Durham E-Theses

$$
\begin{gathered}
\text { A history of north east shipbuilding: being an attempt } \\
\text { to describe and analyse the development of shipbuilding } \\
\text { in the North East of England from earliest times to the } \\
\text { end of } 1967
\end{gathered}
$$

Dougan, D. J.

How to cite:

Dougan, D. J. (1968) A history of north east shipbuilding: being an attempt to describe and analyse the development of shipbuilding in the North East of England from earliest times to the end of 1967, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9906/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP e-mail: e-theses.admin@dur.ac.uk Tel: +4401913346107
http://etheses.dur.ac.uk
"A HISTORY UR NORIA EAST SHIPRUCLUTNG"

PIRESENTELB BY DON. BOUUAN FOR AN MA. USHER, DECEMBER 1960

At the end of the lyth century, the united Kingdom proriuced four out of every five ships built in the whole world, and the Nortin East coast of England, stretching from Blythe in the North to withy in the South; was responsible for two out of those five ships. A Government enquiry said that the united Kingdom performmande was an industrial achievement almost without parallel. Clearly the contribution by the Norton East was a substantial ane.

Together within the river clyde, the North bast of England mas been the major sinipbuilding area in the country and until recently. one of the main areas in the whole world.

Yet tings supremacy did not start to emerge until about half way tirouen the login century wien iron began to usurp wood and steam began to usurp sail. These two technical changes turned a craft into an industry and no area was as successful in adapting to the new era as the Noreen fast coast. Its natural resources of coil and iron were exploited by a group of brilliant entrepreneurs who literally fashioned the industry.

They were responsible not only for organising production; they also stimulated tecsnical innovations. The turbine engine was developed in the region; so was tile oil tanker. inere are many otiner examples.

British - and North Last - supremacy lasted for 100 years. by the $1950^{\prime} s$ competition from other countries and an inability to expand meant that British - and North East - shipbuilding had to yield its place as a world leader. Today Japan is almost as dominant as the united kingdom was at the end of the $19 t h$ century.

This story of tue rise and fall of a great industry is not yet finished, however. In lyon there were strong indications that tire industry was going through a period of rejuvenation and reinvigoration, ready to challenge foreign competition more strongly than it had done in the 1950° s and early 1900's.

The copyright of this thesis rests with the author. No quotation from it should be published withour his prior written consent and information derived from it should be acknowledged.

A. MTSTORYi UF

NORTH EAST SHIPBUILUING

```
b.y
DAVIU DOUGAN, B.A. (DUNELM)
```


Abstract

being an attempt to describe and analyse tne development of shipbui」ding in tne Nortn East of England from earliest times to tne end of 1967 .

SUBinIT"LEU AS AN in.A. THESIS ' 10
DURHAMi UNIVERSITYi
NOVEMBER, 1968

Tutor: Professor Edward Alien

CONIENIS

Page

INIRODUETION. 3

1. The Early Years (up to 1840). 7
2. Growing Strong. (1840-1860). 23
3. .Years ot Power (1860-1890). 58
4. On Top of tne World (1890-1914). 91
5. First Sign, of Trouble (1914-1930). 148
6. Terrible Times (1930-1939). 182
\%. Host-war Cnallenge (1940-196\%). 219
7. An Analysis. 252
1ABLES $2 \cdot 4$
EPilugue 320
BTbLIOGRAPriY 328
IUDEX 330

SUBMITTED TO LURTAM UNIVERSITY AS AN MI.A. TBESIS BY DAVID DOUGAN, B.A. (DUNELM)

INTRUDUC̃TION

Justification of the Study
Tnere are at least two major reasons why it is important to study the history of snipbuilding on the north east coast;* for its contribution to national and world output; and for the light it throws upon Britain's general economic performance.

At one time, the united ningdom was responsible for 80 per cent of world shipbuilding output and for many years after this outstanding period it was sill by far tne most important snipbuilding country in the world. In fact this dominance lasted from about 1850 to 1956. riuch of tris success was due to the contribution made by yards in the north east. Over a considerable period they were responsible for about 50 per cent of national output; today their share is about 40-25; per cent of national output. This preponderant contribution stems from. technical innovations and a high degree of managerial organisation and initiative.

For this reason alone the economic nistory of north east shipbuilding is of great interest. But, equally important, tinis study bears on the more general question of Britain's total econoinic performance over tne period. According to the London and Cambridge Economic Bulletin, the U.K. share of the total world export of manufactures fell from 33.2% in 1899 to 13.7% in 1965. Over the same period, the U.K. share of world snipbuilding launcnings fell from 66.7% to 8.8% and the north east share from 36.0% to 3.7%.

* Stretching from tne river blyth in the north, to Whitby in the south.

The comparison in the adove paragraph is, of course, not an exact one. In the case of total exports, the volume has gone up from 53 (index, $1950=100$) in 1900 to 123 in 1964 and the value of $u . K$. exports nas gone up trom 2291 m . in 1900 to $54,254 \mathrm{~m}$. by 1964 , a fourteen-fold increase. But with Britisn shipbuilding output there has been an actual decrease of about 40% in produciion. Nevertheless, both generally and in shippuilding alone, Britain has not been able to match standards being set in oiher countries, and a study of nortn east shipouilding may he \perp p to illuminate the reasons.

BRIEF OUTLINE OF SHIPBUILDIivG AOTIVITY

Increasingly, shippuilding is becoming a technical, scientific and mechanised operation. And, increasingly, ships tnemselves are becoming part of the computerised worla of advanced tecnnology. So a wide range of skills is required, from heavy mechanical on tine one hand to electrical and electronic on the otner.

Shipbuilding can conveniently be divided into two parts: tne building and launching of the null (and this is the essence of the industry); and fitting out with lighting, plumbing, furniture, instrumentation and, in tine case of naval ships, armaments.

About two thirds of tne total building time consists of assembly and $\% 0 \%$ of tne costs arise from boughtin materials. The shipbuilder's task consisis of programming tinis asseubly work accurately as well as working out the often complicated details of design and performance and tnen ensuring tat the ship is built to these specifications.

Over the years, new skills nave come in and otners nave disappeared. And at different times, certain sections of the workforce are more important tinan otiners. At the moment, witil tre keen competirion to gain new orders, tne sales team is the most important. bithout their success in winning contracts at the right price and ensuring delivery at the right time, shipyards could not survive. The skilis of the workforce would have no chance to flourish. In wartime orders flow in and the main. responsibility falls on the production departments.

An interesting example is provided by tne Furness Snipbuilaing Cowpany, which announced in אarch 1968 that it was to close the yard it nadoperated at Haverton Hill, near Middlesbrough, for 50 years. Production techniques were among the most efficient in the country, following a $\ddagger 5 \mathrm{~m}$. investment in. new plant. and machinery. Relations between management and men were said to be excellent. Yet tine management could not operate the yard at a profit for a number of reasons, particularly because the company was unable to join one of the groups tnat were emerging in tne industry which would have enabled it to snare in cost reductions through bulk purchases. In 1967-ס the company tendered for over: 100 contracts. In every case it was told that its prices were too high. Since it nad made losses of $i 8.5 \mathrm{~m}$. between 1962-\%, the management decided that it could no longer continue, despite a willing labour force and modern production capacity. In October 1968, it was announced that the yard was to join the Swan Hunter \& Tyne Shipbuilders CinAicactekIS'IICS OF IME INDUS'IRY Co.
(1) Output is extremely unstable. There is seldow a steady trend line for a couple of years, never mina longer, so that the industry continually appears to be sinitting gear from expansion to contraction or vice versa. This noticeable fluctuation, perhaps more marked in shipbuilding than in any other industry, leads to difficult management problems.
(2) Production is extremely varied. ifany yards are equipped to build virtually any vessel that may be ordered. Others maintain at least a very wide range of specialisation. This characteristic is the opposite of "conveyor belt" production. Almost every ship is a "one off" although tnere were exceptions at tise turn of the century, and the Sunderland firm of Austin and Pickersgill is at the moment trying to standardise on the S.D. 14 general cargo vessel.
(3) In contrast to japan, which has a more specialised outpui, british shipbuilding must remain labour-intensive. This is stili the case despite a gradual fall in employment and a growing investment in new plant and machinery. In "one off" production, a highly skilled and nignly paid labour force plays a central part.
(4) The dominance of the labour force has been matched by other characteristics to produce difficulties in labour control. The industry nas a inigh trade union loyalty yet at the same time a nignly fragmented union structure. Tinis nas led to continual friction between management and men and often between the men inemselves.
(5) On the employers' side, the inaustry nas been marked by a nign degree of family connections. Even today, two tnirds of north east shipouilding firms have strong family associations on the boards of directors.
(6) A final characteristic that should be mentioned at this stage is the relative absence of attempts at verical integration. We shall see that in the course of 100 years only four serious efforts were made to integrate production from the raw material stage to operating tne product and tnereby wanipulating tne market. until recently, tnere was an equal - perhaps even greater absence of attempts at horizontal combination. It seems strange that such few attempts should have been made remembering the competitive nature of shipbuilding which nas been completely open to the economic forces of the world and remembering, too, the highly fluctuating nature of output. One would nave thought that vertical or horizontal combination would have had an appeal in an effort to reduce these fluctuations.

ARRANGEmENT UF THIS IHESIS
The first chapter deals with the shipbuilding history of the area up io 1840, when the advent of iron building and steam propulsion began to turn a longestablished craft into an industry requiriing more organisation, more capital, more workers and more scientific knowledge. Thereafter, each of the next six chapters covers a 20-30 year period. The final chapter includes statistics of production, employment, costs and prorits and includes an analysis of some of the main trends.

CHAPTER OÑE

FROM THE EARLIEST YEARS UP TO 1840

As mignt be expected for a coastal region of an island that prided itself on its naval strengtn, shipbuilding - or more properly, boatbuilding - was an: activity of long standing. Tne earliest record is dated 1294.* In that year a galley was built at the moutn of the Lort Burn on tne river 'lyne for Edward I, one of 20 ordered by tne king at tnis time from distant ports.

Records go back almost as far at Sunderland. jonn Spearman, under-sheriff for Duriam, writing in 169\%, quotes from nistories of tne 14 in century:** "Thomas Menvill occupied a certain place called Hendon, for tne building of snips, for which ne paid to the B ishop an annual rent of 2s. Od." And Bishop Hatfield's survey, published by the surtees Society in 1857 , indicates tnat Menvill was given permission to 'ply' ships at riendon. So it looks as if he had two deeds, one to build ships and one to ply and moor them.

For centuries afterwards, shipbuilding disappears frow the recoras. But we know that in 1588-9, Queen: Elizabeth sent a commission to Sunderland to discover why no customs dues were being paid.***he comisission found that there was no customs nouse in operation. Almost certainly there would nave been one had shipouilding been a regular activity.

* "Newcastie upon Tyne, its Growth \& Achievements" by S. Middlebrook, Newcastle 1950. P. 32 .
** "Where Snips are Born" by J.W. Smith \& T.S. Holden, Sunderiand, 1946. P.3.
*** Ibiid. P.7.

But a century later, the records are stuffed witn shipbuilding references. A record from the year 1648 refers to Jonn Forsiter, who lived in Low street, as a shipwright. And fourteen years later there is the first mention of trie Goodcnilds who built ships over a period of 149 years. They had lime kilns at pallion and built 70-४0 ton vessels to carry the lime: Later tney acquired a Sunderland bank which failed in 1816 and five years later they went out of business.

The reason for the shipbuilding boom was simple. With the emasculation of the forests, coal was being increasingly employed as the great natural fuel of the country and much of the coal was to be found in the inorth. By the end of the lytn century, great fleets of coalcarrying ships were sailing from the Tyne for ports as far away as Danzig or the Cnannel Islands.* But Newcastle's chief markets were London and East Anglia, or abroad, Northern France, North West Germany and tne Low Countries.

The nome trade ships were mostly owned by shippers at Ipswich and ning's Lynn while most of the foreign trade, certainly at the beginning of the l7th century, was carried in Dutch or French ships. But as the century progressed, more and more Britisin ships were used. In 1625 the number of British coastal vessels was between 300 and 400.. ** By the start of the loth century the number nad jumped to over 1,000. ***

Most of this shipping consisted of colliers and indeed the stuart kings regarded the north east coal trade as the nursery of the Navy. It was the increasingly-fielt need for a strong navy as well as the development of trade that stimulated the growth of shipbuilding in all ports. The chief centres were: Newcastle, winitby, Ipswicn, Yarmouth, Bristol and London.

The ships were swall wooden vessels. In 1750, for example, the Tyne launched its largest vessel up to that time, whicin could carry just 30 keels of coal. This was the "kussell", launcned from headlam's yard. **** Thirteen years later, the launch of the "Solebay", a frigate of 28 guns built by Airey, attracted "a great concourse of spectators."

$*$	Midalebrook , P. 88-9.
$* * \quad$ Ibid	
$* * * \quad$ Ibid	
$* * * *$	Ibid

But despite the upsurge of local output, the Dutch were tine predominant shipbuilding nation in tne 17 tn century. * English-built ships were too dear, carried too little cargo and were too difficult to manoeuvre. Dutch ships, on the other hand, were about two tinirds and sometimes only a nalf of tne price of English vessels. In 1669, a small ship built in Holland cost $£ 800$ against. £13,00 for its English equivalent. A larger ship could be built for $\mathfrak{e l}, 400$ in molland, compared with 22,400 in this country.

Thie high price of Englisn shippuilding was caused at least in: part by the need to import the raw materials. For contrary to popular belief, nome-grown oak was not used widely in ships, certainly not as much as foreign timbers. And foreign sailcloth and even rope were used to a considerable extent.

Dutch supremacy spilled over into the loth century When it was cnallenged most forcefully by Britain's 13 American colonies. ** The eastern.seaboard provided ample supplies of timber and tne American colonists seemed to have developed a greater skill than their counterparts in. this country. But the secession of the 13 colonies in 1770 wiped out any advantage. British shipbuilders were spurred to fill the gap that mad been created. During the American Uar new yards were set up in remote creeks in Scotland and Wales - and for the first time naval contracts , were given to firms in Newcastie ands Sunderland. ***

But London remained by far the largest centre of construction in this country. In 1702 a. sixith offall british
bs were reg. atr London wis the Thenes aed produced a third of the
 there and ther river produced two fifths of the tonnage. At the same time Newcastle and Sunderland were becoming significantly more inportanc. In l702 Newcastle was not among the top four building ports. By 1800 it was tnird after London and Liverpool, with Sunderland fifth.

Ibid.
**** Ibia.

Daniel Defoe, in nis "rour Througn England and Wales", publisned in 1727, wrote warmly (and too briefly) about the area's shipbuilding: *
"Fron hence (Durham) the road to ivewcastle gives a view of the inexnausted store of coais and coal pits, from whence not London only, but all tne south part of England, is continually supplied... Newcastie is a spacious, extended, infinitely populous place; it is seated upon the river Tyne, which is here a noble, large and deep river and ships of any reasonaple burthen may come safely up to the very town... liney build ships here to peffection, I mean as to strengtn and firmness and to bear the sea; and as the coal trade occasions a demand for such strong ships, a great many are built nere. 'inis gives an addition to the merchant's business in. requiring a supply of all sorts of naval stores to fit out those ships.. n

The same could nave been said of whitby, whicn by the end of the lith century was one of the most important shipbuilding centres iri the country. By 1'770 tnere were 251 ships registered as belonging to Whitby, compared with 113 in l\%00. One observer wrote: "ine progress of the inhabitants of Wnitby in tne art of shipbuilding nas eminently conaucea to the increase of tneir shipping." **

Snips - or more accurately, boats - had been built at Whitby from time immemorial but it was not until 1730 that the narbour was improved to take bigger ships and that regular yards were formed. The earliest necorded yard was begun by jarvis Coates, who died in 1739.*** iur. Jarvis Coates, Junior, started his own yard aboüt: 1749 , followed 11 years later by Wi/htan. Simpson. **** Both yards passed into other nands. Coates' Yard was taken over by Messrs. Fishburn and Broderick, while Siupson's business passed to William Hustler and then Messrs. Longborne.

*	"A Tour tinrougin England \& Wales" dy Daniel Defoe, published 1727. P.659-661.
**	"A inistory of Whitby", Vol. II, by Rev. George Young, published Whitby 1817. P.548.
***	"The Ancient Port of whitby $\&$ Its Snipping" by Kichard Weatnerill, Wnitby 1908.
****	Ibid.

Whitby snipbuilding was given great encouragement by the four vessels chosen by Captain Cook for nis voyages of discovery., * Tincee of them were Duilt by Fishburn and the other by G.. \& N. Longborne.

The biggest, the "Resolution", was only 462 tons and manned by a crew of lly. There was a great outcry at the time because country-built vessels were generally considered by LLoyds to be far inferior to those built on the 'inames. But Cook stood by his original cnoice and wrote to a friend: "You must nave neard of the clamour raised against the "Resolution" before I left England. I can assure you I have never set foot on a finer ship." **

By đ九il6 Whitby owners possessed 280 vessels of 46 , 341 aggregate tons, and there were $2,6 \% 4$ registered seamen in the town. nnere had, in fact, been "astonishing" progress since tne beginning of the lyth century. ${ }^{* * *}$ Mr. Coulson from Scarborough hadopened a yard, so nad the Dock. Company and Jonathan Lacey and Jasper Jake. None of them survived very long. Lacey went out of business after three years and Wake after five. But a commentator could still write: "The skill: of our shipbuilders and carpenters has long been generally acknowledged and has brougint inuch business to the town and produced a great influx of property, especially during the first American War and the last French one. No ships are betier adapted for transports... In strengtin, beauty and symmetry, our vessels are equalled by few and I may venture to say excelled by none." ****inis was a view, as we have seen, that was not shared by Lloyds.

During the Anerican war of Independence, wnitby produced an annual average of 20 or 21 ships. Fron ly921800 the average went up to 24 or 25. In 1802, in fact, 39 were built. But from l807-1810 the average declined to no more than 14. *****

*	"Tne old Seaport of whitby" published whitby; 1909.
***	From. "Forty Famous ships" by publisnedinew Yoizk 193\%.
***	Rev. George Young , P.550-2.
****	Ibid.
****	Ibid.

South and North Shields, on the lower reaches of tine Tyne, also developed rapidly as snipouilding centres in the late l8th century. * In 1740 only four ships of an estimated 800 tons weremregisteredrat: So Shields. By, 18.09 there were 500 ships totalling 100,000 tóns registered in the town. There were 12 shipouilding yards and an even larger number of docis. .**

The first South Snields snipbuilder was Robert Wallis, who started a yard in the town in tne 1720's. *** 'ine early years were even more difficult for nim chan for other pioneers. For in snipbuilding, as in everything else connected with the river iyne, Newcastle's freemen claimed and enforced a monopoly. **** Tne Corporation tinus did everything in its power to ninder the construction of wallis's first ship and he had to fight two legal actions, as well as ward oft physical intiuidation, before he succeeded in breaking Newcastle's power. From tnen onwards ne built up a considerable business and by tne time ie died in 1781, " "at an advanced age, ne nad acquired a handsome fortune by his assiduity and care and was very uuch respected." *****

Towards tne end of the eignteentn century, numerous otner shipouilders followed Wallis's example and set up in business in the town. Some of tnem were unable to survive the post-iapoleonic wars' depression and otners faded out of the industry even earlier. But tne arrival of
new tecnniques and new materials nelped ro rejuvenate some of time old rirms and bring in new ones. In 1830 Tromas Dunn warshall began building ships in part of the old Vallis's yard and tnere, as we snall see, he built the first iror ship to be launched on the Tyne. nis business prospered and between 1842 and 1852 , when he retired, his firm built ten wooden and y9 iron vessels. His sons who succeeded him moved the shipbuilding department to Willington Quay.

*	"The History of South Snields" by publisned Newcastle 1924. P. 212.
**	Milddilebrook.

****	Ibid.
*****	Ibid.

Some: of the Shields' shipbuilders seem to have migrated to the town from whitby. This was true, for example, of Lockwood Broderick. He began building ships at South Snields in 1772 out his business did not prosper and in turn it was taken over unsuccessfuliy by a number of otner builders.

In Sunderland there were great developments too. The most important yard in the l8th century was tnat started by Thomas Havelock, the father of Sir henry Havelock, of Indian inutiny fame.. * In 1792 the yard built "Themis", of 5.74 tons, a big ship for that period. Three years later the firm moved from the river mouth to Southwick andlaid the keel of what was ro be one of the finest ships of her day - the famous "Lord Duncan", of 952 tons, launched on 2nd march 1798. The Durnam nistorian: Surtees, wrote:
"Thousands of spectators covered the borders of the river, many of whom were engulfed to the middle by the rising of the water on receiving this ponderous body." **

It was at this ime that the Wear's oldest survivirg shipbuilding firm began business *** Philip Laing, a farmer and shipowner, migrated to Sunderland from the Fifeshire village of Pittenween in l'792. He was then 22 years old. 'the following year he began snipbuilding with nis brother John, who had a small business on the North Sands.

Like so many other Sunderland shipouilders, the brotners made several moves in tneir early years. In 1804 they acquired a dock near Hearmoutn Bridge and later they left the town to open a dock and shipyard in South Shields. But within a short time they returned to Sunderland and began ouilding at Sourhwick on a site later occupied by Robert Inompson \& Son. In l४ly the firm moved io Deptiord on the south side of the river and it has stayed there ever since. It was also in tnat year that the brotners dissolved tneir partnership, when John left the firm.

* "Where Snips Are Born" by Smith \& Holden. P.9-12.
** Quoted in the above.
*** Ibid.

Another North East shipbuilding firm that can trace its inistory even further back - over 200 years* is the Smith"s Dock Company Ltd., now part of the Swan runter Group: Its origins are traceaible to William kowe who started building ships on the 'Iyne in l'756. By the end of the l甘th century he was the biggest builder on tne river. But in 1810 ne was bougnt out by Thomas Smitn who took nis two sons Thomas andWilliam into partnership with him to form the firm William Smitn © Company, Snipbuilders. Less. than four years later the company acquired Laing's Dock at Nortn Shields as an additional repairing estab. lishment.

Meanwhile the firm embarked upon East Indiamen which at that time were almost tine monopoly of London builders (it was l४l5 before Laing's built the first East Indiaman on the Wear). The first vessel to be launched was the "Duke of Roxiurgn" of 417 tons burthen. This was followed by"George Green:", which was not launched until Boxing Day, 1829 - a surprisingly long interval of inactivity.

The American War of Independence nurtured shipouilding on the Tees.** In the late l'770's Mark Pye of Stockton was building frigates for the Admiralty and by 1783 three shipyards at Stockton were in constant employment, mostly for the Admiralty. Despite the quick demise of anotiner yard which opened at portrack, the boom: continued after the war. Between 1782 and 17.90 Mark Pye and a rival Tnomas Haw built 24 ships, of which the "Aurora"g. 97ft. long, appears to have been the biggest.

The Napoleonic wars kept the boom going *** Beiween: 1790 and 1805 Thomas Haw built 40 vessels, of which the biggest was tne "Hignland Lass", of 55.6 tons. But in. the next 12 years, from lðO5 to 1817, ne built only 16 ships, ten of which were under 100 tons.

* "nistory of Smitn's Dock" Irom Company's own magazine of April 1924.
** "The Local Kecords of Stockton \& Its Neignbours" by 'riomas Ricnmond.
***. Ibid.

The Napoleonic wars were good for trie Wear, too.* in lชOl, one estimate says, there were nine shipouilding firms in Sunderland and this had risen to 15 by loli5. A House of Commons' Report in loO6 gives the following output tigures for the river:-

No. of Ships. Average Tonnage Largest Tonnage

1790	19	144	312
1791	$6 ;$	202	356.
1804	51	163	349
1805	36	163	337

The demand led many people io go into the industry, ouild a ship or two and then leave after the war, well satisfied with their profit. It was this continual fluctuation that made estimates difficult. for Surtees claimed there were 17 yards at tne beginning of tne century and 24 in marcin 1814 . ** He also provided an output cable:-

inder Construction No. of Snips Total Tonnage

Dec. 1810
37
8, 410
Nov. 1811
Nov. 1812
32
४, 020
3%
४, 4.3%
He adaed: "Bui though tnus vigorous and enterprising in the prosecution of their business, the shipbuilders of the wear do not appear generally to have been possessed of much scientific knowledge respecting it."

In l804, according to William Fordyce, a ship of 12 or 14 keels was kept on the stocks lo months or two years but ner construction was far from excellent. "1he form, in general, was exceedingly rude," ne wrote, "the proportion of breadin of beam to the length of the ship being noi more than 1 to $3 \frac{x}{2}$, subjecting them to the scornful designation of tubs. One vessel of $12 y$ tons, built in 1805, was 60ft. long and 22ft. broad, or exactly one tnird. The degree of perfection in construction would seem to have been regulated according to price. Hence it came to be derisively said tnat the sunderland shipbuilders could either build a ship or make one." (i.e. do a good job or only an adequate one).

* "Where Ships are Born"
** "The History of Duriam" by William Fordyce, vol. II, published 185.7 .

As late as l835, when Lloya's Register was foundedg. sunderland was not allowed exemption from the general rule that "no ship builit north of Yarmouth shoula have a classification of more than 10 years."* At the same time, Lloyd's Register recognised that Sunderland was "the uost important shipiuilaing centre in the couniry rearly equalling, as regards number and. tonnage of ships built, ali the other ports together." In 1840 tie river launcned 251 ships, the nighesi number it has ever acnievedg althougia tonnage has, ot course, increased enormously since tnen.

It was about this tiue that Norin East shipbuilding really began to emerge from the shadows of Continental or London-based competition. With the arrival of steam and a little later of iron snipbuilding, tnere began a growing sophistication and a growing application of scientific principles tnat were to make north east shipping among the best in: tne world.

The world's first steamboat, the tug "Charlotte Dundas", had been built by William Synington in 1802 and fitted witn James Wattis double-acting engine. Five years later Robert Fulton in America took the next step when ne Duilt the paddle steamer "Clermont" to make regular runs on the Hudson River between Albany and New York. fine first steamooat service on a British river was menry bell's "Comet" built on the clyde in lol2. Within two years tne i'yne nad builc its first steamboat, the "ryne Steam Packet", later renamed "Perserverance", which Degan conveying passengers between South Shields and Newcastle in way 1814."* This was owned by josepn Price of Gatesnead who thus made a significant concribution to the development of the river and to the opening up of the hinterland. We wust remember that at tnis time and, indeed, for another 40 or 50 years, road cominunications: between Newcastle and tne coast were priuitive in tne extreme. When jonn wignam Richardson took over a shipyard at Walker as late as 1860 there was only one rough road through fields to Newcastle***ine riverside railway nad still to come and so, even in l860, nad a regular river steam service.
joseph Price nad anotner very novel idea. In l8ly ne tried to introduce the towing system and spent "upwards of \&2,000" but without success. In. 1838 he issued a public statement to try to gain Government compensation for the loss.

* Fordyce
** "The Making of the tyne" by K.W. Johnson, Newcastle 1895.
*** "uliaunching ways" publinshed by Sivam riunter "o "wisham P. 22

"In July 1818," he wroté in the statement, "I conceived good mignt be done by towing vessels to sea.... The tide was against us the first tincee miles. Everything answered as well as I could wish and the vessel was towed two miles over the bar in two hours ten minutes - a distance of 13 wiles, the wind against us all the way. Tnis was the first time a sailing vessel was ever towed by a steam boat.
"The public did not at first appreciate my endeavours for expediting the sailing of ships in adverse winds. On the contrary, I was told I had ruined the port....
"After a considerable interval, trie other owners of steam boats saw the advantage of the towing systen.... Previously no vessel larger than 240 tons register ever attempted to come up to Newcastle; after the introduction of tne towing system, vessels of 400 register were brought up and vessels tnat previously averaged only o voyages in the year between tyne and Thames were enabled to average 13 voyages, tneredy keeping the coal market in the inetropolis and elsewhere supplied and preventing tnose great fluctuations in prices which in former times had such a serious effect in increasing the inisery of the poor.
"In l821, the towing system was adopted between Hull and Gainsborougn; then at Sunderland; in 1826. in Liverpool; afterwards at inontreal... It was soon afiter generally followed in all quarters of the globe."*
but without benefit to \quad osepin Price, who thus became one iiore pioneer to suffer for his advanced ideas.
keanwhile engineering and shipbuilding were coming together for the first time. In 1820 Robert and William nawtnorn formed a partnership to run an engine works at Forth banks, Newcastle, and in their firsi. year built tnree pairs of engines for steam packets running on tne Tyne.**
* Quoted in "Tne riaking of the Tyne" by R.W. joinnson, published Newcastle 1895\%.. P. 2.52-3.
** "A History of R.\& W. Hawthorn, Leslie \& Company", by $\mathrm{j}^{\text {. }}$ Bulman, at one time managing director of the St. Peter's Works (private edition.).

Their tatner, also called Robert, was considered tne most famous enginewright on 2yneside at the turn of the century. In 1790, when he was oniy 20 years old, ne nad been made chief engineer at walbottle Coliiery. A neigniour in the row of single storey cottages where he lived in Waldottle was kobert Stephenson, whose son Georgeg. was to become the famous locomotive engineer. All tnree were good friends:and in 1796 when Hawihorn installed ine pumping. engine for the new pit, at Newburn, he put George Stepnenson, tnen only 17, in criarge of it.*

Six years later, Hawtnorn erected a winding engine at willington Quay to araw to the top of the ballast nill the wagons filled witn ballast frow the collier brigs. Again it was on hawthorn's recommendation that George Stepnenson was put in charge of the macninery. Despite tnis nelp, stepnenson wrote in a letter inat nawthorn was "exacting, tyrannical and domineering", but this was a view that ne modified in larer life..

Of Hawtnorn's 11 children, oniy kobert and william lived beyond their teens. Tine eldest son Robert was apprenticed as a millwrignt and enginewright to his father at Hialbotile Colliery. In 1817 on the completion of nis apprenticeship, Robert Hawthorn junior set up on nis own in a shed at Forth Banks as an engirewright with the intention. of making and repairing macninery for collieries. In nis first year he employed four workmen and they remained with him througnout their lives. ${ }^{* *}$

In 1820 he was joined in partnership by his brother and the firm's labour force reached 34 . In tnat year the firm made its first venture into tine marine field, supplying a $7 \mathrm{~h} . \mathrm{p}$. engine for the "Indefatigable" and then $12 \mathrm{~h} . \mathrm{p}$. engines for the "Northumberland" and the "Lemington. Packet".

In 1822 the brotners introduced steam power into tne works to drive macnines. inis replaced tne labourers who had turned a handwheel witn a rope drive to the machine and lathe countersinat'ts. Two years later they built a 50 n.p. engine for a glass works. what tne price was we do not know, but a set of steam boat engines at tnis time cost about む1,500. ***

* "A nistory of R. \& W. Hawthorn, Leslie \& Company".
** Ibid.
*** .Ibid.

The Hawtnorn Brotners were quickly followed by Hawks, Crawshay and Company at Gatesnead and then in 1830 by T.D. Marshall of South Snields, who within a few years built up a very important business in steam tugs. As we shall see, ne was the first to build an iron vessel on the Tyne. Tne stimulus in fact that the locomotive engine gave to Tyneside engineering raised the district to national importance.* For years, Newcastie engineers, led by tne hawtnorns and George stepnenson: who started in ousiness in l823, remained the sole producers of locomotive-engines in the world. In 1824, the "Rapid", a Tyne-built boat, made the iirst steam-propelled journey between Newcastle and London, taking 56 nours. Tiree years later, tne "iylton jolliffle" with two engines of 100 n.p. began a regular run between the tyne and the Thames during tne summer.

Surprisingly, it was tne Tees rather than the Wear that was quicker to follow the ryne's lead. On the 13th ivovember 1823 tne Steam Vessel Company was established at Stockton and just over a year later, on lotn December 1824, the river's first steam vessel, the "Albion", was launched..**

Sunderland's first steam ship, the "Experiment" was not built until l845.*** It was constructed by Tinomas Kowniree, not an outstanding shipbuilder, who confessed that steam was something of an aftertinougnt. The engines were supplied by Marsiall of Soutn Snields and the auxiliary screw propeller by Robert inowisson and Company of Sunderland. The ship was schooner-rigeted, of 296 tons and capable of steaming at four knots. It was used for transporting both passengers and coal between. London and the north east.
"The iraking of the Tyne" by R.W. Johnson,
published Newcastle l895.. P. 250 .
** Local Records of Stockton:
*** "Where Ships Are Born" by Smith \propto Holden. P. 35.

But if Sunderland lagged in engineering, it certainly led the way in shipbuilding. The ivorth Sands, for example, was tironged witn yards in tne lo20's and l830's so that William Brockie in nis nistory of tne town could write: "Ine banks of the river were studaed with suall wood shipbuilding yaras as far as tne tide fiowed, exciting the wonder of strangers, when they passed at time of low water, as to now the builders coula possibly manage to get tneir vessels launched." *

It was at tinis time that Sunderiand became widely known as a shipbuilaing centre ana it was then, too, that many of today's yards began - Austin, Bartrau, Pickersgill, Doxford.

Peter Austin started a business mainly for repairing on Nortn Sands in $1826^{* *}$ George Bartram, who had begum inis shipwright's apprenticeship at. the age of ll, went into partnership with jonn Lister in lðj keel of their first ship, "Crown", on 14 th January and launched ner on 7 tn $j u l y$, for Willian Tnompson, a baker of Monkwearmoutn. Tne partners hade a profit on tnat first ship of $\mathbf{x}^{\prime \prime} 7$ after paying wages for carpenters, sawyers, joiners, blacksmitns and painters. The six wontns' work inerefore brought tne partners about 30s. a week each. Four days after the launching of tine "crown.", they laid the keel for their second ship.

William Pickersgill also probably started in 1836 in partnership with a man called Miller and in 1840 William Doxford started at Coxgreem, what was destined to become Sunderland's biggest yard oy the end of the 19th century ***Robert Tnomps on started building ships in 1819 but the firm did not really get under way until he was joined by his three sons in 1846.

In: his youth Robert Thompson had used nis mother's kitcnen floor to sketch out ships and to try his hand at draugntsmanship. He decame an apprentice shipwright at l'7 and by the age of 22 ne had buili several small craft on a berth near to one of the engineering wonders of the time, the great cast iron bridge whicin had just been built across the Wear. ****

Robert Thompson created the family shipbuilding firm with his three sons in 1837 but it was not able to withstand the depression of the early l840's and it was 1846 before it made a proper start.

* Quoted in "Where Snips Are Born" (Smitn \& Holden) P.8.
** Ibid, P.24.
*** Ibid.
**** Ibid

Tees shipbuilding also grew rapidly in the l830's. On 5 th March 1833 the new yard of Laing's launched iniddlesbrougn's first ship, a 300-con vessel named the "ividdlesbrough".* Four years later, on 3rd February 1837, another new shipyard belonging to Spence launched Thornaby's first ship, the 340-ton "Coundon" and in the same year snipbuilding began at riartlepool.***

The firm was Richardson and Parkin, which in its first year built the "Castle Eden", of 258 tons, the "Richmond Lass" of 281 tons and "victoria" of 182 tons.

New firms were springing up all the time. inany of them sank back again, leaving hardly a trace. But others, througn luck or energy or expertise, survived and flourished. And ine north flourished with them.

TA long-established local craft was thus in the process of rejuvenation and reinvigoration. much of the stinulus came from the latest developnents in engineering, many of which were happening within the region. Througnout the years, in: fact, there was a close connection between. shipbuilding and engineering and many firms tended to embrace both oranches. It was not essential, nowever, for a shipbuilding firm to supply engines or for engine makers to nave a shipbuilding capaioility. many firms prospered as independent units and a recent investigation of the industry recommended that shippuilding and engine making should be considered as separate activities. ***

The introduction of engines and the arrival of iron took tne industry away from a naphazard craft, in which even the biggest operator of the time, william Rowe, was ready to sell out to the Suith family, towards a more formalised industry, requiring greater capital, more organisation, a wide range of skills.

