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_Abstract
For two-body procesées, dﬁality constraints supplemented
by the absence of exotic resonances.sucé;sfully-predicted
severallfeatures of hadronic dynamices. One of these predictions
: is'the-early scaling of thé total-cfoss-sécfion for exotic
processes.
. . ¢

Mg}ler’s analysis of inclusive reactions, relating the
inclusive crossfsecfiop via the generalized optical theorem to
the-abspry&tive part of the ﬁ-particle forward elaétic amplitude,
encouraged many'peopie to extend duality'afguments, in an
attempt to predict when the secondary contributions (or non-
scaling part of the amplitude) would be ﬁegligible. It seems
that this extension is not straightforward, and several criteria
have been proposed. In this thesis wéatry-to test these criteria
'by coﬁaring them with the available data on inclusive reactions
at high energies. A major part of the thesis is devoted to a "...%
review material concerning the concept of duality and its
development. |

We begin our re&iew-by froying'FESR ig.the classical manner
and briefly discuss their appiication. We show why the Pomeron
hag'an'exceptional nature and this,.toéther with thé belivé that
 all resonancés should be fitted into SU(3) multiplets, leads to
. the Harari-Freund conjecture. We also show how it can be rer
presented by.two-particle'dual diagrams. We then extend this
- discussion to.multiPQrticle reactions with emphaéis on inclusive

reactions. We.discuss the dual diagrams, the different criteria

for scaling and finally sbme experimental tests.




-CHAPTER . 1

Duality and approach to scaling in two body processes

I.l. Finite Energy Sum Rules ( FESR )

FESR are. con51stency cond1t10n= 1mposed by analytlcltj
-on an amplltude whlch relates its low energy behav1our to its
high energy descriptioh. To derive the FESR( )we consider an
invariant amplitude A(v,t);.for fixed t, such that A(Y,t) is
an enalyfic function in the ¥ plane,zexeept for a right hand
cut along the real axis for 7;}‘?th;:and a left-hand cut
symmetric to it.tFurthermore we assume that esymptoﬁically

the amplltude can be represented by Re gge terﬁa(a)”,

. Z ) -m‘f (t)
* 8y e () |
' A(" t) (t) 251n5’°(' (t) (s—o)_ : (Il)

V———>00

' where G,(t) is the residue function of Regge pgle[afikt) is

. the trajecﬁory_function, S, is a-eonstant, 84 = +]1 depending
on whether the Regge pole appears iﬁ'; signature partial wave
- amplitude. |

Now consider a counﬁour C ae shown in Fig.l.l.
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B.y. Cauc_h‘&’s ‘theoren g . _ .
. §A(V,t)d9 = o . S , L (I._Z)
-'I_'he_' parts of the contour C. along the cuts’ give
[ A, t)d = 4iS'D),(9,t)dv o (I 3)
Ci S . th '

" where the integrand D (\? t) is the dlscontlnulty across the

'cuts-, whlcn is defined by

D,(y t) = 1 {A(v+1i;) - A(v 1%)} . -, (14)

.'Assuming that '9] N is hizh enough such that the asymntotlc
.1imit has been reached, replace "A(y ,t) along the two
."s_emicirc-les by its Regsge expa,'nsion,(l.l).'_ We then deforrq. the
contour depending on the different values of a[i(t); For

-_ Ofi(t) > 1 we replace the u;\per semicircle by a straight line

from ¥ = -M-i toP=N-i . This gives .

- N : (" y ;C (t)
i K/s -+ Ss
=Li A dy = =4i/G.(t
MZ{D?( t)Regge 9 Z 1(‘ %o 251n g1, (t) (9/50

NN
'where the dlscontlnulty of the- Pegge ‘vdle terms is '
5,0, t)Regge '-Zci-(t)(v/so)‘{i(t) (1.6)
For o((-l we expandl the semicircle to infinity. Then the
_ contrlbutlon of the semicircle will be Z€ero, and the integral
_.allong the cut from N to +e gives the same result as (I'.l.p).
Finally for a/J._(t): -1 one evaltzate the semicircle directly,

and obtains a result which is the limit of the cases 06)4-1.

o (£)
)




Putting(1.3) and (1.5) in(1.2) wve get
A ana o inu e ety

N B
,( D (7, t) =ZG (t)s (Wsg) ° . (1)

© (t)+1
Yt di

This is the zero moment FESR. For.the spin-zero two-particle: .

process, A(Y,t) represents the scattering amﬁlitude, where ¥
is our. energy variable for a fixed t.
In. the physical region we assume that the amplitude

- is a real analytic function: -
A(vt) A(o t)_ I (1.9

Then the discontinuity Dﬂ(9 t) 1s'equal to »hé imaginary
part of the amplitude ImA(V,t), and the FESR give an expl_clt
relation between the ImA(Y,t) at Low energlesléﬁm), and the
Regge pole terms. at hivh enér@ieé.

One can generalize(l.7) and ﬂrlte higher moment FESR

N - / o( (t) +n+l
/s )b ,0)a =/c,(t)s. /s 1.9
3‘:' 0 i oCi(t)+n+l ( )

f c'_
l.2. Avvlication of the FESR, thé concept of duality, and

_ the Harari- Freund conjecture.

FESR_have a wide range 6f appliéﬁfion. For éxamplg,
they have been used‘?’ to determine the paraﬁeters.of'the-
'ﬁegge trajectories. |

In fact ihe_trajectory functioq can he pfedicted from .

- higher monment EESR'using the results

.b‘m ) °(-.|-n+l - : - | (i.lO)
S, T eCamtl : o .

“where
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Hovever, our main interest in:FESRlis in_céﬁneétion
w1th the hyvothesis of-resonancé.saturationt At.low energy
it is useful to represent the am Dlltudr in terms of the
s-channel martial wavgs(é:(P1+Pé)2, wheré'Pl gnd-P2 éré the
four momenta of the incoming pérticles'ip the é—chgnnel.

The relation between.s and the variabley is given by V= Sgu ’

where u _(P - L) ). This has the advantage that at-iow energy -
the number of the var ial waves which give an important
contribution iz limited, and thai often each partial wave
can be represented as a sum oL resonance ooles. If we assume
'iresonance'dominance, in;other words that at 1qw energy the
amplitude is described bty resonance contridution only, then
bﬁe can speak of a duality betweeh.the direct channel
fesonanées and the t-channe i Regge tradectovles. Thls is a
powerful assumption connecting toe particles in the two
différent channnels.In“applyirg FESR toU|W-char?e exchange
-(see Fig 1. 2) u5¢n¢ low enerzy resonance co*wnaqce and hlvh
enersy Qerfe ”oJlnance; zood co}relatlonsnave been founﬂ

o

between tne N_ and thej’Regze'trajectory,‘

Fig 1.2




Howeve“ the concept of resonance dcminance can be
:used only for the imaginary part of the annnltude. I; a
certain scetterlnm amnlltude can be explalned by. a sum of
ldlrect channel resonances,-we avproximate lto 1maglnary nart
at a given’ energy by the contrlbutlons of the resonances in
the néighbourhood of that energy.-The.realupart of the-amplitude
| at the same energy wili not be described in terms cf the
.nearby rescnances. The ;nflnence of a resenance bn-the real
part is spread over a wide energy range and in fact; the real
‘part vanishes at the resonance energy. | |

- As far as is known there are no exotic resonances, i.e.

- a11 the resonances can be fitted into SU(B) multiplets, which

" have the internal quantum numbers (q,I,I3,---—)_given by the
quark model, in which mesons are built np from -, quark-
sntiquerk combinations, and baryons from three quarks gqq.
We know that at'high energy and.SEall t, all the elastic
' frocesses are controlled by the Pomeranchukon. Applying
resonance saturation to exotic processes like pp, Kﬁ, Kfn,
_ whlch do not exhibit any alrect channel resonances, leads
1nescapab1y to the conflu51on that the Pomeranchuhon is outside
fthe resonances saturatlon scheme. Indeed it has been’ shown(4)
'for G- elastic scattering, that the resonance arproximation
csn'prdduse the properties of f and f but not the P .
) (5)

Harari noted that the Gt . s for the exotic processes

at high energy are approximately constant, while for processes

-iike'ﬁp, X p, ‘and ﬁ+p-with a very rich spectrum of s-channel

resonances, the eiétfi vary considerably at high energies.




