W Durham
University

AR

Durham E-Theses

Computer processing of the bibliographic records of a
small library

Oddy, Robert N.

How to cite:

Oddy, Robert N. (1971) Computer processing of the bibliographic records of a small library, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/10075/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses

e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/10075/
 http://etheses.dur.ac.uk/10075/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

COMPUTER PROCESSING OF TEE
BIBLIOGRAPHIC RECORDS OF A

SMALL LIBRARY

Thesis submitted for the Degree of

Master of Science
in the

University of Durham

Robert N. 0ddy, B.A.(Dunelm)

University of Durham Computer Unit

October

1971

ABSTRACT

A project has been conducted to automate
the processing of the records associated with
a small, restricted-access collection of
undergraduate reading material in the Library

- of the University of Durham. The functions

of a suite of programs written by the author
for an IBM 360/67 computer, and now in regular
use by the Library, are described. Through a
simple command language, the (non-programmer)
user may specify a wide variety of processes
on files of bibliographic data as combinations
of basic operations. He also has fine control
over the layout of catalogues and other lists
printed oh the line-printer.

An account -is given in this thesis of
some of the problems which .face those working
on the -automation of the maintenance of large
library catalogues: conversion of old records
to machine-readable form, filing catalogue
entries and the role of computers in producing
book catalogues. There is a discussion of
programming and programming language in this
context and a selection of new or improved
features are suggested for incorporation in
any future version oI the Durham system. TFull
technical program documentation is supplementary
to the thesis.

ACKNOWLEDGMENTS

My thanks go to members of the staffs of both
the Library and the Computer Unit of the University
of Durham. I am grateful to Miss A.M. McAulay for
supporting the publication, by the Library, of the
"user's manual” and for now giving me permission to
reproduce descriptive material from it in this
thesis. To Mr. B. Cheesman, the Deputy Librarian,
I owe a great deal. He formulated the Library's
original request and remained close to the project
throughout, and his considerable help at all stages
in the preparation of the documentation for
publication was invaluable. Mr. J. Shearmur
worked with the "Short Loan Collection" for the
academic year 1970-71 and I am very grateful to
him for his lively interest in the use of the
computer and for supplying most of the material
. for Appendix B.” Mr. W.B. Woodward (the Keeper)

and Mrs., L. Witty have been stimulating "customers"
in the Science Library.

Dr. J. Hawgood, Director of the Computer Unit,
has provided all the facilities I have needed both
for the development of the system and for the
extensive documentation, which is an integral part
of it. I should like to thank all my colleagues
in the Computer Unit for the benefit I have gained
from their experience in the world of computers.

Mrs. Croft has typed all the documentation for
the present system as well as this thesis. I am
indebted to her for her care, efficiency, patience
and style. '

- Finally, this thesis probably would not have
been written without the support and encouragement
of my family; for those and the sacrifices they
have willingly made I thank my wife and children.

R.N. 0Oddy
Computer Unit
October 1971

CONTENTS

Chapter 1. COMPUTER USAGE IN DURHAM UNIVERSITY

LIBRARY _ 1
1.1 Introduction 1
1.2 The Library File Processing System 4
Chapter 2. COMPUTER USAGE IN LIBRARIES 10
2.1 The "Total System" Approach 11
2.2 Catalogue Production 17
Chapter 3. 'BIBLIOGRAPHIC FILES :29
3.1 File Structure 29 .
3.2 File Representation and Storage 30
3.3 Computer Handling of Files 31 '
3.4 Constructing Items for Computer Files 34
Chapter 4. FILE MAINTENANCE ' ' 39

bL.1 File Conversion (External *o
' : Internal Format) 39
4.2 Updating 42

4.3 Copying Files 49

4,4 Selection of Items from Files 52

Chapter 5. SORTING. BIBLIOGRAPHIC FILES 56
5.1 Sequencing Routines 56
5.2 Sorting Internal Files 59
5.3 Merging Internal Files 61
S.4 Checking Sequences in Internal Files 64
Chapter 6. PRINTING BIBLIOGRAPHIC FILES 67
6.1 PRINT Command - 67
6.2 Print Control Statements 70
6.3 Use of PRINT 88

Chapter 7.

NN NN
[] L) . L] s e
oG w N

Chapter 8.

o o 00
w N

Chapter 9.

File

[{e]
=

W W WO W W
OO WwN

Chapter 10.

HOW TO USE THE LIBRARY FILE
PROCESSING SYSTEM

Programs of Commands g4

The Library File Program Generator 98
Files and Data-Sets. 108

Job Assembly 115

Sample Jobs 118

The READ Facility 124

CODES

Codes in Trees 128
Storing a Code Translation File 137
Printing an Index of Codes 140

FILE UTILITY PROGRAMS

Conversion (Internal to _
External Format) 142

Augmented External Files iuy
The BATCH Program 148
Copying Card Files 152
Printing Card Files 156
Storing Printouts 157

COMPUTING TECHNICAL ASPECTS

1 10.1 Prpgrémming Considerations 160
10.2 System Considerations 166

BIBLIOGRAPHY

Appendix A.

Appendix B.

LFP SYSTEM USER'S SUMMARY

PREPARATION OF EXTERNAL FILES

B.1l Completion of Torms 187
‘B.2 Key-Punching from Forms 194

Appendix C.

THE CATALOGUED PROCEDURE DLIPMCLG

gy

128

142

160

172
183

187

197

COMPUTER USAGE IN DURHAM .

UNIVERSITY LIBRARY

1,1 INTRODUCTION

In the light of experience gained in writing and operating
a set of computer programs, now obsolete, for maintaining the
bibliographic file associated with the small Short Loan Collec-
tion of undergraduate reading material in Durham University
Library, the author embarked on the creation'of the software
described in this thesis in February 1970. The Library's
requirements were being serviced by .means of the new programs
by June of that year, although at that stage the system was
usable only by the programmer. In September 1970 the command
language was implemented, allowing a wide variety of jobs to be
prepared with little effort (typically it takes 5-10 minutes
per job, excluding card keypunching). Finally the documentation
was. written between January and July 1971, and consists of two
parts; a user's manual®*, much of which.is .reproduced here, and
a technical program description[125], which is submitted with

the thesis. Approximately 5 man-months was spent on program
development and a similar quantity of effort was given to docu-
mentation. The system is designed to be operated entirely by

library staff with little training in' computing and the documen-
tation was .therefore an important facet of the system; it has
yet (October 1971) to be proved.

Durham University owns, jointly with the University of
Newcastle upon Tyne, an IBM 360 Model 67, known as NUMAC - The
Northumbrian Universities Multiple Access Computer. The
programs described here were written in PL/1 (Programming
Language One) to run under the control of IBM System/360
Operating System. The on-line consoles attached to NUMAC are
not used by the Library at present, all communication with the
computer being through 80-column punched cards and line-printer.

The computer is being used to maintain files and produce

- lists for two small collections within the University Library.
Both are closed access undergraduate collections, one of Arts
and Social Sciences material (3000 items in October 1971), the
other of Science literature (1000 items). There are also plans
to establish a computer file for the recently acquired
Collingwood research library (about 5000 items) in the
Mathematics Department of the University.

The suite of programs which is now in regular use by the
University Library is the major part of what is called the
Library File Processing System (LFP System). This system is
a tool for handling files of bibliographic records and

*0ddy, R.N. "Computer Processing of Library Files at Durham
University", Durham University Library Publication No.7: 1971

-~ '\———1=‘?': g,
X
(10 DECI97!

[ERARY

encompasses the organization and structure of files both inside
and outside the machine, the computer programs which create,
maintain and operate upon files and the means of using the
programs. We summarize each of these three aspects in turn.

The Records

The following textual or coded information can be recorded
in the files for each item in the library:

(i) Item number, an obligatory and unique record
identification.

(ii) Type of publication (e.g. book, article, ete.). ‘

(iii) Status (e.g. progress of order, temporary
transfer from another collection, etc.).

(iv) Order details - agent, order and receipt dates,
price, agent's report.

(v) Courses for which the item is recommended.
(vi) Authors, titles, class numbers.
(vii) Publisher and date of publication.

A record need not contain information of every type. The:
significance of the information is largely irrelevant to the
mechanical processes in the system;. some of the fields mentioned
can be used for other purposes. at the discretion of the library.
The author, title, class number and publisher fields are of
variable length, i.e. as long as the number of characters written
into them. The remainder are fixed length fields, in which
information either conforms to standard descriptions (e.g. prices
or dates) or is codified (e.g. agent's reports, courses). The
records are punched onto 80-column cards directly from forms
prepared in the Library. The computer reads the cards and
stores the data on disks (these predominate over magnetic tapes
in NUMAC) from which files can subsequently be read and processed.

The Programs

The file is the unit handled by the LIP System. A file
may contain bibliographic or other types of data. - Stored in a
"library" on a magnetic disk are programs which perform simple
operations upon files and have as their result, or product,
other files. The more important. operations of which the LFP
System is capable are as follows:

(i) Conversion of a file of bibliographic data from
its form on punched cards to the internal form
used on magnetic disks (or tapes). The program

does a certain amount of format checking, but
it cannot spot errors of information content
such as spelllng mistakes and inconsistency
among records in ways of writing the data.

(ii) Updating a file. The contents of one file are
used to modify the contents of another. We can
add records and remove them and can change
records in any way.

- (iii) Reproduction of files. TFiles can .be copied
in their entirety or we can copy records
selectively (i.e. extract a sub-file).

(iv) Sorting a file. The records in a file are put
into an alphabetical or numerical sequence (e.g.
by item number, author, title or class number).

(v) Merging files. Two files, both previously
sorted into one particular order, can be com-
bined (merged) into a single file.

(vi) Printing files. Files, or selected records
from files, can .be printed in a wide variety
of formats. The user of the LFP System con-
trols the format of a printout (to a fine
degree) by means of directives prepared on
punched cards.

The structure of the LFP System is modular. That is to
say that the programs comprising the system are mutually.
independent (though .compatible) and any of them can be changed
without affecting the others (by a programmer, malntalnlng
certain file storage and other conventions). It is also not
difficult to 1ncorporate new facilities. The System contains
no programs for accounting and is therefore not equipped to
include a full ordering and accessions system, although the
printing and file amendment aspects of the process can be done.
Nor has it been de31gned to handle a circulation system, since
the particular collection for which it was 1ntended requires
only a simple single-access loan record.

Use of the Programs

LFP System programs should be regarded as bulidlng blocks.
for constructing more complex processes. An operation which
is complete from the library's point of view will normally con-
sist -of more than one of the processes mentioned above. For
example, the production of an author catalogue at a time when
the only file that is up to date is in item number order will
require first a sort and then a printout. Any number of basic
processes can be combined to form a single composite one and
the user expresses his requirements in a 51mp1e command language.
He writes, and then punches onto cards, a series of commands

1,1/1.2

which invoke the programs one after the other and specify
which files are to be involved in the task.

When the library has experience with the LFP System and
" has established its routine use of the system, certain standard
card decks will be submitted to the computer with little pre-
paration necessary and at regular intervals. Within the
limitations of the LFP System, the library will still retain
the facilities for experlmentaulon with its use of the computer.
"There is sufficient generality in the system for it to be
useful to libraries other than the one for which it was written.
It is worth remarking that if two or more libraries use the same
computer and file processing system, compatibility between their
records will make progects such as the production of union cata-
logues relatively inexpensive extensions to the routine..

~

1.2 THE LIBRARY FILE PROCESSING SYSTEM

The central.part of the LFP System is a library of programs
on a disk volume. There are programs which create, maintain,
sort and print files of bibliographic data, and do related tasks
and there are.other programs which are used by them. These
programs have been written in PL/1l and they are already compiled.
To use them, we write a simple program of commands, each of
which invokes a program in the library. We can thus have any
combination of tasks performed and involve any file in the
process. '

The other important part specifically written for the LFP
System is a program called the Library File Program Generator,
which reads a program of commands and generates firstly a PL/1
program to call upon the appropriate task programs and secondly
some instructions for the linkage editor so that the programs
can be assembled in such a way as to economize on the core
storage required by the final program.

The remaining 1mportant programs used by the LFP System are
the PL/1(F) Compiler and the Linkage Editor; both are parts of

the IBM System/360 Operating System.

Files are created by the programs in formats which are
peculiar to the LFP System. The operating system finds space
on the disks for the files and keeps them or deletes them as
requested by the user in the job control statements. Records
are constructed, processed and examined by the programs in the

LFP System Library.

A summary of a normal LFP System job follows. The
asterisks mark those parts which the user must supply.

* (i) A program of commands. Each command specifies
a process and the files to be involved in it.

1.2

(ii) The program is converted to a PL/1 program by the
library file program generator.

(iii) The new PL/1 program is translated by the PL/1(F)
Compiler.

(iv) Program and library components are combined by .
- the Linkage Editor. :

* (v) The final program is executed. The files
mentioned in the commands must be defined for
the operating system by associating them with
data-sets or devices.

* (vi) Various types of data cards to be read by the

program. - ,

Most of the remaining chapters contain descriptions of
LFP System programs which can be invoked by commands. Some
remarks are necessary at this point concerning the organization
of the descrlptlons Each program (or command) description
contains information under the headings Command, Function and
Notes, Data Definition Cards, Computer Time and Completion
- Codes. We -shall discuss each of these in turn. :

1. Command

A prototype command is given and followed by an explanation
of each part of the command. . The user should model his command
upon the prototype, copying the uppercase characters and the
termlnaulng semicolon exactly and substituting his own, appro-
priate, text for the symbolic names which are underlined in the
prototype. The second word in the prototype command is the name
of the program being invoked and the words to the right of it are
called parameters. - Some of the parameters represent names, for
example file names, and these must obey the following rules.

(i) A name consists of from 1 to 7 cﬁaracters.

(ii) The first character must be a letter, others
may be letters or digits.

. (iii) There must be no spaces within a name.
Example
The prototype command for the sorting function is

label SORT infile sortfile sequence ;

"label", "infile", "sortfile" and "sequence" are all symbolic
names, and an actual command in a user's program might be

A SORT LBK LAU SEQ601 ;

A detailed account of the use of the command language is
given in Chapter 7. ‘

2. .Function and Notes

Paragraphs under this heading describe the purpose of the
command and the roles played by the files involved.

3. Data Definition Cards

: A data definition card is a particular type of job control
card (see Chapter 7 and ref.119). Under this heading appears
a list of the files which need data definition cards and any
information which is peculiar to {the relevant command. The
general rule is that each file referred to (including implicit
references) in the program must be defined just once on data
definition cards in the job. -

\

4, Computer Time

: A formula for calculating processor time (CPU time), based
on the amount of data and estimated from experience at Durham,

is given. This should be used to estimate the CPU time require-
ment for the final job step (the operating system will terminate
the step after one minute of CPU time unless we have asked for
more). ‘ ' '

5. Completion Codes

The computer finishes each task with a code to indicate
its outcome. The codes most frequently used are:

(1) O. Normal execution.

(ii) 4. The user is warned that certain situations
' were encountered. The execution may have
been unsuccessful.

(iii) 8. .An error was detected. The task will not
have been completed.

"(iv) 12. As for 8, but more serious.

If the command has been given a label, i.e. a reference
name, the completion code can be used to determine whether other

commands in the same program are obeyed.

Figure 1.1 contains estimates of the computer resource
requirements for processing files of different sizes. The
first column gives the size of the file. It. should be
emphasized that the larger of the two files maintained at Durham
University has not, so far, contained more than 3000 book

records. The table, therefore, consists mostly of theoretical
estimates. The second column in figure 1.1 is the estimated
storage requirement for the file. The computer time used by
the 73 LFP.System jobs run in the months December 1870 to
August 1971 (inclusive) are summarized in figures 1.2, 1.3 and

1.4,

CPU time given in
minutes,seconds
' . Working
Number Storage Storage for
of book o PO 60 . B0 s
recopds® | ® of volume b0 pe o) Sorting,
a e sl o % of vol et
- A P P ot um
> © g +
X o e~ &
0 2 - o}
o) A 0
-2,500 R 0:04 {0:13) 0:17 | 2:20 3.5
5,000 2.8 0:07 | 0:26 0:35 5:00 7
10,000 5.6 . 0:15 | 0:50| 1:10 {10:50 1y
20,000 11.2 0:30 } 1:40§ 2:10 | 23:30 28
40,000 22,5 1:00 7 3:20(4:30 [48:30 56
60,000 3y . 1 1:30|5:00| 6:40 | 72:00 ~ 85

* The size of the records is assumed to be as for those of
Durham University Library, i.e. on average 38 characters
of textual information.

%% Storage is expressed as a percentage of a 2314 disk volume,
upon which there are 4000 tracks. :

Figure 1.1 Table of requirements according to file size

8

. CPU Times (seconds) Total
M-step C-step L-step G-step (Qhargeable)
: . ; Time (seconds)
Program |[PL/1(F) |Linkage User's for L-step Job
Generator|Compiler| Editor Program _ P
Mean 1.69 2.15 5.79.. 58.13 166.55
Standard '
Deviation O.41 0.2Y4 1.6 77.5 106.06
Totals : ' 4243.8 12158
(73 jobs) 123.4 157.12 1 422.31 | (.91 minutes)| (=203 minutes)
Figure 1.2 Computer time statistics for LFP System
- jobs run between 3 December 1970 and
1 September 1871
km
20
Number '
of .
jobs 4
' 15—
10—
1 7
5—.
ll ﬁf“lll(lllllﬂ 'Hll lﬂ
1 2 3 L 5 6
time (minutes)
Figure 1.3 Distribution of jobs by G-step (user's

program) CPU time (10 second intervals)

20 -
Number .
of
jobs
15 =
10 =
5-0 ——-l'

' 1 ’ 1] l 1Ll ' ¥ l L] . L) 7 i
1 2 3 . 5 6 7 "8 g' 10

total time (minutes)

Figure 1.4 Distribution of ﬁobs by total.time
(30 second intervals)

Chapter 2 discusses a few of the wider problems of
catalogue making with a computer and may serve to put Durham's
LFP System into perspective. Many of the problems in library
automation arise because-the files to be handled are both
complex and very large and this project has not tackled them
because its files are very small. What it has sought to
achieve is to put versatility of computer usage into the hands
of non-programmers in the library.

COMPUTER USAGE IN LIBRARIES

The processes applicable to the information stored in a
library can be considered as having three facets. In order
that it may be found again information entering the store
must be organised. Interconnections must be established
between items (a book must be placed in the correct shelf
location, a catalogue card is filed according to definite
rules), and hierarchical structures are maintained (there
are books, catalogues and subject indexes for instance).
Secondly, information must be transformed. Students and
cataloguers, each in their own way, transform the contents
of books; and filing entries in a catalogue requires what
is equivalent to a non=-trivial transformation of bibliographic
details. - Finally, information can be copied or moved. Books
circulate among readers and records move to reflect their
locations; contents of cataloguing slips or worksheets are
copied to supply entries for shelflists and one or more
catalogues. Clearly, there are no sharp dividing lines
between these aspects of information handling, but they can
serve to separate the clerical from the intellectual work.

An important consideration is that enlightened analysis of

a process can change one's view of what is intellectual by
showing one a relatively straightforward clerical method of
doing the same process. A library endeavours to organise

its information in such a way that subsequent intellectual
work in maintaining and accessing it is minimised. So far
as possible, manipulation of established information should
be a clerical job, one of copying and movement. Most of a
library's professional staff are typically employed in
acquisition and cataloguing departments. Computers are well
adjusted to processes of movement and reproduction of informa-
tion. ‘At the machine level, for example, the IBM System/360
Universal Instruction Set has 143 instructions, 63 of which
are concerned not with arithmetic or logic but simply with
data movement. Basic modern software, the operating systems,
upon which other programs build provide extensive storage
management and data transfer facilities. It is natural,
therefore, that computer techniques should have been investi-
gated for use in handling the vast throughput of information
in libraries.

Tradltlonally, and naturally, libraries organise their
staffs into departments to deal with the following processes:

(1) Acquisition of SLOCk which involves selection
and ordering,

(ii) Cataloguing, i.e. organising the material and
supplying records to identify and describe it,

(iii) Circulation of stock among the readers,

10

(iv) Various services such as information retrieval
and SDI (Selective Dissemination of Information),
as appropriate and practicable, '

(v) Maintenance of stock, e.g. binding and repair,

(vi) . Management of resources, e.g. personnel, funds,
buildings.

~ All of these require the creation and maintenance of files
descriptive of the current state of affairs. We are concerned
here with files directly related to the stock, the central one
being the catalogue. Inevitably, there are close relationships
between the members of a set of bibliographic files which relate
to one collection, and the aim of library automation should be
to exploit the relationships and enrich the set of files.

2.1 THE "TOTAL SYSTEM" APPROACH

A library organised as a single "total system" relies upon
the ability to create a bibliographic record once and then use
it, or a record automatically derived from it, to represent all
movements of items in the library and to give appropriate bibli-
ographic tools to the readers. In a recent survey of automation
projects in British University libraries, Duchesne & Phillips[10]
point out the growing interest in cataloguing problems and
Parker[23] has remarked a similar trend in North America. The
catalogue is central in a library system (not merely for access
to existing stock) and its importance increases in a total
system. Major progress in the automation of library functions
depends upon mastery of computer methods of handling the catalogue.
‘Thomas & East[27] studied the bibliographic records used in 12
assorted libraries and suggest optimal records for each of the
18 activities into which they divided the library function. The
record produced by the cataloguing department is by far the
fullest*; the table in figure 2.1 summarises the charts given
in [27], p.u45-50. The catalogue record having been produced,
all the other records can be regarded in retrospect as extended
subsets of it; and most of them of temporary utility. Many
of the impermanent fields are dates copied from a calendar (or
“date~stamp) and the others are equally amenable to automatic
assignment. '

o,

% Thomas & East do not attempt to summarise the catalogue records

" of the 12 libraries and one cannot, from their publication,

. pelate the records to the size or type of library. The
libraries fall into two distinct groups as regards the size of
their catalogue records; seven use from 13 to 16 fields and
the other five libraries use 23, 24 or 25 fields.

11

Field name

Number of libraries (out of 12)
using field in cataloguing

Author
Additional authors
Editor
Compiler/Translator
Title
Sub-title
Edition
Volume
Series note
Publisher
Date
- Place
Price
No. of copies
SBN
Date of invoice
Library
Bibliography
Diagrams
Illustrations
Pagination
Plates -
Tables
Graphs
Size
Abstract
.Class
Accession no.
Subject descriptors
National Bibliography no.

12
12
12
10
12
11
12
12
11
11
12

' -
N W N FE N OO O OO w0

T
H w oo N

Figure 2.1 Summary of the catalogue records
' of 12 libraries, derived from charts
given by Thomas & East[27]

12

2.1

For some time, librarians have been concerned that the
hard work done by the acquisition department in identifying
and describing literature should be utilised to the full by
the cataloguer [9,24,104]. An -additional major consideration
is that among the libraries of similar organisations (e.g.
among university libraries) there is a considerable overlap of
stock, all catalogued independently. There are justifiable
differences between libraries and consequent differences in
their catalogue records (there are also traditions!) and
standardisation is difficult. The Library of Congress and
the BNB MARC (MAchine Readable Cataloguing) projects are a
significant attempt to provide libraries with comprehensive
bibliographic records for monographs prepared centrally and
suitable for automatic modification to suit the many require-
ments of a large range of libraries. The timely availability
of MARC records and the technical means for their manipulation
places the library, in theory, in the strong position of being
able to generate automatically all its records by simple
extension of various subsets of MARC records. '

The Library of Congress started distributing magnetic
tapes to 16 selected libraries in November 1966 as part of
the MARC Pilot Project, and the record format used then is
described in the Final Report[3k]. In 1967, the Library of
Congress reconsidered the design of the bibliographic records
and the British National Bibliography co-operated in the
- formulation of MARC II, a considerably more versatile format

which brought into the foreground the concept of a communica-
tions format from which could be derived records for a wide
variety of purposes. Not only is the record a very full
bibliographic description, but it also has a detailed structure
which conveys information about the semantic content of the
fields. A complete description of the MARC II format would
be very long (see refs. 36,43,47 for details), so we give here
a summary - figure 2.2 - and a brief indication of the tag
structure. '

Each field of bibliographic data is tagged by a 3-digit
number. The first digit defines the function of the field;
for example, '1' is Main Entry, '2' Title, '6' Subject Added
Entry. The other two digits describe the kind of heading and,
where appropriate, there is some consistency; for example, in
the Main Entry (first digit '1'), Series Notes ('u').and
various added entries ('6','7' and '8'), a value of '0' for
the second digit means "Personal Name" and 'l' means "Corporate
Name™. Data is prefixed by two indicator characters which
further describe the type and whose significance varies from
tag to tag, and the fields are segmented into subfields composed
of the logical parts of the data. An example will probably
convey the essence of the scheme without the need for details:

tag 'lOO'. , Main Entry , Personal Name

variable field
110$aBEECHAM, $eSir $hThomas, $dbarts

Indicators Subfield codes . Field terminator

13

variable | variable ' l
leader | directory | control | fixed variable fields . . . |#
number field : | |
24 : 1
leader: | record|record lé end indicator base address
length| status g count of data

5 1 5 1 1 5 6

record status defines whether record is new, changed,.
deleted or old.

legend describes the type of library material referred to.

indicator count is the number of indicator characters in
the variable fields ('2' is used at present).

base address of data is the total length of leader and

directory.
directory: | girectory entry | directory entry |. . .. <
12 12 : 1

_ directory entry:

tag | field length | position

3 : 4 5
tag is a 3-digit number identifying the type of field.

field length is the number of characters in the data field.

position is the character position of the start of the
data field relative to the start of the variable
control number field.

g'is the field terminator.

~ variable control number (tag '00l' in the first directory
entry) is the LC card number of lerary .0of Congress
records or SBN or BNB serial number in BNB produced

records.

vapiable fixed field (tag '008' in the directory) is a single
"~ string of codes and dates of fixed length for monographs,
but which will need to be different for other types of

material.

varlable flelds, each described by one directory entry with
an appropriate tag, consist of two indicator characters
(see leader) followed by data (which may be divided into
subfields by special codes) followed by the field terminator.

1s the record terminator.

Figure 2.2 MARC II Format summary

The chart in figure 2.3 illustrates how bibliographic
records could move in a library system. In the chart,
processes are simplified and some important sub-systems are
omitted altogether (e.g. serials accessioning and holdings
list maintenance). What prevents the "total system" from
becoming a reality is the considerable difficulty encountered
at two points: the entry of selected MARC records and mani-
pulation of the Catalogue file (we are not yet considering
the "one-off" task of bringing a large established catalogue
into line with the new automated system). Selection of
library material requires access to information concerning
new books, if not before publication then very soon after-
wards. It.also needs efficient access to the "retrospective
file", i.e. records of all past publications. MARC has
received criticism on its timeliness; a conclusion from a
survey done by the Blrmlngham Libraries' Co-operative
Mechanisation Project is "that MARC records need to appear
very much more promptly if they are to be of maximum use for
cataloguing. Timing is less critical for cataloguing than
for selection and ordering: even greater improvement is
required if MARC is to achieve maximum usefulness in the
latter fields."[45] MARC tapes must have maximum usefulness
in selection and ordering in order to have maximum utility in
the library as a whole. Also, in a very few years, searching
for post-1968 English language books on MARC tapes will be
technologically equivalent to searching the catalogue of a
very large library using a computer. Eliminating the records
for purchased items from the cumulated MARC file will reduce
its size and Ayres[37] has suggested the maintenance of a
""Potential Requirements” file created by blanket-selection by -
subject from the distributed MARC tapes. Even so, the average
provincial university library will need to keep quite a large
- MARC file because its potential requirements are high and its
budget is low. Local preparation of machine readable records
by locating and editing entries in such bibliographies as BNB
will probably be more economical than the use of MARC for most
libraries for some time to come, and this approach may well be
encouraged by the introduction by BNB .itself of the microform
bibliography "Books in Engllsh"[39 607* However, for
efficient record handling in the llbrary as a whole, centralised
- cataloguing and distribution of machine readable records with
the computer technology to process them in bulk is necessary so

* Two month cumulations of British and American MARC tapes are
merged into Dewey Classified sequence and formatted for output
on microfilm. NCR reduces the microfilm image and produces
4 x 6 in. microforms, each containing up to 3000 pages (about
48,000 entries). The microforms are tough and cheaply pro-
duced from the negatives. They are viewed on a manually
‘controlled reader either by using the classified index to the
co-ordinate system given on the microforms, or by "flicking
through" them like and, with practice, as easily as books.
This medium seems to have considerable potential in many areas

- of library work.

15

selected
, MARC
records

statistiecs,accounts,]|
management reports

catalogues of books |,
in process '

_upon {receipt

<

&

locally
produced MARC-
compatible
records

printed orders
and reminders

receipt,status, °
ete. notification

recent
additions

lists

user data

recalls,
reserve
records

records in a library

16

labels book catalogue card
& stock cards records [°] catalogue
records
I merge book
catalogue
supplements
catalogue
file
bibliographies
finding
lists
lists,
statistics book
& reports catalogues
Figure 2.3 Movement of bibliographic

2,1/2.2

that full bibliographic details can enter the system at the-
earliest possible stage. Grose & Jones[101] and Line[104],
describing the first operational, computer-based order system
in a British university library, pointed out that the infor-
mation in the order file on magnetic tape should ideally be
passed on to the catalogue. - However, rather than expanding
and editing an order record to form a catalogue record, it
would be better to take part of a catalogue record for the
ordering process. '

When a library wishes to introduce the use of a computer
into its procedures, it will very likely have to restrict
"itself to a sub-system which must be kept in continuous opera-
tion, and the automation of which must not be allowed to
interfere with the operation of other, conventional (and
working) sub-systems. The result is that most automation
schemes in libraries mimic conventional operation. On the
whole, libraries .are pleased with their automated systems
mainly because they can provide a better service through the
greater accessibility of information. Few libraries, however,
can report a substantial reduction in costs over the old '
systems and, perhaps, this cannot come until records can be
moved speedily and automatically between any two points of a
total library system. = The .logical conclusion of this line
‘of argument, as expounded mainly by American authors, is that
a library should maintain one all-embracing bibliographic file
from which all products are generated, all queries answered
and all processes controlled. "It is more economical to handle
a variety of library applications by using a single file and a
standard set of functional programs, than it is to provide a
separate file and a separate set of application programs for
each application. Not only is it more economical, but this
total integrated approach is, in its essential modularity,
extremely flexible." - Warheit[29]. This attractive picture
is, at the present time, futuristic; currently available
techniques cannot achieve it economically, -if at all. Whatever’
technique is used, from manual to on-line computer, one does
not want a file of a million large and complicated records
constantly at one's elbow, for even the simplest task. Warheit's
words were written in the context of a discussion of interactive
computer systems, and these probably offer the only possible
environment for this form of file-driven system. In the mean-
time, much. can be done to improve the readers' and librarians'
access to the bibliographic files in the library and we now
‘concentrate on the role of computers in producing catalogues,
bibliographies and other lists. -

2.2 CATALOGUE PRODUCTION

Predominantly, computers have been used in libraries as
sophisticated, high speed, giant typewriters. = They are
provided with "machine-readable" records which they are pro-
grammed to -shunt from store to store, reformat for more -

17

2.2

conveniéent handling in particular circumstances and prepare
for output in various arrangements, to suit the intended user.
Figure 2.4 is an overview of those parts of the cataloguing
function which can be done on a computer; rather than
representing a single library's system, it 1s an amalgamation
of the main facets of several working systems and experiments.
The chart includes an "index to problems" and we discuss some
aspects of those problems. '

1. Conversion of 0l1d Records

, Opposing the acknowledgment of the centrality of the
catalogue in library automation policy-making is the substantial
cost of converting to machine-readable form the million or so
catalogue records in the typical well-established large library.
French{60] has estimated the costs of various possible conver-
sion operations on Birmingham University Library's catalogue
and found the cost of keypunching to be about £60,000. If it
is thought desirable (or necessary) to .bring the old entries

(at Birmingham) into compatibility with current cataloguing
practice the cost nearly doubles. A new format has sometimes
been required for preservation of the catalogue or because a
fast growing catalogue was becoming more and more difficult to
manage and use in its existing form. In that case photographic
techniques can be used (at a tenth of the cost of keypunching)

. to produce book catalogues. The versatility that computer-
handling of the records can .give is missing from these methods
but, as French points out, a cheap, temporary solution may be
what is required since the large national libraries here and

in America are investigating the problem of converting their
catalogues to MARC form and most of the local library's cata-

" logue will be covered. The selection of records from such
enormous central-files for each library will certainly pose
considerable technical problems and some libraries will not
wish to wait.) -

At present, fivé types of hardware can be considered for
initial preparation of catalogue data in machine-readable form,
and they all involve typing. The well-established methods are
the paper tape typewriter and the 80-column card keypunch. The
former has been favoured by library automation .teams [23,61,34]
because of the ease with which a larger character set can be
handled and in order to avoid the fixed-field aura of punched
cards. The first reason is valid; coding more than the usual
character set comprising upper case letters, digits and mathe-
matically oriented special symbols normally requires on the
card punch the reservation of_ graphic characters for case shifts,
and representation of non-spacing characters is awkward. Most
people who have used punched cards for input have divided their
cards into fields, but this is not necessary; programs can be
written to regard a deck of cards as a continuous stream, like
.paper tape (see Chapter 3), and cards are more easily edited

than tape.

records generated from records converted to
existing records, machine-readable form
e.g. MARC and output . from old and/or local
from acquisitions files '
sub-system i . e

o AN

file print catalogue
of -new cards and file
records manually

printed products,e,g.'
new additions lists,
catalogue supplements

old*main
catalogue
file-

C

new main
catalogue
file

C C
book catalogues, Ci selective printouts,
microfilm(& -form) : e.g. subject
catalogues e bibliographies

. %0ld &.néw main catalogues
may ‘coincide on direct
access storage

Index to problems:
a .'Input:.retrospective conversion of o0ld catalogue
b Filing for merging and rearranging files

c Quality of output
d Maintaining éurrency of large public catélpgue

e Growth: doubling time is 10-20 years

I—h.

Availability of full records (see section 2.1)

Figure 2.4 Automated catalogue
' maintenance: :
overview and problems

18

A development from punching dévices is the magnetic tape
encoder. Keyboards- for these devices vary from the simple
keypunch style to the large and versatile one of the Keymatic
which the Library of Congress RECON Pilot Project group found
attractivel[55]. In the normal commercial environment editing
is simple and efficient with magnetic tape encoders, but this
. may not be so in the library where the record is so much more
" complicated. oo

The fourth method of input is the use of OCR (Optical -
Character Recognition) equipment. The present state of the
art requires that data be typed using one of a number of founts
designed for use with a page reader. Character sets are
- severely limited except on the most expensive models. The
RECON Pilot Project started in mid-1969 -at the Library of
Congress with the plan to experimentally convert 85,000 recent
English language and 5000 old and more varied Roman alphabet
catalogue entries to MARC format (a series of reports in the
Journal of Library Automation maps their progress; refs. 5i,
55,56). Avram[54] evaluates OCR for use in this context and
concludes that "Paper handling is a major drawback of ‘optical
character readers . . . Typewriters used to prepare the source
document must be constantly cleaned and ribbons changed to keep
- impact keys free of dirt. Frequent jamming appears to be a
characteristic of most machines". In spite of that, a later
report[55] describes a system of input using the services of a
- bureau to prepare data and copy it to magnetic tape with an
. optical page reader.” Brown[59] reports a similar method at
the Bodleian Library in the .conversion .of the pre-1920 catalogue.
* The use of a bureau makes the more sophisticated optical readers
. an economic proposition in competition with the older methods
for operations of this type. Reading the original catalogue -
cards is evidently not yet within the capability of marketable
machinery. ' .

The final general technique for input of catalogue records
is on-line to a computer; the typist uses a console which is
under the (effectively) continuous control of a program.

. Balfour[57] has described the conversion of a shelf list of
about 100,000 records using IBM 274l typewriter terminals under
the control of DATATEXT, the forerunner of IBM's Administrative
‘Terminal System, ATS[66,67]. Editing facilities are impressive
but, it could be argued, too general for use in a single large
application where a tailor-made conversational program might pay
in.the long run, even with programming costs. According to
Dolby et al.[86] on-line input of catalogue data is more than
twice as expensive as the other four methods considered above,
which are indistinguishable as regards cost. . Whatever method
is used, good file-editing software will save expensive manual
.correction procedures[112].

A major and obvious way to make economies in data preparation

is to minimise key-strokes, and two aspects of bibliographic
-data make this very much -a non-trivial matter. . Firstly, the

20

2.2

number of characters to be represented is far greater than the
number of keys on any sensible sized typewriter and therefore
extra key-strokes are required to denote case or mode. The
representation of characters on the input device is almost .
solely a matter of ergonomics and can be independent of the
stored representation which is designed for storage economy,
ease of scanning, filing, etc. Price[71] gives a useful -
exposition of character set design in general, and the Newcastle
University Catalogue Computerisation Project gave special
attention to the subject as it applies to typing paper tape,
~ building into the project measures of typist performance and
the efficiency of the character representation[73,74].

Secondly, variety in record manipulation and output is
dependent -upon the input record being divided into well defined
fields (the MARC II format is perhaps the extreme illustration
of this) and in a simple-minded approach to preparing the
record for automatic handling identification of the fields can
increase the number of key-strokes significantly. The input
procedure for the Durham Short Loan Collections requires five
‘control characters for each field. A great deal of effort has
been devoted to devising algorithms which analyse a catalogue
record ‘with a minimum number of one-character field delimiters
‘and build up a full structured record, assigning tags or other-
- wise identifying the- separate fields. The RECON Pilot Project
[56,69] has simulated its automatic format recognition manually
on a few hundred catalogue cards and achieved about 70% accuracy
- in MARC II format tagging. ' They are in a fortunate position
both in that uniformity in the cataloguing is.quite good, and
in having a sizeable file of MARC records with which to experi-
ment. MARC records can be used to generate, automatically,
test files of unstructured catalogue entries of high quality,
and the output of the formatting algorithm can be assessed
quickly and reliably by comparison with the original MARC tapes.
Jolliffe, describing in some detail an experiment on the British
Museum General Catalogue of Printed Books[68], summarises this
type of algorithm as follows: "The program, essentially,
represents the interconnected web of alternatives at different
- points in a BM catalogue entry". His internal code allows for
a representation of typography, which varies systematically
~within entries and can therefore be used in the programmed

analysis. Estimates of the accuracy of tagging (or equivalent
identification) in two other British projects are 94% of fields
at Newcastle University (details of the method are given in
ref. 74) and 97% of fields (90% of entries) for the pre-1920
catalogue in the Bodleian[59]. These figures show that the
techniques for format recognition in catalogue entries are
sufficiently developed already to be very effective cost
reducers and that when optical machine-reading of existing
printed (or hand-written) catalogue records is feasible, the
. software will be ready to structure it. An implication of
the growth of published information is that the techniques
which are now required for retrospective conversion of huge
- catalogues will one day be needed for encoding new records.