Witn tnis change in the nature of the activity, Britain and especially the north east, began to emerge as the world leader. Why ? The main reason is that the entrepreneurs in the north east were more prepared to accept cnange, to understand and implement technical innovation. Time and again we shall see this point illustrated. Steam power had been accepted within 12 years of its first marine application. Iron was io be adopted within a similarly short period.

* Local Records of stockton.
** Ibid.
*** The Geddes Report, 1906, Cimnel 2937, P.160.
- 2i2 -

The region nad few advantages up to 1840 , apart froin its long association with boatbuilding of an inferior nature. The advances being wade in oiner fields, especially railways, acted as a spur and a surficient number of industrial leaders began to emerge. Looking back from today, progress may seen natural. Tnat was not rne case in l840. Tnere was no knowing then that tne region was to make sucin remarkable strides.

$$
184.0-1860
$$

GROWING STRONG

By mid-century, the north east was beginning to emerge as a notable industrial area. This was partly due to natural resources such as large deposits of coal, iron ore and chalk; and partly to the inventiveness and energy of a nucleus of leaders who were born in or migrated to the area.

In engineering, the work of George and kobert Stepnenson, or the Hawthorn brotners and of William Armstrong was outstanding. Starting a small crane-making factory in Newcastle in l847, Armstrong built up a very large business in only a dozen years and was to continue to expand it tnroughout the century so that by 1900 ne was employing 25,000 people. *
his success was Dased primarily on two main inventions: a new type of hydraulic crane and a rifled breech-loading gun. The success of the first-mentioned led him to set up a factory at Elswick, a suburb of Newcastle but at that time consisting simply of green fields. His hydraulic invention could be applied not only to cranes but also to capstans, coal hoists, dock gates, sheer legs and winding engines.

In 1855, eignt years after setting up his factory, Armstrong invented a rifiled breech-loading gun which was much liginter and more accurate than contemporary artillery. The Government adopted the gun as standard Army equipment and because the woolwich Arsenal nad neither the plant nor the facilities for turning out the new gun, production started on the iyne. A new industry came to 'Iyneside wnich within a few years was to becomeoone of the main armament centres in the country. **

Between 1850-1863 a million pounds worth of orders was placed with the firm by the Government. After i863 Armstrong also manufactured the gun for foreign countries. As we snall see later, armament manufacture subsequently led nis firm into naval shipbuilding and then merchant shipbuilding. By 1900 when he died, nis firm employed 25,000 people. It thus played an important part in the region's growth.

```
* J.D. Scott -"vickers, A nistory". London l963.
** K.W. vonnson - "The making of the 'lyne". Newcastle l&y5.
```

Speaking of the region's snipouilding performance generally, one writer nas said: "Fine growtin of output, striking as it was.... was no more pernaps tnan: might nave been expected in a firwly establisned snipbuilding centre faced with an expanding market."*

Such a comment seems to beg a number of questions. First, an expanding market provides only an opportunity. It does not provide the means of securing dowination. 'inat can only coüe from personal initiative, as illustrated by the career of Armstrong and others. Secondly, the fact that the north east was a long-established shipbuilding centre does not explain its success. Indeed as we nave seen, its performance in the past had been inferior to Holland or the American colonies, and, witnin this country, to ports in the south, especially the Tnames: Again success was due to tne imagination and energy of a handful of people. True, they were helped by the proxinity of natural resources but this advantage was counterbalanced by the absence of population. As we shall see below there were more jobs tnan people to fill them and the extra numbers had to be attracted to the area.

Thus the area grew under the stimulus of individual leadersinip confronting an expanding market and naving natural resources to expiroit. It is quite wrong, nowever, to suggest, as. Mr. Parkinson does, that the process was inevitadle. That is too easy a view, looking back with the coufort of nindsignt. In fact, the north east nad to ensure that it nad a product to sell - and this is where the work ot the Stephensons in railways, tne Hawtnorns in engine-making, Armstrong in armaments was of vital importance - and then had to establish a commercial organisation - tne factories, the skilled workforce - to exploit tne economic potential.
'l'he growing demand fior iron, for both railways and ships, led to a big expansion of the local iron industry to be fed eventually by Cleveland iron ore, the biggest and best deposits in the country at tnat time. ine consett Iron Works were establisned in 1841 originally to work local ores but within a.few years it was supplied from Cleveland. "What had once been a barren moor without population for miles around speedily became an immense hive of industry, "** wrote one historian. Four years later, fenry Bolckow and menry Vaughan started the Witton Park Iron Works near Bishop Auckland and in the same year the Weardale lron and coal Company began operations at Staniope. ***

* J.R. Parīinson - "'he Economics of Shipbuilding", Cambridge 1960i; page 6.
** ividdlebrook, P. 185.

Ibid

The annual output of the top eignt nortn east industries in 1863 was estimated as: *

Trie same source estimated the tonnage and value of shipping registered at various ports as follows:-

	No. of Ships	Gross Tonnage	Value
Tyne	1,67.3	38.5; 26\%,	ま2, 700, 000
Wear	94'7	226,203	玉1,830,000
Tees	327:	699, 293	£ 56:9,000
	2,947.	724.9.864	£5,099,000

The gross tonnage of shipping negisterediatt: norttiteast ports at 724,864 compared with 1,406,904 regis.tered.at the wiersey, 1,059,356 iathe Thames and 358,09'7 at the Clyde.
ine industrial expansion brought about a dramatic increase in the population. Indeed throughout the whole of the l9tn century, the rate of increase in the north east. was always greater than for the country as a whole. **

Between 1851 and 1861 tine nortn east increased its population by a quarter, while the average increase for England and Wales was jusi over ten per cent.

This was tre decade in fact when the region emerged from green fields and nowhere was growth more noticeable than on Tees-side. middlesbrough's population jumped by 137% between 1851-61*** West Hartlepool increased by 206% and Stockton: by 107%. This growtn was due partly to the very high birth rate, which between lo5l-61 resulted. in a net regional increase of 141, 000, but it was also due to the hign level of immigration. 'the net increase ini migration in tne decade was 40,000 and in the next decade was to be $75 \% 000$.

* "industrial Resources of 'tyne, Wear \& rees". N'cle. 1863. Puolisher's Preface.
** Professor J. W. House - "N.E. England - Population niovement", publisned Newciastle 1959.

Newcastle was the "most cosmopolitan of the north east towns".* In lð5l a tenth of its population nad been born in Ireland and another tenth in Scotland. By and large, the Irish provided the unskilled laiour and the Scots the skilled men looking for grearer opportunities. mir. Jonn. Price, general mamager of Palmer's shipyard, said in tne 1880's, "'ine principal part of our labour is performed by the Irish. ${ }^{n *}$ On the other hand, as we shall see, many Scotsmen provided the "brains" benind north east yards eitner as owners, foremen or the most skilled workers.

Sunderlana nad 4,000 Irishinen and 2,300 Scotsmen living in the town by 1851 - most of them coming to take part in the fast-expanding, although nighly fluctuating, shipbuilding industry..*** Output on the river wear at Sunderland for lo35, the earliest year fior which there are even rough figures, was 26,000 tons. *** *

By 1840 , only 5 years later, output nad soared to 64,000 tons. Then it started to drop again, talling to 20,000 tons three years later. Tnis rapid rise and decline of output became one of the key characteristics of the industry, producing enormous difficulties in production, management and labour control. By l850, however, output on the Wear had reached a plateau of 50,000 tons, below which it fell only on the rarest occasions.
moat of the shipbuilders in the area were only on a small scale. In fact in 1851 only eignt firms employed more than 100 men and none more than 250. inirteen firms employed between 10 and 19 men and ten firms between 50 and 74 .*****

A great deal of Wear snipbuilding was done on a speculative basis. In December 1849 only 24 of tne 90 vessels under construction on trie Wear nad deen sold. In January lo66 only nalf those under construction were to an order, while on the Tyne only 44 out of tine 56 being built had been sold. $* * * * * *$

IRON SnIPBUILUING` BEGINS

The most important development in shipbuilding in these twenty years was the advent of iron ships.

An iron barge nad deen made in. this country as eariy as l\% $1 / 7$ and anotiner was builc for the Severn in 1\%89.* In 1822 the Horsely Company nad Duilt the "Aaron manby", which was sent to London in sections, reconstructed in one of tine docks and sailea to Havre and Paris.**

A few years later Mr. Houston of jonnstone, near Paisley, found that a ligint boat drawn by two norses nad sufficient power to convey passengers on a canal at $\sigma-9$ m.p.h. 'inis seemed like a gleam or hope to canal proprietors at a time when the railway trials at Rainhili were filling them with foreboding. ***

Iron and steam first came cogether under tine influence of William Fairbairn. ne was asked by the Governor and Council of the Forth and Clyde Canal Company to carry out experiments into canal traction. Fairbairn recommended the use of iron vessels propelled by steam power ratiner tnan by norses.

Acting upon this recommendation, four iron vessels were made at manchester. One of tnem called the "manchester", 84 ft. long and 14 ft. beam, with recessed paddles in the stern, was used for several years as a coastal vessel carrying passengers and goods between Dundas, Grangemoutn and Dundee.****

The first iron ship built in the nortn east was tne "Star". $\%$ Tnis was a small passenger steamer built by mr. T.D. Marshall of South Snields in 1839 for plying between Newcastle and North Snielas. 'Iwo years later he built the 214-ton "Bedlington" propelled oy twin screw propellers.

* "Treatise on Iron Snipouilding" by William Fairbairn, published London 1865.
** Ibid. *** * Ibid. **** $^{\text {Ibid. }}$
$\% \neq$ See "Sixty Years of mercnant Shipping on the N.E. Coast" by Dr. G.B. munter and rir. E.W. De Ruseti, read to N.E. Coast Institution of Engineers \& Snipbuilders on 5th August, 1909.

The arrival of tne Aberdeen-built "Jonn Garrow" in tne Tyne in 1840 is otten regarded as tne initial inspiration for iron snipbuilding on tnat river. For almost immediately inessrs. Coutrs \& Company of Walker began building iron vessels. The first one, "Prince Albert", was used for passenger service on the Thames and was launched on 23ra September 1842 from a site now occupiea by tne Swan riunter Group.* It should be remembered, however, that the nead of the firm, john in. Couttis, was the former draugntsuan for tne Aberdeen. firm of Vernon, Bourne \& Company which had built the "John. Garrow" in 1\%35.** So iron ships were notining new to Coutts, altiough seeing the ship he nad designed seven years previously mignt nave rekindled nis interest. In. any case, ne was three years benind Marsnall.

But tne advantages of iron were on the whole accepted very slowly. Opponents ignored the facts that iron vessels were lighter, needed ininner walls, thus allowing more space for cargo and could be built with greater strengtn and to greater size. Instead, they pointed to the disadvantages - the difficulties with compass readings and the fouling of ships' bottoms. ***

Opposition was particulariy strong from the wooden snipbuilders of the ' $\begin{aligned} \text { names wh no doubt appreciated their }\end{aligned}$ precarious position if iron: shipouilding should ever take hold.****They were far away from supplies of raw material; certainly in relation to the snipyards in Scotland and tne Nortn. Glasgow in particular led the way trorougn Robert Napier but Laird $\& C o m p a n y$ and vernons, both of Liverpool, were aiso among the pioneers.

Following "Prince Albert", several iron vessels were built in the north east over tne next ten years, chiefly by Coutts at Walker, by Coutts \& Parkinson at. Willington Quay and by T. \bar{D}. Marshall at Snields. $\neq \boldsymbol{F}:$

```
* "Sixty Years of Mercnant Snipbuilding on N.E. Coast"
** A letter from W.O.T. of Walker to the Courant of
        25tn vuly, 1863.
*** "Treatise on. Iron Snipbuilding" by William Fairbairn,
    published London; 1865.
**** Fbidiate.ings 巵 the arme".
3f "Tne viaking of the Tyne".
```

John Coutts, who came from Aberdeen and set up the first exclusively iron shipbuilding yard on the ryne in 1840 could not find a sound economic base for inis tecnnical innovations. His firm was closed in l848..* But Coutts had great faith in the future of iron ships and on 25th Marcn 1849 he went into partnership with Jonn Parkinson at Willington Quay.**

Three years later tney built tne biggest iron vessel in existence, "Thomas Hamlin" of 1,350 tons. Tne following year they launcried the iron East Indiaman "W.S. Lindsay" in splendid style by giving dinner to 400 guests. Tris was not so much a sign of affluence, nowever, as a way of advertising iron ships and of promoting emigration to Australia.

In any case the success of the yard was snortlived. Parkinson retired in 1853 and after continuing for a couple of years on his own account, Coutts also gave up the struggle. vespite his apparent failure coutts was an extraordinarily tar-sighted pioneer. He not only built the Tyne's third iron ship, "Prince Albert", but also the "Q.E.D.". ***

The "Q.E.D." was a small sailing vessel of 271 tons built by Coutts in l844. Sne was subsequently fitted with auxiliary engines made by messrs. hawthorn and was tne first ship to be built with double bottoms in. which to carry water ballast. The practice at trie time was to use chalk or sand to act as ballast when empty cargo vessels were returning nome after discnarging, and the banks of the lyne and otner trading rivers were lined witn neaps of the ballast. by naving double bottoms, the Q.E.D." could take in water to act as ballast. ****
'Ine development of iron shipouilding was given a strong stimulus in the early l850's when a partner in a ivewcastle colliery company decided to build an iron screw collier, the first in the country. The vessel was called the "John Bowes", after one of the partners in the coal company and the innovation was made by Cnarles inark Palmer, who was at the time just 30 years old. \neq

```
* "A History of Wallsend" by william kichardson,
    Publisned Newcastle 1923. P. 299.
** Ibid. *** "The making of the Tyne". \(_{\text {then }}\)
**** Ibid. \(\quad \neq\) Ioid.
```

Tne northern coalfield in Durnam and ivortnumberland nad enjoyed a monopoly of the London coal market since tine l6tin century because the coal seams were never far from the sea and tnerefore never far from cheap rransport.

As Raymond Smith says in his book "Sea Coal for London" *:- "The metropolis during tne middle ages looked to the northern coalfield for its supply, not because there were no sources other than the dyne - coal was mined in Wales, on the Trent, in Durnam and in Scotland - but because at Newcastle tnere were adundant outcropping seams of coal suitable for industry and donestic use, with access to navigable water and facilities for coastal shipping... In early days the charge for Newcastile coal in Loridon was rarely less than three or four times the price on the Tyne even so, transportl by water was very mucn cheaper than it was by land.**

By 1800 there could be between 1,000 and 1,400 colliers and coastal vessels in the rinames at any one time -"an outward and visible sign of the importance and opulence of the trade". ***

The predominance of ivewcastle was challenged first by other northern ports, such as Sunderland and Stockton and then half way tnrough the 19 th century by coalfields in the midlands and Yorkshire which delivered their coal dy means of the new railway.

Railways began to deliver coal to London in 1845. In that year they delivered $\sigma, 377$ tons out or a total import of $3,4 \% 2,000$ tons. Railway shipments progressed very quickly and by lob' they exceeded those by sea. In $16 \% 5$; eight million: tons was brought into London, five suillion by rail and tinree million by sea.****

Meanwhile, between 1835 - 1844 inclusive, an average of 2.5 im . tons of coal a year was delivered to London by sea, of which 2.3 m . came from tne tnree northern ports of Newcastle, Sunderland and Stockton..***** The total coasting trade in coals to all ports as late as 1844 was 7.4 im . tons, of which 4.3 m . tons came from tine three. nortisern ports.

* Published in Londoni lyol.
** " " , pages 5-6.
*** Smith, op. cit. p. 142
**** See Scoti, J.R.. "Epitome of the Progress of Trade in coal", 1869.
***** Clerk \& Registrar of London Coal market in official statement, 4 th üan. 1845. See also Parliamentary Paper, 25tin ivay 1845.

The cost of these shipuents varied but an average figure was 5 s .6 d a ton or, taking the distance as 2% wiles, a tarthing a mile.

With the developuent of the railway system, the northern coalfield, with an annual output of over $\ddagger 6$ ui., * by far the largest industry in the north east, was in danger of large-scale retraction.
many of the midlands' railway coupanies transported coal ac ld a ton mile or less** fne Stockton \& Darlingion Railway coupany cnarged 5/btns or a penny per ton inile to transport coal froin the Durnam coalfield to the rees***The railways were becoming extremely coupetitive in price with the sailing colliers. They were, from the outset, much quicker and more regular in tneir service, thus nelping to reduce the fluctuations in the London market. A scheme was even proposed for a Newcastle and London Coal kailway with initial capital of 25 iu. \neq The sponsors anticipated tney could transport the coal for 4 s . a ton. This seems an extremely optiwistic figure, for even at 5/రtns of a penny per ton mile (one of the cheapest charges dy any railway company at that time; the true cost would have been over 14s. a ton.*****

The embryonic company based its calculations on the London-Birming ham railwäy which cnarged $\% 566$ per mile per annum for coaching and carriage costs. but since tne Newcastle company was not to carry passengers, it set its own costs (without any explanation) at only a tnird of this figure, i.e. 玉l89 per wile per annum. +

Trus total annual expenditure under this neading was reduced from $\mathrm{E} 152,820$ to 250,940 making total annual costs for the 270 -mile long railway system $£ 39 \%, 350$ instead of $\mathbf{2} 499,230$.
sut if these were their total costs and if 4 s . a ton was the target, it is clear tney would be able to move less than two million tons a year. The prospectus clearly states that three willion tons was the target, together with a ten per cent return on tiae 25 m . capital employed.

* See publisner's preface to "Industrial Resources of Tyne, Wear \& 'rees" eaitea by W.G. Armstrong, Newcastle 1803.
** See "Snips \& Railways" an anonymous publication printed in London in 1846 - in Newcastle central Library's Local Tracts 0.72 .
*** Ibid. \quad Ibid. \quad ***** 1 bid. + Ibid.

Costs would increase more or less directly witn the extra load, giving a cost figure of between £5m. and b6m, A ten per cent return would bring the total income requirement to over $\mathrm{Ilm}_{\mathrm{m}}$. This would be the equivalent of $6 s$ per ton per trip or $3 / 10$ tins of ld per mile.

It would seem that the proponents of the scheme put too much faith in their belief that long distances would produce a marked reduction in costs. ine prospectus said: "The carriage of neavy goods at extremely low rates will yield remunerative profits provided tney be conveyed in large quantities at a moderate speed and for long distances." *

One must also doubt the seriousness of the project from the sponsors' statement that coal consumption in London was 4 m . tons a year and rising. In fact, as we nave seen, it was 2.5 m . tons and falling.

In any case, railway transport frow the north east could not compete with railway transport from the inidlands, Yorksnire or Wales. A better and cheaper form of sea transport was clearly essential. In 1852 tinis is what Cnarles Palmer instituted when his own snipbuilding company (formed at uarrow in 1851 with his brother) launched tne "uohn Bowes". The effect of tais innovation in producing a steam powered iron collier can be seen in the following table:-**

PK」OK TO 1852

Average collier shipment to London 204 tons
Average no. of journeys/shig/year
Total annual shipiuent/vessel
7 - \quad -
Cost of sailing ship
No. of tons transported/ 育 investment.
in first year
2,112 tons
in first year
2.1
"UOHIN BOWES"

Average shipment to London	650 tons
iraximum No. of journeys/year	7.3
Total annual shipment possible	47,450 tons
Cost of ship	210,000
No. of tons transported/s invested	4.7.

* "Snips \& Railways".
** Based on figures given in a lecture to british Association neeting in Newcastle in l80'3 by c.m. Palmer.

The industry's cost curves were thus pulled down dramatically by the "John Bowes". They were puiled.down even further by the "Jawes Dixon", named after another partner in the iarley mill Coal Cowpany, in wnich Palmer. was a partner.* 'Ine "James Dixon" could transport 1,200 tons of coal. It needed only 64 nours to complete a round trip to Londorn of 540 miles and a furtner 14 hours for charging and discharging. Her maximum capaciry therefore was 120 voyages a year witn a total carrying capacity of 144 ; 000 tons. her cost is not known: but considering she was twice the deadweight of tne "Jonn Bowes" let us make the generous assumption tnat ner cosi was double, i.e. :20,000. The theoretical numbers of tons that could be transported per $\dot{2}$ invested in tne first year would be 7.2.

Her greatest performance up to 1863 in fact was 57 voyages between ivewcastle and London in one year carrying 62,842 tons of coal, equivalent to 30 sailing colliers eacn doing a customary $7-8$ voyages a year. **

Thus Palmer's gamble in using steam power instead of sail and iron instead of wood was successful despite the wuch nigher initial capital charge. "I was confident of the result and persisted in: the development of the system", ne said in later years .***His view is confirmed by tne number of cargoes and the tons of coal imported into London. by screw colliers:- ****

Cargoes Total Tonnage Average Tonnage

1652	17	9,483	558,
$1856 j$	413	238.597	577
1862	1,427	929.825	651

The great success of the "jonn Bowes" led one writer to observe: "No single event ever had a greater influence ont the progress of the Tyne than the building of tne "John Bowes"*****That still seems a fair comment today for the other two inventions that spring to mind - tne development of tne oil tanker and the creation of the turbine may have had greater national and international significance but they did not affect the progress of tne Tyne itself in tne way tnat iron colliers did.

* See nis lecture on iron shipbuilding to the oritish Association meeting in Newcastle in 1863.
${ }^{* * * * * *} \mathrm{~F}^{\text {bid }} \cdot$ Jonns $^{* * *}$ Ibid. ${ }^{* * * *}$ Ibid ***** R. ${ }^{*}$. Jonnson, op. cit.

Jonn Bowes and partners saw tneir business at Marley Hill grow frow a "very trifling" level to an annual million and a quarter tons within 25 years. * Tney also took over 14 other valuable colliers and transacted an: enormous business as coal exporters. In fact they Tyne's coal trade as a whole never wavered throughout the century, expanding from 4 million tons in 1859 to 12 million on: 1894 .**

The "John Bowes" nerself had an: eventful career. In l8४y she was sold to a inorwegian firm wnich cnanged fer name to "Spec". Eleven years later sne was taken over by Swedisn owners who changed her name to "rransit". in 1yO8, sne was sold for 22,000 to a Spanish owner who rechristened ner "Carolina" and in the next 25 years she changed ownersnip twice again, always with a change of name. With tne changes came new work. She nad a period as a general cargo ship and another laying cables from Dover to Ostend. Finally, 81 years after she nad been launched, she sank in a stiorm off Bilbao in (1833, the same year as Palner's shipyard itself collapsed.

The success of the "john: Bowes" and the "James Dixon" gave an important filip to iron shipbuilding. In the next ten years Palmer Brothers tnemselves built 25. vessels of 12,210 gross tons.

By 1855 tnere were eignt Tyne yards capable of building in ixinon.**Seven years later 4 ,000 Tyneside men. were working in iron shipbuilding***On tne Wear, Wiliiam Pile, the river's biggest shipbuilder, moved over from wood to iron very quickly, faster than any other builder on the river. \neq In. 1860 he was still working in wood. By l863 ne was employing 2,000 men in iron shipouilding. The output of iron ships at the beginning of the 1860's was as Delow: $4+$
$18.6: 2$ (tons) 186.3 (tons)
Tyne

32,$175 ;$	51,$236 ;$
15,008	25,000
9,660	15,060

Tees
9,660
15,060

* "The making ot. the Tyne". ** Ibid.
*** "Industrial Resources of Tyne, Wear and Tees."
**** Ioid. $\quad \neq$ "Where Snips Are born".
++ Industrial kesources of Tyne, wear cs lees.

As shown above, the screw collier first made its appearance in 1852. by l853 there were 13 of them, by 1854, 30.*

Gradually tiney wrested vack the supremacy for seaborne trade. Tnroughout the century rail-ioorne tonnage continued ro increase bui because of the rising demand in London, the coastal trade was able co regain its dowinance as the following table shows:-

COAL GARRTED TO LONEON
SOUKCE: UONES, H.R. "THE GEOGRAPRY OF
LONDON RIVER, 1931, P. 169-'76:

$\frac{\text { Railborne }}{\text { Tons }} \quad \frac{\% \text { total }}{\underline{\text { Seaborne }}}$ \% Total TOTAL **

$1880 ;$	$6,200,780$	62.5.	$3,714,708$	37.4	$9,919,567$
18.98	$6,954,206 ;$	$48.6:$	$7,337,062$	51.3	$14,305,076$
1905,	$7,137,473$	45.6,	$8,494,234$	54.3	$15,050,388$

From then until the present day, with the exception of wartime, coastal transport has been much more important than tine railways for the shipinent of coal.

Palner's contribution through his willingness to risk capital in the experiment of an iron screw collier was thus twofold: to give a decisive filip to iron shipouilding at a time when its adoption was still regarded with scepticism; and to assure the future of the nortnern coalfields. We must remember than when the "john bowes" was launched, there was notning new in naving an iron ship. Nor was rinere anytining new in screw snips. "But screwpropelled iron vessels were a novelty and a luxury suitable only for passenger and mail services." ***
unlike Armstrong, Palmer did not provide original ideas. ne provided capital, a willingness to take risks and a profound ability to plan and to organise. inis decision to set up nis own yard to develop the potential of the screw collier is an example of all three of these qualities. So was his adoption of rolled armour plates for warships, as we shall see later in tnis cnapter.

* Allen, E.E. "On tne Comparative Cost of Transit by Steam \& Sailing Colliers" (Inst. Civil Eng. Proc. vol.. 12, 1854-5, pp. 318-73)
** Includes canal-borme tonnage which was always less than 0.2% of total.
*** Ellen Wilkinson in "The Town inat was murderea", London 193 P. 60.

But notning typifies his ousiness sense more tnan his decision to form an integrated organisation, controlling every part of tne process froni tine discovery of tne iron ore to the delivery of tne ship. ne bought tne mineral rights in an area north of Whitby where iron ore inad been found and set up the Grinkle Park mining Company.* fe invested a30,000 in the development of a small hardour near the iron ore supplies.**In. 1858: Palmer inad four blast furnaces built at jarrow and, once a regular ore supply was established, he nad rolling mills added.***

He matched this vertical integration with attemptis at norizontal combination. He played an important part in tne estadisnnent of tne ivational Line, whicn developed a Large crade between England and tne united States. θ he nelped to promote the union Line and he became Chairman of the Tyne Snipping Company. \neq Tne orders from tnese companies naturally nelped to keep nis Jarrow yard ousy. In 1861 ne secured a contract from the Italian Government to construct and work a line of steamers to carry mails detween Italy and Alexandria. + A year later Palmer founded the Bede metal Company to supply the copper needed in snip bui」ding.

In all this he was a typical victorian man of enterprise, seeking new ways of iiaking money, new ways of expanding nis business, revelling in tne details of organisation whetner on the selling side or tne proauction. siae. He was not a successful financier and as we snall see later ne only avoided bankruptcy by resigning from nis own company. But ne enjoyed and mastered tne problems of production and organisation.

NEW FIRMiS EMERGE

Another yard, Just across the river from Palmer, began operations in the same year as the Jarrow enterprise. This belonged to Mr. Charles witcnelly who nad been dorn in Aberdeen. Frow the start he went in for iron shipbuilding. In the following year, his example was followed by a fellow Scot, Andrew Leslie, wno established a firm at Hebburni, next door to Palmex's works at Jarrow. The story ot Anarew Leslie seems typical of tnose days and is therefore worth recalling in some detail.

Leslie was born in 18lo at Garth in the Shetland Islands, Dut was brought up in: Aberdeen.* He began his apprenticesnip as a boilermaker and blacksmirn. The business seems to have been a small one.

But clearly Leslie nad amoitions and he decided to seek nis fortune on Tyneside as a shipbuilder. He travelled by paddile steamer from Leith and landed at fiebburn Quay. Hebburn was then an isolated viliage. The combined populations of Jarrow, monkton, hebburn: and heworth were only 3,800.
"Green fields witn grazing catrle, a wooded dene, gave - apart from the adjacent pits and ballast nill - a very rural scene and it would appear from this distance of time a most unlikely spot to level off and arrange as a shipyard. $n o w e v e r$, he thoughr otnerwise." **

With $£ 198$ capital Leslie obtained a lease from iir. Cuthbert Ellisory for nine acres of land and started to dig out a building bertn.** By l 1854 ne was ready to launch his first ship, "Clarenoon". dhis was 200 ft . long with 29 ft. Deam and 1,000 tons gross. Sne was rigged as a threemasted barquetine with auxiliary engines of $20 \mathrm{~h} . \mathrm{p}$. Altogetiner she was a remarkable achievement as the first vessel from a new yard. ****

But in the same year Leslie launcned three other vessels, one of 1,200 gross tons and two of 230 tons. And in his first ten years he built 5 ' vessels witn a gross tonnage of 22,240 . θ

One of nis difficulties in launching tnese early ships was the presence or a snoal in the middle of the Tyne opposite his berta. vessels frequently became stranded in it. Despite the Tyne Improvement Act of 18.50 , it was the widale l86.0's before anything was done to improve the river.

* "A History of R. \& W. Hawthorn, Leslie \& Co." by J. Buluan, tormerly managing director of St. Peter's Works (private edition).
** Ibid. *** Ibid. **** Ibia. θ 1bid.

Another difficulty was the scarcity of local labour and ne was forced to import skilled men from his home town, a movement that gave hebburn trie name of "Little Aberdeen"* With labourers coming in from Ireland at the same time, the result was often nooliganism and violence. When the men arrived, however, there was a shortase of acconmodarion. In 1850 Leslie had to nave nouses built for them.** most consisted of only one room but tney dia nave gas lignting supplied from the gasproducing plant in. the shipyard. Altogetiner ne noused about 300 people. From 1859 Andrew Leslie nimself owned a nouse on tne opposite bank of tne river whicn gave nim an uninterrupted view of nis own yard. rie was ferried across each worning and evening. ***

Soine of nis early ships Leslie built as a speculative enterprise hoping to sell them before tine launcn. usually ne nad little difficulty, for nis firm quickly built up a good reputation. It was well regaraed in Liverpoolg: for example, and achieved a close connection with shipowners there. θ Between 1861 and 1892 it built 41 ships for Lampart and iolt and from 1864 - 193031 ships for Alfred Holt \& Co. Other Liverpool owners, such as A. Booth \& Co., and J.D. Milburn \& Co., also bought from: the company.

He was a keen exporter too. Of the first 17 vessels built in nis yard, 11 were ior Russian owners. In: all, tne company was to build over 00 vessels for Russia, ten of themi.for the volounteer fleet. \neq

Not all yards were so Lucky. Tne ixon pioneer, Jonn coutts, soon joined the large band of shipbuilders who went out of business in the depression of the early l840's about 40 Sunderland builders also failed at this time. +

Coutts' yard was not used again until 1860 , when it was taken over by $2 \boldsymbol{y}$ years-old joinn Wignam Richardson. == he was a man of "remarkably diverse talents and inclinations". He was widely travelled and was a gifted writer. He designed several nouses and was a studenc of military science. He also nad a penciant for Latin verses, examples of whicin, inscribed in stone, can still be seen in the Neptuneoworks,

$*$	"A History of R. \& W. Hawthorn, Leslie."
$* *$	Ibid. $* * *$ Ibid. θ I口id. \quad Ibid.
+	"Where Ships Are Born".
$==$	"Launcring ways".

Atter studying at London and 'ubingen: universities ne joined R. \& W. Hawthorn as a marine-engine draugntsuan in lib5ð. Two years later he set up on nis own. He took on as manager anotner gifted young man, Cnarles john Lennam Christie, who had been all round the world in a sailing ship by the time ine was lo.
'Tnings were difficult at first because oí the cloud of recession nanging over the industry'. but slowiy the business was stabilised, thanks to Wignaum kicnarason's tireless quest for new orders.

Sunderland's first iron snip was launched in the same year as Andrew Lesilie began operations, out tinere is some doubt about the exact date. Onemistory says the first iron ship wuilt on tine river was tne $\% \%$-ton "Loftus", buili by leorge Clark and launcned on 27 tn February l852.** "One wonders", the authors wrote, "why George Clark, an engineer, was connected witn tne duilding or a snip and wny tinis launcn was the only one wirn whicn ne was associated." 'the Sunderland fierald** agrees that "Loftus" was the first iron ship built on the Wear out gives the weight as 120 tons and $23 r d$ Feoruary as the launch date.

Two other sources*** say the "Amity" was tne first iron srip and tnat sne was launcned in February l852. Whicnever was the real pioneer, wood and sail continued to play an important part in Sunderland shipbuilding. Wood did not finally aie out unitil 1880 and sail until 1893.

The same, of course, was true on the Tees. Iron shipbuilding began tinere shortiy after it was taken up on the Wear. The first iron ship was tne "Advance", built by the Siockton Iron Shipbuilding Company at South Shore and lauriched on 26 th january 185.4.**** The cowpany,'s business did not prove very successful and passed into the hands oŕ Ricnardson, Duck \& Company who launched from their yard in ten years no fewer than 50 screw steamers, a padile steamer, 10 sailing ships and 29 barges, a total of 55,493 gross tons and 7,045 h.p.

* "Where Snips are Horn" by j.W. Smitn \& 'l.S. Holden. R36. ** Edition of 27 tif Feoruary 1852, p. 5, col. 3.
*** Sunderland rear Book 1908, p. 51, and "concerning Snips" publisned by Sir james Laing \& Sons.
**** "Local Records of Stockton and Its Neignbours" by 'Inomas Ricnuond.

The first iron ship launcned at ividdlesorough was the "ive brus".* It was built by Rake, Kimber \& Co., and launched on lst Harch lðjठ. It was fitted with a 40 h.p. encine made by R. \& W. Mawthorn, out tnis was only as an auxiliary for sne was properiy rigged as a scnooner. The "De Brus" was 146 ft . long, 20 ft . in tine beain and was designed to carry $3 j 0$ tons of cargo. * *

Rake, hiuber \& Co., who had laid oüt a site on waste ground where the Transporter bridge row stands, nad been established almost two years oy tnis time.***ineir first two vessels nad been uuilt under sub-contract to Richardson, Duck \& Úompany. Tnese in fact nad been iron ships but they were not launched into the rees. \neq Tney were snallow draugnt iron paddle steamers of about 150 tons each, intended for use on the river volga. ine snips were built in sections and shipped to kussia for final assembly. in may lðj a fourth ship, was launcheefrom the yard but after fitting out and trials tnere were no more orders, tne workers were paid of \dot{f} and tne yard closed. θ The slump aid not last long, but Kake, Kimber and Company were unable to weather it. A year later, Kichardson, buck took over the yard. They brought in. as manager a. young man trom Newcastle, Raylton Dixon, who eventually formed his own couipany.

Richardson, Duck were rapidly establishing a reputation as the major shipbuilders on the lees, dut no firm at tinis time could match the meteoric rise of Palmer's since the nignly-successful experiment witr tne "sonn Bowes".
"To the success of this experiment", Palmer nimself declared, "may be attributable in great measure, the present important development of iron shipouilding in this district and the fact that we continue to supply so largely the London narket with coals." +
ne estimated that the total tonnage of iron ships launched from the Tyne, wear and Tees in 1862 was over $5 \%, 000$ cons and that more than 8,000 men were employed in iron shipbuilding, exclusive of engine building.==About 38,000 tons of iron was used in that year.

