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ABSTRACT

The compounds HgTe, HgSInZD Teg, Hg3rn2[] Te, and I-Ig5Ga2D Te g
Hg3Ga2[:]Te6 constitute a series in which the concentration of vacancies,
sited regularly on the lattice, increases progressively from zero. To
assess the effect of such vacancies on the mechanical properties, the
propagation of 10MHz ultrasonic waves in single crystal samples of each
compound has been studied over the temperature range 77°K to room
temperature. |

The large single crystals required for the ultrasonic experiments
have been grown, using a modified Bridgman technique, from stoichiometric
melts. Single crystal grains within each boule produced, have been
identified by the use of polishing, etching and back reflection x-ray
techniques. Back reflection x-ray photographs have been used primarily
to establish the Laug group of Hg3In2 d Te6, Hg3Ga2|:| Te6 and HgscazD Te8,
which are shown to be cubic, and to align the samples in the specific
direction required by the theory of ultrésonic wave propagation in solids;
the |110| axis in a cubic material. The lattice parameter of each of
these compounds has been found using Debye-Scherrer powder photographs
each of which exhibits a superlattice imposed on the zincblende pattern
of lines, because of this HgSInz[] Teg(HgsGaZEj Tes) was indexed using
a2 x 2 x 2 unit cell and Hg3In2.|:] TeG(Hg3Ga2D Te6) usinga 3 x 3 x 3

unit cell.

An order-disorder transformation has been observed in quenched
samples of the semiconducting compound Hg3In2E]1b6; extinction of the
superlattice lines indicates that a change from an ordered to a
disordered state is complete above 595 % 5°k. This effect has been
further investigated by making resistivity, Hall voltage, thermoelectric
pover aﬁd differential thermal analysis measurements through the

temperature region of the tramsistion. In each case the order-disorder



transformation had a marked effect on the results, especially in the
transistion region.

The elastic constants of each compound have been determined from
measurements of the ultrasonic velocity made by the pulse echo technique.
These constants show a regular trend through each series, naﬁely that
the stiffness decreases as the vacancy concentration increases. In
particular, there is a linear relationship between the reduced compress-
ibility and the vacancy concentratién.::The elastic constants are also
used to determine the anisotropy ratio, the Cauchy relationship and
those parameters which can be related to interatomic binding such as
the force constants of Born's model, ionicity (Potters relationship)
and Debye temperature. Finally, the elastic constant data in conjunction
with the mathematical theory for wave propagation in cubic crystals
enabled the phase velocity surfaces, and the.particle displacement and
energy flux vectors to be determined.

Attenuation measurements - made over the same temperature range as
the eléstic constant data - exhibit Bordoni-type relaxation-peaks on a
background which is probably dominated by a resonance type loss mechanism
associated with pinned dislocations. The peaks which occur in the

compounds HgTe, Hg5In2 O Teg and Hg3In2 O re ¢ are consistent with

dislocation motion on the (111) and (110) slip planes. In this series
of compounds the activation energies for kink formation and the Peierls
stresses, calculated on the basis of the kink nucleation theory, show

that dislocation motion becomes easier with increased vacancy concentration

and takes place more readily on. the (111) slip planes.



CHAPTER I
INTRODUCTION

Interest has been aroused in the band structure and electron
transport properties of mercury telluride HgTe and its pseudobinary
alloys formed with other fI-VI compounds or IIIZVI3 compounds. HgTe
is a semimetal as a result of a small band overlap. Progressive
addition of another telluride, such as CdTe, MnTe or InZTe3, causes
the energy overlap to decrease until it goes through zero; the closer
the band edges are, the smaller is the carrier efféctive mass and the
 greater is the carrier mobility. Narrow band gap alloys find a use
in the fabrication of tunable long wavelength infrared lasers or
detectors. Wright (1965) has found that addition of In,Te, to HgTe
reduces the band gap linearly with lattice parameter a until the
composition 37.5 mol % In,Te, is attained; the zero gap alloy has a
composition corresponding to ¢4 mol % In,Te,. Compounds Hg In,Teg,

3

Hg3In2Te6 and HgIn,Te, occur at compositions 37.5 mol %, 50 mol %

and 75 mol % In.Te. in Hg.,Te., respectively (Spencer and Ray 1968).
3 p y

2773 3
These .compounds are semiconduétors; the direct energy gaps for the
first two being 0.61 and 0.78eV respectively (Dahake 1967). Also of
interest is a similar set of compounds, existing at the same percentage
compositions, formed when GazTe3 is added to HgTe; the phase diagram
for Ga2Te3 - HgTe has been investigated by Ray, Spencer and Younger
'(1969) but no information is available on the electrical and mechanical
properties of these particular materials. while the electrical
properties of the compound set HgTe-InzTe3 are well documented, few
details of the lattice and mechanical properties are available. The

priméry purpose of this investigation is then to determine the elastic

and anelastic properties of Hg3InéTEG, HgSGggTeg and Hg3Ga2TE6 by

OURHAN [
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- ultrasonic pulse echo techniques.
Before discussing the probable structure of these compounds ,

it is of value to sketbh in the background. The elements which make
up these compounds tend to form structufes with tetrahedral bonds;
every atom has four nearest neighbours, which are located at the
vertices of a surrounding tetrahedron which may or may not be
distorted. Simply, these structures form bonds which complete the
oétet shell of each atom, the electrons being shared with the four
nearest neighboufs. The average number of valence electrons per
atom is then foﬁr; this is the Grimm-Sommerfeld rule. Binary
compounds of composition AB will then be composed of equal amounts
of elements from groups spaced symmetrically apart to the right and
" left of the group IV column in the periodic table. The most frequently
observed structures in these compounds are the zincblende and wurtzite
types but others are known.

 Mercury telluride, which can be considered as the parent of the
compéunds studied here, is a II-VI compound with the cubic zincblende
structure'(Lawson et al 1559). This is composed of two equivalent,
interpenetrating, face-centred cubic lattices, egch containing one
atomic species only, and relatively displaced one quarter of the
distance along a cube diagonal (Figure 1.1). The unit cell contains
two atoms, one on each sub-lattice, spaced by ao¥374, where a, is the
lattice constant of value 6.462a° for HgTe.

An important aspect of the zincblende structure is the absence
of a centre of symmetry or inversion. As a result, mercury telluride
like the other zincblende cryétals should be polar and piezoelectric.
Figure (1.2) illustrates the feature that mercury-tellurium layers
-have a unique orientétion along the |111| direction. The opposed

(hkI) faces and the opposed |hkl| and |hkI| direction can exhibit



different physical and chemical properties. For example, Warekois
et al (1962) have shown that the intensity of x-rays diffracted from
the (111) and (fif) faces. of mercury telluride are not the same, the
high intensities being consistentwith the reflection from a plane of
mercury atoms. Further, preferential etching of the mercury surface
was found and correlated with the x-ray data.

The sequence of binary compounds containing two atoms per molecule
can be extended by replacing one atomic species by two different atoms
from columns in the periodic table on either side of the column occupied
by the replaced atom. Thus compound series I-III-VIZ, IZ-IV-VI3 and
I_-V-VI, can be derived from II-VI compounds. There are known tellurium

3 4
compounds in the I -IV-VI3 group, for example CuZGeTe3 and CUZSnTe3,

2
which also take the zincblende structure with 2Cu and 1Ge or Sn atoms
réndomly distributed on the three sites (Palatnik et al 1961). These
and related compounds have all the available lattice sites occupied.
Other compound series based on the zincblende lattice exist. Occupation
of all the lattice sites is not a prerequisite for retention of the
zincblende structure. The compounds studied here were chésen because
they have vacant lattice sites. They are pseudo-binary in nature, and
can be considered as being derived from HgTe by adding the appropriate
amount of In2Te3 or GazTe3. The Grimm-Sommerfeld rule ié not violated
and can be applied with the modification due to Pamplin (1960). When a
vacancy is designated as (J, Hgsrnz[j Te8 has five 2-valent, two 3-valent,

one vacant site and eight 6-valent atoms and the composition can be

written 1151112[3 Vrg so that

5.2

+2.3+1.0+ 8.6 _ ‘ ;
5+2+1+8 =1 (1.1)
The average number of valence electrons per site is then four.

Hg5In2 O Te, (or HgGa, O Te8) has one vacancy in every eight cation

sites and Hg3In2|:]Te6 {or Hg3Ga2[j Teg) one in every six cation sites;
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the tellurium atoms'bccupy the anion sites. In both compound types
the 'cha;:'ges are balanéed; Hg3Iné-D Te 6 (or Hg3Ga2D Te6) can be
thought of as beiﬂg formed by replacing 3H92+ by 21n3+ (of\ZGa3+)
plus one vacancy. A similaf situation éxists fog HgSInZIZJTes
(or Hg'sGaz D Te8) .

The fact that these compounds conform to the Grimm-Sommerfeld
rule is not sufficient to ensure thét they -exist as tetrahedral
structures. Mooser and Pearson (1559) have found that, as the average
principle quantum number n of a compound increases, the bonds tend to
lose their directional properties{ Also as the electronegativity
aifference Ax of the compoﬁent atoms. increases, the bonds tend to become
more ionic. A gfaph (Figure 1.3) of AX versus n for several binary
compounds reflects these tendencies. There is a sharp separation between
the 4-co-ordination of the tetrahedral sfructure, the 6-co-ordination in
cesium .chloride type structures. HgTe. itself, whose value- of AX and n
are listed (Table l.i) fits neatly into.the area occupied by the diamond
and zincblende struétures. Here the classification has been extended to
include the terﬁary compounds of both the mercury-indium-tellurium and
thé mercury-gallium-tellurium sets by using

M =X - kX, + mXp (1.2)
k +m

the average electronegative difference. Xé,xA and X, are the electro-
negative values of the ioms and k,m are the number of individual cations.
Tﬁe vglué; of ﬂ'and Ak for each compound, listed in Table (1.1), compare
,cl;sely with those of the parent compound HgTe. The position of these
.compodnds on the graph (Figure 1.3) is firmly within the area occupied
.by A4 and B3'structur;s and suggest that they may be less ionic thaq
..thé Pareﬁf compound. Since HgTe héé the zincblende structure, there is

a strong,possibility, provided the structure remains cubic in each case,



that the ternary compounds will take the closely related structure

in which the tellurium anions lie on one face centred sub-lattice and
the mercury, indium or gallium cations and vacancies on the other.

When the present work was started, the actual structure of these
compounds was in question. Ultrasonic studies in single crystals
require knowledge of the Laue group.. To assess this, a limited x-ray
crystallographic study has been undertaken and it has been shown that
all four.compounds take a cubiq structure of the 43m point group.

The aim has not been to do a complete structural analysis, a formidable
problem in itself.

The elastic and anelastic properties of the compounds Hg3In2E31b6,
Hg56a2[j Te8 and Hg3Ga2|:]T96, obtained via the ultrasonic pulse echo
measurements, have been compared and correlated with the results
obtained for HgTe (Alper and Saunders 1967) and Hg In, (] Te, (Alper,
Pace and Saunders 1968). Large single crystals are required for this
measuring technique, consequently much effort has been applied in this
direction. Since the compounds can be produced with ordered lattices,
an objective, has been to assess for the first time the way in which
the presence of vacant lattice sites can affect the elastic properties
of materials in general. |

The presence of vacancies on a large scale should also affect the
ultrasonic wave damping, in particular that associated with dislocation
movement. Previously, ultrasonic wave propagation has been studied
extensively in HgTe, with the object of assessing both the intrinsic
‘'properties and the effecté of material imperfections (Alper and Saunders
1969). Dislocation damping was shown to play an important role;
Bordoni type relaxation peaks resulting from intrinsic dislocation
effects were observed. Similar peaks have now been observed in each of

these vacancy compounds and are reported here. The results have been
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interpreted on the basis of the kink nucleation theory (Seeger, Donth
and Pfaff 1957); the activation energy for kink formation and the
Peierls-energy barrier to dislocation motion of the slip planes has
b;en estimated. It has been shown that the presence of vacancies
profoundly modifies not only the elastic properties but also the basic
dislocation motion parameters.

Finally, as a consequence of the compounds being produced with
ordereg ;éttices an order-disorder transformation may éccur. This has
been found in Hg3In2Tes; the temperature at which the change occurs

and its effects on electrical properties have been investigated.



Table (1.1). Table of the average principle quantum number and
the electronegativity difference for each compound. These values

are based on electronegativity values given by Pauling and Huggins

(1934).
Average Principle Electronegativity
Quantum Number Difference

n AX
HgTe 5.50 0.30

. .38
HgSInzl:] Teg 5.34 0.385
Hg In, (] Te, 5.27 0.42
HgIn2 O Te4 5.15 0.50
HgsGaz a Te8 5.20 0.385

. 0.42
Hg3Ga2 O Te6 5.10
Hanz O Te4 4.86 0.50




Fig. (1.1) The zincblende lattice shown as two interpenetrating

face-centred cubic lattices.

!’ (111) SurFacE

T (111) SurFacE

Fig. (1.2) The zincblende lattice in the |lll| direction showing

layers of atoms.
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CHAPTER 2
CRYSTAL GROWTH AND X-RAY STUDIES

2.1 INTRODUCTION

Emphasis in the present work has been placed entirely on studies
of compounds rather than intermediate solid solutions. The available
compounds in any system can be found from an inspection of the phase
diagram. The phase diagrams or more correctly the temperature-
composition cross-sections for both pseudo-binary alloy systems

Hg ;Te ;~In,Te, (Figure 2.1) and Hg ;Te .- (Figure 2.2) have been

3 376258,
established by Spencer and Ray (1967) and Ray, Spencer and Younger
(1969) respectively. The liquidus and solidus boundaries were determined
by differential thermal analysis and the solvus boundaries from x-ray
powder diffraction studies and microscopic observation of polished

sections of the alloys. There are three regions on each of the diagrams,

marked B, a_. and y, where the composition of the compounds .is centred

2
on the stoichiometric'values 37.5 mol %, 50 mol % and 75 mol % of

In2Te3 (or GaZTe3) in HgTe The formulas of the corresponding compounds

are HgSIn Te (or Hgsca Te ), Hg3In2Te6 (or Hg3Ga2T96) and HgInzTe4
(or HgGazTe4) respectively.
Attention has been restricted to the compounds HgSInZTeB HgSGa Teg

Hg_In Te and Hg3Ga Te because evidence both from the present work and

3
from other investigations shows that they are cubic and thus are ideal
vehicles for a study-of the elastic and anelastic properties of compounds
with a high vacancy concentration. The compounds HgIn,Te, and HgGa e,
have been excluded because‘Spencer et al (1967) and Ray et al (1969)
report that they have a defect, chalcopyrite (tetragonal) structure.

Vacancies of this type are an integral part of the structureas opposed

to the Schottky and Frenkel point defect type of vacancy which occur
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in all crystals. Schottky defecfs arise effectively by ions leaving
their normal lattice positions and building on the surface.of the
crystal; to preserve electrical neutrality, the total charge on the
migran; ions must balance. Frenkel defects are formed by ions leaving
their normal lattice sites to take up interstitial positions, because
ionic size is important, theloccurrence of a vacancy is usually
" limited to the sub-lattice of the smaller ion, normally the cation.
These defects ariée from the spontaneous tendency of all systems to
increase their entropy or degree of disorder, complete randomization
is opposed by the fact that formation of defects requires energy.
Then the density of these vacancies depends exponentially on the
temperature and on their energy of formation. Depending on the crystal
structure and the type of ion, the value of Ws and Wf the energy of
formation of a Schottky defect and a Frenkel defect are quite different
and usually the defect which has the lowest energy of formation dominates.
Frenkel defects by their nature are likely to be important in crystéls
of the type considered here; the relatively open structure of the
zincblende type lattice allows interstitial ions to be accommodated
without much distortion. Nevertheless, the density of vacancies caused
by this effect is very small compared with the enormous density of
vacant lattice sites which normally exist in these compounds to satisfy .
the valency rule.

For pulse ultrasonic echo experiments, the transducer size, together
with other considerations which are discussed in Aetail in chapter (4),
demands that the samples must be large single crystals. ‘As a consequence,
much effort has been applied to growing crystals by a modified Bridgman-
Stockbarger technique. Therefore, this chépter will be devoted to a
discussion of the crystal growth technique and the subsequent x-ray work

to determine first the symmetry and lattice parameters of the crystals
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and then on alignment of the ultrasonic samples. Also, a superlattice
pattern was recognised on some Debye-Scherrer powder photographs of
Hg3In2Te6 but not on others. This finding which suggested the existence.
of an order-disorder transformation in this compound, is of great
jnterest in itself and has been investigated in more detail; a

discussion of tﬁis.aspect of the work can be found in sections (2.5)

and (2.6)
2.2 DESCRIPTION OF THE GROWTH FURNACE

The furnace, shown in Figure (2.3), used to grow single crystals,
consists of a vertically mounted, 78 cm long, 4 cm bore, mullite tube
inside a recténgular (78 x 40 x 40 cm3) sindanyo box. To increase
the temperature gradient, the furnace was co;structed in two sections,
only the top half being well-insulated by vermiculéte. Tﬁe heater z
winding, made of kanthéi wire was divided into three sections, the 0-
ratio of the current in each section being adjusted by means of ballast
resistors, wound non-inductively to avoid disturbing the controller.
This coupled with the insulation arrangement enabled the temperature
profile of the furnace (Figure 2.4) to be adjusted to give two major
features: a sharp gradient and a plateau. The temperature gradient
was adjusted to be 35% per cm at the growing interface.

A potentiometric, proportional, Eurotherm controller was employed
to control the furnace temperature; An error voltage is developed
| between a measuring thermocouple sited in the furnace and a reference
setting on the controller. The rateat which this is changing, and the
length of time for which it exists controls the output power to the load.
This results in a sophistiéated system with a fast response time which
is also able to override any spurious temperature fluctuations. The

true temperature of the charge was measured by a thermocouple sited at
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its base and a chart recorder was used to obtain a complete temperature
record during the growth process. All the thermocouples used were made
from platinum and 13% rhodium-platinum wires, the junction Being made
by fusing the ends with an oxygen gas flame. The thermocouple emf was
then converted to temperature using é.calibration chart conforming to
B.5.1826:1952 of an accuracy guaranteed to within t 1OC up to a
tempe?ature.of 1100°c.

Initially, the furnace was designed to allow crystal growth from
the melt either by pulling the charge through the temperature gradient
‘or by keeping the charge stationéry, while lowering the temperature
profile of the furnace. -The latter function was achieved by driving
the,powér control on the Eurotherm by means of a geared down motor,
the temperafuré profile being lowered at approximately 2°c per hour.
Aithough eliminating mechanical vibration, this method suffers from
the disadvantage that the rate at which the profile is lowered is
not. constant. Further, under these conditions the controller was
merely being used as a sophisticated potentiometer. In the alternative
method smooth lowering of the charge at a rate of 3 mm per hour was
obtéihed through a stainless steel rod driven by a motor-gear system.

The system was later modified by using a ramp generator, which
enabled the temperature profile to be lowered in a linear manner at a
predefermined rate, adjustable between O.5uV/hour (approximately
0;5°C/hour and 9uV/hour (approximately §°C/hour). The generator
connected in series with the controlling thermécouple, allowed the
controller to be pfesented with the sum of the thermocouple and
generatof voltages. Then, as the generator voltage increased on a
predetermined ramp,_the_thermocouple voltage and thus the furnace
temperature fell.to allow the voltage presented to the controller to

remain constant. Hence the controller at all times operated correctly
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on the feedback principle. This method proved to be the most
successful and was employed to grow the majority of the crystals

‘used in these experiments.
2.3 ~ PREPARATION OF THE CHARGE AND CRYSTAL GROWTH

Crystals were grown in quartz crucibles whose size depended on
the growéh technique. Crucibles used in the pulling technique were
made from 15 mm Sore quartz tubing and the charge occupied approximately
6 cm of the tube; those used in the témperature profile lowering method
were made from 24 mm tubing. The difference between the crucible
dimensioné was necessary because in the latter method both the freezing
interface and the charge should lie completely in the temperature gradient;
the large diaméter tubes allowed a charge length of approximately'3 cm.
Both types of crucible were similar in shape, the bottom end being
conical with an angle of about 70° to facilitate seed crystal formation
(Figure 2.5). .In each.case the tube wall thickness was 1.5 mm, allowing
the crucible to withstand a pressure of 25 atmospheres.