21

2. Filing Catalogue Entries

Contrary to the usual connotation of the word, filing in
the context of a library catalogue is far from being purely
clérical, and to implement in a computer sort the rules as they
stand in a typical library is well outside the scope of existing
techniques for handling linguistic data. A brief excursion
into the ALA Rules for Filing Catalog Cards[80] will illustrate
the situation. On page 1 we find the Basic Principle:

"Filing should be straightforward, item by item through .
the entry, not disregarding or transposing any of the
elements, nor mentally inserting designations. In the
following rules there are only a few situations where
“this principle ‘is not applied; these are usually due
to the structure of the heading.” :

The rules are written for the humdn filer, whose idea of
what is straightforward is the result of his experience and the
meaning which he attaches to the headings. ‘- An exception to
the Basic Principle which can be handled reasonably well by a
program is (Rule #A) that initial articles in all languages
should be ignored. The exceptions to this are foreign articles
which are compounded .or of case other than nominative, i.e.-
words like the French du and des and the German dem and den
are regarded (and presumably German der is disregarded when it
'is nominative, masculine but not when it is genitive, feminine).
There is still an exception: the Dutch 's, which is a contrac-
tion of the genitive des, is disregarded when it occurs as an
initial article. Other rules pose even greater problems for
the writer of an automatic filing algorithm.. The treatment of
‘numerals (Rules 9A-9D) and variant forms of headings (Rules 10-
12), and classificatory filing (Rules 26-28) .all require semantic
analysis which only human brains can do at the present time.
Nevertheless, a computer-based cataloguing system would be very

" pestricted without the ability to sort, so various approaches

~have arisen to enable items to be filed automatically in a way
that resembles the customary way. It is also worth noting that
if the catalogue entries can be scanned easily (e.g. in the book-
form as opposed to cards), the effect on’ the searcher of slight
differences in filing order is reduced. '

Broadly speaking, the approaches to this problem fall into
two classes. The first involves the preparation of additional
data or bending of cataloguing rules to aid.in (or avoid) the
solution of the computing problem. The other is to do one's
best with the conventional headings, as they stand. From the
 programming point of view, the simplest approach is to assign

numbers to all the entries so that sorting the file into
ascending numerical order puts it in the required sequence for,
say, an author cataloguel761]. The filing is really still done
by the librarian when he assigns the sequence number. In byte
‘oriented computers one is usually able to compare two character
strings, even of different lengths, with very short -instruction

22

2.2

sequences, and using one or more of the fields in the record,
unmodified or translated byte for byte to get the required
character collating sequence, the production of a sort key

is simple. To use such simple techniques, the cataloguer
must, in effect, provide the sort key, either in addition to
other, standard, headings or ‘instead of them. With extra,

quite straightforward programming one can provide for both
conventional heading and conventional filing without supplying
. both heading and sort key except where they differ. . Special
symbols are introduced into the fields to indicate that some

" characters are to.be used for filing but are not to be printed
and others are to appear on printouts but must be ignored when
 the sort key is constructed. Characters which fall outside
the scope of the special symbols are required both for filing
and in the printout[88,20]. An example given by Johnson[88]
is as follows., To obtain the normal chronological order of -
these subject headings: . : '

ROME-HISTORY-REPUBLIC, 510-30 B.C. -
ROME-HISTORY-REPUBLIC, 365-30 B.C.
ROME-HISTORY-AUGUSTUS, 30 B.C.-14 A.D.

‘the following fields are entered:

RS . . :
.ROME-HISTORY-<REPUBLIC, 510-30 B.C.>@Z9489-72399690@
ROME-HISTORY-<REPUBLIC, 365-30 B.C.>@Z9734-299690@
ROME-HISTORY-<AUGUSTUS, 30 B.C.-14 A.D.>@Z29969-0014@

Characters enclosed in < and > do not take part in filing and
those within a‘pair of @'s are never printed. The sort keys
used are: ' . :

ROME-HISTORY-Z9489-Z9969
ROME-HISTORY-7Z9734-729969 .
ROME-HISTORY-29969-001k4

. Most headings will not require the use of "file as if"
statements but the extra effort required to produce them is
nevertheless significant. Hines & Harris[78] set out a code

‘which allows characters to be disregarded but does not use
additional non-printing strings. . Their approach is to put
"into writing the entry form which the filer is already required
to visualise in order to place the entry and which the user must
now have in mind in order to:locate it." In addition, three
special symbols are used; a space to be disregarded when filing,
a space valued character which does not print and a character to
enclose -strings which do not- participate in the filing.

It is not practicable to use the above methods of automatic
filing either in a large "converted" catalogue or in files of
MARC records because library staff would have to perform a large
editing operation. Methods are therefore developed to generate
automatically, from existing fields, sort keys which give an
acceptable filing order. Probably the most important single

23

2,2

operation in creating the sort key is to remove the leading
article if there is one. Bregzis, for example, describes a
program which can remove the articles of 27 languages by
searching whichever vocabulary of articles is determined by

the language code in the record[751]. He also expresses the
view that the programming and operational costs of implementing
- very complex filing rules is not justified because the public
would probably find 51mple rules no less convenient. Coward[u43]
~and Davison[77] both point out the way in which the tags,
indicators and subfield codes of the MARC II format aid filing
by providing programs with the means of distinguishing between
different types of entry and of separatlng out components of
names (in addition the second indicator in some of the title
fields is the number of characters at the beginning of the
title to be ignored when filing).

3. Book Catalogues

At the turn of the century, catalogues of libraries!
collections were normally kept in book form, several entries
per page, bound conventionally in large volumes. As collec-
tions grew, the difficulty of maintenance of this form gave
rise to card and sheaf catalogues® in which each entry has a
"page" to itself (usually measuring 3 x 5 inches). The card
catalogue is stored in an array of drawers, about 500 cards
(entries) per drawer. The drawers are not filled to capacity
so that insertions can be made without causing a ripple of
overflows from drawer to drawer through the catalogue. As
the catalogue grows, periodic reorganisation is needed, but new
-items can be filed daily and the catalogue is therefore always
up-to-date. A sheaf catalogue is similar to one in card form
in many respects. . Entries are on paper rather than card and
are secured, again in sub-capacity sheafs of 500's or so, in
binders which have large labels on their spines. The binding
is particularly secure and it is not a quick operation to file
a new entry. Filing in the main catalogue is therefore done
periodically (e.g. termly or semi-annually) as a major job.
Now libraries are considering the book form of catalogue again
in view of the fact that computer methods and printing machinery
go a long way towards solving the updating problem and because
new catalogues are needed to replace old, deteriorating ones
and to provide better access to the ever-increasing volume of
literature. - Flgure 2.5 summarises the relative merlts of
these three types or catalogue.

The cost of produ01ng a book catalogue for a large library

" is high even with the aid of a computer and much has been
written, especially in the Unlted States, on-costs and strategles
. for reducing them[86,87,64]. One of the major advantages of
book catalogues is that they can be "mass-produced"; that they

* Catalogue "conversion" has been done before.

24

Form of Catalogue

Performance
, Factors Card. Sheaf Book
Updating Easy Awkward Difficult, but
' computer can
help a lot
[
O
z .
é Space : Very large Large Quite small
B | requirement
=
H
§ Preservation | Difficult, and risk of Ease of printing
| destruction is serious multiple copies
' removes problems
Location of Initial, search-narrowing, | Fast, if page
Known phases fast .]l headings are
headings good, but can be
hindered by
having to use
supplements for
new entries
Scanning .Tedious Quite easy if Easy
£ : user is right--
n handed
D _
"Multiaccess" Fair Quite good Depends on
(simultaneous number of
use by | volumes and
several number of
people) copies
"Remote Poor; often none at all Possible at a
access" reasonable price
Figure 2.5 Comparative performance of

card, sheaf and book form
catalogues

25

2.2

must be periodically completely reprinted to incorporate new
entries is probably the major disddvantage. There are various
.ways of obtaining multiple copies of computer output = photography
of line printer output to produce offset masters[88], printing
directly onto continuous Multilith stationeryl[931, production,

- of tapes to control a typesetting machinel85], computer output .
on microfilm which can then be used for printingl901]. As the
cost of using the newer equipment comes down (through bureaux,
‘for instance), it is becoming quite feasible for a library to
produce a high quality document and, as Dolby et al.[86] point
-out, the higher density of .characters on the page which is ‘
possible with typesetting methods makes for shorter, and there-
fore cheaper, catalogues (they are also easier to read, scan
~and physically handle). . :

Updating book catalogues is usually done by means of the
issue of supplements- in conjunction with, typically, an annual
‘reprinting of the entire catalogue. So that the catalogue
user does not have to look 'in too many places, the supplements
are often cumulated; for example, the Meyer undergraduate
library at Stanford started by printing the catalogue annually
and issuing quarterly supplements, each of which incorporated
the previous onel881, Another approach, which does not seem
to have received much attention, is to mimic the technique used
in the original looseleaf shelflist at the Widener Library -
‘the large sheets originally had plenty of -space for additionms.
The computer equivalent might be' a file in which page boundaries
and numbers are recorded with the bibliographic records. A
certain amount of free space should be reserved initially in
the "pages", the amount to be determined automatically for each
part of the file, depending upon previous updating patterns
(this quantity might average about 6% over the whole file; it
would be directly related to growth rate). - The printed book
catalogue would be looseleaf and would be updated by periodi-
cally replacing pages where additions had been made (overflow
pages would also be necessary in places). Every few years
(5 say), the file should be "smoothed out", pages renumbered
and boundaries realigned. The saving in this method is that
relatively few pages need printing in order to obtain an
up-to~-date single sequence. On the other hand, one has the
cost of manually changing pages in all copiles of the catalogue.
The. effectiveness of the method depends on the pattern, or
distribution, of updating. In the old Widener shelflist it
. was regarded as unfortunate that the additions came in unevenly
over the yearsl[701. A computer equivalent might not be worth
“having if the distribution were not very uneven. For this
reason a.subject catalogue would be cheaper to maintain than a
. name catalogue in which one would expect an alphabetic distri-
bution of new entries just like that of the existing ones.

This chapter concludes with some remarks about the contents
of the entries in bibliographic lists and catalogues. The
question "What should a catalogue record contain?" has been
discussed for a very long time but the discussion has been

- 26

rejuvenated by the emergence of the computer as a viable tool

~ for library operations. Maintaining a catalogue is so

~ expensive that the number of different catalogues that can be
kept is severely limited. Nearly all libraries have an author

(or name) catalogue and a shelflist, often a by-product of

cataloguing, and some keep a separate subject catalogue (others

direct their readers to the shelflist!). The computer,

regarded and programmed as a symbol manipulator, operating on

a structured record offers a wide variety of bibliographic

tools for both librarian and reader. The cost of producing

. a book catalogue with traditional entries, even using a computer,

.is still high and one needs funds in order to exploit the
versatility of the computer. A promising proposal is that a
library should produce various lists of brief entries at much

‘reduced costs and include a precise referénce (probably numerical)

to a full master record elsewhere. The assumption is that

about 90% of catalogue use can be achieved on a much simpler

- record, and probably achieved faster. Suggestions as to what

~the detailed back=-up file should be vary from the accession

register[95] to an on-line cataloguel24], while Line[50] suggests

. the use of national bibliographies, in which case one doesn't
need a full local record at all. :

~ Améng many other fascinating calculations, Dolby et al[86]
present an argument which shows that the saving to an institu-
tion in reducing the time per catalogue-usage by one minute 1is
comparable to the library's cataloguing budget itself. Moreover,
that minute is actually recoverable by putting a copy of the-
catalogue in the user's department. The possibilities with
PCMI transparencies in this field are exciting; the ratio of
catalogues to staff library users could be very high (one?).
The viewer costs about £300 and the microforms can be produced
from a negative for a few new pence. A short-title catalogue
of 500,000 entries, formatted at 30 to the page would require
6 microforms. - ' '

: A catalogue is a list of books, etc. and there -should be

a unique mapping from the list onto the collection, though not
necessarily vice versa. In a shelflist, one requires a one-
to-one mapping but in an author or subject catalogue, many-to-one
is generally regarded as positively advantageous. There must
be fields of information in the catalogue record which
unambiguously identify it as corresponding with a particular
item in the stock. A record contains fields of two general
types [86 1%, Item fields are those which correspond uniquely
" (or nearly so) with items of stock; author, title, accession
number are considered to be item fields. All others are called
class fields because one expects to find classes or groups of
items with the same value for a field of this type. The choice

% Dolby et al. make this distinction for a different purpose,
that of determining the theoretical number of useful orderings
-of a file. ' '

27

2.2

of which fields to use for identification of an item should
coincide with the fields used by readers when they refer to
the literature, i.e. normally author first and then title.
This choice is probably determined by existing bibliographic
tools, arranged in author order, and is not necessarily the
best. Ayres[81], for example, argues-in favour of title
catalogues on the grounds that a survey in a special library

- demonstrated that people give more accurate title information
"than they give authors. Authors and titles are generally
~thought of as item fields, but are not really very good ones
(authors tend to write more than one book). True item fields
are always "artificial", that is they are assigned to the item
by "turning the handle". Examples are the accession number
generated locally and the SBN (assuming that one does not wish
to distinguish between copies). The user identifies items

by his search terms, so catalogue records must be organised
according to those terms and the artificial fields cannot be
used. Library users will never be expected to locate by
.accession number but the question "Have you got ISBN O 85362
105 5?" might conceivably, one day, be in the preferred form.
~In the meantime the field requlrements vary from list to llst.
The Short Loan Collection in Durham University Library's
Science Section is so small that satisfactory access by author
can be obtained from a listing of authors' surnames and the

. works! titles. That would not do for larger collections (the
larger the catalogue the more fields are required, with
diminishing returns) or for special bibliographies. Readers
would not use the author field at all, for instance, in
searching a bibliography of editions of writings by Shakespeare.

- 28

BIBLIOGRAPHIC

FILES

In this chapter, we do some of the groundwork on files
with specific reference to6 the Library File Processing System..
'Firstly, some basic words are defined and the .structure of
files is described in general terms. Then the forms in which
the files are stored and the methods employed by the computer
. programs to process them are discussed, again in quite general
terms. Finally we get down to details of the preparation of
. files for the computer. ‘ ' ' .

3.1 - FILE STRUCTURE

- File. - We define a File as a collection of records in some
sequence. The records can be in some sort of numerical
or alphabetic order or just in the order they were '
thought of. The order is mentioned simply to emphasize
the sequential nature of the file processing done by
this system. I

Record. The Record is the conceptual unit of information in
the file. When we are thinking of the file as a file
of bibliographic information, the record is the aggregate

~of information pertaining to one book (or to whatever
the bibliographic unit is). -

Item. An Item is a record in this particular context. That
is, an'item is a bibliographic record. Thus, when the .
word record is used, we will usually be thinking about the
file from some other point of view. For example, if the:
file is punched. into. 80-column cards, we might use the
word record to mean all the characters on one card, even
though an item spans several cards.

Element. The item can contain several different types of
information. For example, most items will contain the
name of an author and a title. These sub~units within
an item are called Elements (or sometimes Fields, although
that word is used slightly differently in connection with

- the printing of lists). - In this system, there-is & limit
to the number of elements an item may have and there' are
certain size restrictions, which vary from element to

element. The semantic significance of the different
elements is largely at the discretion of the user of the
system. An item need not contain an element from every.

possible category.

Tag. = The elements within an item must be identified. There
are two methods. The first is to identify it by its
position in the record as, for example, on a catalogue
card. - The other method is to attach a label to each

29

S
3.1/3.2

element saying what.sort of information it is. These
labels are called Tags or.Element Identifiers.. The LFP
System uses .both methods at; Va*¢OuS times. _When tags
are used, they are numeric.:’ '

3.2 FILE REPRESENTATION AND STORAGE

Before files of blbllOgPaDth data can exist within the
computer they must pass through two intermediate forms in the
LFP System. The first of these is a bundle of slips of paper
written by a librarian. The other is a deck of 80-column
cards key-punched by the data preparation service directly
from the slips. = These, of course, are readable by the computer
and are normally reformatted for reasons of efficiency before
being stored on a magnetic recorclng medium such as a disk or -

a tape. '

at
dififerent forms of file. . Details of the first and second
representations are given later in.this chapter.

Files on Paper Forms

Forms are printed with blank areas for all the elements
which. m;gHt be required in the items. Clearly, it is convenient
if one form contains one item, but it would have to be a very
large form indeed to allow for every p0851b111ty. One can
d;s;on quite '‘a small form which is of adequate capacity for the
large majority of items and which can also be, used as a continu-
ation form for the remaining large .or awkward items. The forms
. used by Durham University lerary have the numeric element tags
-printed on them for the benefit of .the card punch opera;ors as
well as an element name (e.g. "author") for the use of the
librarian who fills then in.

General comments will be made this stage about the
|
|

Items. on Punched Cards - External Files

. Items'aré.punched directly from.the forms prepared in the
library. : Each element is typed with the appropriate tag
preceding it and a special terminating character Iollow1ng it.

Another special character is used to. separate the items in &

file. The format is fairly free, that is ditems and elements
can be arranged without regard to the exact p051Llon on the
cards. We shall refer to a file of items organlzea in :this

way as an External Fil e, or File in External Format, because
it is in Lhe form that .is used odutside the machlne.

Files in Internal rornat

External files are not organized for efficient processing
they are just readable. In the Internal Tormat, elements are
identified by their pOSlthﬁ in the item. The format is

.described in [125],p7-143 it is SL“gHtly complicated to allow -
without too much wastage - for Lne variability of some of the

.._-‘30

3.2/3.3

field lengths and of the number of fields included in an item.
Internal files are created and.manipulated by the computer
programs. They can be stored on disks, magnetic tapes or _
_other high capacity storage devices, but not on punched cards
unless they are first converted to the external format. " In
Durham University, the internal files are kept on disks.

Note on Card Files

_ A Card File is a file in which. the information is divided
into records of 80 cheracters, regardless of the nature of the
information.. - Both of the following are card files:

A deck of punched 80-column cards _

A file of 80-character records (Card Images) on a disk

Programs which read or punch real cards will also read

* or write card files .on disk or magnetic tape. External files
are card files (although not necessarily vice-versa) and can
exist on disks and be read by programs from there. We use’
other card files in this system and they are described in later
. chapters. ' ' '

3.8 COMPUTER HANDLING OF FILES

Firstly, all files are given names, which are chosen by
the user. ' ' ' :

Secondly, the bibliographic files are always handled
"Sequentially in the LFP System. That is to say that a file
"Ts a sequence of records- and the programs which read them will
_."gee" the records in the order in which they were written.
-Selection of items with certain characteristics from a file

- is done by reading the file from start to finish, testing each
item and selecting or pejecting it on the result of the test.
.Sorting is the process of rearranging a file iInto some
predefined sequence which mey be different from the existing
on.e. : o : :

- We now discuss briefly the two basic file operations used
by all the programs - reading files and writing files.

H

npu

s

This 'is the straightforward process of a program reading
a file sequentially, starting at the first record. Note that
if a deck of punched cards is specified as an input file, the
_program can read it only once during a job. '

Cutput

The program writes, punches or prints a file. If the
file is written onto a disk, there are severdl possibilities.
o .

31 o :

(i) The file is Neh. That is, the name of the file does
not .refer to any existing file. At the end of the
process, we hdve the file 'of records as written by Lhe

program,

(ii) The file is -Extant. .That is, the name of the file
refers to a file previously written. In this case,
there are two possibilities. Usually we replace, or
overwrlue, the whole file by another one and the result
is the same as if the file had been a new one. It 1is

also possible to add Lne new records on at the end of
the old file. . :

Many processes require work files. These hold sequences -
of records which are needed at certain stages in a job but are
not required to be saved at the end. Typically, the Iollow1ng
simple processes mlgnu be performed upon a work flle durlng
one job.

‘1. Create the new work file called WORK1l, for example.;

2. Write WORK1l, i.e. write 'a sequence of records into
WORK1. : ' -

' 3. Read WORKI.

4. Overwrite WORK1l, i.e. replace the extant file by a
- new sequence of records. -

" 5. Read WORKLl. This time we get the file as written
in step 4. R '

Updating Files

The updating process 1is introduced at this point because
of its implication for the format of internal files. Only
files in internal format can participate in updating.

Updating in the LFP System can be summarized as follows.
The conterits of one internal file (called the Main file),
modified by the contents of another internal file (call ed the
"Updating file), form a third internal file (called the New Main

~file). 'Because the updating is done sequentlally, both the
main file and the updatlng file must be in the same sequence
(by item number). The new main file will also be in that

. sequence, The uDdaLlng takes place 1tem by .item and there

are ;nree p0381ble actions.

1. An item from the updatlng file 'is added to the main
,flle. .

2.° An item in the main flle is amendea by one in the-
updating file. . :

3. An item is removed from the main file. -

32

Figure 3.1

Character Sets

33

3 L] 3
: Collating
"i60O-character | 48-character Sequence
set set ' (in Sorts
etc.):
blank blank LOW
<
B +
l
&
..... £ . s . e r
special significance in
. B external format files
AR TR I) R
B ; '
-~ '.lln.o.-tll
- - .. "minus" or hyphen ,
J ool 2
..... po e COMMA oot
0,
..... o ...
IR underscore .
..... > . :
..... 2.
R \
4 “"number™ has special
e significance throughout
@ .
' ' .single apostrophe or
' "quote" -
A to Z A to Z upper case letters 'V .
- i
0 to 9 0 to 8 numerals (0 means "zero"). HIGH
)

3.3/3.4

We are concerned here with the second activity, amending
items. This is done by replacing elements as desired and
leav1ﬁg the remaining elements untouched. The amending item -

-+ in the updating file will contain only those elements which

~.are replacements; the others will simply be absent. There

is then the problem of 51gn1Iy1ng in the amendlﬂg item the
removal of an element from the item in the main file. The
solution -is to distinguish between null elements and irrelevant
(and therefore absent) elemenus, and an internal file in which

 this distinction is made is in Updating Format. Otherwise,
it is in Normal Po“mat.

: lhe process of convertlng a file from external to internal
- format produces a file in updauﬂng format. . The updating format
is only 51gn1flcant when the file acts as an updating Ille.

The new maln file is always in normal format.

3.4 CONSTRUCTING ITEMS FOR COMPUTER FILES |

We now describe the Practical details of preparing data
in the external file format. llrstly, in Ilgure 3.1 are
listed the characters available on the NUMAC printers and card
punch keyboards. Printing at Durham has been limited to the
k8-character set. The types of elements which it is possible
to include in an item are in the table of flgure 3.2

There follows a list of rules and notes, lor the various
types ol elements.

(i) Llement #100 must be present in every item.

(ii) The characters #, £ and * have special significance
' "~ and may not be 1ﬁcluded in any element.

(iii) One-character codes (elements #102, #203 #300, #301)
- should be characters chosen -from a Dredeflﬁed code
list. The code list may contain any character.

(iv) The three-character codes (elemenus #200 and #401 to
i #499) are alphabetic. :

" (v) The date elements (#201 and #202) can be written in
various forms in the external files and are converted
. Tto a standard form for the internal files. The date
'ch November 1969 can be pepresenued by either

9/11/69
or 091169
In the first form, spacing is not siénificant but
spaces should not occur between the digits of a number.
There must be three numbers: day, monLH and year.

' The second form must cor51sL of 6 dlglLS without
embedded spaces; two for the cay, two . for the month
and two for the year. - :

34

Element | Field Size 'Element Comments
Tag in Characters Name (See also Appendix B)
#100 5 item number This is the only '
obligatory element
, in an item '
#101) --5 | replacement Uséd only in an up-
: item number daeting file to change
- an item number
L #102 1 type code. Indicates the type of
: o o document, e.g. book,
journal
#200 3 agent code
201 - order date) The format of these
. #202 - date received y 18 westricted
- #203 1 agent report
code '
#300 1 status code Indicates the state of
' - an order and the
availability of the
item '
#301 1 (unused)
#302 - price {1 Format restricted
. #L0OL1- 3 course code(s) Indicates for which
#499 S courses the item is
provided
#500 ‘<50 date of) i, There is a
publication) restriction on
S _) the total field
#8601~ <2413 author(s)) - . size of these
#639 C) elements
o) ‘
#701- 2413 title(s)) ii, By "author",
#799 :) "title", "class
L ' , .) number" we really
#801-. <2413 class numper(s) |) mean heading for
#899 ' a 1) - filing in author,
o) - title or class
#900 2413 publishe) number sequence

Figure'3.2 Table of Element Types

35

3.4

(vi) The price element (#302) can be written in several

- forms and is again converted to a standard form for
internal.files. The "§& s. d." price £2.10.6 can
be written either : B SR

2.10.6
_or 021006

There must be 3 numbers in the first form: pounds,
'sn;l¢*ngs and pence.

In the other form,.there must be 6 digits; two for
pounds, two for shillings and two for pence.

‘The decimal price £2.50 snould be written 1n one of
Lne following forms :

D2.50
or 2.50 .

in which cases there must be two numbers, one for
"pounds and one for pennies -

or D00250

that is the letter D followed by 5 digits, three for
the pounds and two for the pennies.:

Note’that prices less than £1 must be written in one
of the above forms. ' For example, 45p could be
represented by ' '
i
0.45

or DO.u45

or D00045

or 0.9.0

(vii) The variable length fields (#500,#601-#699,#701-#799,
#801-#899,#300) can contain any characters except
#, £ and *, and can be of any length up to the maximum
values glven in ¢1gu e 3.2 under the constraint that
the total size of the item is llmlted as indicated in
note (x) below.

"(viii) Additional Headings

Ranges of element tags are available so that additional
elements can be provided for items which should be
filed in more than one place in certain sequences,

i.e. which might have added entries in conventional
library catalogues. The four ranges are #401 to #4399
(courses), #5601 to #699 (authors), #701 to #7395 (titles)
and #801 to #8998 (class numbers). In preparing new
items: or amendments to items, additional elements can
be included by using.the next available tag in the

36

.appropriate range. Any individual element with a
tag. in these ranges can be updated..

. “Note that there are no elements with the tags #u400,
600, #700 or #800.

(ix). No two elements in one'"ten may have the same tag.

“(x) There is a limit to.the siZe of an item in an internal -
o _;ile, and this restricts the total combined length C
the variable fields Author, Title, Class number .
and Publisher to just under 2400 characters, or about
twenty times the normal. In precise terms the sum
of all the characters in fields 401 to 900, plus 4
times the number of authors, titles ‘and class numbers,
may not exceed 2417, or
L +L+L_+X(L_+4)<2417
¢ d pe e
. where Lc = sum of lengths of course elements
: (3, 6, 9 characters etc.)

Ly = length of date of publication
LP = length of publisher
2;(Le+4)_ = sum of lengths of author(é), title(s),

.class number(s) with ‘4 added to each.
Punching'Items on Cards

. We now give the rules for ransierrlng 1nrormatlon to the
80-column cards in external. format.

(1) An element is punched as follows.

tag text £

tag is one of the element tags given in figure 3.2.
It ‘is punched as the #cnawacte“ followed by an appro-
priate 3-digit number. Spaces are allowed between
the # and the number, but not emoedded .in the number.

text is the actual element. When the item 1s=converted
to internal format, any spaces at the beginning and end
_ the text will be removed. Then the element will be-
entered unchanged into the internally formatted item
(unless it is one of the elements #201 #202 or #302 -
see notes (v) and (vi) above?. : :

§ acts as a termlnatlng character.

Example: The following are all eoulvaleut to a primary
author field of "SMITH H." in an 1ﬂternql file -’

#601 SMITH H.E&
#601SMITH H.& :
601 SMITH H. £

-7 . - .|1!_ - -)

3.4

"(ii). The elements of an item are punched one after another -
in any order whatever and, optionally, with spaces
between them. The last element in. an item must be
followed by a * (spaces may intervene). The * acts
as an end- of-ltem character. -

(iii) If an item contains, in the syntactlc place of a punched
: elenent, either oo

DELETE
or DELETE &

then that item is intended to cause the deletion from

"a file of the item with the specified element #100,

" or item number. All other elements in the punched
item are superfluous. A "delete" item is only .
meaningful in a file which is destined to be an
updaulng flle._ -

Example: Any of the following items could be used to
specify the deletion of item number "D2371".

#100 D2371% DELETE § =
#100 D2371 £ DELETE =
DELETE #100 D2371 & =«
DELETE #100 D2371§ #601 JEANS J.g& =

In the last item, the author element is included simply
to remind us which item is belﬁg deleted; it is not
used. to identify the item by the computer.

.(iv) In the simplest casé, when punching a file in external
' format, we ignore the card boundaries and imagine that

the cards are stuck togeLner in a long strip. If the
end of a card comes in the middle of a word, we just
carry on in colunn 1 of the next card. There are

occasions when it is useful (or wise!) to have the
~‘cards numbered and in that case the numbers are punched
in the last few columns of the cards. When laying

out the elements and items, the card columns containing
the numbers are ignored; "we imagine that we have, for
example, 72-column cards instead of 80-column cards.

Appendix B shows how items might be punched. The appendix
- also contailns copies of the instructions as used in Durham
Uplver81ty by library staff writing the forms aﬁd by card puncn
operators trans;errlng the data to cards..

38

FILE

A MAINTELANCE

Some of the LFP programs can now be described and we '
start with three important ‘unculons.

(i) Conversion of bibliographic files from external
-format to internal format, which is the tool Ior
getting files into the machine. :

(ii) Updating files in internal format.

(iii) Copying internal files either in their entirety

or selectively.

The descriptions include prototype commands to invoke
the programs written in L“e form described in Chapter 1.

4.1 FILE CONVERSION (EXTERNAL TO INTERNAL FORMAT)

1. Command

label FINPUT extfile column switch intfile codel02
" code?03 code300. code30l 3

label is optional and is any name Dy which the command can
be referred.

FINPUT is the name of the file input program, which converts
the items in external format in the card file called
extfile into & file of items in 1nternal format called

lﬂuLlle.

~e

extfile is an input card file name representing an external
=k, : o
.L.Lleo

column is a number not exceeding 80. It specifies the last
column from which data is to be taken (e.g. 80 if the
whnole card is read, 72 if columns 73-80 are ignored as
in the case of numbered cards).

.switch is replaced, in pﬂacLlce, by e;then ON if: a printed
copy of -the card file is required, or OFF if the.
" printout is to be suppressedL If the switch is OFr,
. cards with errors are the only ones prlnued.

intfile is the name of the output internal file. It can
be new or extant (see .section 3.3).

codel0? is a string of the characters which are adm1531ble
codes for element #102.

39

code203. is a string of the characters which are adm1531b1e
codes. for element #203. :

" code 300 is a string of the characters which are adm1551ble
codes for element #300.

"code30l is a string of the characters which are adm1881ble
codes for element #301. :

The last four parameters are ﬁsed for checking purposes. .
2. Function and Notes

TINPUT'reads the external file extfile item by item,
performlng certain checks and writing the valid items to
1nt;11e in tHe internal Updatlng format (see section 3.3).

The checks.per;ormed are as Iollows:-

(i) Format checks, so that it is quite clear what comprises
' each element and item.

- (ii) Element checks. Some of the elements are restricted
'in the form that they can take. For example, the item

. number (#100) must be 5 characters long and dates and
_Prices must make sense. The codes entered in elements
#102, #203, #300 and #301 can be checked agalnst the
llSLS Whlch form the lasL four parameters of the command.

.There are two special cases. If the parameter is an
empuy stplng,

e .
’
. that is to say a string of zero characters, no checking
'is . done on the corresponding coded element. If the
parameter is a space,

| I
4
then no code will be acceptable for that element, so
every item with that element present will be rejected.

In the event of errors shown up by format or element
‘checks, . the remainder of the item is ignored and no corres-
ponding item will be written to intfile. Messages are printed
to describe -the nature of the error. :

The two files involved are of different types, one is a

card file -and the other is an internal file. The two file
names in the 'TINPUT command must therefore be different.

40

3.

Data Definition Cards

Job control cards are required to define the data-sets

associated with extfile and intfile.

(1)

(iid

extfile will be a card file, usually on'puhched cards
Submitted with the job; or it may be a previously
created file on a disk or magnetic tape.

Space requirements of an internally formatted file

intfile is an output file which is either new or
extant. If it is néw, a new data-set must be created
for it, which must be provided with enough space for
the internal file. The space is difficult to esti-
mate accurately in advance. '~ It depends on how

_elements numbered from #401 onwards are used. The

table below can be used as a rough guide, so long as

‘the average number of #401-#499 elements (C) and the

average total size of variable length elements per
item (L) is known.

" Table ‘of number of items pexr track on a 2314 'disk

0 40 80 120 160 200 - 300 400

o |100 60 ~ 38 28 23 19 12,5 10
5 | 75 s0 - 33 27 21,5 18 12.5 10
10| 60 43 30 25 20 17.5 12.5 10

20 | 50 37.5 27 21.5 19 16- - 11.5 9.5

This table is neither complete nor perfectly reliable

(it was produced by a computer simulation). If the

figure obtained from the table is 1 items per track,’

‘and the number of items in the file is n, then let

e
[W

nearest whole number below n/i, and let

nearest whole number below n

101

If either t or s is zero, increase 1t to 1.

Requést space as follows: _SPACE=(TRK,(ﬁ,s))

41

4.1/84.2

Example

In the file for the Short Loan Collection in Durham
University's Main Library, the average number off:
course codes per item is 1.13, and there are, on -
average, 6u4.l characters of variable length infor-
mation per item.

Looking at the table, the value of i is 45, roughly.

SupDose we are creating a iile of 250 typical new
~items, : '

then n=250, t=5, szl
- 80 we require SPACE=(TRK,(5,1))

L, Computer Time

Central processor times for FINPUT vary between 5 and 10 .
seconds per.l1l00 items,. depending on the size of the items.

5. .. Completion Codes
(1) - Completion code 4 if any formatting or other element
errors have been made. One or more items will De
missing from intfile. '
(ii) | Completion code 8 if anything is wrong With the
definition of the files. FINPUT will not in this
case process the data.

(iii) Otherwise, the completion code will be 0.

4.2 UPDATING

The reader is firsLly refepred to section 3.3 in the
_.preVious chapter, where there is an introducLory discussion
~of the updating process. :

l.-' Command

.-_1abel is optional and-is any name by which the command can be
referred.

UPDATE is the name of the file updating program, which.updatgs
the'information'in tne inLerdal file called mainfile using

- to form the new conuents of the inuernal file named
newmfile.

L2

¥,

mainfile is an input internal file name, which plays the role
O —————— - . . o - -
of main file in the updating process. . . ° :

ypdfile is an input internal file name, which plays the role
of updating file. :

newmfile 'is +the name of an output internal file, which plays
the role of new main file. o

switch is replaced by either ON or OFF. ON protects items-
already in mainfile from alteration in the updating
process. OFF allows updating of existing items.

2. Function and Notes . ' : L

: There are two aspects to the function of this program.
One is the way in which the program uses the files, and the
other is the process of using one internally formatted item
'to modify another and how this affects the preparation of
items for inclusion in updating files.

We shall start with the first of these - the roles played
by the files. The result of applying the updating function
to two files, the mein file and the updating file, is a third
file, the new main file. When we say that a modification
takes place to the main file, what we really mean is that when
the process is successfully concluded, there will be a
difference between the main file and the new main file (in
terms of the prototype command, between the contents of .
mainfile and newmfile). We can then talk about updating the
main. file regardless of whether it and the new main file
coexist at the end of the process.

The file used as the updating file (updfile) must be
different from both of the other files (mainfile and newmfile).
If mainfile is a different name from newmfile, both- the main
file and the new main file will exist when the updating is
complete. Tf mainfile is the same name as newmfile, then
+he contents of mainfile will be replaced; ‘the program will
require a work file (see section 3.3) called WORK1 which will

receive the whole updated file before it is copied back to .

mainfile, overwriting the previous contents.

_ The main file and the updating file must be in ascending
item number sequence (#100). The following lettered para-
graphs describe the way in which UPDATE processes.the files.
Tach paragraph describes & step taken by the program under
appropriate conditions. It starts at step A and:works down
the list of steps unless instructed otherwise,. The- flow=chart
-illustrates the same process. . ' d ' :

i

43

Floﬁ—chart

e e

of the updating priocess

A. START

Open files.

daille L S
. newmfile, .

m i
newnfile.

i

\""J .
end of|{ B. Read item .
4 from updfile. k
file|l Call 1t Iu
lnormal
\¥4
end of}{C. Read iten
o from mainfile.
file| Call i'i:'Im A
fnormal
¢
D. Compare item numbers.
<
Iu>Im or Iu I or
q , A
V' M/ _'\L
H. Write item G. Write
K- I to newmfile item I to
m —_— v
_ newnfile
(Iu not
deletion)|
<7 é .
J. Write item I F. Read item E. Amend item
‘and copy rest from updfile.— I using
4. of updfile to Call it I item I .
e u u
newmfile,
- normal& end of
' \\ aE file
. _
t‘.‘7
M. STOP
éx
N | ¥
L. Copy rest of K. Write item
mainfile to < I to

A. Open the files mainfile and updfile so that the "next"
- item is initially the first item in each. (This is

just to make steps B and C sensible the first time they
are executed.) :

B. Read the next item from file updfile; call this one Iy.
Tf theye were no more items in the iile, continue with
step L. .

C.: Read the next item from file mainfile; call this one Ip.
If there were no more items in the file, continue with
step.J.- '

D. Compare the item numbers of Iy and Ip. If the item
number of I, comes before that of Ip, continue with'
step G. If the item number of Iy comes after that of-
I,, continue with step H. If the items have the same
‘item numbers (which is the only remaining alternative),
continue with the next step. '

 E. If I, is a deletion item (see note i, below), no item is
written into newnfile; continue with step B. Otherwise,
amend the item I; using Iy, element by element, and
proceed to the next -step. :

Read the next item from file updfile; call,this one Iy

Fl

If there were no more items in the file, continue with
'step K. Otherwise, continue with step D. '

G. (This step is only done after step D; an addition is
made to the main file.). - Unless Iy is a deletion item,
write it in normal format into newmfile. ":.Then continue
with step F.. ' : C

H. (This step is only done after step D; an item in the

' main file is unaltered.) Write I into newmfile. Then
continue with step C. : : L

J. . (This step is only done after step C.) Write Iy and
copy the rest of updfile (except deletion items) into
newnfile, Then continue with step M. '

K. (This step is only done after step F.) Write Iy into
newmfile.

. L. Copy rest of mainfile to newmfile.

M. Updating done. Stop.

This process effectively interfiles the main and updating
files in item number sequence but with special action when an

item in the updating file has the same riumber as one inh the main
file. o :

45

Notes

(i) The normal method of updating a file is to prepare an
- external file containing the new items and amendments
to items, use FINPUT to convert it to the internal
updating format and then use this file as updating
+ file in an. UPDATE command. The external format of
deletion items is described near the end of section
3.4. . There is a corresponding internal format
_ whlch is simply equlvalenL to the instruction "delete
item. numbep X" when it is read from an updating file:

(ii) It can be seen from *he above description of the
updatlng process (step D) that the only element which-
participates in the control of it is the item number
(#100).. Therefore, we must remember that the only
method of specifying which item we want amended or
‘deleted is by giving the item number. The LFP System
cannot cope directly with requests like "amend Modern
Algebra by B.L. van der Waerden as follows . . .".

(iii) The function of switch in the UPDATE command is to
enable - us to protect 1tems in mainfile from amendment

or deletion when newmfile is constructed. Items in
“updfile which would cause amendment or deletion are
lgnored if switch is ON. Step E is the relevant step
in the program description, and it is executed as it
stands if switch is OFF. If switch is ON it is

replqced by

E..IPrlnL a warning message and proceed to the next
step (i.e. B).

. new items to a flle. Then no harm is done if we have
made a mistake in an item number in the updating file.

We now move on to the specification of amendments to items
in the main file. - Items are prepared in the external format
containing the item number (element #100) and whichever elements
require'amendmeﬂt. There are three Dossibilities*

(i) An existing element in the main file item is to be
- - changed. In the amendment item (i.e. the item in
the updating file with the-same item number) we include
the replacement element. For example, if item number
D2317 has publisher (#900) 0.U.P. and we wish to change
that to OXFORD.to make the item file properly, then we
prepare an item as follows:

#4100 D2317& #900 OXFORDE

Whea the amendment is done, the publisher field will be
changed and all other elements will be..unaltered.. :

L6

(i1) ‘A new element is-to be included in the main file item. -
" " We just include it in the amendment item. .