His own firm obtained the greater part of its ironstone frow its own mines at Port inulgave, 10 miles nortn of Whitby, a harbour development that nad cost his company 230,000 .*

By tne early l800's his firm was employing 3,500 men, consuming 10,000 tons oŕ iron and launching more than 22,000 tons ot shipping a year. The current joke was that Paluer's built colliers ivy the ilile and cut tnesin off. into the required lengrns. **

And even later, anotiner comimentator wrote: ${ }^{*} * *$ "One cannoi reflect on the state of English shipuuilding without perceiving that some great alteration is necessary in order to place it in a proper position. The price of new ships is too inucin reduced to allow roou for profic, when labour and timber are so expensive as in tnis country; and I believe it is generaliy acknowledged tnat our shipbuilders mainly depend for subsistence on repairs alone.... Where can we see any prospect of improvement while timber alone is euployed ?
".... But let iron become the material with wnicn our ships are nenceforth to de duilt and tne whole question assumes a widely different and highly cheering prospect. Without being in any degree dependent on foreign countries, we should find an inexiausiible supply of more suitable and less perisnable materials tor the whole of our national and mercantile marine in our own country..... Ali nations yield the palii to England in the production and working of iron and it will de long before we can be deprived of our superiority in this respect."

The Navy was no quicker to take up the new material. The Admiralty had begun to experiment with iron vessels in lo'3ర. Targets were prepared at Woolwich for experiments with a j2-pound smootn bore gun at a range of 30 yards. but, according to Fairbairn; "Tne result was condewnatory ot the use of iron and the Admiralty then tell back on the old wooden walls." θ

* "The Town That Was murdered" by Ellen Wilkinson, 1939.p. 64. ** Ibia. p.63.
*** "Iron Snipouilding" by Jonn Grantham, London 1868.
θ "rreatise on Iron Snipbuilding".

No progess at all was made until 1855 , when, during the Crimean war, the French Emperor ordered thick iron plates for casing the sides ot vessels.* The success of the ironclads forced the Admiralty to think of a reply and in order to secure the contract Charles Palmer promised delivery in three months.** ne not only kept nis promise but incorporated a new tecnnique, rolled iron. ine idea was put to him by the manager of the Parkgate lronworks at Rotnernam and its success led to tne creation of the British armour plate industry. ***

Tne "'ierror", produced by Palmers, was the first iron snip built for war purposes in the nortin east. She had a displacement of 2,000 tons, mounted sixteen 300-1b. guns and was propellea by engines of $200 \mathrm{n} . \mathrm{p}$. Tne null was built of iron in the ordinary way but the sides sloped to 25 degrees and were protected from snot by iron armour plates four inches thick and backed by six inches of teak, all of which was dolted to the main. structure. The war was over, however, betore the "Terror" was ready.

This meant that Palmer's enterprise in using rolled plates could not be tested in action. The Admiralty theretore were prepared to give him only half the credit to which ne thougnt ne was due, for while complimenting him on the speed of delivery, their Loraships refused to accept the validity of nis rolled plates' experiments. ne nad to pay for most of the research and development work out of his own pocket to prove nis theory. "'ine commercial men of this country nave set the Aaniralty a signal example of industry and enterprise," he said.**** It was 1862 betore his company buili naval vessels again but from then on they formea an important part of tne business.

The effect oi Palmer's success on the town of Jarrow was dramatic. In lo5l tine population was 3,500. Ten years later it had doubled. from l851-8 nouses were quickly run up to add to the colliery rows. by 1860 . there were 1,005 occupiea tenemented nouses in Jarrow; in lo50 there rad been 300. θ

In 1856 tne launcn of the Atlantic steainer "Hudson" was reported in these words by a ivewcastie Cnronicle reporter: "Triere is a prevailing blackness about the neighbourhood. The nouses are black, the ships are black, the sky is Dlack and if you go there for an nour or. two, reader, you will be black."

* "'rne Hown that Was murdered" ** Ibid. *** 10id. p.63. **** Palmer's paper to the British Association, 1863, "Resources of the Tyne, Wear and Tees."
θ "'he fown 'Inat was wurdered". p.72.

Some saw this as a heroic story. "And so tne rormerly almost deserted village repidly assumed an importance and incerest in the commercial world equal to what it nad long enjoyed in tre ecclesiastical. Hencefortn, when men think of Jarrow-upon-iyne, the acnievements of ifir. Palmer, as well as the writings of the venerable Bede, will rise up betiore their minds. A new spirit was infused into the place by the Palmer brothers. by a wave of their magic wand they effected transformations, one after another, the marvellous character of which was souetimes so great as almost to make one question their reality. Worknen hastened to the place in nundreds; tradesmen followed in large numbers; prosperity abounded on every nand; and, ere many years inad cowe and gone, the previously unimportant namlet became sucn a noted town for shipbuilding that commissions poured in from all parts of the world. The sound of the torge, tine whiz of machinery, the whistle oï stean engines, and the ceaseless strokes of the riveters' hammers, fell like a inew voice upon the ean of Tyneside and proclaimed that one of ner greatest sons had brougnt ner tresh glory, power and good.." -*

Not everyone saw Palmer in such fulsome terms. "The first. twenty years of Palmer's shipyara were the peak years of almost unnamperea exploitation of the workers of Britain by trieir employers... Hours were long and wages terribly low. the grim pictures drawn from Government reports by warx and Engels of the England of tnis period show a whole working class exploited to the limit, its strength sucked dy long nours and by wages which kept most. workers at a level of deadiy mainutrition... Enormous profits were made. In the steel and shipiuilding trades... dividends of 50 per cent were iooasted of on Tyneside...' But from a health point of view tnings got steadily worse in tne town tor trie workers chese profits came tromen **.

Whether one belịeves Palmer was on the side of tne angels or the devils, his influence in the development of the north east was tremendous. It stretcned far beyona his own company or Jarrow. For the aevelopmeni of the steampowerea collier led quickly to the tramp ship, the allpurpose, go-anywhere cargo vessel that became the backDone of the north east output.

[^0]It is easy, too, the look back on those days with the enligntened, sopnisticatea attitude or a later generation out ceaseless energy, constant growth and a greedy search for profits were essential to get tne new firm off the ground. One cannot win econoiuic battles, any more than one can win milicary ones, with an altruistic spirit.

When seen in the context of tne times, Palmer was fulfilling the normal victorian conventions. It was his very success that made his eneuies pick him out. Yet nis motives were not entirely selfish. He built nouses for his workers, he built a hospital and other amenities. rhe fact that ine expected nis uen to work long nours for as littie reward as ne could get away with was not unusual. In this sense he was a typical Victorian entrepreneur although far more successful than most.

Just as iron was slow to supplant wood, so steam overtook sail only over a period of years. Tine sixties and early seventies were tne golden days of tine lean, fast tea clippers. * They could cross tne Atlantic in 12-14 days and reach China in tnree months. As late as 1860 there were 0,676 sailing ships in the united kingain, compared with 44% steamers, most of which were under 2,000 tons. And in l858, only seven of the 'Tyne's 44 shipbuilders were

The competition between iron and wood and between: sail and steam nelped pusiness, nowever. Owners mignt argue about what sort of ship they wanted but they continued to place orders and in srowing numbers. The growth of international trade and the Free Trade legislacion were the main reasons. It was just ar this time of rapid developuent that the Americans cut themselves off from the rest of the world. The economic crisis of l85'7, followed by tne Civil War, led the Americans to sell much of their fleet and to look inward, upon tneir own continent. ** Tney thus missed the full f food of rechnical developments that swept tne britisn shipbuilders on to world domination.

* "Cambridge Economic History of Europe", Vol. VI. published 1965.

GROWTH OH SUNDEKLANE

Sunderland was growing remarkably fast. An nistorian of the time wrote: "From the entrance of the harbour up to hylton Ferry, trie banks of the wear, on doth sides, are crowded witn shipbuilding yards and docks, presenting, in a wost striking point of view, an exemplification of the enterprise and industry winich have so effectively conduced to the prosperity of the port. Scarcely an opening on the shore of the river, or a nook or crevice in the linestone rocks which overhang it, can be found in which a ship of large or small dinensions is not in course of erection. Sunderland is emphatically, the first shipbuilding port in the world." *

There were 72 shipbuilding yards on the river at this time. Some of the old names remain to us. ** Messrs. Potts had a yard near to French's wharf. Further west on the sameside of the river were messrs. Hutchinson, and at the nead of Low Street, messrs. Adamson built large vessels of the neavy, old-fashioned East Indiamen type. On the otner: siae of tne river, William Pile's yard was. famous for clippers.

Like so iuany otiners, Pile's Dusiness depended neavily on tne personality and drive of the owner. wnen Pile died, nis yard died too. Williau Pile, who was the most famous Wearside shipbuilder of nis day, was born in 1823. He received little formal education but walked the banks of the river night after nignt watching ships being built. *** In 1848 he took over the family yard at Nortr Sands, monkwearwouth, and in 1853 became sole owner when his brother join went to Hartlepool. Ten years later he purcnased tne bridge Graving Dock to make one of the finest dry docks on the river. by tnis time ne was tne biggest. builder on tine Wear, witn o building berths and a labour force of 2,000.

Pile built over 100 ships in wood and the same number in iron. He built for Dicky Green's famous Blackwall fleet of crack ships. In l85l he launched the "Chowringhee" which was the first Sunderland vessel to have a lengtn more than five times its breadin. Her lengtn was 170 ft. , and ner breadin 31 ft .

* "A history of Durnam" by wm. Fordyce, vol. II, publisned l85\%.
** An anonymous undated note on shipbuilding in the wear found in l863. B.A. Papers (Newcastle Liorary, No. L. 338).
*** "Where Ships Are Born".

Williau Pile died in l夭'73 at the age of 50. Although a wonderful ship designer, ine was no businessman. He had built up no reserves so that his stock nad to be sold to meet nis creditors. One yard closed. One writer wrote of nim:
"He nad contributed in a great measure towards tne establisnment of Sunderland as tne largest shipouilaing rown in the world and one can only imagine. The heights ne would have reached had he been given another 20 years in stip designing." *

Not far away fronin Pile's yard, mes'srs. Hall nad tneir yard and dock. Higner up tne river were several sualler builders. Mr. Cairncross on the kaven's Wheel, Mr. Rowntree, a tamiliar tigure in his snort blue jacket and glazed nat, and sir. Fraser.

Otner well-known builders of the time included Pnilip Laing, of whour one writer said: "It was an experience to see the awakening effect of the old gentleman's presence as he was seen by nis workinen on the scaffolding, making nis way trrougn tne litrle wicket and past the timoer: which tnen occupied a large space in sinipyards."** finere was also John Watson who was "intolerant of drunkenness and hard swearing" and John Hutcninson. in l85l Sunderland nad a population of $63,8 y^{\prime} \%$ of whom 30,377 were males.*** Of these, 99 were ancnorsmitns, $4 \% 9$ were blacksmitns, 82 were boatbuilders, $\% 84$ were joiners, 235 were painters, 216 were ropemakers, llð were sailclotn makers, 240 were otnerwise engaged in fitting ships and over 2,000 were shipwrights. rhere were also 146 shipowners. Twelve years later another estimate said there were 3,000 shipwrights on the wear.

In $184 \dot{3}$ Philip Laing, who had set up as a shipbuilder 50 years earlier, handed over tne business to nis only son james, then 20 years old. Ө James' first ship was the "Agincourt" built for Duncan Dunbar, for whow ne built a ship every year for the next 12 years. Tine "La Hogue" tnat ne built for junbar in l85j was tre biggest vessel built in tne Nortn of England up to that time. Two years earlier he had built the yard's first iron ship "Amity", probably the first iron ship built on tine river.

* "Where Snips Are born". p.20. **. Ibid:Cp.ll-12.
*** "A history of Durham".
$\theta \quad$ "where ships Are sorn".

At about the same tine, in l854, George bartram dissolved his lo-years long partnership witn Jonn Lister and instead continued tre firm witn tne nelp of nis son Robert.* 'lhree years earlier Pickersgill and miller dissolved tneir partnership and William Pickersgill. junior joined his father to continue in ousiness on their own account.

In 1846 Robert rhompson finally succeeded in' getting a shipbuilding business going. me nad twice tried unsuccesstully. But in 1846 he and nis three sons started again. 'rhere was no formal agreement between them except that Robert should receive 30s. a week, Robert junior $27 \mathrm{~s} .$, and Joseph and J̦onn: 24s. each. **
'He first vessel, tne brig "Pearl", built in 11 weeks, with the aid of four employees, showea a profit of \&300. Soon the yard was employing 60 men and boys. In 184% the firm built seven ships. Robert senior died in 1860 and Josepn and Jonn took over since kobert junior nad already left the firm. A year later John left, leaving Josepn in full control. ***

Anotner important firm, Simpson and Snort, started about the same time asinompson:'s. The founders were George Short, who had been a foreman shipwrigint with John watson of Pallion from l४40, and vosepn Simpson, another shipwright. ****

On 4 th January 1850 they delivered their first ship "Isabella and Dorotiny" ouilt for Edward Oliver of ivortn Shields. She was a scriooner of about 300 tons.

The partnership dia not last long and George Short moved to dlaxneugh where he laid down two ships in his first year, trie barques "Defiance" and "Kate". This new yard was called mowbray Quay. George Snort died in 1863 at the age of 49. His second son Jonn Young Snort joined the firm in 1865 at the age of 21 and eventually became its guiding hand.

Furtiner soutn, on tne rees, there was nothing like the same eruption of activity. In fact one estimate lists only four builders in l864, the same number as in the l'7y0's., althougin different firus.. Θ The firms were: M. Pearce \& Co., andricnardson, Duck \& Co.., dotn of Stocktong. and Backhouse \& Dixon, and Candlish, Fox \propto Co.., botn of middiesorougin.

* "Where Ships Are Born". ** lbid. *** loid. **** 1oid. p27-29.
© "The kiver 'rees", the rees Conservancy Conmission's handbook 1953-4.
marine engineering was also fairiy weak on the Tees and probaioly strongest at Newcastle, following tne initiative of the hawthorn brotners. Tneir business nad expanaed enoxmously since 1831 when they had started to build locomorives. In the following year they nad won the order for seven out of twelve locomotives contracted by the Darlington α Stockton kailway.* These engines cost 2550 eacn, were rated at $8 \mathrm{~h} . \mathrm{p} .$. and weighed just over four tons.

Between 1835 and 1845 the firms of Stepnenson and Hawtnorn supplied almost ail tne locomotives tnen being built in this country. hawthorns increased uneir labour force from 180 to ૪20. **

MARINE ENGINEEKING
In 1840 tne first ocean-going vessel with an auxiliary screw propeller, the three-masted topsail scnooner, "Archimedes", enterea the i yne for the first time *** Sne atcracted wucn attention and it was not long before iyneside shipouilders wanted to copy ner. uonn Coutts again was tre first, Just as ne was the first to copy the "uohn Garrow". He built the "Q.E.D." in 1844. She was an iron sailing ship ot 2.71 tons and 120 ft . long. Her auxiliary engines and screw propeller were made by hawtinorns.

It was the launching of the "uohn Bowes", nowever, in 1852 that provided the biggest stimulus for local marine engineers. Hawthorns decided to make warine work a wore prominent part of tneir business. θ setween loj2 and $18 \% 0$ they made ל ל "pairs" of marine engines, mostly for screw colliers, \boldsymbol{y} of them for Palmers. ine aggregate n.p. was $1 \%: 000 . \neq$

The maxiwum boiler pressure at this time was about 15 los. per sq. incn. norse power seldom exceeded 70. During the early lo50's geared engines were superseded by the direct engine with horizontal cylinders driving the shaft direct. Ther in the middle lo50's the inveried engine came into vogue and soon ousted all other types. Jet condensing was the usual practice until adout 18\%0 but Hawthoris used surface cordensing as early as $185 y$.

In 1060 Haw thorns began to build up their ciose connection with Andrew Lesiie and Co., at febourn. the two firius were to amalgamate eventually. between 1000 and 18% the marine engineers supplied 31 sets of machinery for vessels built in the nebourn yard.

```
* "A ristory of K. & W. Mawtnorn, Leslie."
** Iuid. *** Ioid. }0\mathrm{ Ioid. f Ibid.
```

By l80.3 nawthorns employed 984 men.* rineir maim work was millwork and general machinery, waterworks, will, colliery, marine and locowotive engines and ooilers. by this year tiney had completed 7.9% locos, 121 uining engines, 9 pairs and 2 single water works engines, 171 general engines, $\succ 0$ pairs and 20 single marine engines and innumerable boilers. The aggregate $n . p$. of tnese engines, excluding locos, was 15,000 .

Stepnenson was then employing l, 500 wen and had : completed 1,510 locos, 115 marine engines, 1206 marine boilers, 263 stationary engines and 36 wrought iron bridges. 'line total n.p., again excluding locos, was 35,000. **
marine engineering started on the Wear with George Clark of Soutinwick, now part of Richardsons Westgarth.*** George Clark began in business in lo4\% as a general engineer but with the coming of steam and iron, ne turned to marine engineering. In 1854 ne built the first uarine engine tried out on the Wear, which was fitted inco the steamer "Alfred" ouilt by Laings. **** *

LABOUK KELAIITONS
From the earliest days, the unions were well represented in shipbuilding, certainly as far as the skilled crafts were concerned. One observer of the local scene wrote in l851: "1ne ryne shipwrights are pretty well known as close unionists." *****As early as l824 there is a record of 400 snipwrights from Souti Shields going on strike for 17 weeks over a aispute about the number of apprentices to be allowed to enter the incustry. And in 1851 over 1,000 shipwrights on the iyne struck when their employers refused to accept the seven-year apprenticesnip period laid down. by the men as the minimum period in which they felt the youngsters could gain sufficient skill. In tine end tne employers agreed.

```
* "History of R. & W. Hawthorn, Leslie." ** lbid.
*** "Wriere Srips are Born".
**** up to lð62 the N.E.'s top seven marine engineering
    firms nad built a total of 286 pairs of marine
    engines and 293 single engines.
***** sunderland Herald, 7th February l85l.
```

These two strikes were not perverse examples of obduracy on the part of the men. They illustrated the pride felt by the men in their craft. For the men tinemselves trained the apprentices and they felt that if too many youngsters were allowed to enter or it the training period was reduced, they would not be able to give them sufficient instruction. An employer himself testitied co the men's high sense of crafirmanship in those days:
"Trey took the sane pride and pleasure in tneir day's work as many sinipyard workers of the present day do in football and racing!" But even in those early days, strong differences of opinion began to emerge.

In October 1651 shipwrights in tine region went on strike to linit "boring" work to their own members. ** Employers mad refused to meet this request, arguing that the men's attitude was unreasonable and presuuptupus. It was for employers to decide whether they would employ inore men to carry out the tasks under dispute altiough they agreed that preference would be given to older nands. Tne strike lasted 21 weeks and tne employers were successful. ***

The early l\$50's saw a rising demand. Output on the Wear was up by 5,000 g.r. tons in 185.2 and by 12,000 in l853. wages rose too.

In. February 1853 tne shipwrights in Sunderland who were then earnings 4 s . a day made a clain for a 25\% increase.**** A setclement was achieved at 4s. od. ine week before snipwrights on the 'rees nad received a similar increase. *****
'inese basic rates were soon subject to wages drift: witain months all shippuilders nad to follow the lead of a minority in offering 5s. a day as dewand for ships and tnerefore for ladour continued to rise.

*	Dr. G.b. Hunter in a paper to N.E. Coast Institution of Engineers.
$\overrightarrow{* * * *}$	Newcastle Courant, lotin February lo53.
*****	Sunderland rerald, 25 tn February 1853.
	"Labour kelations in Engineering \& Snipbuilding on
,	N.E. Coast in Second ralt of lytn Century" by u.F.. Clarke
,	(w.A. 'rnesis, Newcastle university ly60). p.93-98.
	1bid.

In January 1853, snipbuilders and shipwrights on the wear met at tne Lyceum ballroom, bishopwearmouth "to consider whether a better understanding oetween masters and men could not de estadisned."* Tnis meeting, chairea by Jaues Laing, resulted in one of tne first industrial consultaitive boards in the country.. A joint committee was set up to which would be referred "any question of dispute, either between an individual master and nis men or tue whole body of builders and shipwrights... with a view to their auicable setclement."

On the 11 th and loth Feoruary ly 53 , the comuititee met to decide tne machinery ${ }^{* *}$ When a dispute arose, a court of eriquiry would bettormed consisting of nine members from eacn side. Each shipyard was to elect a aelegate. 'i'hen a meeting or all the delegates would elect 14 representatives, nine of whou would sit on tne court with five as deputies. If the court tailed to agree, then tine question would be referred to an independent chairman for final arditration.

Tne Court's first task was to consider a request by shipwrignts for uniform conditions along tne river regarding caulkinge witnin a snort time it successfully dealt witn two otner technical matters and it began io look as if it would serve a most useful function.

However, frow tine inception, it had been accepted that wage problems - the most ditificult problems were to be outside its sphere of influence. Tnis ruling greatly biunted its effectiveness and within two years ine Court fell into inactivity. f

The Crinean war, witn its demand for ships, produced a boom. On the wear, output rose from 44,000 g.r. tons in 1849 to $68.47 .9 \mathrm{g.r}$. tons by 1853 . It stayed well above 60,000 tons until 185\%. Consequently by February 1854 shipwrigints' wages reached 6 s. a day - an increase of 20% or of 50% within the previous $1 ;$ months. But in some yards, wages drifted up to ठs., l2s., or even 21 a day, so urgent was the demand. +

* Sunderland ierald, 4tn February 1853.
** J.F. نlarke's tnesis. θ Ibid. $\quad+1$ ibid. +1 ibid.

Witnin six months demand nad eased. In October 1854 Wearside employers posied a notice indicating that snipwrignts' wages would come aown to 5s. a day.* Tne unen requested use of the joint consultative machinery. The employers refused, pointing out, correctly, that wages were outside its sphere of competence. ine wage reduction was not cominonly applied. Six yards continued to pay os. a day. But elsewhere 800 men went on strike** Again the men asked for conciliation. Again the employers refused. wr. Knott, vice chairman of the Arbitration Board, felt the machinery had reacred the end of its useful life. He wrote to the shipwrights: "ine Arbitration Court may be considered at an end from the discourtesy we net with last nignt..." (from the employers).

Wage reduciion notices were also posted on the iyne and there was a strike of sinipwrigits unere. by midעecember there were indications that demand was ueginning to rise again. Employers were forced to accept os. a day, the notices were taken down and the strike was over.***

Throughout 1855 demand remained buoyant and by 1856 the 300 shipwrigints on the wear wno were employed in building gunboats were able to raise their wages to bs. a day. but the ena of tre Crinean war, with the sudden curtailment of naval builaing, saw a slump. Over the country as a whole, wooden shipouilaing dropped irom $215 \%, 000$ tons in 1855 to 178,000 in 1856 and iron shipouilaing aropped from 108,200 tons to 06,400 tons. \cos On the Wear, demand ineld up for a few more months so tinat the l856 figure was 63,049 tons, the thixd hignest in the river's nistory. It dropped sharply over eacn of the next ihree years.

Again, the wear employers posted notices of a ls. a day reduction in shipwrights' wages, altiougin seven yards continued to pay $6 s$ a day $\neq A$ Again shipwrigints in otner yards resistea tine reduction. by mid-l85', tne drop in: demand was making a firm impact. About 1,000 shipyard workers were unemployed in Sunderland. In these circumstances the men nad to agree to a reduction to 5s. a day. Similar settlements were reacned on the iyne and blyth but only after strikes involving 3,000 men. +

```
* U.F. Clarke's thesis. ** Ibid. *** lbid.
* Abstract of Historical Statistics, p. 22%.
# v.F. Llarke. p.105\div106. + Ibid.
```

$\because \quad \because . \quad$ The year 1856 was "judgea by snipsellers as the worst in memory."光. Palmer's shipyard, whicr nad employed up to 900 at peak times was employing only 600 . On tne Tyne it was estimated that only a third of the snipyard men were in: regular employment ***

A remarkable piece of self-correction in supply and demand then took place. During 1859600 snipwrignts left Sunderland for the Government dockyards in the south.**.* Another 400 left froiis other north east ports. This immediately corrected the balance of labour and witnin a short time trie men were asking for another ls. a day.

The decade ended on a very low note, witn Sunderland launching only 37,000 tons, its lowest figure since 1844 but within a couple of years demand was to pick up more strongly than ever.

Despite the slump at the very end of the fifties shipbuilding was assuming an increasingly important role in the economy of the north east. The census figures for i861 showed tnat 9,400 were employed in shipouilding. Charles palmer estimated that 8,000 of them were iron shipbuilders. The total does not represent the full significance of tne industry, nowever. We nave to add tnose engaged in ancillary trades and in marine engineering. Historically, tnese two otner activities have each employed as many people as shippuilding itself. With regara to ancillary irades, these would not all be concentrated in the region, as all the shipbuilding or warine engineering workers would be. There would be some "leakage", as it were, from the regional economy.

Nevertheless, we can in approximate terms, treble the shipouilding figures to tind the full employuent efrect, giving 28, 200. Witn regara to wages and tne financial impact on tne area, tnis is even more difficult to compute since, as we nave seen, wages tluctuated sometimes from montn to montn arid of course tnere were also ditferentials between different trades.

It we take the average wage as ranging froni four to five shiliings a day then snipiouiiding pumped into tne regional econowy detween 55,640 and $\dot{2} 7,050$ a day in wages. If we tnen assume a six-day working week, a fortnignt's annual noliday and various bank nolidays, this gives an

* * Newcastle Courant, lotí March lojo.
*:: J.R.'T. Hughes, "Fluctuations in rrade \& Industry (1850-1900)", 1960.
$* * *$

```
U.F. ©larke.
```

Since the estimatea value oi the output of the incustry in the region in l80 3 was $22,270,000$, wages were thus by far the greatest cost factor and tnrougn the years they have remained so for this is essenvially a labourintensive industry.

RIVEK IMPKOVEMENTS
One great difficulty faced by all builders was the state of the rivers. For example, the Tees was largely in the state nature had creared. It was ly 30 before the Tees navigation Company was established and 1852 before the Tees Conservancy Commission.* Witnin a few years the latter inad constructed a oreakwater, provided a deep water entrance, and dredged and deepened the waterway from the bar co Stockton bridge to allow ships of the biggest class to use the river at aimost any stare of the tide.

The same was true of the Tyne. Even as late as the 1840 's it was possible to ford the river below Newcastle. Small schooners and origs often lay aground at the quay and women could gather coal in the oed of the river. In winter, the ice was often so nard tnat an ox could be roasted in mid-stream.**

According to inr. James Gutnrie in his "Tne Tyne and its Resources", the largest vessels using the river at chis period did not exceed 400 tons register. Vessels of moderate size and draught were sometimes detained for weeks after loading. Hie records that a nundred-ton scnooner lay aground in tne channel "where certainly vessels of such classes ought at all times to be able to move."

Captain washington, wno conducted an Admiraliy enquiry into the iyne conservancy bill of 1849 recorded that the average depth on the bar in 1849 was the same as in 1813 - about six feet.

The steamers of the Tyne Steam Shipping Company of 400 tons - 500 tons burden - and drawing 14-15 ft. of water had to complete their loading at North Snields altnough ivewcastle was tneir depot.

Ferry passengers froui Snields-Newcastle were often required to nelp "pole her off".

[^1]"A trip down the river was an enterprise full of eventualities in the forties and fifties, not to be hazarded by persons of weak nerves or temperament and least of all by those who had been so thoughtless as to come on board without provisions, for to descend to a sporting phrase, it was a five to one chance that they were not the victims of hunger before they reached their destination.*
"There were no piers at Shields - gales would blow tides up onto the beaches. Thirty stranded hulls were counted after one bad storm.
"The Tyne was a notoriously dangerous port to which the prudent seaman always gave a wide berth in bad weather or if he had the temerity to essay an entrance he was often glad to save his ship by running her high and dry on the south sands."

There were no docks and few quays. Although some loading was done from staiths, most of it was done via the keelboats - shallow of draught, which brought their cargo from higher up the river - linked by tramrail with their respective colliers.

When loaded the vessels would wait for high tide and a favourable wind- for small vessels the wait could be anything up to a few weeks; for large vessels it might be months.

Yet this was the second port in the kingdom. It had a greater shipping trade than Glasgow and outrivalled even Liverpool in the number of ships entering and clearing, though not in tonnage.

In 1846 Tyne ports had on register 1,477 ships of 302,351 tons, valued at £3,023,510 and shipped $3,265,334$ tons of coal.**

The chemical industry and the manufacture of glass were in their heyday of prosperity. Most of the large alkali works such as those at Jarrow, Friar's Goose and Gateshead were flourishing. The name of Allhusen was known internationally. By the end of the century foreign competition was killing the chemical industry and had killed giass manufacture, e.g. Tyne Plate Glass works.

* R.W. Johnson, op. cit. p. 13.
** Ibid, p.21.

The iron trade had its triumphs in the great works of Losh, Wilson and Bell \& Walker and the famous works of Hawks, Crawshay \& Co., and John Abbott \& Co.., of Gateshead.
"The Tyne was not wholly given up to the mammon of industrialism. The smoke fiend had not spread his eternal pall over the land. Much of the natural beauty of meadow and strand still remained... The river waters at Hebburn washed a silvery strand where children played. Hebburn Hall was hidden in foliage. Byker and Sheriff Hills glanced green in the sunlight and Pandon Dene was still a sylvan retreat for strolling lovers.... Such was the Tyne of our fathers."*

By 1895 it was possible to cross the Bar in a 5.000-ton ship and one could navigate with ease up to Dunston. There were two piers at the mouth of the Tyne, one of $3,059 \mathrm{ft} .$, the other $5,317 \mathrm{ft}$.

There were no dangerous shoals. For a mile and a half one could sail in 30 ft. of water, even at low tides. But improvement was bought at a price.

Abstract

"Everywhere, from the dancing waters of the harbour to the ebb and flow of the throbbing city, industry, resource and expansion, coal staiths, shipyards, engine shops, dry docks, chemical works, forges, electric lighting laboratories, $\operatorname{larehouses,~merchants'~offices,~steamships,~}$ railway trains, without end, without number - from Shields to Scotswood, there is not its like in 13 miles of river the world over... Smoke-ridden, grimy, noisy as it all is, what is it but the free expression of l9th century energy, the epitome of modern industrialism, the thumb-mark of toil, by which the human race is destined to work out its. salvation ?" **

This particular salvation was worked out by the Tyne Improvementact of 1850, although it was well into the sixties before any real improvements were discernible. The river improvements were essential to keep up with the changes in industry.

* "The Making of the Tyne", p. 26.
** Ibid, p. 43 .

As a Newcastle nistorian nas writcen: "All tinese interconnected developments, the invention of the steamsnip and tine railway, tne tapping of deeper coal seans, the discovery of Cleveland iron; the building of docks on the Durnam coast, the establishment of an effective commission for improving the 'yne, and the almost simultaneous foundation of Armstrong's and falmer's, set the stage for the swiftest and most remarkable period of industrial expansion in the whole history of the northern coalfield."*

The Rt. mon. William Gladstone added nis own tribute when he visitea the city as Cnancellor of the Excnequer in 1862. He said: "I know not where to seek, even in this busy country, a spot or district in which we perceive so extraordinary and wultifarious a combination of the various great branches of mining,manufacturing, trading and shippuilding industry, and I greatly doubt whether the like can be shown, not only within the limits of this land, dut upon the whole surface of the globe." **

CHAPTER 3

$1860-1890$
YEARS UF POWER

If the period 1840-1860 saw tne most dramatic cnanges, the next thirty years were the years of consolidation and achievement. By the late l880's and early 1890's the U.K. was responsible for more tnan 80% of worid shipbuilding and the North East itself for more than 40%. Rarely, if ever, has a basic industry secured such a world-wide domination. Even a Government enquiry, which is not usually given to hyperbole, nad to admit: "Tnere were few important industries where the predominance of british manufacture nas been more marked than in shipbuilding and marine engineering." *

And this dramatic success was reflected in the rapid rise of population in the ivorth East. between 1861-7l tnere was a natural increase in the area of 1'75,000 persons and a net increase in migration of 75,000.**Tnis was a junp of population in the decade of well over a quarter compared with a figure of 13% for England and wales.

In tne following decade, the area's population had a natural increase of 250,000 and a net migration inwards of 34,000 , making an increase of $24 \% \%^{*}$ And between 1881-91 there was another increase of 16%. by l8४l census figures show there were 10,263 shipwrigints in county Durham. Ten years later the figure had gone up to 18,970, while in Northumberland the comparabie increase was from 4,1'70 to 6,701.

In the 30 years, the area's annual output of ships went up from about 90,000 gross tons to over 500,000.**** And many of the ships were first-class ocean passenger steamers or wignty men of war built not only for tne britisn Adwiralty but for every navy of consequence tnroughout the world.

[^2]"ivo mere verbal aescription of tnese vessels will convey to the mind the science, art and skill winicn tney embody; tney must be seen and fully inspected to be appreciated," said Jomn Rowe. *

Althougin the general trend of: output was strongly upwards, there were the usual fluctuations however. Tine 1860's had begun badly but then two or triree years into the decade business started to boom. Output on the Wear rose trom 40,000 tons in 1860 to $\% 0,000$ in 1863 , of which 25,000 tons was in iron ** Tyne production jumped from 32,000 tons in 1062 to 51,000 in 1863 ****And the boow persisted *. until 1860 when there was the usual sudden collapse. Tyne launcinings dropped frow $/ 4,900$ gross tons in 186.5 to 2 ., 35,000 gross tons in 186% and on the Wear there was a drop trom 73,000 tons to 52,000 in tine same period.

Jonn Wigham kichardson, who had taken over a yard in l86u, wrote in nis autobiograpny: "After 1866 a prolonged commercial depression came over tne country. There was so little work at Walker (the location of his yard, near Newcastle) tnat grass grew in the shipyard and the cart man requested permission to reap the nay." θ

By 186% the slump was bottoming out and then proauction began to climb again. It stayed high tnrougnout tne seventies, witn only a small dip around l8'76, althougn this dip as we shall see was enougn for employers to demand reductions in wages.

Again the recession was short-lived and was replaced by a neady boom. Between lช૪l-2 national shipbuilding output rose by a third and in the North East as a whole dy just over a quarter. By l883 the pendulum was swinging back again and mr. F.C. Marshall of mawtiorn Leslie \& Co. Limited, was complaining:
"Our yards were corispicuous for their resemblance to a blignted forest - a wilderness of bare poles around which grass grew luxuriantly." f But again, as the decade ended trade was swinging up. In 1889 when the British Association paid its third visit to Newcastie, Tyne yaras were launching 280,000 gross tons of shipping and those on the wear 212,000.

* See his paper on Shipbuilding at the B.A. iveeting in Newcastle in ly४9.
** Tables given in "Where Snips Are born".
*** " " " "Trie making of. the Tyne".