'T_his -iesd him to suégest the following sonjedtures.
' _'1) The low én'ergy backgroun& is responsible for building up
the Pome*'a chu.ron ccmtrlbut1 ons. -. -
;2) The orulnarv +ra3ec+or1es (Regzeons) are bullt up by the
" low ‘ensrgy re_scnances; and we can write
InmA(s,t) = R + B (x.12)

'w_herc. R is the contribution of the dlrect channel resonances
'I' wﬁi_c?_x buil_ up the Reggeon- 'v1a Fz,.,P, and P is *he contrlou-
~tion of .thr;- non-res.onant"nacl{ground *in the direct cixann'e--l-
'-ne'hich.iuil'd's up the cr ossed -channel. Fome anshnkon contribu-
- ~tion. | | |
]Ft 'is well kmown that st' high enér_gy the.G'tot’,.é_' are

.préporti_.onal to > : - L : .
G._tot’szz_ %(O)l S - (z 13)
w'i.tha{p(o).: 1 anc ‘all ot ners o/(O)(l (-n fact the intercept
for all t'ne. leading Reggeons traje._ctorles is ~ 1/2 or{l/a ).
. We see as a conequence of the 'sbove cdn.:jecture, that the 6 ot’S
for a process which dces not exhlc;t a;y resonances is constant
"-while for those processes waich have s or. u-c'nannel.resonances
_'we need. te c“o to nmuch hl’rher enerFWes to be able to nerl

-1/2 ).

the conurlbu*‘lon of the secondarles (~ s Mo“eovcr

we can say that all € ’.S_ must decreas2 to their asymptotic

+ -
p and K p, in

ct

ne

(o)

-val_u-es.-_But_ in the exotic processes like
" t-channel we can exchar nge in zddéition to the Pomeron. the f
f',a) ’ 'and' A2 trajéct'o_ries. This would be in contrsdiction to
.HF-cénjecfure ,- 'u-nless' we supposé that. exchange-degeneracy holds

‘between the Reggeons,.




In the absence of'thé exchange fofcés,,i.e. no u-channel
. discontinuity, the even and odd signature trajectories will be
exchaﬁge-degenératef This wouid mean that the fesidues-and the
.trajectOry'functions ﬁere'identical. Obvioﬁély the diffefence
between -two such exchange-degeherate traje;tory'contributions -

"+ is .purely real

+ 7 -2 (Y/s)
(6 | (i) - %an—_g?j(”/so-) - el ()

Thﬁs for the above reacfions'(pp.and K+p ) where f and Ags W
" . .and f, are exchange-degenerate trajectofies, onlyﬂlcontributes
to the imaginary part of the amplitude.

l.3. Duality diagrams.

The duality reguirement which we "‘have described above can

be expressed in terms of dual diagrams Fig.l.3,

§

|
|

1

' N Wi S
| .
(8)

Fig.l.3




_ whére the 1iﬁes represént_quarké. The rules for draWing legal.
diagrams are :-

i N -Every line repfesents a;quark'ﬁhich-does not change its
identity during the interaction.'Therefére evéry external
“baryon is represepted 5y three lires in the séme directioﬁ,_and
hésbné'by-two lines in .opposite ﬁirecfibns. '

2.. The two._ends of & s1n51e line cannot belong uo the same
:external partlcle .

In the case of nlanaf dlagrams, 1 €. those flthout cross-:_
<ing lines we should bg able po ‘bisect the diagrams by cuttlng
thpee lines in the B = 1 channel and only two lines in ihe B =0
| channei. |

The diagraﬁs carry information-of.two types :=-

'1.- The quantum hpmbers are carried b&.the quark lines.

s Tﬁé-topology of the diagrams indicates which.channels have
| the dPscontinuities. qu example thé diagrams cescribing meson-
meson andlmeson-baryon scatterihg (Fig.1l.3,(a)and(b)), have
discbntiﬁuities in-the t and s-channels, but not in the u-
'channel. figs.l.}(a) aﬁd (b) also demonstrate'that there is at
least one self—con51stent set of amnllfudns which satisfies the
zﬂduallty requlrements. Here and elsemnere we.u*ll use ‘a simple
abbreviated form to draw the diagr hhu; as in Fig.1.2(d), ¥hich
- '1s equlvalent to &1l other diagrams in Fig.l.3.

i - In dual perturbat:i_.ve theory(e), we assume that the full
':scattéring amplifude is represented by-the suﬁ of 511 distinct
 éu;lity diég}ams; éherefore within a polé appfoximation; in

addition to.Fig.l.S(-d). we have to add another two diagrams

'_'correspondlnn to a cycllc inequivalent permutation of the




eXternal.particles(Fig 1.4(a)), one of which has a non-vanishing
discontlnulty in the s and u-channe1s, the other in u and te-

(3

channels (in the Venez1ano model these three-diagrams .- -
'correspond to V(s, t), V(s,u), V(uyt)). In addition to the above

- diagrams we will cons1der many other, more complicated ones.The

:_ main task is to classify'them accqrdlng to ‘their’ quantum numbers’

and fopology,'and to find a simple rule %o“test whethef they are
consistept with the Harari-Freund hypothesis. |

;For-the diagram (b)in Fig.l.h, the fopology indicateé thaf
there are.no resonances in the s-ehannel, since there are no
éuarks exchanged. imposing the HF hypothesis, ﬁe_reqaire that

" the .contribution of this diagram to the imaginary part be zerd,

(e, : (C)

) Fig 1.4
Genera11s1ng the above statement to arbltrary dlagrams leads us
'to suppose that diagrams whlch have just one external partlcle
-attaehed to a quafk leop vanish,
| ,In.Fig.l;S we draw further_types of diagranms. Fig.l.5(a)
-__Has-no reeonances in the s-channel, thus py'the BF conjecture,

..'the diagram has to-vanish. From Fig.l.S(b) it is easy to see

"that this dlagra coffesnonds to the exchange of the Pomeran-. . .

-chukon in the t channel (the cuarks ﬁalntaln their content,
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‘thus the t-channel has'vacuum quantum numberg).

- The same can be said about diagrams 1n Fig.1.5(c) and (d)-

They have no resonances in t-channel thus- they have to vanish ;

™y

(d)

Fig.1l.5
Another way of locking at the problem, within the frame-

-work of dual resonance nodel, 1as been suggested by Gordon
et alcg'z and further developed by Lye anu.Venez1ano(10}. -
Their idea is based on a model for the production amplitude
which is de;cribed as a sum of two bomnoncnts; which have
either one or two resonances produced in the1r'1ntermed1ate;
states respectlvely (see rlg 1.6).
Physically the process a+b-—v-aﬁything takes place in
' thrée sﬁccessifé'steps. Tﬁe initial . state forms a sort of
'fcoﬁbound state R which decays into the final state, R being
éither a single reSonanéé or a_two—resonapce state. In fact the .

two-resonance state itself is a sum of - two terms A y and

real

AD, where Areei has the same quantum numbers and .phase as V(t,u)
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(16

‘1n the Venez1ano mocel , and Aﬁ :9- the diffréctive component,
has vacuumn cuantum nurbers in the t-channel, and is assumed to
be purely imaginary. |

_Thus the production amplitude can be w;itﬁen as a sum of
three terms as follows.: | _
+-'A-l')' -(-:I.IE)

The . three components are displayed in Pig.l.6,

A(a +b —_— anything) = L ALgal

* Fig.1.6
" where Fig.l..6(a) rep_resents ALogs(D) represents ALoays 2nd (c)
represents Ay _ o ' C-

_ It 1s now easy +o see that 6tot is glven by (see Fig .1.7)

o - 2 y - L
6 ot -='ZG.:b o Ga'b>-0 S (z.26)
_.whe_reslb is defined by

6'. :‘1'0 =.6:_§s-..-_2;;(a + b-‘--.._R)A*(-R-—o- a + b) (I.l?)