There is a special case which can be illustrated by an
example. Suppose that item number S0314 in the main
-file has no author element, that is no element in the
range #601 to #699. If we use some of the LFP System
_facilities described later toc produce an author
-catalogue, this item would be filed according to its
title field. If we wish to include an author in the
- item but still have an additional entry in the author
catalogue under its title, we must give the item two
"author" elements, one containing the author, the other
blank. - Now, the only way in which a blank element
can be included in one of the element ranges, like -
#601 to #699, to have a non-blank element after
. it. So in tn¢s exambie, ‘all we have to do is add a
- #602 element to the item, and a blank #601 element
is added automatically for us. The appropriate
amendmen* item might look.like this:

#100 SO0314& #5602 KNUTH D.E.E=

(iii) An element is removed from the item in the main file.
" This is really a special case of element replacement;
the designated element is replaced by nothing. = For
example, to remove the’ agent code (#200) from item
‘number D0937, we punch the item “

#100 D0937& #200 £%
_"#200" is .the tag of a null element.:

There is a special situation concerning the ranges of
elements, #401 to #u99, #5801 to -#699, #701 to #799, and #801
to #899, which'is felaLed to the case discussed in note (ii)

. above. - Suppose that item number D1370 has four course codes
(#401 to #40u), ABC, DEF, "blank" and GHI. I‘ we remove the
fourtn one,_QHI, using the item _

#100 DI3705 #40L £%

" .then, because #403 is blank and is no longer followed by a
non-blank element, #403 is also removed au;omat¢cally and we
are left with two codes, ABC and DEF.

3, . Data Definition Cards

Job . ‘control cards are required to define the data-sets

~ _associated with mainfile, LDdIlle, and either newnfile, if it
~is dlfferent from mainfile, or WORKl if they:are the same.

(i) " mainfile and updfile are the names of previously.
_ neinti = updrl_.e
created 1nterﬁal files. : :

47

(ii) newmfile is the name of an output file in internal
format. ‘If it is not the same as mainfile, a data-
set must be provided for it with sufficient space
for the updated file. :

~{1ii) WORK1l is the name of Lhe work file used by UPDATE
when mainfile is the same as newmfile. The data-
set associated with it should normally be a tempotrary
one and should have sufficient space for the updated
file. The catalogued procedure DLFPMCLG (see
Appendix. C) provides the user with a work file called
" . WORK1 which is large enough initially to hold about
5,000 internally formatted items and-will expand as
. required to a maximum capacity of about 20,000 items.
When the updated file replaces the original version,
the data-set containing mainfile should, of course,
-be large enough to accommodate new and enlarged items.

Note. The new main. file, whether it has +the name malnflle
, or something dif Iepeng, will be.written in normal internal
format. '

T Computer Time

_ Central processor time for UPDATE depends on the number
- of items in mainfile, I, and the nuﬂber of 1tems in UDdllle,
12’ as follows. o

Tlme is qoprox1mately 0.5+0. Olell+O Obe2 seconds

Irt, for example, I; is 2500 and I, is 200 the time

'requlred 1slabout 13 seconds. y

If newnfile is Lhe same as mainfile, there is an ext“a
51nple copylng operati ion which takes about 1 second per 1000
items. : '

5. Completion Codes
(i) Completlon code 4 is set in *he follow1ng 01rcum5tances.

Any #lOl element .is encountered. The #101 element

specifies a change of item number, "which might cause

the new main file to be out of sequence, so the user
is warned about it.

The following are considered minor errors. Processing
continues after appropriate action has been taken.

An apendment made an item too large (see section 3.4,
The amendmenu item is ignored. .

A deletion or amendment is attempted when switch is
ON. . The amendment item is ignored..:

b8

Be2/4,3

Two or more items with the same item number (#100)
occur in updfile which are not amendment items.
The second and subsequent items with that number
are ignored. Note that it is permitted to have
~several amendment items with the same item number.
They will be applied one after the other to ‘the
same item. :

(ii) Completion code 8 is set in either of the follbwing'

cases.,’
J .

> The files are not properly deflned. . UPDATE then
- does no work. '

Items with the same item number.are found

in
"mainfile. Processing stops and mainfile is
" unchanged. ' ' ' '

Completion code 12 is set if any items are faulty
in the files. : S '

P
(X0
[N
22
-

This cannot usually happen as a result of a user's
error. The main file is not changed. '

(iv) Otherwise the completion code will be 0.
4.3 . COPYING FILES

1. Command

label FCOPY ' infile ‘select outfile :

label is optional and is any name by which the command can
be referred. i

FCOPY is the name of the internal format file copying program
which reads items from the intefnql file'infile,-applies

infile is an input internal file name, from which items are
copied.

select is a string of no more than 128 characters (including
the blanks), enclosed in guote characters. There are
certain syntax rules for the contents of the string
which enable it to be interpreted as a condition for
selection of internally formatted items. There 1is a
way to ask for the selection parame;er to be ignored,

so that the copy. is total. :

outfile is the name of an output internal file, .into which
selected items are written.

2, - Function and Notes

The basic action of the FCOPY program is very simple;
‘items are read from an internal file (infile) and selectively -
written, unchanged, to the internal file outfile. If the
.select string is completely blank or is empty, that is if
"'select is either ' : - :

s - Or.° ,
~then no selection takes place-and all the items are written
into cgutfile. : : . : :

Notes - /
© (1) 'The/ items on outfile will be in the same sequence as
) T T .
- they occurred in iInftile.

(ii) No item-will be changed in any way. -If the file infile
- is in updating format, then the copied items in outfile
- will also be in updating format. :

(iii) The file names infile and outfile may be the same. In
that case, the work file WORKI will be required. The
-program will do a selective copy from infile to WORK1

~.and then a simple total copy back again, overwriting the
- previous contents of infile. This facility can be used,
.instead of an update with deletions, to remove from a
- file items with certain characteristics.

. If the request is to copy a file to itself unselectively,
"..the program will not bother to do it.®* "

.(iv) The facilities available for selection and the syntax of
- the select string are also used by other programs in the
-system and, for that reason, are described in detail in

' the next section of this chapter (section U.4).

t this point we just list the fields within the item
that can be used for selection.

#100, item number;

#102, type code;

#200, agent code _

#203, agent report code;

#300, status code

_#400°, the course codes,
range #401 to #4939,

For example, we can select items which were ordered from
‘A. Gent Ltd. (#200) and have not yet arrived (#300) and

s
-«

But this does not answer the question "can machines think?".

‘50

3. Data Definition Cards

~Job conirol cards are required to define the data-sets .

"to hold the files infile and ouurlle, 1; it is different
from 1nf11e, or WORKl otherwise. -

(i) infile is the name of a p“ev1ously created internal
' file.

"(ii) outfile is the name of an output file in internal

format. If it is different from infile, a data-set-

S must be provided (extant or new) with sufficient
Co space for the copied items. It will certainly be
no larger than infile.

(1iii) WORK1 is the name of the internal work file used

when outfile is the same as infile. The catalogued

procedure DLFPMCLG (see Appendix C) provides a file

called WORK1l with a maximum capacity of about 20,000 -

items.

L, Computer Time

- Central processor time for FCOPY depends on the number
- of items.in infile, the complexity of the selection specifi-

cation ‘and the numbep of items written to outfile. Often,
the more complex the selection is, the fewer items will be
selected for outfile.

On the assumption that there are about 100 characters
per item in the variable length eLemean, the fastest copy

is an unselective one at a rate of about 700 items per second.
If the copy is selective, the rate will nearly always be more

than 500 items read from infile per second.

If infile is the same as outfile, the selected items
will be copied back from WORK1 at about 1,000 per second

5. Completien Codes : ; - .

(i) Completion code 4 is set if the user violates’ the -
rules for constructing select in Section u.4%. The
copy will be done but the selection may not be
what was desired. -

(ii) Completion code 8 is set by more sericus errors in
select and by errors in defining tne files. No. -
copying is dorne. : S

(iii) Completion code 12 is set if infile contains a
. g ————
© faultily formatted 1item. This 1s not usually
the result o; any user error :

(iv) Otherwise the completion code is set.to O.

51°

4.4 SELECTION OF ITEMS FROM FILES:

_ The LFP System has a sequential selection mechanism of
limited scope. It is sequential because it operates only
while reading a file sequentially. . It can only be used on
internally formatted files and its function is to eitherp
select items for processing or ignore them, according to the
~values of certain of their elements. The principal programs
which ‘use selection are FCOPY,. which copies internal files,
and PRINT, which produces formatted lists of items from
internal files. If we wish to apply a selection ‘criterion,
we provide a string of characters which is interpreted as a
'selection specification. . This section describes the
facility and the rules for constructing a selection specifi-
cation. '

1. Syntax.of Selection Specifications
A selection specification has one of the following forms.
Either T ' : '

or

' test & test & . . . !

In other words, it is either a single ‘test or more than one
test separated by the & character. - Spaces’or.commas may

. intervene.. |
Notes .

(1) A specification can be all blank op it can be of zero
- length (i.e. contain no characters at all), in which
case all items will be selected because no tests will

be applied. ' : '

(i1) The total length of the specification string, including
‘ ‘all spaces and commas, must not exceed 128 characters.
If it does, it is first chopped off after the 128th
character and then the last test is removed if it is
not syntactically correct.

_ L :

‘specifies a comparison to be made with each item, and

takes the following form: ’

+
(0]
n
ct

" tag relation value, .

Spaces or commas may .separate the three components.

tag is either #number
or just number

No spaces or commas are allowed in tag.

52

number is one of the following three digit numbers. (they
are element numbers, of course): '

100"
102
200
203
300 .
LOO

relation is one of the following symbols:

= (read "equal")
"= (read "not equal")

- (read "not"; and exactly equivalent to ~=)
".value is one or more characters which may be any except &,
space and comma.. The length of value is restricted
when the element number is either 100, 200 or 400, as
‘follows: ' :

100, length restricted to no more than 5 characters

200 and 400, length restricted to no more than 3
characters.

- 2. Interpretation of Selection Specifications

We shall refer +to the various components described in
the paragraphs on syntax above using the underlined symbolic
names. Items are read from a file sequentlal¢y, and normally
passed dlrecLly to the proce551ng program. . If, however, a
selection spec1¢1c ation is in efLect each item is tested
using the test's and only those that "satlsxy“ are passed to
the program..' -

The result of applylng test to an item. is elther "true"
or "false". If the selection spe spe01rlcaulon ‘consists of just
one test, then an item is selected if the result is true but
not If the result is false. If there are several test's
separated by & cnapacLeps, an item is selected only if the
fesul s of tne test's are all true. o

7 . . -
We now describe how the result of a test is obtained
when. applied to an item in a file.’ :

(i) When number is either’ 102 203 or 300, the result
- depends on the value of one of the one-character
-coded elements, #102 (Lype) #203 (ageﬁt report) or
#300 (status).

If relation is =, the result is true if 'the element
'is one of the cha”acLers in value ana fqlse otherwise..

53

-

If relation is either 7= or ~, the result is true
~1f the element is not the same as any of the charac-
© ters in value aﬁd ;alse otherw;se.

So we can say, - ¢or example, the status must be ‘none
of the following A, J, Xor Y.

#3007 =AJXY
Another example: The type code is either B or J.
102=BJ
(ii) When number is 100 or 200, selection is by element
. #100 (item number) or #200 (agent code). ~ There
-will be up to 5 characters in value if number is
100, or up to 3 if it is 200, and if value 1is
'-shorter than these maxima the comparison will be
limited to however many characters are given.

. For example, those items whose numbers begin with
letter D can be selected, or rejected, using

#100=D or . #1007=D

 (1ii) When number is 400, the result depends ‘on elements

in the range #401 to #499. Let the length of value
be n characters; n will be either l, 2 or 3. The

comparisons will be between value aﬂd the first n
characters of the elemeﬁts.

If relation is =, the result is true ‘only if the
first n characters of at least one of the #401 to
#499 range ‘elements agree with value.

If relation is ™= or 7, the result is true only if
the first n characters o* each of the elements differ
~ from value. - '

For example, if we had chosen the codes in such a
. way that the first letter indicated a deparument,
; we might select items for mathematics courses Dy
ncludlng the test :

#400=M

As an-illustration of how to combine criteria for
selecting items from a file, let us construct a selection
specification for getting all the items in a file which are
not monographs and which have Geography department course
codes and have not yet arrived from the agents..

5y

4.4

The assumptions are that mohographs have type code B
(#102), that Geography codes start with the letter G and
that status codes A and C botn refer to orders not yet

. received.
Té.selgct noh—monqgraphs, we need
| #102“=B |
Tonselect Geography debartment material, we néed
#400=G
For noﬁ-arrivals;'we need
.#300=AC - |

All three of these must be true for tne items which we

want, so the complete seleciion sabc*¢10au; is
'#1027=B & #300=AC & #400=G'

Note that the order in which the test's are written
does not matter. .

55

= e : - e e e e e e e m il s et - e cme—eA = —n =

SORTING

BIBLIOGRAPHIC

FILES

In Chqpter L, the programs -for file maintenance were
described and it was pointed out that the central one, UPDATE,
requires that the files upon which it operates are in one
partlcular sequernce, namely by item number. Apart from
malnteWance, however, we have little use for the item number
sequence; We are far more interested in having the items in
author, class number or title order, for example. Sorting
a file is the process of putt ing its items into a predexlned
sequence which may be ent irely different from the original.

In the LFP'System, there are three programs concerned
with file sequernce: : - '

(i) SORT accepts a file in any sequence and arranges 1its
‘items in a specified one.

(ii) MERGE reads two files, assumed sorted in a specified
sequence, and 1nter;1les them to form a third file
consisting of all the items from each.of the orlglnal
files. :

'(iii) CHKSRT reads a file and reports on .whether it is in
' a specified sequence.

There are two aspects to each of these processes. The
first is the sequen01ng or filing arrangement, and the second
is the management of the files involved. In the LFP System

these are separated in the programming. SORT, MERGE and
CHKSRT are mainly file management programs and, in theory, .
virtually any arrangement can be "plugged 1nto" them. Nine
filing arrangements are currently 1mplemented in the LIP
System and can be used with a¢l three programs.

5.1 SEQUENCING ROUTINES
’ \

For any desired filing a“fangenenu,.a subroutlne can be
written for the computer; which accepts two items and decides
which one should precede the other in the sequence. The
-rules for arrangement must, of course, be absolutely prec1se.
We do not describe how to wrlte such a subroutine in this
manual; it is a programmer's job. Such routines are sultable
for use with all three of the main programs.

The sequenc11g routines Cuﬂrenuly avallable in the LFP
System are snow1 in the table of figure 5.1l. " In most cases,

56

‘5.1‘

the sequencing field, which determines an item's position
in the file, is simply the concatenation of some of the
elements of the item. If an element is absent from the
item it is usually replaced in the sequencing field by one
. or more blank characters, which file before all the others.
The exceptions are the author and title elements (#601 and
+#701); ~ if either of these are absent, it is just omitted
from the sequencing field. So, for example, -if SEQ601 is
.used and an item has no author element, it will be filed
under its title. ' o

Sggﬁigging. {Sequéncing ?iéld o _?gg;:lzzii-
T Neme. | . (How constructed) | rated for
. A . .o T SORT
SEQL00 | #100 | © (item number)
SEQ200) #200+#900+#601+#701 (agent,publisher)
SEQu67 | #LOL+#601+F701 (course,author) . | in #400 rénge
SEQU76 . | #401+#701+#601 (course,title) |in #400 vange
SEQuEE | #401+#801+#601+#701 (course,class) | in #400 range
SEQ601 #601+#70l | (author,title) in #600 range
'[SEQ701,"#701+#601 _ ~ (title,author) in #700 range
';SEQSOII' #861+#601+#701 _ ,-(claés,aufhof) in #800 range
SEQ900 #9Q0+#601+#701 _ (publisher,aufhor)

; Figure 5.1 Table of Sequencing Routines

Additional Entries

_ Where indicated in the right hand column of figure 5.1,
'sequencing routines can generate additional items during the

- first phase of the SORT program. These additional items are
then included in the final sorted file in the appropriate
positions. So we can arrange for any item to appear in more

than one place in certain sequences.

Additional entries are generated in sequences where the

. primary filing field is the first element in one -of the ranges
#401 to #4989, #8501 to #699, #701 to #7399 or #801 to #889, and
an item has more than one element in that range. An extra

' .entry is produced for each element, after the first in the
range, which is present in the item up to the last non-blank

57
2

one. In these additional items, all elements other than
those in the range are the same as in the original item.
The elements in the range concerned will be a permutation
-of the elements in the main item.

~Comparison Operations

When two sequen01ng fields have been assembled, they
are compaped to see.which "comes first" in a file. The
‘comparison is, in all the provided sequen01ng routines, a
simple character compariscn. - The routines work along the
two fields together from left to right until they come to
a difference in the fields, which can be of two types.

(1) One field is shorter than the other, and the routine
has come to the end of it. The shorter field then
comes first. '

(ii) The difference is between the two chnaracters in
corresponding positions in the two fields. The
field contqiﬁing the "lower" character comes first.-
The table in ngure 3.1 of Chapter 3 shows the
collating convention. Briefly, it is that special
characters come before letters which come before
numerals

Sample Comparisons -

The symbol A is used to snow where the first d1f¢ereﬁt
character occurs. S

(i) HOMER comes Dbefore
" TOl1 STOY
A

(ii) - MORPHEUS . comes before
MORROW '
A

(iii) ANIMALS comes befor
ANIMALS IN THE FARM

ihe difference occurs when the end of the flrs;
eld is reached.

(iv) ANIMAL WORSHIP comes before

ANIMALS
A

(v) 'PARADISE LOST' comes well before

PARADISE LOST
AT

58

'5.2.. SORTING INTERNAL FILES e
1. Command

label SORT infile sortfile sequence ;

label is optional and ls any name by which the command can
be referred

SORT is the name of the program which reads an internal
file, infile, and sorts the items into the sequence
determined by sequence, wrwtlug them into the -
1n;ernally formatted file sortfile.

infile is the name of an input internal file contalnlng,
in.any sequence, the 1tems to be sorted.

sortfile is the name of an output internal file into which
the items from infile will be written in the specified
sequence., It may contain additional items, generated-
by the sequencing routine. :

- sequence is the name of a seoueﬁclﬁg routine. That is one
' of the names listed in figure 5.1. C

2. .Function and Notes,

The function of program SORT is to arrange the items in
an internal file, 1nllle, in the order determined by <the
' operaulon of the sequencing routlne,'seguence. The sorted
‘file is written into sortfile which is usually, but does not
‘have to be, different from infile. ’
! If'sortflle is *he same as 1nflle, the sor;ed file will
replace the unsorted one.

, Tne items will be unchanged but some addltlonal ones
nay be generated as described in section 5.1.

3 Daxta Definition'Cards

UOb control cards are.required to define the daLa-seLs
assoclated with infile and sortrlle, if it is different
from infile. SORT also uses four work files called WORK1,
WORK2 , WORK3 and WORKL; they are all internal files.

(1) infile is the name of a previously :created internal
: file.

(ii) sortfile is the name of an output file in internal
format. If it is different from infile, a data-set
must be provided with sufficient space for all the
items -in 1nflle plus, DOSSlbly, some addl;lonal
entrlesp :

59

(iii) WORK1l, WORK2, WORK3 and WORK4 are the names of the
- ~work files required by SORT. Data-sets must always
be provided for these files. The catalogued pro-
cedure DLFPMCLG (see Appendix C) provides for a file
called WORK1l with a maximum capacity of about 20,000 -
~items. The space requirements are about the same
for each of the work files. A typical quantity for

‘each one would be % of the space occupied by infile,

_ but this will &epend in & non-linear way on the number
of items in sortfile. The most that will be required
is the space of sortfile. Use the following method
+to calculate the space. : :

" Suppose that infile occupies t tracks on a 2314 disk
- (see Section u.1l). ' :

4

‘Let s be the nearest whole number to 3t, and let
. . 4
‘i be the nearest whole number to the value o

£ &
L L e -

N

"If either s or 1 is zero, increase it to 1.

Put ‘SPACE=(TRK, (s,1)) on the DD cards for the.work
files. ' : : o

b, Computer Time.

Central processor time for SORT depends on the number of
items written into sortfile and on the ‘complexity of the
sequencing routine. SORT is one of the most time-consuming
. operations, -so. it is important to be able to estimate the time.
'If the number of items in sortfile is N and the complexity of
_ +the routine is represented by & number C, the time requirement
. 1s approximately _ : . }
. . . . - |
. C x N x L seconds,
where L is, mathematically speaking, the ceiling of logzN
and some values are shown below.

N in L o Nin : L.
the range - the range
5- 8 3. 513- 1024 10
9- 16 4 1025- 2048 1 '
17- 32 5 2049~ 4096 | . 12
33- 64 6 14097~ 8192 13
65-128 7 . 8193-16384% | 14~
129-256 8 16385-32768 15
. 287-512 e '32769-65536 . | 16

Figure 5.2 -~ Table of ceiling of LogéN.

<80,

5.2/5.3 -

The values of C for the sequencing routines in flgure
. 5.1 are estimated as follows '

, Sequepcing 1 ¢
Routines
SEQ100 -~ 0.0021 -
SEQ200, SEQS900. 0.0050
SEQu67, SEQu76 - | 0.00uk
| SEQ486 - 0.0052
o SEQ601, sEQ701 0.0038
| SEQ8OL © 0.0051

Example

Sort a file of 2100 items into author sequence, using '
'SEQ601, assuming that sortfile will contain 2500 items.

N=2500, C=0.0039, L=12 (from the table)
| Time requived is about 2500x0.0039x12 = 117 seconds.
5. Compietion Codes .

(i) Completion code 4 is set if infile is empty. “'sortfile
will not be changed. L

(ii) Complefion code 8 is set if any of the files, including
the four work files, are not properly defined.
" sortfile will not be changed (even if it is defined).

C(dii) Compietlon code 12 is set if any item is faulty. This
' will not usually be due to any error on *he part’ of the
user.

(iv) Otherwise the completion code will be 0.

5.3 MERGING INTERNAL FILES

1. Command

label MERGE fileone filetwo outfile seqguence ;

" label is optional and is any name by which. the command can be
referred.

61

" MERGE is the name of.the program which reads two sorted
files, fileone and filetwo, in internal format and
merges tne items into one sorted file, outfile.
. i - S———————

. ‘fileone is the name of an input internal file, assumed to

be already in the sequence determined by sequence.

filetwo is the name of an input internal file, different
Trom fileone and assumed to be already in the sequence
determined by seguence. : :

. outfile is the name of an output file in internal format,
which will contain all the items from both fileone

and filetwo in the sequence determined Dy sequence.

seauence is. the name of a sequencing routiney ‘one of the
names listed in figure 5.1.:

2., - .Function and Notes

. . The MERGE program re&ads two files in internal format.
and combines them to form a third file which contains all
the items from the original -two, unchanged, without addi-
tional items and in the sequence determined by seguence.

. MERGE assumes that the two input files, fileone and filetwo,
_are already in the sequence determined Dy that same

sequencing routine.

. _For example, if AUTHOR1 and AUTHORZ are the names of- .
+wo files; both of which are sorted in author sequence
(using SEQ60L1), the command required to merge them, into
one file, AUTHOR3, is: ' '

MERGE AUTHOR_I AUTHOR2 AUTHOR3 ,sslqeoi.,jg‘.

. Normally,wthree distinet files will be involved, but n
it is possible’to have outfile the same &S either- fileone
. Filetwo and in that case MERGE writes the combined file

0
Ffirst to the work file WORK1l and simply copies it back to
+ : . i

£

he designated file.
.The file names fileone and filetwo must be different.
' That is, you'cannot merge a file with itself., .

The .items will not be changed in any way as they: are
copied to outfile. An implication of this is that if
cither fileone or filetwo, but not both, is in updating

""" file may be in updating format as a whole,

yet possibly. be unsuitable for updating. -

3. Data Definition Cards -

Job cohtrol cards are required to define the data-sets
. associated with files fileone, Tiletwo an , if it 1s
. different from both of those, outrile. - If outfile is the

62 -

5,3

. same as either fileone or filetwo, then a data-set w1ll be
;requlred for WORKl, a work file. -

(i) _flleone is ' the name of a previously created internal
.Irle. . ' ' '

(ii) 'flletwo is the name of a previously created internal -
ile.

- (iii) outfile is the name of an output internal file. -The
' ‘data-set must be large enough to hold all the items
from both fileone and filetwo. The sum of the spaces
occupied by those two files will certainly be

sufficient for outfile. ,

!(iv) WORK1 is Lhe name of a worK Ille in internal format.

of course, be 1arge eﬁoacn to receive the resultlng
file. The catalogued Drocedure DLFPMCLG (see
Appendix C) provides a work file WORK1l with a
‘maximum capacity of about 20,000 items. '

. 4. Computer Time -

Central processor time for MERGE depends .on the sum of
the number of items in files filecne .and filetwo and on the
complex ity of the seouenC¢ng routine. If the total number
"of items involved is N and the compTex1ty of. the sequenc1ng
routine 1s represented by K, the time requ;rement is approx1-

- mately ' .

K x N seconds
The values of K for Lhe sequen0¢ng routines 'in figure 5.1
are esleated as ;OllOWS'

Sequencing g
. Routines . :
SEQ100 - .|..0.0025
' SEQ200, SEQ900 - :
. SEQu86., SEqsol .. |. . 0-00%Q.
SEQu67, SEQ476 '
SEQ601, SEQ70L . .| 0:0039

- The lee could be slgnl Lly reduced if K- is large
(i.e. sequence is complex) and one of the 1npu; files is
exHausLed well before the other one. : :

63

5.3/5.4

If WORK1l is used, a 81nDle copying operatlon is done
at the end of the p“ocess, which uaxes about 1 second for
every 1, OOO 1tems. :

S
uxanple

To merge two files of 2,500 items each in auLHor-*
sequence, using SEQ601l takes about

0.0039 x 5000 = 19.5 seconds
5. Completion.Codes i

(i) CompleLlon code 4 'is not get by MERGE under any '
circumstances. :

"~ (ii) .Completion code 8 is set if any of the files, -

' including WORK1 if required, are not properly

. defined or if an illegal comblnat101 of files"
is specified. The merge does not take place
and outfile, if defined, is unchanged.

(iii) Completion code 12 is set if any item is faulty.
~ This will not usually result from any user .error.

(iv) Otherwise the completion code will be O.-

5.4 . CHECKING SEQUENCES IN INTERNAL EILESf'
i. Command

label CHKSRT infile seguence ;-

label is optlonal and is any name by which the command car

be peferred. : S

. CHKSRT is. the name .of the program which reads an internal
file, infile, and checks that it is in the sequence
determined by & sequencing routine, seguence.’

infile is the name of an input internal. flle, wnlcn is Yead
and cnecked Dy CHKSR”. :

seguence 1is Lhe name of a sequencing routine; one: of tﬁe_
names listed in figure 5.1. '

2. Function_and'Notes

The function of Drogram CHKSRT 'is 31mply to read the
internal ;1le,'1nlﬂle, and -apply the sequen01ng routine:,
" ‘'sequence, to every pair of adjacent items in the file' to"
‘'see whether the file is in the sequence specified. The

program reports the result. of the check both- in printed:

64 -

form and in the completion code.

If the file is in sequence, the completion code is set
to O. ' - - .

If the file is empty, that is if there are no items at
all in it, the completion code is set to 4. o

If the file is not in sequence, processing stops at the
point where this condition is detected, an indication is given
of where it happens and the completion code is set to 6. "

In all cases, an appropriate message is printed out and
in no case will the file infile be altered. As will-be seen
later, the completion code returned by a command can be used
to control the execut ion of otner conmands, so that we can*
say, for example, "see if file A is in author sequence and if
it is not, then sort it into author seguence". S Is

3. Data Definition Card

A job control caré is required to associate a data-set
with file infile, which is the name of a prev1ously created
1nternal file. -

4, Computer Time

Central processor time for CHKSRT depends on the number
~of items read, which may be less than the total number of

. items in 1nf11e and the complexity of the sequencing routine,

" ‘sequence. Whe1 subniLting a job we must,, of course, allow *
for the reading of the whole file. Let N'be the number of
items in the file and let the number S represent the complexity
of sequence. The time required will be approximately -

S .,x N seconds
The values of S for the sequenc11g routlnes in Ilgure 5 1
are estxnated as follows:

Sequencing S

Routines -

. SEQ100 ..]. 0.0013 .
SEQ200, SEQS00 0 0055

. SEQu86, SEQ8CL

~—

SEQu67, SEQLTE |
'SEQ801. SEQ70L1 . |..0-0030

65.

¢

Example

To check a file of 2,500 items for author sequence using
SEQ501 takes about ' '

10.003 x 2500 = 7.5 seconds
5. . Completion Codes |

Some of these are described in the description of the
“function of the program. :
(i) Completion code O is set if the file infile is.in
' specified sequence. ' . .
(ii) Completion code 4 is set if the file infile is empty.
. This situation may or may not be regarded as successiul.
(iii) Completion code 6 is set if the file infile is not.
in the specified sequence. - '

(iv) Completion code 8 is set if the file infile is not
' properly defined. No checking is done.: s

(v) .Completion code 12 is set if a faulty item is
‘ encountered. This "is usually not a result of an
error by the user. L : : . Co

66

PRINTING

BIBLIOGRAPHIC

FILES

Printing is one of the primary functions of the Library
File Processing System; there would be little point in
na;ncaanlng and SOftlﬁg files on nagweulc disks if there were
no way of displaying them visually. for the benefit of labrary
.users and library staff. In the present system, dlsplay is
restricted to lists produced on a high speed line-printer

with the 60 characters shown in figure 3.l. "Within this
restriction, however, the prlnuluc facility is quite versatile,
and the user of the system has moderately fine contirol over
the appearance of the printed information.

One program is responsible for printing out internal
Iiles, namely. PRINT The program is invoked Dy a command
" which must also glve the whereabouts of a se; of prlnblng
instructions, or "print-control statements", prepared by the
user. Broadly speaking, these instructions. spec1ry three
tyDes of 1nformat¢on for program PRINT.

(i) The internal file, or files, to be printed.

(ii) Which items are to be included; . that is an
optional selection criterion.

-(1ii) In the printed items, which elements are to be
included and how they are to be formatted.

The instructions must be contained in a card file and may,
' therefore, either be included in the job on punched cards or)
be prestored on a .disk and read by PRINT from there. The user

has the facility to modify his requirements easily and as often
as necessary. In this chapter; we first have a description of
+he command, PRINT, and then an explanation of the use. of the -
printing instructions.: o -

6.1 PRINT COMMAND

i. Commana-

label PRINT cardfile column ;

label is optional and 1s any name by which the command can Dbe
referred.

]

PRINT is the name of the file printing programn, whlch reads
prlnu-conu ol statements from the card file called cardfile
and prints the contents of internal f¢leS as specified

'in Lhose sLaLemencs.) R

67

. cardfile is an input card file name. The file should
contain print-control statements to specify which
internal files are to be printed, and how. This
file is called the "control Ille"

column is a number which should not exceed 80. Columns
T Deyond that card column in the records (or cards)
of cardfile will be ignored. That is, the print-

control statements will be read from columns 1 to
column inclusive in cardfile. The usual values
of column in practice are 30 (for whole cards) and
72 (for numbered cards).

2. Functlon and Notes

The program P?I\i operates in two main phases. The
first reads instructions for printing, or print-control state-
" ments, from a control file whose name is ¢cardfile, The types"
of statement and their various forms are discussed in section
6.2. If the statements are syntactically valid and not
obviously nonsense, the second phase of PRINT is executed and .
the formatted lists are produced, normally on'a line-printer. -
It is then possible to go back to the first phase and read
another set of statements and- prinzt more lists, and so on, all
within one invocation of PRINT. :

The control file, cardfile, should not be confused with
the internal file or files containing the items to be printed.
- The name(s) of the latter will be included in the statements
contained in cardfile. Also, cardfile may contain a reference
to ‘another card file containing further print-control statements.

. There niow follow some notes on the way in which PRINT uses.
coritrol files.. For this purpose, we have-'a simple description
of a control.file without going into detail.

ri rstlj a "set of instructions" consists of all that is
needed to spécify a_listing; it contalns

(i) One or more input internal file names,

(ii) “Optionally, a selection specification, which is
applied to all items read from the internal files,

(iii) Element formatting instructions.

An "execute!" statement is one which, following a set of
instructions, signals the end of them. It also specifies what
is to be done after the files have been printed; there are
three possibilities.

(i) Terminate PRINT,

(ii) Read another set of 1nstructlons from this control
flle, - .

68 .

(iii) Switch to another (named) control file and read .
another set of instructions from tnere.

A control file consists of one or more sets of instruc-
tions, each followed by an execute .statement. PRINT starts
by peadlng the first set of instructions in cardfile,
,prlntlng the specified lists, and then proceeds to further
sets’ or instructions as directed by Lhe execute statements. :

|

Note that, in general, once.instructions and execute
statements in a control file have been read,
whereupon PRINT is terminated or another control’
file switched in, further réading of it at any
stage in the same job step can only occur if it
is stored on a disk (i.e. not on.punched cards
submitted with the job) and even then it can only

~be read from the beginning again. . There is an
exception; ‘a special card file called CONTROL
can be read in sections at different stages either
during the execution of one command or during the
whole job step. :

3. Data Definition Cards .

Job control cards are required to define the data-sets
_associated with cardfile and any other control files and all
internal files referred *to in the control files that are read
by PRINT. There is a -decoding facility, described in
. section 6.2, which requires the definition of a spec1aliy

ﬂgaﬁlzed f¢1e of codes called SYSCODE. . This is only needed
1f the decoding facility is actually used in . the job step.

A descrlpL101 of how to constriuct a file of codes can be
found in Chapter 8. P

(i) cardfile and other control files are card files and
can® be - on punched cards submitted with the job or
'in data-sets previously created on a disk.

(ii) All internal files are previously created files.
(iii) SYSCODE is a previously cpeated file 0¢ codes. -

L4, - Compu;er Time .

Central processor time will depend, for each listing -
operation in the control file(s),, on the number of items read
from the internal file(s), the complexity of the selection
. criterion, the number of items printed and the complexity of
the -formatting. No attempt will be made to give a formula.
Assumlng that items have about 100 characters of variable
length information each, then PRINT can be expected to format
about 50 items per second for printing in the worst cases..

69

6.1/6.2

5. . _Cqmplefion Codes

(1) Completion code U is set if suspected errors are
+ detected in a control file. : :

-(ii) Completion code 8 is set if errors are found in
' a control file or if any required file is not
defined properly. Affected. lists will not be

printed. ' :

(iii) Otherwise the completion code will be 0.

6.2 PRINT-CONTROL STATEWENTS

Program PRINT is controlled by sets of instructions
entered in card files (control files). As described in the
previous section (6.1), one invocation of PRINT can interpret
several sets of instructions. In this section, we describe
_how to construct a set of instructions. = Each set of .instruc-
tions ‘consists of an appropriate combination of the following -
types of statement. . ‘“{ '
(i) . List.statements specify which internal files are

.to be printed. Any number of files can be
. specified. : '

. {ii) The Select statement is used to include a selec~ -
tion specification which applies tec all the files
mentioned in the list statements. :

(iii). Heading statements are used %o insert a line of
' text within each printed item and to print
elements as headings for groups of items instead
of with each item. - '

(iv) TFormat statements determine which elements are
printed and in what position in the item.

(v) Execute statements, one of which must come at
the end of each set of instructions, stop the
interpretatior phase of PRINT and -specify what
is to. be done when the corresponding printing
is complete. - . :

4

1. General Considerations

The instructions are initially key-punched onto 80-column
.cards; later a copy may be stored in a card file on a disk.
The first thing to decide is whether the whole card is going
to be used for instructions or whether some columns at the end
of the card will be used for. card numbering. (Note that if
"4t "is intended to have PRINT read the ingtructions from the

70

special file called CONTROL, the last eight columns will
always be ignored - the user has no choice.) This decision
made, the print-control statements can be placed on the
cards unformatted, i.e. without earmarking columns for

“pa ticular portions of the statements or restricting a

statement to one card only or a card LO one statement only.

Now some general rules and definitions for the construc-

.tion of print-control statements.

(i) The characters permitted are the 60 listed in
S figure 3.1, Chapter 3. ' : ' '

- (ii) A special symbol is.one of the characters
' ; () + # °~ These have special 51gn1flcaﬂce.
(iii) A string is & sequence of characters. Any
: .character or combination of characters may
occur in & string. - Ordinary numbers and
rds

."English wo in capitals, of course) are -
- examples of string. Strings punched on o

_cards must be separaLed from each other, ror
the PRINT ppogpaﬂ must recognize the. begin-
ning ‘and end of & erlng. Spaces, commas

..and special symbol's are used toO séparate
string's and we therefore need a way of

- delimiting & string which COhLalnS any of

these ‘characters. S¢ngle quotes (') are
. Pplaced one at each end of the erlng fop
example -

'#300=B8D & #102=

The quotes are not included in the internal
representauloﬁ of the string. We mighL wish
to write a st¢Lg with an avosrrophe in it,
and we do this by placing *two adjacent quotes
wherever we want one apoeropHe and enc1081ng

he'erlng in quotes, for example we punch -
. : 'dOHNf'S'
" to get the string JOHN'S into ‘the computer.

(iv) A comment is any seguence O characters
_starting with the’ character- -pair /* and end¢ng
'with the character-pair */. These pairs are.
regarded as COmpOSlLe symbols and the two

. characters must be in edjacent card.columns.
A cowmeﬂt is synLaCLlcally equ*vdieﬁt to a
'space and is therefore,.in most contexts,

ignored, ~ It can be used to incorporate - ¢
comments in the set of instructions which
~ are for the benefit of the human reader and
: ¢gnored by the compuuer. N

71 -

o

(v) Commas and comment's are syn tactically inter-
* . changeable with spaces and wherever one space
. may occur, any number of spaces may occur.
So any sequence of spaces, commas and comment's
is equivalent to one space as far as inter-
pretation of the statements is concerned.

_ To illustrate the above general remarks, we give a short
sample set of instructions as they might appear on punched-
cards. :

Column 73

: _ v
: /% THIS 1S A SAMPLE =/ 00000010
LIST FILE AFO01; /* AF01 IS IN AUTHOR ORDER =*/ 00000020
SELECT ITEMS IF '#300=BD'; /% ON THE SHELF */ 00000030

5,(#601 /*AUTHOR*/,5,#701 /*TITLE= /), : 00000040
' CONTINUE IN 15; 00000050
-END; /% EXECUTE TH N TERMINATE PRlNT */ - 00000060

The interpretation of the statements will be explained
. later. . . AT this stage we make the following notes.

.'(i) Columns 73 to 80 of each card are ‘used for a card
number and PRINT must be instructed to ignore them.

(ii) The example is rich in comments. In practice one
would rarely use so many.

(iii) PRINT encounters string's and special symbol's in
the statement on cards 40 and 50 in the following
order:

5 ¢ # - 601 5 #
701) CONTINUE IN 15 .,

(iv) Comments apart, the example is verbose from the
§¥ 3 I
. computer's point of view and could be rendered:

LIST AFOI;.SELECT iF "#300=BD'; ~ 00000010
5 (#601, 5, #701) 15; END; 00000020

Several of the string's are "nolse" words, without
meaning for the machine but, like the comments,
making the instructions more comprehen81Dle to the
human user.

2. PrlnL—Control tatement Structure

read a statement, iL examines thb strwnp s and sDec1a1 symbol'
from left to right until it finds one which tells it what type
of statement it has to interpret. Continuing -its scan to the:
right, PRINT then looks for further information, the nature of

72 -

6.2
which depends on the identified statement type. - A semicolon
(which is one of tne'SDedial'synbo 's) signifies the end of
the statement and, unless it is an execute.statement, PRINT
then proceeds to the next statement. The string's which
determine statement type are certain keywords, like LIST,
SELECT -and END in the example above, and numbers. The spec1al
-symbol's (+ and # encountered while PRINT is trying to
identify the statement type tell the program that the -state-
ment is a format statement. s : '

- The implication of this method of interpreting statements
is that noise words can be inserted at various places and are
ignored by the. program simply because they are not what the
‘Program is lookiﬂg for. We can, for example, put anything at
'the beginning of the statement and it will be ignored unless
it is an identiiying keyword or one of tne tnings which
indicates a format statement. :

_ The.ability +o include noise can be confusing at first
and so in this chapter we describe the statement types using
‘a "recommended" form which, although concise, is not the .
. briefest possible but is reasonably easy to read and under-
stand. In the paragraphs that follow, the statements are
"described with the help of-a simple notation. Statement
prototypes -are written as sequences of words and symbols.
Strings in capital letters and the symbols

; ()y o+ # i

‘.are punched as they stand. Underlined words in lower case .
are, as usual, symbolic names for strings -supplied by the user
in each- ParLlCU1aP application. In most of the statements,
alternative forms are allowed and this is indicated in the
prototypes by writing alternatives one above the other and
connecting them with a brace (}) on the right. Sometimes,

part of a statement may be omitted at the user's discretion.