The tubes were cleaned with hydrofluoric acid followed by washing
with distilled water and dried under a vacuum. To prevent the sample
from sticking to the inside of the tube, the surface can be coated by
bufningﬁa few dropé of acetone in the crucible with an oxygen gas flame,
but this was not found to be necessary.

Single crystals of eaéh compound, Hg3In2[] Te6, Hg3Ga2[j Te6 and
H95G§2[] rea were grown from stoichiometric melts, usually by lowering
the temperature profile with the ramp generator. Ingots produced by
pulliﬁg the charge through the freezing point, were without exception
polycrystalline, but the grains in some cases were quite large and it

was just possible by careful cutting to obtain a monocrystalline

ultrasonic sample.
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The crucible was charged with the correct gram molecular weight
of 99.999% purity, mercﬁry, indium or gallium and tellurium, to a
‘weighing tolerance of 1 milligram. The materials were obtained from
the Koch-Light Co. Limited. With the exception of mercury, the
elements were solids and needed to be melted through the neck of the
tube with an oxygen-gas flame; this was done under a vacuum‘(lo-s torr) .
Gallium or indium were melted first because of their low vapour
pressure relative to tellurium. During melting, tellurium vapour did
coat the neck of the tube but diffraction patterns observed in this
f£ilm indicated that it was less than 10 micron thick. Hence any loss
Iin weight of the material was within the weighing tolerance. Finally,
the tube was sealed at the neck after being evacuated to about 10-6 torr;
care was taken to ensure that the éharge was not heated during this
process.

The charged crucible was placed inside a stainless steel bomb, for
safety reasons, and this was then located on the top of the pulling bar
.in the furnace (Figure 2.3). The position of the charge was such that
the temperature profile showed that the conical tip of the crucible was
about 15°C above the melting point of the appropriate compound.

To prevent an excessive build up of the vapour pressure of mercury
'(vapour pressure of mercury at 700°%c is 70 atmospheres), the furnace
temperature was increased over a period of three days until the correct
temperature profile was obtained. This was founé by experience.

Preliminary runs showed that samples obtained.using high growth
rates (10°C/hour) or with a small temperature gradient (5°C/cm) exhibited
the effects of constitutional supercooling. Also with very slow growth
rates (0.5°c/hour) the boule had a layer-like structure, indicating
that the materials had separated out. The optimuﬁ growth rate was

2°C/hour and gave large, well formed single crystals of each compound.
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2.4  EXAMINATION AND ORIENTATION OF THE CRYSTALS

After the crucible had been opened witﬁ a water cooled grinding
WheelP'the sample was easily removed. To reveal any grain boundaries,
the specimens were etched for about 20 seconds with a freshly prepared
mixture of l-ﬁart by volume concenfrated_nitric acid, l-part concentrated
hydrochiorié acid'aﬁd 2-pa§ts distilled water, followed by re-etching
with concentrated hydrochloric acid and wasﬁing with distilled water.
‘When used at room temperatures this etchant, employed by Delves for
mercury telluride oxidized the.surface but this problem was overcome
by heafing to about 45°C. - The polishing etchant used by Warekois et al
(1962) of 6-parts HNO,, l-part HCI and 1-part H,0 for mercury telluride
did not have the desired effect: the surface oxidized.

Normally, the boule was a large single crystal or it contained a
very large gfain, in which case the samples were obtained by cutting
off any minor grains with a diamond wheel. The specimen was further
“inspected by x-ray back reflection techniques. Laue photographs were
taken at interyals-along a sample face and the procedupe was repeated
after rotation through 180°c. The sample to film distance (3 cm) and
the angular orientation were held constant during this process; if the
sample was a single crystal, all the photographs were identical. To
check further, an additional series of photographs was taken after the
crystalé had been aligned and cut from the main body of the boule.

.Lack of spot splitting on these_photographs, examples of which are
given in Figﬁres (2.6), (2.7) and (2.8), indicates an absence of any
cellulér or mosaic structure. Any surface damage produced by cutting

Ahe

. was removed by the polishing etch: spot size reduced and their general

appearance improved.

The Laue back reflection x-ray technique was also put to its

princiﬁ?ﬁ uses: to determine the symmetry of a crystal and its
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orientation relative to the x-ray beam. The ideal crystal is referred
to identical unit cells, any one of which can be made to coincide with
.its neighbours by simple translations. The ensemble of all the unit
cells forms the crystal lattice and the cell is usually, but not always,
. chosen as’ the smallest parallelgpiped out of which the crystal can be
constructed. The edges of the unit cell are parallel to the crystallo-
graphic axes a, b and'c, and their relative dimensions are the unit
distances along these axes. |

'Bravais showed thét the number of types of polyhedra that will
coppletely fill the space is seven. When body-centred and face-centred
polyhedra were added, the total-number increased to fourteen. Each
polyhédron can be considered a unit-ééll. From these simple lattices
afe evolved the seven crysfal systems. The edge; of the polyhedra are
the crystallographic axes, and the faces are the pinacoids of the
crystal. The crystal systems evolved from the Bravais lattices are
in order of increasing symmetry, .the triclinic, monoclinic, or the
.rhémbic, tetragonal ,trigonal, hexagonal and cubic. Each of these
systems can be broken down into point groups or crystal classes; the
total number being 32. The poiht group within a Bravais system to
which a crystal belongs is determined by the number of symmetry
elemenfs of each kind possessed by that crystal. In general there
are 2-fold, 3-fold, 4-fold and 6-fold symmetry axes, mirror planes
and inversion symmetry axes which are designated 1, 2, 3, 4, and 6.°
'The.2-fold inversion axis is equivalent to a mirror plane. In this
éase, the symmetry properties of the cubic point group are of particular
interest ﬁere and these are listed in Table (2.1). The procedure then,
has been to examine by x-ray back reflection photographs the symmetry
of crystals of each compound and to compare the symmetry prope;ties

obfained.with those listed in Table (2.1).



Number of Symmetry Elements

of Each Kind

Point

Group
Symbol m 2 3 4 6 1 2
23 - 3 4 - - - -
m3 3 3 4 - - 1 3
7432 - 6+(3) 4 3 - - -
43m 6 (3) 4 - - - 6
m3m 9  6+(3) 4 3 - 1 9

Table 2.1

Crystallographic point groups of the cubic crystal class
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X-ray reflection occurs when the Bragg law is obeyed
nA = 2dsinb ' (2.1)

where n'is an integer, A is the wavelength of the x-rays in Rngstrgm
units, d is the spacing between atomic planes and 8 is the angle of
reflection. The d value is fixed by the crystal and, if the sample
is stationary, 6 is‘also fixed. Therefore, each plane will choose
the.right wavélength from the white radiation used for reflection.

A plaﬁe that happens to reflect radiation of a wavelength that is
sfrong'in the incidsnt beam, for example K, radiation, will give a
strong spot even though it ﬁay not be an important plane. If a group
of symmetfically equivalent planes all reflect the characteristic
radiation, then the symmetry axis relating them is parallel to the
incident beam. In general however, each spot on a Laue photograph
comes from a different wavelength. The symmetry of the reflection
pattern obtained is consistent with the crystal symmetry. If the
béam-lqoks down a Y-fold axis of the crystal, the Laue photograph
producéd will show a 4-fold axis of symmetry. Since x-ray reflection
is the same from either side of a set of atomic planes, the x-rays add
a centre of symmetry to the symmetry of the crystal; this is called
Laue symmetry.

The crysfals, mounted on a Phillips -goniometer were lined up
onto a symmetry axis by measuring the Laue films with a Greninger net.
In each crystal kg3In2[j Teg. Hgscaztj Teg and Hg3Ga2[j Te, @ 2-fold,
3-fold and 4-fold axis was located.(Figures (2.6), (2.7) and "(2.8)).
Possession of a 3-fold and a 4-fold axis is sufficient evidence in
itself fo establish that each crystal is cubic; none of the other
'crystal systems Bas a point group with both a 3-fold and u-fold

symmetry axis. In the cubic system these symmetry properties are
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.located to the 432, 43m and m3m point groups which are situ;ted
within the highest Laue symmetry group. Nevertheless, to confirm
this result a cfystal of each compound Qas mounted on a 2-fold axis
|120| and a 4-fold axis |001| was located; Then rotation through

35:3°

H+

1° located a 3-fold axis Ilill and a further rotation through

o

54-7 1° located a 2-fold axis |110|. The crystal was then mounted

+

on this axis and the procedure was repeafed; a 4-fold |oo1|, 3-fold
|111] and 2-fold |110| axis were located at the same angles. This
finding,‘within the limits of the experimental error, showed that

Hg In, 0 Te,. Hg Ga, O Te, and Hg3Ga2D Te, are cubic, this has not
been previously established. Alper; Pace and Saunders (1968) have

also shown that HgSInZEj Teg is cubic with a point group within the
same Laué group as the above compounds. This has been confirmed by

H. MaCarfney (private communication) it is not possible on a basis of
the stmetfy exhibited by Laue photographs to determine if the structure
‘has either the 432, Z;m or m3m point group. The parent compounds HgTe
(Lawson et al 1959).and In,Te, (Hahn and Klinger 1949) have a zincblende
' structure with a point group Z3m,hence it would appear reasonable to
sﬁggest that these compounds Hg In, O e, HgSGaZEJ Tey, HgyIn, O re,

- and.Hg3Ga2[] ¢e6'which are modifications of HgTe also belong to the

43m group and have a zincblende type structure. The elements of symmetry,
crystallographic axes and stéreogram of this point group are given in
Figure (2.9).

Samples réquired for the ultrasonic experiments were cut with faces
perpendicular to the |110] axis. The crystals were aligned to within
_%o of the p;e-r;quisite axis by the Laue technique. By using 3 micron
followed by 1 micron diamond'dust, the faces were polished flat and

parallel to withiﬁ_10—4 cm. Parallism was checked by using a dial

micrometer.
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2.5 MEASUREMENT-Of LATTICE SPACING, IDENTIFICATION OF THE POINT
GROUP AND EFFECT OF ORDERING
Examination of the Laue back reflection photographs has established
that each of the cbmpounds investigated is cubic and belongs to one-
of the point groups 432, 43m or m3m. However, this method cannot
diffepentiate between,thgse grdups and fails to determine conclusively
that these compounds have a similar structure to their parent compounds

HgTe'and In_Te, or Ga,Te The objective then in taking Debye-Scherrer

23 2773

X=ray powder photographs of -each compound was to assess the structure
type and lattice parameter a, of each compound and compare the results
with the structure and iattice parameter of the parent compounds.

The method involved grinding a small specimen to a fine powder
and then gluing this with ; collodian solution to a glass fibre to
: form an aggregate of tiny érystéls. The fibre was located along the
axis of a Phillips-Scherrer camera of circumference 360 mm, around
which was locéted the film; a small electric motor was then used to
-rotaté the fibre in a nickel filtered monochromatic copper K, x-ray
beam. X-rays are diffracted from the atomic planes when the angle
made by the crystallites relative to the incidént beam satisfies the
Bragg Law. In this case, there are large numbers of crystallites all
with a completely random orientation wpich cause the incident beam to
be diffracted in the form of cones, the diameter of which relative to
the incident beam can be readily measured using a Hilger and Watt
illﬁmipated scale to an accuracy of 0.05 mm. Since the camera circum-

ference is a convenient 360 mm, the diffraction angle 6 was a direct

measurement and the d spacing could be obtained from

= i - 2.2
A Zdhk151n9 (2.2)

Normally, a twenty hour exposure was adequate to resolve the

singlets at the low 6 end of the film but accurate measurement of
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lattice spéciﬁg requires that the doublets at the high 6 end of the
film be resolved, to achieve this the exposure was increased to

aboﬁt fifty hours, but the singlets were then virtually lost in the
béckground. Dahake (1967) reported that the sharpness of the lines
was influenced mainly by the homogenity of the sample, all high angle
lines being diffuse and all low angle lines being very broad. This
was not the case here, the lines on these photographs are well defined.
Further, if the samples were finely powdere&,-the low angle lines
were sharp and the high angle lines were not too well resolved. This
céuld be due to excessive grinding distorting the crystal structure. -
'As far as possible, in these photographs (Figures 2.10, 2.11, 2.12,
2.13, 2.1% and 2.15) a compromise between uniform low angle lines

and well resolved high angle lines was achieved.

For a preciéion measurement of lattice parameter a s it is
essential that reflections at angles as close to 6 equal to 90° as
possible be used. The reason for this is apparent when the relation-
ship between 6 and the d spacing (Equation 2.2) is examined; 1/d has
-a sinusoidal dependence on 6 and an error A6 in measuring this angle
prodﬁces a greatér error in d at léw values of 6 than at.high values

of 6, This can be seen more easily by differentiating the Bragg

equation (2.2) to give
Ad = - d cotb A6; (2.3)

the error Ad goes to zero at 6 equal to.90°. _All systematic errors'
such as non-coincidence of the caﬁera-axiS'and the rotation axis of
“the specimen would be zero in this limit. Although it is not possible
to achieve this condition since 6 equal to 90° corresponds to a
reflection back into the x-ray beam, a close apprbximation can be

obtained by'calculéting the lattice parameter a for several reflections
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havihg different values . of 0 using

2

sin26 = l—% , - _ (2.4)
4a

where d = a//N and N is defined from the Miller indices of the
reflecting plane by the relationship.
v=nl+ik?+1? (2.5)

The values obtained for a were plotted against the function

cosze ‘cosze
sin 6 + [} (2.8)

1
2

introduéed by Nelson and Riley (1945) as an appropriate linear
relationship between a and.8. Extrapolating thislgurve to where the
function is zero (corresponding to € equal to 90°) gave the corrected
lattice paraméfer éo' This value, calculated for each of the
q;mpounds, togethér with the values calculated for HgTe (Alper and
Saundefs 1967) énd ”95In§[j Te, (Alper et al 1968) for comparison,
afe'presented in Table (2.2). The measurements, for crystals
.Hg3In2[j,Te6 and HgSGa2[] Te, have a close correspondence with the
measurements made by other workers, but the value a equal to 6.2162°
| obtained for Hg3Ga2[j Te6 appearé to be somewhat larger than the
value 6.162a°, obtained by Ray et al (1969).

It is apﬁargnt on simply comparing the powder photograph of each
vacancy compound (Figures 2.11, 2.12, 2.13 and 2.15) against the |
powder photograph of mercury telluridé (Figure 2.10), that the basic
pattefn of the lings is very similar. Superimposed on this strong
pattern is a weak set of superlattice lines, indicating that the

atoms in each material are arranged in an ordered structure.
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Initially, the photographs were indexed using a Bunn chart on the
basis that since HgTe is zincblende and the lattice of each vacancy
compqund,remﬁins cubic, there would be a strong possibility that
these compounds would also be zincblende; the tellurium anions forming
" a face centred lattice and the mercury, indium or gallium cations and
vééancies being distributed in an ordered manner on the other inter-
penetrating face centred cubic lattice. fhis method allowed the main
pattern to be indexed, but for a complete analysis the indices of the
reflecting planes were_optained using Equations (2.%4) and (2.5) under
the_condition that fhe selection rules be 6beyed; values of N are
restricted for the zincblende lattice to values of h, k, 1 which are
either all even or all odd. There are also the forbidden numbers
N=17, 15, 23, 28 - - - as these bannot be expressed as the sum of
three séuares. The powder photographs of the compounds have a
characteristic pattern due to the superposition of two sets of lines,
one being the diamond type lattice indexed

N=3,8, 11, 16, 19, 24, 27 - - - -
the addifional lines |

N =4, 12, 20, 36, 44, ---=--
pequired for a face centred cubic lattice are only faintly visible
for zincblende materials. These lines afe missing in each case from
the basic pattern of each vacancy compound, but not completely from
HgTe. The zincblende structure is'often depicted as a cube containing
e{ght atoms. For example, mercury telluride has four tellurium atoms
on a face centred cubic lattice and the four mercury atoms are situated
diagonally in the tetrahedral voids. In each vacancy compound these
four lattice sites will contain either mercury or indium (or gallium)
atoms or a vacancy. A repeatable cell for the compounds Hgsrnzt] Te,

and Hg56a2[j Te8 can be contained in a block of 2 x 2 x 2 unit cells
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which will accommodate four molecules; the compounds Hg3In2E3 Te, and

Hg3Ga O Te6 will requlre a block of 3 x 3 x 3 unit cells containing
eighteen moleeules. This concept allowed the powder photographs of

' the compounos Hgsrnz(] Te, and HgSGazfj Teg to be fully indexed, even
the suoerlattice lines. The intensity of the lines has been estimated
v1sually and grouped into six categories, viz.: Vs, S, FS, W, W and
VWW. These are listed in Table (2.3) for both-compounds together with
the cubic indices based on a 2 x 2 x 2 unit cell and the measured d
spacing for.each line. The photographs of the'compounds Hg3In2E] Te6
and Hg3Ga2[] Te6 were 1ndexed using a 3 x 3 x 3 unit cell, this again
sgggested index values for the lines but in this case identification,
'.although good,'wes not quite so definite; results are listed in Table
(2.4). The'compound HgTe was also.indexed Table (2.5) to allow each
vacancy compound to befcompared with the parent compound and common
reflections are marked with an asterisk. The question of the actual
position of the atoms and vacancies in the lattice of HgSLnZEj Te, has
.heen investigated extensively by H. Macartney and a full account will
be prodhced in his Ph.D Thesis. An-important result is that the
vacancies dominate the ordering of the superlattice.

A repeatable cell, whose dimensions are known from the lattice
parameter, containing a complete number of molecules allowed the -
k-ray'density.to_be caloulated. ' This value and the value of density
measured using.Arehimedes principle are listed for each compound in
-Table (2.2). _

Compounds Hgsrnztl Te 8 and. Hgscazl:l Te8 crystallize with an
ordered lattice, but it has been found (Spencer et al 1967 and Ray et
al 1969) that both Hg3In O Te, and Hg3Ga2[] Te, can be produced with

a disordered lattice, this is not necessarily the case as photographs

(2.13), (2.14) and (2.15) clearly demonstrate. Crystals of Hg3In2E] Te,



Table (2.3) Interplanar spacing in HgsIanl Teg and Hgscazl] Tegs indexed
using a 2 x 2 x 2 unit cell. Reflections equivalent to the HgTe

pattern are marked with an asterisk.