_and 5 ab is equal to _ ,
2 real 0 >l ' 02
Gap =Cap *Oap - .__Z:(?Areal(a * b Ry¢ Ra),
. 2 ’ -

N R),R |
' . _ _ 2
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In. the above formﬁ1a5‘ib is only present if. there are -
-reso_nances in the direct channe1.6§b gives the background and
has vacuum guantum numbers iﬁ the t-ghanhél. B

. These <_:omp'9nents Ofstot are shown in Fig.l.7..

.‘2 ) _;S)\_/(

= — = =

Pomeron

i
it

e

(a)

L_,H:

I

Fig..1.7
Tye and Veneziaﬂo call fhis.hypothesis the weak form of
the_HF-coﬁjécture.By cohtrast,the.stropg Hf-conjecture is taken
to méan the additional ;ésumption, that only the Pomeron.is
present .inigi - Note that in_ the previous-discussion of the
HF-conJecture we 1mn11c1tly assumca tbe strong fornm .'
~In the above discussion the 1nterfernce terms are =1ways
neglected. ?hey_may’contribute to the real part only, as in the
¢§se of A'e;ian& AD; Since to the extent that A s purely
j.r'nag'i'r'_lar:.y, this ter-:n..h-a.s .a vanisning discbntinuity; c%r they may
~ contribute to s_o}ne sort of ai)sorpative correction, as in the case
of A g and Ay w‘h_ich. does r:mt negq to ve pos'?'L.ti've de_fi.n.ite- -

The generalization of dual diagrams to inclusive reactions

will be discussed in a later chapter.But we should note here
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the fact that they run into difficulties even for two-body"

scattering. For example, in the case of baryon- arntibaryon ..

_' scaftering Fig 1.3(c), we always hé.ve the exchanﬂe"of more E

-"quarks than qq or gaq 1n the 1ntermed1ate state, so we predlct:
' that there should be exotlc fesonance.; in the dlrect cnannel.

-Another e*-'a'"nTe which could be cons:.dered is polarlzatlon of -

in Kn— g A . at forward angles. The dua“l ty diagram Fiz.1.8

implies that ths _am'plitude is purely real at high energies,

Thus we exvect no polarizatiom, but experizments .indicate a

positive polarizatiocnof A.

Fig.1.8




n |

CHAPTER II.

Inclusive Reactions

II.1 Introdﬁction

In this chapter our concern is to study multiparticle

reactions of the forn

' the energy increases.

8+ b et C [ Ap— C.* C, "-----'-7' c. - '(11.1)

The most common features, which have been observed.experiﬁen-

-tally in this sort of reaction, are:-

-1, SmallneSs 6f the transverse momenta.Pr.

At high enrnergy the average #alue of the transverse

ﬁbmenta is'of the order of 0.3 GeV/c. It is found tobe almost

1ndene"dent of the type of reaction studied, the particle

producnd, ani the incident enerﬂy (see Fig.2.1 )
2. Low multiplicity of the particles produced.
" The average number of particles produced grows much

\ ]
more slowly tnan is allowed kinematically. It has been suggest-

- iwed that a logarithmic increase of multiplicity occurs when

- Ln>- B+A&Js L (ua)

-where <n> is the average 'nultlpllcn.ty def..ned by '

- <“>“‘Zn6 jhgn, - ' -.<Hjﬂ
n/ = - = e : - .

o ZGH ' Otot '

B and A arécbnstants,(;n is the cross section for troductionm.

w

of n-particles, (see Fig.2.2) .

‘3. The particleé rroduced are mainly pions (about GO % at 20

. GeV and 80 ¥ at ISR energies ).

4, Leading particle effect.
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Vhen one of the particles produced has the same quantunm

__.nu'nbere as one of the initial particles, it has been pbservedl'

that it is often nxoduced w1th a sig nu fractlon .of the

available energy (see Fig.2.3)

" Combining (1) and (2) we can see that the longitudinal

- momentum is growing rapidly with énergy.

There are two ways of studying multiparticle reactions,

g exc1u51valy ana 1nclu51velJ. The first description needs a
. knowledg° of the momentum of all the particles nroduced the

-:second.description needs a-knowledge only of the specific -

particléé concerned., In fact the two descriptioné'are-

eguivalent in the sense that for a ful; experiment one needs

a complete knowledge of all the.exclusife cross-sections,

which implies a knowledge of all the 1nc1u31ve cross-sections
(i2)

and vice-versa.

II.Z. K&nematlcs

In this section we discuss the kinematics of the single
particle inclusive feactgon. Qur main task is.to define the
proper kinematical variables, whichjwe shall need in the
later stages'of this chapter. | o

'Considsr the proqesé

Pt Pp— Pc+'x- ' | (11‘4)
which is described diagramatically in Fig 2.4
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where Pa and Pb are the four momenta: of the incident and
. target particles,respectively, P  is the four momentum of the
detected particle, and X represents the other outgoing particles. .

In the reaction centre of mass (c.m) system we have

P, = ( E_, 0,0,P)

a. ’
P, = ( E,, 0,0,-P) T ¢ ¢ &) R
" P.o= (E, PcL’PcT)

where Ei is the erergy of tkre 1~£-part1cle, les the c.m momen-
-tum, P and P _jare the transverse and the longitudinal
momenta of the particle c.

The rapidity of the particle ¢ in the c.m. system is.

‘defined by : .
E +P P oo _
Y - 2 - L _ sipn™?:-CL _ (11.6)
c 2 E_ =P Y
_ cL c

: o 5 . . . 2 2 1
where_f% is the longitudinal mass, and equal to (mc + PcT ) {2

The relation between the Mandelstanm invariants and the

.rapidity are given by _
lab

_ 2 _ 2., 2 | o
sz ( Py + P = m ¢ m + 23, mcosh ¥, (11.7)
_ s 2 _ 2 2 RS proj .

:t = ( Pa - pc) =m +r - 2mafb§osh ?c .- K (II.8)
o 2 2.2 . 5 lab - . (s
- u., ( Pb_- ?c) =my +m - ?mbeCPSh.Yc (II.9)

wherq'Yalab is ‘the rapidity of the particle a in the lad

éystem (by the lab system we mean the rest system of the
target particle'b. ) chrqa is the rapidity of the particle_

Q.in the projec;ile system (the reost system of the bean

lat

o is the rapidity of the c- particle in

particle a ), and Y
the lab system.

Another very useful variable is the missing mass M,
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defined by .

_.M2 = (P + Pﬁ - ? 52 =5 + mi- 251/3w cosh Y _ (II.IO)_
Feynman deflnes a new varlable as follows _
2P . ; o o :

X, = S . B (rr.11)

'_ To specify a single particle inclusive reaction one can
_ take any three 1ndenenaent varlables from tne above set.

The relation betveen the long 1tua1nul momentum of the

_ particle ¢ in the lab system_ﬂéﬂ and the Feynman varlable X

'is'given by the'Lorentz'transfbrmation
. = JW 1/2 "
1 " . c \
2£” =fzﬂ/§'i51nh u [x + h--—i] + X cosh i}. (II.12)

where sinh u = Pz/mb

Dividing the missing mass MZ by s, asymﬁtotically we obtain
.ﬁa : mi f% 1/2. :

— 1+-——-(x+ ) _A_)l—lxl (II.13)

s

where we' have replaced cosh T, by
. 2 ' :
X s
cosh T = (5 + 1) (11.14)

and-finally we write the variable t in terms of X and PcT

. ' . m_ X
2. 2 a ]"c
t -_ma +om f_maf%( - o = .)

~ - Pi,l-,/x + ma(l -X) + mi(l -X) (II.15)

II 3 The hv nothesis of a limiting fragmentation and scaling

It is covenient to represent the unpolarized inclusive

: . . . - . b Ll eha
cross—section by the invariant function {f’a called the

single particle- distribution or spectral function and defined

by 43
EC

b ' ' ' 3
o~ £$03%('p | ) o (1)

1

i
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Multiparticle inclusive specira can also be defined as

n . 1n.' .. c,-~-==C ' '
' - 1 . n :
n = f - (S’P ’----’P ) (II.l?) .
Ci=1 aPi___dpj . ab cl . (o] S -

2]

Another useful function is the density fuﬁction which is

~ defined by .