LABOUR KELAIIONS

'Ine wild fluctuations of output were among the main sources of friction in labour relations. For a downturn in trade was always followed by a request by the employers for a $5-10 \%$ cut in wages, while an upswing was equally autonatically followed by demands for a 5-10\% increase. Almost invariably these requests from one side or the other were met with immediate rejection and often a strike, or a lockout, would follow. inere was as yet no conciliation machinery despite the attempts at Sunderland and employers of cen seemed to nave no regard for the finer points of negotiation.
'rhe most important ana prolonged dispute in tnese years was caused by the Nine-mour flovement, an attempt to reduce the working day from ten to nine hours, making a 54-hour week.*
'Ine men's argunent was tnat sucn a reduction would equalise the benetits springing from tne introduction of new machinery, whereas it had so tar simply increased employers' profits. Snorter nours would also leave nore time for "mental and moral" training to the benefit of the individual and tne employer.**

In February 1866 a mass meeting of over 2,000 men agreed to send a petition to Charles palmer at Jarrow calling for a nine-hour day. Palmer called a meeting and after a great deal of aifficulty and against a steady barracking, ne managed to convince tne wen not to use nis firm as a battlegrouna for tne $\bar{N} i n e-n o u r$ movement. *** *

Paliner's argument was that hịs ladour costs were already nign, certainly nigner than on the clyde, and there was a t'ear of increasing foreign cowpetition. He added that many iyneside employers had agreed on a coumon policy of resisting the demana, as had employers on tne rees, who would impose a lockout. ****
iveverthelesss, men on Teesside decided to press their case and went on strike. In middleshrough the strike lasted for aoout 12 weeks with two swall concessions finally won by the men: the working week to consist of 59 nours; payment of wages to be weekly instead of fortnigntly, thus reducing the need of the poorer-paid to rely on creait. θ

```
* j.F. Clarke.p.252-293. i:** Ibid. **** Ibid. **** Ibid.
0 Ibid.
```

On Tyneside matters moved more slowly. Charles Palmer managed to get rid of Andrew Gourlay, a forceful character who had deen tne main centre of resistance to nim.*.

But by $18 \% 1$ Gourlay was President of tne Sunderland strike committee and ne organised a strike in all the Wearside engineering works for a nine-hours' day. The strike lasted three weeks but ended in success. 'The employers agreed to a nine-nour day as from lst July. Sunderland then set the pattern for the rest of the country.

By the end of April, wren victory on tne Wear was already certain, attention was turned to tne Tyne. The men's leaders noped to succeed without a strike but the employers' attitude, exemplified oy William; Armstrong, was not only negative but "cavalier", to use the "Spectator's" phrase.

Armstrong's was tne biggest factory in tine area, with 3,000 employees and it becane tne centre of tne batile. Armstrong was determined to resist the demand; with success on .Wearside the men were equally determined to press tileir demand. Trade unionism on the Tyne was less strong than on the Wear and thus financial strength would be weaker. But the ivine hours League tnat was set up was in itself virtualiy a trade union. In fact, the Webbs wrote: "rine vine nours League became in fact thougn not in naue a temporary: trade union, its:= committee conducting all tre negotiations on the men's benalf, appealing to the trade union worla for tunds for their support and managing all the aetails of the conflict that ensued..."*.*

The employers' association turned ciown the aemand and the nien resolved to strike. "So began one of the most significant strikes in tne nistory of tne Britisn working class, a strike by a nuge body of non-trade unionists wnich lasted 20 weeks and in its final victory secured a general reduction: of working nours for a national industry - engineering." ** *

* "The Town That Was murdered". p.94.
* * " History of Trade unionism," page 3i5.
** * J.F. Clarke - "Labour Relations in Engineering ぬ Shipouilding in ivorth East in Second Half of l9th Century" (M.A. Thesis Newcastle university 1960).

About 7,500 men nanded in their notices in an attempt to stave of t^{\prime} prosecution against breach of contract. But tnis ploy was not altogether successful and the employers managed to sue them - and this intlaued passions still more. Many skilled men lett the area. in fact the united States consul in: Newcastie, Evan R. Jones, wrote in nis Keport to the U.S. Government, 18'73 (page 9): "The U.S. acquired some firsi-class workien in tine course of tne strike."

The sirikers gained the sympathy and support of a number of newspapers and magazines. The "Spectator" wrote: "piasters who reply cavalieriy oy lawyers' letters to the demands of their men, refuse personal discussion: and act as nearly as they can like despotic governments against revolutionary dodies can naraly expect tneir moral ciaim on the sympathy of the public to be conceded."

The employers eventualiy agreed to the 54 inours' week from lst january $18^{\prime} / 2$ as long as tne men would work overtime at tneir request. Tne 54 nours' week remained the general rule until January 191y wnen the 4%-nour week was conceaed.*

One!:Sunderland firm wade the concession, nowever, as early as l88.9. This was Short Brothers Limited of Pallion.** A commentator wrote: "The firm have found that instead of the production being less frow the apparently shorter hours of work, it has on the contrary gradually increased... The men started at six o'clock and stopped at eight for a nalf nour for wreaktast, nad another interval of an hour at noon and the day's work finished at five. The conditions under whicn the old system was carried out were such that many workmen were incapable of maintaining the long hours. It was in point of fact quire common for a men witin 24 s . a week to lose on an average tince quarters per week simply decause ne was unable to rise at six o'clock and work fulltime... under tne 48nour system, the men start after breaktast at 7.30 and go on with only one break until 5 o'clock... They are able to do more work this way than under tine old system and at the same time more work is got out of the macnines.n ** *

[^3]The success of tne Nine mour League encouraged trade unionism and the individual unions began to think of combinirig to form organisations comparaole with the employers' associations. In 1873 a Newcastle and Gatesnead Trades council was formed. Soutn Snields nad formed one tne year before and Sunderland was to follow in 18\%4. In 1890 trades councils were formed at Harclepool, Stockton and 'Hornaby and in 1894 tne North East Coast Federation of Trades Councils was estailished.

The employers had formed temporary associations when dispures arose for many years. In 1852 and 1850 employers on tne wear nad tried to form lasting associations but witnout success\% It was l6\%O before a auraple association was formed.

During the 1860's there was an informal association on the Tyne under Palmer's leadership and ot'ten tne Tees-side yards followed suit too. By l l tended to cover botn Tyne and wear and dy 1890 the Boilermakers' Society agreements covered all three main North East rivers.

Over the period now under review, wages continued to fluctuate according to the state of trade as below:-

WEEKLY EAKNINGS OH BOILERVAKEKS AF PALWEK'S WUkhS IN JARkOW **

	18.11	1882	1885
	60 inrs.	54 nrs .	54 hrs.
Platers	54s. 6d	777s. 6a	57s. 1d
Riveters	34s. 5a	51s. 2d	37s. 3d
A.I. Suiths	45s.9d	84s. 1d	55s. 3d
Caulkers	38s. 6d	45s. 9a	40s. \%a
urillers	35s. 7 d	34s. Od	25s. هd

[^4]During the early 18'70's there were a number of disputes, apart from the ivine nours movement, over wages and the classification of jobs.* the disputes did not become serious until late $18 \% 4$ when the downturn of trade made the employers on all tnree North East rivers call for wage reductions of 10% on day rates and 15% on piece-work rates. A meeting of joiners in ivewcastle in December 1874 refused to accept the reduction "in as much as we do not consider the state of the trade is so depressed as to warrant sucn a large reduction." * *

The Sunderland Trades Council considered the matter in vanuary $18 \%, 5$ and also agreed to resist reductions.*** $H_{\text {s }}$ a result of these indications of a firm attitude on the part of the men, the wearside employers decided to drop tneir requests and subsequently notices on Teesside were also witharawn.

But Tyneside employers remained firm in their determination to cut wages and a lock-out ensued involving thousands of men. After four weeks, the employers agreed to re-open ineir yards on the previous terms. Thus again the men found that concerted effort orougnt rewards trat individual action coula not. ${ }^{* * * *}$

Trirougnout 1875, nowever, demand continued to drop and Tyneside employers revived their proposal for wage reductions. l'he proposed reductions brought a conciliation board into existence. At its second meeting at tine end of ivovember 1875 the Board arranged reductions for various trades. 'The boilermakers' Society refused to accept the work of the Conciliation Board and negotiated with employers separarely. The result was an acceptance of a 5% reauction in piecework prices. ${ }^{*}{ }^{*}{ }^{*} * *$

The refusal of tne Hoilermakers to accept the findings of the Conciliation Board led the joiners to follow suit. When an employer, Andrew Leslie, also refused to accepti its nediation; the Conciliation Board collapsed. θ

```
* J.F. Clarke. p.300-301.
** Newcastle weekiy, Chronicle, 26 th vecemper 1874
```



```
    p. 317 .
```

The depression continued tnrougn lð'7.7-૪-9. In Sunderland, boilermakers reported that there was "not enough work for one third of our members... formerly employea."* Again, wage reductions were proposed. ' 'he Wearside employers.sougnt to reduce the wages of shipwrights by 3s. a week but tempered tnis to 2 s a week whichtwas accepted.

On tne Tyne, men were paid off for refusing to accept a $7 \frac{1}{2} \%$ reduction. Tne Newcastle Cnronicle estimated that between $\%, 000$ and 0,000 were idle. Within: two weeks a settlement was agreed on a 5% reduction. **

The depression of the $18 \% 0^{\prime}$ s was followed by a boom at the beginning of the lช४O's. Hetween 1881-2 national output rose by 33%, while on the wear the comparaole figure was 43% and for tne North East as a wnole 26%.***

Hy 1884 depression had returned again and was to last until lơ 8%. Even so, census figures for 1881 and l891 snow snarp rises in shipbuilding employment. In Durham the numbers of shipwrights increased from 10,263 in 1881 to 18,970 in 1891, while in Northumberland the numbers went up from $4,1 \% 0$ in l४४1 to 6,701 in 1891. ****

The boom of the early l880's led to the expected demands for the restoration of wage rates. On. Tyneside there was a general increase of $5 \frac{1}{2} \%$ from August 1880 and tnree months later another $2 \frac{1}{2} \%$ was conceded. θ

The Boilermakers' montnly keports (Nos. 94, 95 and 98) described the situation on tne tyne and Wear as one where it was "almost impossible to find men to supply the demand or fill any vacancy tnat may occur."

These frequent wage fluctuations were a characteristic of the industry and sprang from its labourintensive nature. If more than $\% \%$ of total costs arose trom labour, then wages must be regulated according to the level of trade in order to bring more orders into play or to give labour its reward from over-denand. That was the argument.

$$
\text { * U.F. ularke, } * * \text { Ibid. } * * * \text { ibid. } * * * * \text { lbid. } \theta \text { Ibid. }
$$

It sprang from tne earliest days of shipbuilding as an industry, i.e. fromi 1820-30 onwards, and altnougn as we nave seen wage regulation often caused industrial unrest, the system was accepted as inevitable. In fact it overlooked two more imporiant factors, tne level ot freignt rates and the total production costs. Freight rates were - and still are - ithe most important determinants of orders.* Assuming that ship prices did not get wildy out of line with current trends, then shipowners placed orders on a rising freight market and witnneld them on a declining one. In fact since the uarket is a summary of tine most popular view at any one time tnis meant tnat most orders were placed at a time when everyone else was placing tnem and were witnneld when everyone was witnnolding. tnem. Such action, instead of being shrewd and intelligent, meant that on the one hand, orders were placed when yards were already full and could demand premium prices; and on the otner nand not placed at a time when yards were slack and could offer a discount. 'I'he short-term was the only target, despite the missing of bargains or the payment of excessive prices and ladour relations suftered as a result on tne wrongtul assumption that snips' prices were the critical factor. Yet, as indicated above, we can assume they never seriously got out of line, tirst because of the play of the competitive market and secondy because the wage reductions demanded were seldom more than 5%, which is tantamount to an indication that ship prices were not tar out of line.

The second important factor that was overlooked witn the wage-regulation system was the total production. costs compared with lanour costs. Within the shipyard itself labour provided by far the most important cost tactor but shipbuilding was - and still is - primarily an assembly industry. "Nearly three quarters of the final cost of most ships represents bought-in materials and components including the main engine; the cost of snipyard labour is only some tifteen to twenty per cent of the total cost of the ship." **.

Relationship between shipouilding production, prices and the freignt market, by Maxwell Ballard in a papenvto; then Ni.EguInstitutioneoflEngine ensosecŞipbudirdefsj3/Deqemier. 1920.
** Snipbuilding Enquiry Committee 1965-6 Report, cmnd. 2937, p. 12.

His is a severe indictment of the wage regulation system. It indicates that it was alinost completely ineffective in its purpose yet the impact of such a policy on labour relations was extreuely aamaging to the industry. We have seen in the examples biven above and we snall see in otners below that thousands of man-hours were lost in strikes.

But the short-term effect was nothing compared witn the long-term. A sharp division of interest was created between management and wen, an attitude of "tnem and us", which has beaevilled the inaustry ever since. Throughout the whole of its recent history, shipbuilding nas nad adeplorable record of labour relations and mucn of tre responsibility lies witn the wages policy. The wage regulation system, although tne worst aspect, was not the only culprit. Almost equal tault can be tound with the system of aitferentials tnat existed between trades. It was these differentials and the petty jealousies that they created tnat were benind neariy all tne inter-union disputes in the industry that became as common as the union-management disputes. It would not be too much to say that if wage regulation and the differentials could have been eradicated from the eariiest days, many of the labour relations problems would have been solved too and a far nigner level of proauction and productivity would nave been possible. 'ihis is a comment that is applicable to any but perhaps tne wost recent period in the nistory of the industry.

In: lð૪. 3 Wearside employers and boilermakers took a significant step forward in trying to eradicate wage tluctuations wren tney signed an annual wages agreement.* Kobert knignu, the general secretary of the Boilermakers' Society, wrote in the monthly keport (nos. 129): "We should be pleased it all our members would follow this good example. We should have peace and... would protit much... in the end.

But aisputes remained a part ot life. "nere in sunderiand, tnere is sure to be a dispute of some kind on every vessel defore triey start and nalf a dozen before sue is finisned." **

[^5]* *. Boilermakers' Society monthly keport, No. 94.

Tne early l४૪O＇s．saw a severe depression．The Wailsend Slipway and Engineering Ciompany reduced its labour force from 1,245 to 812 within 12 months and average earnings fell from ょठ9 to ます。．

Employers througnout the region called for wage reductions and reductions of $7 \frac{i}{2} \%$－ 10% were accepted on the＇Iyne and wear withour a strike．＊＊By April 1884 the Shipping world reported that＂not less than \％，000 workmen are lying idle＂in Sunderland．

In vanuary 1885 furtiner wage reductions were accepted on the Tyne and Wear but on the Tees some men went on strike for 17 days before agreeing to a reduction in piecetime rates of $7 \frac{1}{2} \%{ }^{*}{ }^{* *}$

In 1885；the Wear was at last successtiul in setting up a conciliation board．θ It nad a very difficult immediate problem to solve but it succeeded in doing so． Snipwrignts on the river presented it with 300 instances where they should have been doing work given to joiners．Arter many meetings the Board reduced the points of difference to ll，and finally just three points nad to be submitted to employers for a decision．Tnis was the beginning of better times．james Laing could tell the Royal Commission on Labour in 1892：＂Since then．we nave nad no strikes on tine Wear．＂

Further calls for wage reductions in lð४6 did not meet with the acceptance that the imuediately prior claims nad met．t Between 6，000－7，000 men on the lyne went on strike for seven weeks but eventually they nad to agree co a cuitiv of 5% ．

By 1887 trade was Deginning to turn upwards and 1888 brougnt demands for wages increases．＋In August there was a 5% increase on the Tyne and the wear and in the following year two increases each of 5% were granted．wage fluctuations thus continued at full spate as a normal way of life．

```
* "Launching ways".
** j.F. Clarke. *** Ibid. 0 Ibid. t Ibid.
+ Ibid.
```

Between l879-1890 there were 13 cnanges in the piecework rates for shipyard workers on the lees, more than one a year, and an even greater number on the tyne and Wear. Over the period, as table XII in the final chapter snows, the decreases added up to 48% while the increases to only 35% indicated a considerable drop and in the living standards of the workers at a time of rapid industrial growth. At the same time tnere was a substantial t'all in tne cost of living so tnat real wages probabily increased.
NEW' NiETHODS
There was a growing sopnistication in tinese years in materials and processes. By 1890, steel was widely used in almost.every part of tne structure. In tact over a million tons of steel shipping was being built. In consequence the price fell from wi2. lOs. Od a ton in l881 to 56 a ton in 1893.*

Large furnaces were used for heating the plates. Huge shearing, punching and bending machines were in operation, togetner witn nydraulic rolls for giving the proper curvatures to garboard and otner plates. sowe yards even possessed nydraulic riveters to ciose keel rivets of unusual dimensions. Powertul loco cranes were used and so were sneer legs to lift neavy machinery into the ship.

The new scientitic methods and the larger capital investments meant tnat many small firms naturaliy disappeared. They meant, too, that the Solent and the Thames, which had been aominant in the days of wood, fell away. Tne new metal snips propelled by steam were built in areas like the forth East, and the clyde, where nignly developed iron and steel and engineering industries were located. Some'shipbuilding firms, like Palmer's, saw an advantage in possessing their own iron works. some, like Andrew Leslie and company, who amalgamated with R. and H. Hawthorn in lชठ5, saw an advantage in having tneir own marine engineering facilities.
*
William boyd, "ine story of tne wallsend slipway and Engineering Company Ltd." lठ\%l-lðy\%.
"On tine other naná; an engineering works like Sir w.Go. Armstrong's saw an advant'age in going into shipouilding. But establishing marine engineering facilities was not universal or essential. Laings, founded in l'793, Bartrams in 1837 and linompsons in 1846 , nave all managed to survive simply as shipbuilders. On. the other hand, some marine engineers, like George ilark, founded in 1854, and the No.E. Marine Engineering co. in 1865, have remained specialists in tnat line.*

Because of the growing importance of marine engineering for its own sake and because it helped to reinforce in shipbuilding an appreciation of scientific methods, it is worth looking at the amalgamation of Hawthorn's and Leslie's in some detail.

Robert Hawthorn, the main driving force of the works, had died in l86'7. "So passed one of tne early pioneers of the marine and locomotive industry in this district, a man of numble origins, wno, by his mechanical ability, skill as a craytsman and an inventive mind, built up from very small beginnings one of the most tamous engineering works in the world."** Two years later williang: Robert's son, retired and handed the business over to his son. But since the balance sheet had not been too nealtny for years, father and son decided to offer the company for sale.

After a great deal of negotiation, 3l-years old wir. B.U. Browne was finally persuaded to take it over. Since he lacked marine engineering experience, ne asked Francis Carr ivarsnall, tnen with Palmer's, to join him. Palmer's were so furious tnat tney never placed an oraer with Hawthorn's again.. ***

Marshall realised his own value and ne set nis terms hign. ne wanted a salary of $\begin{aligned} & \text { l, } 000 \text { a year, plus a }\end{aligned}$ quarter of all the profits earned after paying 5% dividend. browne agreed. θ The next problem was tnat a big injection of capital was needed into the firm, 260,000 in all, but this was found too. 'rogetner witn the new management, the new investment turned the business into a profitable one. Soon additional space was required. in 1872 the firm was placed on the Admiralty List and for many years the St. Peter's Works were employed almost entirely on Admiralty contracts. warships were also engined for China, Gnile, France, Japan, fussia and Italy, and tne work was very profitable..+

* See "Ine Economics of Snipbuilding in the U.K." by u.K. Parkinson. p.40-41.

By 1890 the triple expansion engine had superseded the compound engine which had deen in universal use in l४४O. Marshali's contribution to the change was substantial. It was in l 884 that ne designed and built. tne twin screw triple expansion engine for tne Italian cruiser "Dogali", which had been built by Sir W. G_{L}. Armstrong, witchell and company. For those days, diarshall's engine which developed $\delta, 000$ i.h.p, had an extraordinarily low power/weight ratio. Its success brougint many repeat orders. The triple expansion engine became the staple output or the works and marsinall became one of the leading marine engineers in the world. *

In 1885 the company decided to amalgamate witn Andrew Leslie ó Co.g to form k. and W. Hawtnorn, Leslie and Co.. Soon afterwards tne Italian Governmerit, which had been a good custoner, decided that all ships and engines should be built at noue. Hawthorn, Leslie's countered by setting up a subsidiary in Italy, Societa Industriale Napolitana hawthorn Guppy, with a capital of ま20,000. At first plenty of work resulted from tnis move, but it tailed off and in 1904 nawtnorn Leslie witndrew.**

At nebburn the company continued to have pienty of work but the financial results were often disappointing. In September 1888 alone, for example, it bookea orders for nine ships and their machinery and for four independent sets of machinery. Yet the results in that financial year showed a loss of $\dot{x} 16,000$ because prices had been set at too low a level. The estimating and costing wetnods seemed inadequate. The tirst warship duilt at Hebburn, the third-class cruiser Hovi.S. "Bellona", resulted in a loss of ま14,000 to the company..***

In the financial year ending uune l890, the company launcned 11 ships, delivered 32 locos and the Hawthorn Guppy works were full of orders from the Italian Government. but the financial result was a profit of only \&lర,000. New capital, new machinery and new management were needed but it was some years before tney were all proviaed. ****

```
* "A inistory of K. & W. nawtnorı, Leslie o Co. Ltd."
** Ibid. *** Ibid. **** Ibid.
```


MAKINE ENGINEEKING

During tnis period, two other Tyneside marine engineering tirms who were to gain international repute had come into existence: the Wallsend Slipway and Engineering Company and the worth Eastern wiarine Engineering Company..* The former was the pioneer of marine engineering at Wallsend and was estaolished by three shipbuilding or shipowning firins. They were: Cnarles mitchell and Co., of Walker; wessrs. Watts, milburn and cio. of Blytn and Newcastle; and miessrs. Nelson, Donkin and Co.. of Nortn Snields and Newcastie.

They decided to set up a slipway and repair yara, primarily tor their own vessels. As a result tne Wallsend slipway co.. Ltd., was formed in ivovember 1871 with an authorised capital of 345,000 , of which only £ 8,250 was paid up at first.

An account of the works a couple of years after it began said: "It was rather a areary looking place in these days. There was a small shop at the nead of the slipways containing tine nydraulic machinery for hauling up the vessels and a limited number of machine tools for executing the repair work. At tine western end was the boiler shop, with a few cools. The whole being about 140 tit. long by 70 ti. wiae overall."**

At this time in 10.74 the firm employed 300 men and the annual wages diil was 222,000 .**苜 τ was in this year coo with the arrival of a new managing director, William Boyd, that the company began to take a greater interesi in tne engineering side tnan in ship repairing. The first managing director, Linarles Sneritan Swan, who had gone off to take over wiessrs. Coulson, looke and Company's Wallsend shipyard, had Deen more interested in shipbuilding activities.

Within a few months, boyd raised the question of manufacturing marine engines and boilers, wainly to keep the workmen togetner during slack repair times.
\%: See "nistory of the Parish of Wallsend." p.316.
** Willian boyd.
*** Ibid.

The engineering business tlourisned and soon boyd was turning to steel boilers. In fact, in ll'7ర, his company made the first steel boiler on the fyne. it was installed in the "Etnel", built by Mitcinell's for messrs. henry Clapham and co. The plates were of Siemen's mild steel and rolled at Landore in South wales. The price was wi4 a ton. In that year the word "Engineering" was aaded to the coupany's title.*

Four years later it built the first triple expansion engines on 'iyneside. they were designed by inr. Alex taylor and fitted to the "lsie of jursey" owned Dy ivessrs. Dixon, kobson and Co. of Newcastle.
by the turn of the century, the company had grown to a nuge engineering works. So, too, had the North Eastern ivarine Engineering Company which was the first large works in the country to purchase electric power in bulk. For some years indeed the firm was the largest purchaser of electricity in the country.

It had begun business in 1865 at south yock, Sunderland: In l8४2 the company expanded by opening premises at wallsend. ** 1 t built nouses for its worknen at the same time: there were houses for foremen at Northumberland villas, for the mechanics at ivorth ferrace and for lower-paid employees at South ierrace.

All the time the frontiers of machine capabilities were expanding. Froiu the 1850 's we can see the rapid increase of boiler pressures from 15 lbs to the sq. in. to 150 lbs., the doubling and even trebling of speeds and yet constant reductions in fuel.

As late as lष'72, for exampie, the average consumption of coal per indicated horse power per hour was 2.11 libs. Only rine years later, this nad aropped to 1.82才 los - a. reauction of over 13%. During tne same nine years average piston speeds went up froin 376 ft. per winute to 46 if f^{\prime}. and the average working pressures went up from. 52.5 lbs to 77.4 lbs per sq. in.

In üuly 1895 when he was looking back over nis 40 years in marine engineering, mir. F.C.. Marshall, of Hawtnorn, Lesiie, said: ***

[^6]"In 1655 I conducted the trial of tine "Brigadier", a Tyne vessel, and took my first set of indicator caras, showing $210 \mathrm{n} . \mathrm{p}$. on $\% \mathrm{O}$ revolutions and steam 15 lbs . In April 1894 I attended the trials of the Italian ironclad "Sardequa!, 13,800 tons displacement wnen she developed $24,000 \mathrm{~h} \%$. or 112 revs. with a steam pressure of 150 lbs snowing by contrast ten times the steam power, over one and a half times the revolutions and 1,100 times the $n . p$., as the pregress in 40 years."

NEW FIrimS

ineanwhile the number of yards on the Tyne nad continued to grow. In 1863 messrs. Schlesinger and vavis had started a company at wallsend.* ivartin Schlesinger nad begun his career as an engineer at Stepnenson's engine works while Frederick Lavis nad been trained as a shipouilder unaer mr. Charles mitchell. The partner's first two ships were sailing vessels but in 1804 tiney laid down a steamsnip, the 411 gross ion "Llanaafi". In l8>0 Schlesinger's nealtn broke and Davis wougnt out nis partner's interest but continued tne firm unaer the old name.

In 1659 Robert Marshall, the son of Thomas Marshall
of South Snields who had built the first iron ship on the 'ryne, opened a shipouilding yard at Howdon. Being an enginewrignt rather than a shipbuilder, Marsinall took on two managers, John headinead and Jonn Sotitiey. When the business failed in l 1665 , the two managers set up on their own account. in ly\% the nowdon yara was taken over by two brothers from the soutn of England, nenry and kobert Cole, but aiter tive years it again failed. The manager, William jonn borie, believed it could nave a successful future, nowever, and a few months later, witn the nelp of some friends, he opened the yard again. "nis skili, energy and uanifest ability turned tne tide and solid success rewaraed nis efforts," wrote one nistorian.**

His tirm was called the Tyne Iron Snipouilding Lompany and it became one of the most important on the river.

* See "History oí the Parish of wallsena" oy william Richarason, puolished in ivewcastle 1923, p.302.
** wm. Richarason in "ristory of tne Parisii of Wallsend",
p. 311.

Anotner important company nad been formed in 1865 wrien iarshall's business at nowdon had failed. Tnis was a partnership between the two former nanagers, jonn keadnead and jonn Softley.* The two partners set down ま2,860 of their own capital and built a yard in South snields.

Tneir first sinip, the "Unus", was a small collier brig, of 183 tons, whicin traded to the baltic, to France and the mediterranean. The partnership prospered for seven years, during which time 8 ' 7 small craft were completed, including the first ship ever to be classed 100 A.l with Lloyd's kegister. This meant that Lloyd's surveyors believed the ship would remain a top-class insurance risk for 100 years.

In 18 '72 the partnersnip was dissolved and volyn Keadhead continued on his own.** business flourished and by the end of the seventies, the founder was looking for more spacious premises. in lठరO the firm moved to west Docks, where ir reorganised tne number of bertns to take the larger and neavier ships to come. Just before the move in l8'\%, Join Readnead had been introduced to Edward Hain, the 26eyears old neir to a Cornwall fishing and deep sea shipping organisation. They liked the look of eacn other and Hain placed an order for a screw steamer "Trewidden". That was the beginning of an extraordinary association. between then and l४ठष fifteen ships in all were built by Readneads for Hain. but tnis was only the start. For many more orders were placed by Hain and to date keadheads have built 87 ships for the Hain Company, prodably the bigesest number in the world ever to nave been built by one builder for one owner.***

At blytr, developments were more gentle. The first dry dock had been opened tnere in 1811 by a builder named stoveld. The premises were later sold to a shipbuilder called Robinson, who with beaumont and Drummond had a yard itt Cowpen Quay. There were another two yards at the Floating Dock owned by tne blyth bock Company and Soulsby's.

* " john Readnead and Sons, a riundred Years of Snipbuilding at Soutn Snields", puolished by the firm, p.6.
** Ivid. . *** Ibid.

By 1863 Soulsoy had been joined by a partner, modgson, and in: that year they took over the yard owned by beaumont and Drummond. In lx'79 they took over Robinson's yard.*

Meanwhile, the union Co-operative Shipbuilding Company nad been formed by Richard Lough and a partner called Heron in l868. The latter was to carry it on until 1902 when it was closed.**

Wooden ships were built in the town until 18\%3-4. But tnere was no easy transition to iron shipbuilding. The first attempt at building an iron ship in Blyth was made in lo7o by Chapman Towers and iorn. The vessel was never completed.

The effective start in iron shipbuilding was then made in l8லO by hodgson and Soulsoy. iney built two iron hoppers for the Kussian Government. They followed this the next year by the "Speedwell", a cargo ship for a cardiff owner. 'lwo years later, their firm was taken over by the blyth snipbuilding Company.

Undoubtedly the two most important developments at tnis time, nowever, were the founding of Swan and nunter and trie amalgamation of sir william Armstrong's business witin that of Charles Mitchell.

As we have seen, Charles Hitchell had started one of the most successful Tyneside yards in 1852. He had been born in Aberdeen in 1820. when ne was serving his apprenticeship he nad arranged witn tne local policeman to wake him at four o'clock every morning to give Him more time for study. For some years ne nad been assistant draughtsman to vonn Coutts, botin at Aberdeen and at Walker, before starting up on niss own at Walker.***

Tne business prospered. Contracts even included warsnips tor tine Kussian Czar and between 1862-\% , while tnese snips were being built, Cnarles Sneritan Swan, mitchell's protner in law, lived in St. fetersourg to nandle all negotiations.

In 1871 witchell acquired a small site at St. Peter's and two of his associates began ouilding ships there under the title of Coulson, Cooke and Company.****
 *** See "Launcning ways" a nistory of Swan, funter and Wigham Richardson, Ltd., puolisned by tre firm in 19513.
**** Ibid.
dwo years later tne new firm moved to a larger site at Wallsend but soon ran into tinancial trouble and nad to be rescued by mitchell. The latter placed in cnarge his brotner-in-law Cnarles swan, the, former managing director of the Wallsend Slipway Company.

The new company diä weli but on 20tn April 1878 Swan was killed when he fell over. the bow of a steamer returning from Calais to Lover and nit a paddie.*

At about tnis time George burton inunter, a Wearside shipbuilder, who was still in inis early thirties, dissolved nis partnership with S.P. Austin. He was thus able to enter negotiations with witcnell and nenry swan, brotner of the dead man. A new partnership was formed on lst January 1880 , Swan and inunter, witn munter as tne managing director.
"munter was a man of outstanding tecnnical and managerial qualities, coupled witn a strong sense of vocation."** He nad been born in Sunderland in 1845 , the son of a shipowner and sailor. In. 1860 he nad been articled to the firm of Pile, nay and Company and in 1869 he broadened his experience by going to tne clyde shipbuilders, kobert Napier and Sons. When he returned atter two years ne was made manager of Pile and nay at the age of 26. Three years later he nad joined S.P. Ausiin as a partner.
but now in lð૪o nis real work began. Tne Wallsend of those days was little more than a village. It had 6,000 inhaditants, most of whom were employed in mining. by 1903 the population nad increased four-fold thanks to the success of tne local shipyard.

In l४૪০ the wallsend shipyard covered only seven acres and had a river frontage of 100 yards. Tne parisn rent for land and buildings was $\% 640$ a year. ine yard had four ouilding berths, witn a naximum length of $300 \mathrm{ft} .$, and 700 men and boys were employed. lhe output in munter's first year was 8,532 gross tons. ***

By lð४ 3 the yard had built 40 iron cargo vessels and the following year it built wallsend's first two steel ships, the "Burrumbeet" and "Corongamite", both of 2,420 gross tons, for the Australian passenger and cargo trade.

* "Launching Ways". ** Ibid.
$* * *$ "The History of the Parisi of wallsend."

Charles mitcrell was also involved in the formulation of the otner great lyneside enterprise that brought Sir William Arinstrong directly into shipbuilding. In l86\% Armstrong's Elswick company had decided to build warships and arrangements were made to build tnem at mitchell's Walker yard. Between that date and lष४5 about 20 warships were built, half of tnem for the Cninese Navy. The greatest weight was about 550 tons displacement and the top speed $12 \frac{1}{2}$ knots. *

In 1883 Armstrong and witcneil deciaed to amalgamate and Armstrong took over mitcriell's Low Walker yard. up to this time mitcnell had built 450 vessels. He employed 2,500 men and had turned out as muen as 30,000 gross tons of shipping in a year. With the amalgamation a new yard was laid out at Elswick next to the ordnance factory for producing warships while the walker yard was to concentrate on merchant shipping.* *The new Elswick yard was inaugurated in October 1884 when the protected cruiser "Pantner" was laid down for the Austro-fiungarian Government. The following year, the "victoria", the first battlesnip built at Elswick was commenced for the British Navy and a sister ship, "Sans Pareil" soon followed. During the next few years warsinips of every type were built at Elswick for vapan, China, U.S.A., brazil, Argentine, Cnile, Norway, Portugal; Italy, Roumania andSpain. ***

No wonder one observer commented: "The Elswick establishment (with its armament manufacture as well as shippuilaing) could be regarded as notning less than an arsenal which in time of war would be invaluable to this country." ****

While another wæote: "Consider that the Eiswick works began 48 years ago on trie verdant banks beyond the western limits of the town with a nandful of mecnanics headed by a scientific dreamer of immature age and no experience. Consider tnat today (l894) tnese same works are a national glory, employing 13,000 men, dictating the methods of tne world's warfare and naving a reputation wnich nas reacned the ears of every intelligent man in Europe and Anerica and then ask if tnis is not a romance in hara fact. The place is one of the signts of England--Their size, their completeness, their tremendous productive energy, their variety of blast furnaces, foundries, machine ships ana chemical laiooratories,

* See a paper on Armstrong's warship production read ty u.R. Perrett, Chief Naval Architect and General manager of Sir iw.G. Armstrong, wnitworth \& Co. Ltd., to N.E. Coast Institn. of Engineers ó Shipbuilders, uuly 1914.
teeming witn human life, reverberating witn the shriek of steam, the clang of hammers and tne whirr of macninery, overhung by a pillar of cloud by day and of tire by night, present a picture of concentrated induetrial activity which overwhelms and astonishes the average observer.*
'There was indeed probably not anotner establisinent like Armstrong's in the world. It contifined steel works, using the Siemen's process; engineering works, where hydraulic machinery of every description was turnea out and where alone 1,500 were employed; an ordnance department employing 3,500 to produce 2,500 tons of Armstrong guns a year; and a naval shipyard witn an area of 16 acres, a river frontase of avout $2,000 \mathrm{ft}$, , and a depth in the finishing berth at low water of 26 ft. inis depth was only possible because of dredging which had started in $18 \% 6$ to nelp to get tne mitchell-built ships up to Elswick to load their armaments. Tne old Tyne bridge was also demolisned in that year and replaced by a swing bridge built by Armstrong.

The river tyne had already been capable of building a complete warship. some were built and engined at Palmer's and armed at Elswick; others were built by witcnell at walker, enginea by Hawthorn, Leslie at St. Peter's and armed at Elswick. but now Armstrong could build a compiete warship himself.
, But warships were not the whole story, nowever impressive. For the new company, Sir W.G. Arastrong, Nitcheli and Company, played a fundamental part in one ot' the greaiest "yneside developments ot the century, the successtul building of oil tankers.

OIL 'IANKERS

The Anglo-American trade in oil had begun quietly in l860, when an enterprising Pittsburger brought small quantities of petroleum to this country.**

* "The waking or the Tyne" by R.W. vonnson, publisned Newcastie, 1895, p.261.