In the prototype statements, strings and symbols within brackets
(L 1) are optional. Neither the braces nor the brackets are

to be included in real statements. Strings must be separated

. from each other by a space or its equivalent.T A special symbol
.need not be separated from either string's or other special
.symbol's, although it would not De an error lL it were.

3. List Statement:

iST FILE filename
PRINT J FILES (filename . . .)

(1) ~ filename stands for an internal file name. The user
may assign different values to each occurrence of the
symbol filename. - ' :

73

(ii) The ellipses (. . .) can be replaced by as many
' further file names as required.

(iii) The keyword alternaulves (LIST and DRI’\IT) have
“exactly the same meanlﬁg. L :

~ Examples

LIST FILE AFO01;
PRINT FILE XYZ;. .o :
LIST FILES (LBK SBK MBK); B
PRINT FILES. (TOM, TOM);

Function] ’

The list statement tells program PRINT which-internal
file or files it is to print. If a parenthesized list of
files is glven, the program will work through the files in
:the order in which they occur in the ‘statement. The files
- in such a list need not be different (see the fourth
example) and this pDOV¢deS a simple technlque for gettlng
more than one copy of llsL¢1g.

Placement E - ' e \

List statements can be placed anywhere in a set of
.instructions, and the user is not restricted to one list
statement per set. All the file names mentioned in list
- statements throughout a set of instructions are ‘gathered
into one llSL of names. :

Note that a set of instructions must contain at least one
B list statement. -
4. Select Statement

G X

Prototype

IF
SELECT |TEMS =~ } select ;
: WHEN'

-select is & siring whose length should not exceed
128 characters. The content of select is a selection
specification as described in section L.Y4. If spaces
or special characters are conualnea it must be enclosed

in quotes..
Examples
. SELECT ITEMS IF 300=BDF;

SELECT ITEMS WHEN '#102=X & #400=A';

74

Function

: The select staLeren+ specifies & selection crlterlon
- to be applied to the items from &ll Lne files mentioned in

list statements in the current set of instructions. Refer
to section 4.4 for a descrlleon of the selection mechanism
and facilities. If a set of instructions contains no

select statement, all items read from the files are printed.
Placenentf'

, A set of instructions may have no more Lhan one select
statement and it does not matter where it occurs in the set.
' The user is not obliged to include a select statement.

5.- Spéqe.S;atement
Prbfotype
| SPACE'QEEEE ;
‘liﬂéi is a numbef befween 0 and 30 inclusive.
 Exam§le .”_', g — ' . | ?
| | SPACE 2; | o

, The space sLaLement specifies to program PRINT the number
of clear lines which are to separate printed items. lines
.completely blank lines will be inserted between items. It
there is no space statement, the assumption w111 be SPACE" 0
Each item will be started on a new line.

Note

Printer sLac1onery is centinuous with pe“foraulon eve“y
11 inches. We divide OuLPdL into pages by leaving a few
blaﬁﬁ lines: on each side of the perforation and can then print
60 lines on each page. Program PRINT will automatically
avoid splitting an item at the perforation and rather leave |
" a few extra lines blank at the bottom of a page and start the .
item at the top of the next page. :

| Placemeht

A set of instructions may have no more-than one space

statement and it need not have one at all. The space
statement may be placed anywhere in the set: . -0
6. Specifying a Layout for Printed Items .-

The next few statement types which we describe are the
various neadlng suauemeﬁus and the format stauements and some.

~

75 .

6.2

preliminary remarks and definitions are necessary. These -
statements specify a sequence of events which takes place in
relation to every item that is selected from the -internal
file(s). A single statement may involve several events,
which fall into four categories.

(i) Element—lndependent events, such as "start a new
line within the printed item at this point".

(ii) Element extractlon and text composition. = We can
copy one or more elements’ from the item in the
internal file and builld up

a piece of text.

(iii) Decoding. Certain coded elements can.be converted,
- - using a specwally constructed code file, before

We can, for example,

convert the course code into. a descrlptlve course

"being included in the text.

name.

Apart from certain heading statements = the group heading
statements - the order in which the statements appear in the

set of instructions is the order
when each item is processed, and
can imagine the computer filling
peper working from left to right

backtrack. . To i1llustrate this,
to print each item with its elements. laid out 1n five fields

_as follows:

in which they are "obeyed"
is therefore important. One
in the fields on the printer
and downwards, but unable to
let us suppose that we wish

field x

field y

field z .

field w ..

1 field t

To print.them correctly,
. the instructions, in the order x,y,z,w,t.

the fields must be composed, in

The effect of

specifying them in the order y,x,w,t,z would be this:

N

78

field z .

5.2

Any element can be extracted from the item and included
in the text to be printed, and the elements are denoted by
their - usual tags, for example #201 (order date), #601 (author).
Most elements are printed exactly as they were originally
punched in the external files, but a few elements are printed
. in a standard format, regardless of the way in which they
were punched. ~The latter are the date elements, #201 and
#202 and the price element, #302. Dates are printed like
these examples: : - C ' '

G/2/70 .
-6/10/68
23/11/69
- Maximum size 8 chapacters.. |

Prices are printed as follows:

Decimal £125.00 o g osld. £11.11.11
£23.05) C - £12.1.0 .
£5.26 . £5.5.2
50P- 10.0
.Méximum size 7 characters - Maximﬁm size § characters

If, in the place of an element tag in a print-conirol
statement, the characters -

#TODAY

appear, then the date on which the program is executed will be
placed in the text in the same format as elements #201 and #202
as described above. The same date will be presented for
formatting with each selected item as though it had been
extracted as an element from the item (which, of course, it
will not have been). This is of use when printing orders

to booksellers, for example.

It is possible to have some elements decoded before being
printed if a:-suitable code file is made available to program- .
PRINT. - The construction of the code file (named SYSCODE) is
explained in Chapter 8. The elements that can be decoded
_are the one-character elements #203 (agent report) and #300
(status), the three-character elements #200 (agent) and #&01
to #4399 inclusive (courses) and the first character of the
item number (#100). Decoding is requested by writing the
word DECODED after the element tag in the print-control state-
“ment. For example:

#401 DECODED
#300 DECODED

There are three ranges of element tags, and it is possible
-+o request the inclusion in the printed text of all elements

77

.present in the item with tags in one of the ranges. We
-use special tags in the print-control statements as follows:

#400 for the range 40l to 499,
#5600 for the range 601 to 699,
#700 for the range 701 to 799,
: #800 for the range 801 to 899.

The teXL.Wlll contain all the elements in the specified
range, separated by commas. - For. example, the tag #400 might,
- for one item, produce S :
ABX,JEF, JGP .

" and the tag #600 might ppoduée

YAMEY B.S., HOBART PAPERS. SEE YAMEY B.S., HARRIS R. (ED.)
- SEE. YAMEY B. S '

If there is a nulL element in Lhe range -before the last
non-null one, it will be represented in the formatted text by
three rull stops " For exdmple, : '

- ABY,...,JEJ
‘Note tﬁat #400 DECODED is not a110wed'

We now deflne a syntactic ent;ty whlch w1ll be used 11
descrlblng some of he statements. .

' elemenh nas the follow1ng_synuax:
#,EEE - -
no DECODED
TODAY
Egm_is eithéf one of the element numbers:

100, 101, 102 200, 201, 203, 300, 301, 302, 401-499 incl.,
500, 601-699 1ncl., 701-799 1ncl 801-899.1incl., 900,

or one of the four numbers 400, 600 700, 800, representing -

the aggregates of elenents in one 0¢ tne foup ranges 40l1-
499, 601-699, 701-79¢ or 801-899.

no is one of the element numbers:

100, 200, 203, 300, L01-L499 incl.

: dlrecLly fpom the item, or ;ndlrecLly via the decodlng mechanlsm,
or fron the system (in the case of #TODAY).

.78

6.2

The next process to discuss is that of building up text
for putting into a field in the printed item. The simplest’
possibility is to compcose & piece of text using a single.
element. More complicated instructions are often required.
We can, for example, build up text by telling the program to
extract the author (#601), put U4 spaces after it, extract and
add on the title (#701), add 5 spaces and, finally, add all

" +he class numbers (#800). " This whole text can then be.moved

into a field in the printed item. We can involve any element
in the composition process and the same element may be used
more than once. The user's requlrements..are communicated to
program PRINT using the syntactic¢ unit text in format: -

. statements. - o - :

" text has the syntax:

element

(element gap element . .)

(i) gap is a number in the range 1 to 120 inclusive. .It
represents the number of spaces to come between the
f it.

data extracted by the element's on either side o

The ellipses (. . .) represent as many gap element
pairs as are required. The list must end with .an.

element and must have alternating gap's and element's

throughout.

~
-
=
~.’

Examples of text conclude these preliminary'notég.'
#601
#4,01 DECODED
(#601,4,#701,5,#800) -
(#TODAY,4,#201,2,#200 DECODED)
7. Group Heading Statements . | |
" There are two very similar statements in this category.

Prototype A

PAGE
: [start] element ;
P . ;
Prototype B
LINE Y
} ‘[start] " element ;
L- .

(i) .In each case, an abbreviation of the ‘statement keyword
to one letter is recognized. '

79

A

(ii) 'start is a number between 1 and 120 inclusive.
. Its presernice in the statement 1s optional and.
if it is omitted a value of 1 is assumed. ' 'sta
oLt
represents a position (or column) on the- prlnter s
.L.Lne . .

(iii) element has the syntax given on page 78. S

Exanples
PAGE 20, #L401 DECODED;
LINE 5 #801;
P #900;
P 95, #TODA
Function

Lne main purpose of the group Heading sta ements is to
extract an element from the items and print it as- a heading
for the run of consecutive items which have the same'value'
for that element. For example, to print a subject catalogue,
we would firstly sort the file into class number sequeﬂce,
using SEQ801 say, and then ppln; it. We might include in
the set of instructions one such as the second example above:

L!NE 5 #801;

The class number would then be printed as a headlng
only when its value changes as .the printing program reads
through the file,

If a group neadlﬁg statement is included in the set of
instructions, it is the first to be obeyed for each item
selected for printing. The data is extracted from the item’
and if it is identical to that which was last extracted by.
the group heading statement nothing further is done. Other-
wise, 1f "DECODED" is specified, the decodlng is now periformed
~and the text is formed into a 51ngle line for printing. The
text will begin in DOSlt101 start of the line and anything
beyond position 120 in the line will be lost.

Two things are now done with this line.

It is printed immediately (i.e. at the point where
the element value changes in the file) either at
the head of a new page if the statement follows ,
prototype A ("PAGE"), or Slley on a new line with

. one blank line on each side of it if a statement
like prototype B ("LINE") has been used.

(i1) The heading line is also saved so that whenever -a

new page 1s started before the heading.changes,
the line is printed at the top of the page.

80

If decoding is requested and positions 95 .onwards in
the heading line are free after the text has been placed
in it, the coded element is also placed in the line at-
position 85. - :

'Placement
No more than one group neadrng s;atement can be used’
in & set of instructions. It can be placed anywhere in

. the set; 1t will be the first statement obeyed for each
selected tem regardless of its position.

8. The Format Statement

We come now to -the sLaLene it which takes data from
items, constructs text and formats it 1n;o a spec1xled

- field on the prlnuer paper.

Prototype

start - . -]
. . CONTINUE - -
+ gaD,' - |'text - »IN contcol | [STOP IN stopcol]
CONT o . '
+ gap TAB start |
= _J

(1) StarL is a number between 1 and 120 inclusive.
It is a POalLlon in a printer line.

(i1) " gap is a number between 1 and 120 inclusive. It
' ‘18 a number of spaces on a line.
(1iii) If none of the alternatives in the first pair of

‘brackets appear, then the assumption is that the
first alternative is present with a value of 1
“for'Sfart. :

(iv) . text is as defined in an earlaer paragraph (page 79
' ILS syntax is:

element

(element gap element . . .)

(v)- contcol is a number between 1 and 120 inclusive.
1t is a position in a printer line. If the
CONTINUE-clause is omitted, contcol is assumed
to be start if start is given or assumed.

(vi) " ‘stopcol is a number greater than both start and’
- . contcol, if tney are specified, and not greater .

than 120. It is a position in a prlnter line.
If the STOP-clause is omitted, stopcol is assgmed

" +to be 120.

Examples
- (a) | 5, #601, CONTINUE IN 8, STOP IN 30;
(b) #102; | -
' - this is exactly equivalent to
(b) . 1, #102, CONT IN 1, STOP IN 120;
(e | wh (#601,3,4701,3,#500) STOP IN 95;
- (d) - . +10, TAB 30, (#701,5, #801),
.-this is equivalent to '
(d) . -+10, TAB 30, (#701,5,# 01) CONTINUE “IN 30, STOP IN 120;
(e) -(#100, 1 #300,DECODED), STOP IN 15;
: —this 1s equivalent to :
(e) . .4, (#100,1,#300,DECODED), CONT lN_h, STOP IN 15;

. Function -

- The only part which is present in all format statements -
is text. This specifies, for each item selected, a piece of
text of virtually any length, composed mainly of elements.

‘See pages 77-798 for a descripLﬁOA of how texts are built up.
In describing the function of the other parts of the statement,
we shall assume that we have a piece of text alreacy

Firstly, in this explanation a "field" is a rectangular
area on the printer paper containing a particular part of one
or more lines. A field: :

f=

o >

A
2
On the diagram
n is the number of lines in the field and is determined solely
by the quantity of text put into it. -
a2 is a position on the line, i.e. a column. It is the first
column. in the field.
b is the last column in the field.

Note that program PRINT assumes that the line is 120 characters
' ‘long, i.e. the page has columns numbered 1 to 120
inclusive. - ' : ' . :

82

When PRINT puts some text into a field and finds that
it is too long for one line, that is it will not fit into
columns a to'b in one piece, the program will split it at
spacing or punctuation if that is possible. We define the
"dynamic end" of the field as the column containing the

- rightmost character when.the field has been filled. It is }
-dynamlc because it will vary from item to item, whereas b . |
is a fixed limit. In fields of more than one line (n > 1), |

the dynanlc end may not be .the position of the last character
in the first line.

At tne other end of. the field, a can be a fixed point,
the same for all items, or.it can be a floating position
dependent. upon p“ev+ou51y cowsL“LCted fields. "~ a can also
change during the composition of one field in a certain
-restched sense. We can' specify that continuation lines
should start in a different column from the first line of a
field; one can think of this in terms of moving the left
‘hand side of the rectangle aiter the first 11ne has been put
in. : -

- The format statement is designed to enable the user to
specify a and b for one field.. The sequence of format and
other statements in a set of instructions then determines the
layout of the printed item. The spec1rlcaulon of b is

Lralghtroerrd . The value of b:is the value of sTopcol
either as given in the STOP- clause or as, assumed if the

-STOP-clause is omitted from the statement.. °

THe spe01f1caulon of a depends on the.form of the first,
optional, clause in the statement. There are three possible
ways of setLlnc the value of a.
(1) start. (or clause omitted in which case'suart is

" assumed to be 1).

“a is se+ to the value of start. If that gives
2 column number less than the dynamic .end of the
last- field constructed, the whole field will be

"moved down the page to the next free line, other-

- wise the Ffield will be printed to the right of
the previous field. If the text requires more
+han one line within the field, continuation
lines will start in.column contcol (remember
that contcol is &ssumed to be the same as start

"~ if it 1s not specified explicitly).’

“(ii) 4 gap-

- a is set to the coTumn which 1s'ga clear spaces
on from Lne dynamic end of ‘the last field. So

-a itself is dynamlcally determined. Continuation
Tines will be started at & -if either the CONTINUE-
clause is omitted from the statement or the value

83

of a turns out to be- greater-than that given for

- contecol, ctherwise they will start in contcol.
"(iii) + gap TAB start

2 1s set to the column which is .gap clear spaces

on from the dynamic end of the last field only if
that is beyond (arithmetically greater than) start,
otherwise a is set to the value of start. . This
allows us to tabulate (at start) as much as possible,
but at the same time to guarantee at least gap
spaces between fields. Continuation lines start

-at contcol unless a is set to a greater value than
contcol, in which case they start in column a.

When the CONTINUE~clause is omitted 'ebhtcol is

-assumed to be the same as start.

The reader should try to work out the effects of some of
the examples given above. The art of writing format state-
ments - and, indeed, print-control statements in general - is
L quickly 1earned in a practical situation, and bears a distant
relaulon to manlpula;¢u5 Lype for 1eLterpress prlnulng.

Placement

The sequence of format statements and two other types of
statement yet to be described (the heading and SKlp statements)
determines the relative positions of the fields in each item.
Each of these instructions 1s obeyed “bearlng in mlnd" what has
preceded it.

9. Headlng Statement R - o :

The name of this statement, which must - not be confused
with the group heading statements, should not be interpreted
too llterally. The product is a line of text at the beginning
of the ‘item or if we so W¢Sh at the end or at some point
between. ' ' ' '

'_Prototype .

HEAD ING

HEAD . _p[star t]"strlhg ;
_H

(i) Two abbreviations of’ the statement xeyword are
recognized. : : -

(ii)" start'is a number between 1 and 120 ineclusive.

It 1s:a position in a printer line. If it is
omitted, the value 1.is assumed

8l

(iii)'istriﬁg is any character-string of length not
exceeding 120. It must be enclosed in quotes’
if it contains any special characters or spaces.:.
"Ekamples . _ o
" HEADING 12,"DURHAM UNfVERSiTY'LIBRARY';_ o
H' -~ - DURHAM UNIVERSITY LIBRARY';
The ekamples are equivalent to each other.
‘Function C e

The heading statement is obeyed, along with format
s;a;emedts, for .each item selected, in the sequence in which -

~ they occur in the set of 1nsrructlons. The'scflng is :
. printed in each item on a line to ¢use¢¢, starting in
column start, and the line after it is left blank. f the.

: headlng statement comes before all the format statements,

. the srrlng will be the first line of each printed item.

: Otherwise, it will occupy the next free line after the

fields that have already been filled in. The example

. above has been used in Durham University, when printing ,

- orders to boocksellers, so as to put the source of the order’
on each item. : - T ' R

Pla eﬁent

£

The occurrence of & heading statement is optional ‘in
a set of instructions. - There must be no more than one and
it can be placed anywhere in the set. ts position .
relative to format and sklp stauemenus is 1mpor;an; as
- described above.

10. Skip Statement
Prototype

SKIP .
[lines]. ;

S

(1) The abbreviation, S, of the keyword is recognized.
(ii) - lines is a number between 'l and 29 .inclusive. It
E represents a number of lines in the printed item.
If lines is omitted from the statement, 1t is

assumned to be 1. . - Ty

Examples:

'
[y

skip2; ©o
S 3,
s; - equivalent to SKIP 1;

85"

Function

. Skip statements ave ‘obeyed, for each item, in sequence
with format statements. The statement means "before con-
stpuctlng the next field, skip to the beginning of the
lines'th free line after the fields already filled". The
effects will be that (lines-1) lines will be left blank in
‘each item, and that the next field constructed will start
at a position in the line which is independent of the
previous fields. The first two examples above cause 1 and
2 lines, respectively, to be. leit blank.and the last two
- examples 51mply cause the next field to be started on a new

. line:
Placement

_ A set of instructions tan have several skip statements,
.or none at all. - The number is limited because the PRINT
program cannot handle printed items larger than 30 lines,
including embedded blank ones. The position of skip state-
ments in the set deuerm¢1es their place in tne data
;ornautlng sequence. :

11. - Execute Statements

. There are two types of execute statement, the End
statement and the Go statement. They are called "execute!
statements because they tell the PRINT program, among other
things, -to stop interpreting statements and if the set of
- instructions makes sense, to execute them (i.e. to get on
with the actual Drlntlng) ' .

ProtoLype A
END;
Prototype B

cardfile 3

GO (

)
cardfile column } o

(i) . cardfile is the name of a card ¢11e c01ta1nlng
=aliiLo-c
print-control statereuus. ‘

(ii) column is a number not“exceeding 80. . It is a
' card column number.

(iii) Suppose that the go statement is actually read
by PRINT from a. card file called tnls (columns
1l to col). If column is not spec1f1ed the
value of col is assumed for it, and if cardfile
is not specified, this is the assumed card File.

86

TN

LXarples

_ (Suppose Lﬂdt the fOllOW¢1g sta Leﬂents occur;-separately,'
.in card file SET, colummns 1 to 80) ' - SR

(a) GO (CONTROL, 72)
(p) GO (ALlS); : .
" = this is equivalent (in’ unls case) to : o .
(b) - GO (ALIST,80); . | L . -
e - GO; o
. - this is equivalent to
(e) ' . GO (SET,80);

" There is, of course, no need to *lluStrate proto;ype A,
the end statement.

Function

Both execute statements cause interpretation of the set
of instructions to terminate,.and printing of the file(s) to
-start if there are no serious errors in the instructions.
They must therefore come at the end of sets of instructions.
The other function of the execute statements is to tell PRINT
.what to do when the lists of items have been printed, and
here they differ. ' : -

The end statement is used to terminate execution of
program PRINT as invoked by the omlglnal PRINT command described
in Section 6.1. : : _

The go statement is-used when further printing is
reqguired. . The PRINT program is to read print-control state-
ments for another listing from card file cardfile, columns-1l
to column inclusive. If column is not. specified, PRINT should
read the statements from the same card columns as it did the
last set. If cardfile is not specified or if cardfile is the
name of the file from which the go statement was read, the .
PRI\T program will continue reading that file at the beglnnlng

the card immediately following the go statement. If
"dardfile is' CONTROL, .the special card file, program PRINT will
continue read;ng it at the card after the-last one read from
it 1n the job step If cardfile is anything else, PRINT will
start Peadlnﬂ it from Lue ‘Deginning. : . :

: To illustrate <he use of the go statement, suppose that
we have threée card files, ALIST and SET stored on a disk and

CONTROL entered with the job on pe“cqed cards. We can

interpret several sets of instructions from all three files

87

6.2/6.3
with just one invocation of PRINT. For an example, follow"
the arrows. - . - - - : .

Command: PRINT CONTROL 72;

|
y |
File® | .\ File .| 7 -é File
CONTROL | - 7| ALIST | . SET. .
v | v v
set 1 T .. set 2 o “{ set 5
. GO (ALIST,72); " END;

. . eo; o ' -
_L;, 5| print "[;- l———s——€>--PPint - L"‘b 'Pnint'

r

— I . :
/ : : V. - - - :
set 4 _ , set. 3 . . =~ _ exit

GO (SET,80); GO (CONTROL);

Print

>4 Print

, . Instruction sets 1 and 4 come from fiie'CONTROL, 2 and 3
from ALISTland S from file SET. ' -

'Placement

: Every set of instructions must have an execute statement °
. at the end of it and that is the only place where an execute
statement can occur. : :

6.3 USE OF PRINT

We illustrate the use of print-control statements. with a
sequence of examples, all of which print the author, title,
date of publication and class number from each item of the file
- AFILE (which is sorted into author order). Figures 6.1, 6.2
and 6.3 each contain a set of print-control staftements and a
reproduction of a few items formatted accordingly. Then we
give the print-control statements for a catalogue in class number
order (figure 6.4) followed by a sample of the output produced
by it (figure 6.5). ' ' '

88

LE6°59¢

n*gns

T9°0h8
Troes

" T°608

$802h60G *Z9¢

. 9S6T

L96T -

' 9G-8h6T

Z96T.

€S6T

§96T:

SuuNToo pa3irINge] JNnoj T°9 2an3tJg.

mazmooqumn
TTVH mo INFWIVINL TVOINITO

"MHT

WVENAQ B *T° NOSHVAV

S mzﬁ<qmm>

4§ -

>m MAOMHw MBH.D<
me<UZ<mm MMDB<MMHHHA V1 30 IMIOLSIH

NMOMﬂH OIWONOOJIOYOVH

dRVT FHL ANV YOMMIW

| 1ST00d THIL ANV ¥OOd

'V RVav -

'V VAV

g A0V

"HK m:<¢m<,

*d ANISNMOL

® "d HLIWS-TI4Vv.

~

J%¥IGNAN SSV10+ / f<6 NI dOLS

/#31Lvax/ . 6L NI dOLS
/*31L1L*/ $€9 NI dOLS ‘0§ NI LNOD

- /=d0HLNY *# / ‘92 NI d0OLS ‘Z NI LNOD

/+SWILT NIIMLIG IANIT MNVIG MOT1V =/

faNT
‘708408
‘00s#°L9-

‘I0L#’82

‘1092 ‘S

T 20vdS

£3714Y 3114 117

89

pPa31eTIngel ATTeNpTATPUT 10U Siuswalg 2'9 @2uan313

-

L€6°598 996T ' SINMONITAA TTVM 0 INTHIVIML TVOINITO ~ *M'H WVENAQ R ' NOSHVAY
| R | “ | | . h'ghg L96T ANIVINAA -V z<m<
T9'0n8 95-8n6T © ‘AS ‘TTOATS ALT OV ISIVONVII MINIVIALLIT V1 40 DMIOISIH 'V WVaV
o - T'06e 2957 AMOTHI DTHONODIOUOVH 'S ATTIOV
© 1°608 £S6T WV THL QNV MOWMTH "H'H - SHV¥aV
58021605 * 29€ G96T ISTA00 FHL ANV MOOd *d ONZSNMOL B *d HIIWS—T3aY
{66 NI 90LS 61 NI LNOG “(T0gs e 0ncsssrinssrr oo ONE.
£S6 NI dOLS ‘ST NI LNOD ‘(T08#°S00S#°S’TO0L# % T094#)’S
S T ‘T 30VdS

3714V 1714 Lsi1

90 -

LE6°SIE

q°gh8

T9°0h8:

T-o¢ce

T°608

S80¢hB0S " C9€E .

&

S96T ISANOOd THI ANV ¥00d

BuTasTT vmpmﬁsnmv ATtetyaed vy m m mﬁ:wdm

. . : 9G6T
mazmzoqumm mq<2 mo Hzmza<mma A<UH2HAU. *M*H WVHNNQ B °1 NOSWVAV
| . L96T ANIVTNAA 'V WAV
9G6-8h6T .>m o
..AqomHm mhﬁ D< mmH<oz<mm mm:&<mm&amq V1 3d JYIOLSTIH 'V WVav
Z96T AJOdHL UHZOZOUMOMO<Z *9 AdTAOV
€56T dRVT JIHL ANV YO¥dIN - "H'W SHYYdVY

*d UNISNMOL % -

. 56 N
‘ST NI LNOD “(00S§#°€‘T
‘SL N1 doLs ‘L

{9L NI doOlLS

. Zan3

| dOLS ‘T08# ‘08 -

0L#) “‘t¢ 9vL ‘H+ .

N1 LNOJ ‘T09#°S
1T 30vdS

237014 3714 LSIH1

*q' HITWS-T39Y

91

6.3

Figure 6.1 shows a tabulated listing. All the authors
. are printed in the same field, which starts in column 5, and
similarly the titles, dates and class numbers each have their
own field, the same for all items. With the indentation of
continuation lines in the author field, it is easy to find
authors on this list but it suffers from two disadvantages.
" Firstly, there are large gaps in the prlnbed lines following:
short elements and one's eye can easily jump to another line
while scanning across the page. Secondly, many entries will
occupy more than one line and the whole 1list will be longer
-than necessary. As in the other examples, the format is
restricted to print positions 5 to 95 inclusive so that the
. list fits the 12" wide folders in use in the library at
Durham (a guillotine is applied to the right hand side of the
paper). ' Note also that we start the ‘lines in print position
5 instead of 1. This is to allow room for binding.

One way of overcor.;o the disadvantages of the fully
~tabulated format is shown in figure 6.2 Elements are joined
into one plece of text before belng pPlaced in the field, so
the author is the only element tabulated. The dlsadvanuage
in this case is the rather unattractive appearance of the
whole page. A large indentation of overflow lines is neces-
sary so that one's ability to scan the list for authors' names
~1s not impaired by the intrusion on the left of class numbers
and dates. - :

Figure 6.3 is a compromise. Authors and titles are
_closer together than in flgure 6.1 and in mpst cases the title
is tabulated. Note the position of the overflow line in the

last item. . : '

LIST FILE CFILE; /*CLASS CATALOGUE=*/
"SPACE 1; ' : .

L 80,#801; /+*HEADING ON RIGHT TO AID SEARCHING*/

5, #801, STOP lN 79; . :

+3, TAB 15,#601, CONT IN 16, STOP IN 79; /%AUTHOR¥/
+3,. TAB 35, f701 STOP IN 79; - /*TITLE*/
cND '

Figure §.4 Print-control statements for a catalogue
' - in class number order. A sample pplnu—
out using this set of instructions is
displayed in figure 6.5

For further examples of the use of print-control statements,
the reader is referred to page 120 in Chapter 7, where a set is
glven which is intended for a file in course code order and
prints the .courses as headings (decoded), and to page 152, which
contains a ‘set of instructions for PP¢1Llﬁg orders for dispatch
to agents..- T

92

34
303 SPENCER He PRINCIPLES OF SIZIOLIGY.EDeALDALSKI Se
3 STARK 4. FUNCAMENTAL FDR¥S OF SIClal T40USAT
201 MEBER He ECINIMY AND SDZIETY. 3Ve _
331 HELER Mo . FHEIRY OF SOSIAL AND EZONIMIZ DASANISATION.
) . . EDeToPARSUNS -
N MELFUAD AeT. AND OTHERS (EDDe) SITIETY. PLONLEMS AND METANOS oF
] - STUDY, REVe EDe
301 WILSON Le & KOLY Wele SIZIILIGIZAL ANALYSIS :
301 ‘wiscn P 10Ea UF & SOCIAL SZ1EMCE
EB) WOLFF KelialEDe) "GEIRG SIMMEL 1858-1418
] 3931
301431 BLACK M. [ED.) SUSIAL THEDRIES JF TALIJTT PAASONS
301.91 COMEN PeSe MUDERN SICIAL ThEJRY
301,91 DEMERATH Nodo & PCTERSIV e84 (EDDe) SYSIEM, DAARSGE. AND
: SOVFLIST
Wl.0 GIDDENS A POMER IN TA: SICIAL THEORIES OF TaLLOFT
. - PARSONS
301401 GROSS Le (EDs) SOUCIDLOGICAL THEJRY INQUIRIES AND PARADIGMS
391.91 SROSS L. (2043 _ SYMPISIUM DM S$IZIJLISIZAL Tezody '
30101 ISAJIN Aoie CaUSATIIN AND FUNZTIONALISM IN $OCIOLOSY
301,93 WAZKINNIY J.CoTIAYAKIN E.A.EDD) THEJRETICAL SOZIOLNGY
301491 VANSHELH Ko 10EILOGY AYD uTaPla '
301431 MAHT IHDALE D NATURE AND TYPES OF SJZ1NLOGICAL “THEORY
301,00 MYRUAL ue VALUE IV SOCTAL THEDRY
331,91 PARSTNS T. STAUSTURE OF SIC1AL ASTION. 2Ve
301491 PARSDNS To AuD UTHERS {EDD.) THEDRIES JF SOCIETY
301401 RAUCLIFFE-GROKN AJR. VATURAL SCIENIZ JF SUTIETY
301401 REX Johs . KEY PXISLENS OF SOCITLIGICAL THEDRY
301,01 ROSE AuNe ThEJRY AND METHID IN THE SOCIAL SCIENCES
301,02 RUSTIN M.~ RECEVANCE OF MILLS SICIDLISY
301401 SORIKIN PoAe CUNTEMPIRARY $ICIDLDSIZAL THEORIES
301,01
301491 STEIN Mo 4 VIDICH AGJ(ED) SICILLDSY DN TRIAL
301401 TIMASHEFF H.S. SUCIDLILICAL THEDAY, 31D EDe
. 301404 '
301406 BOANS =MEAKILL BOBBS-MLRAILL EPAISTS IN THE SOCIAL STIENCES
[SEXIES 'S*-SEE SEPERATE CATALOGUE FOR
DETAILS)
30106 DAARENDORF Ko ESSAYS [N THF TMEORY OF SUCIETY
301.04 HAMNGND ?.E.leé.l SUCTILILESTS AT KIRK . ,
331.04 HAu.‘mE_ll.'l Ke ELSAYS OX SnClDLDGVI AND SOZ1AL PSYCHOLOGY
301406 MOORE weEs ORUER AND CHANGE ’ _
M7
301407 SJOBERG G. & HETT Re NETHIDOLOGY FI1 SISIAL RESEAHCH
301407 WELER M. METHIDILIGY OF THE SICIAL, SCIENCES
310774
. 3G1.070964 HOLFr Kails EAILE DURKHEIK 1358-1917
1914272
3016072 CICOJREL AeVe METHDD AND MEASUREMENT 14 SOCINLOGY

3514972 DOJGLAS JeWa & BLOMFIELD Jo¥Me RELIARILITY JF LONSITUDINAL
SURVEYS

301.072 FESTINGER L. 4 KATZ Du{CDD.) RESEARZH METHDOS 1IN THC - ’
. BEHAVIIURAL STIENIES)

301,072 GAAFINKEL We STUDIES IV ETH‘Jﬁi?nJDJLOG'

321372 GLASER RaGe Ald LTRAUSS Aule DISSIVERY OF FRJUNDED THESRY '

" Figure 6.5 Sample Printout (using instructions
: ' " in figure 6.4) '

HOW TO USE THE LIBRARY

FILE.PROCESSING SYSTEM

The most frequently used programs in the LFP System have
now been. descrlbea. Here is a list of them:.

(i) TFINPUT converts an external file (on cards for
example) to internal, updating format. :

(ii) UPDATE modifies one internal file, using the
' contents of another. .-

(1ii) t‘COPY copies tnterna1 tlles, elther in whole or
_seleCtlvely

(iv) * SORT arranges an internal file in a specified
- order. There is a collection of sequencing
routines built into the system.

(v) MERGE interfiles two previously sorted internal .
' files to produce one file.

(vf)_ CHKSRT checks an 1nternal file to see if it is
- in a specified order

'(vii)”_PRINT reads the user's directives from control
(card) files and prints formatted lists of items
from internal files.

This chapter describes how a librarian usés the commands
'so as to mantpulate files and print lists and catalogues.
The information given is mostly specific to the LFP System,
but includes some that is Jjust sDec1al usage of the operatlng'
system (3oO/Oo) and its IaC¢llLleS. :

7.1 PROGRAMS OF COMMANDS

We can combine the above programs (and some others still
to be déscribed) in sequences, thereby achieving considerable
flexibility. Users will soon accumulate standara jobs for
routine operatlons. :

Let us consider an example and build up a program of
commands. ‘The problef is to devise a standard program to
update the main file. Program UPDATE works on internal files
so the new items, which have been keypunched in the external
format, must first be converted to internal format (usxng
FINPUT). We might use. the following command:

FINPUT INDATA 80 ON TEMP BJPX ' ABCDEF ' ';

Sk

.This reads the external file INDATA (all 80 columns of the
‘cards) and writes the internally formatted items into file
TEMP.. The.card listing is switched ON so that we shall get.
a prlntoui of all the cards in INDATA. Acceptable type-of-
publication codes (#102) are B,J,P and X and acceptable
status codes (#300) are A,B,C, D b and T. Any agent report
code (#203) and no #301 codes will be admitted.

UPDATE LBK TEMP LBK OFF;

-uses the newly created file TEMP to update the contents of
LBK, the main file. The new version of the file replaces
the old. The last parameter (OFF) allows the program to
"alter existing items in the file LBK. UPDATE assumes that
LBK and TEMP are in item number (#100) order, but it is
tedious to make sure that the new external items are in the
correct order, so we insert another command before the UPDATE.

SORT TEMP TEMP SEQ100;
replaces TEMP by itself, sorted into item number order.

We now have the basis for an updating program. We
write a PROGRAM statement at the beginning, to give the.
Program a name, and an END statement at the end, and the
-program is complete.

UPD1 PROGRAM; _
. FINPUT INDATA 80 ON TEMP BJPX '' ABCDEF ' ';
" SORT TEMP TEMP SEQ100; ’
UPDATE LBK TEMP LBK OFF;
END;

The next thing to do is to prepare data definition (DD)
statements for all the files used. The files mentioned
explicitly are INDATA (a card file), TEMP (a new internal
file which can be destroyed at the end) and LBK (an existing
internal file). In addition, SORT needs four work files
called WORK1l, WORK2, WORK3 and WORKL, which would be created
especially for the job and destiroyed at the end of it.
UPDATE will also use WORK1 because it is asked to overwrite
the main file (see section 4#.2). _

When we write DD cards for TEMP and the work files for
SORT, we must say how much disk space we need. We shall
assume that LBK already has 3,000 items and that there are -
200 items on -the cards in INDATA. In section 4.1 we calcu-
lated the requirement for Durham University's items - 45 items
per track on a 2314 disk volume. We should request
'SPACE=(TRK,(3,1)) for TEMP and (TRK,(2,1)) for the files
"WORK2, WORK3 and WORKL. WORK1 must be as large as LBK,
(TRK, (66 6)), because it is used by UPDATE. ' Disk space
allocaLlon w1ll be explained in a later section of this |
chapter. - At this stage, we have simply applied some of the
formulae given in earlier chapters.

95

e R Rt

Let us estimate the CPU time required for the whole task. -

‘Time = FINPUT time- + SORT time + UPDATE time -

(approx.) 20 + 0.0021x200x8 + 0.5+0.001x3000
+0.05x200
+ 3 (copy back to LBK)

L0 seconds

We now examine the place of the program in an updating
routine. Clearly it cannot be all that is required because
there is no provision for safeguarding the main file.

Suppose, for example, that LBK is not large enough to take

the new information. That will only be detected while it is
being overwritten and we shall have lost the end of the file,
which may contain items not included in TEMP (in fact we
cannot know exactly what remains in the file without a lot of
tedious searching through printouts). We must be able to
recover from such disasters efficiently and one way to ensure
that we can is to take a copy of the file at regular intervals
on- a different disk volume or a magnetic tape. The following
simple program takes a back-up copy of LBK:

COPY PROGRAM;)
FCOPY LBK '' BACKUP;
END;

To recover, we run a very similar program (LBK and BACKUP are
exchanged) and then do again all the updates that have beeén
- done since the last copy was made. :

There is another updating procedure which is commonly
used in commercial applications of magnetic tape files. It
requires three versions of the main file which are usually
referred to as grandfather, father and son. One updates the
son and overwrites the grandfather with the new file; the
father is untouched and is thus safe. If the process is
successful, we "rotate" the terminology - the grandfather is
now the son, the son becomes the father and the father will
be the grandfather in the next updating run. The following
program might be used for this technique. ' '

UPD2 PROGRAM;
- FINPUT INDATA 80 ON TEMP BJPX '' ABCDEF '

"SORT TEMP TEMP SEQ100;
UPDATE SON TEMP GRAND OFF;
END;

The DD statements required are similar to those for
UPD1l, but we must permute statements for the files SON and
GRAND. Suppose that A, B and C are the names of the data-
sets on disk holding the three versions of the file. The

96

files (SON and GRAND) should be defined as follows:

. Data-set names

.......... Jobs. 1,4,7,etc.|Jobs 2,5,8,etc.|Jobs 3,6.,9,etc.|

%
O
=

e

>
w

Obv1ously, an error such as forgetting to change the DD
cards between updates can wreak naVOC. We must also remember
"which (of A, B and C) is currently the son so that up-to-date
catalogues.and lists are produced.

