l l s . The t h i r d parameter, <*r, i s the p o s i ­

t i v e temperature c o e f f i c i e n t due to the competition 

between decay and n u c l e a r capture of the parent ir-

meson near the production l e v e l ; a r i s e i n temperature 

g i v e s a corresponding f a l l i n d e n s i t y and consequently 

more ̂ -mesons decay and fewer i n t e r a c t s i n c e the average 

i n t e r a c t i o n d i s t a n c e w i l l i n c r e a s e . At s e a - l e v e l t h i s 

w i l l r e s u l t i n an i n c r e a s e i n i n t e n s i t y otju-mesons w i t h 

i n c r e a s i n g temperature of the upper atmosphere. 

2.3 More acc u r a t e a n a l y s e s of the Meteorological E f f e c t s . 

Many o v e r - s i m p l i f i c a t i o n s of p h y s i c a l processes 

invol v e d have been made i n d e r i v i n g the r e g r e s s i o n f o r ­

mula; f o r example,^ -mesons a r e not i n f a c t generated a t 

a Unique height but have a p r o b a b i l i t y of generation which 

v a r i e s w i t h height, T and P a r e not independent e t c . I n 

p r a c t i c e t h e r e f o r e i t i s found t h a t the c o e f f i c i e n t s are 

not s t r i c t l y constant but v a r y with time, f o r each e x p e r i ­

mental arrangement and i n c o n s i s t e n c i e s appear between the 
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results from d i f f e r e n t arrangements. I n p a r t i c u l a r . 
widely d i f f e r i n g values of *<v have been found by d i f f e r e n t 
workers, ranging from -0.023 ± 0.027 t o +0.123 ± 0.02*+$ 

per °C (Bachelet and Conforto (1956) have summarized the 
discrepancies). Much more elaborate regression formulae 
have i n consequence been developed t o take account of 
these factors, demanding a knowledge of the physical con­
d i t i o n s over the whole of the atmosphere and not only at 
a few selected points. These treatments have been carried 
out by a number of authors notably Olbert (1953» 1955) and 
Dorman (1957), and have resulted i n more sa t i s f a c t o r y 
agreement between theory and experiment (e.g. the results 
of Matthews, .1959)• A more detailed discussion w i l l be 
given l a t e r . 

A f u r t h e r important point that can be considered 
here i s that the c o e f f i c i e n t s i n the simple regression 
formula represent the aggregate e f f e c t summed over p a r t i ­
cles having a wide range of momenta, over the whole of 
the sea-level momentum spectrum i n f a c t . Now the theoret­
i c a l analysis, as d i s t i n c t from the empirical analysis of 
Duperier (19^9), consider the expected variations as a 
function of momentum. Referring to the simple regression 
formula we should expect the co e f f i c i e n t s t o vary w i t h 
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momentum as follows: 
1. should f a l l w i t h increasing momentum since 

as the momentum rises the amount l o s t i n t r a ­
versing the atmosphere ( 2 GeV/c) becomes less 
and less important. 

2.. should f a l l w i t h increasing momentum because 
at the higher momenta the p r o b a b i l i t y of /*-e 
decay becomes progressively smaller. 

3. should become more important at high momenta 
since i t i s only at high momenta ( 20 GeV/c) 
where there i s s i g n i f i c a n t loss of ̂--mesons by 
in t e r a c t i o n rather than decay. 

2.h Experimental studies of the Variations as a Function 
of Momenta. 

Systematic experimental studies of the i n t e n s i t y 
v a r i a t i o n as a function of momentum have not been made. 
Some work has been carried out however. For example, 
measurements have been carried out using counter t e l e ­
scopes under absorbers so that the data r e f e r t o p a r t i c l e s 
having energy greater than some minimum value E^^. Thus, 
measurements were carried out during the In t e r n a t i o n a l 
Geophysical Year using counter telescopes at sea-level, 
w i t h a t h i n absorber to give = O.h GeV, and at various 
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depths underground: 25 metres water equivalent (M.W.E.), 
giving E m^ n = 6.h GeV and at 55 M.W.E., giving E m i n -
ik-.h GeV. These measurements^Dorman^(1957),have shown 
that there are no gross discrepancies between experiment 
and theory but a more detailed experimental study of the 
momentum (or energy) dependence i s s t i l l desirable. An 
attempt to make such a study i s described i n a l a t e r 
Chapter of t h i s thesis. 

2.5 The Experiments of Glaser et a l (1950) 
Some rather disquieting results on i n t e n s i t y 

v a r i a t i o n s which appeared to show a much larger momentum 
dependence than might be expected, were found by Glaser 
et a l (1950). Using two counter controlled cloud 1 

chambers i n a magnetic spectrograph these workers obtained 
15̂ 7 measurable tracks over a range, of momentum extending 
up t o 80 GeV/c. The results gave a d i f f e r e n t i a l spectrum 
represented by the form NCp) = const p" 1'^. However -
there appeared an anomalous dip i n the momentum d i s t r i ­
bution at about 3 GeV/c. This decrease has not been 
substantiated by l a t e r workers (e.g. Owen and Wilson, 1955» 

Ashton et a l , I96O) and must be presumed due to eith e r a 
large f l u c t u a t i o n or some technical imperfection. 

Of greater relevance t o the present work was the 



observation of a small d i u r n a l v a r i a t i o n which was 
momentum-dependent; 1 GeV/c p a r t i c l e s being favoured 
during the day, 3 GeV/c and 6 GfV/c p a r t i c l e s being favoured 
at night as shown i n Table 1, 

TABLE 1. 

The Diurnal Variation found by Glaser et a l (1950) 

Mom, i n GeV/c Pa r t i c l e Excess Mom, i n GeV/c P a r t i c l e excess 
day - night day - night 

0.5 -5 5.0 0 
1.0 +5 5.5 -2 

1.5 +25 6.0 -5 
2.0 +15 6.5 -7 

2.5 +10 7.0 -5 
3.0 -10 7.5 -if 

3.5 -15 8.0 -3 
hr.O -10 8.5 -2 

*K5 +5 9.0 0 

Although such a v a r i a t i o n seems u n l i k e l y i t s exis­
tence cannot be ruled out f o r the following reason. The 
ov e r a l l v a r i a t i o n summed over a l l momenta i s very small 
so that experiments without momentum resolution would not 
detect the phenomenon; as has already been pointed out no 
experiments w i t h ( d i f f e r e n t i a l ) momentum resolution have 
been performed. 
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One of the purposes of the present experiment was 
to examine f u r t h e r t h i s d i u r n a l v a r i a t i o n . 

2.6 The requirements f o r an Instrument t o Study Flux 
Variation^. 

Any experiment, i n which small variations are to be 
studied requires an apparatus affording a high rate of 
c o l l e c t i o n of p a r t i c l e s and i t was considered that a 
spectrograph using a s o l i d i r o n magnet instead of the 
more conventional air-cored type would prove sati s f a c t o r y . 
S u f f i c i e n t l y accurate momentum determination was judged 
to be feasible using Geiger counters as detecting ele­
ments. 

No accurate measurements had previously been made 
with t h i s type of instrument and considerable develop­
ment of the s o l i d i r o n magnet was therefore necessary. 
The next three Chapters describe t h i s work and the 
properties of the instrument f i n a l l y adopted. 
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CHAPTER ̂ . 

Design and Construction of the Solid I r o n Magnet 
3«1 General Considerations of Design. 

The most widely used technique f o r the determina­
t i o n of the momenta of fas t Cosmic Ray p a r t i c l e s i s that 
of magnetic d e f l e c t i o n , a technique which i t was intended 
t o follow i n the present case. On account, however, of 
the low i n t e n s i t y and high momentum of the,/*-mesons, 
(the component of Cosmic Rays under consideration), a 
magnetic f i e l d of high i n t e n s i t y , and covering a large 
volume, was required. Due to the/*-meson being a weakly 
i n t e r a c t i n g p a r t i c l e , the magnetic de f l e c t i o n need not 

4 
be obtained i n an a i r gap of a magnet, as i s the case 
w i t h a stongly i n t e r a c t i n g p a r t i c l e , but can be produced 
inside magnetised material. Thus there i s the p o s s i b i l i t y 
of using a magnetic c i r c u i t devoid of an a i r gap. The 
advantages of such a choice of system, namely magnetised 
i r o n , are obvious; high uniform f i e l d s may be induced 
over a large volume f o r very low power of e x c i t a t i o n , 
since the e f f e c t i v e vector acting on a p a r t i c l e i n a 
magnetised medium i s the magnetic induction B. 
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Although the p r o b a b i l i t y of a.ju -meson suffering a 
nuclear i n t e r a c t i o n i n such a magnet i s n e g l i g i b l e , the 
p r o b a b i l i t y of appreciable Coulomb scattering i s high 
and t h i s factor sets a l i m i t to the accuracy w i t h which 
the momentum of a single p a r t i c l e may be determined. 
At constant f i e l d , (induction) over a t r a j e c t o r y of 
length L, the magnetic def l e c t i o n increases as L, and . 
the root mean square (r.m.s.) angle of scattering as L , 
thus giving a. f r a c t i o n a l error of a single determination 
varying as L 2. An increase i n L also increases the 
maximum detectable momentum, (the momentum corresponding 
to the smallest d e f l e c t i o n t o which significance may be 
attached). Thus, a high value of L appears desirable i n 
every way. However, t h i s reasoning i n favour of a high 
value of L i s not true where low momentum p a r t i c l e s are 
to be considered, where the momentum loss i n penetrating 
the i r o n i s important. The minimum momentum required to 
penetrate the magnet also varies approximately as L. 
Thus a compromise i s required f o r the length of the 
t r a j e c t o r y L, i . e . the height of the magnet. 