HgsIn O Te Hg5Ga DTe
Line No. | ¢ Spaglng h,k,1. Line No.| ¢ Spaﬁlng hk,1.
1 vs# 3.6570 _ 222 1 vs* 3.604 222
2 W 2.9079 331 2 W 2.841 331
3w 2.8268 420 3w 2.779 420
4 W 2.5816 422 4 VW 2.535 422
5 § 2.4393 333;511 5 W 2.397 333;511
6 Vs* - 2.2388 440 6 Vs* 2.197 440
7 VW 2.1435 531 7 W 2.1055 531
8 vwW 2.1101 ' 600;442 8 W 2.066 600; 442
9 vs* 1.9097 622 9 vs* 1.875 622
10 W 1.7723 551;711 10 W 1.756 551;711
11 Fs 1.6487 | 731;553 11 Fs 1.621 731;553
12 s* 1.5820 800 12 s* 1.556 800
13 VW 1.5361 644/820 13 Fs* 1.432 662
14 VW 1.4928 . 660;822 14 Fs* 1.273 844
15 FS* 1.4496 662 15 wt 1.203 666:10,2,2
16 VW 1.390 753;911 16 W* 1.1015 880
17 vW 1.3291 931 17 v 1.0898 971
18 Fs* 1.2936 844 18w 1.0458 10,6,2
19 VVW 1.2727 755;771 19 w* 0.9850 12,4,0
20 VVW 1.2415 | 862;10,2,0 20 w* | 0.9518 10,6,6
21 Fs#* 1.2228 666:10,2,2 21 vw* 0.8986 888
22 W 1.1780 864 22 VW* 0.8726 10,10,2;12,8,0
23 W+ 1.119¢ 880 23 vvw* 0.8415 11,7,7:13,5,5
24 W 1.1070 971;955 24 W+ -{0.8341 12,8,4
25 W+ 1.0737 10,6,2 0.8345
26 VVW 1.0280 10,6,4;12,2,2 25 W+ - (0-8112 10,10,6;14,6,2
27 W 1.0028 12,4,0 0.8119
28 W 0.9474 10,6,6
29 VW 0.9454 10,8,4
30 W - 0.9273 13,3,3
31 vw* 0.9152 888
32 Wt - (08828 | .10,10,2;
0.8725 12,8,0
33 W - {0-8567 |.11,7,7;
- 10.8496 ~13,5,5
34 wW* - (0-8458 12,8,4
0.8437
35 W ' -{0.8257 10,6,6;
0.8205 14,6,2
36 W - (0-8011 11,9,7;11,11,3
0.8011 13,9,1;15,5,1




Table (2.4) Interplanar spacing in Hg3In2 O Te, and Hg3Ga2D Te,s indexed

using @ 3 x 3 x 3 unit cell. Reflections equivalent to the HgTe pattern are

marked with an asterisk. These reflections are also common in the ordered

and disordered compounds of Hg.In, [J Te_.

32 6
Hg JIn, O Te, Hg3Ga2EJ Te,
Line No. d spaglng h,k,1 Line No. d spaglng h,k,1
A a
1l vs* 3.6442 333;511 1 vs* 3.5859 333
2 w 2.8912 533 2 W . 2.8566 533
3 VW 2.8128 622 3 VW 2.6490 444
4 vw 2.7212 444 4 VW 2.5208 640
5 w 2.5660 640 5 w 2.3880 553
6 W 2.3821 800 6 Vs*: 2.1927 660
7 vs#* 2.1857 660;442 7 VW 2.1478 751
8 vww 2.0976 840 8 S 2.1072 840
9 Vs* 1.8922 933 9 vVs* 1.8714 933
10 w 1.7690 864 l0 W 1.8292 l0,2,0
11 W - 1.6404 10,4,4 11 W 1.7814 8,64
12 s* 1.5706 12,0,0 12 FS 1.6156 10,4;4
13 s* 1.4444 2,9,3 13 Fs* 1.5529 12,0,0
14 &s*  1.2834 12,6,6 14 w 1.5176 10,6 ,4
15 Fs* 1.2165 15,3,3 15 Fs* 1.4269 993
l6 Fs* l.1116 12,120 l6 w 1.3754 12,6,0
17 Fs* 1.0632 15,9,3 17 Fs* 1.2709 12,6,6
18 w* 0.9935 18,6,0 18 ww 1.2354 lo,8,8
19 w* . -{0.9603 15,9,9 19 Fs* 1.2010 999
0.9582 20 Ww* 1.0977 12,12,0
20 W* '{0.9081 12,12,12 21 w* 1.0537 15,9,3
0.9077 22 W 1.0271 12,12,6
21 w#* - ,0.8783 15,15,3 23 vw* 0.9842 18,6,0
{0.8804 24 VW 0.9512 15,9,9
22 Fs* '{0.8405 18,12,6 . 25 vvw 0.9118 17,9,7;17,11,3
' 0.8402
23 FsS* v{0.8187 15,15,9
0.8188




Table (2.5) Interplanar spacing and indexed reflections in HgTe.

Line No. d spacing h,k,1
2°
1 vs 3.743 111
2 W 3.2341 002
3 vs 2.2801 220
4 VS 1.9463 311
5 s 1.6140 400
6 S 1.5096 331
7 S 1.3170 422
8 S 1.2621 333
9 W 1.1411 440
10 S 1.0907 531
11 S '{1.0214 620
1.0267
12 w -{0.98499 533
0.98485
13 W '{0.93196 444
0.93160
14 FS -{0.90449 551
0.90434
15 S '{0.86310 642
0.86296
l6 S '{0.84124 553
0.84077




with either an ordered or disordered structure, have been obtained
using the appropriate experimental cénditions. Lewis (1965) obtained
an.ordered crystal of Hg3In2[j Te, with a lattice parameter a =
" 6.2952° corresponding to the value obtained here, cénfirming the
finding of Wodlley and Ray (1960); he also reported that Spencer had
produced an ordered sample abogt this time. However, Lewis's compound
.haQ.the composition Hg3In1.98£] 1.027% and  Dahake (1967).suggested
that this was the causé of the superlattice lines on the powder
photograph, probabiy because an excess of mercury due to annealing
does produce additional lines but their pattern is different from
the characteristic pattern produced by an ordered superlattice.
Stoichiometry, no doubt effects the ordering of the cation lattice
but. in the opposite way; the vacancies dominate and increasing their
number.to 1.02 per molecule will increase the degree of disorder. This
is to be expected since similar defect compouhds have practically no
hémogenffy range. For. example, efforts to reduce the number of vacancies
in Gazsé with .gallium atoms are futile; even with small additions the
material simply reduces to a.two phase mixturé containing Ga,S, and
Gas (Patthé 1964, page 46).

Hahn and Klinger (1949) and Hahn (1952) found that prolonged
annealing of Gaé[j Te; and In, () Te, produced superlattice lines and
it was suggested that this was due to ordering of the ions and vacancies
‘on tﬁe cation lattice. Since crystals of compounds Hg3In2[] Te6 and
Hg3Ga2 O re 6 which contain 50% In'zD Te 3 and 50% Ga,, O Te3 respectively,
can be produced in either the ordered or disordered form, it was thought
that annealing at elevated temperatures followed by quenching would
produce a disordered superlattice. Sampigs of HgJInz[j Te, were

sealed under vacuum in 4 mm quartz tubes. The specimens were then

‘suspended in a furnace, similar to the crystal growth type, at

"
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preselected temperatures to within +5°C between 227°% (500°K) and
627°%¢ (900°K) for more than 200 hours and then quenched in water.
Normally 100 houfs was adequate. The Debye-Scherrer powder photographs
ébtéined from samples of this crystal annealed at 302°c (585°K) or
below showed the extra lines due to Bragg reflections from the ordered
superlattice. Diminishing superlattice line intensifies indicate
decreasing ordér as the annealing temperature was raised. Quenching
from_332°C (605°K7 or abdve produced a disordered strucéure: the
‘superlattice lines were absent. Thus the material goes from an ordered
to a disordered'stfucture over a témperature range of 30°C between
'302°é.to 332°C; the presence or absence of mercury vapour did not
alter this basic finding. The disorderéd phase has a pseudo zincblende
structure (point group 43m) and a lattice parameter a of 6.289 + 0.002a°
identical within experimental error with the parameter found for the
ordgred structure (6.29 # o.OOZAO). This process was repeated on the
compounds Hgsrﬁ‘z 0 Téa ar;d .HgSGaz O Tes with no result, the compounds
remaining -ordered for-all annealing temperatures below the melting
point. When Hg3Ga2[j Te, was also put through the same process, a
change did occur between 400°c (673°K7 and 500%c (773°K); the structure
remained cubic but the lattice parameter changed from 6.21a° at 400°c
to 6.01a° at 500°c. It was not shown conclusively that an order-disorder
transformation occurred for this compound, but there is a phase change
of some kind. This result is inconclusive because the high temperature
at which this phase change occurs allows the material to lose mercury
quite easily, consequently tﬁe effect was not investigated further.

While nuﬁerous metailic substitutional alloys exhibit an order-
disorder traﬂsformgfion, the classic example being copper-gold alloys,
the phenomenon has not. been widely reported in a semiconducting material.

It would appear then, that the compound Hg3In2[] Teb presents an
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unusual variation and because of this it was thought useful, if
possible, to measure the electrical behaviour in the vicinity of the
)

transition. The ultrasonic measurements reported in this thesis

have all been made on ordered crystals.

2.6 THE EFFECTS OF AN ORDER-DISORDER TRANSFORMATION ON SOME

PHYSICAL PROPERTIES

In the previous section an order-disorder transformation
occurring in crystals of the compound-Hg3In2[] Te, was investigated
uéing Debye-Scherrer x-ray techniques; it was found, as evidenced
by the reducing intensity of the superlattice lines that the material
became more disordered as the temperature was increased until
ordering of the superlattice was completely destroyed at a critical
temperature of 332 +5°C. The sharpness of the superlattice lines
indicates that.it is long range order, in which the atoms are
arranged in a specific array, rather than short range order which
is being destroyed; the long range order parameter p becomes zero
above the critical temperature. Short rénge_order occurs when the
ordering forces are weak, so that each atom may succeed in surrounding
itself with unlike atoms for short.periods of time and on average
it is' surrounded by mére unlike atoms than it would be in a completely
random arrangement.

Although:x-ray studies on quenched specimens are perhaps the
most direct method of investigating this phenomenon, any order
dependant propefty is of interest énd its measurement may, even if
only indirectly help in elucidating the nature of ordered structures;
certainly the information of effects of order on some bulk properties
will contribute to understanding the actual mechanics of going through
the transformation from an ordered to a disordered state. Some

information is available on metallic alloys but measurements of the
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effects on the electrical properties of a semiconducting material
on going through this transition are scarce. Electrical measurements
on Hgarnztj Te6-also serve to compare the material grown in the
single crystal form for the ultrasonic experiments with the material
produced by other workers. This is effective since it has been
found that the electrical properties are dependant on an excess
element in,thé'compound, in particular mercury (Dahake 1967).

The order-disorder transformation, which is a co-opérative
phenomenon like the loss of ferromagnetism at the curie point, is
~ attractively illustrated by A. H. Lipsons (13950) angiogy: "It may
be compared to the behaviour of a crowd of people;y if one or two
look up fixedly at the sky others may not be induced to do likewise,
but if more peéple look upwards the inducement of others to do so
becomes greater until when nearly everybody is looking up, the urge
to do so is irresistible even for the most obstinate individual."
The change frequently occurs over a temperature range of several
hundred degrees as has been indicated by the specific heat plots of
Ccuzn (8 brass) and Cu3Au. In each case the smooth increase in the
absence of an order-disorder transformation, is interrupted by a
peak prior to the transition temperature; this suggeststhat energy
is required not only to increase the vibrational motion of the
atoms but also to enable some of the atoms to exchange places. Once
disordering haé started, the process rapidly increases until at the
critical temperature, the phése is almost completely disordered and
tﬁe specific heat curve returns to a value virtually the same as
that required by a normal smooth specific heat curve. This peak
(Figure 2.19) has been observed qualatively, in this material between
300°c and 320°C using a Perkins Elmar differential scanning calorimeter.

In this type of scanning calorimetry the temperature of the sample
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and a reference is increased in a controlled manner and are con-
tinuously maintained at the same level. This is accomplished by

a negative feedback loop to control the power which is supplied to
the sample and reference holders. When the sample absorbs or
releases energy, more, or less power is required by the sample

holder to maintain it at the same temperature as the reference holder.
It is this differential power, continuously and automatically varied
according to the énergy requirements of the sample, which is recorded
as an ordinate on the chart recorder. Since power-is energy per unit
time, the instrument records the rate of energy absorption as a
function of sample temperature. Consequently, Figure (2.19) represents
an endothermic reaction and because the recorder had a linear time
base the area of the peak is equivalent to the energy required by the
reaction.

The electrical properties, résistance, Hall coefficient and
thermoelectric power were measured carefully on taking the sample
through the transition region in a furnace (Figure 2.20) which con-
sisted of two concentric quartz tubes. The 1 inch diameter inner
quartz tube carried the heater which was made of kanthol wire. The a
space between the tubes was filled with alumina cement which insulated
the furnace and held the heater wire in position. By spacing the
winding turns a temperature profile having a flat plateau with steep
sides was obtained, enabling the samples in both the Hall and
resistivity éxperiments to be placed such tﬁéf-the temperature was
constant over their length. This is not the requirement for thermo-
electric experiments and in this case the sample was placed in a
' steep temperature gradient. The temperature of the furnace, and

consequently the profile, was controlled by a Eurotherm controller

of the type described in section (2.2).
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Two sample holders were designed, one for measuring the Hall
coefficient and resistivity (Figure 2.21) and the other for the
thermoelectric power measurements (Figure 2.22). The base in each
case was'machinéd from sindanyagian excellent thermal and electrical
insulator. This allowed thé samples to be heated to temperatures in
excess of. 330°C. Samples-ﬁséa fﬁf.ﬁali and resisti§ity measurements
were cemented between copper current contacts with a silver solution
(Aquadag) and phosphor bronze pressure probes were employed to measure
- the appropriate potential. To avoid the shorting effect of the large
area current contacts used, the length to width ratio. of the Hall
samples.was greater than 3 (Isenberg et al i948). The geometry of
the resiétivity samples also conformed to the requirements of Stephens
" et al (1971) who have shown that the resistivity can be obtained using

L]

the uncorrected expression

= 2 (2.7)

where V is the potential difference, A is the area of the cross

section, I is the total current and S is the potential contact
separatioh, provided that the sample has a length to width ratio of

3 and its thickness is no greater than the width but not less than

half the width and the potentiai contact separation is not greater than
_half the length of the sample. In each case the sample length was about
14 mm. The sample holder used for the thermoelectric measurements held
two copper-constantan thermocouples in position with a phosphor bronze
spring-arrangement. These thermocouples also served the dual purpose of
acting as potential contacts. In each type of measurement the potential
was measured by a Tinsley potentiometer capable of measurihg to 0.1uV.

The circuit used to measure the resistivity and the Hall coefficient
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(Figure 2.23) was basically the same except for the position of the.
potential prbbes. A constant current supply was used, for éonvenience
and to allow accuréte measurements. This was achieved using a simple
transistor circuit which held the current constant to within 0.1% over
a fésistance~change in the sample befween 50 aﬁd 5kQ. The magnet uséd
in-the Hall mé;surements was also driven by a constant current supply
capable of delivering up to 134, which was_sufficient to provide a
constant field of maximum strength of about 6.5 k gauss. ‘In order'tq
measure the ﬁall voltage at several field'valués the magnet was
caiiﬁrated.with.a Hall probe gaussmeter.

' The usual steps were taken to obtain accurate measurement; for
example in the case of the Hall measurements the potential which
existed due to-sligbt-misalignment of the probes was backed off by a
constant voltage supplied by a Tinsley potentiometer, measurements were
also taken with both positive and negative current and field directions
at aboﬁt eight values of figld strength ét each temperature. The
variation of Hali potential with field strength at each temperature
'was found to be a simpie linear graph apd the ¢oefficient RH was taken
from the gradient (Figure 2.2%). This behaviour is in common with that
found bf pr;vious workers on this series of compounds.

The electrical resistivity is 35 ohm cm at room temperature and
falls in.a ;inéar manner with iﬂcreasing temperature (Figure 2.25) due
to intrinsic behaviour, a pattern consistent with previous results.
Dahake (1967) and Spencer (1964) on single an& polycryétalline
specimens have shown that the resistivity is sensitive fo a change in
the most'volgkile element, mercury, by annealing in a vacuum and mercury
vapour. A valﬁe of 35 ohm cm falls within the ;ange of these results
presented for comparison in Table (2.6). This temperature dependant
_resistivity curve is unusual in that its linearity is abruptly

Changed at 300%5°c and at 322¢5°C the curve again becomes linear.
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The slope undergées a distinct change and the kink which develops
occurs over the temperature interval at which the order-disorder
transformation occurred in the quenching experiments. It appears

then that this measurement will allqw an improved assessment of the
temperature interval over which the order-disorder transformation
occurs anq assuming that the curve becomes linear when disor&ering

is complete, the critical temperature Tc équals 322¢5°C. The change

in the slope.of the curve on passing through the transition temperature
suggests, since the material is intrinsic, that there is a change

in the enérgy gap. Further quenched disordered samples have room
température resistivities which are lower than in the ordered state

and tend to.fall on the extrapolated curve of the resistivity when

in thé disordered state. Thié behaviour is contrary to that observed
in metals, for example in the copper gold system at the composition
Cu3Au and Cuadu which have a tendency to order, there is a corresponding
reduction in the resistivity values at room temperature. The explanation
advanced is that the increase in the periodicity of the lattice due to
ordering reduces the scattering. It would appear then, that in this
semiconducting compound there is an increase in the band gap on ordering
which is the dominéting effect, causing the resistivity to be greater
thén that of the disordered material at room temperatures. This also
_explains some anomolies in results of this type of measurement (Table
2.6) obtained by previous workers. Hence, it would be reasonable to
conclude, that even though the stoichiometry of the material at these
temperatures is changing due to a loss in mercury and thereby altering
the measurements, the change in the resistivity curve between 300+5°C
and 322+5°C is due primaril§ to én order-disorder transformation having
taken place and this will effect the band gap. The effect of changing

the stoichiometry has been demonstrated by annealing samples in mercury
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vapéur with a consequent reduction in the resistivity which is linked
with both the annealing time and the temperature. The kink which
occurred in the resistivity measurements also occured in the curve
of the thermoelectric power measurements (Figure 2.26) at the same
tgmperature.

The Halllcoefficient RH at room temperature is 2100 cm3/c a value
consistent with the doping level indicated by the resistivity measure-
ments and within the range of values given in Table (2.6). These
measurements show that the material is p type. The temperature
dependance of R, is normal, the curve becoming linear due to intrinsic
behaviour at about 150°C. Once again, a kink in the curve during the
transition temperature interval after whiéh the slope assumes a new
value (Figure 2.27). As before this kink occurs over a temperature
interval between 300£5°C and 322¢5°C. The carrier density (Figure

2.28), was obtained using

Ry = %ni’% 5535—-%) (2.8)
- F (s + 5/2)

where a scattering parameter of S equal to zero was assumed for the
gamma function. This follows Wright and Dahake (1968) who used this
value because of the quasi-metallic behaviour exhibited by alloys in
this series which have less than 20% InzTe3 content, even though for

their samples of 50% and 75% composition degeneracy is only partial,

as is the case here. This calculated carrier density was then sub-

stifuted into

32 , , 3/4 -Eg/2kT

n, = n, = 2(2n%§) (mgmh) e (2.9)
h
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which relates, in the intrinsic region, the density of electrons in

the conduction band n, and the density of holes in the valence band

n, to temperature and the effective mass of the carriers m; and mz.

The band gap Eg was then obtained from the slope Eg/2kT of a plot

of log nc/T3/2 against 1/T (Figure 2.28). The values obtained are
0.37eV for the ordered phase and 0.2leV for the disordered phase;

this change of 0.16eV on going through the transition indicates that
the band structure is profoundly modified when the atoms rearrange
themselves. These results confirm the resistance measurements, where
the resistivity of the disordered material is less than the resistivity
of ordered material. Comparison with the results obtained by previous
workers can only be tentative, because they were mainly concerned with
measurements below room temperature. However, Dahake (1967) did measure
the Hall coefficient R, on single crystal samples from 77°k to about
400%k (&130°C). For some samples, the curve obtained of Ry, against

1/T was linear over a temperature range from about 60°C to about 13OPC,
the material being intrinsic. This allowed the band gap to be estimated
and the results.presented in Table (2.7) are interesting. The as

grown sample which was found by Dahake to be disordered has a band

gap of 0.165eV and sample (5) which was annealed for 100 hours at 250°%¢,
a process which causes ordering, has a band gap of 0.34ev. Sample (2),
which was annealed at 300°c for 75 hours has an energy gap of 0.075eV,
this possibly suggests an increasing degree of disorder; in fact the
electrical measurements and especially the differential calorimeter
curve (Fig. 2.19) indicate that disordering is well under way at

this temperature. Because of the limited temperature range over which
the samples exhibited intrinsic behaviour, these calculations are

approximate, but they are consistent with the measurements obtained

here of 0.37eV (ordered) and 0O.2lev (disordered).