In Durham, the first meLhoa is used (programs like UPD1
and.COPY). U51ng the catalogued procedure DLFPMCLG (see
Appendix C), the job to run UPDl1l consists of 17 cards apart
from the cards in INDATA, and we would keep them as a standard
job to use over and over again. Even so, there are various
modifications which we mlgh wish to make.for some runs.

For example, 1f some of the item numbers (#lOO) have been
changed’ using element #101, the file LBK may no longer be in .
order and we shall have to sort the main file. The following
command, placed after the UPDATE command, tells us whether LBK
is in.item number order. :

CHKSRT LBK SEQ100;

We can then submit a job to sort the file into item number

 order if necessary. We could do it all in one job by sorting’

the file in any case but on a file of 3,000 items about 75
seconds of CPU time would be wasted if 1t happened to be in
order already. It can still be made into a single program by
using a conditional statement. Such a statement tests the
completion code set by a previously executed command and
aCCODG¢ngly continues with or passes over the next command.

It will be recalled that CHKSRT not only prints the result
of its check but also communicates it in the completion code.
.Wne codes and their meaning are:

(iy o. . File in sequence
(ii) k. : File empty (i.e. no items)
(iii) 6. = File not in sequence

(iv) 8 and ié. "Errors

g7

7.1/7.2.

. We woﬁld wish to-sort LBK only if the CHKSRT program
.. finished with code 6. The CHKSRT command in the following .
modified program is labelled so that it can be referred to.

UPD1A PROGRAM; ' ' o _
FINPUT INDATA 80 ON TEMP BJPX '' ABCDEF ' '; .-
" SORT TEMP SEQ100; - 3 :
- UPDATE LBKX TEMP LBK.OFF;.
CHK CHKSRT LBK SEQLGO0;

{F CHK = ©;
SORT LBK LBK SEQ;OO
-END;

DD cards are required'for the same files as before, but .

' WORK2, WORK3 and WORKL must be allocated more space since:

they might now be used for the second SORT command i

'In the next section we shall deal with the precise rules-
for writing commands and assembling them into programs.

7.2 THE LIBRARY FILE PROGRAM GENERATOR .

: A program of commands such as those appearing in
section 7.1 is the data for the program generator, which
outputs two card files. These contain the generator's
“products, namely: C S

(i) A PL/1 program which calls ot ther, previously written
- programs to obey the commands aud which handles -
-compleulon code LeSLlug, and

(ii) Control statements for the Linkage Editor, which
' specify a program structure to economize on the core
storage used by the final library file program.

Normally these card files are used in the same Jjob,
being written into*temporary data-sets on a disk volume ‘and
removed before the end of the job. In Durham University a
catalogued procedure (see section 2.4) .is used and files are
passed automatically to the PL/1l compiler and linkage editor
programs. Appendix C contains a copy of the catalogued
ppocedure (DLFPMCLG) and a brief explanation.

. The rest of this section is concerned with the syntax
.of commands and other statements and the rules for construc-
ting programs. .The program generator will print messages
describing any errors and qunlug of Doss1b1e errors. It
is necessary to inhibit execution of the later job steps
(PL/1 compilation, linkage editing and execution) if errors
have been detected in the command program, because no PL/1
program would be generated in that case. lne catalogued
procedure DLrPWCLG controls the’ executlon of job steps

938

according to the outcome of previous steps.

1. Syntactic Units

As in the

three types of syntactic unit are recognized in the LFP

System command
with special meaning,
. languages.

(1)

(ii)

(iii)

A symbol is either one of the characters

; = - ¢ V.

or one of the following pairs of characters
(always punched in adjacent card columns)

= d= . X Ty "=

A string is a sequence of characters. Any
character may occur in & string. Strings are

separated from each .other Dy one or more spaces
or their equivalent (see iv below). A ‘symbol
need not be separated from a string. Single
quotes (') are used, one at each end, to delimit
a . string which contains a space (or equivalent)

or & symbol or a quote (which would be represen=-

- ted by two adjacent quotes). The following are

.strlng's:

- UPDATE
'#300=DEF' - quotes needed because it contains
1ot |

C - a blank'sfring

" = the empty string

A comment .is any sequence of characters starting

“with the pair of characters /* and ending with

the character=-pair */. The characters in these
pairs must be punched in adjacent card columns.’
A comment is treated-like a space, so it can Dbe
used to write comments which -are ignored by the

Program generator.

Commas and comment's are exactly equivalent to
spaces and wherever one space may appear, we may

~write any combination of commas, spaces and

99

rint-control languate described in Chapter 6, .
=]]

- language and with the exception of symbols
they have the same syntax in the two

2. Commands o 3 ' - ;
In general, the form of a -command is-as follows:

[1abel] " progname parlist ;

label is Oleonal (this is *ndlcated by the square brackets .-

which are not punched of course). It is a name given.
by the user to the command for reference purposes and
consists of up to 6 letters or digits without embedded
spaces. If a command is labelled, label must be
punched between card columns 2 and 7 inclusive. No
two statemen;s 1n a program may have the same label.-

"Erdgname is the name of one of the task programs provided
in the LIP Systen. " The full list is given in the left
hand column of figure 7.1.:

parlist is a list of strings, called parameters, supplied by

the user for his particular dPDllCaLlon. Each task
program requires a fixed number of parameters, each of
a certain type. They must always be supplied in the
-same order. Figure 7.1 gives the number of parameters
required in each command. The descriptions of the .
programs (ChapLers 4,5,6,8 and 9) include explanations
of the meaning of the parameuers. Syntactlcally, they"
fall into five categories. Figure 7.1 conLalﬂs a list

of Darameter types for each command.

(1) File names. These must be strlngs of from
© 1 to 7 letters or digits, the first of which
must be a letter. L o

(1i) - Strings. Any string is syntactically valid
~ for this type of parameter.. The content
will depend on what is required by the program
(it might for exampie be a select101 specifi-
cation).

.(iii) Numbers. - These are strings consisting
entirely of dlglLS. They represent whole
numbers. L _

(iv) Switches. There are two acceptable values =
ON and OfFT. :
(v) Routine names. Syntactically, they are.
exactly like file names. They are the names.

of programs such as the sequencing routines
lLSLed in figure 5.1.

Note that a command must be terminated with a semicolon.

100

: The whole command, aftéer the optional label, is
“restricted to columns 8 to 72 (inclusive) of the.cards.

A .command may extend over several cards. . Each command

" must be started on a new card. : T

BATCH. | 4. "|F N. Sw F-
COLIST |- . 1 K o '
CHkSRT | 2] F.R
cobEIN| 1 |F
/COIND '.3-1: F
Fcopy | .3 |F st |
FINPUT | © 8 PN sw P St St St St
FPUNGH.| . 2 |r S
IMAGE" |- % -~ |F N F Sw
MERGE .,,u-':" F. T F R
PRINT-| . 2 |F X
|RunoFF| 2 | N
SORT | 3 |Fr F R
|upoaTe | . | EE Poosw
Key to pafameter typeé:
. :F = file name ':_ Sw = switcﬂ'
t = string : R = routine name
. N = number .. Ll

W

igure 7.1- Table of LFP Sys{em'fasklprograms

ot Bl 3.
S gneane

" i#(CopECcHn
o-101 . \ -ﬁw\h .
k - . N i L

3.~ The Program Statement

‘Every program of commands must start with a program

statement. - The prototype folilows: .
| " _PROGRAM .’
[labeld -~ = - ;
PROG '

" .label is an optional name_given to the program by the user,

. The only use that is made of it in the system is that
- it is printed at the head of the first page of the out-
put from the final programn. The label, if present,
consists of up to 6 letters or digits without embedded
spaces and must be punched between card colums 2. and 7
1nclu5¢ve. It must be a unlque name .within Lhe program.

._PROGRAM and PROG are alLerﬁaulves, one of which must appear

and the statement is concluded with a semicolon. .The
statemenL, after label, is restrlcted to colums 8.to 72
“the card. :

4. - 'The Conditional Statement 1: : , ;

Commands are normally obeyed in the order.in whlch tney
are written in the progran. However, we might wish to break
+the sequence at some point depending on conditions arising
during execution of the program. Conditions '‘are detected

.for this purpose using conditional statements ("if" statements).

The conditional statement prototype is as follows: -

© . labell © label2
- [labeld IF . compare - B ;
numl - num2

label is an optional name given *o the statement for reference
=aoe.d gl .

purposes.. If present, it consists of up to 6 letters

or digits with no embedded spaces. It must be different
from the labels of all other statements and commands in
the program. . + should be punched between card columns.
2 and 7 inclusive; o T

IF identifies the statement as a conditional one.

" Jabell and label2 represent labels of comma“ds (i.e. among

those named in figure 7.1) in the program.

"numl and num2 represent whole numbers, in other words string's

o L. ~ . . -
con51sL1ng entlrely oI dlglts.

Note that labelil and numl are al ernatlves and so are

labe12 and nun2.

Note also thaf'labellf(or;labelz) can’ be a number

102

(according to the syntax of labels) and we then have
ambiguity - is the string a case of labell or of numl? The
-following rule solves the problem. If a string adjacent to.
compare is composed éntirely of digits, it is regarded as a
value of numl (or num2) only if no command or other state-
ment in the. program has that string as a label. It is
considered an error if the. string is the label of a statement
other than a command.

comEare is one of the.following symbol's

= "equal
o)
) "not equal to"

-

=)
< "less than"

> "greater than”
“< ~"not less than"
7> . "not greater than™

{= . "less than or equal to" (equivalent to ™)
>= "greater than or equal to" (equivalent to X)

They all represent comparison relations between two
numbers.

The statement, after the optional label, is restricted
To columns 8 to 72 inclusive of the card. An "if" statement
must start on a new card. : '

The two numbers compared in a conditional statement are
as ;ollows.

(1) If numl is used, then numl.itself; otherwise the last
completion code returned by the command named .labelil
(if that commend has not yet been executed, the code
is taken to be zero). :

(ii) If num2 is used, then num?2 itself; otherwise the last
" completion code returned by the command named label?2
(if that command has not yet been execuLed the code
is taken to be zero).

We say the last code returned because it is possible to
"~ have a commdnd executed more than once in one run (though we
rarely have occasion to do that).

103

7.2

, An "if" statement must De followed in the program by
either a command or another "if" statement or a "goto"
statement (tne "goto!" statement is the next one to be

. degcribed). Tne first command or "goto" statement after -
the conditional statement is called the dependen; state-
ment. The conditional statement

| F coqd1L¢on ;

means: "Execute the hext statement if and only if the
condition is true, otherwise contlnue with the statement
follow1ng the dependent stauement . - - :

T-"xc‘rnples

a) -’ CHEuK CHKS-&'r AMEND SEQ100; : : ' ;
[F CHECK=6; /*DO SORT [F AMEND IS .NOT IN ORDER¥/:
_ SORT AMEND AMEND SEQ100; : S :
. UPDATE LBK AMEND LBK ON;

In this example the conditional statement compares the
completion code of the command labelled CHECK with the
‘number 6 and the condition is true if they are equal.
The dependent statement is the SORT command. This
sequence of statements therefore means: "If file AMEND
is not in item number order (SEQ100), sort it into that
order. Then update file LBK with AMEVD, only allow1ng
"new items to be added (sw tch is ON)".

- b) - PROGRAM;

' -1 FCOPY LBK '"#300=PT'!' F1;
2 FCOPY SBK '"#300=PT' F2;
3 MERGE F1 F2 F3 SEQ100;

1
2
3
IN
D ;
This is an unnamed program Whlch merges selected parts

of two files and then prlnus a list of items (file

CONTROL might contaein instructions to print file F3,
for example). There are three conditional statements

and they all have the same dependent statement, namely
the PRINT commaﬁd PRINT is executed if and only if
all three conditions are found to be true. The
condition 1 ¢ 8 in this case means "the completion code
of thne command labelled 1 is less than the number 8" and
not "the number 1 is less than the number 8", because 1
is the label of a command. The meaning of the condi-
tional and dependent statements is "Execute the PRINT
program if and only if the two flle COpleS and the merge

have worked WthOUL error"

104

5. The Goto Statement

The statement now to be described causes ‘a break in the
normal sequence of- execution of commands-and directs the
computer to regume at another (named) point. - The prototype
is: - . : .

(labell] GOTO ® labell - ;

label is an optional name given to the statement by the user.,
~ If it is present, label consists of from 1l to 6 letters
or digits (no.embedded blanks) punched be;ween card
coluﬂns 2 and 7 inclusive.’

- GOTO is the statement keyword. It is simply the words "go"
and "to" joined together. ' : ’

- labell is the label of a statement in the program. It can

' be the name of either. a command or an "if" statement or
another "goto" statement or the end statement. It may
not be the label of the program statement (i.e. the name
of the program).

: The statement, after the optional label, is restricted
to columns 8 to 72 (inclusive) of the card, and it must start
on a new card. o '

When the statement is encountered during execution of the
program, the next statement to be executed is that which has
labell as its label. "Goto" statements are most frequently
used with "if" statements; ' there are two common. situations.

(i) Under certein circumstances, we wish to skip past a few
commnands. flow-chart representation of this require-
ment is: ' : '

n

< //;ondition

Yes

.A command
&

B command

1)

C'command
¥

L D command

. , .. 105

tatements to achieve it would look like this: -

“IF condition;
GOTO D;
command;
command;
command;
command;

UDowr

(ii) 1If a certain condition holds, we wish to do one set
- of commands, otherwise we wish to do dnother set.

The flowchart:

condition ?

Iyes

<7 "

P command .'_ ' X cémmand
\—L |) \II_

Q command - | v coﬁmand
\‘L '-

'Z command

. s

7' N commend 9

and the statements:

|F condition;
GOTC P;
command;
command;
‘command;

GOTO N;
command;
‘command ;

N < <

ZzZ0 v

106

Example

‘Let us make a temporary amendment to the program called
UPD1 in section 7.1. We wish to make a backup copy of the

main file (LBK) before we do the updating. We must not allow

" the updating to be done 1f the copying operation is.not
-perLecLly successful.

UPD1B PROGRAM;
BKUP FCOPY LBK '' BACKUP; o
|F BKUPT=0, /*l.E.-IF ANY ERRORS IN FCOPY*/
GOTO EXIT; /* SKIP UPDATING*/
FINPUT INDATA 80 ON TEMP BJPX '' ABCDEF ' ';
SORT TEMP TEMP SEQ100; ' '
. - UPDATE" LBK TEMP LBK OFF;
EX'T END;

6. The End Statement

The reader has probably already gathered that the end
statement marks the end of the program. The prototype is::

[1abell END;
" label is an optional name given to the statement for reference.
If present, it must consist of from 1 to 6 letters or

'digits punched between card columns 2 and 7 inclusive.

END and the'semicolon are punched anywhere in columns 8 to
72 inclusive and the statement must start on a new card.

o Lach pProgram must have exactly one end statement, at the
end of the program. Its function is to terminate execution.

. 7. Programs - Summary and Rules
A program consists of the following three parts:
(1) A program statement.

(ii) A combination of commands, "if" statements and "goto"
- statements arranged to accomplish the user's task.
(iii) An end statement.

. Commands are executed one after the other in the order
in which they occur in the program, except where that sequence
is disturbed by "if" and "goto" statements;

All commands set completion codes according -to conditions

arising during Lhelf execution and "if" statements can be used
to test the completion codes of commands whlch have labels.

107

7.2/7.3

The format of LFTP System program cards is as follows:

1 : : 72

v v _ _ : -V
label statement _ ' : card no.
A A] - TN A
2 71 | 73 80

Notes

(i) The label and the card number are optlondi.
(ii) A statement must begln on a new card.

(iii) A statement may continue onto as many cards as
necessary.. The label field on contlnuatlon
cards should be blank.

(iv) Column 1 of the card has a special use which is
not described here. T must normally be blank.

(v) The remarks made in section 6.2 about noise
words in print-control statements are not
appllcable to the command language.

(vi) Labels are composed of up’ to 6 letters or dlglts
with no embedded spaces. - No two statements in
the same program may have the same label. Labels
can be referred to by "if" and "goto" statements
as often as the user requires (it is not consi-.
dered an error if a label is unreferenced).

7.3 FILES AND DATA-SETS

Users communicate their requlpements (programs, perl-
pheral devices, etc.) to the operating system in the Job
Control Language (JCL) of which the Data Definition (DD)
statements referred to in the command descrlptlons are a
major part. :

All LFP System programs use files of one sort or

" another. Most files are named.by the user in his commands.
There are some other files to which programs refer behind
the user's back, as it were, using standard file names (for
example, the work files, WORK1l, etc.). These names, whether
invented by the user or not, are mérely symbols for channels
through which information passes to.and from the program.
The process of File Definition is that of associating, for
the duration of one job-step, a file name to a real data-set
on one of the storage media accessible to the computer. The
reason for this indirect method in the operating system of

108

'7 L] 3

using data-sets is that programs can refer to data in a
device-independent way. File definition is achieved partly
by information given in the program and partly by DD state-
ments supplied as part of the job.: The LFP System user is
responsible only for providing DD statements containing
information needed to identify the data sets. -

This discussion of DD statements is limited to what is
required by the LFP System user and a complete description
is to be found in [1191, which is a comprehensive treatment
of the JCL. Also we omit details of magnetic tape handling.

Firstly, we descpibe the format of DD statements and
the way in which they are punched into 80-column cards.

The DD Statement
“ //name DD parameters

The statement starts with the character / in both the
first -and. second columns of the card.

name is that which connects the DD statement to a file in
the program. When the catalogued procedure DLFPMCLG
is used, the name of a file in a command is prefixed

by the characters "G." to form name. There should
be no embedded spaces and name must start in column 3
of the card.
E.g.. ' //G.LBK
//G.TEMP
DD must have at least one space on either.side of it. (It

is called the "operation field" of the statement.)

parameters is a list of DD statement parameters, each of
the form

keyword = value

E.g. UNIT=231Y
' DISP=(NEW,KEEP)

Parameters are separated from each other by commas
(the last has no comma after it) and no blanks may
occur in parameters except, as described below, when
the statement will not fit onto one card. The
parameters can be written in any order in the state-
ment - the keyword identifies the type of information.

Sub-parameters are used when the value consists of

109

- more than one piece of nfopnatlon.- They_are
enc¢osed in pareneneses.

" E.g. DISP=(NEW,KEEP) ,
- © DCB=(RECFM=F,LRECL=66,DSORG=DA)

DD statements are puncned in columns 1 to 71 (inclusive)
the cards. If a statement will not fit onto one card it
a1 be continued on as many further cards as are necessary.

To contlnue'*he parameters field:

(i) Break the list after the comma following a.
- parameter or sub—papaneeee, before column 72
’(leav1ng the rest of the card blank).

(1i1) Punch /" in both the'flrst and the second
columns of the hext card, leave at least one
column blank and continue “the parameter list
on or before column 16

(iii) Continue onto further cards, if necessary, in

- the same way. ' '

We now describe. tne various parameters wnlch Lhe LFP
Systen requires us to use. We. ‘shall enumerate ‘the forms

. of keyword = value in parameters.

(i) DSNAME
Tne name of a data-set on a disk or magnetic tape.

'E,g. DSNAME=DULO1LBK
o DSN=DULOLILBK . -~ = DSN is “a permitted
DSN=DCLO3XYZ ' abbreviation

'This name is recorded on the disk or magnetic tape
"and if & public disk volume is .used, Lhere may Dbe
installation rules governing the ‘choice 'of name.
In Durhcl University, we use names starting with
the user's job number (e.g. DULOL) followed by
'Irom L to 3 letters or dlglLS.

(ii) -UNIT
This gives the type of device upon which the data-
set resides. : :

-E.g. . UNIT=231k% - IBM 231k disk storage
L : ;ac1llty .

used for magnetic
tape data-sets

UNIT=(2400,,DEFER)

110

(4ii)

(iv)-

(v)

. VOLUME

The name of the disk volume or magnetic tape upon
which the data-set resides or is to be created.

E.g. ' VOLUME=SER=UNEOLO
" VOL=SER=UNE0L4O - VOL is a recognized
_.VOL=SER=DULO1T abbreviation

SPACE:
The -operating system must know how much space to

allocate, on a disk .volume, to a new data-set.
A 2314 disk volume has 4,000 recording tracks

. arranged in 200 "cylinders" of 20 tracks each.

" Space can be requested in units of cylinders
or of tracks and an incremental allocation
-quantity can be given.

E.g.. SPACE=(TRK,10) allocate 10 tracks

SPACE=(CYL,3) - allocate 3 cylinders
' (=60 tracks)

allocate 20 tracks
initially and
increment it by
5 tracks at a
time as the file
grows

SPACE=(TRK, (20,5))

allocate 2 cylinders
initially and
increment by 1
cylinder as required

SPACE=(CYL,(2,1))

The size of the data-set will be incremented no more

~than 15 times. If more space is still required,

replace the data-set by & new, larger one,
DISP

This parameter tells the operating system whether
the data-set already exists or must be created and .
what to do with it at the end of the job=-step,

i.e. whether to keep it or destroy it.

- DiSP=(NEW,KEEP) - create a new data-set,

_ keep it
DISP=(OLD,KEEP)) - data-set already exists,

- DISP=0LD) keep it
DISP=SHR - data-set already exists,

keep -it. Program only
reads .this data set, so
other jobs executing
simultaneously may share
it. i ,

111 o) “

7.3

' ' DiSP=(OLD,QELETE) - data-set already exists,.
: SRR destroy it at the end
of the job-step.
. If a DD stateﬁent has no DISP pérameter, the assumption -
is - ' o o :

DiSP=(NEW, DELETE)

" that is the data-set is created at the beginning
_of the job-step and destroyed at the end - it is
a temporary, or work, data-set. '

fvi)”'DCB

This parameter gives information about the organiza-
tion of the records in the data-set. It is not

- ‘often used in the LFP System because the details are -
built into the system's programs.

Writing DD Statements for LFP System Files

We are concerned now with data-sets in disk volunmes,
which we categorize firstly into three types: (1) created
'in a previous. job and extant; (ii) new and to be saved for

- later jobs, and (ili) temporary, i.e. new and to be deleted
" at the end of the job. ' '

(i) Existing data-sets

The DD cards for these data sets can be written
without regard to the organization of the contents.
The data-set name, UNIT and VOLUME are required to
locate it and the DISP is needed. s : :

Examples

//G.LEX DD DSN=DUL01LBK,UNlT=231h,VOL=SER=UNE110,DlSP=OLD
//G.SYSCODE DD DSN=DULO1LCO,UN!T=231k,VOL=SER=UNEOLO,DISP=SHR
~//G.SAU DD DSN=DULOlSAU,UNlT=231h,VOL=SER=UNEOh0,DlSP=(OLD,DELETE)

(ii) New data-sets (to be saved)

. ‘These are data-sets which must be created before
the program can write records into them. We must
‘give them a data-set name and specify UNIT, VOLUME,

. SPACE and DISP. Data-sets for internally format-
ted bibliographic files and for card files (on disk)
can be created with similar DD cards,. K

Examples

//G.SBK DD DSN=DULO1SBK,UNIT=231k,VOL=SER=UNEOLO,
71 SPACE=(TRK, (40,5)),DISP=(NEW,KEEP)"

‘112

- a job but not required after the job. Such files

//G CF DD DSN=DULO1CF,UNIT=2314,VOL=SER= UNEllO

// '_- SPACE=(TRK, (10, 2)) DISP= (N:W KEEP) .

Note that a datd set on dlSK whlch is used by Lhe
LFP System programs to hold a card file has a

- capacity of 70 card records per track.

The file of codes used by ﬁrogram_PRINT and con=-
structed as described in Chapter 8 is always

‘referred to by the name SYSCODE. The DCB parameter

is required when creating a new code file (the

-caLalogued procedure DLFPMCLG supplles this) as
follows: : :

'DCB=(RECFM=F,LRECL=66,DSORG=DA)
Temporary data sets
These are data-sets needed for files created durlng

are requlpea by some of the programs (e.g. the work
files used by SORT) ard others are created at the
user's discretion (e.g. TEMP, the file of amendments
in program UPDIB on page 107) . DD cards are con-
structed in the same way for internal files as for

"card files on disk. We must spec1fy UNIT, VOLUME

and SPACE. No data set name is required and .in .the
absence of the DISP parameter DISP= (NEW DELETE) is

_ assumed :

'Example

//G WORKZ DD UNIT=2314, VOL SER=UNE020, SPACE (TRK, (15, 5))

SDec1al Types of DD Statement

' (i):'

Feles ox cands for input

If a card file is to be entered on punched cards, _ :
the single DD statement as described above should be - |
replaced by cards sucn ‘as these: : '

//G.INDATA DD *

card deck

/*

Note that the program .can read.file INDATA only once

“and it may not be used for output. We' can include -

several such files in one job.

113

(ii) Files of cards for output

for file OUTFILE)

//G.OUTFILE DD SYSOUT=B -

~ QUTFILE could be used repeatedly in é program for.
_card output but obviously not at all for input.

(iii) Dummy files

There is in the éatélogued procedure DLFPMCLG the
- definition of a file called DUMMY which has the
' following properties when used in a program:

" As an -input, internal file it is empty.

As an output, internal file all items written’
to it are lost. -

'As an output, card file all cards written to
it are lost. o ' :

. DUMMY can be used for all of the above in one
program, but it cannot be used for input card files.
We can introduce an empty card file as follows:

//G.EMPTY DD =
VA
File DUMMY can be used for "dummy runs". This’
command, for example, checks an external file
without actuelly storing it in internal form:
FINPUT .EXTFILE 80 ON DUMMY BJPX "' ABCDEF ' ';

 DLFPMCLG - What is provided in the Catalogued'Procedure

. ~ FTour file definitions are provided in the final job-
step (step G) of the catalogued procedure DLFPMCLG.

(i) File DUMMY
 (ii>_ File SYSPRINT for alllthe printer output
(&ii) File SYSCODE for decoding elements fof priﬁting-
(iv) File WORK1, which is simply a temporary file ﬁitﬁ
" an initial size of 5 cylinders (increments by 1

‘cylinder). WORK1 can take about 18,000 items in
internal format or 28,000 records if used as a

114

; S 7.3/7.4

card file. Note that, although it-can be used
by several commands in one program, WORK1 (or any
other file except DUMMY) cannot be used both as
- an internal flle and as' a card file 1n the same
job. :

7.4 JOB ASSEMBLY

A complete LFP System job can now -be pu ogeLHer.-
We outline the job below and then explaln the par;s wnlcn
have not yet b661 discussed.

/1l | JoB card

/] cXEC card

X

//M.SYSIN DD

program of
. commands.

. /%

//G.etc . DD cards for all the files

' used in the program (except
those provided in the cata--:
logued procedure) and any
card decks for input to the
program such as print-
control files ~and new data

Codtems

/7

The Library File Program Generator reads the user's
Drogram of commands from its symbolic file SYSIN in the:
first job-step (step M) so we must provide .a DD statement
with the name M.SYSIN. The PL/1 compiler and the linkage
editor are executed in jOb steps C and L respectlvely, but
these are not mentioned in the job because the catalogued
procedure defines them completely.

115

The.JOB Card

The JOB card will vary considerably from one installa-
“tion to another. The description here.is limited to those .
features of the JOB card which have been commonly used in
Durham University for LFP System Jobs. :

~//Jobname JOB lSL,SOhrce[,CLASS X1

- // is punched in columns 1 and 2 of the card.

obname consists of the user's S5-character job number
J_______
followed by up to 3 letters or digits. If the

user SmelLS more than one job at a tlme, each

.E.g., the lollow11g can be used by user number DULOl

DULO1ABC
DULO1
DULO1LOL

JOB is the operation field of the job statement. It
must have at least one space on each side of it.

S 1list is constructed as follows:
In its simplest form: ‘(date,rcom) -

. where date is a u4-figure number and room is from
1l to & le ters or dlglLS.

E.gL,I (0010,C105) - - = might be.ﬁsed for a
: ' " job submitted in
October (month 10)

If more than 1,000 lines are to be prlnted, or if any
cards are to be punched by the job, 1list is extended:

E.g. = (0010,€105,,3) - allow 3,000 lines and
S .) _ zero cards :
(0010,C104,,,200) - allow 1,000 lines and
' 200 cards
(0010,C105,,4,1000) - allow 4,000 lines and
1,000 cards.

source 1is a strldg of no more than 20 letters, digits and
full stops; spaces are not pepnltted It 1dent1fles
the OrlglnaTOP of the job. : co

E.g. . LIBRARY
.. " R.N.ODDY -

- 116

,CLASS x is enclosed in brackets (which are not punched
: on the JOB card) because it is not requlred for every
job. X. represents a 51ﬁgle letter and is called the
job-class. It specifies which partltlons of core -
storage are suitable for the job -and is therefore an
“indication of the amount of core storage used by the
' jOb The job-classes of LFP System jObS submitted
in. Durham University are A (partlLlon size about
88,000 bytes) and C (partition size about 130,000
byues) Larger ones are available but have not been
_requlred for any LIP SysLem jobs submitted so far.
It is not possible to give a lmple rule which deter-
mines core storage reqalrenents for a particular job.
The first three steps of the job always fit into the
smaller partltloﬁ

If the job- class is not glve“ on. *he JOB card, A is
assumed. -

g ,CLASS c

.t"J

.Sample JOB cards
//DUL01T10 JOB (0003, L17) L1BRARY
//DULOLX. JOB (0011, ClOS,,S) L1BRARY, CLASS c
//DULOlABC JOoB (0001, LIB,,L 300), T. JONES CLASS A
"The EXEC Card

" The EXEC card required to invoke the- catalogued
procedure is as follows: -

stepname is an OleOﬂal name consisting of up to 8 letters
or digits. If present, it must start in column 3 of
the card and may contain no spaces.

EXEC is the statement's operation field. It must have at
least one space on each slde of it. :

DLFPMCLG is the name of the ¢ atal logued.procedure.

TIME.G=(min,sec) is an OleOPal fielad spec1fy1ng a CPU
time allowance for the final job-step (step G) if it
is estimated that it will require more than'l minute.
mln is a number of minutes and sec is a number of
seconds.

7.4/7.5

Examples

// EXEC DLFPMCLG

//STEPA EXEC DLFPMCLG,TIﬁE;G=(3,0)
The HOLD Card |

When a job's demands on various of the computer's
-resources exceed certain limits set by the installation
- management, the job must be held in the input queue until
the operator can release it. To hold a .job the user
places a HOLD card immediately after the JOB card. The
format of the HOLD card is as follows (it is not, strictly
speaking, a part of the job control language):

/%HOLD message

/*HOLD is punched in columns 1 to 6 inclusive and columns.
7 and 8 are left blank.

message i1s any brief, clear message to the operator to
tell him why the job is being held, Card columns -
8 to 80 inclusive can be used. It must include
the job-class, even if it is A.

Examples .
/#*HOLD- * # 15M #% 5000L *%* CLASS=C %%

- for a job requiring 15 minutes of CPU time and
5,000 lines printed.

/*HOLD *#* DISK DULOIA #* CLASS=zA %%

- for a short job requiring access to the private
.disk volume DULOIA. - '

7.5 SAMPLE JOBS
A, A Course/Author Catalogue. = Job DULO1EXA.

The first sample job is to produce a catalogue of
mateyial arranged in order of course code (#401) and, within
-each course, in author order (#601). The full course name
is to be printed as a heading at the top of each page and a
new page should be started for each new course. The listing
is to include, for each item, the type of publication, the
author and title. Only items in stock are to be printed
(i.e. omit items unreceived, withdrawn and so on).

118

The data-set containing the bibliographic file is called
- DULO1LBK and it is stored on the public disk volume UNEOLO. .
There are approximately 23,000 items on the file in item number
order. Disk wolumes UNEO20, UNE030, UNEOLO and UNES9S can

-be'assumed available and can be used for temporary data-sets. .

1. Tne Progpaﬂ

We must fipst sorF the file into course/author order,
rd then call up01 Lhe RLNT procpam

CCAT PROGRAW
- SORT LBK COURSE SEQL67;
-PRINT CONTROL 72; -
END; :

The main file is referred to by the name LBK and the sorted
file is called COURSE = this will be a temporary file. File
*CONTROL is a card file conualnlrg print- control statements
designed to produce the catalogue.

2. The Data-Sets

: File LBK is to be read from data-set DULOlLBK on disk
volume UNEO4O. The program will not change its contents so
it can be shared with other jobs. :

File COURSE is a temporary file. Assumlng that it will
be 10% larger than LBK, due to additional eﬂtrles, the space
weoulreTenL will be (TRK (73,7)). :

rlles WORK1, WORK2, WORK3 and WORKL are requlred by SORT.
. They are temporafy Flles and should each be given

SPACE=(TRK, (55,6)). WORK1 is defined in the cataloguea

- procedure W¢th adequate space.

File CONTROL will be included on cards with the job
(note that statements must Dbe conf*ﬁed to columns 1 to 72
l“ClUSlVe> : ‘

' 'File SYSCODE is required for decoding the courses, but
we do not need to supply a DD card because a suitable one is
" in the catalogued procedure. - . '

3.. Other Requirements
(i) Printed Output

If we make the simple assumptions that 90% of the
. items in the file are in stock and that 20% of the

-item$ in ‘the catalogue will be 2-line entries, the

catalogue will contain the following number of

lines:
3300 x 90 x 120

100 100
= 3564 (plus a few for the'headihgs).

119

',Messages from the systenm ard llsthgs of the

. program and print-control statements will take
. about 150 lines, so our estimated total print-
-out- 1s rather less than 4,000 lines long. ‘
Depending upon our confidence in the estimate,
we should increase the allowance from the -
standard 1,000 lines to either- 4,000 or 5,000

" lines. In either case, the job will have to

- . be held. Ceh

Cii) .CO“e Stonage

:Aﬁy program 1nvolv1ng PRIVT must have the job- .
-ClaSS C. :

(iii) .CPU Time

Total CPU time = SORT CPU time + PRINT CPU time
= (approx.) 0.00L4L4x3300x12 + 33 seconds -
= (approx.) 210 secon 1ds (= 3% mlnutes)

: We must use the TIME parameter on the EXEC card.

‘Note. In practice, with experience, one 'is able
1 'to make good estimates very quickly without
doing a great deal of arithmetic. = °

L, The Job

//DULOIEXA JOB (0004,C105,,5), LIBRARY CLASS C
J*HOLD. *%% 5000 LINES =*»#%%* CLASS=(C w%*x*
// EXEC DLFPMCLG, TIME G= (4,0)
J/M.SYSIN DD =%
" CCAT PROGRAM;
' SORT LBK COURSE SEQu67;
- . PRINT CONTROL 72;
" END;
/*
//G.WORK2 DD Uth 231L VOL=SER=UNEO020, SPAC“ (TRK, (55,6))
//G.WORK3 DD UN!IT=231kL,VOL=SER=UNE030,SPACE=(TRK,(55,6))
~//G.WORKL DD UNIT=2314,VOL=SER=UNEOLO,SPACE= (TRK, (55,6))
. .//G.COURSE DD UNIT=231k4,VOL=SER=UNEG99,SPACE=(TRK,(73,7))
- . //G.LBK DD.- DSN=DULO1LBK,UNIT=2314,V0L= SER UNEOkO DISP=SHR
//G.CONTROL DD = _ _ .) .
LIST FILE COGURSE; - '))
-+ SELECT ITEMS IF '#300 BDEFVTX" /*ITEMS. IN STOCK=/
" SPACE 1; ' .
PAGE 20, #hOl DECODED; /*COURSE NAMES AS HEADINGS=*/.
(#102 /*TYPEx/ -5,#501 ./*AUTHOR=%/), . CONT IN 9, STOP IN 957
+L, TAB 30, #701 /*TITLEx/, CONT IN 32, STOP IN 95;
END; o K

B. A Back-up Copy. Job DULOLEXB.

This example is one of the simplest jobs one can submit.
We are to create a new data-set holding an exact copy of the -
file in data-set DULO2SBXK on disk volume UNEOuO. The copy
is also to be called DULO2SBK but is to reside on public _
volume UNEL11O. There are approximately 2,100 items on the
existing file. ‘ ' . '

':l._ The Program
COPY PROG;
FCOPY SBK1 '' SBK2;
END;

SBKl'représents the old file and SBK2 the new. - No selection
will take place. : '

2. The Data~Sets -

, File SBK1l is to be read fﬂom data-set DULOZSBK on disk
volume UNEO40. ' It can be shared.

'File SBK2 is to be stored in a new data-set on disk
volume UNE110 called DULO2SBK, The data-set is. to be kept
at the end of the job. We must specify a SPACE parameter.
At 45 items per track we need (TRK,(46,L4)). o
L3, Other Requirements |
(1) _?rinted OutDut

Messages and program. llstlng are all that will be
produced, so 1,000 l nes is ample. I

(ii) Co“e Sto“age

:COPY ‘run on its own, fits well w1th1n the small
parultlon, so we shall use job-class A.

]
o/

(1ii CPU Time

FCOPY CPU time =.(approx.) 2100/700 = 3 .seconds,
which is well below 1 minute. '

This is a straightforward short job.

121

4. ' The Job

- //DULOlEXB JOB (0003, 0103) LIBRARY

// EXEC DLFPMCLG
//M.SYSIN DD *

COPY PROG;
‘FCOPY SBK1 '' SBK2;
END; -

o
//G.SBK1 DD DSN=DULO2SBK,UNIT=231L}VOL=SER= UNEQO4O,DISP=SHR
//G.SBK2 DD DSN=DULO2SBK,UN|T=231L;VOL=SER=UNE110,
"7/ SPACE=(TRK,(L6,4)),DISP=(NEW, KEEP) -
1

C. An Updating Job." Job-DULO’EXC.

- In this final example, we use the updaulug program

-UPDl from section 7.1 to update the file in data-set DULO1LBK
- on disk volume UNEOLO. The main file has about 3,000 items
and is in item number order. New and amendment items will
" be contained on cards in the external format and the aim is
to constiruct a job which can be used many times without any
alteration apart from insertion of the external file.

1. The Program

UPDl PROGRAM; : _
- FINPUT INDATA 80 ON TEMP BJFX ' ABCDEF Ty
- SORT TEMP TEMP SEQ100;
UPDATE LBK TEMP LBK OCE
END;

- We pefer ‘to the main file as LBK. File INDATA will contain)
the external file and TEMP is the Lemporary 1nternal equiva-
lent to it.

2. The Data~Sets

File INDATA will be included with the job on punched
cards. : ' - '

File TEMP is a temporary internal **1e. Space is
- a¢lOth6d, lnlulally, for about 1,100 ;tems

: File LBK is to be Laker_frOﬂ the data-set called

. DULO1LBK on disk volume UNEQO4O. This file will be over-
‘written and-it cannot, thersefore, be used by other jobs at
the same time. ' 3 -

Files WORK1, WORK2, WORK3 and WORK:. are required by
SORT, and a SPACE parqmeter compatible with that of TEMP is
SPACE=(TRK, (18,2)). However, WORK1 .is also required by

UPDATE in this program and for that purpose the data=-set
. must be of similar size to DULO1LBK, i.e. about 70 tracks.
The definition o; WORK1 1n the catalogued procedure will be

aaecua L.e .