Cy====C

1 'n . _ 1 177" . Y G -
J:b : © = Fan fab : . — <;I'18)-
The limiting fragmentation hypothesis (Benceke, Chow, Yang
" and . ch( ) ) states that in the lab system \nroaectlle system~ ) .

some of the outgoing bar+1cles-w1th small 1ongltud1na1 momenta
( BCYV descritve them as fragments of the ta“vet (projectile ))
approach a limiting distribution as s- .In terms of spectral

'funculon this hypoth931° reads

lim fi ab(rcfacT’ s) = 17’ ab(zC”’}CL (II.19)

provided 201 is held fixed, o
_ LEY) . : (%)

The scaling hyvothesis which has been proposed by Feynman

states fhat if we consider the spectral function I; »ab as a

- function of the centre of mass variables then we have

lim fl (ch,'PcT,-s) ~ ff’ab(x,'PcT) (II 20)
&= ' - - .

" - independent of s.

c,ab

. For X2> .,/a, the two hynotheses are equlvaleru.-xn;s can

be seen frow (I1 1;), since the asv"ntot*c behaviour of Z o for

large 5, small 2%m, and &<§}:/:/sl/ is given by

S oy | )
Jop = T P - (ﬂi/&.mb ) - (II..21
We see that fixed X implies fixed 7cyin.the lab systenm. It can
be shown that for \’>>2’lé 1/2, fixed X implies fixed z in the
Cif

b

projectile system.'However the point ¥ = O does not corresrcond
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to any finite momentum in the lab or projec ile syutewg.

Feynman makes the further wnrediction that, near the point
oCyab . . ' ' '

X =0,f°"" is independent of X.

IXI.4 The Cenara117ed Ontical Theoreu,

The ge nerallzed optical theorem pla °, in.inclusive
reactions, tae'same rqle_as uhe ordirnary opticalgtheorem does
'_fOr.the tétal_cross-sectidn. |

The optical theoremn, Eased on uni;arity, sayg-that thé
éfoss se@tion-for tﬁe prpcessL; + bee—sanything is equal to the
. imaginary part of -the elastic amplitude a + b ——a + b in the

forward direction (see Fig.2.5 ).

6 1ot = Trog In ASp(s,t = 0) | '.(11.22)
. : 9 1
. ———— . d
= )
Unftarity

. el . -—
> Ip Aab(s,t = 0)
Fig.2.5

Sim1¢ar1y the generallzed ortical theoreﬁ'relates the
inc1u51ve cross section for the’ process a + b = C- +- aﬁyth1n~
to the discontinuity in Mz of the forward elastic amplitude of
the ‘process

a+ b+ € —omepp2+ b+ . '(II.ZB)
“If one considers the amplitude as a function ol s,M7,and t
then -the generalized optical theorem can be written as

137 ab(s W) = i Dismz(s'_”ast) , ’ (II°2"+) .
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"where the DisMa(s,Mz,t) i§ defined by

DisMé(s,Mz,t) - E%—Z.A(s v 10,M° + if,t - i)
- A(s + ii;Ma'; ig,t - iﬁ{} o (II.ZE)

This relation is shown pictorizlly in Fig.2.6

| ¢Cyab = .;;L__ZE:
: f[- (a'+ bee—c + X) 1%

Dis

| -
— VSt |

< |
2 t
!

M
T flux -////1
. l -

’ Fig.2.6

To prove this result we have £6 zssume that the elastic
three-bo#y amplitude can be'énalytically continued to the phys-
-ical region of the inclﬁsive vrocess and that the-analytic
 continuation describes the actual physical sitﬁation there.

IT.5 Regge analysis of the inclusive spectra,
e _

-—ie

The importance of the.above thecrem lies in the fact that
in a certain asymptotic limit the forwgrd three-body elastic
amplitude can'be expanded in terms -of Regge singularities. In
:'this_way one obtains an asymptotic Regge expansipﬁ of tﬁe in-
-'-clusivé épeétra. We shall makekuse'of'the generalized optical-
. thébrem in two difﬁerent regions,-the fragmentation region-and
the pionization region.

I1.5.1 The Fragmentation Region.

In this.region'one can consider three different limits,
the single Regege liﬁit, the normal Regge limit and the triple

Regge limit,.
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Sinzgle Fecse linit.

. . . . s .c,ab
Consider the distribution function 11’

as. a funétion
of ‘the three indcvpendent var%ables,“s,_t, M?/s,.wﬂére Mz/s is
‘the Toller angle describing the'orientatiqn:of 53 Qith respéqt
td the scattering'plané defined.by.bs'and a.' |

| In.tefms df the above variables thetsihéle Regée;limit is
"defiﬁed' by s'_.-,.o,,, t and M2/ s fixed. It is easy to see that this
linit is identicai witﬁ the fragmentatién limit. Indeed ffom
- (11.13) we find that fixed M%/s implies fixed X, and furthermore
from (I1.15) we see that fixed X and t imply fixed Z'ir’ or
equivalently fixedjqi. Since'fé is fixed then XE)Qﬁi/s ’ and.we:
héve already indicated that this 1imit is identical with the
fragmentation limit in the lab system.for X<§}%/Z/sl/2, and
ddentical with the fragmentation limit in the projectile system
tor 3Dz /Y2,

Then the Regzge model for the elastic Amplitude gives the

_following asympntotic expansion, as illustrated in Fig.2.7.

| £1(0)-1 ;
£(s, ¥/s, t) _.=Z'ﬁi(!-:f2_/s,'t')(r{2 : . (1.28)

a

.\
f,
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To obtain (II.2§) we have to assume pole dominance. Assuming the
dominance.of the Pomeron?? with intercept one (%%: 1), and the
".meéon trajectories f,f,w, and AZ with intercept one-half G(M =

~ 1/2) one has:

f(u,xi /s,t) 2 [5 Mo /5, t) +Z M(z--'za'/s,t)s‘l/2 (11.27)
Vhen s is sufxlclentlj\large we obtain - \

' ) o -2 . . y

s, is,t) & ey B (11.28)

.ﬁhus the single garticleldistribution function fg,ab becomes
independent of energy. This ié in fact the limiting‘fragmenta-
-tion hypothesis of Yang, or the scaling-hyﬁbthesis of Feynman,
since both hypotheses are eguivalent in the fragmentation regiog.

| If the Pomeron factorises then one has

fi g X%b./a:pac(” /s4t) | <I;‘29)
vwhere the dependence on the target narficle b is contained in
thé facgor XgZi while/ﬂig)as(vz/s t) depends on the variables
describing the cluster ac.

Now Sunnose we replace the cluster ac by a genulne -
particle say a, i.e., we con51der the ba toyal cross-sectlon,then
,agymptotlcallj oné has | _ . _ ST

65t = X:Z, P o © (11.30)
"sCyab. ab

D1v1d1ng =) b Gto*’ one finds that the density function in

the precjectile sy:»en is 1rdenendent of the nature of the target.
rc ab .

Joab 6 : éu,ac){ - -(II.}-SL)_.
' tot . o , .- L e

Normal and Triple Regge limit, . - . . TR

In the fragmentation region .there are two other limits to

be 6onsidered,_the normal and tne triple Regge limits




. (see f‘ig.2.8) .

(4) Fj..g.2_..8
| The norzal Regge limit, -_repre'sented in Fig.a.s_(a), is
'defined by s —» o0, M, and t fixed. To_cbtain-the asymptotic -
| formula for the inclusive c_:ross--secti'on we proceed as follows.

Consider the process in Fig.2.9.