Table (2.6) Resistivity of Hg In,(] Te, at 300°k by Dahake (1967)

o}
Sample ohm cm Remarks

1 500 as grown

2 100 annealed in vacuum for
75 hours at 300°C

3 230 annealed in vacuum for
50 hours at 250°C

5 10 annealed in Hg for 100
hours at 250°C

Table (2.7)

Energy gaps calculated from the results obtained by Dahake (1967)

... Sample  ..| Eg (eV) Remarks
1 0.165 as grown, disordered
2 0.075 annealed in vacuum for
' 75 hours at 300°C
5 0.34 annealed in Hg for 100
hours at 250°C
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Heating'a sample to these temperatures can cause a change in its
stoichiometry which effects the electrical properties, to assess this
‘effect a Hall sample was annealed at 200°c for 40 hours and the
measurements repeated. The percentage fall in carrier density at a
temperature of 143°C, where the matepial started to become intrinsic
was 48%. This allowed a rough estimate to be made of the percentage
change in carrier density which was about 6% during the time required
to take the measufements over-the full temperature range. Therefore,
these measurements_hust be treated with caution? but they do indicate
together with the x-ray quenching experiments that a change occurs
between the tempefature interval 300°C to 320°C, which is consistent
with an order disorder transformation having taken place.

The main result of this work is to show that the lowest minimum
inlthe conddction band characteristic 6f the disordered material
: éhould separate more widely from the highest valence band maximum
when ordering occurs, because of the reduction in entropy and the
resulting increase in the strength of some of the bonds. The direct
effect is for the energy-gap to increé;e. This has also béen observed
in InzTE3 (Gasson et al 1960) and in certain solid solutions IIIZ-VI3
and II-vr compounds (Spencer et al 1962) However, other conduction
--band  minima' may fall towards the valence band since other bonds may
decrease in strength. - In some case;_;his might lead to a net decrease
in energy gap. Since ordering alters the symmetry of the crystal and
usually means that a larger unit cell must be used to describe its
1attice, the Brillouin zone shape will usually change and if it does
its size will decrease. Even if the Brillouin zone does not change,
the electronic band structure, especially in the conduction band, may
alter because of the periodicity changes. The shape and potential
energy of existing.minima may become different and fresh minima may
..appear or old ones shift position in k space. Any of these alterations
Qouid produce change in effective mass and therefore in the transport

properties.
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CHAPTER 3
THE PROPAGATION OF ULTRASONIC WAVES IN SOLIDS

3.1 INTRODUCTION

A study of the propagation of ultrasonic stress waves in solids
yields information about the velocities and the attenuation or energy
loss ih these waves. In the simplest case, two types of stress wave
can be propagated (i) a pure longitudinal or a pure compressional
plane wave where the particle motion is in the direction of propagation
and (ii) a pure transverse or pure shear plane wave where the particle
mqtion is transverse to the direction of propagation through the
elastic solid. In general, however, for both a crystalline and an
isotropic solid the waves are neither pure longitudinal nor pure
transverse: the particle displacement has components both along and
transverse to the-direction of propagation. When the solid is finite
in extent and hence bounded by surfaces, surface waves may be propagated.
Measurement of the wave velocities and the density of the solid enables
the  elastic constants of the material to be determined which are related

to the interatomic binding forces.
3.2 STRESS, STRAIN AND DISPLACEMENT RELATIONSHIPS

To enable the equation of motion of an ultrasonic stress wave to
be related to the crystal symmetry, an outline of the basic theory
b;hind the stréss-strain relationship is now given. |

A body, in which one part of the body exerts a force on another
part is said to be in a state of stress. A volume element situated
within the stressed body may have two types of force acting on it;
body forces such as gravity, and forces exerted on the surface of the

element by the material surrounding it. These latter forces are
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proportional to the surface area of the element and the force per unit
area is the definition of stress. The stress, or force per unit area
acting across a surface element in a stressed body is related to the

orientation of the element by

P, = 0,1, ' (3.1)

where lj are the components of a unit vector normal to the surface of
the element. Hence the stress tensor cij where i,j = 1, 2, 3 represents
the components of a force per unit area acting on the element of area.
The subscript i denotes the direction of the normal to the plane on
which the stress component.acts and the subscript j denotes the
direction of the stress component. Since.it is usual to assume that
the stress throughout the body is homogeneous and that body torques are

absent, these conditions allow the tensor to be symmetrical, so that
g,, = O, (3.2)
ij ji

and it makes no difference if the subscripts are interchanged.

The strain tensor is defined in terms of variation in displacement

5; with position X; in a body. This gives nine components

39S,

51, =5xi (i,j = 1, 2, 3) (3.3)
i

the comma notation for differentiation is used. These have the following
meanings: S S S are extensions per unit length parallel to
1,1, 2,2, 3,3

the axis ox,, 0X,, and OX, respectively, Sl 2 is the rotation about X,
’

1 2 3
towards OXl of a line element parallel to OX2, 52 1 is the rotation
14
about 0X, towards ox, of a line element parallel to 0X;, and similary

for the other 5; 5 If the displacement is due to rotation without

4

strain, the corresponding S; 3 are antisymetrical
’
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=35

if i #

(3.4%)

Then since a second rank tensor can be expressed as the sum of a

symmetrical and an antisymmetrical tensor,

where

= 1
sij 3 (S

i

3

+ S

.)

is the symmetrical component and

- 1
wij = 205

. =S, .
vJ _711)

€.,
J1

“w..
Jji

(3.5)

(3.6)

(3.7)

is the antisymmetrical component. The symmetrical part of S; j is
’

defined as the strain tensor eij‘ Then

€, .
ij
i
2(31,2

1
2(5;,3

1,1

+
Sy,1

+ S

3,1

1
2

1
H

(51,2

S;,2

(53,3

+ 52’1

+ S3’2)

1
) 5(31,31‘5 )

1
2(52’

S

(3.8)
3,1

+S..)

3 3,2

3,3

The diagonal components are the tensile strains and the other components

measure the shear strains, where eij when i # j is twice the change in

angle between two line elements parallel to the appropriate axis OX,
: i

and 0OX ..
J

A more complete approach would have revealed second order terms

in the strain tensor, which are neglected (see Truell, Elbanm and Chick

1969).

Provided the material is only strained within the elastic limit,

Hookes law holds and the relationship between stress and strain is
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o (i, kx = 1, 2, 3) (3.9)

ik = Cikji%i1
which defines the elastic stiffness constant tensor of the fourth

rank C, This expression defines nine equations each with nine

ikj1’
coefficients, therefore, there are eighty one coefficients in the most
general form. The symmetry in the stress-strain tensors due to the

absence of body torques requires the same symmetry in the elastic

constant tensor,

Cikj1 = Ckij1 Cik1j (3.10)

which immediately reduces the coefficients to thirty six. Finally, on
straining an elastic medium there exists an elastic potential which

amounts to having the strain energy

= 1

E 3 Cikjl €k ejl (3.11)

be a function of state and independant of the path by which the state
is reached; this imposes the further symmetry relation

cikjl = leik (3.12)

which reduces the number of elastic constants from thirty six to
twenty one. Therefore, the general linear stress-strain relationship
in an elastic medium depends on twenty one coefficients.

The symmetry of Cikjl in the first and last pair of indices allows
the notation to be simplified by use of the matrix notation in which

each pair of indices takes on one value as follows:

tensor notation 11 22 33 23 32 13 31 12 21

matrix notation 1 2 3 4 5 6
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F . .
or example 01123 can be written as C14 and 02312 as C46. In this

notation Hooke's law becomes

o; = Cj4€; (i,j = 1, 2, 3) (3.13)
‘This law using tensor notation (equation 3.9) can also be written

in the reciprocal form in which

€ (3.14)

ik = Sikj1 %51
This expresses the strain as a function of stress. The Sikjl are
called the elastic compliance moduli and relate directly to the
elasticity of the material, whereas the elastic moduli Cﬁkjl relate
to the stiffness. The symmetry imposed on the elastic stiffness
moduli applies equally to the elastic_compliance moduli for the same

[ 4

reasons; consequently, Sijkl and Cijkl are related by the expression

in the matrix notation

sy = (-1t Al?j/Ac (3.15)
where A€ is the “determinant of the Cij terms and Agj is the minor of
. the element cij'

The syﬁmetry of the crystal systems allows a further reduction

in the number of independant elastic constants; only crystals in the
triclinic class retain the full number. Analytical methods are used
for the trigonal and hexagonal classes, but a direct inspection method
(Fumi 1952; Fieschi and Fumi 1953) yields the number of constants
required to describe the elastic behaviour of each of the other crystal

classes. The matrix for the cubic class is
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€11 €12 €2 °© 0O O (3.16)
€12 ¢ €2 ©° 0 O

€12 €12 ¢y ©° ©° ©

(0] (0] (0] C44 (8] (0]

(0] (0] (0] (0] C44 )

(0] o.. O (0] (0] C44

where only three constants cll’ C12

properties, since the symmetry restrictions allow

and C44 describe the elastic

"
2
]
0O

Cip = €3 = C330 €3 = €13 = €y and Cyy 55 66

all other coefficients are zero.

3.3 THE PHYSICAL SIGNIFICANCE OF THE ELASTIC STIFFNESS CONSTANTS

cij OF A CUBIC CRYSTAL

The physical significance of the elastic constants is not
immediately obvious. In general, the quantity Cij expresses the stress
strain ratio oi/ej under the condition that all strains othgr than ej
are zero. The meaning of this statement can be appreciated by applying
it to the cubic crystal as follows.

If a normal stress o (Figure 3.1) is applied to two (110) faces
of a cubic crystal and stresses are applied to the other faces to ensure

that only the normal strain e parallel to the |110| direction occurs,

then
on
_— = C (3-17)
€ n '
n
and
C, = (Cyy *Cpp*t 2y (3.18)
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If the sample is under a shear strain such that the angle between the
|001r and the. |110| directions decreases, then this may be achieved
by a shear stress applied to the (110) faces in the |001| direction
(Figure 3.1); this being the only stress necessary. Then for this

example the ratio

Q

n
= = Cyq (3.19)
n
In a similar way, a shear stiffness may be defined if the shear
stresses are applied in the |110| direction on the (110) faces to

produce a shear strain measured.by the decrease in angle between the

|110| and the |110| direction. The stress-strain ratio is in this case
c = _11 12 (3.20)

Thus, the three independent elastic stiffness constants of a cubic
crystal can be expressed as two shear C44 and ¢~ and one normal

stiffness constant Cn'
3.4 VOLUME COMPRESSIBILITY AND BULK MODULUS

The proportional decrease in volume of a crystal when subjected
to unit hydrostatic pressure is defined as being the volume compress-

ibility K and its inverse is called the bulk modulus B. The stress

exerted in terms of the pressure is

= - .2
9.7 pﬁkl (3.21)

where

0o if k#1 (3.22)
1l if k=1

O
]

k1
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is the Kronecker delta. This when used with Hooke's Law (equation

3.13) gives the dilation

€5 = PSijki’u PS;ikk (3.23)

The change in volume of a unit cube (Figure 3.2) which has its edges
parallel to the principal axes, three mutually perpendicular directions

which remain orthogonal during deformation, is given by

A = ¢, +e, +e, =¢€,, (3.24) /

and so the volume compressibility (K = -A/P) is S; ixk' In the matrix

notation this becomes

K = 511 + 522 + 533 + 2(512 + 523 + 531) (3.25)

which is the sum of the nine coefficients in the upper left hand

corner of the compliance matrix. This reduces for cubic'crystals to

K = 3(511 + 2512) (3.26)

and its inverse is the bulk modulus or volume stiffness which is given

by

B = 11 * %5 (3.27)

3

Both these expressions also hold for isotropic materials.

3.5 EQUATIONS OF MOTION AND SOLUTIONS

The equation of motion for an elastic medium is obtained by

considering the forces acting on an element of volume in the medium.
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In particular, if the difference between pairs of forces acting on
opposite faces of a small rectangular parallelgpiped is considered,
one arrives at the components of the resultant force (neglecting body
fdrces) acting on the volume (for details see Kolsky 1953). Then by
equating the force components oij,j to the acceleration components

S; for a medium of density p, the following equation of motion is

obtained:

oij,j = pSi (i = 1, 2, 3) (3.28)

Substituting the stress-strain relationship (equation 3.9) in this

C. .I lell 'y - ps. (3.29)
'lJ ’J 1

where

€e1,i = J‘;(sl’kj +sk’1j) (3.30)

then

- = 2ps, : .31
Cik1%i,k5 * Sk,15 2pS; (3.31)

and since C is symmetrical, this reduces to

1kjl

= pS, (i = 3.32

an equation of motion involving the elastic constants.
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Ultrasonic waves can be propagated in any direction in a
crystalline ﬁgdium regardless of whether or not it is isotropic. In
each direction three independent waves can be transmitted, each with
a distinct velocity and with particle displacements which are mutually
orthogonal. In general, none of these displacements coincide with
either the wavefront normal or with a direction at right anglés to it,
hence the wave cannot be classified as either pure longitudinal of
pure transverse. However, there are certain specific directions in
fhe crystal in which the wavefront normal does coincide with the
particle displacement vector and a pure longitudinal (or compressignal)
wave can be propagated. The other two displacement vectors of the
orthogonal set will then lie in the plane of the wavefront in which
_case pure transverse (or shear) waves will be propagated.

The equation for the components of any one of the plane waves is,

s, = So, Wt kD 32,2, 3 (3.33)
which travels -in the direction given by the propagation vector
E(kl, ky, k3) drawn normal to the wavefront. A unit vector E(nl, n,,

n3) can also be defined in this direction giving the relationship
k = (9n = 25n (3.34)
IENCIENC I

where w is the angular frequency, v is the phase vequi;y'qnd A is the

wavelength. S(S;, S -53) is the particle displacement vector which in

2,
general is not parallel to the wave vector k. Then a general solution

of the equation of motion (3.30) was obtained by Christoffel on sub- /

stituting

. 2 ,
S = -n anol (9—-e i(uwt - k.I) (3.35)

1,kj X vz)



énd

§ = -so,
1

; Gleilut - k.1) : - (3.36)

Z .
in the equation ('3.346) to give

2 . -
cijklsolnknl = pv So, (i =1, 2, 3) (3.37)

Perhaps this is more convenient when it is written as three equations

in the matrix notation

2 -
(Lll - oV )501_ + L12502 : + L13Sb3 =0 (3.38)
L, So + (L,, - -2)Sb + L, .So =0
127971 22 =~ PV 750, 23703 -
L, .So - + L_.So + (L - v2)50 =0
13792 2392 33~ ° 3

where Lll to L33 are a series of moduli which are functions of the

elastic stiffnesses Cij and the direction cosines n, n, and n,.

Then in general for any crystal symmetry,

2 2 2
Ly, = B)Cpp # MCpg # nCog + 200 Cof (3.39)

+ 2n3n1C15 + 2n1n2C16

2 2 2
Ly, = 0jCyp # 0 Cop# 0 Cpst ny0y(Cop t Cpp)

+ n3n1(cl4 + 056) + "1"2(c12 + C66)

2. . 2 2
Ly = 0C;5 + ByCas # N3Cag + 00 (Cyg + Cop)

+ 00, (Cpqy + Cop) +myn,(Cpy + Cop)

2 2 2
Ly, = 0,Cppt0,Coy+ nCpyt 2n,nCoy

+ 2n3nlc46 + 2n1n2C26
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2 2 2
Lyy = B Cpp #0Coy+ nCoy+ nng(Cpyt Coy
+ngn)(Caq + Cyg) + 115(Co5 * Cag!
2 2 2
Lyg = N,Css #0,Cppt N Cog+20)0Coy

+ 2ng0)Ca5 * 20)05Css

The'compaqibility condition for the solution of equations (3.36) oL
requires that the determinant of the coefficients of So,. So,, and

So. be zero; this is written

3
L . - pvz L ' L (3.40)
11 12 13

L L. - vl L = 0

12 22 ~ P 23 =

L3 Lys T ald

This is a cubic equation in-pw2, the roots of which give the velocities

of the three independent waves. The values of S0, So, and So, the
3
v

{.\ ya

components of the displacement vector are such that the wave is neither

pure longitudinal or pure transverse.
3.6 PROPAGATION DIRECTIONS AND VELOCITIES IN CUBIC CRYSTALS

The use of ultrasound waves for measurements in single crystals
is confined wherever possible to pure compressional or pure-transverse
modes.propagated in principle directions through the crystal; such /
waves will be discussed with reference to cubic crystals only. Thus
the symmetry conditions reduce the elastic constants to C,,., €2 and

044, which reduces the moduli of the determinant (3.3%) to
4
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2 2 2
P < n,C,y + (ny +10,)C,, (3.41)
L, = am, (Crp+Cuy

Lig = ngny (Cp + Cypyl

2 2 2
Lyg = (B #n30Ce* 70
Ly; = By (Cpp + Cyp

2 2 2
Lyy = (my +1m))Cpp+nsChy

The conditions, as previously stated, that a pure longitudinal wave

be propagated is that the wavefront normal coincides with the displace-

ment vector S;

1th
»

n = 0 hence .§||11 - (3.42)

To propagate a pure transverse wave this vector must be perpendicular

to the wavefront normal, namely

S+ n = 501n1 + Soznz + So3n3 = 0 (3.43)

There are three simple orientations in a cubic crystal in which it is

possible'to meet these requirements.

L}
L]
> ]
[}

|100| where n 2 =1n3= o, (3.44)

1

|110| where n 1
1 /7 2

. _ I A
and |111l where n, =n, =n,= /3

The orientation of most interest is the |110] direction since the

velocity equations resulting from the solution of equation (3.38) are
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2 _
v, = 2(C11 + 012 +.2c44) (3.u45)

since S is along the |110| direction; this is a longitudinal wave.

Also

2
v, = C44 (3.46)

when S is along the |ooi| direction and

pv2 = €1 %2 (3.47)

s 2
when S is along the |110] direction; these waves are transverse.
Therefore measurement of the velocity of one longitudinal and two
transverse waves polarized in the appropriate directions enables all
three elastic constants to be determined from these equations.

Figure (3.3) illustrates the situation.
3.7 ATTENUATION

The attenuation of a plane high frequency ultrasonic wave
propagated through a sample can be determined from the envelope of
the wave (Figure 3.4). The amplifude at any position x into the

sample is given by

o(x) = co'é“" (3.48)

where o, is the initial amplitude and o is the attenuation coefficient.

This expression can be written as
= - 3.49
log 0 (x) log o - ox ( )

Then for two different points X, and Xy where X, < x, the difference

of the expressions at the two points is
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o(x.,)
1 (3.50)

a = —— |log
x2 xl e o(xz)

and since any ratio of two amplitudes such as a(xl) and o(xz) must,

in order to be expressed in decibels or nepers be written as

20 log, o(x,) dB (3.51)
0
of(x,)
2
or
loge o(xl) nepers (3.52)
o(xz)
then
1 o(xl)
a = ;—_—x—' 20 loglo olx). dB/cm (3.53)
2 1l 2
or
1 o(x.)
a = ;;—:—;; logé o(xz) nepers/cm (3.54)

and conversion between the two units is affected by

o (dB/cm) = 8.686a (nepers/cm) (3.55)

Another expression for the energy loss is that of the logarithmic
decrement § which is defined for an underdamped harmonically oscillating

system in free decay as

§ = L (3.56)

where W is the energy loss per cycle in the specimen, and E is the

total vibrational energy stored in the specimen per cycle. This
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definition is equivalent to the relationship

o
(3.57)

§ = log
e
n+l

where L and 0 .1 2re the amplitudes of two consequtive cycles. It

+1
follows from equation (3.53) that

§ (nepers) = a (nepers/cm) X (cm) (3.58)
or
8 “;’;‘;‘/’::g ). y(cm/sec) (3.59)
Finally
a(dB/usec) = 8.68 x 10_6v (cm/sec) o (nepers/cm) (3.60)
or
a(dB/usec) = 8.68 x 10-6f (1/sec) & (nepers). (3.61)
Also
a(dB/usec) = a(dB/cm) x 10_6v (cm/sec) (3.62)

which is the most important relationship since the ultrasonic comparitor

measures attenuation in dB/usec.
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Fig. (3.1) Illustrates the physical interpretation of the elastic shear
moduli 044 fa) and (Cll - C12)/2 (b) of a cubic crystal.