Lecture to the Institution of fiaval Architects, 27th uuly l8ठ6.
but the traac flousished and by 1864 the united States was exporting 32 w . gallons. The petrol was originally shipped in barrels, a wasteful methoa, as mr. B. martell, the chief surveyor of Lloyds explained:*
"A barrel weigns on average o4 los. or one fitth of the oil it contains and to the uselessness of this weight must be addea the space wasied in packing the Darrels in the nold of the vessel. Thus a vessel capable of conveying 2,000 tons of cargo and which, if fitted with tanks, would carry nearly tnat quantity of oil, would, if fitted with barrelled oil, carrly only 1,030 tons instead of 2,000. Horeover the iniporter has to pay 4s. 6d or 5s. od for eacn barrel at iNew York and, with the exception: of those sent back to America, they are sold in London when empty for frou 3s. 6d to 4 s . Od each. 'Tne depreciation of ls. Od to 1 s .6 d in the value of the barrel, which amounts to as mucn as 2350 to 2475 for one voyage in the instance of the 2,000 ton vessel referred to, would by saved under a bulk system."

Time, too, was important. A tank steamer of 2,000 tons d. wt., could load or unload in 10 nours under the supervision of one man. A similar tonnage in barrels would require a gang and would take tnem a week.

As far as we can now tell, the first person to build a bulk carrier was jonn Rogerson, a ivewcastle businessman, iron manufacturer and shipbuilder. He was the owner of the "mary kogerson" which was reputed to be the first ship to transport crude petroleum in barrels from Anerica to London.

On the lst August 1863 his yard launched the "Atlantic" from St. Peter's on the 'lyne. She was an iron sailing vesselddesigned to carry petrol in oulk "without tne aid of casks" and Rogerson intended her for the Atlantic oil trade. She was l48 ft. long, $28 \frac{1}{2} \mathrm{ft}$. in the beam, 16 ft. 9 ins in depth andher nold was separated into compartments by sneet iron partititions. Her career is unknown but she is believed to nave been tne first bulk oil vessels to trade between the united States and the united ningdom.

* See "35 Years of Oil Transport" by j.D. menry, editor of "The Petroleun World.: whose book was published in London in 190\%. most or the information in tnis chapter came from this source or from "Yhe beginning of the Oil Tank Steamer" a chapter in "The Making ot' the Tyne" by R.W. vohnson.

The division or the noild. was to provide tne eventual answer to sate petroleun transport but at that time the chemical properties of petrol were not properly understood and eitner the "Atlantic" or ner sister snip "Great Western" blew up in the Thames wnile awaiting discharge. fine accident meant that barrel sinipments continued as before altnough a few wooden sailing ships were converted for bulk transport.

The actual beginning of the tanker steamer remains sometning of a mystery. Tnis is pernaps natural, for witn a general public fearrof bulk oil snipments, it
is only to be expected tnat owners wanted to keep sucn a facility quiet in case passenger bookings suffered. It
is generally: said tnat Palmer and Company (later Palmer's Shipbuilding and Iron Co.) built the first tank steamer. Sne was the "vaderland". of 2,748 tons, and her owners were the Red Star Steamship Company of Antwerp. unfortunately it cannot be shown that oil was every pumpedcinto her tanks. sine was followed by tne "Nederland" in $18 \% 3$ and by "Switzerland" in $18 \% 4$ but their careers too nave been swallowed up in tne mists of time.

It was almost ten years later before tne breakthrougn was made. For in the early l8४O's oil was discovered in the baltic. ine European oil business began and with it tne search for an effective means of transport.

In early 1885 M. Menri kiety, who represented Nodel Brothers of Antwerp, demonstrated to wr. v.in. Lennard, a middlesbrougn shipowner, the advantages of using tankers for tre Russian oil trade. Tney botn consulted tne middlesbrougn shipouilder mr. E.H. Craggs, who telt the tecinical difficulties were not insurmountable although there was a grood deal of prejudice against the bulk oil trade.

As an experiment, tiney decided to convert tne "rergusons" which was built as an ordinary cargo vessel by messrs. Bertrau, Haswell and Company of Sunderland. The plans show a tier of tanks in couples above the beams and a similar tier of larger tanks below the beams. Tne tanks were built in the shipyard berths, launched and towed to tne sneer legs on the arrival of the vessel. The aeck plates and beams were removed to make a wide enough space in eacin hold to admit the largest taniks. Powerful purips were fitted to each hold. Expansion was allowed for by connecting groups of the tanks to a regulator in which a litcle oil was always kept under the control of the pumps.
ine experiment was not altogetiner successful. The first tiue the vessel got into neavy weather there was a considerable movement of oil and the joints between the tanks could not be kept tight.

The "Fergusons", which was capable of carrying up to 2,000 tons, ran in the oil trade for three years before she was destroyed by an explosion at kouen in l४४9. One acoount of the disaster which: blew ner literally to bits said the cause was a workmen smoking in one of the nolds.

A couple or years before "Fergusons" conversion, mr. Charles marvin, a Newcastle businessman, had visiced the Baltic and he described nis experiences in the Newcastle Cnronicle. His articles were carefully read by a Newcastle shipowner and broker, wames incivabib, who naq personal knowledge of Russia. Heing also a practical seaman, fe sketched a rough snip design that he thought would be suitable for bulk transport. But now ne needed someone willing to implement nis ideas.

In marcn lðठ5 a practical and lucrative opportunity offered. An Austrian oil refiner. called Singer, a partner in the tiriu of Offenneim, Singer and Company of Trieste and vienna, came to Tyneside to try to find shipowners willing to carry oil from batoun to the Adriatic. Singer had already been to London but nad been unable to find any owners interested or willing to take tne risk of bulk carriage. Mcivabb met Singer and learned from nim a great deal about the character, tne cnemical properties and the commercial value of petrol. He learned about its expansion under different degrees of temperature and about its specific gravity. All tnis intormation, which singer had gained from being involved in the oil trade with America, was most useful. Above all, it taugint Hicivabb of the great need to devise means for drawing of i and dispersing the evolved gases from the steamer's tanks.
meNabb's drawings were put into practical effect when $R_{\text {. and }} W$. nawthorn, Leslie and Coiupany were given a contract to convert the "inarquis Scicluna" into a bulk carrier. The conversion consisted of dividing tne vessel from fore to aft by a Iongitudinal bulknead. Each side was then further divided by four transverse bulkheads in addition to the engine room bulkneads already fitted to the ship. ihe eight tanks each capable of carrying 250 tons were then coverea by an oil-tignt platform stretcning tne full lengtn of the ship. A shaft tunnel ran into eacn tank for loading and discnarging and was completely covered by an outside casing so as to leave a space bwtween it and the tunnel casing. inis space woula allow tne accumulation of gases frou the oil wnicn were released to the open air througin special escape holes. The converted vessel began running under ner contract in September 1886 from batoum to Fiume and Trieste.

The successful conversion led a well-known London shipowner, mr. Alfred Suart, to ask for two ships, the "Chigwell" and the "Petriana" to be adapted by Hawtnorn, Leslie on exactly the same lines as the "Marquis Scicluna". The "C̈nigwell" was given seven tanks, the largest of which held 420 tons. she was provided with expansion tanks and all the nexessary equipment to pump her tanks at the rate of 50,000 gallons an hour. The "cnigwell" arrived at mebburn for ner conversion in April $18 \forall 6$ and was ready four months later.

Suart had a third steamer, "bakuin" duilt by Sir Williani Gray and Company of west riartlepool and a fourtn, "Titian" converted by U.S. Swan and Hunter of Wallsend but on ratner different lines since she was virtually two vessels, one inside another. The "Bakuin" was the first british-owned tank steamer turned out by a sritish yard. She nad a celiular bottom. from there to the "tween" decks, the oil extended to the side. In the "tween" decks, however, there were a number of additional compartments winich did not extend either to tne side of the vessel or to the aeck above. ine intention was that the oil in the wain nold would remain cool by the immersion of tne vessel while the tanks in the "tween decks were kept cool by not extending to the sides. It was noped triat tne tanks would also normally avoia injury if the mull should be damaged trarough a collision. The "Bakuin" was destroyed by fire in Callao bay, Peru, in september 1902.:

At about the same time in the mid-eignties, Menry F. Swan, a director of sir W. G. Armstrong, Mitcnell and Company, and managing director of their Low walker yard, was working on an alternative method that was to provide the final answer. He wondered whetner the hull could not be used as the receptacle. In November l8ర5 he took out nis tirst patent for the construction of oil tank steamers and almost inmediately implemented his designs in the "Gluckauf" tor the order of w. meinricn Kiedemann of Bremen:.

Swan's parent divided the vessel from fore to aft oy a longitudinal bulknead and sideways by transverse bulkneads, as meivabio nad done. Again tnere were special expansion trunkways for the accumulation and escape of gases. But tne shell plating of tne vessel provided the bottom and the outer sides of the tanks while the top was formed by a platrorm or lower deck.

The design of tne trunkways was the most important part of swan's patent. A number of people nad realised thet need to allow gases to escape but Swan was the nost successtul in suggesting how tnis should be done. ihe upper part of the trunkways, that ran from the lower to the upper deck and were fitted to each pair of tanks, were fitted with large, water-tight apertures and ninged covers. 'hese allowed access to the tanks. 'ine trunkways were usually kept half-tull toeensure trat the tanks cnemselves were apsolutely full in all weatners. inis was the best guarantee of stadility and obviated the need tor double-bottom ballasting. On return journeys waterballast could be carried in the oil tanks tnenselves. It was also found that general cargoes could de carried in tne oil tanks provided tie tanks were thorougnly cleaned and whitewasned betorenand.
'ine use of the vessel's skin as tank sides meant more tnan ever tinat tne rivetting and all otner joints nad to be perfectly tight. Every compartment was tested witn a nead pressure of more unan twice its norinal strain.

- 'Here shouid tnus de no irregular spaces where gases could loage. wr. E.H. Craggs, wio nad converted tine "Fergusons" remarked: "The snipbuilder may design and elaborate, ventilate and electric Lignt, introauce the most powerful and complete puwping system and pur in cofterdams and yet fail it absolute tightness is not aimed at."
'Ihe need for absolute tightness in: t'act actea as a powerful stimulus to improving the quality of work put into steamers and indeed all ships.

Adaressing a meeting of middlesbrougn snipbuilders, a Hr. J. Head said: "We know that petroleum will find its way tnrougn almost any joint and it requires a snipbuilder to be very clever to stop it. we know also that some terrible explosions have occurred tnrougn the escape of petroleum and therefore it becomes of the utwost importance that vessels incended to contain it should be made aiosolutely right and that means thoroughly good work."

T'ne skin plating in the earlier steaners was a frequent source of trouble, especially ini converted vessels. Even in new steamers a close inspection of the floors and frames after a few months generally disclosed indications of corrosion. In some of the converted vessels it was sometimes necessary to put butt straps inside and out to prevent straining and consequent leakage dut a better metnod was tne old-fiashioned one of overlapping tne plates and making sure they were really tight.

Trie "Gluckauf" was 2,300 gross tons and was the first tank steamer - her few predecessors in bulk oil transport had been sailing vessels. She discnarged ner first cargo at Geestemunde in uuly l8४6. m. kiedemann immediately placed orders for the "vorwarts", the "Gut Heil", the "Willkommen" and the "Energie", all from Armsirong mitcnell.

In fact almost at once Armstrong, mitcnells became the recognised builders of petrol steamers. From 1886 to l895 they built more than 50 of them and in the following 25 years built another 120, making a total of well over a million tons.

At first Lloyd's kegister refused to classify the new design, contending that the vessels should be built with an inner skin to contain tre oil. but after a while Lloyd's became satisfied witn tne design's efficiency and gave it tneir highest classification.

Confidence in the oil trade in fact was not very prevalent at the start. Some owners thougnt.it mignt provi a failure and tney felt it wise to order tankers that could easily be converted into general cargo carriers.

Two events in particular disturbed the early days of the trade. The tariff war between Russia and Germany led at one stage to kussian oil exports to lermany being stopped and a nuriber of oil vessels were tnrown out of work. wore serious, however, was the Suez canal controversy. This nad flared up in $18 y 1$ when an Englisn syndicate nad applied for permission to take bulk, oils carrying steamers through tne Suez Canal. Surprisingly, the request led to a oitter controversy involving the Suez Canal Company, the sritish Foreign Office and a number of petrol interests in Russia, America and tne united Kingdom.
ine suez Canal Coupany was extremely reluctant to give permission. It felt trat an acciaent to a tank steamer in the canal could have serious consequences. in particular, tne Company feared that kussia mignt use the opportunity to block the canal and destroy snipping within it be deliberately blowing up a tanker. what was more, tne Company nad the sympathy of a wide range of shipowners and seanen themselves, who felt that tankers were dangerous.

Atter considerable diplomatic (and sometimes undiplomaticjsniping, the Company agreed to let tankers use the canal as long as they complied witn the usual regulations. but despite botin the technical and the public difficulties, the economic advantages of bulk carriage proved irresistible.
in 1886 when the "Gluckauf" was launched, tnere were only about 12 buik oil-carrying vessels. in the world. Five years later there were between $70-80$ and many of tnem came from North East yards, as the following list shows:

ULL iANKEKS BUILI IN IHE N.E. IN 20 YEAKS UP TO 1906. *

Name of Builder . No.
Sir W.G. Armstrong, whitwortn \& Co. Ltd. 96
Palmer's Snipbuilding ∞ Iron Works Ltd. Iठ
Sir Wm. Gray \& Co., west Hartlepool 14
R. \& W. Hawthorn, Leslie \& Co. Ltd. ठ

Sir Raylton Lixon oc Co. Ltd., middlesbro'. 1
Wim. Lobson \& Co. Ltd., ivewcastle 12
Sir vames Laing, sunderlana 12
Swan, nunter \& Wignam Kicnardson 7
Boolds, snarer \& co., Sunderland 2
Craig, Taylor \& co., Stockton 9
Tyne iron Snipbuilding ©o. 0
J. \& L. Trompson \propto Sons, Sunderland 2
R. ©rages \& Sons, Middlesorough 7

Bartram, Haswell o Co.. sunderiand 2
Sunderland Shipouilding Go. 1
Iliff, mormsly \& Co., Suncierland 2
Furness, witny \& Co., west hartlepool 1

TOTALS

'yne	14%
wear	21
'iees	32
	200

By tne l890's most of tne essential knowledge about the sate and profitavie working oi the trade nad been gained. 'frereatter it was a question of developing size and efficiency. Tne forth East nad designed the way fior a most far-reacning revolution.

* j.v. Henry.

PALIMER'S LAS'I' YEAKS

Charles wark Palmeris revolution in building iron colliers was still unfolding. For 30 years his company hela the premier position in producing a nigher output than any other. 'ihis and nis diversification into warsinip production, iron and steel manufacture and marine engineering saw the population of jarrow increase eignttold in 30 years. In 1851 tne population nad been 3,500. By 1881 it was 25,000.*

Palmer's rolling mills, which ne had erected in 18\%4, were now capable of turning out over 100,000 tons of pig iron and 50,000 tons of manufactured iron a year. Tre river frontage of his snipyard extended over 3. 150 fr., and the uarrow works as a whole covered 72 acres. He also nad another shipyard at Howdon, where there were 4 berths. From 1881 - 3 the Jarrow ifirm sicaled its zenith of prosperity, turning out lily:000 tons of shippingis an average of 57,000 tons a year. in l8૪' 3 the total turnover was ま1,703,784 and the amount paid in wages to the 7,500 employees was ई535,288. **.

The output of the yard increased fourfold between 1851 and l४४1. ine annual average tonnage in the first decade, l85l-01, was just over 6,000 gross tons. In tne ten years 18'72-81, it was 24,700 gross tons and in tne following decade rose stili higher to $3 \%, 100$. ${ }^{* * *}$

Remarkable variations existed, howeverg in the annual outputs. For example, in lo'74 the firm launched 25.,05'7 gross tons, while two years later it launched only 8,635 tons. For the next seven years output rose steadily until in l४४3, 6l,ll3 tons were produced. ine following year tne t igure was down to $2 女, y 11$ tons and continued declining until 1887 when only 19,324 tons were produced.

Although the figures then started to improve, the company was getting. into difficult times. In l890 it made a loss of all, 000 and tne following year the loss was 222,000. In 1893 Palmer resigned at the age of 71 ratner than have to file a petition for bankruptcy. but he remained until his death the Liberal member of Parliament for the town which he nad so largely called into existence. the town indeed was his menorial. 'inere was a kospital named after him and a mechanics institute. wany ot the streets were named aiter early managers and directors of his companies. And many people in jarrow today would not be there nad not their granafathers or great grandfatners left the midlands or Sheffield, Scotland or lreland to come to work tor hin.

* "rhe rown inat was Murdered", p.7*1. Ioid. ***

He no doubt nad all the faults of an archetypal victorian entrepreneur．but his drive and imagination helped in great．measure to build one of．．the greatest industrial centres out of green fields and a snoal－ridden river．．

Meanwhile，every yard in the north east had now taken to iron and steel shipbuilding．Short Brothers at Sunderland nad built，their y first iron j ship in 10\％1．Anis was the＂nigh Stretifeld＂built for，usS．Barwick for ま9．150．．Almost，ha ti of the price went，to R_{t} ．\＆W． Hawthorn for the engines，which cost 44,345 ．Plumbing work for one vessel at this time was 40 and a sunderland upholsterer would furnish a vessel tor tile．13．Ha．

A number of yards on the wear went in for iron ships at about the same time：bartrans in 1872；J．L． ＇l＇hompsons in ľ＇l；S．P．Austin in 1869；who Pickersgill in 1880．＊＊

But the old methods lingered．Some firms even tried composite snips with iron frames and wooden planks． On the whole this compromise failed although Laing＇s produced a composite ship which was among the finest sailing snips ever launched frown the Wear．finis was the ＂rorrens＂launched in l875．．For 15 years she was the fastest ship in the Far East run and was capable of reaching Adelaide in 04 days．．Her prowess was praised by Joseph Conrad，the novelist，who joined her as second mate on and ivovember l891．He wrote：＂＇he way that ship had of letting big seas slip under her aid one＇s heart good to watch．It resembled so much an exhibition of intelligent grace and unerring skill that it could fascinate even the least seamanlike of our passengers．＂＊＊＊

The＂torrens＂was the last fuli－rigged passenger clipper ever built．She cost ${ }^{2} 27,25 \%$ ．her last passenger Journey was taken in 1903 and she was broken up in Genoa in 1910.

The ever－growing use of iron brought the prices tumbling down．Iron ship plates，which cost $2 l 6$ a ton in 1860，were obtainable for む4．11．yd in 1894．Steel plates were よ20 a ton in 1875．Twenty years later they were about 玉4．lb．Ya a ton．And the price of shipping itself fell frow £14～あ15 a ton in the lช00＇s to まち．lOs．Od a ton and even less in 1894．＊＊＊＊
＊＂mowbray Quay to Pallion Yard＂a nistory of Snort Bros． ＊＊＊P．「I．U． ＊＊Where Snips Are Born＂．

Thus by 1890 'lyneside was one of tne grearest industrial centres in tre world. As one observer wrote: "A trip by water trow Elswick to Snields narbour is full of interest and reveals an almost unparalleled scene of industry.* Great chimneys beiching forth flame and smoke indicate the presence of iron and steel works, other equally tall structures tower aioove chemical works. The tusilade ot riveters calls atiention to sinipyards which line the river right and left and hundreas of vessels plying on the iyne, besides those taking in or discnarging cargo, bear witness to the almost spasmodic energy of the district. A wonderful place truly 1 And as long as commercial and industrial superiority depend upon strength of will, business capacity and harainood, solong wili the nortmmen with their unrivalled physique remain leaders among men.":

CHAPTER 4

$\frac{1890-1914}{\text { ON TOP OF THE WOKLD }}$

WARSHIP BUILDING

Warship production played an increasingly imporṭant role in total output as the l9th century neared its close. With some very minor exceptions, it was concentrated on the river Tyne and with four firms in particular; Armstrong's, Palmers, Hawthorn Leslie and Swan \& Hunter in that order. Armstrong's moved into warship building as a form of vertical integration from armament manufacturing. For the other three firms, warships were horizontal extensions from their basic activities of shipbuilding.

An analysis of production is given in Chapter 8. It is important to record immediately that in the ten years leading up to 1914 the eight leading navies of the world spent an estimated $£ 1,340$ million, half of which went on new warships.* So there was clearly a vast market to be supplied. Here we are concerned more with the story of its development. The story must have as its main theme the progress of Armstrong's.
"Armstrong's was the most successful exporter of warships in the world and they held this position by reason of the quality both of their products and their sales organisation." ${ }^{+}$

The latter was headed by one of the country's greatest armament salesmen: Sir Eustace Hugh Tennyson d'Eyncourt, a cousin of the Victorian poet laureate. In his manner, intelligence and energy, d'Eyncourt was an archetypal Edwardian Englishman. Yet he was also a man who sold the most

* See the Government's White Paper on World's Naval Expenditure published l8th October 1913.
+ "The Big Battleship" by Richard Hough, published London, 1966, p.p. 14-15.

On top of the World - 92
fearsome military power in the world to anyone who had the money to pay. So successful was he that only eight years after becoming Armstrong's chief salesman in 1914, he was made Director of Naval Construction, the highest post the Royal Navy had to offer.

Naval building was a natural development for Sir W.G. Armstrong and Company, the great armament manufacturers. In 1867 the company had signed an agreement under which ships would be built at the Walker yard of Dr. Charles Mitchell and then taken to Elswick for fitting out with armaments. The first ship built under this new arrangement was H•M.S. 'Staunch', completed in 1868 and described as a 'floating gun carriage with fair speed and great handiness'.*

Over the next 16 years another 20 vessels of similar proportions were built, eleven of them for the Chinese Navy, two for the Dutch Government and the remaining seven for British and Colonial Governments. They were all fitted with muzzle-loading guns capable of firing shells of up to l2 $\frac{1}{2}$ inches. The greatest displacement was 550 tons and the highest speed about $12 \frac{1}{2}$ knots.**

By the early 1880's the agreement between the two companies wes obviously a success. Orders were coming in regularly and in 1882 the companies decided to amalgamate under the new title of Sir $\mathbb{W} \cdot G$. Armstrong, Mitchell and Co. Ltd. The new company took over both the Elswick works and Mitchell's Walker shipyard for $\& 1,575,000$.

In the following year the new company pioneered a new class of warship, the fast protected cruiser. The first example of the type was the "Esmeralda", with a displacement of 2,974 tons, and a speed of $18 \frac{1}{4}$ knots.***he was fitted with two l0-inch breach-loading guns and six 6 -inch guns. Originally laid down for the Chilean Government, she was later

[^7] ** ibid. *** 10id.

On Top of the World - 9
sold to Japan and renamed "Idzumi". She was the first vessel of the Japanese Navy to sight the Russian fleet entering the straits of Tsushima before the great naval battle between the Russian and Japanese fleets in 1905.

This was a battle followed as closely in shipyard drawing offices in England as in the Imperial Palace of the belligerent nations. For many of the vessels involved in this battle on the other side of the world had been built in England, not a few of them on the Tyne. Armstrong's themselves had built eight warships for Japan by this time, including the battleships "Yashima" and "Hatsuse".*

On the other bank of the river, Hawthorn, Leslie had built eight cruisers for the Russian Volounteer Fleet between 1888 and 1896, while Swan \& Hunter had also built three cruisers for the Russians in 1883.

There was naturally great jubiliation at Elswick when their large, swift warships armed with long range guns of such great striking power won the day so easily.

The market for Armstrong's naval vessels opened up so quickly that in 1884 the company decided to build a shipyard at Elswick for this type of work, thus leaving the Walker yard free for merchant ship production. **

Elswick, which only a few years before had been the home of sheep, was now the most complete arsenal for land or sea purposes in England and probably in the world.

The new yard was inaugurated in October 1884 with the laying down of the protected cruiser "Panther" for the AustroHungarian Government. This was quickly followed by the sister ship "Leopard". Both had a displacement of 1,582 tons and cost £200,000. ***

There then took to the water a multitude of men o^{\prime} war, ships of terrifying proportions for many countries. There

* Perrett. $*^{* *}$ Idid. $*^{* *}$ ivid.
were the cruiser "Dogali" for Italy, (cost £l56,040): Elswick's first battleship "Victoria" for the British Navy; cruisers "Chih Yuan and "Ching Yuan" for China; "Isla de Luzon" and "Isla de Cuba" for Spain; the "Elisabeta" for Roumania and the "25 de Mayo" for Argentina. There were also the "Buenos Aires". for the Argentine at a cost of £383,000 and the "Eidsvold" and "Norge" for Norway at a cost of £350,000 each and the "Albany" for the U.S.A., at a cost of £247,600. There were warships, too, for Chile and Portugal, Turkey and Brazil. In its 30 years of existence, the Elswick yard produced 84 warships - a great navy in itself by any standards. *

Many of these ships were the greatest of their time. The British battleship "Victoria" commenced in 1885. was the only ship then to carry 110 ton guns. The Italian cruiser "Piemonte" launched in 1889, was fitted with triple expansion; four cylinder vertical engines giving a speed of 22 knots - in excess of any similar vessel up to that date. And the Japanese battleship "Yashima" laid down in 1894, couid produce 20 knots even though she had a displacement of 12,000 tons. She was a battleship with the speed of a cruiser and the firepower of a fortress. She had four l2-inch breach-loading guns, ten 6-inch guns and many small ones. **

In 1897 Armstrong, Mitchells amalgamated with the Manchester armament manufacturers Sir Joseph Whitworth \& Co., to become Sir W.G. Armstrong, Whitworth and Co. Itd. It was the last conquest for William George Armstrong, the solicitor with a practical, inventive turn of mind who had become interested in armaments almost by accident. By the turn of the century, he was employing 25,000 men. Of all the :heroic north east stories of industrial enterprises, his was the greatest and his was the name with which Newcastle was proudest to be associated. In memory of him, the Corporation built an

[^8]On Top of the World - 95

Armstrong Park and an Armstrong Road, an Armstrong Bridge and Armstrong Institution, an Armstrong statue and too many Armstrong busts to count.

He was succeeded as Chairman by his old friend and early partner Sir AndrewNoble, himself almost as imposing a figure as Armstrong. He was a former officer in the Royal Artillery who had resigned his commission in 1860 to join Armstrong's firm. Sir Andrew, a Scotsman, helped to carry out many of the experiments into fired explosives. They made his name and the fortunes of the firm. He was supported as chairman by his sons Saxton and John and by his son-in-law Alfred Cochrane and
by John Meade Faulkner, who was later to become Chairman himself. There were many quarrels in the Boardroom over the need for new blood and new capital but the firm's reputation remained enviably high. ${ }^{\text {r }}$

It rose even higher when the Japanese Navy, built so largely by Armstrong's, scuppered the Russian Navy in 1905.

This decisive victory, based on large, swift, powerfully armed warships set off an immediate explosion for bigger ships from every navy of consequence in the world. The British committee on designs advocated the "all-big-gun" ship, H.M.S. "Dreadnought", and within weeks her keel plate was being laid at Portsmouth. She was launched within three months and ready for service in just over a year. Three more "Dreadnought" class battleships were immediately ordered, two from Government dockyards and the other, the "Superb" from Elswick.

From then until the outbreak of the First World War, Dreadnought fever swept the world, particularly in South America. The Chileans had actually started the chain reaction in 1902 when they had ordered two fast battleships, "Libertad"

* "Vickers - a history". by J.D.Scott. p.89.

On Top of the World - 96
and "Constitucion", the latter from Armstrong.'s. . They wanted the ships to help in a critical frontier dispute with Argentina. But the full cost of the ships - $£ 2,200,000-$ together with a diminution of the crisis, saw Chile happy to have them taken off her hands by the Royal Navy, even at the reduced price of \&1,875,000.*

During the crisis Argentina had ordered two fast cruisers in Europe and Brazil, feeling left behind, entered the make-believe contest in magnificent fashion. In 1904, the Brazilian Congress authorisedsa programme for twentynine warships, including three battleships, three armoured cruisers six destroyers, 12 torpedo boats and some submarines. Armstrongs built the first battleship, "Minas Geraes" and Vickers Sons and Maxim built the other, "Sao Paulo" at Barrow.

But in 1910 it looked as if Germany would win the order for the third battleship. The Brazilian Minister of Marine had been deeply influenced by the firm of Krupps and even by the Kaiser himself, who argued in favour of a scaled-down cheaper battleship fitted with 45 calibre l2-inch guns.

It was then that Sir Eustace d'Eyncourt secured his greatest triumph** He hurried to Brazil with fresh proposals. He agreed with the Brazilian Minister of Marine, Admiral Leao, on the wisdom of a slimmer version and on the excellence of 12-inch guns. But instead of 12 of them, as Krupps had suggested, why not 14 ? Fourteen l2-inch guns in seven turrets, supported by twenty 6-inch and a number of 3-inch! This would represent the greatest number of heavy guns on any battleship in existence, yet would cost the Brazilian Government several hundred thousand pounds less than the original plans submitted by Armstrong's. The Minister of Marine was completely won over. Brazil was to have the greatest battleship in the world at a cost of $£ 1,821,400$. ${ }^{* * *}$

[^9]On Top of the World - 97

But then in the summer of 1913 when the "big battleship" the "Rio de Janeiro", was well on the way to completion, Dreadnought fever died in South America as suddenly as it had started. Brazil suffered a big drop in rubber exports, her economy collapsed and with it her ability to buy a Navy. She cancelled the contract for the "Rio de Janeiro" and even had to offer the "Sao Paulo" and the "Minas Geraes" for sale. "It was the greatest abdication of power ever recorded in naval history."*

But, as it died in South America, the battleship fever rose in the Mediterranean. Turkey and Greece were making ever more threatening gestures at one another. The nearly completed "Rio de daneiro" was just coming onto the market at the right time. After fierce bidding by the two countries, the ship was eventually bought by Turkey. She was to be ready by July, 1914 and was to be renamed "Sultan Osman I".**

In fact, just as she was due to be delivered, the ship was requisitioned by the Royal Navy, much to Turkey's disgust, and renamed the "Agincourt". She saw action only once at the battle of Jutland when she fired just 144 rounds of l2-inch shell and 111 rounds of 6-inch shell. She sank nothing and probably did not kill a single G̣erman. ***

As the war years approached, the demand for warships grew even stronger and the ships themselves grew even bigger. The difficulties of negotiating these huge monsters through the bridges of the Tyne became insuperable and Elswick was gradually abandoned in favour of a new yard at Walker. The new yard contained nine building berths, the largest able to take ships of up to l,000 feet: in length and the smallest a vessel of only 500 ft . The river frontage extended for nearly a mile

[^10]On Top of the World - y^{8}
and the yard's capacity was 200,000 tons a year. The Firm's general manager commented: "The inauguration of the new Armstrong yard at Walker marks an epoch in local and national warship building enterprise of an importance that can scarcely be exaggerated."*

But Armstrong's, although by far the greatest warship builders in the North East, were not above criticism. Some of the most critical comments came from Stuart Rendel, formerly an executive director of the company and after Armstrong's death the largest single shareholder. He made no secret of his anxiety for the firm's future under Sir Andrew Noble.**

Sir Andrew was a heroic worker, only taking a day's holiday at a time and often working in his office until midnight. But he liked to do other people's work as well as his own. He revelled in responsibility but this led to a refusal to delegate. He was a fine mathematician yet the company was an engineering concern.

Rendel wrote some bitter letters to Noble, criticising his leadership. He wrote of "the needless million" which Armstrong's had put into "the Mitchell and Swan pockets over the purchase of Low Walker, only to find Low Walker a grievous loss and perpetual embarrassment." He complained too that a binding agreement had been made by Noble behind the Board's back to buy another "more or less obsolete Tyne business, viz Hawthorne..... there seems a propensity some-where among us to fatuous Tyneside dealings:. ***

Rendel was anxious above all to secure new blood on the Board and in 1911 he was successful. A concordat between the feuding elements was signed:

* J.R. Perrett, chief naval architect and general manager of Armstrong Whitworth, in a paper to N.E. Coast Institution of Engineers and Shipbuilders, July, 1914.
** U. $1 . \operatorname{Scott,p.89.~****.~Ibid.~}$
"A solemn Treaty between the Executive Directors and the independent directors under which the Executive Directors implicitly pledged their honour to effect certain specified introduction of new blood on the Executive and on the Board provided the independent directors would accept responsibility for the executive directors' irregularities for meny years past in secretly appropriating to themselves exceptionally large remunerations and would further sanction certain very liberal remunerations in future." *

Despite such nefarious internal activities, the public reputation of the company remained high. But it was not the only warship builder in the North East. Palmer's were not far behind as regards work for the Admiralty but, with a couple of exceptions, they sold no naval ships abroad.

Palmer nad started naval production, as we have seen, with H.M.S. "Terror" in 1856. Six years elapsed before he built another warship, H.M.S. "Defence", an armoured frigate; another four years before he built his third and a further four years before his fourth. But then with the frigate "Swiftsure", costing £l92,680, warship building began in earnest. In the 1870's the company built four battleships, with aggregate displacement tonnage of 20,780 , and 12 river gunboats. **

From then, until the end of the First World war, the Jarrow yard was scarcely ever without at least one warship on the stocks.

The ships included the battle cruiser "Queen Mary" of 27,000 tons displacement, which at $£ 2,078,491$, was the costliest ship ever built at the yard. They included, too, such, Iamous battleships as the "Russell", "Lord Nelson", "Hercules" and "Resolution", together with ll cruisers, 48 torpedo-boat destroyers and even two submarines. ***

* u.L. Scott, p.93.** "Tne rown rnat was murdered", p. 63-4. *** Palmer's Own Kecords.

Nearby, at Hebburn, Hawthorn Leslie had won its first Admiralty contract in 1889. This was for the 20-knot, thirdclass cruiser "Bellona" on which the company made a loss of £ł4,000. It had already, however, built. three cruisers for the Russian ZVolunteer Fleet and was to build another five.*

But apart from this rather unhappy connection, all the company's naval orders before the First World War were from the British Admiralty and nearly all of them were for torpedo boat destroyers. Between 1890 and 1916 it built 45 such vessels*.

Swan and Hunter had also entered naval production in the 1880's by building three cruisers for Russia, the "Czar", "Czarevna" and "Czaritsa", each of 2,340 displacement tons. The first Admiralty contracts were not given until 1908 and during the next few years the company, under its new name of Swan, Hunter and Wigham Richardson built a handful of torpedo boat destroyers. But if the company was so far of. little account in naval building it had made great. strides in merchant building. In fact, in 1906 it had the largest output of any firm in the world, a position that was confirmed by the "Mauretania". ***

THE "MAURETANIA"

She was the fastest and most opulent ship of her day and her career began at 4.15 p.m. on Thursday, 20th September, 1906, when she slid into the Tyne. A Commentator wrote:- "The construction of the "Nauretania" and of her Clyde-built sister, the "Lusitania" represents by far the most stupendous task ever entrusted to shipbuilders and engineers. With the launching of the "Mauretania" Iyneside is at once established in the forefront among the world's shipbuilding centres by the construction of one of the two largest, swiftest mail steamships afloat, the building of which involved

[^11]On Top of the World - 101
the scientific solution of the most difficult problems in naval architecture and marine engineering."*

The North East reputation had been based, as we have seen, on a high output of plain cargo tramp vessels, of colliers, oil tankers and of warships. But at the turn of the cêntury the area turned increasingly to high-class passenger ships, of which the "Mauretania" was an unsurpassable example.