122

‘3. Other Recu+penerLs

The job given below should be sultable for an updating
file of up to about 1,000 items. Printed output and CPU
time allowances have been chosen in such a way that the same
job will be suitable for any updating file smaller than
1,000 items and a main file of about 3,000 items. . Of course, -
the main file might increase in size 31gn1f1cant1y if a
large file of new items is entered. :

(1) -Prlnted Output |
The bulk of the output is prodhcéd by FINPUT as it

prints a copy of the cards in INDATA 3,000 lines-
are allowed. : . :

(ii) Core Storage
UPDATE is quite a large'program. " We use job-class
C on the first run and might be able to use A on

subsequeﬂt jobs when we k“ow now much core storage
it has used

(iiif- CPU Time

A CPU time allowance of 3 minutes w1ll be sufficient
to process 1,000 external items. :

L. The Job!

//DULOLEXC JOB (0005,C105,,3), LISRARY,CLAS§=C.
- [//SA EXEC DLFPMCLG TIME.G= (3 0)
"//M.SYSIN DD =*
UPD1 PROGRAWM; ' '
FINPUT INDATA 80 ON TEMP BJPX '! ABCDEF L
SORT TEMP TEMP SEQ100;
UPDATE LBK TEMP LBK OFF;
END;
/% - -
//G.WORK2 DD UNIT=2314,V0L=SER=UNE020,SPACE=(TRK,(18,2))
//G.WORK3 DD UNIT=2314,VOL=SER=UNE030,SPACE=(TRK,(18,2)) - :
//G.WORKL DD UNIT=2314,V0L=SER=UNEOLO,SPACE=(TRK, (18,2)) :
~//G.TEMP DD UNIT=2314,VOL=SER=UNE999,SPACE=(TRK, (25,2))
//G.LBK DD DSN=DUL01LBK,VQL=SER=UNEO&@;UN}T=2314,DISP=0LD
//G.INDATA DD = :
#100 D2594§ #300 V€ #401 JERE #500 1969€ #601 MARTIN D.§&
#701 REL]IGIOUS AND THE SECULAR +#801 201.7§ =
#100 D25G61f% #501 EVOLUTION AND ETH!CS (ROMANES LECTURE)£ *
#100 D2573& #300 Eg& =
#100 02553£ #401 EAFE =

etcetera

123,

7.6 THE READ FACILITY

In all the descriptions of commands up to this point
the parameters have been fixed before execution of the program
of commands. Suppose, for example, that we store the
following program on a disk volume using program IMAGE (see
section 9.4):

IN1 PROGRANM;
FINPUT INDATA 80 ON NEW,BJPX,' ',ABCXY,'';
END; .

Whenever we use the program, we must define INDATA and
NEW, on DD cards, as the input external file and the output
internal file respectively. Each time, all 80 columns of
the cards (records) in INDATA must be used and a copy of the
card file will always be printed. The four one-character
_coded elements will be checked in the same way every time
the program is used. '

The READ Ffacility enables us to postpone fixing the
parameters until the program is actually executing - until
~ the very last moment before they are required. Thus we
can, for example, write and.store a.program which will con=-
vert an external file, which is either numbered in columns
73-80 or not, to internal form, printing out the card file
at our discretion. The program is:

IN2 PROGRAM;
FINPUT INDATA READ READ NEW,BJPX,' ',ABCXY,'';
END; '

The word READ, occurring in the place of a parameter
in a command, instructs the computer to read the parameter
from the special card file .called CONTROL. The reading is
done immediately before .the command is obeyed. Suppose
+that IN2 is stored in the data-set DULO1IN2 and that we wish
to convert an external file in which all 80 columns of the
cards have been used for data and that no listing of the
cards is required. The following job will suffice:

//DULO1D1A JOB (0011,C105),LIBRARY
/7 EXEC DLFPMCLG,TIME.G=(2,0)
//M.SYSIN DD DSN=DULO1IN2,UNIT=231}4,VOL=SER=UNEO40,DISP=SHR
//G.NEW DD DSN=DULO1NBK,UNIT=2314,VOL=SER=UNE110,
/7 © DISP=(NEW,KEEP),SPACE=(TRK,(20,2))
//G.INDATA DD * '
#100 D2317§ #300 AE #401 PBXE #500 1958%

etcetera
/ =
//G.CONTROL DD *
803 OFF;
/ b3)
//

124

Rules for the use of READ

(1)

(ii)

(iii)

(iv)

(v)

In the program of commands, READ may be used as
many times as required in the place of file,
string, number and switch types of parameter
(see figure 7.1). It may not be used to read
in a routine name, a command label or a program
name. . In the sample program IN2 above, READ
is used for a number and a switch (in that
order). - The restrictions on the use of READ -
make the following two commands illegal:

SORT LBK OUT READ;
A
should be a sequencing routine name

LAB1 READ F33j
N
should be a program name

In the command
READ UPDATE LBX AMEND LBK Oic,

the word READ is interpreted as an ordinary label
without special significance in the present context.

If READ occurs in a "goto" statement, it is taken
to refer to a statement labelled "READ" - no
reading is done.

READ occurring in a conditional (IF) statement
always causes a read operation from file CONTROL.
The program will expect to receive a number and
will never use it as a label.

E.g. The statement
IF CHECK>READ;

compares the completion code set by the command
labelled CHECK with the number read from CONTROL.

Whenever, durﬂng execution of the user's program
the computer encounters the word READ in either

a conditional statement or a command in the posi-.
tion of a file nane, strlnb, number or switch, it
reads a new piece of data from file CONTROL. The
data must appear in file CONTROL in the order in
which it will be required by’ the executlng program.

The data provided on file CONTROL must be of the
right type. The symbol data stands.for that

125

(vi)

(vii)

- which is read in response to encountering one
READ during execution. The correct syntax for

data in a particular case depends upon the type
of parameter which is required. Figure 7.2
gives the various forms of data and, in the
right hand column, the assumptions which are
made in the event of syntax error.

Comments, between /* and */, are permitted with
data and are equivalent to spaces, as usual.
The comma is also treated as a space.

File CONTROL may contain both data for READ's
and print-control statements. Program PRINT
starts to read a set of print-control state-
ments at the beginning of a new card.

Similarly, if a statement or command in a
program requires any data from CONTROL, -a new
card will be started (for the statement but
not for each READ in the statement).

126

Regquired Syntax of Assumption in
parameter type .| data case of error
file name FILE fname; FILE DUMMY;
string string; '"; =~ the empty string
>
number number; 0; = zero
switch ON 1 OFF;
fi
OFF '
Nctes

‘stvatement.

string is any seqguence
omma, sSemicolon,

number 1s ‘a whole numbern.

permitted within

data must be terminate

Spaces (or their equiv

ezch component of

file properly defined in a DD

of characters. To include space,
enclose in cquotes.

Space. and commas are not
& number., o

d@ by a semicolon.

alent) mey occur before and after
deta.

Syntax of data for the READ facility

127

Q
O

In the description of print-control statements in
section 6.2 a facility was mentioned for decoding some
of the coded elements. - By this we mean the replacement
'.in the printout of the code by a descriptive text. The
elements which can be decoded during printing are as
follows:
: ' :
(i) The one-character coded elements #203 (agent

"~ report) and #300 (status), -

e three-character coded elements #200 (agent)
and #401 to #499 inclusive (courses),

(iii) The first character of the item number (#100)..

It will be vecalled that if the facility is used in
a printing job, a special file called SYSCODE is required,
which contains informetion necessary for decoding the
~elements. This chapter explains how the user constructs
a file of code translation .data and concludes with the
description of a command for obtaining an index of the
#400 series codes (courses). : ' :

8.1 ' CODES IN TREES

The user prepares a deck cf punched cards giving the
codes and their meanings. The program CODEIN reads the
card file and constructs, a file named SYSCODE on a disk to
which PRINT can refer. Before the card file can be punched,
the codes must be organized in a "tree" structure and this
.is often best done diagrammatically. Let us start with

" the course codes (#401 to #499 range). They are 3-letter

codes and Durham University Library is currently using

. about 200 different codes for undergraduate courses in some
20 departments. As we shall see, the method of preparing
the code translation file suggests ways of choosing codes-

for courses, but for the moment we assume. that the codes

and their meanings are chosen and that we have a list of them.

The first thing to do is to divide the list into groups
according to.the first letter of the code. The following
list of codes, which 1s a small one invented for the purpose
of this explanation, is so grouped. ‘ :

128

group S
| SAA economics

SBB economics - honours (lst year)
SéC_I' ‘economics. - honours (2nd yeqf)_'_
" SBD economics - honours (3rd year).
SCA; ~ economics - general |
SFA-,_‘ economics - microeconomics
SFB° . economics - macroeconomics
SFC{ - economics = moﬁetary

geoup T
TAA ﬁathematics
TBA . ° mathematics - ‘topology
TCA -;Jmathematics - quantum mechanics
TFA - mathematics - hohours (ist yeap)f" ~
TFB mathematics - honoﬁrs (2nd year)
TFC" ‘mathematids - honours (3rd year)
TGA.' com@uting-
TGB- ' computing - brogramming_
TGC . computing - compilers
TGD _computing - buéiﬁess applications

We now draw the root of the tree and the first level of
"'nodes - in this case there are two, one each for the letters
S and T. : : ' :

129

Within each major group (of more than one code) in
the list, further subdivisions are made according to the
second letter in the code and the next level of nodes

. are drawn. ' o

(&)
(®)
®

In this half of the tree, there is only one code
beginning with SA and similarly with SC, so the nodes
labelled A and C are end-points. From the other nodes,
. we draw another level of nodes corresponding to the

third and final letter of the codes. For example:

130

Now we at‘cacnea the course names to Lhe e‘1d-p01n‘ts
-of the comple._e tree. T

e economics

/® economics - honours (1lst year)

@ e economics _— Honours (2nd year)

@ economics - honours (3rd year)
@ economics - general

e economics - microeconomics.

@ economics - macroeconomics

monetary

.o
0
o
=
9
=
.
0
)]

I

G mathematles - quantum mechanics

mathematics - honours (1lst year)

mathematics - honours (2nd year)

mathematics = honours (3rd year)

computing - programming
computing - compilers

computing - busipness applications

131

To get the final form of the

tree, we move text to the

left as far as possible. The rule is: "if all the nodes
connected to the right of a particular node, N, have attached
to them text starting with a common string of characters,

then move that common part to the

—-""- honours(

' economics

Q - = general

Frj
1

A) mathematics

mathematics -

e nathematics =

mathematics
honours

v

left one node - to node N".

lst year)

2nd year)

Q ‘3rd year)

microeconomics

.- macroeconomics -

monetary

topology',

c¢uantum mechanics

o

lst year) '-
e 2nd year)

(

\@ 3rd ygar)

- programmix_ig

R -._ computing -
. \© - compillers

132

- business
applications

We can now prepare a card file from the code translation

tree. The cards have the following format:
1 5 11 - ' : 72
v v (A : ' . \%
label| point| data o sequence
A A A A
6 10 73 80

label is not used on every card. If it is present it is a
wnole number punched anywhere within card columns 1 to
5 inclusive and the number musSt not be split by spaces.

'DoinL does not occur on all cards. It is syntactically the
same as label but is punched be;ween columns 6 to 10 .
1nclusive. |

data is a string of characters starting in column 1l." It is
explained below.

" sequence is the (optional) card sequence number. It can be
completely or partially numeric.

e.g.. 0000061060
PGC00350

Each node in the tree has a card in the file (we can
sometimes economize when sub-trees are very similar). The
‘card copresponding to the root node occupies a specific
position in the file; the root of the course code tree, for
example, is the 5th card Cards corresponding to all the
nodes connected 1nmed1ately to the right of any single node
must be consecutive in the file.

The cards thus fall into groups, every member of a group
having the same "parent" node. The groups can be inserted
into.the card file in any arrangement. The first card of a
group must have & label which must be distinct from every other
1label used in the entire file. The user may choose his
Tabel's from the posi itive whole numbers less than 100,000 and
it does not matter in which order the label's occur in the
card file. '

If a node is an end-point in the tree (i.e. if it has no
nodes connected to the right of it), then the point field of
the card is blank and the data Iield contains the text which
1is attached to the node.

If a node is not an end- Doint, then the point field

contains the label of the group of cards representing the nodes

on its right: and the data field is constructed as follows:

133 °

(i) Starting in column 11, the text attached to the
: g s
- node, ' :

(1ii), Immediately after the text (in column 11 if there
is no text) LHe character *,

(iii) Starting in the column after the asterisk, in
' © consecutive columns and terminating in or before
card column 65, the code letters of the nodes
connected immediately to the right in the order:.
' in which tney occur in the card group.

The cards for our sampie coce tree follow:.

" label point data '_ ' : .~ ‘'seaquence
colu mn 11 - - o o column 73
v : : : . v

. 10*ST : ' _ h . 00000050

10 . 20ECONOMICS*ABCF o ' . 00000230
- 30%ABCFG . ' : : 00000240
20 - . ~ 00000250
21 - HONOURS(%B(CD : . 00000260

- uENFRAL _ o 00000270

22 - *ABC . ' , : . 00000280

30 - . MATHEMATICS } o 00000290
MATHEMATICS - TOPOLOGY S 00000300
MATHEMATICS - QUANTUM MECHANICS = . 00000310
21IMATHEMATICS - PONOURS(ABC S 00000320
31COMPUTING*ABCD L ' o 00000330

21 - 1ST YEAR).) ' . 00000340
- 2ND YEAR) _ ' 00000350C

" 3RD YEAR) ' ' ' 00000360

22 - MICROECONOM!CS - 00000370
MACROECONOMICS : 00000380
MONETARY _ : : 00000390

31 . : : : ' " -00000400
PRGGRAMMJNG , . 00000410

COMP1 LERS f 00000420
BUSINESS APPLICATIONS _ _ 00000430

To illustrate how the computer uses this file to- decode
an element, let us decode course SED. -

{1) Search the letters aifter the * on the root card
(00000050) for the 1lst letter of the code - S.
It is the 1lst letter on the card, so we move on
to the 1lst card in the group labelled 10 (card
00000230). ' :

134

'_.(ii>

(4id)

(iv) -

(1ii)

8.1

The text before the * is the first part of the
translation:

ECONOMICS

Search the letters after the * for the 2nd letter -
of the code - B, It is the 2nd in the 1list, so
we go to the 2nd card in the group labelled 20

(i.e., to card 00000260).

Add the text before the * to what we already have:

.ECONOMICS - HONOURS(

.Search the letters after the * for the 3rd letter

the code =~ D. It is the 3rd letter in the
list on the card, so we go to the 3rd card in the
group labelled 21 (i.e. to card 00000360).

Add the text on the card to produce:.

ECONOMICS - HONOURS(3RD YEAR)

There is no * so we have completed the translation.

- .

The cards 00000340, 00000350 and 00000360 form a

shared group.

The econom¢cs course codes are allocatea more
economically than the mathematics and computing
codes. . It would have been better to start the
computing codes with a letter other than T. In
general, the more text thet can be moved to the

“left in the tree, the better, i.e. a hierarchical

notation, although not essential, is preferable.

A sim;lap, buL'usﬁally degenerate, translation
tree is required for the agent codes (#200) Wthﬂ
are also three-letter codes.

. One-Character Codes

Decoding operates in es=en;ially the same way for

one-character codes but is much more like ‘a:straightforward

-search

135

‘-_Exampie :
The code list for .agent reports (#203) might be this:

expected Jan.-Mar.
expected Apr.=June

}expecLed July-Sept.

. expected Oct.-Dec. .
new edition in preparation - no date
reprinting/binding - no date

.not published
‘out of print

. /

oZWHUO WY

The cards required for the code translation file are:

column 11 . . 7. column 73
'1000%ABCDERNO - B 00000030
1000~ EXPECTED JAN.-MAR. -7 00002330
. EXPECTED APR.-JUNE . 00002340
EXPECTED JULY-SEPT. - S 00002350

EXPECTED OCT.-DEC. A 00002360

NEW EDITION IN PREPARATION - NO DATE =~ 00002370

~ REPRINTING/BINDING - NO DATE" . 00002380

'NOT PUBLISHED . 00002390

'.OUT OF PRINT L . : _ 00002400
Example
If we do not wish to use the decoding faéility on, say,
the first character of the item number, we must nevertheless

include a root card (wn;ch 1s blanx in tne three fields label,
"'point and data: :

column 73.
v
00000010

: AssenDllng a Code Lfansla ion Card File

There are five code trees in the f;Le and the root cards
come first as follows:

]
[
n
ct

- root card for. #100 (first letuer) codes;
- root card for #200 codes

root card for #203 codes

- root card for #300 codes

+ poot card for #401l-#439 codes.

Card-
Card
Card
Card
Card

GEWN
1

Trereafter, the groups of c;pds (frém all the trees)
occur in any order Spec1a1 care should be taken over labels.

136

- . . 8.1/8.2

No two cards in the entire file mey have the same label
field and every point field in the file must also be present
as a label field. - . :

Note -

.. It is possible to write a label on a card other than’
the first in a group. If it is referred to on another card
(in the point field), then a part of the group starting at

that' label is being treated as a group (similar to a general
~table in a book classification scheme) in a-different part
of the tree. ' :)

8.2 STORING A CODE TRANSLATION FILE

: - The card file described in the previous section is not:
immediately suitable for use by program PRINT. ' (A program
written to decode using the card file would run very .
inefficiently.) The program called CODEIN converts the
card file into the required form. S '

l. Command

~.label CODEIN cardfile ;

~label is optional and is any name by which the command- ¢an:
be referred. '

CODEIN is the name of the program which converts code
translation data from its card form in cardfile to an
internal form suitable for decoding operations,

" cardfile 'is an input card file name.
2. . Function and Notes

The file cardfile contains information necessary for
decoding coded elements and should be Prepared- according to
the scheme described in section §8.1. CODEIN reads the card
file called cardfile, performs certain checks upon: it and-:
if it is error-free, writes an equivalent internal form: of
it into the file called SYSCODE. The program produces: a-
listing of file cardfile and prints descriptive messagesi if
~any errors or suspected errors are detected. Possible*

errors fall into two categories: '

(1) Format and label errors in cardfile, and:
(i1) TFile definition errors.
There is a limit to the number of labels and label

references that can be managed by CODEIN. - We epregé-it'f

137

in terms 04 the card flelds label and 2011h deflned in’
section &.1. Let L be the number of label's and P be the
number of point's used in cardfile. Then the restriction
is

32xL + 8xP < 16, OOO

lynlcally, P is approximately lg times-L and the
number of label's, L, would then be restrched to about
380 which should be sufficient ror abouu 10 times that
1ber o; codes.

The program CODEIN uses a work file called WORKL.
3. Data Definition Cards

Job control cards are required to define the data-sets
associated with'dafdfile, SYSCODE and WORK1.

{1) "~ ‘cardfile is & card ¢+le, usually on puﬁched cards
"submitted with the job.

(ii) WORKl is a normal work I;lb, which has the same
organlzaulon 2s an internal lellograDhlc file as
far as the operating system is concerned (although
"CODEIN does not use it in the same way). The
space requirement depeﬁas on the number of cards
-1n'caﬁdf1¢e, C. It is, in tracks, the nearest
~whole number above the value of C/92. The cata- .
logued procedure DLFPMCLG provides a suitable
“definition for WORK1 with a maximum capacity

_.correspondlng to C=36, 800 wnich is far in excess
of llkel] requirement.

(iii) . SYSCODE is a file with a special organization.

It can be new or extant. If it is associated
‘with an existing data=set, the previous contents
“are oVerwritten. The space requirement depends

. on the number of cards in cardfile, C.. Let t be
' tne nearest whole number above C/43. Request

SPACE=(TRK, %)
The file must be stored on a disk volume (or other
direct access device) and not on magnetic tape.
The DCB parameter must be used in Lhe DD s;atenent
for a new data-set as ;ollows '

'DCB=(RECFM=F,LRECL=SG,DSORQ=DA)

138 .

. The ca talogued procedure DLFPMCLG has" fhe'follbw1ng
definition of SYSCODL whlch is de51gned for its use
.by PRINT: : i

-~ //SYSCODE DD DSN=DUL0O1LCO,UNIT=231k,VOL=SER=UNEO4O,
// -~ DISP=SHR,DCB=(RECFM=F,LRECL=66,DSORG=DA)

Note that the DCB parameter is provided, but it will
be necessary to override some of the other information

when using CODEIN. Parameters can be overridden
1hd¢v1duallj uS¢ng a card beclnﬁlng :

//G.SYSCODE DD

placed before all the other G-step DD stauements in -
the]OD : :

-If the data-set is new, we must code DISP (NEW, KEEP)
and give & space parameter, _

E.g._ '//G.SYSCODE DD D!Sp= (N"W,KEEP) SPACE (IRK 8)

" If the data-set is extant, we must code DISP=0LD
(because Lne job will change it and it cannot be
shared). - :

“E.g. //G.SYSCODE DD DISP=0LD
.The user may have more than one code translation file.
. He will need to cnaﬁge either the data-sét name or the -

volume or both i1f he wishes +o use one not defined in
the ca;a¢ogued pfocedhre i

E.g. - //G.SYSCODE DD DSN= DULO2ABC,DISP=0LD

Note that the corpespondlné change for the benefit of
program PRINT, which merely reads the file, is:

//G.SYSCODE DD DSN=DULO2ABC .
4. Computer Time

CODEIN requires 1 second of centrdl processor time for
every 94 cards in cardfile or, expressed another way,

CPU .time estimate = 0.0107 x number of éards in cardfile.
5. .Completion Codes
(i) Completion code k ¢f there is a sﬁspected error in

SVSCODE will be WPlLteﬁ

139

8.2/8.3

(ii) Completion code 8 if there are errors in cardfile
‘or if any of the .files are not properly defined.
SYSCODE will not be successfully written.

S (iii) Otherwisé,_the completion code will be set to O.

8.3 PRINTING AN INDEX OF CODES
- . There is a program in the LFP System called COIND which
prints an index of the course codes (#401) used in a parti-
cular file with their translations. R '
1. Command
~ "~ label COIND intfile ;

" ‘label is optional and is any name by which the command
can be referred. :

'COIND is the name of the program which produces an index
of the course codes occurring in file intfile.

Jdintfile is an input internal file name. The file is
. assumed to be in one of the course code orders.

2. Function and Notes

COIND reads through file intfile extractlng all the

. different course codes (#40l) used in the file (which is

assumed to be sorted using one of the sequencing routines
" SEQU467, SEQU76 or SEQuUBE). The program decodes the
elements using file SYSCODE and prints codes and transla-
tions side by side in two columns. The list of courses
is printed twice; one list is in alphabetical order of
code, and Lne oLHep is in alphabet cal order of course name. .

.The file SYSCOD is of the type Droduced by progrqm'
fCODuL\ (see section 8.2) and is used in Lhe same way as by
PRINT for decoding elements.

It is operationally efficient to run COIND when . . o
catalogues or lists in course order are being produced, |
“because a sorted file will already be available. For '

example, the ;ollow1ng command might be placed after the
SORT -command in program CCAT' of section. 7.5:

COIND COURSE: ;

;uo

3. Data Definition Cards

Job control cards are required to define data-sets for
the files intfile and SYSCODE.

(i) .intfile is an input internal file which has, of
course, been previously created.
SYSCODE must be defined on a special data-set as

™
-
e
s

created by a previous run of CODEIN (see section
8.2). . The catalogued p”oceauﬂe provides a
definition for SYSCODE which is suitable so long
as the data-set name. and volume are correct.

4. Computer Time

The central processor time requir red by COIND should not
exceed

0. OOZxI + 0.0074xC seCOﬂds,

where I is the number of items and C is the number of
nt

1S
different.#hOl codes in intfile

If, for exampie, we have employed 500 codes in a file
LO OOO 1tens, it will take no more tnaﬂ :

O
Hh

0.002x10,000+0.0074x5C0 = 23.7 eeconds

(o]
Fh

CPU time to execute COIND.
5. Completion Codes

(i) Completion code 4 if there ‘are no codes (#401)
in intfile. : :

(ii) Coleeulo“ code 8 if either intfile or SY'SCODE
is not properly defined. -

(i1ii) Otherwise, the completion code will be: 0.

1K1

"FILE UTILITY

PROGRAMS

In this final chapter, we describe the functions of the: |
. five remaining programs in the LFP System. = Two of them are
. designed to work on bibliographic files and the other three
do not require their files to have any particular type of
"content. - ' i

(i) TFPUNCH reads a bibliographic file in internal
format and produces the externally fornauted
IGQULVQleuu in a card file.

(ii) BATCH reads an external bibliographic file

' - augmented by certain instructions for generating
extra items and produces a new external (card)
file, which is suitable for input to program
FINPUT.

(1iii) 1IMAGE copies a card file. It can be used to
~store a card file, such &s a control file for
PRINT ‘or even a program of commands, on a disk
.volume. The cards can be numbered by IMAGE or
numbers can be removed. The contents of the
cards are immaterial. : :

.(iv) CDLIST lists a card file on the printer.
(v) RUNOFF makes copies of printout produced by
other jobs. We can store a printout on a
disk:instead of printing it and then use RUNOFF

“to ‘copy it to the ppinter as many times as.
required.

g,1 FILE CONVERSION (INTERNAL TO EXTERNAL FORMAT) .
1. Command

© label FPUNCH intfile extfile :;

~label is optional and is any name by which Lne command can
. be referred.

FPUNCH is the name of the program which reads an internal - ' |
'le (ihtfiTe) conveﬂLs iLS itens to the external - |

'intfile_is “the name of an input internal file.

“extfile is the name of an output card file which w1ll
contain items in external format. °

132

"and writes ‘the items, externally formatted, into card file
~extfile. The output card file can be on a disk volume or

a magnetic tape or punched by the computer on' cards. Each
external item starts in column 1 of a new card (or 80-byte
recorda) and the last eight columns (73-80) are automatically
- filled with an 8-digit card number (starting at 00000010
and incrementing by 10). The program will use as many
. cards as are necessary to complete the item.

As regards the distinction between the normal and
updating formats, the equivalence between the internal
and external files is exact. We illustrate this with an
example. The original external item as read by FINPUT is:

#100 SO0731E #102 BE #300 HE #L01 MAXE #500 1962£
#6C1 IVERSON K.E.£ #701 A PROGRAMMING LANGUAGEE #900 WILEYE =

If the internal item produced by FINPUT were subjected to.
- the treatment of program FPUNCH, the external item would
come out unchanged. If, however, the internal item, which
1s in updating format, were first converted by UPDATE into
"normal format, then FPUNCH would produce the item:

#100 SO0731% #102 BE #200 £ #201 § #202 £ #203 £ #300 HE
#301 & #302 £ #401 MAXE #500 1962& #601 IVERSON K.E.E
- #701 A PROGRAMMING LANGUAGEE #900 WILEYE = '

Note that there is a difference between the represen-
tation of the ranges of elements #LOl to #499, #601 to #699,
#701 to #799, #801 to #899 and all the other elements in the -
"blank" cases. The former are "absent" (for economy of
storage) and the latter are null.

The file names intfile and extfile must be different
because they represent different types of file. '

3. Data Definition Cards

Job control cards are required to define the data-sets
~associlated with intfile and extfile. : :
(i) intfile is an input internal file which has been
-created previously.
(ii) ~extfile is an output card file. The data-set
' can be an existing one which previously held a
‘card file and will now be overwritten, or it can

be a new one or the card punch. The ‘card punch
is used by including a DD card as: :

//G.CARDS DD SYSOUT=B

©o.aus

'9.1/9.2

The space requirement for storing a card file.on .
a 2314 disk volume is 1 track for every 70 cards
in the file. The user must therefore estimate
the number of cards (80-byte records) which are
to be produced and that will depend upon how he
has used the elements within the items.- In-
.Durham University, an item as formatted by FPUNCH
typically requires 3 cards. We can discover

' exdcetly how many cards will be producea by
executing the commaﬁd

FPUNCH LBK DUMMY;

'The output card file will be lost (DUMMY) and
therefore requires no space on a disk, but the
program informs us how.many cards it has formatted.

b, Compufer Time
The. following formula will give an estimate of the
central processor time required in terms of the number of
items in the file (I) and the number of cards or 80-byte
ﬂecords produced (C. : : -
CPU time = 0.0041xI + 0.0126xC seconds

" If, for example, the file contains 500 '“ems and there are
3 cards- per item in the externally formatted file, then

,'i a'soo and, C =1 500,
.80 Lhe CPU time is esL;naLed to be
'0.0041 x 500 + 0.0126 x 1500 = 20.95 seconds.
5. 'Complet¢on Codes | |

(1) -Completlon coce'8 if the files are not properly
defined. : :

-(ii) 'Completlon code 12 if an item in intfile cannot
be read. This is not usually the fault.of the
user. ' ' '

(iii) Otherwise the completion code will be O.

9.2 AUGMENTED EXTERNAL FILES
Section 3.4 contains the rules for constructing items

for an external file. We now recapitulate the syntax of
f'le in external LOﬂmat. : :

4y

(1)

(ii)

(iv)

¢

An element is punched:
tag text &

tag is one of the usual element numbers (see
figure 3.2).

E.g. #302

Spaces are allowed between the # and the
"number, but not within the number.

is the value of the element. Any sequence
of characters not including #, £ or * is
allowed. Spaces at the beglnning and end
of the text will be ignored. . _ §

ct
o -
[V
ot

£ is the terminating character.

An item consists of one or more elements, optionally
separated by spaces. The last element is.followed

by a *, © An item may contain no two elements with

the same‘tag and it must contain an item number
(element #100). The elements may appear in any
order in the item.

An item is called a cdeletion item if, in the

SynLaCt¢C position o; an elemenu,'it contains
eluner ' P

DELETE
or DELETE &£

An external file is a sequence of one.or more.
items, as defined above, optionally w1th spaces
between them.

This is the form of file read by FINPUL and written by

FPUNCH.

We shall define a type of card file called an

-augmented external file by adding to the above syntax, and
-1t will be suitable for input to program BATCH (see section
9.3) but not to program FINPUT.

An augmented external rlle consists of the following
unlts arranged in any sequence.

(1)
(iid

(iii)

Normal items as occur in an external file.

Selection statements, which represent groups

of primitive 1tens, consisting of item numbers

only.

"Batch" items, which snec1¢j elements common
to a number of items in the file.

145

The Selection Statement

The usual syntax notation is used - brackets ([1)
enclose optional clauses and alternatives are stacked one

above the other with a brace (}) on their rlgh ~ The
prototype selection statement is: .
ALL

SELECT [FILE fname] |ITEMS start

[start] TO stop

fname is the name of ar internal file.
stapt is elther .an tten number or the. word FI1RST.

" stop 1is elthef an item number (aTDnaDetlcally/ﬁunerlcally
greater than start if that is spe01¢1ed as an item

number) or tle word LAST.

"select is a 'selection spec1t1catloﬁ with the .syntax
described .in section U.k. .select should be enclosed
in quotes if it contains any of the characters:
space, comma,-#, £, *. '

There are three OPLlonal clauses in the statemeﬁt called
the "file" clause, the "item" clause and the "if" clause.

If the file clause is omitted, fname is assumed to be
the same as the fname glven or assumed in the previous.
selection statement in the file. Note that the first
selection statement in the augﬂented external file must have
a file clause. :

f the item clatse is om;ttec Irom the statement, the.
t el ause ' : :

lTEM§ ALL

is assumed.

-In?the absence of an expiicit if clausé;
. g 1! | . .

is assumed. .

"'fname to the last.

Examéles
. SELECT FILE LBK IF- '#300=A" =
"SELECT ITEMS 51200 TO D1299 # |
SELECT FILE SBK |TEMS D2000 IF '#102=By" =*
functiqn of the Seleétion Statement

The selection statement stands for a list of items, each
-consisting solely of an item number: '

#100 itemno £ =*

There is one such item corresponding to each item in the
internal file fname which both (a) has an item number in the
range specified in the item clause and (b) satisfies the selec~-
tion criterion in the if clause. ~ itemno is the same as the
#100 element of the corresponding item in fname. The absence
of the item or if clause implies its irrelevance in choosing
items for inclusion in the list represented by the selection §
statement. (That is what is meant by the default clauses, of
course.) We must now define how the range of item numbers is
obtained from the item clause. o '

_ Firstly, file fname must be ih item number (#100)'order.
ITEMS ALL and ITEMS FIRST TO LAST and clauses which imply one
of these mean that the range is from the first item number in

ITEMS start TO stop. The range is all the item numbers in
“fname from start to stop, inclusive of start and stop if they
are, respectively, in fname. (It is not.an error if either
- start or stop i1s not the number of any item in fname.)

Batch Itemé

" A batch item is syntactiéally_like a normal item but the
#100 -element is replaced by the word '

BATCH
Eﬁamples' N
BATCH #300 AS #200 COME =
BATCH DELETE *

" "No batch item should have a #100 element.

147

runct* n of Batcb items

THe whole 1tem, apart from the word BATCH, is to be
. appended to every normal item (including those implied

by selection statements) after this DatCh 1tem aﬁd before
the next (if there is one). : : o

The batch item which simply‘nullifies_the effect of
the previous one without itself-having any effect is: |

BATCH *
Examples of Augmented External Files
(i) . Assume that the file KBK contains items numbered
consecutively starting with DO0OO1. We show first
an annotated augmented external file and then the

normal external .file which it represents.

The augmented file:

#160 D0O317€ #300 HE * . = normal item
BATCH #102 Jg = ". -~ application of batch

#100 D05138 = item

SELECT FILE KBK ITEMS D0732 TO D0735 * -
#100 D09158 #302 2, 50£ * _
BATCH #102 BE * o - appllcctlon of batch

.#100 D0916§ = o - - item

" SELECT. I TEMS D0918 TO0-D0921 =
The nqrmal file: ‘

#100 D03178 #300 HE +
#100 D0513g #102 J&
#100 D0732& #102 Jg *
- #100 D0733¢ #102 Jg§ :
#100 DO73Lg #102 J&
#100 D0735& #102 .J&
#100 D0915% #302 2.5
#100 -D09168 #102 BE
#100 D0918& #102 BE&
~-#100 D0919%& #102 BE
#100 D0S20% #102 BE
#100 D0921£ #102 BE

% % F X X O ¥ K ¥ % ¥ N
. t] .
) o=
[
o
N
C.
¢n
*

(ii) Suppose that the status (#300) H means "withdrawn".
' The following augmented external file can be.used to
generate an updating file to remove the records of
" withdrawn material from the file SBK: :

BATCH DELETE S
SELECT FILE SBK IF '"#300=H' *

148

9,3 - THﬁ BATCH PROGRAM

The .LFP System program called BATCH will read a file in
augmented external format (see previous section) and expand
it into the normal external file which it represents - a file
suitable for input to the program FINPUT (section 4.1).

1. Command

label BATCH augfile column switch extfile,;,

label is optional and is any name by which the command
' can be referred. : :

- BATCH is the name of the program which reads a card file
(augfile) in augnented external format and writes
the ¢1le (extfile) in no‘mal external format.

augfile is the name of an 1npu; caﬂd ¢1le contalnlng an
augmented external file.

columh is a numbed not exceeding 80. It specifies the
last column from which data is to be taken (e.g. 80
if the whole card in aungle is read, 72 if columns
73- 80 are ignored as in the case of numbered cards).

switch is either ON, if a prlnted copy of the card file

~augfile is requ;red or OFF if the printout is to be.
suppressed. - '

extfile is the name of an output card file wh;ch w1ll
conLaln items in exrernal format.

2. Function and Notes

: Program BATCH reads the card file augfile containing
augmented external items and applies the batch items and
selection statements to produce a file in normal external
format, which it WPlLeS into tne card Ille'eXfflle. The
gare given in section 9.2. The items are written to extfile
in the same format as program FPUNCH uses. Each item starts
in. column 1 of a new card (or 80-byte record) and columns 73
to 80 inclusive are used for a card number (starting at
00000010 and incrementing by 10).

Items in augfile do not receive the full checking that
FINPUT gives them, but the syntax 1s checked and messages
are printed to 1nd1caue errors and warn -of possible errors.
"If an error is detected in a normal item, that item is skipped
and proce531ng continues with- the next one. If, however, an
error is found in a batch item, the run is Lerminated immedi-
ately because such errors would propagate through the file.

149

The file ﬁqmes augrlle and extllle must be dlfiereﬁu.
cards in the jOb and extflle a temporary flle on a disk -
.volume which is read by program FINPUT .straightaway. - Note
that if augllle contains no batch items or selection state-
ments (i.e. 1t is an ordinary external file), the items in
“extfile will be identical 1o those in augflle;

3. Data-Definition Cards-

Job cont trol Cards are PQQul“ed to de;1ne tne data-sets

'mentloned 1n tne flle claases of selection statements in
augfile.
._D_—_

(i) augjlle is an 1nput Card file whlch can be on punched
- cards submitted with the job or in a prev1ously
created data-set on a disk volume or magnetic tape.

(ii) .extfile is an output card file. The data-set ean
" be a previously created one, in which case it is
overwritten, or it can be & new one, or it can be

punched onto cards.. Space must be allocated if it

is a disk data-set (70 cards per track). '

' (iii) The internal files from which item numbers are _ |
: : extracted must be data-sets created previous to '
the execution of the BATCH command.

4. Computer Time

: Tne cenLral processor time requlred by BATC can be-
‘estimated ;ron the following formula: -

O.O&xCI +.0. OO78xC + 0.0014xI seconds

‘where C; = number of cards (or 80 Dyte records) read from
' e ' “augfile
C, = number: of cards (or 80 -byte records) written into
. o extfile
I = number of items read f“on 1n;er1al files referred
' ~ " " to in SELECT's
5. Completion Codes ,

(i) - Completion code 4 is set in cases of syntax error
when either corrective action can be taken or a
normal item can Dbe 1gnopean

Completion code 8-1is set if either card file is
not properly defined, in which case the execuuloﬁ
is terminated, or a batch item is found to be in
_error (execution is terminated), or various syntax
~and file definition errors occur in a selection
statement, in which case the statement is ignored.

™
e
e
s’

150

(iii) “Completion code 12 is set if there is a format
error in an internal file mentioned in a selection
statement. This 1s not usually the fault of the
user. Processing proceeds with the next item
after the selection statement, but the contents of
extfile will be most unreliable.

(iv) Otherwise, the completion code is set to. 0.
5. Example - An Ordering Program

The 'LTP System has no facilities for -accounting and
therefore it is not currently feasible to use it for full
scale ordering. . However, orders can be printed automaulcally
to be sent to the agents and this example shows how it is
. done. We assume that these two status codes (#300) are

used in the main I’le LBK:

A meaning "to be ordered"
C ' meaning "on order"

LBK is assumed to be in item number (#100) order. We

. reguire a program which will print an order for each item
~in LBX with the status A and then cnange the status to C.
We doc not wish to make out items by hand for the updating
process.

We shall have to make estimates based on the size of

LBK and the number of items to be ordered. Let file LBK

.. contain 3,000 items. Estimates will allow for up to 250
-items with status A. T '

'The Program

ORDER PROGRAM; : '
FCOPY LBK '#300=A' TEMP /'r TEMP CONTAINS THE
ITEMS TO BE ORDERED =/;
BATCH SYSIN 80 ON AMEND /= SYSlN REFERS T0 TEMP,
: WHICH IS STILL-IN ITEM NUMBER ORDER =*/;
SORT TEMP TEMP SEQ200 /~* AGENT/PUBLISHER ORDER */;
OUT PRINT CONTROL 72; :

IF OUTYL; :
GOTO EX!T /* SK!P UPDATE I|F PRINT NO GOOD =/

FINPUT AMEND 72 /% RECORDS ARE NUMBERED */ ON TEMP
/* CAN USE TEMP AGA!N NOW */ Lenett
UPDAIE LBK TEMP LBK OFF; '
EXIT END;

We define file SYSIV as follows:

//G.SYSIN DD * | -
BATCH #300 Cg& #201 7/12/708 =

SELECT FILE TEMP =

/% L

151

9.3/9.4

¥ TEMP is a Lempo“apy file which will contadin at most 250
5 full ;tens, so allOC te it SPACE= (TRK (5, 1))

AMEND is a temporary file to take at most 250 cards (one .
for each short amendment item); we allocate it SPACE=(TRK(4,1)).

The other files which require derlnltlon are LBK, WORK1l
(for SORT and UPDATE), WORK2, WORK3 and WORKH (for SOQT)

" CONTROL (defined below) and SYSCODb.