This use of magnetised i r o n f o r d e f l e c t i n g Cosmic 
Ray p a r t i c l e s i s not new. Rossi (1931) suggested the use 
of magnetic lenses f o r the p a r t i a l separation of po s i t i v e 
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and negative mesons, and Bernardin.i et a l (19^5) used 
i t w i t h success i n measurements of the posi t i v e excess 
at Sea Level. These workers used a t r i p l e coincidence 
system w i t h four i r o n cores, the cores arranged i n pairs 
t o act roughly speaking l i k e a c y l i n d r i c a l magnetic lens 
which concentrates the p a r t i c l e s of one sign. F i n a l l y 
Conversi et a l (19^5) used t h i s system of magnetic lenses 
to concentrate on an i r o n absorber a l t e r n a t i v e l y p o s i t i v e 
and negative mesons, fo r work on cldecay processes. 

3.2 The Magnetic Material. 
The reasoning i n the previous section concerning the 

p o s s i b i l i t y of using a s o l i d i r o n magnet assumes that the 
factors i n i t s favour, namely are intense f i e l d of high 
s t a b i l i t y and uniformity covering a large volume, may i n 
f a c t be obtained. This i s not the case without careful 
consideration of the factors involved, and to t h i s 
purpose considerable preliminary investigations were 
carried out on TO scale models by Bennett and Nash (1960), 

and Bennett (1960). I t was from the results of these 
investigations that the best compromise was obtained, 
and the design of the present magnet completed. 

The conditions which the magnet was required to 
s a t i s f y were :-
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1. That the useful area, that i s the area to be 
used f o r the actual deflections of the^/*-mesons 
be large, and that over t h i s area the l i n e 
i n t e g r a l of the magnet induction should not vary-
by more than a few per cent. 

2. That f o r low e x c i t a t i o n current the /BdL be 
stable f o r small changes i n the e x c i t a t i o n 
current. 

To s a t i s f y the former condition was a question of 
geometrical design, t o which end the model experiments 
were carried out; but to s a t i s f y the l a t t e r condition 
was a question of the magnetic properties of the material 
used. The i r o n chosen was made to B r i t i s h Standard 2h, 
Part 6, Specification 18, the chemical c o n s t i t u t i o n of 
which i s given i n Table I I , the relevant portion of i t s 
h y s t e r i s i s loop being shown i n Fig. 1. As can be seen 
from the figure the majority of the portion AB runs 
almost p a r a l l e l t o the H ( f i e l d strength) axis, where 
the i r o n may be said to be saturated. I t was obvious 
that the magnet should be operated as near t o the sat­
u r a t i o n l e v e l as possible, for i t i s here that condition 
2 i s s a t i s f i e d . 
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3«3 Results of the Model Experiments. 
The following i s a summary of the work, already 

mentioned, carried out by Bennett and Nash (1960) and 
Bennett (1960). 

The general form of the magnet o r i g i n a l l y envisaged 
i s shown i n Fig. 2. I t was i n the form of a 150 cm 
square, w i t h a 50 cm square hole i n the centre, and was 
thus i n the form of a picture-frame. The depth was of 
the order of 100 cms, made up of steel plates. Rec­
tangular variations on the above pattern pere also con-, 
sidered, and i t was with these dimensions i n mind that 
the ^ t h scale models were constructed. 

The prime factors considered by Bennet and Nash 
were the v a r i a t i o n of magnetic f l u x B over the whole of 
the picture-frame ( i . e . i n the X and Y d i r e c t i o n as 
shown i n the f i g u r e ) and also the v a r i a t i o n i n f l u x 
down through the magnet ( i . e . i n the Z d i r e c t i o n ) . 
Also considered was the v a r i a t i o n of the l i n e i n t e g r a l 
jBdL over the magnet, including also the leakage f l u x , 
and the v a r i a t i o n of the f l u x density w i t h time. F i n a l l y 
various models were constructed t o observe the e f f e c t of 
rounding-off either the inside or outside corners. 
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The results obtained may be summarised as follows. 
1. Either the region covered by the e x c i t i n g c o i l s 

or the open sides (or both) can be used as 
def l e c t i n g volumes; The advantage of the 
higher induction under the c o i l s i s o f f s e t to 
some degree by the greater degree of uniformity 
i n the open side, and the ease w i t h which induc­
t i o n measurements can be made. 

2. Although the radius of curvature of the outside 
corners appears to have a neg l i g i b l e e f f e c t , the 
radius of the inside corners i s of considerable 
importance i f the useful region i s t o approach 
these corners. 

•p 

3. Even at comparatively low degrees of e x c i t a t i o n 
the v a r i a t i o n of /Bdt, over most of the selected 
side i s not large. 

h• Increase i n the f l u x density, produced by a 
large increase i n magnetising current f o r a short 
period, i s stable, decay integrated t o i n f i n i t e 
time giving a t o t a l decrease of only 0.03$. 

3«^ Design and Construction of the f u l l - s c a l e Magnet. 
The r e s u l t s and conclusions of the model experiments 

gave some idea of the performance t o be expected from 
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t y p i c a l designs. The design chosen was In practice a 
compromise of a number of factor s , the most important 
being. 

1. The rate of c o l l e c t i o n of p a r t i c l e s . 
2. The l i n e i n t e g r a l of magnetic induction j B d l . 
3. The signal t o noise r a t i o f o r i n d i v i d u a l p a r t i ­

cle deflections i . e . the r a t i o of the def l e c t i o n 
of the p a r t i c l e produced by the magnetif f i e l d 
t o the r.m.s. d e f l e c t i o n of the p a r t i c l e pro­
duced by Coulomb scattering. 

A high value f o r t h i s l a s t f a c t o r was not considered 
necessary, since the experiments t o be carried out concern 
the measurements^ of momentum spectra, and the e f f e c t of 
scattering can be allowed f o r when a large number of 
t r a j e c t o r i e s are considered. The compromise dimension 
of 25" was chosen, f o r which the signal to noise r a t i o 
was 3»7^» at an e x c i t a t i o n current of 16 amps. The mag­
netic d e f l e c t i o n i s then 1.68° f o r a p a r t i c l e of momentum 
10 GeV/c, the magnetic induction produced i n the i r o n by 
the e x c i t a t i o n current being of the order of 15»5 K. Gauss. 
With t h i s height the momentum loss i n penetrating the 
i r o n i s O.89 GeV/c. 



I t was from the point of view of ease of assembly 
that the magnet had been envisaged as constructed from 

'boiler p l a t e 1 . The model was manufactured from 
plate. Experiments showed no disadvantages of t h i s 
laminated construction and the actual magnet was i n 
fa c t fabricated from b o i l e r - p l a t e of the above nominal 
thickness. The magnet consisted of 50 'laminations 1, 
each weighing h.2 cwt, mounted ho r i z o n t a l l y and held i n 
place by v e r t i c a l steel pegs through two diametrically 
opposite corners. The general arrangements are shown 
i n Pig. 3(a). The sides B and C were used f o r the 
def l e c t i o n of the^-mesons, side C i s shown i n d e t a i l i n 
Fig. 3(h). 

Provision f o r the measurement of the magnetic f l u x 
w i t h i n the magnet i t s e l f was made by the insertions of 
insulated wires between every group of 5 plates. I n 
addition t o t h i s , wires were inserted between successive 
plates i n the top most-but-one group C2. 