And it was at this time that British opinion began to swing back in favour of fast liners after a period when intermediate liners with lower running costs had been preferred. This swing-back was given further momentum when the Germans built four very fast liners and in 1903 the British Government signed an agreement with Lord Inverclyde, Chairman of Cunard, for the construction of two ships of unprecedented speed and dimension. They were to be "capable of maintaining during the voyage across the Atlantic a minimum average speed of 24-25 knots in moderate weather." **

The Government agreed to provide a sum not exceeding £2,600,000 at $2 \frac{3}{4} \%$ interest and a further annual subsidy of \&150,000. In return the vessels were to be constructed to Admiralty requirements as auxiliary cruisers and the Government was to have the right to require their services in wartime.***

The agreement was the culmination of talks and discussions which had lasted for almost three years.
Swan, Hunter and Wigham Richardson (or Swan and Hunter as they were then) had first begun to submit designs in 1901. The main initial problem was the shape of the vessel and many experiments were carried out. In fact, to obtain better results than any possible from towing models in a tank, a

[^12]On Top of the World - iêer
self-propelled model $47 \mathrm{ft}, 6$ ins. long - a sixteenth of the actual size of the completed ship - was built for elaborate testing in an enclosed dock.* The experiments showed a decided advantage for a broader and somewhat finer ship which required about seven per cent less power to attain equal speed. The increased beam proposals were too much for Vickers, Sons and Maxim, the other potential builders.** Their docking facilities at Barrow would not allow such breadth and they withdrew. This allowed John Brown, who had already built thirty vessels for Cunard, to come forward and the Clyde trustees agreed to widen and deepen the river to take the "Lusitania".

Both Swans and Vickers, whose designs had been provisionally adopted, suggested reciprocating engines sapable of developing together over 60,000 horse power, Cunard, however, had had some experience with smaller turbine-driven ships and they wondered whether turbines could be used for these larger vessels. They setsup a special commission which was still sitting as work on the hull began in 1905. The Commission eventually reported in favour of turbines - with Charles Parson himself a member, it might have been difficult to have done otherwise! ***

The Commission recognised that although turbines would be much larger than any machinery of that type then at work, they promised an absence of vibration, a saving in total weight of propelling machinery, a reduction in engine room staff and above all a cut in the cost of maintenance.

Before starting work, C.S. Swan and G.B. Hunter amalgamated with Wigham Richardson to increase their resources

* From "Forty Famous Ships" by H.B. Culver \& G. Grant, published New York, 1938.
** "Mauretanian, a special number of the "Shipbuilder", November 1907, by A.G. Hood and H. Bocler.

On Top of the World - 103
including an interest in the Wallsend Slipway and Engineering Works where all the machinery was made.* The combined firms made many important impirovements and extensions to their premises. Two new buildingsberths, capable of building the biggest ships, were laid out and covered by glass roofs 150 ft . high to allow work to continue in bad weather. Seven overhead eqectric cranes were provided. Large sheds were erected near the berths containing the most powerful machinery for steel workbeams of up to 88 ft . normally rolled in two lengths, could now be rolled in one - while another group of sheds was put up for preparing frames and floors of the largest size. Railway sidings, with direct connections to the North East Railway Company system, were added to allow materials to be brought direct to the building berths. **

From the keel-laying to the launch, about eighteen months elapsed. By then the "Mauretania" was one of the most impressive ships in the world. She had an overall length of 790 ft . was 88 ft . wide and 60 ft . deep. She had accomodation for 560 first-class passengers, 500 second-class, l,400 thirdclass and 800 crew - a total of 3,260. Each passenger had fifty per cent more space than in any other Atlantic liner. There was a complete telephone system aboard and a complete electric installation, including electric lifts to convey, the passengers among the nine decks. ***
"The passenger accommodation of the 'Mauretania' wrote one observer, "When its spaciousness and beauty of decoration are taken.into account, certainly justifices the use of a somewhat extravagant term 'a floating palace'."

There were 664 staterooms provided for passengers as well as numerous public rooms. Each seemed to be a classic of its kind. "The grand entrances and staircases are treated in the l5th century Italian manner. The woodwork is French * "Launcning Ways". ** special $N o s . ~ o f ~ " s n i p o u i l d e r " . ~$ *** 1 Did. θ Tbia.

On Top of the World - How
walnut, the panels being veneered with some of the finest f'igured wood that one could wish to see.
"The grand staircase in unequalled in size and beauty in any vessel afloat and indeed it is worthy of any mansion ashore.... The two first-class dining rooms are panelled in straw-coloured oak in the style of Francis I..... The rooms are upholstered in deep pink and a fine l6th century tapestry at one end gives an admirable effect..... The first-class lounge or music room is a noble apartment treated in that charming style which obtained in France in the last quarter of the l8th century and of which the Petit Trianon is perhaps the most typical example. The arrangement of the panels, and the delicacy and design of the carvings and columns, might have been the work of Gabriel or Migue but the architect has, in his scheme of colour, been inspired more by the sumptuous furniture of the period than by the wall decoration and that with the happiest result..... Sixteen pilasters of Fleur de Peche marble with ormolu capitols and bases, a chimney piece of the same materials, soft creamy curtains with coloured borders and three fine panels of French tapestry, produce a colour effect which leaves nothing to be desired..... The library or writing room..... will probably be regarded by many passengers as being the most beautiful in colour in the ship... The wall panelling is of sycamore stained a silver grey..... The smoking room..... is greatly enhanced by the waggon-headed roof which is divided into three sections and decorated with beautifully-modelled plaster work.n *

There were two regal suites each comprising drawing room, dining room, two bedrooms, bathrooms and private corridor; 68 special state and 'en suite' rooms, in addition to the first, second and third class accommodation.

The launch was a tremendous spectacle, seen by a conservative estimate of 80,000 people. In itself it was a remarkable achievement for the "Mauretania's" weight in * Special Nos. of "Snipbuilaer".

On Top of the World - lios
motion equalled 17,000 tons - a launching weight never matched before. Over 290 hundredweights of tallow was used, together with 12 cwts. of train oil and 22 cwts. of soft soap to make ner slip down the berth. Then six drag chains on each side, with a total weight of 1,000 tons, were used to pull her up.*

The Times devoted more than a column to the launch and commented: "The occasion was of unusual interest, even in a river where many giant vessels have been built, and the crowd of spectators was enormous."**

And the Newcastle Daily Chronicle added: "The anxiety to witness the launching was very great and the afternoon trains carried thousands of visitors to Wallsend, from Newcastle, Shields and elsewhere: The streets round about the yard all had a complement of townsfolk. It was indeed a gala day in the mid-river town."**美

A little over a year later, on the 6th November, 1907, she began her maiden voyage across the Atlantic with a consignment of $£ 2 \frac{1}{2} \mathrm{~m}$. in gold from the Bank of England to the United States Treasury. θ The journey lasted five days, five hours and two minutes. Returning on 30 th November, she reached Queenstown in four days, twenty-two hours and twenty-nine minutes at an average speed of 23.69 knots, breaking all previous records for trans-atlantic crossings. f

There followed a short period of retirement to adjust several details in her machinery. But the adjustments were not as important as a change which was made in 1909 when screw propellers of a new type were fitted. This change soon led to

* Special nos. of "Snipbuilder".
** The Times, 2lst September, 1906
*** Newcastle Daily Chronicle, 2lst September, 1906.
$\theta \quad$ Forty Famous Snips" by in. Bi: Culver \& B. Grant"; New York 1936
† ibid.

On Top of the World - 166
new records for both the eastward and westward journeys. Going to America from l0th June 1909 she completed the journey in four days, seventeen hours and twenty-one minutes at an average speed of $25.88 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. It was on this trip that she covered 671 miles in 24 hours - by far the greatest distance then covered in a day's run.*

But more was to come. On a round trip beginning on 9th December 1910, the "Mauretania" crossed the ocean in a little less than 12 days. In 1931 she established another record by crossing four times within a single month - a distance of 12,400 miles.**So much for the North East's reputation for being able to build only cargo vessels!

The growing war fears in 1912 - 13 led the British Admiralty to exercise its right of requisition. Gun mountings had already been installed so that when war came in 1914 the "Mauretania" was ready to receive the necessary armaments to fit her as an armed transport ship. ***

One of her tasks was to take troops to Gallipoli and she carried over 10,000 soldiers. In September 1915 she was converted into a hospital ship and in 1918 she helped to carry United States troops to France.

Her great speed enabled her to penetrate many submarine zones and she was one of only five troop ships that steamed by themselves, no convoy being able to maintain her speed.

After the war, she returned to her haunts in the Atlantic where new competitors faced her. Even in 1929, perhaps spurred by the efforts of the newly-launched "Bremen" $*$ and "Europa", she could still make the run from the Ambrose Channel lighthouse in New York to Plymouth in four days, seventeen hours and fifty minutes. And on her next westward journey she pulled back * "Forty Famous snips". ** Ibid. *** Ibid. * On her maiden voyage, the "Bremen" beat "Mauretanià!s"" fastest westward time by nine hours.

On Top of the World - 1 Iot
the "Bremen's" lead to five hours two minutes. For a 23-years old ship it was considered to be a very fair achievement.

But she was still to achieve her best performance* On 5th August 1929 she completed her fastest run for any 24-hours by covering 687 miles at an average rate of 27.48 knots. And four years later in 1933, just two years before she was broken up; she achieved her highest-ever speed of 32 knots, which she maintained for 112 miles.

Altogether, the"Mauretania"made 350 voyages across the Atlantic for a total of over $2,500,000$ miles. Her last crossing began at New York on 26th September 1934 and ended at Southampton just as the "Queen Mary" was being launched.**

In April 1935 she was sold to be broken up. The auction sale to dispose of parts aroused a tremendous wave of sympathy and. there was a great deal of bidding for souvenirs. Even single letters which had composed her name at the bow or stern fetched high prices. And other relics such as her ensign staff realised still higher figures. It seemed that every sea-lover in England wanted a part of the "Mauretania" which had dominated the Atlantic for 22 years from 1907 to 1929 as the fastest liner in the world. ***

THE "TURBINIA"

The great success of the giant "Mauretania" was due above all to a development that had taken place 10 years before she was launched - a development pioneered by the tiny "Turbinia".

By the end of the l8th century, as we have seen, British shipbuilding was supreme. And there was probably no more effective demonstrations of this fact that the Naval Review held at Spithead in June 1897, in honour of Queen Victoria's Diamond Jubilee. It seemed to symbolise for a euphoric public the height of English power, economic and military. Over 160 war * "Forty Famous Snips". ** 1bid. *** 1bid.
vessels were on display, arranged in four lines, each five miles: long. It was an emotional, patriotic sight, as the Times reported:*
"The Review tomorrow..... cannot fail to be one of the most characteristic and striking national ceremonies in celebration of the Diamond Jubilee. It possesses a significence which is directly and intimately connected with the welfare and prosperity of the Empire..... and may indeed be regarded as an inspection or stock-taking of Britain's sea-guard..... The fleet..... is certainly the most formidable in all its elements and qualities that has ever been brought together and such as no combination of other countries can rival."

The Times was not disappointed. It was a magnificent occasion of unmatched power witnessed by unsurpassable nobility. Half of Europe, it seemed, had come to see the Prince of Wales inspect the fleet on behalf of his mother.

But no sooner was the inspection over than the solid pomp and splendour of the occasion was shaken by a tiny ship, only 100 feet long and nine feet in beam, nipping at 30 knots up and down the lines of stately warships.

Her name was "Turbinia" and she had been built in Newcastle by an Irish aristocrat, the Hon. Charles Algernon Parsons. No other North East invention was to have a bigger influence on marine engineering, but just after 2.0 p.m. on Saturday, $:$. 26 tn June 1897, her appearance seemed audacious, unbelievable. The correspondent of the Times wrote:**
"During the passage of the Royal procession the lines were kept creditably clear by the vigilant and ubiquitous patrol-boats told off for the purposer, but in spite of all their efforts some * The Times, Friday, 25 th June, 1897. ** The Times, Monday, 28th June, 1897.

On Top of the World - ie9,
few small craft and steam boats managed to defy their authority. Among these was the now famous Turbinia, the fastest vessel in the world. At the cost of deliberate disregard of authority, she contrived to give herself an effective advertisement by steaming at astonishing speed between the lines A and B shortly after the Royal procession had passed. The patrol boats which attempted to check her adventurous and lawless proceedings were distanced in a twinkling, but at last one of them managed by placing herself athwart her course to drive her out of the lines astern of the French cruiser "Pothuau". Her speed was, as I have said, simply astonishing, but its manifestations was accompanied by a mighty rushing sound and by a stream of flame from her funnel at least as long as the funnel itself. Unless these commonplace but very serious defects can be corrected, it is manifest that the system of propulsion devised by Mr. Parsons cannot be applied to Torpedo boats for whose operations silence, secrecy, and invisibility are indispensable. The" Turbinia" again made her appearance as the Royal yacht was weighing anchor and assuming a position, rather slowly and with much backing of her engines accompanied by the setting of a jib, which would enable her to steam through the lines. The Turbinia waited astern of the "Powerful" until the "Victoria and Albert" was well under way, and then followed her, at first with moderate speed, but gradually quickening up until the sea in her immediate wake was churned into a mass of white and seething foam. Probably she overtook the yacht within a very short distance and passed her at full speed, and perhaps her lawlessness may be excused by the novelty and importance of the invention she embodies. But visitors to the Jubilee Review 1887 will perhaps remember that a prominent feature of that, Ocasion was the appearance of the Nordenfelt submarine, or rather submerged boat, just as the appearance of the"Turbinia"was a prominent feature of the present occasion. Iittle or nothing has since been heard of the

On Top of the World - reo

Nordenfelt boat as a practical invention. Absit Omen. Everyone would regret if the "Turbinia", after her brilliant but unauthorised exhibition of yesterday should turn out only a similar nine days' wonder."

As it happened, she was anything but a "nine days' wonder" nor was her appearance, apparently, unauthorised. A letter in the Times the next day from Mr. George Baden-Powell, took up the point:*
"Sir,
Your correspondent at the great naval review writes of the remarikable performance of the "Turbinia" - "' the fastest vessel in the world' - that she 'contrived at the cost of a deliberate disregard of authority' to make a 'brilliant but unauthorised ' exhibition of 'astonishing speed'.

I happened to be on board the "Turbinia" at the time, and in justice to her designer, the Hon. Charles Parsons, and to Mr. Leyland, who were running her, I ask leave to state that the astounding runs she made between the A and B lines on Saturday were in obedience to a message brought by a picket boat that the admiral wished her to show her best speed, more especially for the benefit of His Royal Highness Prince Henry, who was watching her from the German man-of-war.

The exhibition of speed, so far from being unauthorised, was especially invited by the authorities.

Experts will like to know that on this run the "Turbinia" topped the unprecendented speed of 34 knots. The most noticeable feature was the entire absence of vibration.

I am your obedient servant,
George Baden-Powell.
Carlton Club.

* The Times, Tuesday 29th June, 1897.

On Top of the World - linl.

There can be no doubt, however, that Parsons had taken Turbinia to Spithead on his own initiative and that he was determined to achieve maximum publicity.* This he certainly did.

Within a month the Admiralty began serious study of turbine propulsion and within six months had placed an order for the world's first turbine-driven torpedo-boat destroyer.** Only 13 years later Parsons turbines were powering 333 vessels throughout the world. They represented an aggregate horse power of 4,700,250.***:

That, however, was an unknown future in 1897 for Charles Parsons. He had been born in London on 13th June, 1854, the sixth and youngest son of the third Earl of Rosse. The family home in King's County, Ireland, of'ten entertained the leading scientific men of the day who no doubt fired the imasination of young Charles.**** Like his brothers, he was not sent to school but received private tuition from men of such scientific standing as Sir Robert Ball and Dr. Johnstone Stoney.

He later went to Trinity College, Dublin and to Cambridge before starting a four year's engineering apprenticeship at the Elswick Works of Sir William Armstrong \& Co. This was followed by two years in Leeds, where his enormous inventive talents were already evident. In 1884 he acquired a junior partnership in the Gateshead firm of Clarke, Chapman \& Co., and was put in charge of their newly-formed electrical department.

See "Turbinia" guide book in the Museum of Science and Engineering, Newcastle, reprinted from the Link house organ of the Richardsons Westgarth Group, p. 5.
** See "The Steam Turbine and its application to the Propulsion of Vessels." by the Hon. C.A. Parsons, trans. Institution of Naval Architects, Vol. 45, June 1903.
*** See "The Evolution of the Parsons Steam Turbine" by Alex 6 Richardson, London 1911, p. 14.
**** "The Steam Turbine" by R.H. Parsons, published for the British Council by Longmans, Green and Co., in 1942 p. 28.

Parsons immediately began to take up the problem of turbines. The Fundamental idea itself was not new. Between 1843 and 1848 considerable progress had been made in turbine design but constructional difficulties had proved insuperable.* A. Swedish engineer, Dr. Gustaf de Laval of Stockholm had overcome some of them in the early l880's but his designs were only useful for driving comparatively small machines.

Parsons "alone possessed the genius and courage to transform a possibility (the turbine principle) into a reality."** Turbines produce power by using the velocity of a jet of steam instead of using the pressure of the steam to drive a piston as in the ordinary reciprocating engine. Earlier inventors had already shown that a jet of steam could be made to turn a wheel by acting on blades set around its circumference. The difficulty lay in using the excessive velocity of steam. Even at low pressure it can escape into the atmosphere at $2,500 \mathrm{ft}$. per second or 1,700 miles an hour. To make effective use of such velocities in a simple turbine the blades and other moving parts would have to travel at about half the speed of the steam. This was clearly impossible if only because of centrifugal force. What Parsons therefore set out to do was to reduce the steam speed to a manageable amount. In his booklet on the steam turbine R.H. Parsons wrote:***
"Now the speed of a jet of steam will obviously depend upon the difference of pressure that causes the flow. It occurred to Parsons that he could attain his end by the device of causing the whole expansion of the steam to take place by a series of steps, each partial drop of pressure being only sufficient to generate a velocity that could be efficiently utilised by blades running at a moderate speed. To put this

* Cnarles Parsons, His Life and Works by Rollo Appleyard London, 1933; p. 34.
** "The Steam Turbine" by R.H. Parsons, p. 2.
*** Ibid.

On wop of tne world - 13
idea into effect ne constructed a turbine consisting of a cylindrical rotor enclosed in a casing. Thé steam flowed along the annulus between the two; parallel to tne axis of the macnine, and in so doing it nad to pass tnrough rings of blades fixed alternatively in the casing and rotor. The passages between the olades ot eacn ring formed virtually a set of nozzles in which a partial expansion of the steam could take place. In passing through each ring of fixed blades the steam acquired a certain velocity due to this expansion, and the jets so formed gave up their energy in driving tne succeeding row of moving blades. The passages between. tne latter blades also actedc as nozzles, periuitting a furtner expansion, so that the moving blades were impelled partly by the "action" of the steam entering them and partly by the "reaction" of the steam leaving tnem.

Tnis metnod of division into stages, known as "pressure compounding" reduced the jet velocity from several thousand to two or three nundred feet per second. All trisis Parsons achieved in 18४4. By 1885 . Parsons' first steam turbine was running successfully at Gateshead, giving six norse-power at 18,000 revolutions per minute".

His earliest patents taken out in $18 \succ 4$ snow that from the start he appreciated tne part wnich turbines could play in. marine propulsion. but it was not until ly94 tnat ne was able to turn to tnis aspect. By tnis time he had nad a quarrel witn Clarke, Chapmans and severed nis connection and nad set up his own firm at Heaton. In so doing he nad lost the rignt to his earliest designs and a long, legal argument ensued for five years before ne retrieved them.** In the meantime, undaunted, ne
had

[^13]developed another but less successful type of turbine, the radial-flow machine, almost as a competitor against himself.*

In January 1894 Parsons formed the Marine Steam Turbine Co. Ltd., to adapt turbines to marine work. The Hon. C.A. Parsons himself was managing director. The company immediately began to build and equip the "Turbinia" at a cost of £16,000.** By the 14 th November, the vessel was ready for her first preliminary trial. But initial hopes were not immediately realised and during the next two years 31 trials had to be held and many alterations made. *** The speed achieved on early trials by the "Turbinia" was far below Parsons' expectations worked out in a pond at Ryton-on-Tyne, where he lived. Using first a 2 ft . model and later a 6 ft . model, he had been able to determine both the torque and the resistance.**** From the results he calculated the efficiency of the propellor and the 'slip ratio'. It is worth recording that the difference between his calculations and those made in the Government tank at Portemouth three years later was only 2.3 per cent.

But the "Turbinia" herself was well wide of his predictions, largely, it was felt, because of excessive propello slip. Both two-bladed and four-bladed propellors were tried, but with little difference. Then it was decided to use multiple propellors and they brought the mean slip down from 48.8% to 37.5% *****

Nine different sets of propellors in all were used but the results in every case showed a low propellor efficiency. The original turbine engine was removed and replaced by three separate turbines in series each driving a shaft. And it was

* Turbinia, p. 2.
** Charles Parsons, p. 88.
*** Turbinia, p. 3.
**** "Evolution of the Parsons Steam Turbine" p. 70.
*****Turbinia, p. 3.

```
On Top of the World - Er5
```

decided to use the parallel-flow type before the Turbinia was built but because up to that date no parallel-flow turbines had been built to a size larger than $75 \mathrm{k} . \mathrm{w} .$, it had been decided to use the radial-flow turbine. By the end of 1895, however, Parsons had received a report of satisfactory results from a 350 k.w., parallel-flow turbine generator installed in Manchester.* This type was now put into the "Turbinia," although it was always appreciated that it was the propellors at fault rather than the machinery itself.

Careful fundamental research into propellor design led to a big improvement in efficiency. It was found that the best results were achieved with three propellors of 18 ins. diameter and 24 ins. pitch on each shaft.

Trials began again in February 1896 and speeds of 32 knots were soon achieved. Such speeds of course were revolutionary at that time, but they completely fulfilled Parsons' beliefs.

During all this time, the Admiralty had been kept fully informed of the difficulties and the ways in which they were being overcome. But when success was achieved their Lordships showed little real interest. Parsons decided on a practical demonstration which could not be ignored. The Naval Review at Spithead was just the occasion he was looking for.

Within six months of that famous demonstration of turbine capabilities, the Admiralty placed an order with Parsons Marine Steam Turbine Company, of Wallsend for a 31-knot torpedo-boat destroyer, 210 feet in length, 21 ft . in beam and of 3.70 tons displacement.

The Admiralty also agreed that a torpedo-boat destroyer the "Cobra", then being built at Elswick by Armstrong Whitworth should also receive turbine machinery. The "Cobra" was the first

* "Charles Parsons", p. 102.
torpedo-boat to be so fitted and upon her feil the greater share of the preliminary trials.*

The engines in both vessels were similar to those in the Turbinia", except that they consisted of two distinct sets of engines on each side of the vessel. There were four screw shafts in all, entirely independent of each other. Both vessels performed splendidly on trials. The "Viper", for example, with full trial weights on aboard achieved a mean speed of 36.5 knots on a one hour's full-power trial. This speed represents about 11,500 i.h.p. in a vessel of 370 tons displacement as compared with 6,000 i.h.p. developed in similar ships. The "Viper" more than fulfilled all the guarantees in the contract - her speed was 5 knots greater then specified and her coal consumption less.**

Charles Parsons wrote: "The turbines worked most satisfactorily and with an immunity fromitrouble quite unknown with the reciprocating machinery of similar vessels."

Unfortunately trouble of another sort soon struck. On 3rd August, 1901, the "Viper" foundered on rocks near Alderney in thick fog, becoming a total wreck, and five weeks later, on l8th September, the "Cobra" broke in two off the Iincolnshire coast, with the loss of 44 lives, many of them being chief members of Parsons' Wallsend,-staff.
"The effect of this second tragedy cut deep into the hard metal of which Parsoris was wrought." wrote his biographer: Rollo:: Appleyard. Appleyard added: "To Sir Charles Parsons the fate of his faithful men in that calamity was a sorrow that clung to him through lifie. At the very last meeting of the directors of his company at Newcastle, a few weeks before his own death, his thought was for the dependents of those lost in the "Cobra " disaster."***

* "Charles Parsons" p. 102.
** "The Steam Turbine", by Hon. C.A. Parsons.
*** "The Steam Turbine", p. 153.

On Top of the World - 217

Appleyard went on: "The facts relating to the wreck of the 'Cobra' have for 30 years been recorded in the archives of the Admiralty. They have been the subject of enquiry by Coroner's Inquest, Court-martial and a committee on torpedoboat destroyers, but the cause of the collapse of the vessel has never been conclusively settled." *

The Court-martial came to the conclusion that the "Cobra's" loss was "attributable" to the structural weakness of the ship. The court also found that the "Cobra" was weaker than otner destroyers, and in view of that fact, "it is to be regretted that she was purchased into His \mathbb{H} ajesty's Service."**

In view of this finding, the Admiralty appointed a special committee, "The committee on Torpedo-boat Destroyers", to enquire into the construction of the "Cobra". After exhaustive comparative tests on another destroyer, H. IV.S. "Wolf," the Committee found that the system of building the " ©obra" did not differ from that of the 30 knot vessels designed and built for the Admiralty.

Phillip Watts, who in 1903 had become Director of Naval Construction, regarded the report as very satisfactory and as. likely to restore confidence in existing destroyers.***Parsons, of course, was even more pleased. As Appleyard.wrote: "It completely vindicated Parsons, it cleared away any lingering doubts that might have existed to the adoption of the turbine for marine propulsion from the point of view of safety to structure, and it emphasized the need for strict supervision in the construction, maintenance and handing of high speed craft. There was a devout desire among engineers and the public that the mystery of the sagging and tearing asunder of the "Cobra" when she broie her back might be placed beyond dispute, but an element of doubt has always enshrouded the cause."

* *. "The Steam Turbine", p. 152. * "Sir Cnaries Parsons.". *** Ibid, p. 157.

On Top of the World - 48.

Meanwhile, unless something drastic could be done to retrieve the situation Parsons feared that the whole marine turbine venture might fail.*

But at least one member of the shipping community had faith in turbines. He was Capt. John Williamson who ran a steam-boat service on the river Clyde. In 1899 he approached the Parsons Marine Steam Turbine Company to see whether it was possible to re-engine a paddle ship, i.e. take out the engine, remove the paddles and put in turbines to drive the propeller.**

Parsons thought it was possible and the "King Edward" became the first turbine passenger ship in the world. She was converted by Denny Brothers of Dumbarton in 1901 for the Fairlie and Campbeltown service. Williamson and his passengers were so pleased with his 20 knot vessel that he placed an order for a second one in 1902, the "Queen Alexandra", again built by Denny Brothers with turbines from Fallsend.

Within the next year turbine propulsion was adopted for the cross-channel boats, "Queen" and "Brighton". The steam yacht "Emerald" built for Sir Christopher Furness in 1903 became the first turbine vessel to cross the Atlnatic, closely followed by the Allan Line's two 13,000 ton vessels "Virginian" and "Victorian" and the Cunard Company's 30,000 ton liner "Carmania".

Meanwhile the Admiralty had partially recovered from the shock of the "Cobra" and "Viper". When it placed orders for four 3,000 ton cruisers in 1902 it was decided that one of them, H.M.S. "Amethyst" should be fitted with turbines for direct comparison with its sister ships, whichwere fitted with reciprocating engines.

* The Steam Turbine, by Hon. C.A. Parsons, p. 158.
** Ibid, p.158.

On.Top of the World - di9

The results were so obviously in favour of the Amethyst that the Admiralty's last prejudices were broken down. The result was that a committee on Naval Design, appointed by the Admiralty in 1905 advised that in future turbine machinery should be used exclusively in all types of warships. That year the keel was laid for the Dreadnought", the fastest and most powerfully-armed battleship in the world.

The final triumph came for Parsons when the Cunard Company decided, after careful investigation, to install turbines in its two giant passenger ships, "Lusitania" and "Nauretania", by far the biggest ships then in existence. It can be appreciated how courageous this decision was when it is realised that the two vessels were fitted with $70,000 \mathrm{~h} . \mathrm{p}$. turbines at a time when the most powerful turbine ships afloat did not exceed $14,000 \mathrm{~h} . \mathrm{p}$. Virtually every Navy in the world and every mercantile marine subsequently took up the turbine. Its contribution to the Royal Navy can be seen from the following table: *

Roval Navy

August 1914 September 1939

No. of ships (torpedo-boats and larger)
Total displacement of these ships
Total horsepower of these ships

Percentage of above h.p. developed by turbine machinery

Fraction of the above percentage with mechanical gearing transmission

641
$2,080,000$ tons $1,546,000$ tons

6,731,000

53
98
$1 / 50$
47/50

* Parsons Memorial Lecture by Sir Stanley Goodall, Royal Society of Arts, 26 th March, 1942.

Sir Stanley Goodall commented; "It is no great exaggeration to say that in this war, when our warships go to sea, they are largely propelled by the brain of Sir Charles Parsons, for to him we owe the marine steam turbine and mechanical gearing transmission." *

Mechanical gearing was necessary to allow the turbine engine and the propellor shafts to rotate at their most efficient speed. Since they are operating in different mediasteam and water - there is a wide difference.in their best operating speeds. For warships and the fastest mercantile ships were able to operate perfectly well but in order to adapt the turbine for use by the immense fleets of slow cargo ships some form of mechanical gearing was necessary. Parsons turned to this problem in about 1907 and carried out exhaustive tests. A couple of years later, he made a practical demonstration in the "Vespasion" which worked perfectly. Only ten years after the "Vespasion" trials, it was estimated that $18 \mathrm{~m} . \mathrm{h} . \mathrm{p}$. were being transmitted through gearing in warships and merchant vessels.

Parsons inventions were not confined to engineering.** As a father he was continually inventing new mechanical toys for his children. And as a young man in Gateshead he had devised methods for the manufacture of incandescent electric lamps for the Sunbeam Lamp Company, of which he was one of the founders. In 1893 he built a steam-driven helicopter which flew for a few yards. He made an "Auxetophone" for the amplification of musical and vocal sounds which was "as remarkable for its mechanical perfection as for the volume and purity of sound it produced." Throughout his life he was fascinated by the problem of making diamonds by the crystalliation of carbon and in all he spent $£ 20,000$ on his research but without any real success.

[^14]His work, his energy, nis inventiveness, led to nine universities bestowing nonorary degrees upon him. He was given tne Companionship of the Order of the bath, followed by a Knignthood. And in 192% he became the first engineer to receive the Order of merit. He died in February 1931 at the age of 76.
DUXFORD'S DIESEL
Although the advances represented by warship production or by the "'furbinia" and the "mauretania" were by far the most important, they were by no means the only developments taking place in north east shipbuilding at the turn ot the century. For example, the Sunderland yard of William Doxford, tne biggest on the river by this time, made two very significant innovations. First, it designed a new type of cargo vessel, the "Turret" ship, and then a few years later it started to experiment with aiesel engines.

As we have seen, Doxford's began business in 1840. * Despite the depression that coincided with its early years when 30-40 sunderland builders went out of business, the firm came tinrough. In 185% it moved from. tine original location at. Coxgreen to Pallion, where it soon establisined a world-wide reputation. in l8'9 it built tne largest steamer afloat, tne 4,500 ton "Grecian". in $18 y 6$ it acnieved tne same nonour again by turning out the three largest single-deck sinips afloat, each of 12,000 tons. And in 1905 and 190', its output figures of aoout 90,000 gross tons were the nighest for any yard in the world. This was made possible by tne 1904 rebuilaing prograume when the original five berths were scrapped to make way for tinree berths of greater lengtn, eacn capable of ouilding 12,000 ton ships. but, above all, its success was based on the rapid popularity of the turret design introduced in lo93. **

The turret design was based on an American idea patented by Captain A. McDougall of Duluth, minnesota. This was for a whaleback steamer with a spoon-snaped bow and an upper * "Where Snips are born".p.37. . : ***p.t.o.

Un iop of the worla -122?
deck to carry the deck nouses and deck machinery. The advantages of the design were said to be cheapness in construction because of the simplified null form, greater safety at sea because water could not lie on the upper deck and less chance of damage to the deck-houses because of the sinape of tne turrets.*

In September 1891 Doxford's received their first, enquiry for a modified wnaleback and witnin three months tne company nad produced tieir own designs. The main innovation was a continuous turret from sten to stern. It was felt that this would provide a nign navigation platform on which all vulnerable openings could be sited, a much higner reserve buoyancy, a lower tonnage but a nigner stowage capacity and a cneaper price. **

Despite tnese advantages, tne shipping worla was initially suspicious. Doxfords nad to nelp to set up a special company, the Turret Steam Snip Co. Ltd., to buy and operate the prototype. They even offered favourable credit terms and accepted old vessels in part exchange to encourage owners to rake up the model. ***

Slowly interest was aroused. sy 1895 the company was building nine turret ships. Between 1892 and 1911 , when thelast turret ship was built, Doxfords built $1 \% 6$ of them with a total gross tonnage of 6૪3,450. ****

Besides Doxford's own output, riawtnorn Leslie, Swan and nunter, and vickers, Sons \propto maxim built six turret snips between them under licence.

Even after the initial fears had been quietened, tnere were two other problems. At the end of 1907, the "Grindon mall", owned by Edward Nicholl of Cardifty founcered on her way from Sulina to Glasgow witn a cargo of barley and maize. A secret investigation found tnat sne was unstable in tne way sne was laden. The press demands for an official enquiry were strengthened by furtner incidents. The "Walkure" * N.A. Roberts. keeled over: ** Ibid. *** 1bid. **** Ibid.
and tipped her deck cargo of timber into Barry Dock, while the "Stiklesstad" went missing on a passage from Glasgow to Sydney with general cargo. Within two months, on 3lst January 1909, the "Clan Ronald", laden with grain and flour, capsized and sank off Adelaide with the loss of 40 lives. This time there was a Board of Trade enquiry which attributed the loss to an incorrect method of loading the ship."*

Doxford's issued special loading instructions to all turret owners to try to correct the bad name that these ships were gaining. This seemed to solve the problem. For although turret ships had a stability problem, they were perfectly safe if loaded properly and many of them went on to enjoy a long life. The last surviving turret ship was wrecked in 1963.**

The second problem was that of patents. In 1903 A.H. Haver, who had been the company's chief draughtsman, sued William Doxford and Sons, claiming that he was the actual inventor of the turret deck vessel which had been patented in the name of Charles Doxford. ***

Doxford's argued that Haver had beem amply rewarded by an increase in salary from £l30 to £500 a year, by a gratuity of $£ 500$ and by receiving £500 in the shares of the company. The jury at Durham Assizes found for Haver, however, who was awarded damages of $£ 1,250$, still only a slice of the £l50,000 profit which Doxfords were said to have made by that time out of the invention. ****

The success of the turret deck design led to many imitations. The most formidable rival was the trunk deck vessel, patented by Ropner and Sons of Stockton in 1897, which was almost always discontinuous running between poop, bridge and forecastle. The following jear J. Priestman of Sunderland built a tower deck design which had top iides sloping gently down from the tower deck to a narrow harbour deck.

On Top of the World - 1;24

None was so successful as the turret design itself, however, which "trasnformed a small shipbuilding company..... into one of the largest merchant shipbuilders in the U.K., and laid a firm financial foundation for the development of the Doxford diesel engine with which experiments were being conducted concurrently with the building of the last turret deck vessel."*

Doxford's interest in marine oil engine was awakened in 1910 when the company started to design its first experimental engine. At this time Continental yards were far ahead of their British competitors in oil engine building, while, in the words of Mr. R.P. Doxford, "the old Country had practically no knowledge of the subject." **

Doxford officials therefore paid many visits to the Continent and "obtained much information in respect of what was good in the designs we sa, and what was thoroughly bad".***

The company built its first experimental oil engine in 1912. This was a single cylinder, single piston, two stroke cycle engine, with a bore of 20 inches and a stroke of 36 inchesa very big cylinder at that time. The engine operated on the Diesel constant pressure cycle with air injection of the fuel, the compression and maximum combustion pressures being about 500 lbs. per sq. in. ****

Although the engine was capable of exceeding its designed performance, several inherent defects became apperent.