"Assuming that factorization holds, the asymptotic form for the .
: 'process in Fig.2.9 is given by a Regge behavibur!‘ o

: e A o
: i
A(ab — cx) Z}ggb(t)yav(t)g ; (cosé,) | | (II 32)
-wherez is the signature factor (e.:c'o(loé (t) + s)/sind ¢), Xac
’ _;'epresen\,s the coupllﬁg bet'-:.-'een the particles a and ¢y and the

i . . , .
'Re.ggeo-no{i, XbH represents the coupling between the particles

- b and X, and the Reggeon oé‘i ; and cos@, is defined by
. . . v

. 2
t2+, t + (2s - mi- mi- mf‘:-M“) + (mf- m‘z)(mi- Ma)
c.oset = l‘tz . = - ' =
A *hrachtu . - (11.33)

where Z’téc is defined -
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1 .l (2 2. ' ’
?tac_= LT (t - (maf mc) Y(t - (ma» mc) ) (;1_34)

. and },7toM is defined '
Gpop = ~5ECE ~(myr WL =(mp- M), - .(11.,35).

Putting this into the optic'a.l ‘theorem we find

-
fc ab )

= _Zxﬂc},ac(l;‘](cosé 3< (1_:) fﬂ( (t)ﬂ V-)(h‘s")
-where/a(t F )1s the dlscontlnulty of of the forws “d.elastic :
-Reggeon particle amplLtuae. Replaclng cosG% by 1ts'asymptotic
behaviour, we obtain | J

- Ex ' fza ‘”’2% W, (/B(t’“ ) (11-37)

The triple Regge limit is defined by S-qnﬁ,r%—ﬂ” s/
large but fixed and t f1xe§. The asymntotic formula for fc ,ab
 cén easily obtained from a further Reggei atlon of the discon-

s 2 : 2 .
-atanItyﬁS(t,M ), where now ¥~ is.large. Thus one can write
A ) : - ) .

| cyab 22 +o (t) \
(Ma;‘k“’ II.38) |

" where,as before,we assume that:factorization hiolds,

II 5 2 Double Regge 1:Lmn, - Centrul Region- .

Let ‘us conslder the region where X#/0.In this region £he
'pafticle c is_not slow in either the labd system, 6r in the
: frojeétile syétem. Thus we cannot consider it as a frggment of
“1 elther of the parulcles a or t. In this rer1on it is- convenlent
to use the follow1ng set of variables u, t, ahdjﬁ defined in
I;(IIfgk(Ii.gL .« In terms of these variables the double

Regge 1limit is defined by s,!tl, and}ulgoing to infinity andf%f
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2 as . ' - '
jﬂcflxed._ﬁlnce both the sub-energies u and t are very large, one

expects the amplitude to yield a double Regge behavior and so

the inclusive cros<-aect10r ;; .(see Flg.a 10) . .can be wrltten
cizb L 2 | ==< (0) <.(0)
flsa (t,u:j"‘c Zb( l)lt lu"‘
o «;(0)- 1 o(0)-1 .
25(,\1)11:'1 lul o (11.39)
a
c
ol
¢ ’
Fig.210
If we assume Pomeron dominance as before, wé obtain
c,ab Z ' - . .
£11%° & B () (11.10)
2 2. 2

And remgmbering that p° = mc+2cT , we find that the distribution

function fi’ab

is a function of 7cT only, in accordance with
.Feynman’s predictior. Fuftherzmore , assuming that the Pomeron
is a factorizable pole, one can hr1te _
/7)//) 7P R o :
f( ZcT) Y /c(%u - C (II'ul)

and, since X/PX%D determines asymntotlcally the magnltude of

Gtot’ the dnnSJ.tyf’s iven by _ _
: f: )V('(ch, o (112)
- 6 tOb . - .

. a universal function depending only on the produced particles

and not on the incident particles.:

In the next chapter we shall consider the implication of

the duality for such inclusive cross-section.
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CHAPTER III

"Duality and approach to scaling in single D°rtivle-

inclusive'reactions

Ip_chapter oné we discussed dual diagfams for two—pafticle
p:ogesges; The above scheme been succnssiul in predicting sever-.
-al features of hadronic interactions. In particular the HF-
rcqnjeéture pradicts, via the optical.fheorem, the behaviour of
"tﬁé total cross-secfipn} This'succeés lead severai authors toé
.generalize the HF-~-conjecture to the case of single particle
inclusivé reactions. ‘As in the case of total céoss-sections, one
_éxpects the inclusive cross-section to dépend upon the quantum
hﬁmbers of tﬁe external particles invoived. Unfortunately the
generalizatﬂcn is not strairht forward ,because it is not clear
what duality means other ‘han for two—bodv reactions.

| In chanter two we saw that the single oar+1cle inclusive .
réactions'can be analysed in terms of six point functions. There
_involve several channels;énd it is not clear how to apply duality
scalinv rules. Severel crit eria ior the elimination of the

e
secondaries (Qeggeon contributions anpearin ‘the Muller formula for
the inclusive v'eslct'non,(c:fxanter II)). have been ‘proposed. In this
chapter we discues these criteria, their justificaticn, and
their region of validity. o

I11.] LKOulC’tJ conaitﬂon in the fragmen+ation rugion.

As we know from the second chapter there ‘are mai inly two
important kinematical region- to be considered, the fragmenta-

-tion and the pionization regions'Wé present here the different




criterigiwhich nave beeh proposed for early scaling-in the .
'frégmgntation region. |

| The_first approach to the probiem was by Chun(js)et al
.who argued th&t,the critéria oﬁtained in the cése of u-point
functionsare good enough to be generalized to the six point
fﬁnc?ions.This is becauée,in the_f:agmentétion fegion, the .

cluster ac is clearly separated from particle b, and thus can.’

o

be copsidered as 2 pseudoparticle, provided- the quantum numbers
of ac are not exotic.,

from'the previous discuésion we see that for two-body
interact’ions{—ftot is determined by thé forvard two-partiéle
elastic amplitude, and én exotic direci channel is enough to
eliminate the secondaries, where as in the case of the single-~
particle inclusive‘reaction the distribution function is
determined in teras of the three- body forward elastic amplitudé
-Thua Chun et al suggest that an exotlc three-body direct channeil
(abc) is a sufficent criterion for the elimination of the secon-
:;daries.Their criterion works for Kvu- interacticng, since for
k* + p__*.5‘+ anythin g, which is exotic ir the direct channel has
has an enegy indepenaent distribution-fupéﬁioﬁ,.whereéé the ‘.-

o - o . Ty :
react¢on K +n,,| + anytnlnv ‘'which is not exotic in the direct

(4]

channel, has a strong energy devendenc
Another cr lterién has been suggested by'Ellis et al(ié).

,Th;y érgue thaf the Chan criterién is2 necessary condition for

'.thé elimination oflthe éécondary trajectcfies in thé taree-body

reactions, but ndt sufficient. It neglects the effect of the

t#o-body channal; wnich if not exotic,contributes to the dis.--



28

~continuity of the three;body channel. Moreover,for the react-
-ions ﬁF+p K++anything,where abE is exotic in-both'pases,.they“
show that factbrization maxe$ the avove criterioq_inponsistant,I@
‘demands the vanishing of tkhe contributions of individﬁal Regge
trajéctories rather than exchange degenerzcy between them._To.
see this we.write the Regge description-for-ﬁhe above reaction

-as follows

+
K*5%s 5 e
£ie ﬁ,;a("cL P_o) * (ﬁf(p 9P, T) +[‘9 (P g sPep) M ™

| | | | o - (@11.1)

whereﬁf and_ﬁfare the contributiohs of the f and f-trajectories
exchanged in the above reactions. Thus satisfaction of Chan
criterion in both reactions demands the vanishing ofﬁf if%”
which implies the vanishing ofj5f andj%’ separately. They con.—-
¢lude that ever if ths Chan criterion is sufficient it is
éertainly not necessary.

In the fragmentation reéion of a into-c, both (cb) and
(ac) channels are below the - thresholds, so the relevent two-
ﬁarticle ch;nnél effect can come only from the (ab) chanmel.
'ZTherefore as a sufficient criterian fér the flathe;s of the
distribution function they suggeut that in addifibn to (abc)
exot;c,-one needb (ab) exotic.