3.5 The Excitation of the Magnet. 
The e x c i t a t i o n energy was provided by c o i l s of 

1^ S.W.G. double cotton covered copper wire wound on t o 
the sides B and C as shown i n Fig. 3(a). Each c o i l 
consisted of 250 turns, the t o t a l resistance being 7«2 Ji 
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when cold and the s e l f inductance being 210mH (at lkH^). 
The actual energy of e x c i t a t i o n was provided from the 
A.C. mains by means of an ex G.P.O. copper-oxide rec­
t i f i e r , which provided a D.C. po t e n t i a l of 125 v o l t s 
giving a maximum e x c i t a t i o n current of 18 amps. Natural 
convection provided s u f f i c i e n t cooling f o r both magnet 
and r e c t i f i e r , provided the e x c i t a t i o n current did not 
exceed 20 amps, at which i t was tested using an extra 
subsidiary supply. At 16 amps, the normal working 
current, the power dissipated was 2 K.W, the temperature 
of the magnetic c o i l s 50°C, and the magnet i r o n 28°C, 
fo r an ambient temperature of 19°C 

3.6 Later.Modifications f o r Measurements on Horizontal 
Cosmic Rays. 

Although the l a t e r experiments to study the f l u x of 
cosmic rays at" large zenith angles are not described in*' 
t h i s thesis a description of the modifications to the 
magnet i s useful and w i l l be given here. I n order t o 
use the magnet to obtain data on the horizontal f l u x , i t 
became necessary t o design a new framework, t o mount the 
50 laminations r i g i d l y i n a v e r t i c a l plane. The new 
framework used i n t h i s case i s shown i n Fig. *+. Here 
the plates are held i n place by h Hexagonal Whitworth 
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bolts as shown, the steel pegs now being used merely 
to a l"Ign the plates. 

©pportunity afforded by the re-mounting of the 
magnet, was taken t o increase the number of turns on 
each c o i l on sides B and C. from 250 to 275» making a 
t o t a l of 550» an increase of 10%. The t o t a l resistance 
of the c i r c u i t when cold was now raised from 7*2/2 to 
7.95 j and the s e l f inductance t o 230«J<at 1 KH ?). 
With t h i s increase i n resistance i t was s t i l l possible 
to obtain the normal working current of 16 amps, and 
thus the extra turns were used i n an attempt t o lessen 
s t i l l f u r t h e r the dependence of the l i n e i n t e g r a l /Bdl. 
on the e x c i t a t i o n current, and to produce greater u n i ­
formit y of magnetic f l u x over the useful area. 
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CHAPTER h. 
Measurements on the Magnet. 
^.1 The Parameters under Investigation. 

A basic requirement of a magnet i s constancy of 
f l u x against variations of various parameters. I n the 
Spectrograph f o r which the magnet was designed the 
p a r t i c l e s are deflected i n the core, and to a lesser 
extent i n the a i r above and below the core and i t was 
therefore necessary to measure the magnetic f l u x d i s ­
t r i b u t i o n i n these regions f o r a wide range of experi^ 
mental conditions. 

I n p r i n c i p l e i t was necessary t o determine the l i n e 
i n t e g r a l of the magnet induction i n the d i r e c t i o n Ox f o r 
many t r a j e c t o r i e s d i s t r i b u t e d throughout the useful 
volume of the magnet. Considering side C (Pig. 3h) i t 
was hoped that the useful volume would be only a l i t t l e 
less than the volume contained by the c o i l s on that side, 
edge effects being the l i m i t i n g factors. Here, i t was 
hoped that there had been reduced t o a minimum by the 
actual design, especially the rounding of the inside 
corners. I t was comparatively easy to measure the l i n e 

below the magnet, but measurement of the f l u x w i t h i n the 
magnet presented d i f f i c u l t i e s . 

i n t e g r a l J ILdZ a r i s i n g from the leakage f l u x above and 
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I t was here that consideration was given t o the use 
of a magnetic potentiometer. A modern form of t h i s 
instrument was described by Margerison and Sucksntorth 
(19^6), who indicated that the instrument must be small 
i f i t was to measure variations of H over a small area. 
The instrument, which i s i n the form of a<.semi-circular 
c o i l , measures the magnetic p o t e n t i a l difference j H d l 
between i t s f e e t . 

After a careful consideration of the instrument, 
an attempt was made to construct one, but t h i s proved 
exceedingly d i f f i c u l t as the c o i l had to be very care­
f u l l y and evenly wound w i t h f i * e guage wire onto a 
semi-circular former. I t was therefore considered that 
as the accuracy of the instrument depended to a great 
degree on the accuracy of i t s construction, and as 
indeed l i t t l e seemed to be understood about the actual 
physical conditions under which the instrument worked, 
i t would be impossible without extensive study of the 
actual instrument i t s e l f t o obtain anything more than a 
rough estimate of the f l u x i n any-one pos i t i o n , and i t 
was dispensed with. 
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The measurements that were made d i r e c t l y , using the 
standard technique of determining the f l u x through a 
c o i l , w i t h a fluxmeter, were [B xdA over each group at 
the centre of each side, |BxdA over each plate w i t h i n 
group C2, at the centre of side C, and the v a r i a t i o n of 
Jf nB xdA over the whole side as a function of x. An 
important quantity, not measurable by t h i s technique, was 
the v a r i a t i o n of Bx. w i t h y, and t h i s could only be i n f e r r e d 
by comparison w i t h the r e s u l t s of the model experiments. 

Consideration was given t o reasons f o r non-uniform­
i t y of B. These could be devided i n t o two classes. 

1. The geometry of the system. 
2. V a r i a t i o n of magnetic properties from plate t o 

plate w i t h i n the magnet, or even v a r i a t i o n of 
magnetic properties w i t h i n a single plate. 

I n the case of class 1, the main v a r i a t i o n would be the 
change of B x w i t h y a r i s i n g from the gradient of mag­

netising f i e l d w i t h i n the c o i l s ; Bennett and Nash showed 
that the v a r i a t i o n of f B_dZ wi t h y was + 2% over the 

x 
useful area, and t h i s r e s u l t was considered applicable 
to the f u l l size magnet. 
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I n the case of class 2, measurements on the f u l l 
size magnet were necessary. Variations over one plate 
were expected to be small, but some measurable change 
from plate to plate was expected, and the measurement 
of /BxdA enabled t h i s to be studied. I n practice t h i s 
v a r i a t i o n was not very important as the d e f l e c t i o n , and 
displacement, of p a r t i c l e t r a j e c t o r i e s could be c a l i ­
brated, i f the form of the v a r i a t i o n was accurately 
known. 

F i n a l l y an extensive study was undertaken of the 
leakage f l u x above and below the magnet. This was 
useful f o r two reasons; f i r s t l y i t gave the contribution 
to [H xdZ, and secondly i t provided some information on 
the d i r e c t i o n of the l i n e s of force w i t h i n the magnet. 

h.2 The Fluxmeter. 
A l l the f l u x measurements were made using a c a l i ­

brated Grassot Fluxmeter, the form of the instrument 
used being described by Hickstall-Smith (1932). As the 
f u l l scale d e f l e c t i o n of the instrument was only 
*+.5 x 10 Maxwell-turns, i t was necessary to extend the 
range by means of non-i:. inductive shunts. On open c i r c u i t 
the period of the instrument was about 50 seconds. For 
measurement of induction i n the i r o n the e x c i t a t i o n 
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current i n the c o i l s was reversed twice, p o s i t i v e to 
negative and vica versa, and the mean of the two 
deflections taken. For the leakage f l u x measurements 
search c o i l s were reversed i n a steady f i e l d . For 
comparison three c o i l s were used, t h e i r dimensions 
being given i n the table below. 

TABLE I I I 
Dimensions of Search Coils. 
No. of turns Diameter of Co i l (cm) NA 

C o i l A 100 3.8 1310 

C o i l B 125 2.9 785 

C o i l C M)0 2.2 1385 

*+.3 Variation'of Magnetic Flux with Time. 
This v a r i a t i o n i s the product of two v a r i a t i o n s , 

physically independent. They are 
1. Variation of magnetic f l u x w i t h e x c i t a t i o n 

current. 
2. Variation of e x c i t a t i o n current with time. 
The t o t a l f l u x was measured as a function of excita­

t i o n current over the range 12-17 amps using as search, 
c o i l a single t u r n wrapped round the whole sidte. The 
mean induction was then derived from a knowledge of the 
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mean thickness of the plates (0.507" - see § h.h f o r 
d e t a i l s of the determination of t h i s mean) and the 
data are presented i n Fig. 5, the diameters of the c i r c l e s 
representing the errors. These arise mainly from the 
lack of complete r e p r o d u c i b i l i t y of the.fluxmeter 
deflections. 

Useful q u a n t i t i e s can be derived from t h i s graph. 
Thus, at a mean current of 15 amps, the v a r i a t i o n of 
induction with current i s 

• Ifj = 1.19* amp"1 

A more useful quantity i s the f r a c t i o n a l change 
of induction t o that of current 

Hf = 0-178 

This f i g u r e compares favourably w i t h the value of 0.1 

found i n the model experiments. 
To observe the second v a r i a t i o n i . e . the v a r i a t i o n 

w i t h time, and to check that i t remained w i t h i n the 
l i m i t s permissible, a (shunted) recording milliammeter 
was included i n the magnet, current c i r c u i t . I n t h i s 
way a continuous record was obtained of the e x c i t a t i o n 
current over the whole period of operation of the 
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apparatus. The current var i a t i o n s arise from a va r i e t y 
£ 

of factors mainly mowns voltage v a r i a t i o n and aging of 
the r e c t i f i e r . 