Y

Fig. (3.2) - The strain of a unit cube cut with its edges parallel to

the three principle axes of strain.
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fig. (3.4) Physical basis of attenuation measurements.
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C HAPTER b
VELOCITY AND ATTENUATION MEASUREMENTS
4.1  INTRODUCTION

The pulse echo method of measuring the velocity of ultrasonic
waves in solids has been in use for some time but measurements of
the attenuation of these waves have only been made relatively recently.
McSkimin (1964) has given a comprehensive review of the various ultra-
sonic techniques for measuring the mechanical properties of solids
and liquids.

The purpose of this chapter is.to discuss the single-ended pulse
echo technique of generating and measuring the velocity and attenuation
of an ultrasonic wave propagated through a solid. The attendant
difficulties in making the measurements over a temperature range from
- 77°k  to room temperature are examined and an estimate is made of the

significance of the associated errors on the experimental accuracy.
4,2 DESCRIPTION OF THE SINGLE ENDED PULSE ECHO METHOD OF MEASUREMENT

The velocity and atfenuation of ultrasonic waves in single crystals
of the}mercﬁry—indium and mercury-gallium tellurides have been measured
by the single-ended pulse echo technique, a basic outline of which is
shown in the block .diagram Figure (4.1). A piezoelectric quartz
transducer bonded to the sample is hit with a pulsed R.F. wave which
is tuned to the fundamentél or one of the odd harmonics of the transducer.
The resulting ultrasonic wave is coupled into the specimen and a series
of reverﬁerations is set up in the material during the pause between
the input pulses. A small fraction of eacﬁ echo generates an electrical
signal in the originating transducer; these signals are amplified in a

high gain receiver, after which they are detected and filtered. The
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resulting envelope of the pulse train is displayed on an oscilloscope
(Figure 4.2).

The equipment used in these experiments was a Matec Inc.,
Attenuation Comparifér, Model 9000 using a Model 960 R.F. plug in
unit. This apparatus incorporates within one frame all the units
shown on the block diagram (Figure 4.1). The R.F. pulsed wave is
- generated within the plug-in unit and its frequency can be varied
continuously between 10 MHz and 310 MHz. The amplitude of this wave
is also continuously variable to a maximum of 3kV peak to peak at
10 MHz. Above this frequency there is a slight reduction in the
maximum amplitude ﬁf the pulse. The pulse repefition rate, controlled
by a synchronous switch can be varied between 10 and 1000 pulses per
second and the pulse width can be adjusted between 0.5 and 5usec.

The receiver, which covers the frequency range 10 MHz to 310 MHz
has a band width of ¢ MHz and a maximum gain of 80 dB, which is required
_to compensate for the high insertion loss, typically 30 to 60 dB
associated with quartz transducers and the high attenuation experienced
in some materials. A'typical echo traip is shown in Figure (4.2); the
first peak is due to leakage of R.F. power through the sample holder
and the second and subsequent peaks are echos propagated through the
.specimen length twice, four times, six times etc. Hence the time delay
Between successive echos is the time required for a round trip through
the specimen. This delay time is mgasured by a calibrated delay
~ generator to an accuracy of 1% when the following procedure is adopted.

The leading edge of the exponential waveform is matched. to the
leadihg edge of successive echos, the time delay position of each echo
being noted. To ensure uniformity, the gain of the receiver must be
adjusted so that each echo has the same amplitude when matched to the
leadiné édge-of the exponential trace. Also, the pulse amplitude

of the R.F generator is held constant since any change will alter the
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rise time of.the echos and prodﬁce erroneous measurements. A high rise
time in the envelope of the echos increases the sensitivity of the
measurements. This can be obtaiﬁed by making thé initial R.F. pulse
havé a large amplitude, a condition which is also dependent on the
attenuation of the material under test, hence it is not always convenient.
Relative attenuation measurements are obtained.by matching an
exponential trace, produced by a célibrated comparator, to peaks in the
echo train, the trailing edge of which is chopped to ensure that it does
not run on into the next pulse. Absolute values of attenuation are
'seldom required and in any case they are difficult to obtain, because
of the inherent problems associated with attenuation loss in the
'tfansducer and its bond with the saﬁple. However, the exponential trace
déeS'éllow.sensitive measurements-of relative attenuation as a function

of some external parameter, which in this case is temperature.

- 4,3  PIEZOELECTRIC TRANSi)UCERS

Sound waves are generated or received at the transducer by utilizing
the piezoeleéfric effect first discovered by the Curie brothers. Certain
single crystals exhibit.this phenomenon; when the crystal is deformed by
the -application of an external'stfeés, electric charge appears on the
~ appropriate crysfal surfaces and the polarity of this charge reverses,
when the direction of the strain is reversed. Conversely, when a

piezoelgctric single crystal is placed in an electric field, the crystal
exhibits ét?aiﬁ; that 'is the dimensions of the crystal change and when
the direction of the applied electric field is reversed, the direction
(sign) of the resulting strain is reversed. This is called the converse
"or inverse piezoelectric effect:

.Of;tpe thirty fwo classes of crystal symmetry, twenty one have no
. centre of symmefry and of these twenty can exhibit piezoelectricity.

This effect has been demonstrated qualitatively in numerous crystal
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materials, but of these only a few are used in practical transducer
design. The most common transducers are cut from quartz (Sioz) which
beiongs to the trigonal (R3m) crystal class. A quartz crystal is
illustratéd in Figure (4.3); the main body forms a hexagonal prism
with rhombohedral ends. The Z-axis or optic axis is an axis of |
threefold rotational symmetry and %ﬁ non polar. A crystal section
perpendicular to the Z-axis has a hexagonal shape, therefore, three
lines joining opposite hexagon apices can be drawn, one of these is
chosen as the X-axis and the +X, +Y, +Z right handed axial is completed
by defining the +Y - axis as the normal to the +X, +Z plane. These
axes are the polar axis and transducers cut with their faces perpendicular
to them display the piezoelectric effect. Sections cut normal to the
X-axis are used to generéte longitudinal waves and those cut normal to
the Y-axis generate transverse waves (Figure 4.3). These sections,
called X and Y cut types respectively, are cut in the form of a disc,
the ¥ cut type having a flat on one side to indicate the direction in
which the wave is polarized. The discs are completely coated with a
thin gold film except for a central ring of quartz on one face (Figure
4.3); the inner and outer diametérs of this ring are 4 mm and 4.5 mm
respectively. Electrical contact is made to the inner disc and the
outer ring is earthed to the sample holder to complete the circuit; the
completely coated side is attached to the specimen.

In operation maximum acoustic energy is obtained by vibrating the
transducer in its fundamental mechanical mode, but, if necessary, higher
frequency waves can be generated by exciting in the odd harmonic modes.
Consider an X-cut plate vibrating in the thickness direction, the natural
frequency of the transducer occurs when there is maximum elengation of
the faces in opposite directions, a situation described by a standing
elasfic wave with displacement antinodes on both faces. When excited

in the first normal mode of vibration, there is only a single nodal plane
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and the transducer thickness is equal to half a wavelength.

Consequently, the extreme of this mode of operation is about 100 MHz;
beyond this frequency the discs become too thin and fragile to be of
practical use. If the disc is excited at its nth harmonic, its thickness
is divided into n equal parts with compressions and expansions taking
place in adjoining sections. When n is even; compressions occur in

" n/2 of the sections and expansions take place in the remainder, thus
there is no net strain in the quartz. However, when n is odd, (n-1)/2
compressions neutralize the same number of expansions leaving either a
compressioﬂ or an expansion in the remaining section. The pulse ultra-
sonic equipment has been used to excite a transducer of fundamental
frequency 10 MHz at harmonic frequencies up to 290 MHz but the conversion

efficiencies are low at the high frequency end.
4.4 BONDING OF THE TRANSDUCER TO THE SAMPLE

Success in obtaining a good echo pattern using the pulse-echo
ultrasonic technique depends critically on the quality of the bond
between the transducer and the specimen. Consequently, the bonding
matefial and the preparation of the bond must meet the following
requirements. | |
(i) The seal should have uniform thickness and be thin cempared

with the ultrasound wavelength; otherwise after a round trip

has been completed a fraction of the sound will be reflected
back and forth within the bond causing the first and succeeding
echos to be composed of several component waves with phase delays
between them. If the bond had no thickness, there wouid be ne

phase shift.

(ii) All particles or air bubbles should be excluded from the bonding

material.
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(iii) The seal shoﬁld retain a good match between transducer and
specimen and have constant attenuation loss over the temperature
range of the measurements. A good bond can be obtained with
materials which remain viscous over the temperature range
requirea.(77°K to ambient); materials which conform to this
requirement include 250,000 centistoke silicon fluid and nonaq
stop;ock grease; these made excellent bonds between X-cut
transducers and the single crystal specimens over almost the
complete temperature range, although they do deteriorate about
room temperature. When used with Y-cut transducers a bond made
with silicon fluid tends to break away at about 200°K; if nonaq'
stopcock grease is used, the bond breaks down at about 250°K.

It was difficult to obtain a good bond using either of these
materials on specimens which had £een polished to a mirror
finish (0.5 micron diamond dust). To improve the cohesive
qualities, each specimen was lightly etched with the cleaning
etcﬂant (section 2.4). An alternative method was to polish the
specimen to a matt finish (13 micron diamond dust), in some
cases this proved more successful.

The bonds produced, by the following technique enabled a good echo
pattern fo_be displayed, which was stable over a wide temperature range.
(i) The transducer and polished specimen faces were first cleaned

with acetone and dried.

(ii) A small drop of bonding fluid was placed on both cleaned faces
and the transducer was rung onto the specimen.

' (iii) Finally, a 30 gm weight chosen for cohvenience,was placed on the
transducer in a vacuum chamber (10_6 torr) for approximately
four hours. This removed any trapped air bubbles in thé fluid

and ensured a thin uniform seal.
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4.5 ERRORS INVOLVED IN PULSE ECHO ULTRASONIC MEASUREMENTS

The measured attenuation of successive echos must be interpreted
with caution as there are many possible causes of attenuation other
than direct absorption by the medium itself, these include losses due
to (a) scattering from inhomogenities (b) diffraction (c) nonparallelism
and wedging effects and (d) dissipation of sound energy in the bond.
These effects are now considered in turn.

(a) Scattering: Any sort of inhomogeneity in the sample under test
will give rise to scattering which breaks up the intensity of the beam,
altering the appearance of the echo pattern. This type of behaviour
occurs in the megacycle range if the material contains foreign bodies;
residual thermal stesses have the same effect. Also, extensive
scattering can be caused in polycrystalline specimens, if the grain
size is not small comparea with the wavelength of the ultrasound; this
" was not applicable here. The appearance of the echo patterns indicated
that these scattering effects were absent in the single crystals used;
consequently the samples were of adequate quality for the ultrasonic
measurements.

(b) Diffraction Effects: The transducer, when excited, produces a

radiation pattern travelling through the specimen. In general, the
beam is not coliimated and the radiation will not be entirely confined
to the cylindrical region below the transducer. Thus interference can
take place in a small sample between waves reflected from the back of
the specimen and.waves reflected from the walls. This changes the
exponential nature of the echo pattern modulating the envelope.
Excitation of the transducer in the higher frequency harmonic modes
will reduce the angle of the beam, eventually causing the envelope to
become exponential. Samples of a size sufficient to avoid this effect

at the frequency employed 10 MHz were used.
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Even when interference due to side wall reflections is absent,
there remains the problem of the diffraction field of the source
which includes divergence. This is identified by the location of a
maximum in the echo pattern near the positioﬂ az/A where a is the
transducer radius and A is the wavelength of the ultrasonic wave. A
rough criterion of the importance of diffraction effects on attenuation
measurements can be obtained by applying a correction (Granato and
Truell 1956) of 1 dB/distance of az/A. This has been verified in
experiments on HgTe (Alper 1968). Although diffraction effects do
play a role in attenuation in the low frequency range, they are not
important in velocity measurements of the order of accuracy employed
here.

(c) Non-Parallelism and Wedging Effects: The transducer used to

produce and ‘detect the ultrasound is a phase sensitive device and .the
ﬁeasuped response is an integrated value over the area of the transducer.
Phase variations which occur over this area lead to interference and
an accompanying error, especially in attenuation measurements. If the
specimen faces are not perfectly parallel, an originally plane wave,
when reflected back through a small angle, meets the transducer at an
angle; consequently, the different surface area elements detect
different phase of the wave (Figure 4.4). This causes the echo pattern
envelope to deviate from the exponential and gives rise to a series of
maxima. The wedging angle in the specimens used was measured as less
than 4 x 10-4 radians with a dial micrometer which is capable of
measuring to 0.0001 inch. The magnitude of the error produced by this
angle in the attenuation measurements can be estimated using an approx-
jmate correction formula (Truell and Oates 1963),

= 8.68 "2f2a262n
vL

®error dB/usec (4.1)
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which is applicable for high frequency or high atfenuation measure-
ments; here f is the wave frequency, a is the transducer radius, ©
is the angle deviation from parallel, n is the echo number, v is the
velocity of the ultrasound and L is the sample length. For a
Hg3In2[] Te, specimen at 770K the error produced in the attenuation

of a longitudinal wave of the frequency used (10 MHz) is less than

% rror = 010388 dB/usec (4.2)

where L = 0.3988 cm, a = 0.6 cm, n = 8 and v = 0.2812 x 10-6 cm/sec,

which is small compared to the measured attenuation. The exponential
nature 6f the echo pattern indicates that this is a realistic value.

At this frequency any change in the velocity produced by non-parallelism
is negligible. The error does become significant at higher frequencies but
it can be reduced by using a small diameter transducer and a long specimen.
Unfortunately, small transducers produce a large diffraction -loss and the
difficulties in growing large single crystals limits the specimen length.

Finally, the available information on atfenuation losses in bonding
materials is limited. Bobylev and Kravchenko (1967) have measured the
loss in bonding films and give a value of approximately 8 x 10-3 dB/usec
per reflection at 150 MHz. Losses within this order can be tolerated
provided they remain within these limits over the temperature range of
the experiment. Many tests in this laboratory have been made and the
results justified this assumption.

Measurements of the absolute value of attenuation have not been
attempted nof are required in these experiments. The changes which occur
in the attenuation as a function of temperature are the measurements of
interest. Hence, relative accuracy is the important criterion and this
is better thap +5%. The attenuation measured in crystals of Hg3In2[j Te,
at 10 MHz is high (2.75 dB/usec), the values just keeping within the

scale of the measuring instrument at certain temperatures; at higher
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frequencies the situation becomes worse, preventing the formation of
satisfactory echo trains. Unfortunately, the attenuation measured in
the mercury gallium telluride crystal samples was too high to be
satisfactorily measured over the whole temperature range, however,
tbis was possible on crystals of Hg3In2[] Te6; these results will be
preseﬁted. -

The main limitation in measuring velocity is imposed by the
measuring instrument, a calibrated delay generator which measures the
transit time to an accuracy of 1%. The error involved in measuring the
éample length by micrometer is 0.2%, this and other sources of error
compared to the transit time error are negligible. The maximum scatter
in the experimental péints on the elastic moduli curves for all three
' compounds occurs in the results obtained from propagating a longitudinal
wave down the |110| direction. The maximum deviation of any point from
the line of regression fit to the results is 2.5%, giving a deviation
of 1% in the velocity measurements, this is because the elastic moduli
are dependent upon the square of the velocity (E = pv2). The quoted
error in the transit time measurements compares exactly with this
deviation.

The total expected error in the measurement of the elastic moduli

from all sources is

error in density = 0.02%

error in length 2 x 0.2%

error in transit time = 2 x 1%

total error in elastic moduli 2.5%

‘The change in length of the specimens due to thermal expansion over
the temperature range of the experiment will naturally cause an error in

the velocity measurements. An estimate of the probable size of this
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error can be 6btained from the measured values of the thermal expansion
coefficient of HgTe ifself. The value ét 77°k is (AL/L)77 =6 x 10
giving a maximum error in the Qelocity at this temperature of 0.06%,
calculated using the room temperature length. This is negligible even
if.the thermal egpansion coefficient is an order of magnitude greater
for the ternary compounds used here, which is most unlikely.

The effect of smﬁll misorieptations 1ead§ to an error in the
elastic constants because the equations (3.38, 3.39 and 3.40) developed,
afe for specific directions, |110] in this cage. In these experiments
the single crystals aligned to within +0.5° of the crystallographic
axis by use of Laue back.reflectiqh photographs (Section 2.4). By
acgident'an HgsGaz[] Te, sample was misaligned by 4° from the |110|
crystallographic axis and velocity.measurements were taken over the
complete temperature range when propagating longitudinal and both shear
ultrasonic waves. The error produced by this misorientation angle in

the velocity of each type of wave is,

%; = 2.56 x 10_2 for a wave polarized in the |110| direction,
Av -2 ; , H , .

v - 4.9 x 10 © for a wave polarized in the |110| direction
and

Av . 8.35 x 10-2 for a wave polarized in the |001| direction.

Maximum error occurs in the slow shear wave which is related to the
elastic constants by pv2 = (Cll - C12)/2. Waterman (1959) has shown
that the per unit change in velocity due to small misérientations in
cubic crystals is proportional to the square of the misorientation angle.
Hence assuming that the crystals are misaligned to the error limit of

the goniometer +0.5°%; the error which could be introduced in the wave
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polarized in the |o0ol| direction is 0.13%. This is insignificant
relative to the 1% error imposed by the measuring equipment on the
velocity value, even though the misorientation error is.a maximum

for the slow shear wave.
4.6 THE EXPERIMENTAL -SYSTEM

The ‘sample ‘holder ‘(Figure 4.5) was designed to maintain electrical
contact with the transducer, which of course is bonded to the sample,
during the tempefature range of the experiment from 77°K to ambient
without.altering.the character of the bond. To achieve this; the
specimen (4) was held in tension between a movable platform (B) located
on three verfical guide legs (C), only two of which are shown for
conyenience, and the sample holder head. Springs (D) on the guide legs
~exert the peessure which was controlled by means of an adjusting screw
(E). R.F. power was fed to the inner electrode of the transducer via
a sprlng loaded copper brush :(G), centrally positioned in the sample
holder head by a P.T.F.E. sleeve. .Tﬁe diameter of this sleeve allowed
the outer electrode ring of the transducer.to be earthed to the sample
completed. A stainless steel tube joining the sample holder and the
cryostat cover (F), positioned the sample just above the bottom of the
cryostat. This tube was also used to carry the coaxial line connecting
fhe escillator and.the transducer contact. |

The cryostat (Figure 4.5) enabled the temperature of the sample
to be raised or lowered at a slow rate by causing the heat given or
taken from fﬂe sample to leak across a partial vacuum. It consisted
of a double walled circular brass container, the inner diameter being
3 cm, giving sufficient clearance to allow the sample holder to slide
into position. A flange, containing a slot for an O ring seal was

‘brazed to the top of the container and this provided a seat for the
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cover which was screwed down to give an airtight seal. The outer
wall was a brass. tube sealed at the bottom and braéed into position.
This provided a space between the walls, which was evacuated by the
usual diffusion pump-bécking pump combination. Finally, there was
a mechanism which allowed the dewar, containing liquid nitrogen, to
be raised or lowered slowly over the end of the cryostat. This coupled
with.the partial vacuum created between the cryostat walls gave a
measure of control over the temperature of the sample; allowing ample
time for the ultrasonic measurements to be taken at regular temperature
intervals. |

The temperature was measured by precalibrated copper-constanton
thermocouples, the junction being made by spark welding. One junction
was sited adjacent to the sample and another, the reference junction

in series with the sited junction, was held at 0% by immersion in p

N

melting'ice. The emf produced by the temperature difference between
1

4

R

the junctions was measured by a Tinsley potentiometer, capable of
measﬁring to an accuracy of 0.luV.