A different viewpoint,within the framework of dual per-
.tdpﬁative scheﬁe, has been proposed by Einhorn, Green, and
virasoro’!’ )(EG V).

' For process &+C;C ~———>= a+b+C, in the fra ﬁentatlon reglon
‘of a.into ¢, the leadihg-contribution comes from the dlaérams

which have a non-vanishing discontinuity in the abc channel,gnd
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~ a;Reggeon or Pomeron in the bb channel. In Fig.3.1 we draw all

~ the:'relevant primitive planar - -diagrams.

Fige3.1 -

In éhapter two wé see that the Muller expression for the
distritution function contains two .parts, a scaling part which
is built up from the Pomeron in the bb channel, and a nonscaling
part whfﬁh is built ué fron ;he contributi&n of a Reggeon in thé
same channel. Thus to obtain éarly_scaling, the main task will
be to eliminate diagrams which have é_Reggeon iﬁ the bb-channel.
gDiagfams in Fig.}Fl(a) and'(b)_ére'ir;elevant'to'our discussion.
Théy do not contribute to the ﬂonséaling part, since there is no .
Reggéon in the'bg-channel; |
. All the other diagrams in Fig.3.1l have a Reggeon in the

: bs'chadnels,-aﬂd contribute to thé nonscaling part. Applying-the
';ules obtazined in chapter dne, EGV cone to'the'conclusiqn that
fdr early scaling it is necessary and sufficient to have (ab):-
and (bc) exotic. Indeed it is straightforward to check tnat the

- above criteris will eliminate all the relevant diagrams in
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Fig.3 olo
,EGV'expect this criterion to work in the whole fragmen-

-tation region. They expect in certain limited regions -of phaeeﬂ

space the other criteria to be good as well. Thﬁs for example'in .

the _triﬁleQRegge limit, the tree.diagrams;;Fig.B.l(c), aré.
'expectedfto'be iﬁe dominant ndn-seélingrdiagrams;'To'the extent
that Fiéej.l(c) does dominate in this regicn, the condition & .
" (abc) exqtiC'is.enough to ensure early scaling. |

In the opinion of Chan et 2l the tree diagrams are the .
'dominant ones in the whole’ fragmentatlon region. They suggest -
fhat'all uhe other diagranms in which 2 and ¢ are not adjacent,
have vanishing limits. In other words; in the fragmentatioﬁ
;imif of a into c,J3RqEO ‘whereJBR has-reen defined in chapter
II, in the content_of the Muiler expansion 6f_the distribution
function-ie'the'fregmentation region_) for all those diagrams
in whicﬁ 2 and c are not resonant.Thue according to Chan,within
the'above aprroximation (abE) exotic is sufficient criterion for
the early scaling in the vhele frzgzentation region.Howsver it
is Anown exper-mentally that tne Po"eranchu<on has coupling of
‘the same order as the Reggeons. Lhus there is no reason why

JBZR Should 0 if a Po_eranchuzon contributes to the ac channel.

We conclu this section by dlscuss1ncr a recent proposal wr

'by Tye and Venealano 18). Tollowing the ar*u*ent given 'in
xchapter ‘I, for the dec019051tlon of the total cross sectlon into
Ia sum of one and two resonance components, one finds thnt for
the 51ng1e partlclellnclualve erossfsectlon,aeven comoonents can

be obtained. In Fig.3.2 we display all those cbmponents whica
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qontfibute to the production amplitudé Af{a + b-—c + X). Multi-
--plying each cemponeﬂt-by its complex conjugate and suﬁming over
all X (X represents anything produced except ¢ ), one obtalns
the seven components contrlbutﬂnf to the{St t.Thnse seven conp-
-onents ere.in fact identical with some of those for planar

duality Fig.3.1-

, C

Fig.3.2

In obtaining the seven compoments, we leave out the diff-

-ractive part Ab; which we discuss. later, and ignore interfer.-.

‘=-énce terms. Then-the inclusive cross section is given by

CE E, (E )70 {II.2)
dP’. ZZT ( dp5 CO dp3 | '> | -Q | )

a5

where (E ———%—-). cin be writen as follows
' ap?  * /
c
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’ 3 o(

.il.__. (0) -

“fc e p (X,P ) +J3 (_.,ch> II1.3
Cc

The character:stlc of each component has been summarlzed

in table -1-

Table =-1-
Component |- Chinnel rejuired:s | Vacuua quantum - ':;‘g.--scalix;.g Smling piece
' to be non-siiic punbers in piece :
. - o o .'/" ety - :..- . chma e
1 ab, bc, ab¢ . | nmone Pl ﬂl" o
- - . ”~
2 ab, ac, abc rone .PZ p2= 0
3 b, ac, abc none ﬁ's }3:='0
L ab - - cc ﬁh ﬂf 0
5 b3 ' a3 f; . B <0
Bs- 0,X)0
6 ac b B Ps  x00
Pg= 0.X <c
. : ”
7 a3, b5, cf’ 2, [

Ffom the‘abqve table we see that for;the_elimination of
the secondary contrlbuulon all the channels need to be exotic.
To end this sectlon we su“marlﬂe all the crlterlon for
the elimination of the secondaries in the fra*mentat;on region
ofra into ¢.
1. Chaﬁ et al abE.exoficf
2 Ellies et al.abE and ab exotic.
3. Einhorn et zl ab and cb exotié.
4.“Tyé and Veneziano all the cﬁahnel is to be exotic.

© III.2 _Exeticity condition in the central rezion.

In chapter . II we showed that pionization is expected to
as . . .. .out ‘
be valid only when both u and t are large, kKecpilly = = const-

5

‘= ant. The nain diagrams contributing to thz. nonsé¢aling 1limit




33
are those which have Réggedn-Reégeon or Reggeon-Pomeron exchange
in aa and bb channels. This is easy to seé fron Muller’s-
Regge expﬂnalon of fc »3b(p T’PcL’S) eq(II 3§’The relevant

. diagrams are shown- Jn Fige3+2

(%]

(Y]

(¢). ()

Fige3.9.
The condition for the elimination of these diagrams is shown in

table 2 given by EG\

s Table -2~
Diagrams as Exchanzed Regge Condition for the absence
latelled in singularity of the contrioution
Fig.3.4 in aa in bb : :
a P R o ~ bc exotic:
b ' R R- | . .ab exotic
e R 1P: B B exotic
d R. R ac or bc or abc
exotic

From table 2 we find’" that the condition for the elimina-
.:-tlon of all thesedia é ms is ab, ac, and bc exotic. In fact
.not'all these diagrams will be of equal importance. The
ggymptoFiclbehaviour of f(%,v,.T) vlven.ln ec(TI }2”13_

IR VA | _
-f(Xss,zT)AJﬁ& l[ . QJI h)




Sk

From the above we see that the contribution of the diagrams(a)
“and(c) to £(Xy8,y § q) isltrl’c,while the contribution.of the -

Cas . -1/2 -1/2 s .3 ) A
Biagrams (b) and (d) ft[ "y 7" . .And if we consider the limit

%c = O then u and t are Both preovoruvional to 51/?. Then we see
that the two terms (a) and (¢) go like 5-1/4, while (b) and (4)

go_like s-l/a'énd at a very high'energy.becomeunegligible by

comparision with (a) and (c¢). In this case to eliminate the

.. secondaries it is sufficient to have ac -and bc exotic.




CHAPTER IV

Experimental tests of scaling

IV.l Scaling and tests of the exoticity criterionm in the

fragmentation region.

In chapter II we defined Feynm n and Yﬁpg et al scaling
~in inclusive reactions.\¥e see ﬁhat spa};ng means the 1ndge-
pendence of the inclusive cross-section of the ener;y variable
auymntotlcally, and moreover in the blonlza+10n reslon it means’
'1ndependence of the scallng var1=b1e X.In F1°.2 1, and 2.3 we
| show some evidence for the scal;ng. Fig.a.l i}lustrates Fhe
”transverse momentum distribution at X = O observed at different
_ISR.energies togefher with distributions at accelerator energies
-while Fig.2.3 shows thg inclusive cross-section for Pp ~—o DX
and pp.,,gfx as a funétion of the Feynman variable X for a fixed
transverse momentﬁm at two difierent energies; In both cases the
inclugive cross-section is obviously independent of the energy.
Furtner 111uatrat:ons are given in Figs.k.l and 4.2, where Fig.
4.1 shows the transverse mom mentun ulstrlbutlcn in np_,,qfx
reactlon for different values of X at two dlffernnt energies,
and Flg 4 2 shovs the 1nc1u51ve dlstriouulon of rays at very
_low transverfe momentum for dlf;erent values of the scaling
variable X, These two diagrams a1so clearly denonstrate scaling.