The principal defects were the weakness of the cylinder head because of the large valve pockets and the heavy pressure; the difficulty of transmitting the heavy piston loads through the engine framing and main bearings; and the rather high lubricating oil consumption. +

* N.A. Roberts in a privately produced history of "The Turret Deck Vessel", published by the firm, March, 1967.
** Speech of Mr. R.P. Doxford at the ofticial sea trial of the "Yagaren", 14th June, 1921.

Because of these defects "we did not consider the conditions demanded by sea-going vessels could be fulfilled but we had gained a lot of information during the two and a half years of building and trial of that engine. You can readily understand it required a considerable amount of courage and confidence to ask the Directors: permission to continue the experiments. This, however, was given and the then $£ 30,000$ spent in experiments quickly tecame £100,000."*

Developments by a German firm had shown the way to the opposed piston principle and by using this "a masterly solution could be obtained for the principal troubles of the 1910 engine."**he use of opposed pistons eliminated cylinder heads and the main bearings were relieved of combustion loads and the engine frame had only to withstand torque-reaction forces.

In 1913 the company designed its first opposed piston engine, 20 inches in diameter and 30 inches stroke of each piston. During November, and December, 1914 this engine ran a five week's day and night trial under the constant surveillance of Lloyd's Registry surveyors. The results proved "very satisfactory". ***

But the company was still not sufficiently satisfied. It turned its attention towards solid injection rather than the air injection which had been used so far. With the latter, the fuel oil was pumped into a receptacle in the fuel valve body where it remained under air pressure until the valve opened when it was forced by the air into that cylinder. ****

But this was more complicated and costly than solid injection where the same oil is ready to be forced into the cylinder by its own pressure the moment the same fuel valve

* Speech of Mr. R.P. Doxford, at the official sea trial of the "Yngaren", 14th June, 1921.
** Ur. Ker Wilson. *** Ibid. **** Lbid.

On Top of the World - 126
permits. Solid injection therefore dispenses with the otherwise essential air compression pumps which absorbed ten per cent of the power of the engines.

By 1919 Doxfords were ready for their first full scale opposed piston marine oil engine. It had four cylinders, 23 inches in diameter with a stroke of $45 \frac{1}{2}$ inches and of course relied on solid injection of the fuel. Even ten years later, in 1929, the majority of marine oil engines were still using air injection.*

This engine was installed in the motorship "Yngaren" built for the transatlantic Steam Ship Company of Gothenburg. Trials meld in 1921 showed that her heavy oil consumption was only 9 tons a day at $10 \frac{1}{2}$ knots average speed, while her sister vessels required 36 tons of coal a day for similar speeds. And the "Yngaren" was able to maintain this speed at only 70 revs., well below the contemporary practice in other motors. Between 1919 and 1924 five engines of the same dimensions as the prototype were built and considering the novelty of the design the teething troubles were negligible. During this period the company discontinued the manufacture of steam engines and boilers to concentrate on the production of oil engines. They were in fact the most successful oil engine manufacturers in this country and the only company really able to compete with Continental engineers. By 1943 Doxford engines totalling about 2 million indicated horse power had been installed. Licences for the construction of the engine were held by six firms in this country and a seventh in the United States. **

OTHER MEN, OTHER METHODS

Many other developments, of less importance that those outlined above are worth noting. The Hartlepool firm of Edward Withy \& Company, pioneered the "well-deck" cargo vessel, which became a speciality of the port. Between 1865 and 1889
more than 350 of these vessels were built at West Hartlepool with an aggregate tonnage of over half a million. And from 1885-9 the three Hartlepool firms of Wiliiam Gray \& Company, Irvine \& Company and Edward Withy \& Company built nothing else.*

The first modern shipyard at Hartlepool had been started by Thomas Richardson and John Parkin in 1835. Within a few years they had rivals in Luke Blumer \& Son; Pile, Spence \& Co. Itd., and J.P. Denton. The last mentioned was joined in partnership in 1862 by William Gray, a draper who had been born in Blyth. The firm then became known as Denton, Gray and, in 1871 when Denton died, as William Gray and Company.

A local historian claims that it was Denton, Gray who pioneered the well-deck steamer with the "Sandsend" built in 1869 or perhaps with the "Lizzie English" built a year earlier.**

The "well-deck" vessel solved the problem of keeping cargo vessels on an even keel whether they were loaded or not Before 1865 shipowners used "flush deck" steamers for their carrying trade. These tended to dip forward because the forward holds had a greater cubic capacity than the after holds. ***

The first solution was to block off part of the forward holds but this diminished the earning power of the vessel. It was then decided to move the engines further forward. This had the disadvantage, however, that when the ships were in ballast the propellor was too lightly immersed and speed was reduced. North East shipowners and builders found the answer lay in building a raised quarter deck which 安ave the after-

* Paper by G.W. Sivewright to N.E. Coast Institution of Engineers \& Shipbuilders, February 1889.
** Robert Wood, History of West Hartlepool, West Hartlepool Corporation 1967. p.60-61.

On Top of the World - i.28.
holds the same capacity as the fore holds and held the aft well down in the water when sailing in ballast.

Another innovation, which was not so successfiul, was the "hionitor" type of vessel.* This went against conventional theory in increasing the wetted surface by having a groove running along the sides of the vessel under the water. The theory, worked out by William Peterson and Arthur Haver, the former Doxford's chief draughtsman, was that the groove would reduce resistance. Indeed Haver, who by 1906 was architect for the Monitor Shipping Corporation of Newcastle, found, after a year's experiments, that resistance was reduced by between 8 and 16 per cent. This was achieved because the groove reduced wave formation which was responsible for absorbing 40 - 60 per cent of the vessel's effective horse power. **

Some of the main force of the waves came from eddies swirling up in a circular motion. The grooves reduced the vertical speed of these waves and thereby cut their resistant force. Haver himself said: "Wave formation has practically been ieft alone as an ever-present evil, impossible of treatment either to reduce or remove, except to a very limited extent..... (but I am convinced) that in a groove, if placed properly, we have a far reaching and valuable improvementsin the total efficiency of ships."***

The experiments seemed to indicate that important savings could be made. For a given deadweight tonnage it should have been possible to reduce the size of the engines and the hull, thus reducing first costs and economising in working charges and in coal consumption. Unfortunately these savings did not materialise in practice and the project faded out.

Mr. Joseph Isherwood, a director of the iliddlesbrough shipbuilding firm of R. Craggs and Sons, devised a more * "Shipbuilder" magazine, Autumn 1906. ** Ibid. *** "Shipbuilder" magazine, Autumn 1906.
successful and far more important innovation - the longitudinal framing of ships.* This length-wise framing of a ship was in direct contrast to the sideways or transverse framing which was then normal.

Isherwood's new system sprang from his observations as a surveyor for Lloyd's Register. He had been born at Hartlepool in 7870 and after serving his apprenticeship as a ships's draughtsman with. Furness, Withy and Company, the West Hartlepool ship-builders, had joined the staff of Lloyd's Register in 1896.

While studying plans for new ships submitted for the approval of Lloyd's register, Isherwood became convinced that the prevailing transverse system of ship construction was. wrong from a scientific point of view. He felt that in this respect there was a profound difference between wooden ships, where the transverse system was essential, and iron and steel ships, where improvements could only be made by means of a new system.

John Scott Russell and Isambard K. Brunel had gone a long way towards devising a new system in the construction: of that leviathan "Great Eastern". But it was not until 1907 that a system of universal application was periected by Joseph Isherwood.**

Deep girders, spaced from 12 to 20 feet apart, extended right round the ship in a lengthwise direction and were joined to transverse plate frames which could now be put wider apart. This arrangement produced a more economical distribution of material, saving 100 tons in weight for a vessel 330 feet by 45 feet by 25 feet. It also opened the way to larger cargocarrying ships. Oil tankers, especially, were considered dangerous in some respects before the Isherwood system was

[^15]introduced. They often broke their backs and hundreds of lives were lost in the ever-increasing oil-carrying trade.

In 1907 Isherwood severed his connection with Lloyd's Register. A few months later, the Middlesbrough shipbuilding firm of R. Craggs \& Sons was building the first of the "Isherwood" ships. This was the 6,600 tons d.w. oil carrier "Paul Paix" for Lennards Carrying Company. It was followed by the shelter-deck River Plate Liner "Gascony" Of 5,660 tons d.w. for David MacIver, Sons \& Co., Liverpool. The two vessels were immediate and complete successes.

By January 1914 a total of 276 ships, representing one and a quarter million gross tons, had been built to this method.* At that time 85% of all oil tankers under construction were being built in this way. By 1921 l,400 vessels had been built or were under construction to the Isherwood system. It was estimated that on a total $12,000,000$ tons of shipping this represented, the Isherwood system had saved over 250,000 tons of finished steel or $1,250,000$ tons of raw material. At the same time it had increased the aggregate deadweight carrying capacity of these vessels by 300,000 tons.

In June 1921 Isherwood was created a baronet. The Americans gave him their own version with a dinner in the Waldorf Astoria, New York, and a eulogy which began:
"When God intended that we should ultimately harness Jupiter and utilize the unseen forces of the ether for the benefit of mankind, He created Benjamin Franklin. When He intended that the peoples of the earth should come in closer communication with one another He created Morse and Mlexander Granam Bell; and when it became His will that a greater safeguard be thrown about the lives of human beings on board ships at sea, he created Joseph William Isherwood."

[^16]A more important figure, certainly on the business rather than the practical side of shipbuilding, was Christopher Furness Born in West Hartlepool in 1852, he became one of the most vigorous and successful of businessmen the country has ever produced - a model of the Victorian entrepreneur.* He received his first commercial experience in an importing-exporting firm run by one of his seven brothers. The business grew and the two brothers decided to buy their own ships, particularly for trading between the United States and the North East.

Iuring the early 1880's the brothers dissolved their partnership and Christopher continued alone. In 1884 he acquired the controlling interest in Edward Withy \& Co. shipbuilders of Hartlepool and eventually the two firms were amalgamated under the title of Furness, Withy \& Co. He later took over Irvine's shipyard and graving dock and then secured engine - manufacturing provision by amalgamating three small, local firms into Richardson, Westgarth and Co. **

Furness' empire grewsto ar: gigantic size for it had interests in collieries and iron works, both at home and aionoad. as well as in owning and building ships. In fact Christopher Furness became the largest individual.shipowner in the world. By 1910, the year he received his peerage, he owned 135 vessels. He was a director of a multitude of companies, including four shipbuilding firms alone. Two years later at the age of 60 , he died and was succeeded by his nephew, Sir Stephen Furness, who in turn was succeeded on his death two years later, by the second Lord Furness. ***

THE OUTPUT PICTURE

By the 1890's British Shipbuilding was in a supreme world position. In 1892, for example, United Kingdom yards launched

[^17]On Top of the World - 132

681 merchant vessels with an aggregate of $1,109,950$ gross tons. This tonnage represented 81.7 per cent of the total tonnage launched throughout the world.

In the same year, the first in which Lloyd's Register started to give a district by district sub-division for merchant building, the North East coast, stretching from Whitby to Blyth, launched 251 ships or 570,296 gross tons, 41.9 per cent of the world total and just over half of the total United Kingdom figures.

Throughout the last decade of the nineteenth century, the United Kingdom continued to supply about three quarters of the World's ships and the North East well over a third of them. But a high degree of fluctuation was already well established as a characteristic of the industry.

In 1893, for example, United Kingdom launchings fell by a fifth to 836,383 gross tons and in the following year they returned to over a million tons. And the same pattern was reflected in the North East. When we look at the region alone, however, it is interesting to see how from one year to the next the Tyne and the Wear challenge one another for supremacy. In 1892, the Wear had a fractionally higher output than the Tyne. But in the following year the Tyne had a clear lead over the Wear which it held for the next two years. From 1896 to 1898 inclusive the Wear was the most important river. Throughout this period, the combined output of yards at Stockton and Middlesbrough achieved third position, with Hartlepools and Whitby not far behind as the fourth most important centre in the region.

Sunderland was always proud to claim that it was the most important shipbuilding town in the world for all the yards of

On Top of the World -183
the river fell within its boundaries. The Tyne's totals, on the other hand, included output from yards at Wallsend, South Shields and Blyth.

But chinks were already beginning to show in the solid achievements of the North East shipbuilding, and nowhere more ominously than Palmer's. Forty years later, in the 1930's the M.P. for Jarrow, Miss Ellen Wilkinson, was to allege that Palmer's - and therefore Jarrow - was murdered by a gang of financial assassins. But evidence was already beginning to pile up as early as the l890's that the company itself was being badly managed.

In 1889, for example, during a trade depression, the company had deliberately sent in low tenders to construct H.M.S. "Resolution" and H.M.S. "Revenge". In the event, the tenders were even lower than they needed to have been and the company lost heavily. In 1890, Palmer's had a trading loss of £11,000 and the following year of $£ 22,000$.

In 1893 accounts were not produced at the normal time and critics speculated on the future of the company. "Charles Mark Palmer fought hard for his company. He threw his personal prestige into the balance..... appeared everywhere, in apparently the highest spirits."* But it was not enough. Bankruptcy seemed to be fast approaching. To avoid the humiliation - and the loss of his Parliamentary seat - Palmer resigned. A mortgage of $£ 650,000$ was raised to provide new capitalsand in 1896 the $£ 35$ shares were written down to $£ 20$.

For a number of years, the company's affairs improved. Even during the depression of 1902-4 the company made large, indeed record, profits, the largest in its history. How had it managed to do so well? The Chairman, Sir Charles McLaren, told the shareholders that it was on account of the board's 'fiscal policy'. "Our fiscal policy consists in strengthening * Ellen Wilkinson, "The Town that was Murdered". p.ill.

On Top of the World -134
and developing every department of the company out of revenue and in keeping down the dividends to the smallest amount that we can decently pay..... we are able to show that even in bad times an up-to-date and well-managed concern can secure a fair return for the shareholders."*

With a record profit of $£ 64,184$, the board proposed to pay what Sir Charles called the 'usual' dividend of 5% on both prefierence and ordinary shares. Considerable sums were again to go for extensions and improvements. Between 1895 and 1903 the company spent 2213,000 on extensions, all of the money coming out of revenue.

For a while, profits continued to rise: From 1905 to 1907 they werenever less than, $£ 80,000$. . But in 1908 the company made a loss of £58,000. Another mortgage was raised and the shareholders agreed that no dividends should be paid on preference shares or on debentures until it was paid off.

Matters did not improve. In 1909 the company made a loss of $£ 63,669$ to which had to be added debenture and loan interst of 215,983 . The total debt then stood at $\dot{\&} 127,380$.

Sir Charles MicLaren commented: "It would be hard to exaggerate the difficulties with which the company had had to contend in carrying on operation during the year."** The battleship "Lord Nelson" had taken 11 months longer. to build than had been anticipated, while three first-class torpedoboats had also taken months longer to build.

The loss in 1910 came to only 211,353 and in 1911 the company showed a net profit of £4l,900 all of which was used to reduce the debit on the profit and loss account from £138,737, to £96,837.

The board must have uthought that the tide of bankruptcy had been turned. That seems to be the only explanation for its

* Address to the shareholders at the 38th A.G.M. held in September, 1903 reported in Palmers record, a company magazine Vol ** Jarrow Guardian, lst October, $1909 . \quad / 11$, No. 5. p. 55.

On Top of the World - 1.35
decision to take over the Hebburn establishment of Robert Stephenson \& Co., consisting of a shipyard, graving dock, boiler shop, foundry and other departments. The new premises were to be reserved for merchant work while the Jarrow yard, which was to be further extended, would specialise in warship building. But why the company should want to add further to its capacity when, the industry had just been through a severe depression and when it itself was in such heavy debt is not clear.

The troubles were underlined the following year, 1912, when another loss took the total debt up to 2128,413 . "This uncertain progress was causing anxiety. But all the cracks were hidden by the outbreak of war," wrote Miss Wilkinson. But the evidence of these years shows clearly that the company was getting itself into trouble and was not, as Miss Wilkinson alleged, the innocent 文ictim of wicked capitalists.

The boom at the turn of the century saw the North East launching over 870,000 tons of shipping in 1901. None of the area's four rivers had ever produced as much as they did that year with the Tyne supreme, launching 116 ships of 292,989 gross tons. Yet because of a large increase in shipping from other countries, both the United Kingdom and the North East percentages of world trade fell. The country as a whole produced only 58.2 per cent of the world figureand the North East only 33.4 per cent.

Both were to slip even further in the recession years of 1902 and 1903 before the revival that started in 1904 took them on to great heights in 1906. In that year the North East produced over a million tons of merchant shipping for the first and only time. Yet strangely enough only Sunderland produced its highest ever output in that year. The other three rivers
in the North East produced their all-time record totals in other years: for the Tyne 1911 was the record year with an output of 412,959 gross tons; for Hartlepools and Whitby it was 1913 with 153,071 gross tons; and for Middlesbrough and Stockton the record year was 1920 with an output of 195,452 gross tons.

In 1906, North East launchings of $1,005,148$ gross tons compared with 823,195 gross tons from the rest of the country so the area's share of the national total had never been greater. And this supremacy served to underline a remarkable fact - that this coastline of 40 miles was, had been for some years, and was to remain for a considerable further period of time, the most important shipbuilding area in the world.

In that jear the Tyne alone produced virtually as much shipping as the whole of the United States, more than Germany, three times as much as Holland and almost ten times as much as the Japanese. And it again won the Blue Riband for the biggest single output from one firm, a record that fairly regularly in this period went to the North East firms. William Doxford's of Sunderland gained the honour in 1905 and were to do so again in 1907. But in 1906 the record went to Swan, Hunter and Wigham Richardson with 25 vessels of 118,039 gross tons, only the second British firm to produce a six-figure output, while Doxfords were third and William Gray and Company of Hartlepool were fifth. The top marine engine builders were the North East Marine Engineering Company' Ltd., with a total of 117,534 indicated horse power fitted to no less than 64 vessels.

But despite the big output, profits were disappointing. Orders had been placed in the lean years of 1903-4 when shipbuilders had been keen to get business even at reduced rates. One shipbuilder quoted only $\because 5.10$. od a ton for shipping booked in 1904-5 whereas a year earlier he had received over \&7 a ton. *

See appendix - List of prices quoted by John Readhead and Sons Ltd., South Shields.

So, many people saw dangers ahead in the boom year of 1906. Mr. D.C. Cummings, the general secretary of the Boilermakers and Iron Shipbuilders Society, wanted to try to regulate output in some way, perhaps by the amalgamation of firms. * Lord Pirrie, the chairman of Harland \& Wolff, wrote: "I fear it would be very difficult to arrange a scheme for regulating output that would be satisfactory to all parties." ** He called instead for shipbuilders to refrain from soliciting orders from owners who already had a regular owner.

By 1907 the over supply of ships brought a great reduction in new orders reflected in the 1908 output figure of only 355,859 gross tons from the North East, the lowest figure since separate area records were kept. In December 1907 there were 8,000 unemployed shipyard workers in Sunderland alone and the Mayor opened a relief fund. The Local Government Board subscribed $£ 6,500$.

Despite the slump, the North East remained the biggest centre in the world for shipbuilding and four of its yards were among the top seven world producers. There were William Doxfords which was first with 22 vessels and 91, 254 gross tons, Swan, Hunter second with 75,460 tons, Armstrong Whitworth third with 74,228 tons and Joseph L. Thompson seventh with 48,218 tons. The North East Marine Engineering Company was also again world champions with an output of 121,470 indicatedhorse power.

By 1908 shipbuilders were in the middle of the worst depression they had known in living memory as the supply of ships continued to wait for demand to catch up. Never before h_{a} so much capacity and labour been idle. To try to counter the effect, shipbuilders were tendering at cost or below, a situation that produced heavy: losses for Sir James Laing and Sons, and for:-Palmers and resulted in the closure of Robert Stephenson \& Compeny's yard at Hebburn.

$$
\text { * "Snipbuilder", vol. 1. Iy06. ** } 1 \text { bid. }
$$

The depression eased in 1909. Output improved marginally in all North East rivers except for the Wear, where it made a spectacular jump from 86,547 tons in 1908 to 132,371 tons in 1909. Ten of the river's twelve firms reported a greatly increased output but Sir James Laing and Company, which in 1908 produced only 9,700 tons, launched nothing at all in 1909.

The improvement continued during the year 1910 as the supply of ships and the demand for them reached a more equable point. By 1911 British and North East shipbuiłding reached the high peaks of merchant ship production that were to remain until the war began. By the end of March 1913, Lloyd's Register was reporting that a gross tonnage of $2,063,694$ was under constructions in the United Kingdom - the highest figure ever recorded to that date in Lloyd's returns. \because

In these conditions, the cost of ships began to creep up noticeably. One builder who had been asking for £5.l per ton in 1909-10 put his price up to $£ 5.6$ per ton in 1911 and to \%6.7 per ton in 1912-1913.

The high prices of new vessels together with a dip in the freights rates persuaded some owners, to hold off placing new orders. By the summer of 1913 Mr . Herbert Rowell, the managing director of Hawthorn, Leslie was reporting that his company was receiving only a quarter of the enquiries for new tonnage that the firm had received only a short time before. This slight dip in demand hardly made itself felt, however it was in fact an easing of a headlong position in which labour had become increasingly difficult - both in terms of increased demands for higher pay and in a greater reluctance to work overtime.*

* Beatrice \& Sidney Webb, "Industrial democracy", p. 513.

On Top of the World - 139

IABOUR RELATIONS

The years of supreme achievement at the end of the 19th century were marred by worsening conditions in the field of labour relations. There were many conflicts and they were not all with the employers, Indeed the Webbs estimated that "within the space of 35 months 'between 1890-3' there were no fewer than 35 weeks" in which one or other of the most important sections of skilled men on Tyneside were idle because work to which they laid claim was being done by others.f

Another observer estimated that between 1894 and 1906 there were 130 indusirial stoppages in North East shipbuilding, 75 of them on the Tyne.** This compares with 24 stoppages in engineering in the same area over the same period. The North East coast was clearly the main centre of trouble for shipbuilding disputes in the country.***

There can be little doubt that the area's very success in a wide range of ships from oil tankers to luxurious passenger liners in itself created the trouble. Por it created work for a variety of crafts, some of them fairly new to the industry or trying to widen their sphere of influence and these rival unions "fought each other savagely to establish their overlapping or conflicting claims. Thus the industry had the misfortune to be the meeting ground of many well-organised crafts during a revolution in its technique and to offer an expanding range of new jobs which lent themselves to much hairsplitting deebate."****

The main difficulties lay with the shipwrights and for a good reason. The rise of iron shipbuilding strengthened the boilermakers who recruited to their ranks the riveters,

* Beatrice \& Sidney Webb, "Industrial Democracy" p. 513.
** J.F. Clarke, Newcastle University M.A. Thesis , p.512-517.
*** "'A History of British Trade Unions 1889-1910 ${ }^{\text {n' }}$ by H.A. Clegg and others, Published 1964, p.128.
**** Ibid.

On top of the World - 14
platers, angle ironsmiths, caulkers and holders-up. The shipwrights, the masters in the oid wooden days, saw their livelihood being increasingly squeezed and so they in turn tried to regain some of their losses from ship joiners.

A sixth of all the disputes involved joiners and shipwrights despite continuous efforts to arrange a satisfactory division of work. Early in 1890 Thomas Burt M.Y., was called in as umpire to try to settle the allocation of l68jobs. * After six months' exhaustive enquiries, hedecided that 96 of the jobs should be tackled by joiners and 72 by shipwrights.

The joiners refused to accept trart's decisions, however, much to the annoyance of other local/unionists.** Almost 1,000 men from Tyne yards went on strike for three months from August, to November 1890 and only agreed to return to work when a new conciliation board, on which two technical assessors were represented, started work. Their main argument against Burt's awards was that he nad no expert knowledge of the trade. A temporary peace was achieved but a lot of bitterness remained. The Tyne Joint Committee of Shipwrights and Joiners did not stop disputes but it reduced their duration.

Another bitter conflict involved engineers and plumbers, who disputed work on iron pipes. The engineers claimed that it was their work because the pipes were iron, while the plumbers replied that pipes, especially those for sanitary purposes, were within their province.***

The engineers refused to accept an agreement reached after a number of meetings and 8,000 of them on the Tyne went on strike from April to June 1891. But the issue continued to fester even after the men resumed work and they went on strike again from January to March 1892 . ${ }^{* * *}$

[^18]On Top of the World - 141

Thus the Federation of Engineering and Shipbuilding Trades, which had been established in 1890 partly to solve inter-union disputes and partly to act as a counterweight to the shipbuilding Employers' Federation formed in 1889, was by no means successful in solving all disputes. * The Federation did lead, however, to regular negotiations with employers on the Tyne, Wear and Tees. It led, toos:to an agreement signed on 4 th July, 1894 between the boilermakers and employers, which laid down a procedure for wage changes.

This was mainly the inspiration of Robert Knight, the Autocratic yet legal-minded general secretary of the United Socie访 of Boilermakers and Iron Shipbuilders. He believed, above all, in industrial peace and in negotiation. Once an agreement was signed, he believed that it should be adhered to until a new agreement came into force. He even fined his own members for the non-performance of their duties or for bad Workmanship. The Webb's claimed that the Boilermakers Society, whose strength increased from 30,000 in 1889 to 48,000, was "one of the most powerful and best-conducted of English trade societies". **

Certainly the 1894 agreement, largely ${ }_{* *^{*}}^{p u t}$ through by Knight's efforts, was a most constructive dočument. ${ }^{* * *}$ It applied to all employers in the North East and laid down a minimum period of six"months between general wage changes and a maximum change of five per cent at any one time. Any change required a month's notice and had to be referred to a joint conference, as had all disputes. There were to be no stoppages, the agreement was to last for five years and could be terminated only after six months' notice. This was clearly a major step forward in trying to eliminate those disruptive claims which the men could advance in busy times or reductions which employers could call for when * H.A. Clegg.\& Others, p.130. "Industrial vemocracy", p. 82.
*** m.A. Clegg, p.l50.

On Top of the World - 142
things were slack. For this reason both employers and his own union members were not initially enthusiastic about Knight's plan. In fact the North East branches of the Boilermakers Society voted overwhelmingly against the agreement (by 7,300 votes to 21,100) but it was approved by a majority vote of the: whole society (by 16,000 to 12,000).

Despite the general approval by the society's members, no other part of the country followed the North East's lead. The joint committees of boilermakers and employers on Tyne, Wear and Tees did useful. work in settling disputes. Thus by 1895 there were a number of conciliation boards in the North East shipbuilding industry for, as we have seen, the Wear Conciliation Board had been in existence since 1885 and the Tyneside and Tees-side boards for shipwrights and joiners since 1890 and 1895 respectively. In 1898 three trade unions, the shipwrignts boilermakers and blacksmiths formed a joint committee between themselves and employers on the Tyne and Blyth to handle demarcation disputes. By 1900 there were 11 conciliation boards in North East shipbuilding and engineering, well ahead of the rest of the country. In fact, "the North East coast was the only region where conciliation and arbitration machinery was developed to any extent."* One estimate has shown that of 558 cases considered by conciliation boards in the North East between 1897 and 1906 only 10 resulted in strike action.** Altogether there were 87 strikes in the period, so "the role of these boards in minimising the effects of demarcation disputes was outstandingly important." ***

Unfortunately, both the Wear conciliation Board and the procedural agreement between boilermakers and employers came to an abrupt end. In 1906 an authorised strike on the

* Dr. I.G. Sharp, "Industrial Conciliation \& Arbitration in Great Britain."
** J.F. Clarke, Newcastle University M.A. Thesis, p.500.

On Top of the World - 173

Clyde to secure a wage increase already granted in the North East lost 600,000 working days and led North East employers to terminate the 1894 agreement in order to bring in a more effective national agreement.* This produced the less satisfactory Edinburgh Agreement of 1907, a temporary settlement which the boilermakers declared later was "forced upon us at the point of the bayonet."

The agreement pledged the Society "not to interfere with the alternatives of yard customs, although these..... meant the withdrawal of previous privileges and the reduction of wages..... to admit to our membership, without penalty, apprentices who had gone from yard to yard during trade disputes, blacklegging our members..... and to work unlimited overtime at the discretion of the employers".**

In 1907, as depression continued, shipbuilding employers called for the usual wage reductions. About three quarters of the men were prepared to accept. The shipwrights and other wood-working unions refused, however, and 5,000 of them stopped work in January 1908.

The Shipbuilding Employers' Federation proposed a general lock-out of the unions involved - a threat that resulted in the men calling for arbitration. The employers refused and in April 1908, they locked out 13,000 men in Scotland and the North East, thereby putting another 22,000 out of work as a result. ***

The unions not directly involved, especially the Boilermakers, were incensed at their own impotence and called for compulsory arbitrations.

Meetings between the President of the Board of Trade and the contesting parties inally achieved agreement. The

$$
\begin{aligned}
& \text { * H.A. ciegg \& otners, p.435. } \\
& \text { * Monthly report, April, } 1909 ._{* * *}^{* * \text { H. Clegg, p. } 436 .}
\end{aligned}
$$

On Top of the World - 244
strikers were to accept the reduction and a conference was to be called to consider setting up a permanent procedure for settling disputes. The stoppage had lost $1,700,000$ working days.*

The new procedure was ratified in March, 1909. It established that general wage movements were to be negotiated nationally by the Federation and the unions. A minimum period of six months must elapse between wage changes which must not exceed at any one time five per cent fior piece-work rates and one shilling a week for time rates.

By and large, the branches and districts did not welcome the national regulation of wages. The new general secretary, of the Boilermakers commented: "While they say it might be quite easy to get a national reduction, it would be exceedingly difficult to organise a national advance."**The North East continued to be a trouble spot, an area of no compromises. Elsewhere reductions were accepted but in this area they were thrown out by a strong unofficial movement basing itself upon the principles of the 'living wage' and local union autonomy.

Despite the constant fluctuations in wages, dependent upon the state of trade, the general trend was naturally upwards. But shipbuilding workers lagged behind the national average. Between 1886 and 1906 their average earnings in a full week went up by 22 per cent, while the average increase for all groups was 26 per cent.*** The less than average increase resulted, however, from a higher starting point. In both 1886 and 1906 engineering and shipyard workers were the second highest paid in the country.

There were wide variations within the shipbuilding wage pattern, however, While the average figure for men in 1906 was 35s. lld. general labourers averaged just over £l a week. * H.A. Clegg, p.436.
** D.C. Cummings.
** * From Board of Trade census as analysed by A.I. Bowley in "Wages and Incomes in the U.K. since 1860".

On Top of the World - 145

Platers, riveters and caulkers on piecework formed a labour aristocracy. Caulkers on the Tyne, Wear or Tees averaged 54 s .8 d . riveters 55s. 7d. and platers between 77s. 3d. and 82s. Jevertheless a fifth of the men in the shipyards received less than 25 s. a week in 1906. This was less than some of the skilled men were receiving in the 1850's when 6 s . or.more a day was by no means an uncommon wage.

The following table shows the way that wages moved for three important grades over the period:*
60- $\frac{1871}{\mathrm{hr} \text { week }} \quad 54-\frac{1882}{\text { hr week }}$

Platers	54s. 6d	77s. 6d	57s. 1d	76s.
Riveters	34s. 5d	5ls. 2d	37s. 3d	55s. 7d
Caulkers	38s. 6d	45s. 9d	40s. 7d	54s. 8d

Such figures do not indicate the full story: however, because the work was so precarious. In 1908, for example, a yard that was employing 960 men one day in March was employing 1,586 men on a day in June. What is more, this see-saw effect, from month to month as well as from year to year, had an important multiplier effect on the local economy, particularly on Tyneside where one in every six or seven men was connected with shipbuilding, or on Wearside where the proportion was even higher.

Direct employment alone absorbed over 20,000 men, but to this figure we have to add another 20,000 in marine engineering and perhaps the same figure again for those in ancillary trades. If we take the average payments for these men as being 35s. Ild a week, shipbuilding was responsible for pumping over $£ 100,000$ a week into the Tyneside economy through wages or about $£ 5 \frac{1}{2} \mathrm{~m}$. a year.

[^19]On Wearside about 10,000 people were employed directly in the industry - an even larger proportion of the available work force than on Tyneside - and the overall figure of those dependent on the industry in one way or another was about 30,000. A slightly higher figure was to be found on Tees-side. Altogether in the first decade of this century the North East employed over 40,000 directly in shipbuilding, an equal number in marine engineering and an equal number again in ancillary trades, a total of 120,000 . The wages bill exceeded $£ 11$ "m."a year, half of it, as we have seen, paid on Tyneside.
"Shipbuilding and ship repairing together constitute the greatest industry on Tyneside, its chief pride and the source of livelihood for a large part of its population. "*

And the fortunes of the area - and the smiles on the faces of its people - went up and down with the success of its ships. Despite the fluctuations, success had obviously been very great but now was to come a much more testing period.

The North East had grown very fast on the back of the Industrial Revolution. The engineering industry is the area had expanded tenfold within 50 years and shipbuilding had expanded five-fold. The region's population, despite its very high birth rate, had not been able to keep up and about 150,000 migrants had been sucked in, mainly from Scotland and Ireland, to man the booming industries.

But now the years of greatness, the years when industrial enterprise of the highest order had been allied to inventiveness of an unsurpassed degree, were nearly over. From now on an almost unshiftable decline set in. The industrial treasure house was seen to have too narrow a base. When fast-moving

* "Industrial Tyneside", by Dr. Henry Mess.

On Top of the World - 147
changes arrived, the area which had prided itself in always being in the van of change was unable to cope. But, of course, the problem was no longer a local one. Like other parts of the country and indeed of the world, the North East was under the grip of much greater forces than it itself could tackle. How it tried to tackle them, however, we must now turn to examine.

C H A P 凡 世 5
1914－1930
FIRST SIGN OF TROUBLE

A sudiden and savage decline now hit British shipouilding．in $19<0$ the industry produced an all－time record of two million tons of shipping． Three years later it did not produce a third of that figure．And with the dreadful drop in output prices，wages，employment and profits all went tumbling down too．

But Britain did not stand alone．World shipbuilding output plammetted from five miliion tons in 19\％0－or seven million tons in 1919 －to one and a half million by 1923．The unprecealented drop was bad enough in itself but within the next few years，the incustry underwent a strong recovery， fell substantially again，recovered again and then fell awas into the seemingly bottomless pit of the 1930＇s．Any attempt at rational actions and decisions was thus impossible．

Nowhere did this series of cyclical surges cause more indusirial heartsearching and more personal suffering than in the North vast，which was still the greatest shipbuilding centre in the world，altiough that claim vecame increasingly meaningless．

THE W最

The total output of ships from the lyne，Wear and Fees during the war amounted to $1 ; 130$ vessels of all sizes and descriptions with an aggregate tonnage of $3,324,912$ ．＊ithis tremencious output－an average of five ships a week throughout the whole of the war－was well ahove anything the North East had ever achieved before．And it was achieved despite a neavy drain on shipyard labour to the armed forces and despite the bis increase in repair work．＊＊
＊N．E．Shipbuilding during the Far by A．H．J．Cochrane，N．H．Coast Institution of Engineers and Shipbuilders，July 1919.

[^20]"In common with many other British industries, that of ship repairing had unprecedented demands made upon it as the result of the exigencies of war. It is now common knowledge that these demands increased and became more and more pressing as the war went on until the enemy submarine campaign brought this country to the most dangerous crisis it has ever had to face. The call for ships was insistent and imperative and the whole resources of the ship repairing industry were taxed to the utmost War requirements and its close proximity to the war zone made the district perhaps the most important naval repair centre in the world as well as the principal region for merchant vessel repairs."* There were 40 separate repair establishments carrying out the work with 46 dry docks, seven pontoons and eight slipways. Even the Government's pontoon dock which was normally located in the Medway was successfully towed round to Jarrow Slake in 1915 so that Tyneside firms could repair and refit battleships and the largest cruisers. More than. 145 vessels were in fact repaired at the pontoon. Altogether 7,856 war vessels and merchant ships were dry docked in the area during the war and in addition 20,245 ships were repaired afloat. **

Despite the heavy pressure and the high output, the quality of workmanship did not seem to suffer. A high standard of accuracy was achieved, for example, in the design, construction and installation of turbine machinery. This meant that the Admiralty could dispense with the exhaustive preliminary trials which hitherto had been thought essential.