To obtain an estimate of the v a r i a t i o n a period of 
28 days continuous recording was analysed and a histogram 
was p l o t t e d of the current at 15 minute i n t e r v a l s . The 
histogram was found t o be close to a Gaussian d i s t r i b u ­
t i o n w i t h a standard deviation of + 1.3#« 

i . e . ~ j ~ = 0.013. 
R.M.S. 

I t i s possible to obtain an estimate of the t o t a l 
v a r i a t i o n of f l u x with time over the period concerned 
from a combination of the two factors discussed. Thus 

B R.M.S. B 3 1 - 1 R.M.S. 
i . e . 0.23$. 

This degree of s t a b i l i t y was considered to be quite 
sat i s f a c t o r y . 

h.k Variation of Magnetic Flux w i t h Group Number. 
Measurements were made at an e x c i t a t i o n current 

of 15 amps f o r each group on side C, and side D. An 
estimate of the mean thickness of the plates was derived 
by a detailed study of the thickness of the top plate, 



involving 20 estimations, 5 from each side, and the 
measurement of the thickness on side C of each of the 
top 10 plates. Using the mean thickness so derived the 
results shown i n Pig. 6 were calculated. I t was 
immediately obvious that there was a s i g n i f i c a n t varia­
t i o n i n induction of simila r magnitude f o r both sides C 
and D. 

I t i s possible that the v a r i a t i o n of thickness 
both over one plate and from plate t o plate, together 
w i t h the s t a t i s t i c a l error given t o each reading i n the 
fi g u r e has been underestimated, but a study of the 
parameters does not support t h i s view. The error i n 
the estimation of any one plate was found t o be less 
than + 2%, and the error on each estimation of f l u x not 
greater than ± 1%, whereas the v a r i a t i o n from the mean 
f o r the f l u x through C]_ was greater than 5$> f o r 
greater than 3$. 

The measurement of the actual e f f e c t of the varia-^ 
t i o n of plate thickness w i t h i n the group was therefore 
undertaken by means of measurements of the f l u x w i t h i n 
each single plate f o r group Cg. The actual thickness 
of these plates had already been obtained, and i t was 
thus possible to obtain the true t o t a l f l u x w i t h i n the 

plate f o r a mean thickness of 0.507"; t h i s i s shown i n 
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Pig. 7« Here the errors are considerably smaller than 
i n Fig. 6, the thickness of the plate being measured t o 
+ 1*, and the f l u x t o + 0.3*; c l e a r l y the v a r i a t i o n 
cannot have been caused by plate thickness. 

For a f i n a l check, the measurement of the f l u x f o r 
each group number was repeated f o r the whole of side C, 
but t h i s time the e x c i t a t i o n current was increased to 
18 amps. This showed the same sinusoidal v a r i a t i o n , w i t h 
a higher mean f l u x , the v a r i a t i o n being less pronounced. 
This tended t o suggest a v a r i a t i o n i n composition, and 
removed the p o s s i b i l i t y of the effe c t being due t o plate 
thickness v a r i a t i o n , since i f the l a t t e r was the case, 
the v a r i a t i o n would remain unaltered even though the 
mean f l u x had increased. 

The measurements on the scale model showed similar 
rather large variations but without any sinusoidal 
aspect. The authors explained i t as being due to var i a ­
t i o n i n composition of t h e i r plates, i n agreement with 
the conclusions of the present author. The one di s ­
quieting feature i s the fa c t that the var i a t i o n s found 
i n the f u l l - s c a l e magnet are sinusoidal despite the 
random stacking of the plates. I t must be concluded 
that the sinusoidal form i s purely by chance. 
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*K5 Variation of Magnetic Flux along the OX Axis. 
A reduction i n f l u x along the OX axis (Fig. 2b) 

w i t h increasing distance from the centre of the side 
may be expected, on account of the increased leakage, 
which occurs mainly from the inside edge. The results 
of measurements made with a search c o i l comprising a 
single loop round the entire side are shown i n Fig. 8. 

As before, the induction B was derived using the mean 
value f o r the plate thickness. The maximum v a r i a t i o n 
of B was found t o be + 1.*+$, and therefore was not very 
important. 

*f.6 The Measurement of the Leakage Flux. 
The results of these measurements may be divided 

i n t o three groups. 
*K6.a. Variation of leakage f l u x w i t h height. 

Measurements were made of the leakage f l u x i n the 
three mutually perpendicular directions described i n 
the previous Chapter (section 3*3)> at points on various 
axes and at d i f f e r e n t heights. The v a r i a t i o n of H z w i t h 
height above the magnet i s shown i n Fig. 9 (a and b), 
the points through which the v e r t i c a l axes were drawn 
being shown i n Fig. 3(b). The v a r i a t i o n of HxdZ wi t h 
distance from the OY axis i s shown i n Fig. 10. ( i n the 
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f i g u r e H dZ i s w r i t t e n as Hdl). The average c o n t r i -
bution to the l i n e i n t e g r a l of the f i e l d was approx­
imately 2 . 6 K . ir.-cm compared with a mean value of 
jB dZ = 960 K G.cm f o r the same e x c i t a t i o n of 16 amps. 
The f r a c t i o n was therefore 1.25#> the d i r e c t i o n of the 
leakage f i e l d being opposite t o that of the induction 
i n the i r o n . 

1f.6.b. Variation of i n t e g r a l f i e l d strength over the 
useful area of the magnet. 

Considering the v a r i a t i o n of the mean value of 
jB xdZ over the width of the magnet, that i s , i n the OY 
d i r e c t i o n , w i t h distance along OX, i t s effect was to 
compensate to some extent f o r the f a l l o f f i n induction 
i n the i r o n f o r distances greater than 15 cm from the 
centre. The net r e s u l t of the v a r i a t i o n was to give 
extreme l i m i t s from the mean I i y i x of + 1.7%. 

A useful way of presenting the data i s t o give 
the e f f e c t i v e induction B which i s that uniform induc­
t i o n which, acting over the height of the magnet, L, 
would give the same magnetic d e f l e c t i o n . Thus B" i s 
given by the r e l a t i o n 

B L = /BxdZ + /l^dZ 
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Values of B have been evaluated f o r various 
points on the useful area of the magnet (Fig. 12) and 
the re s u l t s are given i n Table TV. The ex c i t a t i o n f o r 
these r e s u l t s was 16 amps. 

These re s u l t s show that the maximum v a r i a t i o n from 
the mean i s + 2.7$. 

*f.6.c. The Direction of the magnetic induction inside 
the magnet. 

A knowledge of the directions of lines of force 
w i t h i n the magnet i s sueful f o r two reasons; i t enables 
a check t o be made on the induction measurements and i t 
i s also necessary f o r very accurate measurement of par­
t i c l e deflections. 

As mentioned before, a d i r e c t determination of the 
direct i o n s was not possible, but some idea could be 
found from leakage measurements dust above the top 
plat e . Near the c o i l s the measurements were unfortunately 
profoundly modified by the effects of the c o i l s them­
selves, and an attempt to obtain information on the flux: 
beneath did not produce any sat i s f a c t o r y r e s u l t . This 
was not surprising, since as study of Fig. 10 showing 
the v a r i a t i o n along the OX axis, showed quite p l a i n l y 
the e f f e c t of a small gap between the c o i l s on that side. 
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However, a study of an equivalent part of the magnet 
r 

yielded the sa t i s f a c t o r y r e s u l t shown i n Fig. 11. The 
vectors represent the magnitude and d i r e c t i o n of the 
leakage f l u x at a height of 3 cm above the magnet, the 
leakage f l u x being the horizontal component of H x and 
V 

I t was clear from the f i g u r e that the o b l i q u i t y of 
the l i n e s of force w i t h i n the useful region was not 
large, and thus the e f f e c t upon p a r t i c l e t r a j e c t o r i e s 
would not be serious. 
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CHAPTER 5 
Characteristics of the Spectrograph. 

5«1 The Geometrical Arrangement 
The apparatus was designed to give comparatively-

high resolution i n momentum and d i r e c t i o n f o r t h e / l -

mesons, together w i t h a high p a r t i c l e rate. With t h i s 
aim i n view i t was decided t o use Geiger counters as 
detecting elements, w i t h the p o s s i b i l i t y of l a t e r i n c l u ­
sion of neon flash-tubes (Gardener et a l 1957, Ashton 
et a l , 1960) to give even higher momentum resolution. 