Now we proceed to-é more detailed analysis of -the scaling
ﬁypotheées. In the table~3- we classify eacg reactién and also
summarize the existing experimental data. Oﬁf sﬁrvey ié.not
‘complete, being baéed predominantly on 1572 experimental data,

but the main a2im is to show sufficient evidence eituer to

L

support or to discredit the varios criteria for scaling.
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Z

Table -=3=

Process Channels Predictions Experimental Early scaling Notes
_ abc | ab | ac | be 1 |2 3 A Figs. Frag ' Pion
PP —9 X E|®P |IN |N S S NS | NS |L4.3, L.k, ? S . 1, 2
. . . I . b.omu ) ' T % and
PP —>@ X E|E [N [N S S | NS | NS |4eb, L4e7, s _ S b
pp—= NX E|E |N |N s | s |Ns | Ns 4.8 NS -S 5, 6
- _ . _ 7, 8
aF P—sST X E|N |N |E S Ns | Ns | Ns- 4.9(a) S _ N 9, 9
. . C 10
@._J,Iw%x N [N N [N NS | Ns | Ns | Ns 4.9(b) N Y 11,12
pp —> pX N|E |V |N NS | NS | Ns | NS |4.105%.11 s S 13,14
PP —» BX E|E |E |E s | s |s ['s |&.a1, 432 | Ns . NS 15,16
vw.|1'%+x E|E |N N S S N N | “S(approx)
Pp—> KX E|E |E |E S s S S 'NO

isowm.w_wmwwmmmuwm exotic, N nonexotic, S scaling, NS nonscaling,:

and by 1, 2, 3,.and 4 we refer to the Chan, Ellies, Einhorn, and ' -

- Tye criterion respectively.
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Notes

lf.Ih the fragmentation region the gf inclusive-cross-section
(Fig.A.})ié rising at accelarator encrgies especially for large
PT, but scales in fhe ISR energé-range. Whilé_ﬁﬁe ﬁ; inclﬁsivé
-cfoss-section (Fig.4.65 is indepen&ent of thé-incident energigs
from 12 to- 1500 éev/c.

h 2~ In the_pionization region close to X:O scaling is.observed at
ISR in both cases. This.caﬂ dlso be éeen-from the rapidity plot,
Figs.h.ﬁ_and h.?,-where-the plateaﬁ is already developed. It is
also evident that'qf is-approachiﬁg the scaling limit much
-fﬁster than 47 in both the pionization and the fragmentation
regions. |

3 ‘From Fig.4.5 we see that the 4 distribution rises by a
factor of 2 between 20 and 1000 Gev in the lab systenm, but the
rise_is sma1l for'énergies above 1000 Gev( Notes: In Fig.4.5 the
plot is in terms of center of mass enérgiés.).

- We p;efer to assumé scaling in ‘the case of sl rather then'ﬂ:
the.ﬁ' distribution function scales only partialy. . ' |
_5-'There is no early scaling in the éragmentgtion region. The
fiSe;continues up to 205 GeV/c,’ | | |

6;_ip-£he-x=0 fegion the séaiiné-limit ﬁéy already have been
;eached. | |

7-.The rise in the fragmentation region may be compitable wi?h
571/2 (not conclusive )in accordance with ﬂuller’s analysis.

8- Earlj scaling is observed in the fragmentation.regicn“

9- Within the above'eﬁergy-limit ﬁhere is no scaling in the
pionizztion region.

'10- The scaling limit is approachéd from abbve.

11-.There is no early scaling(or at least witbin the 8 and 16

GeV/c)...
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plonlzatlon region.,

-10- The scaling limit is apprOached from above.

11- There is no eurly SCa]ln” (or at least w1th1n tHe 8 "nd 16
GeV/c ) in the fragmnnt t¢on region. ' | -

11~ Surnrlulngly there is scallnv in the plonlzat*on revlon,

- within the 8 to 16 CeV/c the - dlatrlbutlon funct¢on does not
change. |

13- "For small transverse momenfa scaling.hblds approximately
ffomlzy GeV/c up to ISR‘energies in both fragmentation and
._pionizétion region, For large P ( =0.8 GeV/c)scallnv holds up to.-
X=6¢2, but close to the pionization region there is no scalln
14~ The.inélusive cross-section is falling. This also can be
seen from Fig. 4.11 .

15— There is no scallng in both *he fravmentaylon and pionizat=_.
-ion regions. |

16~ From Figh.lz we see that the inclusive reaction is rising in
fﬁe pionization region.

Einally ve try to draw some conclusions from the above
situation. From the dafa'and the theoretical rredictions we see
that there ié no wide support'fér ény-ﬁf tﬁé Eriteria suggested
so.far. There may be ohe or. two cases which support each of thé
criteria, buf even in our shbrt review of the experimental = .t =
situatlon we flnd at least one good plece of evidence which
_dlscredlts each of the criteria, Moreover, the inclusive react=
,!—ion pp—DpX take all the criteria by surprise, since 1t does not

scales, contrary to all the theoretical predictions. We leave
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‘further comment to the next'chapfer where we shall also discuss .
another problem which arises from the above data, the fact that .

the approach to scaling is from below, rather than. from above

as we expect.
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CHAPTER ¥

The epvroach to scaling, and conclusions,

;E:l. The anprozch to sc111:g-

in chapter 1V, from fﬁe exper;ﬁental déta, ve see that’
stetimeS'fhe single particle inclusivé cross~section is rising
to itg - asymétotic limit, |

None of the plénar diagrams will ?ive us this sort of
featuré.'In seven~-component theo”y, for examnle,ve na;vnly
expect all the_cdmponehts to bte positive, since they build up-
from the square of the production amnlltude.

Several solutions to this problem have been advocated:

1) The first was vroposad by Tye and Veneziano.They believe
that the answer lles within the seven componepts and s0 oOne
doesgnot need to_to'infolve the so far neglected, diffractivs
tefmé_aﬂd the interference terms.

Using sum rules and assuming the stronf'HF-conjecture
they found that sone of j3 (X,‘q) in IIT1.3 must have a neg tive
.sign dene:clng on the choite of phase space and/or of ¢, Here
wg_give a brief sketch of the apprpacn gseu and give the
pesuits('g)j

The sum rules which have been used are .

(P * P ) Gab Z.fdp .’yﬁ b-’ab ' '(Y'l)' :

_wherv Pa’ Pb’ and Pc are tie four momenta of the particles a, b
and ¢, respectively. This sum rule is a statement of four-
momentum conservation,

Charge conservation gives similarly
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(Q+o e Z(dPQ £C93D -(V.a)

Equatlon ‘I.& for theﬂ O component can be- .vrltten as. -

o1 cyab _ .
2Gab = 2 fichd-X f . o (!'5) .
Writing the 5, . in the form . -
N ~ -1/2- S = '
-gtot ~ Cab + Cab(s/s ) * S (_\_/_.4) _

o
and combining III.2 with z 3 one gets

N _-.'___ZZJ’dP axﬂ(x,-cT | | (i'_75)

2C_, =
) l=..
<. N . T )
-~ _ l . Z é ) . Lo - )
2 = 2 ZE? : S;Pch¥ﬁ;(x’PcT) (!'6
Ci=lc¢ .
If ab is exotic the ﬁV-ccnjecture'gives E b= 0.Therefore

..from eo(f Q)el»hcr a1l (X,- )=0, or somef3 (X, P, ) nust
. cT i
have a negative sign accerding to the chcice of X, PcT and/or
of c.