- //G.CONTROL DD = :
" LIST FILE TEMP; /%PRINT- ORDERS*/
SPACE '5; . :
PAGE 6, #200 DECODED /*AGENT*/
~H 10, 'DURHAM Ule:RSlTY LIBRARY?;
i2, (#100 19, #TODAY); - o
17,#601, CONT IN 19, S oP IN 66 /*AUI HOR*/"
SKIiP; '
2;,#701 CONT IN 23,STOP IN 06 /*TlTLE*/ T
21,(#900,2,#500),CONT IN 23, STOP IN 66, /*PUBLISHER,DATE*/
72,#302; /*PRiCE*/ ' ' ' '
END; : .
/%

The. reader may wish to work out wnat the orders w1ll look
1¢ke, and how many lines of OULPLt to expect for 250 orders.

An. est¢nate for the CPU ime PQQulPed for 250 orders can
.be made:

BATCH CPU ‘time
2.”‘) s) !

-t

| CPU,fime'= FCOPY CPU time
o (6

+ SORT CPU time + PRINT CPU time
(0.005%x250x%8 s)

4-

.+ FINPUT CPU time + UPDATE CPU time
(15 - 0.5+0.001x3000+0. 05x250)

-+

= Capprox.) 55 seconds.

The job-class will certainly have to be-C. .

9.4 COPYING CARD FILES
1. Command

"labél IMAGE infile column outfile switch ; -

" label is optional and is any name Dy which the command can
be rereﬂred :

152

IMAGE is the name of the LFP System’ program which copies the
. data from one card f;le '(infile) to another .(outfile).

infile is-an input card file name.

"column is a number not exceeding 80. Characters are copied
from columns 1l to column of file infile.

outfile is an output card file name.
-SWlLCh is either ON or OFF. ~If it is ON, columns 73 to 80

inclusive are used for card sequence numbers and the
data from 1n¢11e is placed in columns 1l to 72 of the

. cards in outfile. If switch is OFF, all 80 columns .
of the cards in outfile are used. ThlS parameter can

be used independently of column.

2. Function and Notes
- ag

- Program IMAGE copies the characters from the field,
deteﬂnlned Dy'dd'umn of tne cards (or 80 byte records) in

columns. - All the characrers in columns l to column of the

- input cards (or records) will be written into the output
records and there is not necessarily a one LO one corres-

pondence of cards in the two files. '

The'file namesﬂinfile and 0u+f¢ie must be di fferent.

The effects of four conmonly used comblnatlons of
parareters are given below. .

(i) IMAGE INPUT 80 OUTPUT OFFV

' This command Droduces in OUTPUT an exact copy of
thé cards in INPUT. _

(ii) IMAGE INPUT 80 OUTPUT ON;
All the characters -in INPUT are written in groups
of 72 to OUTPUT and the output cards are numbered.

There will be 11% more cards in OUTDUT tnan 1n
. INPUT.

{iii) IMAGE INPUT 72 OUTPUT OFF;
‘This is the reverse process oI the. prev1ous example.
The last elgnt columns of the cards in INPUT are-

eliminated in the COpY. There w1ll be 10% fewer
cards in OUTPUT than in IhPUT

(iv) IMAGE INPUT 72 OUTPUT ON;

.File OUTPUT will contain numbered cards containing

153

exact COpleS of columns 1 to 72 of the cards
-in INPUT. We can use this command to number
cards (or records) when we know that columns
73 to 80 are free.

The IMAGE program can be used to manipulate external
files - to store them on disk or to number them - and it
provides a simple way to store programs of commands and
print-control statements on a disk so that reference can
be made to them by other jobs. C

3. Data Definition Cards

Job control cards are required to define the data-sets

~assoclated with files 1nf11e and outfile.

(1) infile is an input card file and should either be
held in & pwev10usly created data-set on a disk
volume or magnetic tape or be submitted with the

job on cards.

(ii) " outfile is an output card file. This can be
punched onto real cards or be stored in a data-set
on & disk volume, for instance. The . space -
requirement is, as usual, 1 track for every 70

- card records. The data—seL can be either a new
one or an extant one in which case the prev1ous
contents are overwritten.

4, Computer Time
To_ob**ir an estlmate of the CPU time requlred by IMAGE,
(i) allow 1 second for every [, OOO cards in infile, -

(ii) if the number of cards in outfile will differ
from that in infile, increase the time by 10%.

(£ii) - if switch is ON, i.e. the records in outfile
are to be numbered, double the time allowance.

E.g. _if file INPUT contains 10,000 card records, the
command

IMAGE INPUT 80 GCUTPUT ON;
,should be allowed
(10 + 10% of 10) x 2 seconds

i.e. 22 secqnds

154

5. Completion Codes.

(1) Completion code 8 is set if either file is not
properly defined. No copying will be done.’

(ii) Otherwise, the completion code will be 0.
"~ 6. . Example - Using Stored Programs

: We give two jobs in this example. The first uses IMAGE-
_to store a program of commands and a prlnu-control file, and
the second uses the two stored card files. At the end of
section 9.3 the major constituents of a job to print orders
were given and it is clearly a rather complicated job.

The following job (DULOlEBA) stores the program called
. ORDER and the print-control statements in two separate data-
sets on a disk volume. Comments have been removed for
compactness. The stored versions are numbered.

//DULCLEGA JOB (0003,C105),L]1BRARY
// EXEC DLFPMCLG
//M.SYSIN DD =
STORE PROGRAM;
- IMAGE IN1 72 PROGF ON /*STORE PROGRAMx/;
IMAGE IN2 72 PRINTF ON /+*STORE PRINT-CONTROL
STATEMENTS %/ ;

END;
[+
_ //G.PROGF DD DSN=DULO1ORP,UNIT=2314,V0L=SER=UNEOLO,
// DISP=(NEW,KEEP),SPACE=(TRK, 1)
//u PRINTF DD DSN= DULOlORQ,UNl|—231h VOL=SER= UNEOQO
// DISP=(NEW,KEEP),SPACE= (TRK 1) :
//G.IN1 DD = .

ORDER PROG;
FCOPY- LBK '#300=A" TEMP;
- BATCH SYSIN 80 ON AMEND;
SORT TEMP TEMP SEQ200;
OUT PRINT CONTROL 72;
IF OUT>L;
GOTO EXIT; :
FINPUT AMEND 72 ON TEMP,' ', ' ', C,' ';
: UPDATE LBK TEMP LBK OFF;
EXIT END;.
/%
//G.IN2 DD = | |
LIST FILE TEMP; SPACE 5; P 6, #200 DECODED,-
H 10, '"DURHAM URIVERSITY LIBRARY"
: 12,(*100 19,#TODAY);
17,#601, CONT IN 18, STOP IN 66;
S; 2¢,“701 CONT IN 23, STOP IN 66;
21,(#900,2, wSOO) CONT IN 23,STOP IN 66 72,#302;.-
END . .

155

9.4/9.5

Now we can use the files in our jobs to produce orders.

//DULO1E6B JOB (0012,C105,,2),LIBRARY,CLASS=C

// EXEC DLFPMCLG,TIME.G=(3,0) ' '
//M.SYSIN DD DSN=DULO1ORP,UNIT=231kL,VO0L= SER= UNEOLO,DISP= SHR

".//G.WORKZ DD UNIT=2314;VOL=SER=UNE020,SPACE=(TRK, (5 1))

- //G.WORK3 DD UNlT=23lu,VOL=SER=UNE030,SPACE=(TRK,(5,1))
//G.WORKY4 DD UNlT=2314,VOL=SER=UNEO&0,SPACE=(TRK,(5,1))
//G.TEMP DD UNIT=2314,VOL=SER=UNES99,SPACE=(TRK, (5,1))
//G.AMEND DD UNIT=231L4,VOL=SER=UNE999,SPACE= (TRK, (4,1)) "

- //G.LBK DD DSN=DULOI1LBK,UNIT=231L,VOL=SER= UNEO40,DISP=0LD _

- //G.CONTROL DD DSN= DULO;ORQ, NIT 2314 VOL SER UNEOMO DISP SHR

//G.SYSIN DD =* .

BATCH #300 C& #201 7/12/70£ *
. SELECT FILE TEMP «* '

71/
‘Note _

: Data~sets DULOLORP and DULOLORQ contain 10 and 7 card

. records respectively. They have each been allocated the
smallest possible space - 1 track - and even that is far too
large, since it has a capacity of 70 cards. If it is

required to store many very small card files (of the order
of 10 cards per file) a "library" data-set can be created on
a disk volumé with the partitioned organization which enables
files to occupy less than a track and yet not waste the
remainder. IMAGE can be ‘used tc add new members to this’

- library. : - :

9.5 PRINTING CAPD FIL&S
1. Conmend |
" label CDL!ST'cardfile

~label 1s optional and is any name Dy wulcﬁ the command can be
referrea.

- CDLIST 1is tne name of the procran wnlch prlnus out the contents .
of the card file cardiile.

" cardfile is an input card file name.:
2. Function

 CDLIST reads the cards (or 80- Dyte records) in the card
: ;l;e'dafdflle and prlnus ou“ their cowuen;s, one card per line.

156"

9.5/9.6

+3.. Data Definition Card

A job control card is required for the input card file
cardfile. It is either a previously created data-set on a
. dIsk volume or magnetic tape or a deck of cards contained.

in the job. :

4. Computer Time

The central processor time requlped by . .CDLIST is
-approximately 2 seconds for every 1,000 cards (records) 1n

cardfile.
5. Completion Codes
(i) Completion code 4 is never set by CDLIST.

(ii) Completion code 8 is set if cardfile is not
properly defined. .No list will be produced.

(iii) Otherwise, the completion code will be O.

9.% STORING PRINTOUTS

This section is not, as might be thought from the title,
‘concerned with the storage in the library of the vast piles
of paper obtained from the computer's printer over the months.
- It is concerned with a method of sav1ng processor time in the
‘production of more than one copy of a DrlntouL.

All printing that is done by the LFP System programs is
achleved by sending line-records to a file called SYSPRINT,
‘which is normally associated with the printer by a DD card in .
- the ‘catalogued procedure DLFPMCLG. Now, instead of printing
.this file, we can store it on a disk and then, in a subsequent

job, run off copies of the file 'on the printer. -

Notes

(i) If we wish to store a printout on a disk volume -
(or magnetic tape), we must store all the output
from Lbe final step of the job (step G). None .
of 1t will be printed at the time.

(ii) Each cogy of the output produced from a previously
o stored prlnuer file will be the compleue job- sLep
printout of the program that stored it. -

We show how to store a printer file through an example.

//DULO1E96 JOB (0010,C105) ,LIBRARY,CLASS=C
// EXEC DL“PNCLG TIML G=(5,0)
//M.SYSIN DD *

. program of commands (to produce
an author catalogue, for example)

WE

//G.SYSPRINT DD DSN=DULO1PRT ,UNIT=2314,VOL=SER=UNEO4O,
// DISP=(NEW,KEEP), SPACE (TRK, (60 5)),
// DCB= (RECFM VBA, LRECL 125, BLKSIZE 1254)

//G.WORK2 Db

etcetera

//

The DD statement beginning //G.SYSPRINT overrides the
statement in the catalogued procedure. With ‘the suggested
. DCB parameter, a track on the disk will hold at least 50
lines (full 120 character records). If, for example, it
is known that the average length of the lines will be 90
characters, the track capacity will increase to 65 lines.

The LFP System program RUNOFF will read a printer file
(referred to by a name other than SYSPRINT) and copy it to
file SYSPRINT as many times as required. It should be
remembered that there are other ways of producing multiple
copies of printout.

(i) Use printer stationery with carbon paper (see
' operations staff).

(ii) Request more than one copy of the whole job's
output (see operations stafi).

(iii) Run the job more than once.

A combination of methods may be advantageous for large
printing tasks. If, for example, we have to produce 30
coples of an author cqtalogue, each 4,000 lines long, we
might print the list 10 times using trlple forms. 40,000
lines would still be considered a very large printing job
on & university machine and the operational staff might prefer
that the job be divided into two of 20,000 lines. The method
would therefore be to submit three jobs:

(i) Produce formatted author catalogue in a printer
file on a disk volume.

158

(ii) Print 5 copies on triple forms using-ﬁrogram
~ RUNOEF. ' -

I-(iii) -Print 5 copies on triple forms using program §~
RUNOFF and delete the stored printer file. :

Program RUNOEF

1. Command

label RUNOFF pfile copies

label is optional and is any name by which the command can
be referred.

 RUNOFF. is the name of the Drogram which produces copies .
for the printer of the printout stored in pfile.

- Exlle is the name of an input file containing properly
formatted lines for prlntlng It must be dif ferent

from SYSPRINL.
, copies is any p081t1ve whole number.
2. Function
RUNOFF copies the lﬁne-recordS'in'Pfigg to the standard

,.fprlnLer file, SYSPRINT, copies times. The beginning and
. end of each copy are mapked STA?T and END.

3. Data Dcflnl 1on Cafd

A job control statement is required to define file
"pfile, which should be contained in a previously created
data-set on a disk or magnetic tape. The data-set should

have originally been written via tne ;11e SYSPRINT in-a
prev1ous job. -

L. Compu;er Time.

: The central processor time required by RUNOFF is
- approximately 1 second for every 500 llnes prlﬂLeq. Expressed
another way, that is .

C. 002 X number of llne records in P. file x number of
copies printed

5. Completion Codes
(i). CompleLlon code' 4 is never set by program RUNOFF.

(ii)'wCompleLlon code 8 is set 1f file D¢11e is not
properly deFlned :

(iii) Otherwise, the completion code will be O.

159 .

COMPUTING TECHNICAL ASPECTS k|

10.1 PROGRAMMING CONSIDERATIONS

The Library File Processing System was implemented in
PL/1 (Programming Language One), which the programmer was -
able to use with speed. Full listings of the programs and
other technical documentation are contained in [125], which
accompanies this thesis as supplementary material. Computer
programs for library processes typlca¢ly perform the
following types of operation:

(i) Input and Outyut. Records are read from magnetic
tapes, disks and punched cards, and written to
tapes, disks and printers, for example. In the
majority of applications files are sequential even
though direct access storage devices are becoming

quite common. In multiprogramming and time-
sharing operating systems, direct access facilities
are essential even if every user is proce531ng his
files sequentially.

(ii) Avrithmetic. On the one hand statistical and
accounting calculations are required in some
applications and on the other hand the data
structures which one creates imply the use of
address computations.

(iii) String handling. The simplest operations in
this category are those of breaking fields out
of records when the substring boundaries are
obtainable arithmetically (from data in the
record itself, for instance), and joining strings
together as for output. More complex are the
processes of 1dent1fy11g patterns of characters
in strings and extracting, replacing or deleting
substrings so defined. One often wishes to
separate the words in a natural sentence, for
instance.

(iv) Interpretation. The user's requirements are
generqlly commuﬁlcatec to the application program
in a code which is oriented, in some degree,
towards the user, and must be translated before
they can "drive" the program. This is largely
a matter of manipulating erlngs, lists, tables
and other data structures.

All of these facets are represented in the LFP System
programmlng and there follows a brief discussion of the
suitability.of the programming 1aﬁcuage and operating system
used (IBM System/360 Operating System). A full,
implementation-specific, description of PL/1 is given in

160

10.1

IBM's PL/1 Reference Manualll22] and Programmer's Guide[121]
and a summary, highlighting the major features of the language
(and glowing with praise for it) is included in Sammet[1301].

A user's introduction to 360/0S is available in [117,1181].

. The data transmission facilities of PL/1 are comprehensive,
-providing for "record" and "stream" input/output. "Record"
statements permit the transference of complete logical records
between two levels of storage (core and disk, for example).
Statements are very easy to construct and the programmer need
not concern himself with the implementation of buffering and
blocking. Records can be variable in length and files may be
sequential, direct or indexed sequential. Record input/output
in PL/1 is quite close to the macros provided in 360/0S for the
assembler programmer. "Stream" files as handled by the PL/1
GET and PUT statements are sequential files.in which the records
are normally regarded as being joined together in a continuous
string. Fields whose boundaries do not necessarily match those
of the records can be read and written and data can be refor-
matted and converted. On the whole, the PL/1 input and output
repertoire is adequate and useful. It is interesting to note
that, in a serials system at Laval.University Library programmed
predominantly in Assembly language, PL/1 was used for I/0 [133].
The weak point for this application. is stream input. For the
initial input of bibliographic data, stream input is desirable,
but not if it is restricted, as in PL/1l, either to formatted .
‘data or to the retrieval of numerical fields or strings enclosed
by quotes. It is therefore necessary to write rather ungainly
procedures to separate the words and symbols in the input.

The System/360 Operating System file policy is that they
should be accessed.in a device-independent manner, i.e. a program
‘can be written without knowing in advance .which devices will
contain it's files. Each file therefore has two levels of
identification, one within the program and one, given when the
program is run, to provide. the physical description necessary

to locate the actual records. 360/0S has an intricate Job
Control Language[119], most of which is concerned with the latter
aspect of file definition. The range of facilities is very

wide and the computer user is assumed to wish for a fine degree
of control. The intended user of the LFP System should not be
expected to become a computer programmer, and as much as possible
of the control and .description of files is embedded in the
programs. Nevertheless, much of the effort of preparing a

job goes .into writing the DD statements for the files used,

even with the aid of a catalogued procedure (see section 7.5

in Chapter 7 for examples). '

The University Library at Durham has not yet requested any
statistical or financial calculations to be performed and there
are no programs in the system for these types of function.
Arithmetic is restricted to some counting and address calcula-
tion. PL/1 is quite satisfactory in-this area at the language

161

10.1

level, although not efficient in comparison with fairly easily
written "low-level" equivalent routines. The "structure" type
of variable derived from COBOL is not suitable for representing
a record containing several variable length fields and the
‘obvious technique is to use a single long character string from
which fields can be retrieved using the PL/1 built-in function
SUBSTR. = Any substring can be .addressed, using the position
.of its first character and its length; however, the compiler
(F-level) rarely generates, in-line code for this function,
preferring to use a general purpose subroutine. A record
format in which numerical control data (addresses and lengths)
occur in variable positions can also be awkward to handle in
PL/1 unless one is prepared to put up with the processing
inefficiency implied by storing the numbers in character form
(in decimal) as in the MARC II communications format[36].
Snelll132] gives relevant examples of PL/1l programming.
Languages which are effectively equivalent to block diagrams

of generalized record structures have been proposed[110,129]
and could probably be implemented quite efficiently.

Those who claim that PL/1 has string processing facilities
are usually making comparative statements against a background
of ALGOL, COBOL and FORTRAN. In reality the language provides
1ittle more than the ability to address one or more bytes at a
specified location and of specified length, versatility being
obtained by calculating the location and length during execu-

" tion of the program. There is no qualitative difference

. between programming string operations in PL/1 and in Assembly
language (or in FORTRAN, with appropriate abuse of LOGICAL and
other data types!). This approach, augmented by the ability
- to compare strings, -was found to be adequate in the LFP System
programs in which the most complex operations are those
associated with input and output - breaking up strings using
various delimiters and the formatting operations of program
.PRINT. However, the more complex the operation, the more con=
fusing it is to the programmer to have to design his algorithm
in terms of the numerical position of the substrings, and the
more the algorithm is complicated by the storage structures
required to accommodate substitutions, unrestricted by length
considerations, within strings. String processing languages
like SNOBOL[115] exist for just these situations. The
programmer may specify complicated patterns of characters to
be searched for, and extracted or replaced in strings. Normal
computers with their "matrix" of fixed-length storage cells do
not lend themselves naturally to these operations and compila-
tion of source programs in SNOBOL is virtually impossible.
Consequently, the language is implemented interpretively (by a
"SNOBOL machine" simulation) and one can usually write equiva-
lent Assembler language programs which run ten times as fast.
The other major disincentive to using SNOBOL is that string
processing is only one aspect of the problem and combination
with modules written in another language is not practicable
for any routine which must be run with an interpreter. SNOBOL

can be useful as a program design tool, but should be abandoned

162

10.1

at the final coding stage. As an example of its suitability
for expressing string operations precisely and concisely, we
consider the construction of output strings and sort keys from
the stored form of subject headings described by Johnson (p.23
in Chapter 2, and ref.88). The stored heading:

ROME-HISTORY-<REPUBLIC, 365-30 B.C.>Q@Z9734~79969@
prints as: -

.ROME-HISTORYﬁREPUBLIC, 365-30 B.C.
and files as:

ROME—HISTORY-ZQ734—ZQ§69

- Characters between < and > are ignored for filing and those
between a pair of @'s are ignored for printing. The characters
{, > and @ are not included.in either derived string and a
stored subject heading may have several "bracketed" substrings.
Suppose that the string varisble, SUBJECT, contains the stored
form of the heading. The SNOBOLY4 statement which follows will
change it ‘into the print form.

LOOP SUBJECT (*@" ARB '@") | "K' | "' = :'S(LOOP)

This can be read: "Find the first substring from the left hand
end of SUBJECT which is either @ followed by any number of
characters followed by @, or <, or >, and replace it by nothing
(i.e. delete it). If no substring is matched, no deletion
takes place and control passes to the next statement. Other-
wise, repeat the process”. A similar statement can be used to
generate the sort key:

ROUND SUBJECT (<" ARB '>') | @' = :S(ROUND)

The above SNOBOL statements can be made more efficient at
the expense of clarity ‘and conciseness; the pattern could be
assigned to a variable which would then be used in the matching,
for example. However, the view taken here is that one would
thus lose virtually all the advantages of using the language.

Some of the LFP System programs, notably LFPGO1l (the
program generator) and PRINT, make extensive use of data in list
structures and PL/1 provides adequate facilities for this in its
based storage and pointer-type variables and in permitting !
recursion. The procedure PGPHL called by the program generator |
(p.352 of ref.125) is probably the richest example of the use of
these language features within the present system. An identi-
fier with the "based storage class" can represent any data-type
permitted to normal identifiers or it can be a structure of
variables of diverse types and is regarded as a template which
can be laid over any area in the program's core storage and used

163

10.1

to refer to fields within that area. Its position is deter-
mined dynamically by a "qualifying" pointer variable which
effectively takes as values addresses in core. A based
structure may contain pointers, so chaining is possible. The
following excessively simple example illustrates the feature.
We declare a based structure, ELEMENT, and two pointer
variables:

DCL 1 ELEMENT BASED(P), 2 LINK POINTER,
: 2 VALUE CHARACTER(10);
DCL (HEAD,P) POINTER;

Assume that there is, in core, a list of character strings:

ety sl ire
™ /" \--_'\ P -;””s—'/

} ~ \FUNCTION ~|EVALQUOTE e e
4 10 4 10
'“\
. ARGUMENTS.
4 10
(null)
and that HEAD points to the first of them. The following

PL/1 statements will print out the contents of the list, because
ELEMENT will refer. to whatever location in core is addressed by
P, and as P changes ELEMENT (the template) moves.

P=HEAD;
LOOP:IF P=NULL THEN GOTO EXIT;

PUT LIST(ELEMENT.VALUE);

P=ELEMENT.LINK; GOTO LOOP;
EXIT:

It can be seen that, as with its "string" processing, PL/1l's
"1ist" processing features co no more than provide the programmer
with the type of addressing capability which the assembler
programmer has and enables him to implement his own list proces-
sor. Comments similar to those made about the utility of string
processing languages can be made with regard to list processing.
The ability to manipulate lists, trees, etc. without worrying
about addresses (i.e. to be able to call a list a list) would
be useful in the program design stage and a suitable language
for a many facetted application would probably be similar to
LISP 2[106] which is an ALGOL-like, extended version of the
notationally cumbersome LISP 1.5[127]. -

Dolby et al.[86] discuss programming languages in the

context of library applications of computers and point out that
PL/1, in attempting to be all things to all programmers, is an

i64

10.1

expensive language to use and 1s restricted to large machines.
An Assembly Language control section equivalent to procedure
FLEX (p.202, ref.125) was written to provide an indication of
the storage savings possible over optimized PL/1 modules.
Figure 10.1 gives the result; it should be pointed out that
the PL/1 library routines used by FLEX are also used by other
parts of program PRINT, which calls FLEX, so the PL/1l version
of FLEX is not as comparatively expensive as the "Totals"
column might suggest. It is nevertheless clear that had the
LFP System been written in the Assembly Language, it would
have been so much less extravagant on core storage that a
totally different approach could have been taken to the over-
laying of program modules which might have resulted in a
one-step job design instead of the present four. It is
estimated that CPU times for PL/1 programs in this field can

Storage occupied by| Storage occupied by Totals
loaded FLEX (bytes)|library routines (bytes)
PL/1
procedure 7250 8994,) 1624y
Assembler
CSECT 1280 none 1280

Figure 10.1 Storage comparison: PL/1l v. Assembler

be improved by a factor of 2.5 times simply by recoding in
assembler, and the old view that it is not important to make
savings of this order while processor time is swamped Dby I/0
time is no longer valid in the environment of multiprogramming
and time-sharing, where a major goal of the operating system

is to maximize usage of the central resources. The other
major high-level language which has been used in library appli-
cations, COBOL[108,38,251, suffers similar disadvantages, is
less suitablé as a language, but is more widely.known and
available to programmers. It has often been assumed that an
advantage of high-level languages is that even inexperienced,
occasional or novice programmers can produce useable software.
However, this advantage may be insignificant in comparison with
the desirability of the services of computer specialists for
any large.scale automation project. Dolby[113] examines
programming language structure statistically and draws analogies
between executable units and elements of natural language. The
statements of a programming language behave like letters of the
alphabet and sequences of them like words; although the set of
letters is small and bounded, the set of words is not. In
order to.invent a "super language" for library applications, we
need to know the most commonly used, managable-sized subset of
the possible sequences of instructions. One useful approach
for a large programming job is to use the macro facility which

165

10.1/10.2

most assemblers (or equivalent) now have; thus a machine can
be "moulded" into a more convenient tool. '

10.2 SYSTEM CONSIDERATIONS

Among the first things that an applications programmer
usually wishes to do when his system is complete and in opera-
tion is to redesign it. Any future version of the LFP System
should be written in the Assembly Language with extensive use
of the macro facility, and many of the algorithms can be
improved. The Michigan Terminal System (MTS) in use on NUMAC

-looks more attractive than 360/0S for this application. MIS[128]

is a time-sharing system which supports both batch processing
(with, predominantly, card readers and line-printers) and

on- 11ne terminals (typewriters and character display units).
There is very little to be gained in performing the currently
implemented tasks on-line, and some of them positively should
not be done at a console, but a new design would no doubt take
advantage of the conversational facility for small file main-
tenance jobs. A definite advantage of MTS over 0S in the NUMAC
‘installation is that the daily timetable "favours" MTS and one
may expect faster turn around time for jobs run under that
system.' The most important advantage of MTS from the point of
view of the library, and most other users, is the conceptual
simplicity of its command language (equlvalent of 360/0S Job
COHLPOl Language) and file management.

Specific ideas for expansion of the LFP System have
frequently occurred during the year in which it has been in
routine operation; three areas are discussed here.

(i) An ordering sub-system would be a useful addition.
Routines exist in the .system to select from a file
records of books which require ordering or whose
arrival is awaited, etc., to print orders, reminders
and lists, and to systematically change the records'
status. Programs of commands to do these tasks
are clumsy, however, and the financial aspects of
the operation are completely absent. This is
ironical in view of the original request of the
library. However, once the book collection had
been set up, the necessity for a sophisticated
ordering system diminished®*; orders were dispatched
in small, irregular batches, and a substantial
proportion of the stock was transferred, often
temporarily, from the main library's shelves.

(ii) The record selection feature (see section 4.4 of

%*The first 1500, or so, orders were prepared with a totally
different, and now obsoclete, set of programs.

Pl

166

10,2

Chapter 4) is capable of considerable improvement.
One should be able to write a general boolean
expression involving the value of any element in

- the item and various other characteristics of the
item, such as "number of course codes greater than
., It might also be desirable to extend the use
of the selection specification to all input files
in internal format. The syntax of input file
parameters might be:

filename {(select)] -

One could then write the following command, for
example: -

SORT INFILE ('#u00=F') OUTFILE SEQ701;

which would sort the items, in file INFILE, associ-
ated with French courses into title order, putting
the sorted records into file OUTTFILE.

(iii) The facility for printing formatted lists (program

' PRINT, Chapter 6) is capable of endless improvement!
The HEADING statement (p.84) is restrictive and '
should be removed from the print-control language.
Its effect could be achieved as a specilal case of
an enhanced format statement (p.81) in which literal
constants would be permitted wherever element tags
are now. For example: '

20,('ITEM NO.',1,#100,1,'IS',1,#701,1,'BY',1,#601),
CONT IN 22, STOP IN 95;

A similar extension to the group heading statements
(p.79) would allow the user to specify column headings
for a fully or partially tebulated listing. Another
facility which might be added is the optional trunca-

_tion of text during formatting to force it into a
specified number of linesy a strictly one-line-per-
item listing cannot be produced with the present
version of the program. Contraction of text would
be desirable in some situations; e.g.

WEBER M. THEORY OF SOCIAL AND ECON...ED.T.PARSONS

may be preferable to

WEBER M. THEORY OF SOCIAL AND ECONOMIC ORGANISATI

Finally it would be useful to be able to ask for a
double column layout.

167

10,2

The chapter concludes with some suggestions for features

of a hypothetical, new overall design for the LFP System.

The opportunity has not arisen to follow these up, but it is
believed that the technical difficulties are not significantly
~greater than those encountered in the implementation of the
present system. :

(1)

(ii)

(iii)

The system should be a ."one-step" system, i.e. the
user should need to initiate the execution of only
one program which would both read his commands and
call upon the appropriate "library" programs to
obey them. Dynamic loading of the modules is
required for this approach (as opposed to the

‘planned overlay structure created for the present

system by the program generator - see ref.120 and
P.304 of ref.125).

A more flexible method is required of handling card"
files which, in a new system, would include lines
typed in at an on-line terminal. It should be
possible to intermingle commands, print-control
instruction sets and data (externally formatted
bibliographic records, for instance); and, to take
advantage of previously stored files, a comprehen-
sive "file-switching" facility should be incorporated
(something like, but more versatile than, the GO
statement, p.86).

The modular approach of the LFP System is the basis
of the system's versatility. The user can quickly
specify any combination of .processes to be performed
upon files which are also his to riominate. A
disadvantage of this method 1is that often a file
must be séquentially processed (read or written)
more than once where a special purpose program could
be constructed to perform the function with a single
pass of the file. For example, in the following
pair of commands, Ille TEMP is processed twice
unnecessarily:

FINPUT INDATA 80 ON TEMP BJPX '! ABCDEF-' ';
UPDATE LBK TEMP LBK OFF;

The file TEMP read by progrém UPDATE contains the
very records written into it by program FINPUT.
That staherent is not true for the following example:

FINPUT INDATA 80 ON TEMP BdPX '' ABCDEF ' ';
SORT TEMP TEMP SEQ100;
UPDATE LBK TEMP LBK OFF;

It is, however, true that SORT reads the records as
prepared by FINPUT and that UPDATE reads those finally

10.2

written by SORT. Programs which combined the
functions of FINPUT and UPDATE or of FINPUT, .SORT
and UPDATE would run more efficiently, but the
modularity and hence versatility of the system
would suffer.

t may be possible to produce an algorithm for
deciding whether a file to be read.by one program
.will be unchanged from its state when another '
program wrote it. An approach which is easier
to implement is to ask the.user to.identify the
files. A programming technique which is essen-
tially the construction of a set of coroutines

can then be used to satisfy both objectives -
modularity and efficiency (the marked files are
never actually written onto the disk). The
central part of this method is a re-entrant
routine, which might be called a "coroutine
junction box", with two entry points READ and
WRITE. When a program such as UPDATE is required
to read a record it calls READ using normal sub-
routine linkage, and when it must write a record
it calls WRITE. Figure 10.2 is a simple flowchart
containing the important features of the junction
box module, and figure 10.3 shows how control flows
in two programs which are linked .through it. The
junction box acts just like an ordinary input/
output routine if the file involved is a real file
on a storage device, otherwise it effectively
passes records one at a time from one program
directly to another. . In figure 10.3 the programs
are highly simplified - one call represents all
the calls in the program for that pseudo-file.

The process starts by creating a save area for
pseudo-file @X, setting the entry point of Program 1
as the "preturn" address in that area and entering
Program 2. At the first READ from @X the address
of the record area, T, is saved together with the
return address in Program 2 and control passes to
the beginning of Program 1. When a WRITE is
encountered, the record is copied to the address
last saved upon READing and control returns to the
point after that READ invocation. Because the
junction box is re-entrant, it can be used by any
number of pairs of programs concurrently, and in
that case it is possible that a program will be in
multiple, simultaneous use, so it also must be
re-entrant. Coping with the ends of pseudo-files
and with cases where a pseudo-file is read by more
than one program (it cannot, by definition, be
written by more than one) is not dealt with here,
but is quite straightforward.

169

10.2

WRITE entry

Parameters: R=record in core
X=file identifier

<:Is X a real file?:>—% Write R to X —®{Return
Jno yes
v} -
Find "save" area® at address '
N A = £(X) Was junction box
This area is created when entered at WRITE?

file X is "opened" '
///////?;; yes l
e

Swop contents of stores
containing address of R Copy R to record area
and return address and <—— whose address is in
registers with contents "save" area
at A
. ¥
Return

< _<Is X a real file?>-—>-Reaa R from X M4 Return
no x yes

il

READ entry

Parameters: R=record area in core
. X=file identifier

ar,
bl

‘The "save!" area contains fields for all the

section.

registers which are normally assumed, by calling
programs, to be preserved. In particular, it
contains a field for a return address and one
for the address of a record area in core. The
"save" area is not used in the conventional way,
i.e. it. is not Tilled up on entry to the control

Figure 10.2 The "coroutine junction box"

170

10.2

Program 1 . ' _ : - Program 2
outputs records reads records
to pseudo-Ifile @X ' _ from pseudo-file @X

- | . -

o — o
o NElo

CALL WRITE(S,@X) —>p-—-- —~, === ~—— CALL READ(T,@X)

| e | ® e

junction box -

®

Figure 10.3 Flow of control when processing pseudo-
files. .The numbers on the arrows
signify the order in which they are
followed (1 to 6, cyclically).

_ Using the character '@' to prefix pseudo-files, the last
example above might be rewritten, more efficiently,

FINPUT INDATA 80 ON @A‘BJPX 11 ABCDEF ' ';
SORT @A @B SEQlC0; -
UPDATE LBK @B LBK OFF;

Eri

ND;

171

BIBLIOGRAPHY

The bibliography contains all of the items referred to
in the text of the thesis (marked with an asterisk) and many
additional works which were found useful to the present
"~ .study. Articles of the type - "The Computerised x System

at y Library” - are only included if they illustrate, well,
a particular technique or if they make comments of relevant,
wider interest. The broad classification of references

into seven sections (A-G) is in places highly subjective.

The following.abbreviétions are used for the.names of
periodicals: ' ‘ :

American Documentation, which became JASIS -

Am.Doc. =
with volume 21 in 1970
CRL = College and Research Libraries
JASIS = Journal of the American Society for Information
"Science :
J.Doc. = Journal of Documentation
JOLA = Journal of Library Automation
= Library Resources and Technical Services

LRTS

A. BIBLIOGRAPHIES, REVIEWS, SURVEYS AND GENERAL WORKS

1. ALA-RTSD BOOK CATALOGS COMMITTEE Book Form
Catalogs: A listing compiled from questionnaires
submitted to the Book Catalogs Directory
Subcommittee, ALA, 1968 '

LRTS, 14 no.3, p341-35L, 1970

2. BYRN J.H. Automation in University Libraries -
the State. of the Art
LRTS, 13 no.4, p520-530, 1969

3. CAYLESS C.F. & H. POITS Bibliography of Library
- Automation 1964-1967. Council of the BNB, 1968

4. CAYLESS C.F. Progress in automated libfarianship
New Scientist, 27th July 1967, p1l88-189

5. COBLANS H. Use of mechanised methods in
documentation work. Aslib, 1966

6. .COX N.S.M., J.D. DEWS & J.L. DOLBY The computer
"~ and the library: the role of the computer in the
organization and handling of information in
libraries. University of Newcastle upon Tyne
Library, 1966

172

10.
11.
12.
13,
14,
15.

16.

17.

18.

19..

20,

COX N.S.M. An introduction to information
processing.. Paper presented at a seminar in
London on the Integration of Computer Based
Information with Printing Techniques, 17th April
1970, organized by the Kynoch Press and Oriel
Computer Services Limited.

COX N.S.M. & M.W. GROSE (Eds) Organization and

-handling of bibliographic recopds by computer.

Oriel Press, 1967

DEWS J.D. Computers and Libraries
Program no.6, p25-34, July 1967

DUCHESNE R.M. & A.B.. PHILLIPS Automation
activities in British University Libraries:
a survey

Program 5 no.3, p129 =140, July 1971 -

DE GENNARO R. The development and administration
of automated systems in academic libraries

JOLA 1 no.l, p75-91, March 1968

GRIFFIN H.L. Automation of technlcal processes

in libraries :
Annual Review of Information Science and Technology
(Carlos A. Cuadra, Ed.), vol.3, p2u4l1-262,
Encyclopaedia Britannica, Inc., Chicago, 1968

HEILIGER E.M. & P.B. HENDERSON, JR. Library
Automation: experience, methodology, and technology
of the library as an information.system
McGraw-Hill, 1971 (very large bibliography)

KILGOUR F.G. History of library computerization
JOLA 3 no.3, p218-229, September 1970 :

(All-American history)

- KILGOUR F.G. Library Automatioén

Annual Review of Information Science and Technology

(Carlos A. Caudra, Ed.), vol.%, p305-337 -

Encyclopaedia Britannica, Inc., Chlcago, 1969
(large bibliography);

KILGOUR F.G. Library computerization in the

United Kingdom _
JOLA 2 no.3, pllé-124, September 1969

KIMBER R.T. Automation in Libraries.
Pergamon, 1968 :

KIMBER R.T. Computer appllcatlons in the fields
of library housekeeping and information processing

Program no.6, p5-25, July 1867
"LICKLIDER J.C.R. Libraries of the Future.

M.I.T. Press, 1965
MAIDMENT W.R. Computer methods in public llbrarles

" Program 2 no.l, pl-6, April 1968

173 -

21,

22,

w ' 23.

24,
25.
26.
27
. 28.
29.

30.

32.

MARKUSON B.E. (Ed.) Libraries and Automation.
Proceedings of the Conference on Libraries and
Automation held at Airlie Foundation, Warrenton, .
Virginia, May 26-30 1963. Library of Congress,
Washington, D.C., 1964

'MASSIL S.W. Mechanisation of Serials Records:

a literature review
Program 4 no.4, pl56-168, October 1870

PARKER R.H. Library Automation
Annual Review of Information Science and Technology

(Carlos A. Cuadra, Ed.), vol.5, pl93-222,
Encyclopaedia Brluannlca, Inc., Chlcago, 1970

(large bibliography)

PARKER R.H. Library Records in a total system.
in J. Harrison & P. Laslett (Eds) The Brasenose

" Conference on the Automation of Libraries,

30 June - 3 July 1966 (p33-45). Mansell, 1967

Status of Programs and Documentation of UK computer
based Circulation Systems

" Program 4 no.3, pl31-133, July 1970

STUART-STUBBS B. Conference on computers in
Canadian libraries. Université Laval, Quebec,
March 21-22, 1966. A report prepared for CACUL.
University of British Columbia Library, June 1966

THOMAS P.A. & H. EAST The use of bibliographic

. records in libraries. Aslib Occasional Publica—

tion no.3, 1969

- VEANER A.B. The application of eomputers to

library technical processing

CRL 31 no.l, p36-42, January 1970

WARHEIT I.A. Design of library systems for
implementation with interactive computers
JOLA 3 no.l, p65-78, March 1970

WARHEIT T.A. File organization of library records
JOLA 2 no.l, p20-30, March 1968

WILSON C.W.J. A bibliography on UK computer
based 01rculatlon systems
Program 4 no.2, p55-60, April 1970

WILSON C.W.d. Comparison of UK computer-based.