For the measurement of the variations of v e r t i c a l 
f l u x the Spectrograph was set up as shown i n Fig. 13-

Particles were selected by three-fold telescopes, each 
comprising one counter i n each of trays A, B and C. 
With t h i s arrangement the counters i n the trays A and B 
determined the d i r e c t i o n of the p a r t i c l e s , and those i n 
tray C determined t h e i r displacement a f t e r passing 
through the magnet. 

Referring again t o Fig. 13, i f the telescope con­
sisted of counters i n trays A, B and C set v e r t i c a l l y 
above each other there would be 10 telescopes i n a l l , 
each recording v e r t i c a l , or nearly v e r t i c a l p a r t i c l e s of 
high momenta. Such p a r t i c l e s were said t o belong t o 
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Category 111. I f the counters I n C were then displaced 
by one counter separation the category was said t o be 
110, or 112 depending on the d i r e c t i o n of the displace­
ment. Si m i l a r l y Categories 113 or 220 referred t o 
nearly v e r t i c a l p a r t i c l e s displaced by two counter 
separations i n t r a y C. 

The Geiger Counters used during the period of 
recording were manufactured by 20th Century Electronics 
Co. Ltd., Type G60. They were i n f a c t conventional 
Geiger Counters, of sensitive length 60 cms, external 
diameter of the tube, 3.62 cm, and i n t e r n a l or useful 
diameter, 3*32 cm. I n the Spectrograph the separation 
between adjacent counters was 3*915 cm. 
5.2 The Acceptance Function of the Spectrograph 

The p a r t i c l e s selected by a telescope of p a r t i c u l a r 
configuration of counters as described i n the previous 
section, do not possess a unique momentum but cover a 
band or spectrum of momenta, due to two main causes. 

1. The f i n i t e size of the Geiger Counters. 
2. The scattering of p a r t i c l e s i n t h e i r passage 

through the i r o n . 
The basic problem that must now be solved i s the 

determination of the momentum spectrum of the pa r t i c l e s 
i n each category. Let S(p) be the spectrum f o r a par-



t i c u l a r category, (p i s the momentum), then the spectrum 
i s given by the r e l a t i o n . 

S(p) = N(p)A(p) 

where N(p) i s the differential/*-meson momentum spectrum 
incident at the top of the spectrograph N(p) has been 
determined to high accuracy over the important range by 
Owen & Wilson (1955) and more recently by Ashton et a l 
(1960). 

A(p) i s termed the acceptance function of the 
spectrograph f o r p a r t i c l e s of momentum ( p ) , that i s the 
r e l a t i v e p r o b a b i l i t y of a p a r t i c l e of momentum p being 
accepted by.the spectrograph. Referring t o Fig. 13, i t 
may be seen that the angles of i n c l i n a t i o n and deflec­
t i o n of the categories are small, thus making the 
derivation of an- accurate solution quite simple. 

For the derivation of t h i s s o l u t i o n . i t i s convenient 
at t h i s stage to make two assumptions, as follows: 

1. Negligible momentum loss by i o n i s a t i o n of the 
p a r t i c l e on passing through the i r o n . 

2. Negligible scattering of the p a r t i c l e s on 
passing through the i r o n . 

http://solution.it


The magnitude of the scattering i s not i n fa c t n e g l i ­
gible but i t s e f f e c t , together with that of the loss of 
momentum of a p a r t i c l e on passing through the magnet 
can best be introduced at a l a t e r stage of the calcula­
t i o n s . 

I t i s apparent that any Category can be reduced to 
the Category 111 by displacing C an i n t e g r a l number of 
counter separations. The problem therefore resolves 
i t s e l f to the determination of the acceptance function 
f o r Category 111 only. 

Consider Fig. l^Ca) ; the i n t e r n a l diameter of each 
counter i s b and the separation of the counter trays 
are as shown. A p a r t i c l e of momentum p undergoes a 
magnetic d e f l e c t i o n f i n passing through the magnet. 
A consequence of assumption (1), i s that we can consider 
the p a r t i c l e t o be deflected through the angle jf- at the 
centre of the magnetic f i e l d region; the de f l e c t i o n at 
0 i s therefore:-

& = 

The p r o b a b i l i t y of acceptance of p a r t i c l e s of 
momentum p, that i s of d e f l e c t i o n ^ / , A(£) i s propor­
t i o n a l t o //d0dG f o r a l l t r a j e c t o r i e s passing through 
A,B and C. The method of computing t h i s i n t e g r a l can be 
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appreciated by considering the case of zero d e f l e c t i o n . 
1. 4 = o 

The extreme t r a j e c t o r i e s are shown i n Fig. l^f (b) 
f o r the case where the condition t h a t the p a r t i c l e s 
should pass through the counter C i s disregarded. For 
an i s o t r o p i c d i s t r i b u t i o n of incident p a r t i c l e s the 
d i s t r i b u t i o n of p a r t i c l e s at C i s shown i n Fig. ih ( c ) . 
This r e s u l t can be seen by taking a point at C and 
determining the angle of acceptance set by the counters 
A and B. The co-ordinate of the curve i s then the angle 
of acceptance and J/dfidG i s the area under the curve. 
Simple geometry shows that the angle of acceptance f a l l s 
t o zero at a distance L + K from the axis of symmetry, 
where 

I f now the condition that the counter i n C be crossed i s 
reimposed, the acceptance function i s the area under the 
curve between + jj. and - ^ 

b b^ i . e . JJd0dG = |\b or r e w r i t i n g A Q(^=o) = £ . 

Imposing a d e f l e c t i o n on the t r a j e c t o r y i s simply 
equivalent t o displacing the centre i n C by a d e f l e c t i o n 

ASo 
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The acceptance function i s then the area of the 
curve cut o f f by the counter, as i n the case &=o. 

As A increases several regions are covered, as 
represented by the diagram ( d ) , ( e ) , ( f ) , (g) and (h) 
of Pig. 1*+. Thus (d) and (g) represent boundaries of 
regions and the remainder represent t y p i c a l positions 
w i t h i n the regions. 

The acceptance functions have been computed f o r 
each region by f i n d i n g the appropriate shaded area and 
the results f o r k(A) i . e . A, etc., are as follows: 

o « 4 diagram (d) 
ic '< * '< * ; fiM = £(6*- tfr-U) diagram ( f ) 
A '< /?, = ^ diagram (h) 

A method of checking these res u l t s i s possible; the 
values of A agree f o r adjacent regions i n the l i m i t i n g 
case when 4 i s equal t o the boundary value. Agreement 
i s i n f a c t obtained. 

The form of the v a r i a t i o n of A(^) («*A tp*)) i s 
shown i n Fig. 15 f o r Categories 11, 112 and 113. The 
abscissa i s also given i n terms of momentum,,p, f o r the 
case of the spectrograph operated at an e x c i t a t i o n 
current of 16 amps. 
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5*3 The Effect of Momentum Loss on the Acceptance Function 
The unique relationship between p, the momentum of 

a p a r t i c l e , and i t s d e f l e c t i o n i n a magnetic f i e l d , t o ­
gether with the acceptance function f o r the spectrograph 
having been established, i t becomes necessary t o consider 
the two approximations upon which i t i s based, and to 
make such modifications as are necessary. The f i r s t of 
these assumes that the p a r t i c l e does not suffer any 
s i g n i f i c a n t loss i n momentum by io n i s a t i o n i n traversing 
the i r o n . I n f a c t , i t can be calculated that a p a r t i c l e 
on passing through 6*f.9 cm of ir o n w i l l lose approximately 
1 GeV. The ef f e c t of t h i s loss of momentum i s t o cause 
a v a r i a t i o n of the radius of curvature of the t r a j e c t o r y 
of the p a r t i c l e as on passing through the i r o n i t w i l l 
obey the r e l a t i o n 

pc = 300 (1) 

where B i s the t o t a l f l u x w i t h i n the i r o n , which may be 
considered constant, and f> i s the radius of curvature of 
the t r a j e c t o r y . Considering the general case of v e r t i ­
c al p a r t i c l e s t h i s v a r i a t i o n i n curvature w i l l i n t u r n 
a f f e c t the p o s i t i o n and angle t o the normal of the t r a ­
j e c t o r y on i t s emergence from the i r o n . The s i t u a t i o n 
i s shown i n Fig. 16. Trajectory (1^ represents the path 
when momentum loss i s neglected and (2) represents the 
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actual t r a j e c t o r y modified as i t i s by momentum loss 
( f o r reasons of c l a r i t y the e f f e c t has been greatly 

a. 

exaggerated). 
The momentum of a p a r t i c l e at the instant that i t 

has penetrated x cms through the magnet can be w r i t t e n 
to quite a high degree of accuracy as 

p = p Q - *x (2) 

where p Q i s the i n i t i a l momentum of the p a r t i c l e and u 
the c o e f f i c i e n t of loss per cm. Combining equations 
(1) and (2) 

( p Q - <*x)c = 300 

i . e . f> = a - bx 
where a = p o ° /300 B and b = */300 B. 