....To prevent the development of a temperature gradient across the
- sample it was immersed in a non-flammable, five component, organic
'migture of 14.5% chloroform, 25.3% methylene chloride, 33.4% elthye
bromide, 10.4% transdichloro-ethylene and 16.4% trichloromethylene
(Keyes 1962). The effect of a temperature gradient across the sample
would be to alter the elastic moduli E and the density p. Hence there
wi;l be a change in the ultrasonic wave velocity v. The per unit

change in v and E are related, ‘assuming p constant, by

v _ 4 (4.3)

and the elastic constant data for ﬂg3In2[j-Te6 gives the percentage

modulus variation with temperature by the relationship
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£ o 2.4x 10~%r | (4.4)
for a longitudinal wave. Then for a 0.1% temperature variation in
the sample during the measurement the fercentage change in the velocity
was 1.2 x 10'3z which is infinitesimal and is completely masked by the
probable error of 1% caused by the measurlng equipment. The error
produced in the velocity measurements in the compounds HgSGa C]ib
and Hg3Ga O Te is in the same order. A temperature gradient in excess
of 0.1% could 1nfluence the attenuation but this is easily recognlsed

the echo pattern taking a shape similar to that produced by a wedge

shaped sample.
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CHAPTER 5
RESULTS DERIVED FROM THE VELOCITY MEASUREMENTS AND DISCUSSION

5.1 THE ELASTIC MODULI AND ASSOCIATED PARAMETERS

5.1.1 Velocity Measurements The elastic moduli (Cll + C12 +

2C44)/2, c 4 and (Cll - C12)/2, corresponding to the three wave

4
velocities in the |110| direction in the cubic compounds Hg3In2[] ez,

Hgscaz[j Te, and Hg3Ga2[] Te_ are presented as a function of temperature

6
in Figures (5.1), (5.2) and (5.3). These results, calculated using
the wave velocity expressions (3.45), (3.46) and (3.47), are &an average
of a series of ﬁeasurements made over the temperature range 77°k to
about ambient. The maximum temperature at which a measurement was made
depended critically on the quality of the bond and the material used
(section 4.4). In each case, the curve drawn is a line of regression
fit from a computer calculation on the experimental points. The maximum
deviation of any point from the curves was found in the moduli correspond-
ing to the longitudinal wave velocity and was 2%; deviations for the
transverse waves were always much less than this, being at most 0.5%
for any compound.

The temperature dependence of these moduli is best illustrated by
the slope of each curve (AE/AT). A table of values (5.1) is-given.
All three moduli of each compound decrease with increasing temperature
in common with those of HgTe (Alper and Saunders 1967) and Hg In, dJ Teg
(Alper et al 1968), the temperature dependence of which is also listed.
Table (5.1) shows that the per unit change in the moduli of each
compound is comparable with that of the parent compound HgTe and, with
the exception of Hg3Ga O Te6, the moduli C44 and (Cll - 012)/2 are

less temperature dependent than the Fmdull associated with the longitudinal

wave (Cll 12 + 2044)/2.

The elastic moduli of each compound at 77°K, taken as the common

temperature , together with the values obtained for HgTe (Alper and
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Saunders 1967) and Hg.In,[] Te, (Alper et al 1968) are listed in Table
(5.2). Calculated from these moduli are the elastic constants ST ;2
and C44, and related parameters such as the bulk modulus, anisotropy
ratio, the Cauchy relationship and the Debye temperature. Also, for
the sake of completeness, the elastic compliance constants 311’ Siz

aqd S4q4° calculated using the transformation expression (3.15), ére also
p%esented in Table (5.2). The elastic moduli of similar compounds are
14 each case qomparablé and the underlying trend, which also applies

er the elastic constants €77 €312 and Cuqs is for the values to reduce
tﬁrough the compound series HgTe, Hgsrnz[j Tea and Hgérnzfj Te6. This
is repeated in the series HgTe, HgSGazl:l Te8 and Hgacaz[:l Te6.

5.1.2 Anisotropy Ratio This factor which is simply the ratio

of the shear stiffness moduli

2C 44 (5.1)

R €11~ €12

can be used to assess the anisotropic nature of a cubic crystal. A
purely isotropic material has a single shear modulus and this ratio is
unity. The results obtained here, show that each crystal is markedly

anisotropic and the value falls within the range occupied by similar

compounds (for znTe, A_ = 2.05 and for znS, A, = 2.35), further they

R R

reduce through each compound series repeating the trend shown in the

elastic constant data.

5.1.3 The Cauchy Relationship and the Force Constants
In addition to the symmetry conditions imposed on the elastic stiffness
Cijkl by Hooke's Law and the positive definite form of the strain energy
(section 3.2), a further symmetry condition can be applied when (i) a
structure is such that each atom is loéated at a centre of symmetry and
(ii) the potential energy depends only on the magnitude of the integatomic

- distance between pairs of atoms; that is a central force law. The

internal strains of such a structure are zero (Musgrave, page 234
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or Born and Huang, page 134) which reduces the energy density of the
lattice directly to a value given by the classical expression (3.11).

The symmetry implied by this reduction is

Cijk1 = Cikj1 = Ci1jk (5.2)

and the number of independent elastic constants is reduced from 21 to

15, where
Chy = Cyq + €34 = Csg (5.3)
C13 = C55 ¢ €23 = Cge
€12 = %6 * €36 = Cu5

These are known as the Cauchy relations and in the case of a cubic

crystal

Cira = Cgq (=S¢ (5.4)

The extent to which this relationship is fulfilled is often used to
assess the validity of the assumption of a central force model. Here,

the ratio € reduces through each compound series; the compound

12’44
Hg3Ga2E] Te, has the closest value (1.16) to unity. These compounds
do not obey the Cauchy relationship. However it is useful to have an
estimate of the force constants since comparison between them for the
different compounds gives a qualitative estimate of the change in
bonding forces through each compound series.

Born, by considering nearest neighbour interactions only, developed
a two-constant model to describe the elastic behaviour of diamond and

zincblende lattices. A test of the adequacy of the .model for a given

compound is the "Born relation"
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4 ¢;50¢;; - ¢l
a = (C C )2 = 1 (5.5)
11 + €12

This parameter is rather less than unity for each compound (Table 5.3)
but the deviation is not excessive and the model can evidently provide
a reasonable first approximation. Deviations from this model in
binary compounds falling within the II-VI groups are attributed to the
mixed ionic-covalent nature of the binding forces, the trend being
that as the compounds become more ionic in character (Potter 1957)
the value of the ratio A decreases possibly as a result of the longer
range ionic forces. This pattern is not rgpeated in the termary
compounds measured here.

By this model elastic constants are related to the Hooke's law
constants a and B (which arise from the radial and angular forces

respectively) as follows:

c = ] (5.6)
(5.7)

c = a 82 (5.8)

where d is the nearest neighbour disténce V3 ao/4 for zincblende
structures. The calculated values of a and B are given in Table (5.3),
and demonstrate that these interatomic forces decrease through the
sequence HgTe, HgSIn2 O Teg (HgsGazEl Teg) Hg In, O Te, (Hg3Ga2D Teg.
5.1.4 Ionicity The cubic zinc sulphide (zincblende) structure
can be considered as being derived from a face centred cubic lattice
array which generates N octahedral interstitial sites and 2N tetrahedral
sites: if half the tetrahedral sites are fitted in an ordered way by

a second type of ion, then the zincblende structure results. The
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tetrahedral co-ordination is favoured by: (a) an ionic radius ratio

below 0.414; (b)cations with high polarizing power (e.g. Zn2+, ng+,

.Ga3+, In3+) and ions which are readily polarizable (e.g. Sez—, Tez-)
and (c) factors which tend to give tetrahedral covalent bonds (e.g.
B.N., SiC) or hydrogen bonds (e.g. NH4F). Clearly it is unrealistic
to distinguish between the purely ionic and purely covalent compounds
in this structure, and the charges on the ions are merely a formal
indication éf their valency.

This type of lattice has been considered by various workeré and
a summary of their findings has been given by Born and Huang (1954).
It is shown that the transverse optical frequency is related to the

longitudinal mode frequency, the ionic charge Ze, the static and high

frequency dielectric constants €, and €y by the expression

€ e + 2 € + 2
0 o

- 41T(Ze)2

€ e + 2 3mv 3 (5.9)
o a

N
N

where m is the reduced mass of the primitive cell and v, is its volume
(ag/4) for zincblende structures. By considering ionic overlap
potentials Szigeti (1950) derived a relationship between the bulk

modulus B and the optical modes which can be written

2 4Bao ea + 2 eo 4Bao
— = (5.10)
m eo + 2 ea m

The frequenéy values obtained by using this expression are low compared
to the values obtained from measured restrahlen frequencies but it is
assumed that this is due to the covalent bonding existing in these
lattices. w, in equation (5.9) may be eliminated by us{ng the Lyddane,

1
Sachs and Teller (1941) relationship mz = mi (ea/eo) to give
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2
wz(e -€e) = 4 (Ze)2 a i
00 o 'T'Va 3 (5.11)

which was used by Spitzer and Fan (1955) to estimate the effective
charge on InSb. Potter (1957) has developed a semi-empirical method of
determining w, and hence the value of Z from equation (5.9) by using the
elastic moduli instead of the estimated dielectric constant difference.
He compared with the group IV elements several binary compounds of the
zincblende type having covalent or mixed ionic covalent bonding and
showed that as the ionic character of the bond increases, the ratio
cli/clz decreases in value. This ratio has a lower limit of unity
imposed by Born's (nearest neighbour theory) lattice stability condition
and it is assumed that at this level the lattice is completely ionmic.

Further, this condition suggest the bulk modulus reduces to C,; or C12

and equation (5.10) is

N

4% (5.12)

€
]
=1

for a completely ionic lattice/, fé expression which compares exactly
with a relationship given by Born's theory for the fundamental frequency
w of the optical mode of vibration of a diamond lattice (covalent).

Thus the similarity of the relationship between the modulus 13 and the
longitudinal optical mode for the extreme covalent bond and the completely
ionic bond suggested that equation (5.12) can be used to obtain a reason-
able estimate of w, for all zincblende lattices. The value obtained,
coupled with the other parameters required by equation (5.9) enables an
estimate of the effective ionic chafge (e* = Ze) to be made. Comparison

between a curve of cll/c12 against the ionicity e*/e determined by this
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method and the values obtained using equation (5.11) shows reasonable

agreement. An alternative expression

2 (5.14)

]
-
=]
1
N

.

L))

Un
~

where a = Cll/C12’ has beén developéd from the curve and this has been
used to make an estimate of the ionicity of each compound. Results
are presented in Table (5.3).

While extension of Potters work to ternary compounds must be
treated very cautiously, the results do show that the trend is for the
ionicity to decrease with replacement of the mercury atoms by either
indium or gallium atoms. In general, the extent to which polarization
in binary zincblende compounds has enforced deviations from the
predictions of the simple ionic radius ratio theory can be seen from
the fact that very few of the elements forming these structures have
formal values of p less than 0.414, the value for Hg-Te being 0.5 and
that for In-Te and Ga-Te is 0.357 and 0.281 respectively. Hence the
replacement atoms fit into the lattice easily and it could be.argued
that a reduction in ionicity with an increase in replacement atoms
arises because polarization of the III-VI bonds is less than that of
the II-VI bonds, this being'even more apparent for the bonds formed
by the gallium atoms. v

5.1.5 Debye Temperature Theoretically the specific heat at

constant volume

c =(do = [ (5.15)
v ar |v aT |v

is of interest since it is defined in terms of the energy of the
system which in turn links with the vibrational energy. In metals and

semiconductors this is considered to be associated with lattice
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vibrations as the contribution from the electronic system is small.
Hence the vibrational energy of a crystal containing N atoms can be
considered to be equivalent to the energy of a system of 3N harmonic
oscillators. This feature is common to all theories of specific
heat and the distinction between the various theories is based on
the difference in the proposed frequency spectrum of the oscillators.
The theory of Debye (1912), which describes the experimental data
well, is widely used because it is a one parameter model. The Debye
temperature can be estimated from the elastic mo&uli as well as from
heat capacity data. Debye assumed that the medium was a continuum
for an elastic wave with a wavelength large compared to interatomic
distances. Further, the fact that the crystal actually consists of
atoms is taken into account by limiting the total number of
vibrational modes to 3N. In other words, the frequency spectrum
corresponding to a perfect continuum is cut off so as to comply with

a total of 3N modes. This procedure leads to a maximum frequency fm;

defined by
fm . )
4 1 1 1| dm (5.16
J N (f) df = 3N = -3-anm [ 3 + v3 + v3 =
o V1 2 3

where V is the volume of the solid and dm is an element of solid
angle. Hence the total number of modes is actually the sum of the
contributions from each type of elastic wave with velocities vy Yy
and Vs averaged over all direction. In the specific heat context
it is more useful to use a parameter related to temperature rather
than frequency, this is the Debye temperature and is defined as

-1/3
_nfo
m  k \4TvV

gg
47

<
u
ol
[

1 1
t3t+3 (5.17)
V2

V3

il
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where h and k are Plangk's and Boltémann‘s constants respectively.
The specific heat at low temperature in terms of this parameter is

then

4 3
_12nmk (T
e [9] (5.18)

At higher temperatures the expression is not so simple but is well
defined. Initially this theory (1912) gave excellent agreement with
experimental observations but Blackman (1935) showed that 6 varied
with temperature and agreement between values obtained from calorimetric
and ultrasonic measurements occurs only at absolute zero, the error
being approximately 10% at other temperatures. Hence values of eo
calculated here have been made at o’ by extrapolation of the elastic
moduli curves.

In order to obtain a solution to equation (5.17) it is first
necessary to express the wave velocities in terms of the elastic
constants obtained from the secular equation (3.38). The velocity
surface produced has then to be evaluated and the shape is such that
numerical integration is employed. Indirect but accuract methods of
evaluating this integral for cubic structures have been developed;
the graphical method due to Leibfriéd (1955), which is based on a
polynominal expansion of the integrand developed by Quimby and Sutton
(1953), is employed here. The appropriate graph (Alers 1965) sf
elastic moduli parameters C and K has been used to obtain a value of

the parameter J which when used in the following expression gives the

Debye temperature

1/3 1/2
p = % [ 3N ] [011 = Cy4 ] b (5.19)
o]

4nv
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The elastic constants used in the expressions of C, K and 8, are of
course, values at 0°k. The Debye temperature obtained for each
compound is presented in Table (5.3). These results show that while
the difference between the Debye temperature of each compound is not
very great, they do reduce somewhat in value through the series

HgTe, HgsIn 0 Teg (HgsGaZD Te8) and Hg3In2D Te, (Hg3Ga2 ] Te8).
Further, the compounds containiﬁg gallium have a higher Debye temperature
than an equivalent indium compound. To énable the comparison to be
expanded, Debye temperatures for other II-VI compounds are presented
and it is interesting to note that the values fall into a pattern;
compounds composed of elements belonging to the higher periodic grouping
have the lowest Debye temperature. The present results fit into this
pattern; since gallium is within period four and indium in period five,
the compounds containing gallium have a higher Debye temperature than
the equivalent indium compounds. Further both the gallium and indium
compounds containing the smallest percentage of mercury atoms (period
six), Hg3In d Te, (Hg3Ga O re ) have the highest Debye temperature.
This pattern also seems to apply to III-V and I-VII compounds and the
elements germanium (period 4) and silicon (period 3). 2nS 60 = 346°
(S. Bhagavantum 1955), ZnSe eo = 273°K§ZnTe eo = 220°k (Alper 1968),
cre 6 = 156K (McSkimm and Thomas 1962), HgTe 6 = 141°k (Alper and

Saunders 1967).
5.2 VELOCITY SECTIONS

In single crystals the ultrasound velocity depends upon the
propagatioﬁ divection s; for any particular direction m, three waves
can be propagated. In general, these need not be either a pure
longitudinal wave in the sense that the particle displacement vector
is parallel to the wavefront normal (§|i§), or a pure transverse wave,

where the particle displacement vector is transverse to the wavefront
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normal (s x n = o); but regardless of direction the respective
particle displacements of all three waves are orthogonal. To obtain
the velocity of each wave, the determinant of the coefficients of

Christoffel's equation

2
L, - oV L, L Sol (3.38)
L L - 2 L So = 0
12 22 ~ PV 23 2| °
L L L - V2 So
13 23 33~ ° 3

is equated to zero and solved for any chosen propagation direction.

. s . cis . : . . s 2
This is achieved by writing it as a general cubic equation in pv :

(ov2)3 + A(pv2)2 + B(pvz) + C = 0 (5.20)
‘'where
A = -(Lll + L22 + L33) (5.21)
B = (L .L + L_.L + L__L - L2 (5.22)
11722 11733 22733 23
2 2
= Ly T Iy3)
and
¢ = (L, L + L2L + L2L - L. .L..L (5.23)
11723 12733 13722 11722733
2Ly L3023

The L, are quadratic functions of the direction cosines n,, n, and

3

values of Cij and the appropriate direction cosines will give a value

n. and the elastic constants (see page 43). Then substituting the

of the functions A, B and C which allows the wave velocities to be
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obtained from equation (5.20). If all possible values of the
direction cosines are taken, the resultant velocities trace out
these separate velocity surfaces. In this instance the elastic

of each compound at 77°Kk have been used

constants C and C4

11 €12 4
to obtain a solution. Two cross sections of the velocity surfaces,
which correspond to the (00l) and (110) planes of a cubic lattice,
have been determined for HgTe and its associated compounds in both
the mercury-indium-telluride and mercury-gallium-telluride series.
The results are presented in Figures (5.4) to (5.13).
The (001) plane is of interest because the determinant of

equation (3.38) can be simplified if the wave normal lies in a cube

face, so that the direction cosines have the form (nl, n,, 0). This

reduces the Kelvin-Christoffel stiffnesses to

Ly = Agc, * "§C44- (5.24)

L, = nic44 + ngcll (5.25)

L33 = (ni + ng)c44 (5.26)
and

L, = "1"2(c12 + C44) (5.27)

L13 and L23 are zero. Substituting these expressions in the determinant

‘allows it to be written, for the sake of economy, in the form

2 22
- - - - + =0 (5.28
H| H = (Cpp =CJH* (Cpy = Cpp = 20 (Ch 1207, (5.28)
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2 . . . .
where H = pv -~ C44. This equation has a linear and a quadratic factor.
Reference to the secular equation makes it clear that the root H = O,

ov? = Cba (5.29)

_ is associated with a displacement in the |oo1] direction, regardless of
the propagation direction in the (001) plane. This is a pure shear wave
of constant velocity which traces out a circle on the (001) cross-section

of the velocity surface. The two remaining roots are

2 22
— + - - 4 -
(Crp = Cag) % | (Cqp = Cyd” = 440y (€15 = C1a* 24y (5.30)

o
|
Nl

N

(c

11 * €12’

where the positive sign corresponds to a wave which is predominately
longitudinal in character and may be referred to as a quasi-longitudinal
wave. Similarly, the negative sign relates to a quasi-transverse wave.
The symmetry of these velocity sections exhibits the Laue symmetry of
the plane. A particular solution to equation (5.28) in the |100|, lo1o]|,
|100| and |olo| directions shows that the velocities of the transverse
waves are both v, = Vo = (C44/p)% and the velocity of the longitudinal

TS T

1
wave 1is v, = (Cll/p)z. The velocity of each wave in the |110| and
" equivalent directions is given by equations (3.45), (3.46) and (3.47).