Thus a sinsle particle inclusive cross-section may

A ]

aporoach itsi: limit from below. The criterion for such bekavi-
-our can be found within the above model.

From table-1- we see. that for ab exotic only the )—9,732,

. th h .
-y and 7—— components sqrv1vem The p081t1v1ty of” each
- . ot ) . Ing - ', - -
component implies ﬁi must _be>o only'ifﬁi = 0. Thus it is -
.obvious thzat negative non-scaling pieces are only to be expected
1 ,uh . th . S 4 T .
from the 5——, - , -and the 7— componentis. The 7-— compone:t
does not 0ontr1but° to chwrse conservation. Tnus we expect
' t} . th .
negatlve, non—scallng pieces from the 5— and &= .components.
From the abova discussion we find that in .nn fragnentat-~

-ion region. 1f ab and abc are exotlc but ac ana/or bc are not,

:'then fc »ab w1ll approach the sc‘Tln" 11“lt from below.
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Continuing along the same line of rezasoning ., Tye and

. y ! . .
Veneziano constructed table-4-, where each inclusive reacticn

- has cla551f1ed according tc the EYOtICitj of 1t is channels

c,ab

ab, ¥G, at, and abc, and the properties of f in both

fragmentation regions are given (see:table_;é—)

Table ~4-

Channcls exv.iv Cadapoieatd gresent Nopowalinee prue JaNDGIPS e e ) Reinanna
of ciab - ex) :

frag. of & dre. of b

r>H <y
none . all s2ven + + CoETAT =N
- - iplus 8 wr &) . ORI N
. AN e K11
- ab J,a. 0. TN, - + RV Y -y
b 2. 46,5, 1Y <+ KN RO R®
AN i
ac 1, 4,3 5.(5 % ap —-='. K
. . . z2'u -+ .
NNV KRN -
abg, ab 5.6.1 - - LR This is tree siviejo ted e
NN - K, oz, (P of wheshor ;=
. Hener this  provides
erucial tesc of the - 2ls e, R
abe. 1C 4.6, 7 + =N, mV e R fo=0 uay chavze the =
=\ - Re pusitive sitns b w0 o
e, K] . p —=. Ko newative for ez, This o
- — — : - — is paruewarls Gikeit for 2
aha, ab, v LI - + AN - K reactions wirl zempa- 3
abe. ab, a¢ 5.0 - - KN == acutsdplus Tandinluss 2
d - enly, it will Le nfor- E
abe, ac, be 4.7 + - [ SR M"-; P l‘,_ '": msor f
N R mative o measurs a
- sKp—= e
alt four b 0 0 AW - R ‘This iz sasumadt o be E
RNV - true. 4

Above we showed that only the components 3, Ly 5, and 6
6f Fié.j.z contribute to the non-scaling limit in the pionizat-

-ion region

" -+ From(lIT.4)we see that this scheme predicts that the rate
- S .
“at which the scaling 1imit Should bs apprsached 1s s

In the above discussion the diffractive components hzve

' : 203 : '
been neglected It has teen snown( / that the presence of a

large positive diffractive component (Fig.5.1) in the triple

L]
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Regge region in the form of Pomerqn-Pomeron-Reggeon(PPR) will
destroy the abéve scheme, since it may giwe ris; %o_a negative
.s-l/z contributionltoéftdt, éﬁd thus eliminate the necessity
for negative nonscaling pieces in comnbnents 5 and 6 ( In the

-'EGV scheme this component vanishes ). At the moment there is.

no evidence for such a large component, -

Fig.5.1

Above we aaid that this scheme predicts s-l/h rise in the

pionization revlon. In Fig.5.2 we show an early znalysis of the
data by Ferbel et al, whlch conrludas that aﬁ s -1/4 behaviour
'does e31st. But later more careful analy51s by the Rutherford
Group finds ro sign of this s~¥% rise.
2) Another solution to the problem of the rising inclusive
cross sectlon has teen suvgested(see refernces: (21) a”“l(zzn
There may be negatlve ;nterference terms like those shown
in Fig.5.3', Or one of the particles a §r b may diffraétively |
-dissociato into.c,( Fig.S.l Y« Or for the rising in the central
région(zz)may have its origin in_absofpgtive correction. In
zléur opinion none of these suggestions gives a satisfactory
:'solution to the'problem, because they do not oredict wheﬁ

negative non-scaling terms will occur (at this enegy dependence)
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«2.. Conclusion

1<)
v

To end this chapter we try to draw some conclusion about.

the various sugzested criteria for scaling. In cur opinion -

. none of tnem is worksbvle. In chapter I . gzve evidence fer

=]
oA
®

the fatlu‘e of each crit crlon, though there are- tertgl nly scae
-eases where they show some predictive deer. But there is
notking surpr risi ing about this failure since even in the case
,°ft;t§t ﬁé cannot’ epplv'the e\OulCltj rules to the b°rvon-_
antibaryoﬁ'interaction. Horeover, recent ISR data shows a
lcgarithnric Frowth in.thé_pn'total-crostfsectiop, 2 reaction
which has hitherto bteen regardéd_as good evidence for_thg
duality scaling fules. In our'bninion'thé nroblem with.this sort
'of_theory is ste genral than 51mﬁly the failure to predict
correctly early.scalinr in one reaction or arnother. The main
aiffiCJ%ty is rezlly that the vzrious critefia do not tell us at
_what gnergies one_shoﬁlé expéct'Scaling to occur, Or the one
hand we need high energies to achieve Reg omlaa.ce, tut on
the other hand the_logarithmicibehavibr_of cuts may alter the
very hlgh enc gy behavior. : _: o _ .

Some people attempt to test scallng in terms of f i;ab

but we .cannot see any advantage 1n-this, Indeed there is the
dis advantage that if."'g'tot itself scales tazn any scaling .of
the inclusive cross-section must be abserved in f

but ifrgtot does not scale then. there is no reason way

should scale,

[ X ] 11!

» 1°°1

» 1 *1
[E X 1 re
f-ialhe 11
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Fignre Captions

Transverse momentum distributions at X = 0 observed
atdifferent ISR energies, together with a typical:
distribution at accelerator energies.

Mean charged multiplicity in pp collisions at

. accelerator and ISR energies. The mulfipliciﬁy is

defined with resbect to the inelastic cfoss-section.

(<n)>= (“ns'n)/s’inl). The solid line gives a 1

logarithmic fit throug the accelerator data poits.

Longitudinal momehtum distribufion of protons and
pions. presented in terms of the Feynman variable X.
The data points are ISR results at 1T 0.8 GeV/c.
The solid lines run thraugh data at accelerator

energies.

-

Transvers momentum distrributions observed for diff:ra:

different values of the scaling variable X, together

with the corresponding distributions at accelerator

energies.,

Inclusive distribution of K/rays at vefy low

trasverse momentum for different values of the scaling

'variable X,-as'the incident proton energy sweeps the

30-300 GeV range.

Inclusive distributions for ¢ , observed at ISR

energies and accelerator enegies.

The invariant §  cross-section versus Yo

The rise of the g~ distribution at 90° as observed
by the Orsay-Strasbourg collaboration. One find a

Rise by factor 2 between 202and 1000 GeV.




.Fig.u.G. Sémé as Fig.#.#, for gf.

Fig.4.7 Same as Fig.4.5, fordqi ..

Fig.4.8 ~ Inclusive distribﬁtions for A obtained in pp. -

| collisions between 6 and 200 GeV.

Fig.u.é Inclusive q@ distribﬁtiqns obta;ned in q?p collisiqns
at 8 and 16 GeV/c.

Fig.h.lo The inclusive cross-section for protons versus X.

Fig.4.11 Compilation of IéR‘results onp and p distributions

- | obtained at differént energies. The incident proton

rapidity is kept fixed and an increasing rapidity-i;fz
interval is explored with increasing energy.

Fig.4.12 Same as Fig.4.10, for D,

Fig.5.2 -Inclusive gi distributions at X = O for different

| ' 1/4

reactions. The data are éompa;ed to an s~ approach

to a scaling limit.
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