Now i t i s w e l l known that the radius of curvature 
of a t r a j e c t o r y at any one point may be represented by 
the r e l a t i o n 

Substituting i n the above equation we obtain the general 
r e l a t i o n 

d « < W - * r ) i £ . (3) 
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^9. 

An attempt to solve t h i s equation a n a l y t i c a l l y 
proved unsuccessful, as i t was found t o require the 
inte g r a t i o n of a cyclic function, which could only be 
achieved by laborious s u b s t i t u t i o n . However i t i s possible 
to use the approximation 

. /> - #// - / 
without introducing too much error 
The result i s the d i f f e r e n t i a l equation 

in t e g r a t i o n of which produced the rel a t i o n s 

/ 

/ - j i V f l - ^ ; ^ ^ - ^ ; * jr (5) 

Substituting f o r a and b and expanding the l o g a r i t h ­
mic terms gives the diminishing series: 

1 = i(&~i<&'~£(& 



A check on the v a l i d i t y of t h i s r e l a t i o n may be 
obtained by returning t o the case of no energy loss. 
This may be done by considering the point at which a l l 
the d e f l e c t i o n of the p a r t i c l e may be considered t o 
take place. From Fig. 16 i t may be seen that t h i s point, 
designated x i s obtained from 

which i s geometrically true. 
The v a l i d i t y of the functions having been estab­

li s h e d i t i s possible t o compile the following Table 
comparing the results obtained f o r the two cases f o r a 
va r i e t y of values of i n i t i a l momentum ranging from 
1.25 GeV/c to 50 GeV/c, t h i s covering the whole range 
of the various energy spectra considered. 

I t can at once be ascertained from the Table that 
f o r values of incident momentum between 50 Oje'V/c and 
5 GeV/c, neglecting the momentum loss does not appre­
ciab l y a f f e c t the t r a j e c t o r y of the p a r t i c l e , and hence 
the p r o b a b i l i t y of being accepted by a certain category, 
but that f o r p a r t i c l e s of momentum below the lower l i m i t 

•f 
the error becomes very large. 
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A simpler approach can be t r i e d i n order to get 
s u f f i c i e n t l y accurate r e s u l t s f o r the t r a j e c t o r y 
including momentum loss. Instead of using the i n i t i a l 
momentum of the p a r t i c l e the mean ( e f f e c t i v e ) momentum 
of the p a r t i c l e , as i t passes through the magnet, may 
be t r i e d . This i s given by 

Peff = * po. + (P 0 - * L ) 

i , e * p e f f = p o " 
= p Q - 0.5. with the p's i n GeV/c. 

Table VI below again covers the whole range of 
the momentum spectrum, and shows the e f f e c t of the 
modification and i t may.be seen that t o an accuracy of 
better than 6% t h i s modification may be j u s t i f i e d over 
the whole of the momentum range considered. 

TABLE VI 
The Accuracy of the Approximate treatment of Momentum Loss 

:e difference i n % 
2.6 

5.8 
2.h 

Poc P e f f c approx w i t h loss d i f f e r * (cm; 
1.25 '0.75 17.9 17 M. 
1.5 1.0 13.M- 12.68 0.72 
1.8 1.3 10.3 9.75 0.55 
3.0 2.5 5A6 5.16 0.30 
5.0 h.5 2.98 2.91 0.07 

10.0 9.5 1A1 1-39 0.02 
20.0 19.5 0.68 0.68 -
30.0 29.5 0.U-1 O A l -
ho.Q 39.5 0.33 0.33 -
50.0 ^9.5 . 0.27 0.27 -
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5»h Effect of Scattering on the Acceptance Function 
The second approximation made i n calculating the 

acceptance function was the neglect of the e f f e c t of 
Coulomb scattering of the^-mesons i n the i r o n . As 
wit h the previous.case of momentum loss t h i s approxima­
t i o n i s not s t r i c t l y true and i t i s now necessary t o 
make some allowance f o r scattering. 

Consider a p a r t i c l e of momentum p Q and v e l o c i t y 
/9c incident normally on the magnet and traversing i t as 
shown i n Fig. 17 ( a ) . I t i s required t o f i n d the r.m.s. 
displacement <Z>due t o scattering alone at a l e v e l 
distance x^ below the magnet, where i n the present case 
x 2 =: 1. Consider the contribution A% which arises from 
an elementary d e f l e c t i o n /)& occurring i n a thickness 
dx, distance x below the top of the magnet, as shown i n 
the f i g u r e . 
AZ i s given by the r e l a t i o n 

= fcz X***-

where K i s the scattering constant. 
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5^. 

I t i s therefore possible t o integrate over the whole 
of the region of the magnet from x = o to x = x, t o f i n d 

2 
an expression f o r the mean square displacement < Z> . 

Thus 

Substituting i n the above expression f o r x^ = L and x 2 = 
L + 1 we obtain 

<z> = %s £f/.A-j^^y 
This equation shows that the r.m.s. d e f l e c t i o n <Z > 

i s inversely proportional t o the incident momentum p Q 

of the p a r t i c l e ' a t high v e l o c i t i e s , w h e r e ^ - 1. 

I t i s necessary t o f i n d a value f o r the fact o r K, 
the scattering constant, and t o t h i s end the present case 
was compared w i t h the results found by Lloyd and 
Wolfendale (1955) on the scattering of^*-mesons i n i r o n . 
This gave, introducing the appropriate factor f o r the 
thickness of the magnet, the value of K i s found t o be 
1.152 x 10"2 GeV/c.cm-"^. 
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The e f f e c t of scattering i s t o superimpose on the 
magnetic d e f l e c t i o n An (= constant) a Gaussian error of 

0 P 
standard deviation <Z>^ so that p a r t i c l e s of momentum p 
have a range of deflections given by 

The modified acceptance function i s now found by 
using t h i s d i s t r i b u t i o n i n J i n the analysis described 
i n section 5.2. This had been performed f o r categories 
111, 112, 113, the important categories i n the present 
work w i t h the res u l t s shown i n Fig. 17(b). The area 
under the curves corresponding t o the t o t a l p r o b a b i l i t y 
of accepting a p a r t i c l e w i l l remain constant. 

By comparison of Fig. 17b with Fig. 15, where 
scattering i s neglected, i t w i l l be observed that the 
eff e c t of scattering i s t o reduce somewhat the most 
probable momentum for each category and t o add a low 
momentum ' t a i l ' t o each momentum d i s t r i b u t i o n . 

5.5 The Momentum Spectra f o r the Various Categories. 
As stated i n section 5«2 the momentum spectrum of 

pa r t i c l e s i n each category S(p) i s given by 

S(p) = N(p)A(p) 
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where N(p) i s the differential/*-meson momentum spectrum 
incident at the top of the spectrograph. N(p) has been 
taken from the spectra measured by Owen and Wilson (1955) 

and by Ashton et a i (1960), and the resultant spectra 
S(p) are given i n Pig. 18. As would be expected the 
spectra sharpen considerably as the mean defl e c t i o n i s 
increased. A useful c h a r a c t e r i s t i c i s the median momen­
tum f o r each category, and values found from the f i g u r e 
are given i n Table V I I . (The values f o r the median 
momentum neglecting the effec t s of scattering are also 
included f o r comparison). 

TABLE V I I --5. 
The Median Momentum f o r each Category 

Median momentum i n GeV/c 
Category • . -:T 

Neglecting scattering Including Scattering 
111 8.6 9'/ 

112, 110 *f.5 5*.'° 

113, 220 2.9 3 4 . 

When considering the momentum spectra, as presented 
i n Fig. 18, and the modifications t o the acceptance 
function as presented i n the two previous sections, i t 
must be remembered that the treatment i s riot rigorous as 
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the two ef f e c t s of energy loss and scattering act at 
the same time and not independently, as has been 
assumed. The treatment presented, however, i s considered 
t o be accurate to w i t h i n a few per cent and therefore 
s u f f i c i e n t l y precise f o r the study of the meteorological 
c o e f f i c i e n t s , which vary only slowly w i t h momentum. 
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CHAPTER 6 

The Electronic C i r c u i t s . 
6.1 The 'Vertical Spectrograph' 

As mentioned already the p a r t i c l e s are selected by 
3-fold telescopes, each comprising one counter i n each 
of layers A, B and C (Fig. 13). A block diagram of the 
electronic c i r c u i t s required to obtain t h i s selection 
i s shown i n Pig, 19. I t w i l l be seen that the outputs 
of the coincidence c i r c u i t s are added together and the 
t o t a l number of p a r t i c l e s i s recorded every 25 minutes. 
The timing c i r c u i t devised t o f a c i l i t a t e t h i s automatic 
recording i s shown i n Pig. 22. 