The direction cosines for wave normals lying in the (110) plane take

the form (nl, n, = n,, n3) which reduce the Kelvin-Christoffel stiffnesses

to
2 2. 2 ~
Lll = n1C11 + (nl + n3)C44 = L22 (5.31)
2 2
L33 = (2nl + n3)C44 (5.32)
2
L. = M€ * €1 (5.33)
12
2
and
L23 = n1n3(C12 + C44) (5.34)
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Determinant (3.38) may be expanded and written as

2 2 2
H - - - - - - - -
- ny(Cpy - Cpp = 2y ] H [Cu Crp =By (C1q = Cpp = 240 |H

2 2 :
2c44) (cll + c44 + 2C12)nln3 =0 (5.35)

+ (€37 7 €12

The roots are
2
H = "1(C11 - C12 - 2044) (5.36)

which gives the velocity of the slow shear wave in this plane and

2 2
- 1 - - - - - -
H=13 [011 Cpq = B7(C1; = Cgp 2c44] + [ [C11 C,q -0 (5.37)
.. -c..-2c )Y -4, -c_-2,)(,, +C *+2c;22%
11 ~ “12 44 ] 11 ~ “12 44) (€17 * Cyq * <1278

where the positive and negative signs correspond to quasi-longitudinal
and quasi-transverse waves respectively. The symmetry of each velocity
cross section is the same as the Laue symmetry of the plane: two fold.
The velocity of the shear waves in the |oo1| direction is the same
v = (C44/p)% a degeneracy predicted by the equal roots of equation
(5.35), a situation which also occurs at 35° to the (001) direction.
The velocity of the longitudinal wave, the third root, is v = (Cll/p)%.
Then since the velocity of each wave in the |110| direction is given by
the original equations (3.45), (3.46) and (3.47) each velocity cross-
section has two fold symmetry. In both the (001) and (110) planes the
velocity cross-sections were obtained by solving equations (5.28) and
(5.35) at one degree intervals. I am indebted to Dr. N. G. Pace for
the use of a computer programme for this purpose.

These diagrams provide an opportunity to check the possible error
in the velocity measurements due to misaligning the crystals which

because of the goniometer scale is possible *l1%. The greatest change
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in velocity about the pure mode direction probably occurs in the

measurements on the Hg3In2[] Te, crystal, hence a misalignment error

will be largest here. Then from the computer readout data the maximum

error which occurs for 1° misalignment is 0.02% in the longitudinal

wave velocity, 0.09% in the fast shear wave velocity and 0.06% in the

slow shear wave velocity. These values are well within ‘the 1% accuracy

claimed of the measuring system, hence a small misalignment is not critical.
Velocity cross-sections for each crystal in both (001) apd (110)

planes have the same geometrical shape, which is typical of a cubic material

(Musgrave 1970). Isotropic materials produce velocity cross-sections which

are circular in shape. Hence the relative degree of anisotropy of each

crystal can be judged by the sharpness of the pattern in each plane.

This can be related to the anisotropy ratio;: HgTe, anisotropy ratio (2.51)

has velocity cross-sections with a very pronounced pattern, while

Hg3Ga2[] Te6, anisotropy ratio (2.08), has velocity cross-sections which

have a more rotund shape.
5.3 ENERGY FLUX VECTORS FOR DIRECTIONS IN THE (0ol) PLANE

Of considerable interest both experimentally and theoretically are
the energy flux vectors associated with elastic wave motion in anisotropic
crystals. For example, in ultrasonic pulse-echo experiments, deviations
of energy flow from the propagation direction can result in the wave
impinging on the specimen side walls, giving rise to mode conversion and
echo train deterioration. Thus, before any detailed studies of anisotropic,
anelastic behaviour can be made, the energy flux vectors are required.

Love (13u44) has given the ith Cartesian component of the energy flow

P, as
1

P, = =0,.8. (5.38)
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where éj is the jth component of the particle displacement velocity.
The plane wave equation (3.33) is substituted into this expression to
give

w
P, = 5 Cijklsbjsoknl (5.39)

where v and n, are respectively the wave propagation velocity and the

propagation direction cosine relative to the 1th co-ordinate axis.

k

relative to the jth or kth co-ordinate system. To develop an expression

Soj and So, are the components of the particle displacement vectors

for the direction of the energy flux relative to a co-ordinate system
which is co-incident with the cube edges of a cubic crystal, the

expression (5.39) must be expanded. Take for example the component

= ; A
P, gfﬁkISoijknl (5.40)
1
First put
j = 1, 2, 3, then
= 5,41
Py Cr1k1%01%9 81+ Crak®0%0M t C13k1®05%%") (5.41)
Now let
k = 1, 2, 3, and
= . 2
Py = €1313%05%0% * Craa® *t C1131%01%5M (5.42)

+ Cp,p,50,50,m) + Cpyp,S0,80m, + Cpy3190,5037)

;311505508 * €1321505%°M * €13315955°3%;

+

Finally let

1 = 1, 2’ 3, and
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11215°1s°2“1

C1131%°15°3M;

€12115°2°1™;

€122150250,7;

€1231%°2595"

€1311%°3%°1™1

C1321%°359™;

C1331593593™;

In the cubic system the

and C

44’

+

C1322
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C;1212%°1501™;

€11225°150,7

C12325°15°5%2

€121259259;7,

C122259250,7

C1232592505";

1312503012

So3Sozn2

C1332°03%°3";

€1113%°15°1"3

€112350759,M3

€133°°15°3"3

C1213%0,591"3

C12235°250,13

C1233%°2503"3

C;323°°3%°;73

€1325%°3°°2";

€1333°°3503"3

elastic constant set includes only 011' Ci2

the remainder are zero (see page 38), which reduces the

expression to

+

C113°1 + C

C.. + C44) So .50

12

2 2
(Sb2 + So3) nl + (Cl2

1

n

33

A similar expansion process shows that

2

+

(C + C44) So

12

C12502503n3

+
Soznl

1

1172

+ C44) So

c 302 + C

15922

2 2
(Sol + So3) n

(5.u4)

(5.45)
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and

P, = ( + C44) So,So_n, + (C12 + C44) SOZSO n (5.46)

C12 17721 32

2 2
(044 Sol + C11803)n3

The position of the energy flux vector in the (00l) or (xy) plane,
P(Pl, P2, 0) is considered since it corresponds to the (001) velocity
sections and contains within it the pure mode |110| direction. In
+his case the direction cosines are (nl, n,, o) and the components of

the energy flux reduce to

2 2 2
Pl = Cllsol + C44(502 + So3) n, * (C12 + C44) Sb1302n2 (5.47)
and
P = (¢c..+C,) SoSon + |C sz +C (502 + 502) n, (5.u48)
2 12 44 1 21 1172 44 1 3 2 '

Then, since P, the energy flux component along the |110| direction

3

(+ z axis) is zero for all three modes the energy flow is always
within the (00l) plane for any mode propagating along any direction
in this plane and its direction may be described by an angle B which

the energy flux vector makes with the |oo1| direction (+ x axis).

B = tan_l P (5.49)

For the pure transverse mode in which a wave can propagate with a
h
velocity of v = (C44/p)z in any direction within the plane, the

polarization vector So, is in the |100| direction and So, = So, = 0.
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Equations (5.47) and (5.48) reduce to

_ 2 _ 2
P, = C, S0.n, and P, =C, So.n, _ (5.50)
and then
B = tan-l n (5.51)
TF "2 )
ny

In the case of the quasi-longitudinal and quasi-transverse modes in

. this plane

2
Cll(tan¢) +C,_ ,n, + (c12 + c44)n1tan¢ (5.52)

2

-1
44

n, + (C12 + C44)n2tan¢

11 1

2
IC + C44(tan¢)

where ¢ = tan_ISoz/Sol is the direction of the particle displacement

vector. This ratio can be obtained from the secular equation (3.38)

such that
-1 2 2 2
$ = tan "1C11 + n2644 - oV (5.53)
nn,(Cp, + Cuyp

and v is the appropriate velocity obtained from eéuation (5.28).
Aiternatively the éngle BTS which the energy flux vector associated
with the quasi-transverse mode makes with the positive x axis is
obtained by replacing ¢ by (¢ + 7/2) in equation (5.52), since the
particle éiéplacement vectors are orthogonal.

For each of the compounds, the particle displacement directions

and the energy flux directions associated with the three waves, which
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can propggate along directions in the (001) plane are plotted in
Figures (5.15) to (5.19) as angular deviations from the propagation
direction versus the propagation direction in one quadrant. The
symmetry ensures that this is repeated in the other quadrants.

Particle displacement directions for the pure and quasi-pure transverse
modes are not shown; the former is always perpendicular to the plane
of the diagram and the latter always differs by /2 from that for the
quasi-longitudinal mode. A diagrammatic explanation is also given in
Figure (5.1%).

In each compound the condition that a pure longitudinal wave is
propagated (§||g) is obeyed at o° and 450, the |oo1], |110| and
equivalent directions. Since one of the transverse waves with a
propagation vector in the (00l) plane is always a pure mode, the
propagation direction which supports the pure longitudinal mode must
by qrthogpnality carry another pure transverse mode. At these pure
mode propagation directions, the deviation of the energy flux vector
of each wave from the propagation direction is zero. This occurs
becausé of the symmetry of the mode axis. Waterman (1959) has discussed
the effect of'symmetry of propagation direction on the energy flux
vector and showed that for a pure longitudinal mode, the energy flux
vector cannot deviate from the propagation direction. The same result
holds for a pure transverse mode provided the propagation direction is
two fold, four fold or a six fold rotational axis or normal to a plane
of reflection symmetry. If the propagation direction is not within
these categories, then in general, a deviation of the energy flux from

the propagation direction may be expected.
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5.4  DISCUSSION

Details of the propagation of ultrasonic waves in ternary compound
semiconductors are sparse. The present work furnishes an insight into
the effects of extremely high vacancy concentrations on both the
elastic and anelastic properties of the series of materials formed by
the replacement of some of the mercufy atoms by indium or gallium atoms
in the compound HgTe. In each compound series there is a marked
reduction in the crystal stiffness as the vacancy concentration increases
(Table 5.2) Comparison between the elastic constants of the compounds
is best effected through a normalisation procedure. The elastic
properties of a material are basically determined by the interaction
betweep electrons and lattice ionms. Dimensional analysis (Huntington
1958) suggests that the elastic constants should be of the order qz/r4, v
where g is the electronic charge and r is some characteristic length of
the lattice in question. Accordingly, Keyes (1962) in order to compare
different materials with a zincblende structure has reduced their

elastic constants to a set of dimensionless parameters by defining an

elastic constant
2

c = L (5.54)
d4

where d is the nearest neighbour atomic spacing, which in terms of

the lattice spacing is d = /3'a0/4. The reduced bulk modulus and shear

moduli are then

*
g = (€3t %) (5.55)
3C
[0}
* C
Cgq = 5-4-4- (5.56)
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cs = C,,-C (5.57)

and the reduced average shear modulus is

cC = Cp; - c12 +.3C,, (5.58)

5C
o

The reduced moduli at 77°k for the compounds studied here are presented
in Tablé (5.4). The values obtained for HgTe fall directly into the
range occupied by zincblende structure, II-VI compounds, namely that

% 1.1 to 1.2, C44 ~ 0.6, C* ~ 0.2 and ¢* ~ 0.4 and they have a.
particularly close affinity with the reduced moduli of cubic Zns.
Thus Keyes generalizations concerning the elastic moduli of zincblende
compounds and diamond structure elements, namely that B* ~ 1.2 and
the shear moduli decrease through the sequence, group IV elements,
IIT-V compounds and II-VI compounds, find further confirmation in
HgTe, which shows no anomalous elastic behaviour (Alper and Saunders
1967). This is not so for the compounds containing.vacancies. The
reduced moduli, like the actual moduli, decrease smoothly through the
sequence HgTe, Hgsrnz[] Te, (H95Ga2 O Te Y Hg3In2I:I Te, (Hg3In 0 re )
Further, the values obtained for equivalent compounds in each series
are in close agreement within the toleran;e claimed of the technique.
Such a decrease in the stiffness would follow naturally from the

increasing vacancy concentration and would be accompanied by a change

in the lattice stability. v

Born (1940) and his coworkers in a series of papers have discussed
lattice stability, and have shown that the energy density of a lattice

when subjected to a homogeneous deformation is

u R C; €€ , (5.59)
ij J J
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when internal strains are eliminated. This result is strictly
comparable with the strain energy function (equation 3.11) in classical
elasticity theory. Thus the elastic stiffness constants Cij are given
by the second derivitive aﬁ/aeiaej of the interatomic binding energy
with respect to strain €. For the lattice to be stable when subjected
to small strains, the energy density must be raised, if this were not
so, the lattice would transform to another. Born also discussed lattice
stability from the viewpoint of small vibrations and concluded that
essentially the long wavelength region of the vibrational spectrum
corresponding to elastic wave frequencies need only be taken into
account. Again, the results show that for a lattice to be stable the
above quadratic form, equation (5.59), must be positive definite so
that .the energy density is raised when the lattice is subjected to a
homogeneous deformation. To fulfil this requirement, the determinants
of the matrices of successive orders of the elastic constant Cij matrix
(the princip;e minors) must all be positive. The cubic form of this

matrix, given below, is marked out with these sub-matrices.

(5.60)

€,y € € © 0 O
c12| €,; €, © o0 ©

| = ——
012| c, |C11 o o0 o
o] o o | ¢c,o0 o

I T
o) ) 0 )

44

| b

o]l o lo | ol ol ¢,
The principle minors are
2 3 3 3. 2 2 3 _ 2

Coar C2ar C2a7 Cadf117 €241 ~C12 77 C24n1 €2’

(cll + 2C12) .
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For these to be positive only the following conditions need be fulfilled,

Cygq >0r Cpp - Cip > 0, €, * 2c12 >0 (5.61)

In physical terms this means that both the shear moduli C44 and

(€11
than zero for a cubic lattice to be stable. Hence any change in the

- c;z)/Z, and the bulk modulus (C11 + 2C12)/3 must be greater

value of these moduli in this series of compounds will indicate the
relative stability of the structures. In fact, there is a reduction
in both the reduced shear moduli of the vacancy'compounds HgsznZE] Te8
(Hg Ga, O e 8) and Hg 30, 0O re ¢ (Hg;Ga 2D Te, ) compared with the zero
vacancy parent compound HgTe. Table (5.5) gives this reduction
A|C44/Co| and A|(C11 - C12)/2Co| for each compound as a percgﬁtage

using the appropriate reduced shear moduli of HgTe as a base. This

. table shows that the percentage reduction in C44/Co progressively

‘increases through each compound series from HgSIHZEJ Teg (HgSGazl:]Teg)

to Hg3rnzi:]Te6 (Hg3In2Ej Te6); the reduction in C44/Co is progressive

-as the vacancy concentration increases from 6.25% to 8.33%. A reduction

also occurs in (C,, - Clz)/ZCo in each compound series but the change

11

.in this modulus is not large compared with the experimental errors;

there is an exact correspondence between the values obtained for this
modulus and the C44/Co modulus in each of the compounds Hgsrnzfj Tea
and Hg5Ga2[:]Te8. The reduced moduli C44/Co and (Cll - C12)/Zcoenable
the resistance of each compound to deformation, when a shear stress is
applied across a (001) plane in the |oo1| and |2110| directions
respectively, to'be compared. Clearly, the resistance to a shear stress
decreases as the vacahcy concentration in each compound increases and
as a consequence there is a reduction in the stability of the structure.
The stability of the lattice is also linked with the bulk modulus

.. + 2C12)/3 or its inverse the compressibility which is the proportional

11



rable (5.5) The percentage reduction in the normalized shear

moduli based on the reduced shear moduli of HgTe.

Parameters are based on the elastic constants

C.. measured at 77OK.
17

Hg JIn, O Te, Hg51n2[:| Te, Hg3c;a2[| Te, HgSGaZD Te,
5
A[C 44 /go] 20 15 18 1
- 2
A[(cll clz)/zco] 16 12 i( 1
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decrease in.volume of a crystal when subjected to unit hydrostatic
pressure. Like the other stiffness moduli, the bulk moduli decrease
through the sequence HgTe, HgSInZE] Teg (Hgscazcj Teg) and Hg3In2[] Te,
(Hg56a2[] Te8). A plot of the reduced bulk moduli B" against the
percentage of vacancies (Figure 5.20) produces a fact of fundamental
import: the bulk modulus is a linear function within experimental error
.of the number of vacancies present. Thus the change in reduced bulk
modulus AB* or its inverse the reduced compressibility AK" can be

expressed in terms of the vacancy percentage (n) by
AB = -—/ = 0.053n (5.62)

Each additional vacancy increases the compressibility by the same amount.
This suggests a general law for the change in compressibility due to an
ordered array of vacancies.

If the line in Figure (5.20) is extrapolated out to higher vacancy
concentrations the reduced bulk modulus becomes zero at 23% % 1% vacancies.
A solid with zero bulk modulus cannot be stable and the crystal structure
must change. This has also been suggested by the reduction in the shear
moduli as the vacancy concentration is increased. In fact, the phase
diagrams for both series of compounds (Figures 2.1 and 2.2 ) show that
centred on 75% In,Te, (GazTeJ) a compound HgIn2D Te,, (HgGazD Te )
exists containing 12.5% vacancies and having a chalcopyrite (tetragonal)
structure with a unit cell approximately twice the size of that for
zincblende (Hahn et al 1955 and Ray et al 1969). The boundaries of this
region are about 70% InZTe3 (GazTe3), which corresponds to 12% vacancies
and 80% In,Te, (Ga,Te,). Between the cubic compounds H§3In2[] Te, and

273

1 compounds
Hg3Ga2[] Te6 centred on 50% InzTe3 (GazTe3) and the tetragonal comp

HgIn2 (] re 4 and HgGa2 O re 4 there exists a two phase region between

approximately 54% InzTe3 (GaZTe3), 9% vacancies, and 70% InzTe3 {Ga2Te3),

12% vacancies, containing grains of both compounds. It is tempting to
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suggest that this two phase region is stabilized because the high
compressibility Hg3In2D Te, (Hg3Ga2 O Te6) grains are surrounded by
a matrix of HgIn2D Tey (HgGa, d Te,) and that when the bulk modulus
of the former grains falls below 0.59 at 12% vacancies the cubic 7
structure can no longer be held and all the material transforms
completely to the HgInz[] Te4 (HgGaz[] Te4) chalcopyrite structure.

In conclusion, the reduction in the elastic stiffness constants

and C the reduced shear moduli C44/Co and (Cll - clz)/zco,

€117 €12 a0’
and the reduced bulk moduli (cll +‘2C12)/3co through each compound
series suggests that as the vacancy concentration in the structure is
increased the lattice becomes progressively less stable. A reduction
in the stability of the lattice must be accompanied by a reduction in
the binding forces which in this case occurs as a result of the presence
of vacancies: certain nearest neighbour interactions are missing. The
results produced by the two force constant model adopted here, where a
progressive reduction in the force constants through each compound
series occurs, is consistent with this behaviour. In the limit if one

of the shear moduli C, or (cll - C12/2 or the bulk modulus (Cil + 2012)/3

44
tend to zero, the lattice cannot hold and it will change into another
form. Behaviour of this type is not uncommon. Novotny and Smith (1965)
found that the onset of instability of f.c.c. indium-thallium alloys is
directly associated with the approach of (cll - C12)/2 towards zero.
These crystals are unstable to and are transformed by this particular
shear. Recently, Pace and Saunders (1971) have investigated the elastic
moduli on either side of this f.c.c. to f.c.t. transition, which can‘be
either temperature or composition dependent. In each case it was found
that anomalies occurred in the shear moduli C44 and (Cll - C12)/2 on
going through the transition whiéﬁ is consistent with a reduction in the
stability of the lattice. Similar behaviour has been observed near the

transformation temperature (T at which certain intermetallic compounds

of the Al5(B-tungsten) type transform from cubic to tetragonal lattices.
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For example, Testardi and Bateman (1967) found for VéSi that the
velocity of |110| shear waves of polarisation |110| approaches zero
while the attenuation of this soft shear mode increases greatly near
Tm' In the present work a temperature dependent transformation of
the order-disorder type has been observed at 320% + 5% using x-ray
and electrical measurements in the compound Hg3In2E] Te6. This
compound, containing 8.33% vacancies, has the least stable structure
of each series, the reduction in the reduced shear moduli C44/Co and
(Cll - Clz)/2C6 being 20% and 16% respectively and that of the reduced
bulk modulus (cll + 2C12)/3Co being 38% when compared to the reduced
moduli of HgTe, the zero vacancy compound. A transition has also been
observed in the equivalent compound Hg3Ga2[] Te, at a temperature
between 400°C and 500°C, The compounds Hg51n2[] Te8 and HgsGaZE] Teg,
which contain 6.25% vacancies, are more stable and retain an ordered
structure even when quenched from temperatures in excess of 500°c.
Finally, it may be that the compounds at 75% In,Te, (Ga2Te3) containing

12.5% vacancies assume the tetragonal structure because the vacancy

concentration is too large for a cubic lattice to be stable.
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© wave (¢ -.8), (b) energy flux associated with the quasi- longltudmal wave -
.(B ), (c) energy flux assoc1ated w1th the quasi-transverse wave (BTS - 8) and

_ (d) energy flux assoc:Lated w1th a pure transverse wave (B 0 = zero).