" loan systems

Program 3 nos.3/4, pl27-146, November 1969

174

| B, MARC, STANDARDISATION, COOPERATIVE PROJECTS

.- 33. AVRAM H.D. & B.E. MARKUSON Library automation and
' project MARC: an experiment in the distribution of
machine-readable cataloguing data
.in J. Harrison & P. Laslett (Eds) The Brasenose
- Conference on the Automation of Libraries, 30 June-
3 July 1966 (p97-127). Mansell, 1967

* 34, AVRAM H.D. The MARC PILOT project. Final report
on a project sponsored by the Council on Library
Resources, Inc. Library of Congress, Washington,
D.C., 1968 _ S

35. AVRAM H.D. et al . 'MARC Program Research and
Development: a progress re;: .t
JOLA 2 no.4, p242-265, Dece: =»r 1969

* 36. AVRAM H.D., J.F. KNAPP & L.J. RATHER The MARC II
' Format. A communications format for bibliographic
data. Library of Congress, Washington, D.C., 1968

% 37. AYRES F.H. Making the most of MARC; its use for’
Selection, Acquisitions and Cataloguing
Program 3 no.l, p30-37, April 1969

38. BIERMAN K.J. & B.J. BLUE Processing of MARC tapes
for cooperative use
JOLA 3 no.l, p36-64, March 1970

* 39. "Books in English"'-a microform bibliography goes
“on trial
The Bookseller, no.3384, p2222- 2228 * 31st October 13970

0. CAYLESS C.F. & R.T. KIMBER The Birmingham Libraries
Cooperative Mechanisation Project -
Program 3 no.2, p75-79, July 1969

- 41. CORBETT L. & J. GERMAN MARC IT based mechanised
cataloguing and ordering system offered as a package
by AWRE
Program 4 no.2, p6i4-67, April 1970

42, . COWARD R.E. MARC International
JOLA 2 no.4, pl81-186, December 1969

- 43, COWARD R.E. MARC Record Service Proposals: details
of the proposals for the provision of catalogue data
for current British publications on magnetic tape,
together with the preliminary British version of the
communications format for bibliographic data prepared
by the Library of Congress. BNB MARC Documentation
Service Publications - no.l, July 1968

" 44. COX N.S.M. & R.S. DAVIES On the communication of
machine processable bibliographic records
Program 4 no.3, p89-129, July 1970

" 175

us.

6. .

b7,

48.

L|.9 .

50.

51.-

52.

53.

DRIVER E.H.C. et al The Birmingham Libraries'
Cooperative Mechanisation Project: a further

report :
Program 4 no.4, pl50-155, October 1970

DUCHESNE R.M. Birmingham Libraries Cooperative

Mechanisation Project .
Program 3 nos.3/4, pl06- 110 November 1969

GORMAN M. & J.E. LINFORD Description of the
BNB/MARC record - a manual of practice. BNB
MARC Documentation Service Publlcatlons - no.b5,
1971

JEFFREYS A.E. & T.D. WILSON (Eds) UK MARC
Project. Proceedings of the Seminar on the UK
MARC Project, organised by the Cataloguing and
Indexing Group of the Library Association at the

.University of Southampton, 28- 30 March 1969.

Oriel Press, 1970

KIMBER R.T. The MARC II Project
Program 2 no.l, p34-40, April 1968

LINE M.B. A note on use of MARC
Program 3 nos.3/4, plO4-105, November 1969

MARC Project MARC reports
LRTS 12 no.3, p245 -319, 1968 :
(The whole issue is devoted to MARC with papers
by Avram, Leach, Knapp, Rather, Simmons and Parker)

‘RATHER J.C. & J.G. PENNINGTON The MARC Sort

Program
JOLA 2 no.3, pl25-138, September 1969 .

USA Standard for a .Format for Bibliographic
Information Interchange on Magnetic Tape .
JOLA 2 no.2, p53-95, June 1969 _

CATALOGUE CONVERSION, COMPUTER INPUT

Sk,

55.

56,

57.

AVRAM H.D. The RECON Pilot Prbject: a progress

report
JOLA 3 no.2, pl02-114, June 1970

AVRAM H.D., K.D. GUILES & L.S. MARUYAMA The RECON

'Pilot Project: a progress report November 1969 -

April 1970 _
JOLA 3 no.3, p230-251, September 1870

AVRAM H.D. & L.S. MARUYAMA RECON Pilot Project:
a progress report, April-September 1970
JOLA &4 no.l, p38-51, March 1971

BALFOUR F.M.: Conversion of bibliographic
information to machine readable form using on-line
computer terminals

JOLA 1 no.4, p217-226, December 1968

176

a,
4

as,
o

at
b

58..

59.

60.

61.

- 82,

ou.

" 65,

66.

67.

68.

69.

70

71.

72,

BLACK D.V. Creation of computer input in an

expanded character set
JOLA 1 no.2, pl10-120, June 1968

BROWN P. The Bodleian Catalogue as machine
readable records '

" Program 3 no.2, p66-69, July 1969

FRENCH T. Conversion of library card catalogues
Program 5 no.2, pil-66, May 13871

DE GENNARO R. A computer produced shelf list
CRL 26 no.4, p311-315,353, July 1965

DE GENNARO R. A strategy for the conversion of
research library catalog to machine readable form
CRL 28 no.4, p253-257, July 1967

HAMMER D.P. Problems in the conversion of
bibliographic data - a keypunching experiment
Am.Doc. 19 no.l, pl2-17, January 1968

HENDERSON J.W. & J.A. ROSENTHAL (Eds) Library
Catalogs: their preservation and maintenance by
photographic and automated techniques. M.I.T.,
1969

 HIRST R.I. Adapting the IBM MT/ST for library

applications _
Special Libraries 59 no.8, p626-633, October 1968

IBM System/360 Administrative Terminal System - 0S
(ATS/0S): Application Description Manual, Form
H20-0297

IBM System/360 Administrative Terminal System - 0S
(ATS/0S): Terminal Operations Manual, Form H20-0589

JOLLIFFE J. The tactiecs of converting a catalogue

to machine-readable form
J.Doc. 24 no.3, pl#9-158, September 1968

.MARUYAMA L.S. - TFormat Recognition: a report of

a project at the Library of Congress
JASIS 22 no.4%, p283-287, July 1971

PALMER F.M. Conversion of existing .records in
large libraries: with speciel reference to the

" -Widener Library shelflist
"in J. Harrison & P. Laslett (Eds) The Brasenose

Conference on the Automation of Libraries, 30 June-
3 July 1966 (p57-83). Mansell, 1967.

PRICE C.E. Representing characters to computers
Am.Doc. 20 no.l, p50-60, January 1969

SHOFFNER R.M. Some implications of automatic
recognition of bibliographic elements
JASIS 22 no.4, p275-282, July 1871

177

ar,
L

E3

ar,
ol

73.

74,

UNIVERSITY OF NEWCASTLE UPON TYNE Cataldgue'
Computerisation Project: interim report,
September 1 1967 to August 31 1968

UNIVERSITY OF NEWCASTLE UPON TYNE Catalogue
Computerisation Project: second interim report,
September 1 1968 to August 31 1969

FILING

75.

76.

77.

78.

79,

_80.'

BREGZIS R. The Ontario New Universities Library
Project - an automated bibliographic data control
system :
CRL 26 no.6, pk95-508, November 1965

CARTER K. Dorset County Library: computers and
cataloguing , : S
Program 2 no.2, p59-67, July 1968

DAVISON K. Rules.for alphabetical filing by
computer

“in A.E. Jeffreys & T.D. Wilson (Eds) UK MARC

Project (p62-69). Oriel Press, 1970

HINES T.C. & J.L. HARRIS Computer filing of
index, bibliographic and catalog entries. .
Bro-Dart Foundation, 1966

PRICE A. The implementation of filing.rules by
computer - .
Program 5 no.3, pl6l-164, July 1971

SEELY P.A. (Ed.) ALA Rules for filing-catalog
cards. 2nd ed. ALA, Chicago, 1968 ')

J

COMPUTER PRODUCED CATALOGUES-

81.

- 82.

83,

AYRES F.H. et al Author versus Title: a
comparative survey of the accuracy of the
information which the user brings to the library

catalogue)
J.Doc. 24 no.4, p266-272, December 1968

BELLOMY F.L. & L.N. JACCARINO Listings of
uncataloged collections
JOLA 3 no.4%, p295-303, December 1970

BREGZIS R. The bibliographic information .network:
some suggestions for a different view of the
library catalogue

*4n J. Harrison & P. Laslett (Eds.) The Brasenose

CTonference on the Automation of Libraries, 30 June-
3 July 1966 (pl28-142). Mansell, 1967

178

as,
.

85.

86.

87.

88.

89.

- 90.

91.

92,

83.

g4,

g5.

Criteria for computer output in information systems.
Prepared by the User-Reaction Subgroup of the Aslib
Computer Applications Group, Working Party on
Information Retrieval

Program 5 no.3, -pl65-172, July 1971

DEWS J.D. & J.M. SMETHURST The Institutes of
Education Union List of Periodicals processing
system. (Symplegades No.1l). Oriel Press, 1969

DOLBY J.L., V.J. FORSYTH & H.L. RESNIKOFF :
Computerised library catalogs: their growth, cost.
and utility. M.I.T. Press, 1889

HAYES R.M., R.M. SHOFFNER & D.C. WEBER. The |
economics of book catalog production
LRTS 10 no.l, p57-90, 1966 . ..-.

JOHNSON R.D. A book catalog at Stanford

~JOLA 1 no.1, pl3-50, March 1968

KILGOUR F.G. Concept .of an on-line computerised

library catalog _
JOLA 3 no.l, pl-11, March 1970

KOZUMPLIK W.A. & R.T. LANGE Computer-produced

microfilm library catalog
Am.Doc. 18 no.2, p67-80, April 1967

PFLUG G. & B. ADAMS (Eds) Elektronische

" Datenverarbeitung in der Universitltsbibliothek
" Bochum: Ergebuisse - Erfahrungen - Pléne. '

Bochum, -1968 - (English abstracts included)

SMITH F.R. & S.0. JONES Cards versus bock=-form
printout in a mechanised library system _
Special Libraries 58 no.9, p639-643, November 1967

SOMMERLAD M.dJ. Development of a machine-readable
catalogue at the University of Essex
Program no.7, pl-3, October 1967

WEINSTEIN E.A. & J. SPRY Boeing SLIP: computer
produced and maintained printed book catalogs
Am.Doc. 15 no.3, pl85-130, July 1964

WEINSTEIN E.A. & V. GEORGE Computer—pfoduced
book catalogs: entry form and content .
LRTS 11 no.2, pl85-191, 1967 '

VARIOUS LIBRARY SYSTEMS

96.-.

Aslib. Computer Applications Group: Circulation
Working Party. Symposium on Computer-Aided
Circulation Systems. Aslib, 20 October 1970
Program 5 no.l, pl-15, January 1971

179

ar,
End

97.

98,

99.

100.

101.

102.

103.

104.

-105.

BOYD A.H. & P.E.J. WALDEN A simplified on-line
circulation system :
Program 3 no.2, pi7-65, July 1969

BURNS R.W., JR. The design and testing of a
computerized ‘method of handling library periodicals

.(Title III). Final report to the Office of

Education, US Department of Health, Education and
Welfare. December 1970 :

CHEN C. & E.R. KINGHAM Subject reference lists
produced by computer ,
JOLA 1 no.3, pl78-197, September 1968

FISCHER M. The KWIC index concept: a retrospective

©view

Am.Doec. 17 no.2, p57-70, April 1966,

GROSE M.W. & B. JONES The Newcastle University
Library Order System

"in N.S.M. Cox & M.W. Grose (Eds) Organisation and

Handling of Bibliographic Records by Computer
(pl58-167). Oriel Press, 1967

KENNEDY R.A. Bell Laboratories' Library Real -time
Loan System (BELLREL)
JOLA 1 no.2, pl28-1u46, June 1968

KIMBER R.T. An operational computerised circulation
system with on-line interrogation capability
Program 2 no.3, p75-80, October 1968

LINE M.B. Automation of acquisition records and
routine in the University Library, Newcastle upon
Tyne

Program no.2, pl-4, June 1966

SPIGAI F.G. & T. MAHAN On-line acquisitions by
LOLITA
JOLA 3 no. L p276-294, December 1970

PROGRAMMING LANGUAGES AND.SYSTEMS

.106 L]

107.

108.

ABRAHAMS P.W. et al The LISP 2 Programming
Language and System

Proc. Fall Joint Computer Conf., vol.29, p661-676,
1966 -

ALANEN S.S. A library of subroutines for
bibliographic data processing

IFIP Congress 68, Edinburgh (5-10 August 1968),
pG1l3-Gl7

AVRAM H.D. & J.R. DROZ MARC II and COBOL
JOLA 1 no.4, p261-272, December 1968

180

108.

110.

111.

112. .

113.

11y4.

11s.

116.

117.
118.

119.

* 120.

at
o

121.

122,

123.

_ 124,

125,

CODASYL SYSTEMS COMMITTEE Introduction to "Feature
Analysis of Generalized Data Base Management Systems"
Communications ACM 1k no. 5, p308-318, May 1971

(and)

Computer Bulletin 15, no.4, pl54-163, April 1971

COX N.S.M. & R.S. DAVIES On the communication
of machine processable bibliographic records.
Part 3: The Communication Format Access Language
Program 4 no.3, pll6-129, July 1970

COX N.S.M. & M.W. GROSE' Computers, in the library
New Scientist, 20th July 1967, pl37-138

COX N.S.M. ‘& J.D. DEWS The Newcastle File Handling
System

in N.S.M. Cox & M.W. Grose (Eds) Organisation and
Handling of Blbllograpnlc Records by Computer (pl-21)
Oriel Press, 1967

DOLBY J.L. . Programming Languages in mechanised

documentation
J.Doc. 27, no.2, pl36-155, June 1971

FOY N. Towards a lingua franca for computers
New Scientist and Science Journal, 17th June 1971,
p680-681 :

GRISWOLD R.E., J.F. POAGE & I.P. POLONSKY The .
SNOBOL 4 Programming Language. Prentice-Hall, 1968

HOUSDEN R.J.W. & R.T. KUJAWA EASNAP - an on-line
system for Arts students
Computer Bulletin 15 no.8, p295-299, August 1971

IBM System/360 Operating System: Concepts and
Facilities, Form C28-6535 o

IBM System/360 Operating System: Introduction,
Form C28-6534

IBM System/360 Operating System: Job Control Language,
Form C28-6539 ' '

IBM System/360 Operating System: Linkage Editor and
Loader, Form C28-6538

IBM System/360 Operating System: PL/1(F) Language

Reference Manual, Form C28-8201

IBM System/360 Operating System: PL/1(F) Programmer's "
Guide, Form C28-659Y4

IBM System/360 Operating System: RPG Language
Specifications, Form GC24-3337 -

IBM System/360 Operating System: Supervisor and
Data Management Services, Form C28-66L46

The lerar] File Processing System computer programs.
Documentation prepared by R.N. 0ddy. University of
Durham Computer Unit (unpublished), 1971

181

126.

127.

128.

129.

130.

131.

132,

* 133,

MADNICK S.E. tring Processing Techniques
Communications ACM 10 no.7, p420-424, July 1967

McCARTHY, J. LISP 1.5 Programmer's Manual.
2nd Edition. M.I.T. Press, 1969

MTS The Michigan Terminal System. 3rd Ed.
("approximately ten volumes"). The University
of Michigan Computing Center, Ann Arbor, Michigan,
June 13870

REYNOLDS C.F. CODIL Part 1. The importance of
flexibility
Computer Journal 14 no.3, p217-220, August 1971

SAMMET J.E. Programming Languages: History and
Fundamentals. Prentice-Hall, 1969
(very large bibliography)

SHAW R.R. Mechanical storage, handling, retrieval
and supply of information
Libri 8 no.l, pl-48, 1958 |

SNELL B. Programming library applications in PL/1
Proc. 1969 Clinic in Library Applications of Data
Processing (p81-97). University of Illinois,
Graduate School of Library Science, 1970

VARENNES R. DE On-line serials system at Laval
University Library T
JOLA 3 no.2, pl28-14l, June 1870

182

LFP SYSTEM

USER'S SUMMARY Appendix &
1. PROGRAMS
Reference
Program name | Function Section Page

BATCH Reads a card file containing 9.3 149
externally formatted items 9.2 1uy
and special instructions
(BATCH and SELECT) for gene-
rating items and produces an
external file suitable for
conversion by program FINPUT.

CDLIST Produces a listing of a card 8.5 156
file. -

CEKSRT Examines an internelly 5.4
formatted file to see it is 5.1
in a specified order.

CODEIN Reads a card file containing 8.2
information needed to decode 8.1
certain of the coded elements 6.2
and creates a code transla-
tion file for use by program
PRINT. :

COIND Prints indices, in alphabe- 8.3
tical order of codes and of
translations, of the course
codes (#401) occuring in an
internal file.

FCOPY Makes copies cof items in an 4.3
internal file. The cocpy may boh
be selective.

FINPUT Converts & file of biblio- 4,1
graphic records Ifrom the 3.4
external to the internal
updating format.

FPUNCH Converts a file of biblio- 9.1

graphic records from the
internal to the external
format.

183

Program name

IMAGE

MERGE

PRINT

RUNOFF

SORT

UPDATE

Function

Copies a card file with
optional renumbering. Can
be used to store programs
of commands and sets of
print-control statements.

Combines two internal files,
assumed to be already sorted
into a specified order, to

produce a single sorted file.

Reads print-control state-
ments from one or more card -
files and prints items from
internal file(s) as
instructed.

Copies a file containing the
output of a previous job to
the printer as many times as
required.:

Arranges the items in an
internal file into a speci-
fied order.

Updates an internal file,
using the items in another
internal file (in updating
format). F

2,. COMMAND LANGUAGE

-Statement type

Command

Function

Invokes one of the above

- programs and specifies

information which may vary
from one application to
another, such as the names
of files involved. .

184

Reference
‘Section Page
9.4 152
5.3 61
5.1 56
Chapter 67
6
9.6 157
5.2 59
5.1 56
4,2 L2
3.3 32
7.1 gy
Reference
Section ?age
7.2 g8
7.6 124

Reference

‘Stéteméht'fybe Function ' Section Page

Conditional Performs a comparison, the 7.2 102
result of which determines 7.6 125
which statement is obeyed
next. The numbers -compared
are either given explicitly
in the conditional statement
or set on completion of
previously executed commands
in the program.

END Marks the end of the pro- 7.2 107
' gram. When this statement

is executed, the job step

terminates. '

GOTO - Instructs the computer to - 7.2 . 105
obey a specified statement =~
next (instead of following
the statements in sequence).

IF _ (see "Conditional" above)
PROGRAM Obligatory first statement 7.2 102

in a program of commands.
May name the program.

3. PRINT-CONTROL STATEMENTS

: _ Reference¥®
Statement type Function Page

END ’ Indicates end of set of- 86
statements. After the
printing, PRINT terminates. -
(See "execute").

execute Instructs PRINT to execute 86
- the listing requested in the
preceding statements and
- specifies what is to be done
next. END and GO are the
execute statements.

%A1l details concerning print-control statements are in
Section 6.2.°

185

Reference

tatement type Function Page
~format Specifies a text to be con- - 81
structed of one or more 75

elements and gives the layout
on the printed page.

GO An execute statement. After 86
printing, program PRINT is to
interpret another set of
instructions in the file
specified by the GO statement.

group . Identifies an element, the 79
heading values of which are to be

printed as headings above

groups of items which have

that element-value in common.

LINE and PAGE statements are

group heading statements.

HEADING Inserts a line of text in each 84
' item that is’ printed. '

LINE " A group heading statement. A 79
- new heading is printed on a.new
line.
LIST Specifies the file(s) to be 73
printed. : :
PAGE . A group heading statement. A 79

new heading is prirnted at the
top of a new page.

PRINT - (same as LIST, above)

SELECT Gives a selection specification 74
(see Section. 4.4) to be applied
.to &ll items read from the
file(s) given in LIST or PRINT
statements.

SKIP ~ Causes a new line to be started 79
while formatting an item for
printing. Blank lines can be

included.
SPACE © Specifies the number of blank 75
' lines required between printed
items.

186

DREPARATION OF

EXTERNAL FILES .. ' Appendix i=

This appendix contains, as samples, instructions used. . ..
in Durham University for: C : o

(1) (Library instructions) : Completion of updaulng
forms (abridge)

*nstructions) Key-punching details

(ii) (Computer Unit
. from the forms onto 80-column cards to produce
external files. ' '

e

Most ‘of the detail is local, conventional application

of the general rules given in-Chapte' . Figure B.l1 illus-
trates two completed forms and figure B.2 shows how the
items m

might be puhc led 1n an external file.

(i) Alphabetical chéaracters are written in capitals.

se the following convention:
letter O -.‘numefai @

If should be éléar where blanks (spaces) are

intended: use the symbol ¥ if the occurrence of -

the space is not obvious or if more spaces than
one are recuired in consecutive positions.

N
} r
l._l
b
~/
)
®
bl
o 3
Y
[N e
Il
m.
.

and * may not be wrltten in any
£ may be used for ‘one purpose
Prices should never be written

,.
=

Per O 3

n < H O
L®

form is used both to add new items
and to alter items already there.
a

l__l
::i 0]]
'0a o

at
to the fi
iti
—-

When wr form for a new item, enter infor-
mation in the appropriate boxes. Any combination-
"of boxes (but always including the item no.) may
"be used. To amend &n existing item, fill in the
"Item no." box and enter the altered or new details
in the appropriate boxes. Whatever is written in
the box completely neplaces any previous element
in that position. To 'remove an elenent from tne

.stored item, enter § in the box.

187

.) b . s
#15) TeCh 500 4 e PR “Delete (tick) |Continuation no,
5 r_’/‘ _\ - ‘ - . H
| B o 5 '
| S IFT i
- [—
[#222 yme #2580 Aozt ., |#851 Orcer caten<s / < J7 ev | #2802 Receipt date,"Iz c? 2Xs)
' C’ N \\ \ ¢’ \.;‘/C) o y o
| #5050 Status pee [#352 Prizs w2 | #5253 Pun,dnte, 1#EH1 Class /) an
3 v RSes)| ratto e P =
s — e AR
' -l'rL-’,;g"i L'if'r_’_‘ff_:_-' . #hf2 oy ey ey #42‘:3 #hih #5 g6
H Y o’ TN
#8651 actaer
AR I AN T roesy frEes N
e b A ! 5, ey - UL
| \=2a L- \/_\, Vo L u-ﬂ} o\ y° ,j
!
P#7Ie Ditle s =
! f‘.f“‘\--‘ -i_u': . ‘-'_J . “.” ‘.‘;::’\ -—" 5] Ll ‘) J‘
! \’u\ . .\‘-‘\V’QH vi\:’ Y u ‘J‘\\. ‘ ‘Sl
! < . [= L I R L) PR PRI -t Wl L Pl LA e’
RS NN o N E TR L -, Fa\! :
’ . ’c-\."-t-c:y::;\d:yi‘ . u-—ll\l:\:ﬂv wf g : \D EDG
| #500 Pudlishen
i
. LTINS A PAE
! e ‘,.‘._,,:.:\ - waN v\ & ™~ Continued (tick)
i J
i i :
St - ” - . “ . . N
y Wiie Ttea To. LAY D » LIBRARY CGxPUZER PIiz : Delete (tick) |Continuation no.
: \ L " L
! S O : UPDATING FORN i i
F - s dl g J-.h,," N (:
D2 Lype N, el Agent 2% Oncer dave |#2152 Roceipt dste -
i [
w200 satus v #3502 Price #5753 PrhaCat ’f. £51 Cluss
+ H | ”
! . N W
W#h% Course #ap2 R B 407 el #HiB5 # 4o
v ‘I.I-I‘ [y ’
I
T3y auchor 7 poe ! - ‘e m 1, i
y f”\’ F-‘l:) =, 9 Rl . " DTS AN J/ ¥ p [l
< >\ ‘ = \{ . " M W} e 41 ¢ ta! i V"-‘ “ oz
s \d;‘)\—" ASENILED N, oo R &Sl VS o Ve o
; P ;,\
iy AR /
#7045 Ditle
#6030 Pudiisher
Continued (tick)
Figure B.1l. Items on Updeting Forms. A new
item (top) and a typical amend-
ment to an existing item.

188

e —

i

: ‘08 ~ €L suwunf{oo ut
wﬁdﬁmnesc Ugmo UlTM uayl pPu®B INnoylTHM %Hpmﬁdu
ST m mﬁSMHM uT swalT 2y} Sutyound o sAem omy -
"SWalT pIlPWJOF %HHMCﬁmexm - 29 =2andTg

00 o | | . © = S(ITIVNNV, LY d3AT

0SLTS0 | .
0££T2000:1HS) WNISAW SAZIAIA Z09# 3JVW z0h# 3H96T 0054 34 00S# 3 Z0T# 3THOTA 00T#
00220000 * SNIHNN B NITTY 0064 3703 ANZ € SIUIS AHAOSOTIHA HSILI¥E AUVHOdW

06T¢00003dLNOD TOL# S(°UH4) A'H SIMAT T09# 3UdA ZOn# SWAQ TO#u# 36°¢6T TO3# S9S6T 0

owﬁwooooom*uom.mNom*uu_oom§Mwm\m\NH Nomﬁwwm\w\mﬁHomﬁuzoooomﬁum;uoaooﬁﬁ
> - .
€/, WmToo _

. o + 3(ITIYNNY
LY GIATIHS) WNISOW-SIZIAIQ 209# 34vH No:* 3496T 0064 L_oom*WNOﬁ$ %HJmHa ooH*

: s INITMNA B NITTV 0064 3°q3d QZN "¢ S31YIS A ;owOJ_Lm
_mm >z<moasg Zoo Ho*uﬂ.omu.c.zw_ZMAHom*umiomosﬁwzamﬁo:*wmNOHHow*

ASTL
9961 00G9# 304°¢ Nom* 331 00¢%# 389/6/¢T coc# 389/8/¢1 t0Z# 3W0D CO0Z# 394500 00L#

3¢

189

(v)

(vi).

(vii)

'(v'

'_l
-
R
s

-

(ix)

(x)

-Every completed form,

in
e
- long. In Durham, "num
3

. A single‘letter, selected

To have an item deleted from a file, enter the
item number only and tick the "Delete" box.

The item will no longer exist on the file and’
will not, thevrefore, appear on printouts. A
dauea manual record of deletions should be kept.

Detalls can be continued on one or more furthe“
files if there are more elements in a range than
are allOWud for on the form, e.g. more than one
author or more than six courses. Tick the
"Continued" box on the original updating form, .
number subsequent forms 1, 2, etc. in the
"Continuation nc." box, and repeat the item no.
each time. - Elements (such as long titles)
should not be split between forms, but if
ecessary a special note to the punch operator
attached. : ' R .

Notes about the boxes

#1%% Item no.

forms, must bear an it
efs" con51st of a letter
and & digits, e.g. DI1S This is the record
identification for upda ng processes; it is
essential to enter the correct item numbers for

[

" amendments and deletions and of course to avoid

duplicating numbers. In order that an item
should appear in cquaiogubs and lists, it must
exist in a file and have an "item no."." There

may be items without exactly corresponding books.

#102 Type

from the code list,
indicating the type of publication.

J means that the item is a periodical article,
M means that it is a Bobbs-Merrill reprint.

Leave the box blank for all other items.
#2909 Agent

A three- ~letter code ;ndlCaLlﬂg the suppller of
the book (consult code list).

'#201 Order date and m202 Rec;;p; date

Use the form 29/11/69

1190

~~
>
l.J .
I_.I
~./

(xiii) .

‘A one-letter code chosen

o o

~Use the

"the course(s) for which
If more

#3009 Status.

from the follow1ng llS

A to be ordered

B <o be ordered (coay Lﬂansierred from maln
collection meanwhile) . _ o

on oncer _
on order (COuy ‘transi é rred)
E '.recelvec , ; ,
T transferred copy,'noi ordered (including
- - books borrowed from elsewhere).
G cancelled order (no transfer available) [
H withdrawn after receipt
J withdrawn transfer _
M. transferred for Michaelmas term only
P transferred for Epiphany term only
R transferred for Easter term ohly
T transferrec for Micheelmas and Lplphqﬁy
terms only
\Y trensierred for Epipheny and Easter
Ternms only

f's
H
@
B
H
O
H
]

Easter and Michaelmas

Note.. Statuses M, P, R, etc. are for books for

which demand 1s cyclic and the copy is moved into
and out of the collection. The item remains in

the files all the time but only appears in cata-

logues when the book is "in'". J

tatuses G - J.
“'1ow records to be kept of unsuccessful orders
into

etc., and of books put limbo when demand
evaporates. : -
#302 Price

form pounds.pence, e.g. 2.50

(there must be numbers, so 50p is written
0.50)0 L

#4PL Course, #iP2, etc.

Enter three-letter codes, from the code list, for
the item is recommended.
alter the

than © codes are required,

(xiy)

(xv)

(xvi)

end of the element.

numerical tags and use continuation forms as .
necessary. Fop example: ‘
EL7" Course #U #4003

A .
2= By 2l L AD _—,-4’7-'-
7f”3jbi7 :)J)Jﬂ vf’i¥9% e

When a file is sorted for printing a- course
catalogue, additional entries are generated
so that an item will appear in as many places
as it has course codes.

#5900 Publicetion date

fu

Enter year of publication of this edition.

#6901 Author

ials (no commas). If
) follows. Two

t y &. If there
are more than two, the fir is given, followed
by AND OTHERS. (Note that & files before A)
For works of jocint editorship, add (EDD) to the

Surname first, then initia
the 'author' is an editor,
authors' names are separa

Examples

LIPSET S.M.

LIPSET S.M. & BENDIX R.
LIPSET S.M. AND OTHERS
LUARD E.(ED)

MORGAN T. AND OTHERS(EDD)

ublications are entered undér the
dy, e.g. DEPARTMENT OF ECONOMIC

+O

1p
bo

Tl CI’J Hy- -
n U) H)
N :5 }—'

icia
uing
AIRS.

> R

Further author entries, #6502, #603, etc.

The following comments also apply to additional
titles (#7P2,#703, etc.) andé class numbers
(#8902 ,#803, ete.). When a file is sorted into -

. author order, an extra item will be generated

and filed for each additional author, tagged
#602, etc., and these will be printed as added
entries. : ' : : :

192

S
()

gl DEPARTMENT OF
EDUCATION - 'C“‘:‘\i’\'ﬁﬁL
§] ADVISORY CouNClL

l-i/!,, (S t._.-b-V”D AT ‘/! OND ‘\‘)

is shelved according to the main
#601), so reference to it is included
author entries. :

other author entry, or when using a
ion form: : o

[4
-5 v
i
{
73
n
L
C
i
A4

X

T -
/ § A ea g

‘e .. - a3

(xvii)'.#7®l Title

the order of the
acter comparisons;
y punctyation, then
order and lastly the
figure 3.1). Delete
ther non-significant

cf titles; and be sparing
of punctuation and

, volumes and editor
author) are given at.

O

l._l
He'm ® 1w o
g

D U O
u o s

H,
(@]
® 0O QO ¢k
e B I o .
fu (D OB
‘]J }J-
v *5 3
(0]

{1]
A,
OU

e

L He b0 1
ot ek 2 B 0

w058

(o]
T OO

0 cf
3

30 -0 kb KB
t
+

(o P (B Bl

RS

[

-

1
-0 0
o

2
»

.
-

]

-qLO ta t..LO“‘ ma
(where diffe:
the end of th

et by
~
O
H

6TH £D. 3V VOL 2 ED. J.SMITH

‘Additional titles (#7902, etc.) ave peﬂm1551bie in
the same way as’ qutno”s (Cec xvi).

183

B.1/B.2 -

(xviii). #8@1 Class

-Dewey number. Additional class numbers
(#802, etc.) are allowed (see xvi).

(xix) #9900 Pub l“sﬁer

This box is used for three purposes. - If a
~book is to be orcdered, enter the publisher,
‘and SBN. If the item is a periodical article

(xerox copy, etc.) enter journal reference
‘prefixed by 7, e.g.

7 BR.J SOCIOL. 12 PP 9-17

. Alternatively, if there is important informa-.
tion concerning the item, which cannot be
~accommodated in the record, use the Publisher
box for notés, prefixed by 9 e.g.

S CONSULT MANUALQRECORD FOR STATUS

(xx) Send the completed fo
pPreparation service w
tlons, concerning car
attached.

ms to the-computer data
Th any general instruc-
‘numbering fdor instance,

B.2 - KEYPUNCHING FROM FORMS
Note

In Durham UulVEDSlLy, the ave“ﬂce speed of key-punching
has been found to be 10,000 keysrﬂokes per hour, working
leECLly irom forms such as those 1n figure B.1.

o

General punching instructions

An item is all the date written on one or more forms.
Normally, it will all bé on one form, but if the ."Continued"
box is ticked, expect to find a number in the "Continuation
no." box on the next form. ' In the latter case, the Item
goces on to include forms up to and including the first
one without the "Continued" box ticked.

c
X

a
on

”J. I._l

1
[

Work through each Item looking for boxes to the right
of the numbers wh¢ch nave something written in them. For
‘each of these Doxes, type the number followed by one space,

the contents of the box, the £ symbol (unless the box itself
contains a § alpeedy) and another space.

194

0]
0Q

#2P1 Order date -+ - | #2D2 Receipt date.

. i . 4
P Y Bt Vo : o . fupd
/3778 %

0'

$201 7/3/705 #202 €

Note. - If & continuation form has the "#1@20" box:
filled. in, ignore the anbep- it is only there for
reference. : ' C o

At the end of each Item, type

. If the "Delete" box is ticked, punch the "#108"
ox followed by '
DELETEE =*
end 1lgnore anything else whic’ 1gnL appear on the
form {(and continuation forms, if any)

A . mER BT

iwlﬂ@ Item no. i LIBRARY COMPUTER FILE Delete (t 1ck)
H ' C's] W~ ;:'- ’

i DA N i UPDATING FGRM

i._ D:{“ﬁ’ / :,} uj é UPCATING FCRM b

would be puncned

: © #100 DO753% DELETES

2. Extra boxes might have been created on a form.
C.Z.
#601 Author . J7 aplehd
?’,.' g 7 v
by
TS A/ <M
\J\.}E\\?h—)b I, /,5' iy E‘J 'g‘"‘i

would be punched.

#601 JONES €.£ #602 SMITH R.E

195 "

[\
© 0

oy
B
£
:\-
=

- = /7,'/ 20 Gt =
1 #801 C._J_.c.ss%//,ﬁ, 3, 3243,
. .';: __.' 1 L R

would be punched

#802 330.L48 (There"is no #801) -

1386

THE CATALOGUED

PROCEDURE DLFPHMCLG Appendix

, The catalogued procedure (DLFPMCLG) used in ‘Durham
University for the cperation of the LFP System is shown. in
figure C.1. All of the sample jobs given in the ‘thesis
make use 'of DLFPMCLG. It consists of job control state-
ments for four job steps labelled M,C,L anc G. We shall
~describe the steps in turn.

IS

(i) Step M. The Libbary': le Program Generator
P

€ Fi
;GV=L“PGOl) is executed.

STEPLIB defines the program library containing
LFPGO1,
SYSPL1 will contein the PL/1 program generated
by LIPGO1,
SYSLIN is for Linkege Editor control s ements
generated by LFPGOL.
The user must supply a card file called SYSIN
containing & program of commands.

(1i) Step C. The PL/1(F) Compiler (PGM=IEMAA) is
executed.

SYSIN is the file containing the PL/1 program
enerated in step M, '

SYSLIN will contain the compiled program.

-

The user need not normelly override this step.
(1id) tep L. The Linkage Editor (PGM=IEWL) is
executed.

ins both the .compiled program from

C ‘ne con:roT statements from step M,

J defines tne library of LFP System programs

UT, SORT, etc.),

SYSLMOD will contain the complete program to obey
the commands entered Dy the user in step. M.

The user need not normally override step L.

(iv) Step 6. The program which step L stored in file
SYSLMOD is now ehycuteu. The following files
are defined and Lhe user nust supply any other

197

0200000
09¢00000
05¢00000
07200000
02400000
0¢7200000

0Cc¢00000

00200000
06100000
08100000
04100000
09100000
05100000
04100000
04100000
0¢T00000
0TT00000
00100000
05000000
08000000
0Z000000
09000000
05000000
01000000
04000000
0¢000000
01000000

2aNpod0ad PaNBoTRIB) - IIOWIITA T 'O oandtg

(€179)71A0)=39VdS‘6663INN=YIS=TOAHTSZ=LINN 4Q TMYOM//
(V3=940S0“99=123474=W4034) =930 . . //
smeumw_c\o:ouzauzumuqo>\:ﬁmmuh_ZDsoQAHoqbouzmo aa 34d03sAs//
Y=]1NOSAS AdQ LNIYdSAS//

_ AWWNG aa AWwna//

(CTLTS)Y (D711 S) (W’ L 176))=0AN0J “AOWTSAS 1 ==lydd 23X3 9//
(et Nv ;>ov *JIVdS666INN=UYTS=TOANITCZ=LINN AQ TLNSAS//
UHS=dSTU 0H0ANN=YIS=TOA T £¢=LINN'T0TNG " PD0=NSA ad PI0OSAS//

__

(SSv¥d “)=dS1d //

CCZT7T) 7TA)=30Vd S’ 6566INN=UYIS=TOA ’ HTCT=LINNY(NIVIW)DR=NSA Q4 (OWISAS//

g:ngw_c\J_AHAQ ISAS=NSA da 49I171SAS//
LITHAAT0)=dSTU'NITSAS W* ==NSd Ad //
L373a7°070)=dSIA’NITSAS I «=NSA ad NITSAS//
AWHNG Qd LNIMJSAS//

‘6))= gzou__w_J >_>o_asz<; TMIA T =WDd 23X3 1//
(1L3730°AT0)=dSI1A’TTdSAS " W* ==NSA dd NISAS//
(CL72) TAD)=A3VdS’666INN=YIS= ;o>\:ﬁxwah_4: aa <InsaiAs//
(CT2) TAI)=T0VYdS’B666INN=UIS=TOA’HTSZ=LINN 4d TLNSAS//
(CTT)’1A2)=30VdS‘666INN=HIS=T0A“HTISZ=L|NN ac NITSAS//
: AWANG aa LNI1Y¥dSAS//
Azshg\mvl * LSN‘TON‘LN’ X‘V’S,=WiVd ‘VYWIl1=WDd 23IXT - 2//
(SSVd“)=dS1a’((1” Hv TAD) =3IVdS666ANN=YIAS=TOA‘H1TSZ=LINN QA NITSAS//
(SSVd“)=dSI1a’((T’ 1) TAD)=3IVdS’666ANN=YIS=T0A‘4T<Z=L NN ad T1dSAS//
(CT7T) “TAD) =3aVdS 0S0INN=UYIS=TOA ‘4 TSZ=LINN A0 TLASAS//

V=1N0SAS Ad LNIYdSAS//

.L."..LI

(
A
(CO7LT79) (W1

(SSVd’)=dsla’

zIwuam_Q\o:omzzrcqwzqo> HTSC=LINN“T0TNA"aAv01=NSa aa 411d43.Ls//-

109ddT=KWdd IIXI W//

198

file definitions required by his program.
DUMMY (see page 1% in Chapter 7),
SYSPRINT for printer output,

SYSCODE is &n extant code translation file (see
Chapter 8),

WORKLl, for temporary working space, can be used’
either for -card files or for internal files (but
not both in the same job step) and will take up
to 28,000 card records or 18,000 ("Durham-sized")
internally formatted items.

GRS
1)

%§§QESXN\ |

k:¥°,§ﬁ

s

199