The electronic circuit's are of simple design, the 
emphasis being on complete r e l i a b i l i t y ; the c i r c u i t 
diagrams are shown i n Figs. 20, 21 and 22. Some saving 
i n cost, and improvement i n r e l i a b i l i t y was affected by 
the use of double-triode valves i n several parts of 
the c i r c u i t s . This was done as shown i n the case of the 
Quenching Units (Fig. 21), which were required, i n the 
case of trays B and C, to work i n close proximity of the 
magnet, w i t h i t s associated problems of heat conduction. 
I n spite of working i n temperatures considerably i n 
excess of the ambient temperature ( 15°G) the c i r c u i t 
proved of high r e l i a b i l i t y , only 2% of the t o t a l record-
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ing time being l o s t due t o Quenching Unit f a i l u r e , 
although care had to be exercised i n the choice of the 
i n d i v i d u a l double-triodes, the characteristics of some 
rendering them l i a b l e t o free-running. 

The coincidence c i r c u i t also incorporates double-
triodes f o r r e l i a b i l i t y , proving only s l i g h t l y less 
e f f e c t i v e , 6% of t o t a l recording time being l o s t due 
to coincidence c i r c u i t f a i l u r e ; i n t h i s case however 
the c i r c u i t does not demand such exacting working 
characteristics from the double-triode. The majority 
of the rest of the recording time l o s t (~10#) was due 
to the d e t e r i o r a t i o n of the e l e c t r o l y t i c condensers i n 
the timing c i r c u i t . The electronic c i r c u i t s therefore 
proved i n a l l e f f i c i e n t , the majority of the f a i l u r e s 
occurring i n the early days of operation. 

6.2 Modifications f o r Horizontal Recording 
The modification of the apparatus f o r the eventual 

study of p a r t i c l e s i n the near horizontal d i r e c t i o n can . 
also be u s e f u l l y discussed here. The f l u x ofy«-mesons 
at sea-level i n a horizontal d i r e c t i o n . i s low i n com­
parison w i t h the v e r t i c a l f l u x , thus without exclusion 
simultaneous p a r t i c l e s i n the v e r t i c a l plane ( i . e . from 
extensive a i r showers) the true horizontal rate would 
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be masked. This exclusion was affected e l e c t r o n i c a l l y 
by the introduction of a second coincidence c i r c u i t w i t h 
the former shown i n Fig. 19. This l a t t e r c i r c u i t 
(Fig. 23) recorded the simultaneous discharge of any 
two or more counters i n any t r a y together w i t h d i s ­
charges i n the other two t r a y s , and therefore recorded 
the number of shower events. Subtraction of t h i s rate 
from the t o t a l rate of 3-fold coincidences gives the 
rate of single unaccompanied p a r t i c l e s , thus excluding 
the p o s s i b i l i t y of a v e r t i c a l p a r t i c l e . 

A second modification introduced to increase the 
t o t a l rate f o r categories other than 111, was t o increase 
the number of Geiger Counters i n trays A and C, t o 12 

i n the former, and l^f i n the l a t t e r case. This was 
done because i t i s not practicable once the trays have 
been positioned to move them i n a v e r t i c a l plane. 

With these modifications i t should prove possible 
to study the variations of i n t e n s i t y of cosmic rays near 
the horizontal d i r e c t i o n . 
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CHAPTER 7 
The Experimental Results on I n t e n s i t y Variations i n the 

7.1 The basic data on p a r t i c l e rates 
As has been mentioned already the number of p a r t i ­

cles traversing the spectrograph was recorded automat­
i c a l l y every 25 minutes. These numbers were printed out 
on paper, on which was also noted, at convenient i n t e r ­
vals, the date and time. The spectrograph was operated 
f o r an extended period on each of the categories given 
i n Table VIIJ ho separate records, involving 70,000 

p a r t i c l e s being recorded f o r category 111, and 10 

separate records for each of the other categories men­
tioned; recording over 10,500 p a r t i c l e s i n each case. 
The p a r t i c l e rates and median momentum f o r each Category 
are also given i n Table V I I I 

V e r t i c a l Direction 

TABLE V I I I 
CATEGORY Median Mom. i n GeV/c. Rate of Particles i n 

counts/hr. 
I l l 9.1 72.7 

110, 112 5.0 60.6 

220, 113 . ^3.3 
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Throughout the whole of the period of recording 
the e x c i t a t i o n current of the magnet was s t r i c t l y 
monitored using a recording milliammeter, to ensure 
that the current v a r i a t i o n remained w i t h i n the appro­
pr i a t e l i m i t s (see section ^.3)» that i s to a standard 
deviation of 1.5%. 

Alternate records were obtained with the sign of 
the current through the e x c i t a t i o n c o i l s reversed, thus 
causing the spectrograph t o accept p a r t i c l e s s t i l l 
w i t h i n the same energy spectrum as defined i n Fig. 18, 

but of the opposite sign. Within any one category i t 
was therefore possible to quickly check the v a l i d i t y 
of each day 1s recording by comparison with i t s prede­
cessors; f i r s t l y w i t h the t o t a l number of p a r t i c l e s 
recorded so f a r , and secondly the r a t i o of the number 
recorded to those of the opposite sign recorded on the 
preyious day);- With these checks i t was possible to 
locate any large-scale discrepancies caused by, f o r 
example, f a i l u r e s of Geiger counters or the electronic 
c i r c u i t s . When f a i l u r e s were detected the record f o r 
that day was deleted. 
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A number of tests were carried out t o check that 
the apparatus was counting the desired events, v i z . 3-

f o l d coincidences. For example, a frequent check of 
the discriminations of the coincidence c i r c u i t was per­
formed by 'feeding i n 1 a very high rate of 2-fold 
coincidences and ensuring that none of these events 
w!©•$'!' able to break-through the c i r c u i t and be recorded 
as 3 - f o l d events. 

A f u r t h e r check concerned the question of the time 
relationship of the accepted 3-fold events. I t i s 
normally assumed that the p a r t i c l e s obey the Poisson 
s t a t i s t i c s ; f o r example t h i s i s assumed when the stan­
dard deviation of n events i s taken as ^ . 

This check was made by recording the time i n t e r v a l 
between successive particles". Fig. 2k- represents the 
frequency d i s t r i b u t i o n f o r 2,000 p a r t i c l e s , f o r which 
the mean time i n t e r v a l was ? = kh,6 seconds. The dia­
gonal l i n e represents the curve calculated f o r a Poisson 
d i s t r i b u t i o n f o r t h i s mean i n t e r v a l . I t w i l l be seen 
that the r e l a t i o n holds true over the whole of the range 
considered, even t o the longest time i n t e r v a l s , f o r which 
few p a r t i c l e s were recorded. 

7.2 The Meteorological Data 
The meteorological data used i n the analyses was 
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obtained from the Meteorological Office, who publish 
data found from radiosonde observations from a number 
of stations i n B r i t a i n . The nearest s t a t i o n t o Durham 
i s .Leuchars, some 120 miles t o the north. 

Before the data obtained from Leuchars could be 
used however i t was necessary t o study the e f f e c t that 
t h i s distance would have on the accuracy of the data, 
as applied t o Durham. To enable t h i s t o be done, the 
data from 3 Meteorological Stations was studied and 
compared; Leuchars, Hemsly about 130 miles south-west 
of Durham, and Aught on about the same distance t o the 
south-east, as shown i n Fig. 25. Thus Durham l i e s 
roughly equidistant from these 3 stations, i n the centre 
of the t r i a n g l e formed by them, and any v a r i a t i o n of 
parameters from station to st a t i o n could be considered 
t o include any v a r i a t i o n at Durham. 

A close study of the data from these 3 stations, 
carried out over a period of days, and including the 
variations of temperature and pressure levels up through 
the atmosphere revealed l i t t l e s i g n i f i c a n t change from 
s t a t i o n t o s t a t i o n ; thus i t was concluded that f o r the 
present study the data obtained from Leuchars was s a t i s ­
factory, and that a detailed study of the. v a r i a t i o n i n 
i n t e n s i t y of they«-meson w i t h the atmospheric parameters 
could be carried out. 
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The meteorological data abstracted f o r use i n the 
analysis comprised the following: 

( i ) the sea l e v e l pressure 
( i i ) the heights of the 100 mb and 150 mb levels 

( i i i ) the atmospheric temperatures at sea l e v e l and 

at the 500 mb, 200 mb, 150 mb and 100 mb l e v e l s . 

The rate of p a r t i c l e s was found f o r M—hourly periods 
and was p l o t t e d against time, along w i t h the meteorolog­
i c a l parameters given above. Attempts at c o r r e l a t i o n 
were then made as described i n the next Chapter. 
7.3 The Day-Night P a r t i c l e Rate f o r Each Category. 