‘ Flg (5.14) . def:.nes these angles. The part:.cle dlsplacement assoc1ated w1th the

qua31 transverse wave not shown, is (¢ + — --e) since the polarlzatlon vectors

are orthogonal. S .
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CHAPTER 6
RESULTS DERIVED FROM THE ATTENUATION MEASUREMENTS AND DISCUSSION
6.1 ULTRASOUND DAMPINQ MECHANISMS

The interactions leading to damping of high frequency elastic waves
propagating in solids vary widely. .Not only imperfections but also
elemeﬁtary excitations such as phonons or electrons can contribute to the
absorption. Ultrasonic attenuation measurements provide valuable infor-
mation about the nature of materials, yet few details are available for
compound semiconductors or semimetals. In this connection, the group of
materials under study here is of interest, because they contain compounds
of each of these types. Attenuation measurements have been made on the
parent compound HgTe (Alper and Saunders 1969) but not previously on
compounds of the mercury indium telluride or mercury gallium telluride
series. The background attentuation in HgTe was found to be predominately
due to losses associated with the interaction of the wave with dislocations,
and for a IOMHz_Iongitudinal'wave is in the order of 0.25dB/usec over a
temperature range of about 150°K-ébove nitrogen. At room temperature it
tends to be greater. Consequently, this type of absorption mechanism was
éxpected to be the major cause of background attenuation in the vacancy
compounds. In fact thg attenuation is larger than in HgTe over the same
temperature range being about l.Bdb/u;ec for Hg3In2EJ_Tg6, 0.7db/usec for
Hg5In2[] Tegs 3.4dB/usec for Hg3Ga2E] Te, and 0.65db/sec for HgSGaZIZ]Teg.
The contributions to background attenuation by other mechanisms such as
deformation potential, piezoelectric coupling and the thermoelastic
effect have been estimated in the parent compound HgTe (Alper and Saunders
1969); these results can be used to assess the order of magnitude of each

contribution to the attenuation in the vacancy compounds, in the absence

of appropriate data.
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Deformation potential and piezoelectric coupling give rise to
interactions between ultrasonic waves and charge carriers. At low
megacycle frequéncies w(= 27f), the attenuation of these waves in
piezoelectric semiconductors (Hﬁtson and White 1962, Lord and Truell

1966) is

w e c/w (6.1)

This relaxation type expression is a maximum when the conductivity
frequency wc(= b/p, where b is the conductivity and p is the
dielectric constant) is equal.to the driving ultrasonic frequency w.
The parameter e defines the piezoélectric constant, ¢ the elastic
constant and v, is the velocity of the wave in the absence of
additional stiffness prévided by piezoelectric coupling. Using the
data on HgTe of Dickey and Mavroides (1964), the frequency at which
maximum attenuation occurs is estimatéd to be 3 x 1012Hz at an
attenuation of 10_4dB/usec (Alper and Saunders 1969). A value which
shows that even if the conductivity and the dielectric permittivity
.of the vacancy compounds changed by several orders of magnitude, the
ffequency at which the relaxation peak should occur is well beyond
the range of the present experiment. Further, it would require a
very large increase in the piezoelectric constant to make the
attenuation caused by this effect to be significant compared with the
attenuation due to dislocations. The attenuation caused by deformation
potential coupling is very small for high conductivity solids
(Pomerantz i965); this is certainly the case for HgTe and is expected
to be the same for these compounds.

Again, the order of magnitude of the attenuation due to thermo-

elastic damping can be estimated for the compounds from the value
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obtained for HgTe. When an acoustic wave propagates through a solid,
the strained regions undergo a temperature change. Heat flow from
the hotter, compressed to the cooler, extended regions leads to
thermoelastic damping by direct conversion into thermal energy
(Lucke 1956). The thermoelastic attenuation of longitudinal waves
at megahertz frequencies in terms of the relative difference (AM/MB)
between the isothermal and adiabatic moduli is

8.68
2v

o = %ﬂ wzt dB/sec (6.2)
o

where w(= 27f) is the frequency and v is the phase velocity. t is the
relaxation time, dependent upon the propagation direction of the wave,
for heat flowing from wave crest to trough and is obtainable from the
thermal conductivity. Both T and AM/MB have been estimated for HgTe
(Alper and Saundefs 1969) and the attenuation using expression (6.2)
at 1OMHz is typically 0.22 x 10_14dB/usec, a negligibly small value.
Hence, the thermoelastic loss which is large in metals can also be
considered to be negligibly small for these semiconducting compounds,
which have a smaller thermal conductivity than metals.

Mechanical energy losses caused by the interaction between
dislocationé and high frequency alternating stress waves can be
classified as resonance or relaxation losses. A satisfactory explan-
ation for resonance is given by using the vibrating string model
proposed by Koehler (1952) and developed by Granato and Lucke (1956).
It is assumed that a crystal contains a network of dislocations which
are strongly pinned at nodal intersections and less strongly at point
defects. The attenuation which arises from the enforcedvibration of
dislocation sections between these pinning points under the driving
force of ultrasound waves of angular frequency w, can be written as

(Truell, Elbaum and Chick 1969);
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( \ (6.3)
(w/w )?
w, (Do

w 212 w,2,d,2
R B e M e
2] o

2
6 4Ghb AL2d
nde

o = 8.68 x 10 dB/usec

|2 - ¢
- [o]

L J

a typical resonance expression, where the frequency response depends

on the damping value d(= B/A) relative to the resonant frequency w .
The parameters of the expression are: A the effective mass per unit
length, B the damping force per unit length of dislocation per unit of
velocity, c the effective tension in a bowed-out dislocation of mean
length L, G the shear modu;us, b the magnitude of the Burgers vector,
A the total length of dislocation per unit volume. This type of loss
forms the major background attenuation for the temperature dependent
measurements made on the crystal HgTe and is the likely source of the
background loss in Hg3In2[:]Te6 (Figure 6.1) and in the other vacancy
compounds. Expression (6.3) predicts a resonance peak and Alper and
Saunders (1969)did succeed in obtaining a maximum in the attenuation
on HgTe at about 240MHz but only for.annealed specimens. Attempts to
find the frequency at which this pgak occurs in each of the vacancy
compounds was defeated by the very high attenuation encountered at
frequencies in excess of 1OMHz.

| The distinctive features in the attenuation results presented for
Hg3In2[:]Te6 (Figure 6.1) are the peaks which occur in the attenuation
of the longitudinal and both shear waves within the temperature range
100°k to 170°k. The peaks have the characteristic features associated
with a Bordoni type relaxation mechanism; an observation that is
supported by the fact that both the height and the temperature position
of the peak maximum were essentially independent of the ultrasonic wave
amplitude. Also, the peak position was independent of prestrain which

is in contrast with the dislocation damping mechanisms of the resonance
“
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type, which suggest that an 'intrinsic' dislocation mechanism is
involved which does not depend on a particular length of dislocation
line. Consequently, these peaks together with the peaks obtained in

the attenuation in HgTe (Alper and Saunders 1969), Hg5In2EJ Te8

(N. G. Pace private communication) are to be interpreted on the basis

of the theory developed principally by Seeger (1955). Peaks were also
observed in the compounds HgsGa2 L) re p and Hg3Ga2l___'l Te, but unfortunately
at 1OMHz the positions of the maxima could not be resolved because the

magnitude of the attenuation was outside the range of the measuring

equipment.
6.2 THEORY OF BORDONI-TYPE RELAXATION PEAKS AND DISCUSSION

Characteristic peaks were originally observed by Bordoni (1954)
in internal friction measurements on lead, aluminium, silver and copper
at temperatures of the order of one third the Debye temperature and
extensive studies were subsequently made by Niblett and Wilks (1957),
Caswell (1958) among many others.

The dependence of the temperature at which the peaks occur on the
frequency shows that the excess internal friction arises from a
relaxation type of.process. Further support for this interpretation
is provided by the shape of the curves which are similar to that of any
other relaxation process, and by the fact that damping is practically

independent of strain amplitude.

For a simple relaxation process the relaxation time T depends on

the temperature T according to the Arrhenius equation
T = T, exp (W/kT) (6.4)

where W is the activation energy, k is Boltzmann's constant and T,
is a constant (a temperature independent time). When measured at an

angular frequency w(27f), the internal friction arising from this
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process is a function of the product wt, and has a maximum value when
wt is unity. The temperature Tm at which the peak occurs can be

related to the frequency by

f = 20t exp ( - WYkﬂ;R - (6.5)

o

which can also be written
f = fé exp ( - W/kTm) (6.6)

where fb (= ;a ) is commonly called the attempt frequency. Hence,

2
the activation energy W and the attempt frequency fb can be found from
a graph of the driving frequency f against the reciprocal (1/1}3 of the
peak temperature. The activation energy is obtained from the slope and
the attempt frequency from the intercept. Bordoni et al (1960) found

" that such a graph does approximate to a straight line for the face
centred cubic metals studied, giving a value of activation energy in
the order of 0.1 eV. However, the situation is not so simple. If the

attenuation peak arises from a process with single values of activation

energy and attempt frequency, this dissipation at an angular frequency

w would be given by

w/w
= 2 L (6.7)

On |l + (w/mn32|

Lol o

where é- corresponds to the maximum dissipation at a frequency
m

w, = w, exp ( - W/kTm) (6.8)

The half width of the peak given by this expression is then determined

by the activation energy W and the attempt frequency w . In fact the
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observed peaks are frequehtly twice as wide as the values deduced

on the basis of the activation energy obtained from the shift in the
temperature of a peak maximum as a function of frequency. This
indicates that the relaxation process must involve either a range

of activation energies or a range of attempt frequencies or both.
Hence only average values of activation energy are determined experi-
mentally and the simple theory is only approximate. The first
mechanistic theory was proposed by Mason (1955), who suggested that
the relaxation process arises from the lifting of dislocations
parallel to close packed difections between two adjacent Peierls (1940)
minimum energy positions. A result of this theory is that the
activation energy should depend strongly on the degree. of cold work
and the impurity content of the specimen, but this is not in agreement
with the experimental observations of Niblett and Wilks (1957.). These
difficulties were overcome by the theory due to Seeger (1955) and
Seeger, Donth and Pfaff (1957) which will now be summarised.

Consider a dislocation line lying in a position of minimum energy
along a close packed direction in the glide plane Figure (6.2). In
the absence of thermal fluctuations, a shear stress equal to the
Peierls stress is required to displace it to the adjacent position of
minimum energy. However, at finite temperatures the dislocation need
not lie along a single potential energy minimum, instead it may
contain kinks and bulges consisting of pairs of kinks of opposite sign.
Stresses much smaller than the Peierls stress will be sufficient to
move such kinks sideﬁays, that is in a direction parallel with the
dislocation line, where the potential barriers opposing motion are
very small. Under the influence of such stress, new pairs of kinks
of opposite sign can also form with the aid of thermal energy, and

hence with a temperature-dependent frequency. If the frequency of
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the applied stress is either large or small compared with the
frequency v of the thermal formation of kink pairs, no energy
dissipation takes place. Only when these frequencies are comparable
will there be an appreciable contribution to energy loss, and
maximum dissipation occurs when the frequencies are equal.

In his original treatment Seeger (1955) assumed that the rate

of formation Ff of kink pairs is given by an Arrhenius type equation
v = v_exp ( - W/KT) (6.9)

where W is the activation energy for the formation of kink pairs and
v, is the attempt of frequency. v, Was taken to be equal to the

frequency of oscillation of the dislocation in the Peierls potential

well;
3
1 20
v o= == P (6.10)
le] 27na [V}

where o; is the Peierls stress, p the bulk density and a the lattice
spacing. Further, Seeger assumed that W is 2Hk’ where Hk is the
additional energy associated with a single kink in a dislocation
line that is otherwise parallel to a close packed direction in the

crystal. Then by solving the differential equation

ol’:l
-l
o
1

=}
Q
L\

W - po° sin 2 - po (6.11)
2 p a

where t is time, E, and m are the energy and mass per unit length of

a dislocation, o is the resolved shear stress and b is the Burgers

vector, for the shape of a dislocation line y(x,t) lying in the x, y

plane (Figure 6.2) crossing a Peierls potential barrier, Seeger obtained
h ]

o )2

da 2anb T (6.12) .

W = 2H, = p

k T

m
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This derivation yielded the right orders of magnitude Vo and E,
but as it is based on the Arrhenius equation it is not very precise
because kink pair formation is a collective process involving ten
or hundreds of atoms. Seeger, Donth and Pfaff (1957) then gave a
more rigorous treatment based on an expression for the rate of
formation of kinks derived by Donth (1957) using the theory of
stochastic processes. Then the frequency v and the activation
energy W for the formation of a kink bair is given as a function of

temperature by

log (3;—) = F,(ria) (6.13)

The parameter z is given by

z2 = ;_; ngz 3/2kT11"/2 (6.14)
av m EO

where v is the velocity of sound and G is the shear modulus. This

expression has been approximated (Bordoni, Nuova and Verdini 1959) as

z = nzk (
4

6b

N

1 .
= 6.15
pG) T ( )
allowing a value to be obtained from experimental data for the
temperature T at which the peak maximum occurs. Hence substitution
of v and z into expression (6.13) gives Fl(r;a). This function,
given graphically by Seeger, Donth and Pfaff (1957) and reproduced

here (Figure 6.3), is defined in terms of dimensionless variables

r and a where

2Hk/kT (6.16)

N
I

and

(6.17)

b°o|°
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Then r and hence Hy, the adqitional energy associated with a single
kink in a dislocation otherwise parallel to a Peierls valley, can be
calculated. Since, in ultrasonic experiments the strains encountered
are of the order of 10-7, the applied stress ¢ is very small compared
to the Peierls stress c: and o in the above equation (6.17) is very

close to unity. Knowledge of o and r leads directly to the activation

energy W for kink pair formation through the relationship:

W = =dlogv = kTFz(r;a) (6.18)
d(1/kT)
using the graphical plots given for Fz(r;a) by Seeger, Donth and Pfaff
(1957) and shown here in Figure (6.4). Further the Peierls stress o;

can be obtained_from
2 R INIEAL (6.19)

e =5 |&| © 3
This procedure has been followed for HgTe (Alper and Saunders 1969)
and here for I:!g5In2 O Te, and fIg3In2 O Tegs the values obtained for
W, a; and H,_are collected in Table (6.1).

This theory'acéounts for most of the main features of a Bordoni
peak. It leads to an activation energy that is an intrinsic property
of the dislocations and is independent of the separation of pinning
points, so that the temperature at which fhe-peak occurs is approximately
independent of both the degree of prestrain and the presence of impurities.
The activation energy is also independent of the strain amplitude.
The theory predicts no dependence of the peak height on frequency, which
is in agreement with the available experimental evidence.

Several features of the Bordoni peak, however are not accounted for.
In particular the theory leads to a peak only half as wide as that

observed. Qualitatively, this difficulty can be overcome on the basis

that the Peierls stress should be different for screw, edge and mixed
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dislocations, with a corresponding range of activation energies for
the relaxation process. The concept of a range of activation energies
due to different dislocation types is also consistent with the slight
shift of the peak to higher temperatures with increasihg pléstic
deformation; the latter may be expected to affect differently, dis-
locations of different types. The same applies to the slight shift
of the peak to lower temperatures with increasing impurity content;
impurity atoms will interact differently with different types of
dislocations. The.theory explains the reduced peak height in annealed
specimens of HgTe, a state which corresponds to a decrease in the
dislocation density.

The problem of the main and subsidiary peaks can be resolved by
attributing each peak to a direction of dislocation motion in a glide
plane, the appropriate Burgers vector being the nearest neighbour
distance aloﬁg the slip direction, but the difficulty is to assign the
correct slip plane to the appropriate peak. The experimental data can
be used to resolve this problem. In zincblende lattice both {110} and
{111} planes can be slip planes. The resolved shear stress component
of the ultrasound waves differs on the two forms of slip plane, and the
activation emergies and the temperature T of the peak maximum should

also be different. The experimental attenuation results are consistent
with this view and, further, suggest which peaks should be assigned to
a particular slip plane. Figure (6.5) illustrates the situation for the
{110} slip planes when ultrasound waves are propagated down the |110|
direction; the directions of forced dislocation motion are identical in
the crystallographic sense, being |1I0| for both the longitudinal and
tfansverse waves of polarisation S along the |110| direction. On the
othér hand for the transverse wave (§|| |oo1]) the dislocation motion
will be along the |001| direction. Different activation energies are

required for these two possible dislocation motions; the peak temperatures
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should reflect this; they do. In the data presented for Hg3In2[] Te
(Figure 6.1) peaks occur at 164°k in the attenuation of both the
longitudinal wave and the transverse wave with $ parallel to the
|lio| direction, while the peak in the other shear wave is found at
141°k. All three types of ultrasopnd wave give a peak in the attenuation
at 109°K; this. can be associated with dislocation motion on the {111}
slip planes for which the activation energies will be independent of
atomié motion direction. Pure edge dislocations have been assumed and
the appropriate Burgers vector used. ‘The results in Table (6.1)
substantiate the basic model used for the slip planes and the dislocation
motion directions. For example, for the three different ultrasound wave
propagations in HgTe, the suggested {111} plane component in each case
gives the same activation energy and Peierls stress within experimental
error. Direct comparison between the three materials can now be made.
There are geﬁeral trends in the activation energies and Peierls stress
for a given slip plane when the material is changed; both these parameters
decrease through the sequence HgTe, Hgsrnzfj Teg and Hg3In2[j Te,- This
trend follows the changes in elastic properties. Thus in the most
easily compressed material, namely Hg3In2[j Te, with its high vacancy
concentration, dislocation motion is most easily got under way.
Vacancies which are sited regularly in an ordered lattice structure do
not produce iocalized stress and should not pin the dislocations in the
same manner as ordinary vacancies. In all three compounds the activation
energies and Peierls stress are lower on the {111} planes than on the
{110}; dislocation motion is easier on the {111} planes.

These results and the elastic constant data indicate that the
elastic and anelastic properties of materials of this type can be

dominated by the presence of sited vacancies.
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The temperature dependences of the attenuation of longitudinal and transverse
ultrasonic waves (frequency 1oMHz) propagated down the |110| direction in
Hg_ In_[] Te . Some substructure was observed in the 109°k peak found for

6of-the'longitudinal_wave,'the envelope only is shown here.
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Fig. (6.2.) Potential energy of a dislocation line due to Peierls stress o:

" (Seeger et al 1957)
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ig. (6.5) To sndw forced dislpcatien motion on the {110} planes v and s, are the
ultrasonic wave velocities and polarisation vectors respectively as given

‘on page (46) The vectors P are the directions along which the

‘ dlslocatlons are forced and the bowed 11nes represent the kinked

_fdlslocatlon lines. The Burgers vectors b for edge dislocations are

a //_ for P, and P3

. dlslocatlons

and a for P2, and vice-versa for -pure screw
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