From the treated data described i n the previous section 
i t was possible t o obtain the mean rate for each ^-hourly 
period of the day, f o r each of the three p a r t i c l e energy 
bands under consideration. Thus i t was possible t o divide 
a l l the p a r t i c l e s i n t o 2 groups; those that occurred during 
the day-time, when the sun was over the horizon, and those 
that occurred at night. Table 9 represents the results of 
t h i s treatment, together with the. results that have been 
obtained from Glaser et a l (1950) (referred t o i n Section 
2.5) . I t may be seen that although the two experiments give 
reasonable agreement f o r mean energies of 9«1 and 5*0 GeV/c, 
f o r the lower mean energy of 3«^ GeV/c there i s a s i g n i f i ­
cant discrepancy between the two sets of re s u l t s . I t i s 



important t o note however that a vigorously d i r e c t com­
parison i s not possible; the results of Glaser et a l 
(1950) represent the measurement of a maximum of 200 

p a r t i c l e s of an exact energy, whereas Category ^ 0 r e P r e ~ 
sents the recording of 20,000 p a r t i c l e s w i t h i n an energy 
band defined by Fig. 18. The conclusion that can be 
drawn from t h i s work i s that there i s no evidence i n 
favour of the large diurnal v a r i a t i o n found by Glaser 
et a l , at least f o r momenta above about 2 GeV/c. 
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CHAPTER 8 
Correlation of the I n t e n s i t y Variations w i t h Meteoro­

l o g i c a l Parameters 
8.1 General Considerations 

I t i s convenient to discuss the analysis of the 
results i n order of increasing complexity. Thus, there 
w i l l f i r s t l y be considered the simple p a r t i a l correla­
t i o n of i n t e n s i t y with sea l e v e l pressure i . e . the 
determination of the 'pressure c o e f f i c i e n t 1 and then 
w i l l follow a more detailed treatment of the correla­
t i o n w i th the various parameters. 

8.2 Correlation w i t h pressure 
The c o r r e l a t i o n of i n t e n s i t y w i t h sea l e v e l pressure 

has been studied i n a straightforward way by s p l i t t i n g 
up the pressure range i n t o convenient i n t e r v a l s and 
f i n d i n g the average counting rate f o r each i n t e r v a l , 
Fig. 26 shows the r e s u l t s f o r two categories; the 
c o r r e l a t i o n between rate ( i n t e n s i t y ) and pressure i s 
quite marked, although the s t a t i s t i c a l errors are large. 

I t i s usual to w r i t e the c o r r e l a t i o n c o e f f i c i e n t as 
a p = percentage change i n i n t e n s i t y per mb change i n sea 
l e v e l pressure. Values of a p f o r each of the categories 
are shown i n Fig. 27, p l o t t e d as a function of the 
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median momentum (Table 7 ) . 
Also shown i n Pig. 27 i s the t h e o r e t i c a l r e l a t i o n ­

ship due to Olbert (195*0• The point shown as a t r i a n g l e 
refers to an i n t e g r a l momentum spectrum, as calculated 
by Dorman (1957). The consistency between these points 
and the t h e o r e t i c a l curve of Olbert i s reassuring. 

I t i s seen that the points found from the present 
measurements are consistently higher than expectation. 
This i s j u s t what would be expected i f , during the period 
of the experiment, there had been c o r r e l a t i o n between 
the pressure changes and changes i n the other meteorolog­
i c a l parameters. An increase i n ordinate by a factor of 
1.7 brings about good agreement between experiment and 
theory - the scaled up curve i s also shown i n Fig. 27. 

8.3 Application of the Correlation Treatment of Borman 
As was mentioned i n §2.3 a comprehensive treatment 

of the co r r e l a t i o n problem has been given by Dorman 
(1957). This author has pointed out that the fundamental 
meteorological fa c t o r which i s in t i m a t e l y connected w i t h 
the barometric pressure i s the atmospheric temperature. 
Thus, most of the troposphere i s usually warmer under 
high pressure and colder at low pressure; i n both cases 
there w i l l be an enhanced v a r i a t i o n i n cosmic ray int e n ­
s i t y and an apparent increase i n the pressure c o e f f i c i e n t . 
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Following Dorman, the eff e c t of temperature v a r i a ­
tions (at constant pressure) can be considered as 
follows: The r e l a t i v e v a r i a t i o n i n the i n t e n s i t y o f j u -
mesons, £3fS due to variations i n a i r temperature fT(h) 
i n the region from the top of the atmosphere t o the l e v e l 
of observation, h Q, may be represented i n the form 

^ = / / ' Wr(J)I Tti)MA. 
where W,j,(h) i s a function i n d i c a t i n g the role of the 
various layers of a i r i n the production of the temperature 
eff e c t on a 1°C v a r i a t i o n i n the a i r temperature, W^Ch) 
therefore represents the 'density' of the temperature 
c o e f f i c i e n t . 

Dorman shows that W T(h) varies strongly w i t h the 
l e v e l of observation, h Q, they-meson production spectrum 
and the minimum energy of recorded^-mesons 

I t i s now necessary t o f i n d the value of t h i s i n t e ­
g r a l f o r the periods of time f o r which data f o r each 
pressure range (§8.2) was accumulated and to correct 
each i n t e n s i t y . The r e s u l t w i l l then be a corrected 
mean i n t e n s i t y f o r each pressure range, from which the 
corrected pressure c o e f f i c i e n t may be found d i r e c t l y . 

The v a r i a t i o n of W T(h) wi t h h was calculated by 
Dorman f o r 4f = 0.*f, 6.h and lh.h GeV w i t h the result 
shown i n Fig. 28. For the present work the v a r i a t i o n i s 
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required f o r other values of fit , these are equivalent 
minimum values f o r each of the momentum categories, and 
are: 

2.0 GeV f o r categories 113 and 220 
2.3 GeV for categories 112 and 110 
3.5 GeV f o r category 111. 

Values of N^Ch) were found by i n t e r p o l a t i o n on a graph 
of W^Ch) against &C with h as parameter and the resu l t s 
are shown i n Fig. 28. 

The i n t e g r a l can be r e q r i t t e n , t o s u f f i c i e n t accuracy, 
as A/ 

where Ah = 0.1 atmosphere and AT i s the difference i n 
temperature of the layer (h) from i t s mean value. Apply­
ing t h i s t o the present experiment f was computed from 
the meteorological data, i n t e r p o l a t i n g the temperature 
values where necessary, f o r each category. The i n t e n s i t i e s 
were then p l o t t e d against f f o r narrow bands of pressure. 
A range of values of ̂  was then taken and the mean inten­
s i t y was then p l o t t e d against / ' f o r each pressure band. 
These curves were then normalized t o the same mean value 
to give a master curve of 'mean' i n t e n s i t y against j f o r 
each category. 
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I t was found that the r e s u l t i n g 'curve 1, composed 
of normalized i n t e n s i t i e s , showed large f l u c t u a t i o n s 
from one value of f to the next. I n many cases the 
fluc t u a t i o n s were greater than could.be accounted f o r 
by s t a t i s t i c a l errors and i t was not possible t o v e r i f y 
the predicted v a r i a t i o n off. 

However, an approximate corrected pressure coe­
f f i c i e n t was computed f o r each category, as follows. 
The data referred t o above, on the range of values o f j 

f o r each pressure band, was taken and the i n t e n s i t i e s 
were normalized so that i n t e n s i t y was the same f o r each 
band of f . The mean of these corrected i n t e n s i t i e s was 
then taken f o r each pressure band and plotted against 
pressure and the 'corrected 1 c o e f f i c i e n t determined as 
described i n §8.2. This method i s not exact, but i s 
thought t o be more accurate than the f i r s t approximation. 
Essentially, i t assumes that the temperature e f f e c t s have 
the form predicted by Dorman but that the magnitude may 
be d i f f e r e n t . The r e s u l t i n g values o f w h i c h show 
rather large errors, are given i n Fig. 29. I t w i l l be 
seen that they are systematically below the t h e o r e t i c a l 
curve. 

http://could.be
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8.4- Conclusions 
. The conclusions of these experiments on the correla­

t i o n of the i n t e n s i t y v a r i a t i o n s w i t h meteorological 
parameters can be summarized as follows: 

1. When the ef f e c t of temperature vari a t i o n s i s 
ignored the pressure c o e f f i c i e n t s are higher 
than expected by about 70$. 

2. The s t a t i s t i c a l accuracy of the data i s too low 
to allow an accurate correction t o be applied 
f o r the e f f e c t of temperature va r i a t i o n s . How­
ever, when a very approximate correction i s made, 
the r e s u l t i n g pressure c o e f f i c i e n t s appear t o be 
too low but the accuracy i s so poor that consis­
tency w i t h the expected values cannot be ruled 
out. 

The r e s u l t i s that there i s no evidence i n favour of 
any gross discrepancy between the experimental and theoret­
i c a l values of the pressure c o e f f i c i e n t of/f-mesons at 
ground l e v e l i n the momentum range 2-10 GeV/c. 
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