Yet, at the time, the efforts of the industry were felt not to be good enough. . Towards the end of 1917 there was a growing demand for more and more ships, both naval and merchant, to counter the German submarine offensive. In fact on the l4th December, the Prime Minister, Llojd George, went so far as to say: "Victory is now a question of tonnage and tonnage is victory. Nothing èlse can now defeat us but a shortage of tonnage." ***

* Ship repairing on N.E. Coast during the war by M. C. James \& L.E. Smith, N.E. Coast Institution of Engineers and Shipbuilders, July 1919.
** Ibid.
*** "Shipuuilder", January lyib.

The beginning of the war had naturally seen a sharp drop in merchant shipbuilding, both because of the sudden fall in demand and because of the. concentration of the industry on warships. The North Fast output of 854,697 gross tons of merchant-shipping in 1914 fell to 352,825 gross tons the following jear and staged at almost the same figure in 1916. In 1917 output doubled to over 600,000 and went even higher in the following two jears.

And so by late 1916 merchant ship construction was beginning to pick up strongly to produce the much bigger launch figures of 1917. At Middlesbrough and Stockton mercantile work in hand jumped from 51, 670 gross tons at the end of June 1916 to 76,480 at the end of September, while on the Tyne comparable figures soared from 310,577 gross tons to 401,926 gross tons.

By 1917, in fact, the industry had picked up so much that it was beginning to suffer from a shortage of steel. Yet the need for more tonnage still became so pressing that the Shipbuilding Advisory Committee was set up to boost output. * Its main recommendation was that ships should be standardised into five types to reduce costs and time. The idea was taken a stage further with the proposal for fabricated ships. The preparation of the structural parts would be undertaken to a great extent in steel works and then the prepared parts would be delivered to a shipyard for assembly and erection.

Even concrete shipbuilding was examined more thoroughly than ever before as a way around the steel shortage. The first concrete ship had been built aboụt 1850.** By the end of 1917 about 200 concrete vessels had been built, mainly small ships such as barges and lighters. The first significant venture into the field was the formation of the Ferro-Concrete Ship Construction Co. Limited, an offshoot of Vickers at Barrow. A number of others followed including the Wear Concrete Building Co. Limited, founded by Swan, Hunter \& Wighom Richardson Limited, the Amble Ferro-Concrete Co.
** See article by W. Noble Twelvetrees, Vol. 20, "Shipbuilder".

* "Snipbuilder", January lylð.

Limited, in which Palmers had a large interest and a yard at Whitby which was the property of the Whitehall Dockyard Company.

Almost all the work in the concrete shipbuilding jards was done near the slipways. The concrete mixers were on the berths and discharged into trucks running on narrow gauge lines to any part of the gantries. And the exterior shuttering and the reinforcements for the hull were also assembled on the slippays ready for the final operation of concreting.

But concrete shipbuilding never really proved a commercial possibility. An observer commenteds "It would appear that the economic disadvantage of this material so far as weight is concerned is so great that in most types. of ship only a lack of steel would warrent its adoption."* France, Spain, Italy, Norway and the United States were all building concrete ships but gradually the idea petered out as steel supplies improved.

An impatient Government tried to boost production in another way by setting up three national shipyards.** Indeed, it wanted to set up four but it came under such heavy pressure from the industry that it abandoned the fourth. Only one of the gards contained manufacturing plant. The other two could only be used for erecting the vessels. None of them produced a single ton of shipping because the war ended before they could come into use. But even at the time the industry seemed to be on good ground in arguing that the investment of $23,887,000$ in these jards mas high. ***

And it was on even stronger ground when it argued that physical capacity was not the crucial factor. The bottle-neck was the shortage of steel and of labour, particularly willing laboux. Sir Eric Geddes, First Lord of the Admiralty, remariked in March 1918 that January's output was little more than a third of the monthly averages in 1917. He blamed the workmen and to a lesser extent. the employers.. The industry agreed with the first point. Ironsmiths, in particular, had done less than a normal week's work, according to some employers.

* Editorial in Shipbuilder, Jamuary 1919.
** "Snipbuilder", january 1yl४.
*** Ioid.

The timekeeping of a large section of the iron trades had been bad and their willingness to strike "diatressing"." But the employers retaliated on the second point by blaming the Admiralty. They felt that Government departments had been weak in dealing with labour problems and that this had done "incalculable harm". Wage rates had risen as followss

TYPICAL WEEKKIY WAGES FOR TIME WORK **

Not only were the increases too great according to the employers but the largest increases went to those earning the most in prewar days. "This is manifestly unfair and is a serious indictment against the Committee on Production and the Ministry of Munitions as well as against their. technical advisers," said one commentator.*** Why it was so unfair, he does not say. It would have seemed, on the contrary, to be entirely fair that the old differentials should have been maintained. What is more, when one relates the increases to what was received previously, the poorer workers can be seen to have benefitted much more than their better-off colleagues. The increase for drillers, for example, amounted to more than 100 per cent.

* Shipbuilder; Vols. 18-20.
** Shipbuilder, January 1919.
*** Ibid.

Shipwrights, on the other hand, had a 70 per cent improvement in their wages.
But the emplogers complained that. the Government's controls generally were too stifling. John Meade Falkner, who had become chairman of Armstrong Whitworth in 1915, remarkeds We have become a Government arsenal under Government control." *

The Government set the level of prices after studying the costs of production and this almost invariably meant pitching them well below the firms' own estimates. Profits were also controlled. The criterion was that they should bear the same ratio to ouput as in the last few jears of peace.

Nevertheless, many firms did well out of the.war. Swan, Hunter \&. Wigham Richardson saw net profits rise from \&218,000 in 1914 to £ 374,000 in 1918.** Armstrong, Whitworth pushed up average net profits from 2800,000 a year to £lm. a Jear, while Jos. T. Eltringham \& Co. Limited turned a net profit of £8,000 in 1914 into $£ 134,000$ in 1918.

Nowhere was the effect of the war greater than at Palmers. The company had reached the point of jeopardy in 1908. It made a loss of £58,000 in that hear. To try to save it, a mortgage was raised and it was agreed that no dividend should be issued until the mortgage was paid off.

For three years the debt was slowly reduced, but in 1912 events started to turn against the company again: and the deficit reached al28,413. Then the war came and with it great activity. By 1915 Palmers had turned the deficit into a credit of $\{42,772$. Throughout the war the company continued to make handsome profits but unfortunately so much of it had to go to pay off earlier debts. This was the first cause of the financial trouble which toppled the company a few years later.

The problem at Palmer's was not unlike that facing the industry generally. as a result of the war. New capacity was brought into operation for which, once the war was over, there would be no need;***new firms, often subsidised, were set up in other countries; and new customer-supplier ** Net profits - i.e. after providing for tax, depreciation and debenture interest, but before dividend payments.
*** 45 extra berths were authorised in private firms. * J.i. Scott, "vickers - A History", p. 126.
relationships were established.
In 1914 there were 45 m . gross tons of shipping in the world. By 1919 there were 47m. gross tons, even though 13m. gross tons had been lost in the war. The U.S.A., in particular, became in the space of f our years a major contender. Indeed, from 1914-21 it was responsible for 86 per cent of the net increase in the world tonnage. American firms even reverted to wooden shipbuilding at one stage when steel supplies failed to match the soaring demand. This may seem odd considering that the spearhead of the American effort was the Bethlehem Shipbuilding Company, which was exprèssly set up to form a vertically integrated outlet for the Bethlehem Steel Corporation.*

British tramp shipping never recovered from its almọst complete extinction during the war. Between 1913 and 1933 the number and tonnage of tramp ships fell by a half. Largely, this reflected the loss of the coal trade for during the war our overseas markets were taken over by non-combatant nations. And this in itself had a crippling effect upon British shipping and shipbuilding for the tramp ships. - the all-purpose cargo vessels - were the backbone of the industry and, since the launching of the "John Bowes", the North East had been their birth-place. THE OUTPUT PICTURE

Despite the disorganising effect of peace, the first two years after the First World War were on the whole very good for North East shipbuilding. The sudden reduction in naval mork allowed yards to get ahead with the backlog of mercantile orders. The Norwegians, in particular, had been placing orders throughout 1917 for an estimated aggregate of over 500,000 tons of shipping to be commenced as soon as the war was over.** The prices agreed ranged between $£ 25-£ 30$ per deadweight ton compared with about f 5 - ₹ 6 per deadweight ton just before the war. In 1920 over 40 per cent of British launchings were for foreign account.

[^21]That was the year when the industry reached its peak merchant shipbuilding performance. Over two million gross tons of shipping were launched, 35 per cent of the world total. The North East alone produced 948,000 gross tons, which was 16.5 per cent of world output.

The strong demand and the hopeful view of the future brought new yards into existence. On the Tyne, Messrs. Renwick and Dalgleish, well known shipowners, had decided to enter the building business and they were followed by. the Newcastle Shipbuilding Company.* The latter was incorporated on 30th August 1919 under the chairmanship of John Crass of Newcastle. It took over the small slipway and ship-repairing business of the Huntley Shipbuilding Company at Hebburn. Originally, the intention was to build small ships but later in the year a more adventurous scheme was put forward. About 16 acres of land were bought to give a river frontage of 1,500 feet - one of the longest in the North East, There were, to be ten building berths of up to 530 ft .

The keel of the first vessel was laid down in February 1920** A jear later the company had to lay off all its staff and call a meeting of creditors after it had launched only two ships.

At Blyth, Ritsons' Shipbuilding \& Engineering Company laid down three berths while on the Wear the highly successful Hartlepool builder Sir William Gray was building a new yard. This was the Egis yard at Pallion, named after its main sponsors: Sir John Ellerman, Sir. William Gray, Lord Inchcape and Mr. F. C. Strick. On lat January 1919, the Fgis company was absorbed by the reconstructed company of William Gray \& Co. (1918) Limited. ***

The new yard on the South bank of the river covered 15 acres, contained 4 building berths up to 440 ft . long and employed 1,000 men. It had been a pasture for many jears although in the seventies and eighties Oswald and Company, and later Kish, Boolds and Sharer had built, small ships there. The first vessel was launched on 12th June 1919 - an 8,200 d.W. ton standard cargo steamer for the British India Steam Navigation Company.

$*$	"Snipbuilder", April 1922.
** \quad Iuid.	

"Snipbuilder", August $1 y 1 y$.	

But the most important new yard was that created out. of former marshland at Haverton Hill, near Billingham, County Durham, by the second Lord Furness.

He decided to build it at Haverton Hill, even though the site was so low lying that a million tons of slag, sand and ashes had to be deposited over its 85 acres.*. But this was no great handicap to Lord Furness and he ordered that 10,000 tons d.w. ships should be built even while construction work was being carried out. Indeed the first keel was laid only three months after the beginning of the construction of the yard and the ship was launched early in 1919.

Furness had to provide accormodation for the gangs of workmen being brought into an undeveloped district just like Andrew Leslie, Charles Palmer and many others had had to do in the mid-nineteenth centry. He built Belasis Village, consisting of 531 houses in 438. days.**

The layout of the yard was said at the time to be unique in its size and spaciousness. There were eight berthe with a capacity for building ships of from 450 ft . to 750 ft . and ample space was provided between the berthe for the latest tower cranes with a lifting capacity of four and six tons. "The Furness Shipbuilding Company, which is second to none in Great Britain as regards layout and equipment, is a fitting testimony to the courage and enterprise of Viscount Furness", said one observer.* **

Furness was also a director of the Northumberland Shipbuilding Company of Howdon, which was the mucleus of a determined effort by a group of London financiers, including Clarence Hatry, to gain control of a number of shipyards. The group was known as the Sperline Combine and within four years it was the biggest combine of its kind in the shipbuilding world. By 1921 it owned all the share capital of William Doxford's, 85 per cent of the capital of Fairfields, the whole of the capital of the Monmouth Shipbuilding Company and of Workman, Clark at Belfast, as well as the controlling interest in Blythswood. It also secured control of the Lancashire Iron \& Steel Company •

* \#** Shipbuilder, Vol. 22, June 1920.
* Billingriam Press, 25 tn April 194%.
** Ybid.

The combine's usual practice was to gain control by share exchanges, to obtain advances from the new subsidiaries, to pledge the assets and use these funds to extend the interests even further. The financial links. became overstrained, however, in the depressed inter-war years and in 1924 the Northumberland Shipbuilding Company collapsed.

For shipping generally, the bubble burst spectacularly in the summer of 1920. Freight rates suddenly fell and, as usual, orders for new shipping were cancelled. In June alone 76 orders were withdrawn. *

Shipbuilders countered by trying to reduce costs. North East steel makers made two reductions in the cost of plates and angles at the begining of 1921 so that the basic prices came down to $£ 21$ and Cl 19.10 s .0 d . per ton respectively - a reduction of $£ 3.10 .0 \mathrm{~d}$. for plates and £4.10.0d. for angles in two months. As we shall see, the employers also asked the men to contribute by accepting a reduction in wages. There was still a feeling that this was just part of the normal fluctuations and that "lower prices for new ships would promote the demand for them as there are many special trades at present in which vessels could be employed profitably or without loss if the cost of construction were less."* *

By 1921 output at Sunderland was less than half what it had been the gear before and this was also true of Whitby and Hartlepools. But Middlesbrough, Stockton and Newcastle managed to hold up well in 1921. But then in the autumn, a dramatic drop occurred everywhere. Merchant work in hand on the Tyne fell from 603,000 gross tons on 30th September to 516,000 three months later. At Sunderland there was a fall from 291,000 to 203,000 gross tons. Sunderland was further affected by a very long strike of joiners (see section on labour relations).

The costs of construction and the market value of ships were completely out of proportion. Two ships which had been bought in 1919 for $£ 344,000$ were resold in 1921, when the owner went into liquidation, for only 280,000 . Another ship had cost $£ 145,000$ to repair but realised only $£ 20,000$ when it was sold.

[^22]New orders were now almost impossible to obtain. Between May 1920 and May 1921 over 300 contracts had been cancelled. About a third of all shipbuilding berthe were now vacant. . Four Sunderland yards closed down in May 1921: : John Blumer and Company, John Priestman \& Company, Swan, Hunter \& Wigham Richerdson, and Robert Thompson \& Sons Limited. On the Tees two yards had also closed.

By March 1922, the Shipbuilding Fmployers' Federation was reporting that 56 per cent of all building berths in the country were idle and another 16 per cent contained cancelled or suspended work. * In June and again in October steelmakers in the North East reduced their prices so that plates could be had for £10.10.0d. a ton, angles for $£ 10$ a ton and boiler plates for $£ 16$ a ton** British steel prices had fallen by a half in just over a year but still were unable to attract orders or to match Continental prices. A few months later the steelmakers went so far as to abandon their policy of quoting uniform prices.

The cost of shipping itself fell. At the beginning of 1922 ships were costing over twice their prewar prices. By the end of the year they were only half as much as pre-war. Some builders were unable to absorb the reduction and went into liquidation. This was true of Sir Raylton Dixon \& Company, of the Cleveland Dockyard, Middlesbrough, which . normally employed l, 800 men.***The. yard was sold to a new private company, the Cleveland Shipbuilding Company, which also acquired the adjoining yard formerly owned by W. Harkess \& Son. The chairman of the new company was the Hon. Sir Charles Parsons.

The slump continued into 1923. At the anmal meeting of Swan, Hunter \& Wigham Richardson in April, Sir George Hurter, the Chairman, said he thought the industry had done as much as it could to help itself. θ Costs had been pared right down and were only 50 per cent more than pre-war. Contracts, such as were available, were being taken without profit. By the autumn 1,400 shipyard workers were unemployed in Sunderland, and 6,000 at Jarrow. Of the 15 yarda in Sunderland, five had no launches at all and another five had only one.

```
* "Shipouilder", vanuary 1 y2l.
** Ibia. *** 1 ロia.
\(\Theta \quad\) "Snipbuilaer, may 1923.
```

Swan Hunters, who had launched over 170,000 gross tons of shipping from all their yards in 1920, produced only 41,000 tons in 1923.

And so it went on in 1924 and 1925 and 1926. John Blumer \& Company and the Sunderland Shipbuilding Company passed quietly out of existence, reducing the number of building berths on the Wear to 53. By the end of 1925 about 19,000 shipyard workers were unemployed in Sunderland. But then the Silver line placed an order for six motor cargo liners of about 9,000 d.w. tons - three to be built by Laings and three by J. L. Thompson, and all to be engined by Dozford's. It was the biggest single order ever placed on the river - over £lm. - and presented some cheering news for Christmas.

But overall, things were still extremely gloomy. A special conference of employers and trade unions was called to see why Continental yards were continuing to win orders. Furness Withy had recently placed a contract for five 10,000 ton motorships with a German firm because the contract price for each ship was $\mathbf{4} 60,000$ less than the lowest British tender - $£ 170,000$ against $£ 230,000$. * Lawrence Holt, a member of the well-known Liverpool shipowners, gave his reasons for German success after a visit to that country: **

1. Lower wages
2.. Widespread piece-work operation
2. Longer hours of work
3. No restrictions on labour saving machinery
4. No demarcation obstacles between trades
5. No redundant labour in the yards

By July 1925 the position in the North East was extremely depressing. The Wear had only four of its berths occupied. In August nine of the river's fifteen establishments were without work of any kind - and others were at the point of being closed. Osborne, Graham \& Company had closed their works at Hylton and Sir William Gray and Company had also closed their Wear yard.

```
* "Snipouilder", vanuary 1y25.
**
lbid.
```

In October the plant and machinery of the Newcastle Shipbuilding Company was sold and the only two yards at Blyth, both of which were in the hands of the receiver, were also to be sold: The Blyth Shipbuilding and Dry Docks Company Limited, and Ritson's Shipbuilding and Engineering Company Limited, which had done no more than repair work in its short life. *

In April 1926 a receiver was appointed for Irvine's Shipbuilding and Dry Docks Co. Limited of West Hartlepool, which had been founded in 1860. Its directors included Clarence Hatry. The company's trading loss in 1925 had amounted to $£ 19,500$ increasing the debt balance to. 259,175 . The first-mortgage debenture stock outstanding amounted to 2110,626 . It was also decided that the Sunderland Shipbuilding Company should go into voluntary liquidation. An auction was. called and bidding started at £5,000. When it did not go beyond 212,000 the property was withdrawn. **

At about this time the Joint Committee of Enquiry, set up by the employers and trade unions in March 1925, produced its 50 -page report. It dealt in particular with foreign competition and enquired into costs arising within the industry and those outside its control. The report found that the prices for some articles were 100 per cent and sometimes 200 per cent more than pre-war and sometimes this was caused by trade associations forcing them up. The report also complained that the burden of local rates and taxes was of ten three times as heavy as prewar and that it fell especially on the depressed areas where most of the shipyards were situated.***

By the end of 1926 the slump was over and a mini-boom followed. Between December 1926 and March 1927 work in hand on the Tyne rose from 160,000 gross tons to 250,000 while Sunderland had an even more spectacular leap - from 37,000 gross tons to 114,000 gross tons. Swan, Hunters were able to re-Open their Sunderland jard and so were Bartrams. The Blyth Shipbuilding and Dry Docks Company's yard, taken over by the Cowpen company,****

[^23]| ** | " | may 1920. |
| :---: | :---: | :---: |
| *** | " | vuly 1926. |

was also in operation again and a little later William Gray's reopened their Sunderland gard. During. the next few months, Craig, Taylor \& Company reopened their yard at Thornaby, William Doxford's reopened their Sunderland yard and the Northumberland Shipbuilding Company was reconstituted and. reopened the yard at Howdon. North East output in 1927 went up to 567,000 gross tons from 198,000 gross tons in. 1926. In the following two years it rose first to 641,000 and then to 679,000 gross tons in 1929. And, with a marginal exceptiong: that was to be the highest point it ever reached again, even though that figure was only two thirds of what it had been capable of in the immediate post-war era.

But even in 1929, after three relatively good jears, shipbuilding unemployment in the North East remained at over 46 per cent, the highest of any local industry in the country. In comparison to what was to come that level would seem mild, however. But when you are standing in the pit of despair, you do not think how much worse things can get. You hope they are going to get better. And, like the shipyard workers of the North East in 1929, in that belief you are often cruelly mistaken.

NAVAL WORK

The difficulties in merchant shipbuilding were heightened by the almost total ending of naval work. Neither Palmer's, nor Hawthorn, Leslie launched a single Admiralty warship from 1920 until 1928, while Armstrongs built only one - the battleship "Nelson", between 1920 and 1936.

The stoppage of orders was reinforced by the Washington Conference from November 1921 to February 1922 which agreed that no country should increase the number of its capital ships for at least ten years. But even before then naval expenditure had been cut sharply. In 1918 there.were 500,000 gross tons of warships being built in private yards. In 1920 there were only 20,000 gross tons. North East warship output fell from 173,000 gross tons in 1918 to 35,000 in 1925 and only 10,000 in 1930.

The estimates for 1920-1 amounted to just over f 84 m . compared with the figure for the previous year of 2158 m . In fact the 1920^{\prime} 's programme included no new building at all - only the completion of ships already in hand.

In the following jear, when the estimates fell slightly to a8lm., it was decided that four new vessels, Super-Hood battle cruisers - should be built to replace the four oldest capital ships still on the effective list. The keels were to be laid within the next 12 months. *

But before they were laid down, the Government was smitten by a desire for more economies. The orders for the battle. cruisers were withdrawn. And a dozen capital ships were to be scrapped, leaving only 15 in full commission compared with 38 in. March 1914.** There was to be a further reduction in the destroyer flotilla, another 27 submarines were to be scrapped and over 10,000 men were to be discharged from the Royal Dockyards. In the circumstances, there was no surprise that the estimates should fall another玉.17m. to £64m. for the year 1922-3. Indeed they continued to slip steadily, year by year, until 1932. The programe for that year was costed at only £50m., a figure which finally brought expenditure below its pre-war level.

In March 1922, a deputation of mayors from the North East, from Glasgow, from Sheffield and Barrow - all areas suffering acutely from the lack of naval work - met the First Lord of the Admiralty and the Chancellor of the Exchequer*** They asked that the orders for the two capital ships, to be built in place of the four battle cruisers originally proposed, should be given out as soon as possible and that any reconditioning of existing warships should be expedited.

Bonar Law, the Prime Minister, announced in the House of Commons in December that the Government had decided to go ahead at once with the two capital ships of 35,000 displacement tons each to be built under the terms of the Washington Naval Limitation Treaty. ****

$*$	$" S n i p b u i l d e r ", ~ A p r i l ~ 1 y 21 . ~$	
$* *$	$"$	April 1422.
$* * *$	$"$	April 1422.
$* * * *$	$"$	jariuary 1423.

The hull of one of the vessels was to be made by Armstrong Whitworth and engined by the Wallsend Slipway and Engineering Company, while the hull and machinery of the other one were to be built by Cammell, Laird of Birkenhead. The guns were to be made at Newcastle andDarlington and the mountings at Newcastle and Barrow. *

It. was expected that the work would take three years at a total cost
 First Lord of the Admiralty, announced a programme of construction for eight light cruisers, each of the 10,000 displacement tons size permitted under the Washington Treaty, to be laid down immediately, together with three submarines, a submarine depot ship, two destroyers, a destroyer depot ship, two gunboats, an aircraft carrier and a mine layer.

Mr. Amery added that all British cruisers would become obsolete within ten years and replacements should be laid down at the rate of five a year. **

But then the General Election of January 1924 returned a Labour • Government, whose intentions towards shipbuilding were at first not clear. The Labour Government was replaced within ten months by the Conservatives and the programme went through.

Even with this programme there was still a slump in naval work, which intensified problems for the whole industry but especially for Vickers of Barrow and Armatrong Whitworth of Newcastle, who were geared to warship production. Both firms rested on a fundamental contradiction - they were armament makers, in one form or another, in a country at peace and following a policy of disarmament.

Meade Falkner, the chairman of Armstrong Whitworth, declared as early as 1919: "We have anxious times before us." The following year, he had to retire and "a noble wreck of a once powerful man returned to a world of romance, of music; of book collecting and of mediaeval scholarship."*** He was succeeded by Sir Glyn West.

[^24]The company thought it could solve its problems through the Newfoundland Paper Mills scheme. This envisaged the development of a large paper mill, fed from the company's own forest on the West cost of Newfoundland, powered by a hydro-electric station and served by a new port at Cornerbrook. The company issued \&3m. debenture shares through the Bank of England to pay for the scheme.*

Unfortunately nothing went right. The winter was savage, the labour situation difficult and the resident engineer extravagant. The result was that construction work cost $£ 8,500,000$ with interest charges of $\mathbf{2} 500,000$. Other debts brought the financial burden to over £llm.

As evidence of disaster grew, Sir Glyn West became more and more unapproachable. In the end the Bank of mangland appointed a/James Taylor to investigate the company. Surprises were expected but his report was still a shock. He estimated that another $\& 1,500,000$ would be needed to bring the Newfoundland scheme to successful completion. He also estimated that the company had \&10m. invested in "undertakings foreign to their original business, on which no return is being made or is likely to be made for some time to come." The Economist commented: "Even when all allowances have been made, it seems clear that Armstrong's risks have not been wisely chosen." **

Sir Glyn West and three other directors resigned. Lord Southborough, the former head of the Board of Trade, became chairman. His first act was to declare a five-year moratorium on debentures and to stop all dividends except on first preference shares. The ordinary share prices slumped to 2s.6d. in December 1926 against E 3 before the war.

The Bank of England felt that the only solution lay in a merger with Vickers. Eventually after months of negotiation, the Bank, acting as a sort of matrimonial agency, brought off the wedding in October 1927. But both the Bank of England and the Government refused to act as guarantors.

```
* J.U. Scott, "vickers - A History", p. 153-5 \& 161-6.
** Quoted in above.
```

All armament and shipbuilding works were amalgamated and transferred to a new company - Vickers Armstrong Limited, with a share capital of £2lm. But about a quarter of each company's interests remained outside the merger and Armstrongs were to build these up into a large and successful business. *

Even the merger could not help very much, however, in a country where no naval work. was being ordered. The Naval Yard at Walker, Armstrong's Tyneside base, was closed down in April 1928. It re-opened to build "Monarch of Bermada" from March 1930 to March 1931 but then closed again until May 1934 when it reopened to build H.M.S. "Newcastle". That was the beginning of a period of cautious re-armament, after 14 long years in. which Government policy aggravated and reinforced, rather than countered, the vagaries of the market.

PRICES AND PROFITS
The prices of ships matched the fluctuations in orders. Immediately af.ter the war one North East builder was quoting prices three times as high as the 1914 figure. The following year, 1920 , he was able to. raise them even further to £26. a ton for simple cargo vessels of about 8,000 d.w. tons. **

But as the market became sticky and then heavily depressed, prices started to fall awa. By the end of 1920 the same builder was already accepting $£ 22.7$ a ton and a few months later he had reduced his price to \&20. In 1922, when this builder launched only two vessels for an aggregate tonnage of 9,000 gross tons - just over a third of his 1920 output - he received only $£ 10$ a tone***

Prices wilted even further. A vessel completed in 1925 was priced at 29.9.0d. a ton and another for the following year at only if.8.0d. a ton. Then as the orders started to flow again, prices crept up until a ship ordered in 1928 for delivery the following year was contracted at $£ 12$ a ton. * u.1). scotr. ** See Appendix. *** Ioid.

The effect on profits was mixed. Some companies fared much better than others, although naturally all of them suffered in a period when orders could only be won by the most competitive of tenders. Swan, Hunter \& Wigham Richardson saw net profits fall from £433,000 in 1918 to a quarter of that figure, $£ 126,000$, in 1927. Armstrong, Whitworth, however, saw a fall from about £lm. in 1918 to a deficit of $£ 500,000$ by 1927 - a state of affairs that prompted the union with Vickers..*

Other companies had to think equally carefully about their future. Palmers, for example, got into desperate straits although the end of the war and the first years of peace saw the company doing well. The report for 1918-19 showed a profit of $\$ 276,000$.

On the assumption that profits would continue at this level, the company increased its mortgage stock by \&lm. with interest at five per cent. ** The new money paid for improvements to the steel works and minor improvements to the shipyard. The following year net profit was still nearly as high and the directors paid a 12 per cent dividend. A spirit of euphoris and of limitless expansion overcame them and they rushed to buy up subsidiary companies. They bought a shipyard at Amble in north Northumberland to build small vessels. They bought the South Pelaw colliery in County Durham to provide new coal supplies for. the blast furnaces.***They bought shares in the Ransome Machinery Company, a Midlands Engineering firm, and they bought shares in Spanish iron-ore mining companies to guarantee future supplies. To buy so often and so recklessly when the market was in boom conditions was hardly the mark of wise management however. And these profligate decisions made the company even more vulnerable to the cruel blows that were about to fall. In 1920-21 profits fell to $\mathrm{\&} 85,000$ and in the next two years there was an aggregate deficit of $£ 109,000$.

The company was hit hard, not only through shipbuilding but through its iron and steel interests. The Jarrow. iron and steel works closed early in 1921 and apart from three months in 1923 remained closed until 1927.

```
                See Appendix.
** "The Town that \(k\) as murdered". p.l30.
*** lbid.
```

Trading itself was not the cause of the trouble. In fact in both 1922 and 1923 the company made a trading profit. The difficulty lay in the debenture and loan charges. They. amounted to £159,000 in 1923 alone and other debt services called for $£ 39,000$. *

By 1925 total debt had increased to $\$ 462,000$ and in the following year.it rose by $£ 211,000$. In addition there were capital losses of \& 482,000 which had to be written off. There were clearly only two alternatives now left to the company - to go into bankruptcy or to effect a financial re-organisation.

The shareholders agreed to another chance. The capital of the company was written down by reducing the nominal value of the fl shares to 5s.Od., the arrears of preference interest were cancelled, interest rates. were revised and further debentures issued. The chairman of the company, Mr. G. Mure Ritchie, resigned and two new directors were appointed.

But this did not end the troubles. Trade was still so bad in 1929 that the Company decided to extend the moratorium granted under the 1926 re-arrangement scheme. Under this, payment of interest on the consolidated mortgage debenture stock had been deferred until December 1929. Now it was deferred again for another three years. No interest on the ordinary shares had been paid since 1921 - or was ever to be paid again.

Palmer's was not alone. The 1920's, which had begun so triumphantly, brought terrible shocks for everyone. There was not a company that did not see its profits dive. Many firms went into the red and others disappeared altogether.

On the Tyne five firms closed between 1918, and 1931: J. P. Rennoldson \& Sons Limited, Charles Rennoldson \& Co. Limited, the Newcastle Shipbuilding Co. Limited, Renwick \& Dalgleish Limited and the Northumberland Shipbuilding Company. The Amble Shipbuilding Company also closed. during this period and so did four firms at. Sunderland - J. Blumer \& Company, the Sunderland Shipbuilding Co. Limited, Osbourne, Graham \& Co. Limited, and Robert Thompson

[^25]\& Sons Limited - and another four on the Tees - Richardson, Duck \& Co. Limited, Ropner Shipbuilding \& Repairing Company, Craig, Taylor \& Company and Smith's Dock. The result was that by the end of 1931 there were 83 berths on the Blyth and Tyne, 37 on the Wear, 22 on the Tees and 12 at Hartlepools, making 154 for the North East.

The disastrous drop in demand was only part of the cause. The other part was the sharp increase in foreign competition. Late in 1926, for example, Italy launched the three largest motor liners in the world, which would "dispel any doubt in regard to the high quality of facilities and the technical efficiency to which this remarkable country can now lay claim".* Holland had recently won orders for eight out of the twelve large oil tankers placed by the Anglo-Saxion Petroleum Co. Limited. And Japanese naval architects and marine engineers, trained on the Clyde, on the Tyne and at British Technical Institutes, were now helping to improve their country's performance.

At the same time, despite the recession, Britain was finding difficulty in keeping costs under control. The long strike in the mining industry in 1926 had completely stopped steelmaking and had seriously handicapped shipbuilding for seven months. It was indeed costs outside the control of the shipbuilding industry that were its greatest worry, since however efficient it became it was nevertheless only responsible for about 30 per cent of the cost of the ship. The rest was composed of bought-in materials or services and these had risen alarmingly, as ur . John McGovern showed. He estimated that between. 1913 and mid-1927, the costs of steam propelling machinery had gone up 35 per cent, that steel and iron had gone up 30 per cent, timber 100 per cent, national insurance 215 per cent, outfits 60 per cent and taxation between 100 and 125 per cent.**

* Shipbuilder, Vol. 34, February 1927.
** In a paper to the N.E. Coast Institution of Engineers \& Shipbuilders, June 1927.

TECHENICAL CHANGE

The most important technical development of these years was the growing emergence of the internal combustion engine. By September 1921 there were 50 motorships building in the United Kingdom of 229, 325 gross tons and 104 motorships of 176,616 tons building abroad.* Two years later Lloyds Register was reporting that 460,868 gross tons of shipping throughout the world were being fitted with internal combustion engines - about a quarter of the tonnage then under construction.

Motor tonnage continued to increase in a spectacular way even when total world tonnage was falling by a third as the following table illustrates.**

Types of Engine

Period	Gross Tons Total Steam \& Motor Tonnage Classed	Steam Reciprocity	Steam Turbines	Motors
1918-19	3,760,806	2,633,570	1,051,302	75,934
1919-20	4,186,882	2,821,031	1,286,046	79,805
1920-21	3,229,188	2,373,067	754,513	101,608
1921-22	2,517,513	1,420,924	870,037	226,552

The rise of the marine oil engine was thus extremely rapid. The first marine diesel engine was not fitted until 1904. The achievement went to Nobel, a Russien firm, who built this engine for a small tank ship with two four-cylinder, four-stroke cycle engines, each of 180 B.H.P. at 240 r.p.m. This was not fitted with direct-reīersing gearsand Nobel and Sulzer Brothers of Switzerland did not solve this problem for another two years.

But the first chapter for the marine heavy-oil engine really opened in 1910, when the East Asiatic Company decided to build three motorships of about 7,400 tons deadweight each. Two of the vessels were built and engined in Denmark while the hull and machinery of the third - the "Jutlandia" - was built by the Clyde Company of Barclay, Curle which became part of the Swan, Hunter group in 1912. ***

```
* "Snipbuilder", uanuary ly22.
** Lloyd's kegister ly23.
*** "Shipbuilder", uuly ly29.
```

"The engines for these three vessels were designed by Messrs. Burmeister and Wain Limited of Copenhagen, a firm who had hitherto played an inconspicuous part in the development of the marine oil engine but who, by the soundness of their designs and by their energy and confidence, allied later with those of their principal licensees - Harland and Wolff - were destined to become the greatest champions in the world of the marine oil engine in general and of the four stroke cycle type in particular."*

The introduction of oil engines had far-reaching effects upon the design and economics of shipbuilding and operating. Oil fuel was only about a quarter of the weight of its coal equivalent. There was easier bunkering, reduced engine room staff and an increase of cubic space and of deadweight for cargo-carrying.

But it was still not clear which type of marine diesel engine was the best and progress was developing along at least a dozen paths with each builder claiming that his type was the best. With some exceptions, most of the important development work was done abroad and British firms became increasingly little more than licensees. One of the exceptions was Richardson Westgarth of Hartlepool, who in 1929 perfected the first allBritish, double-acting, two-stroke cycle, airless-injection marine heavyoil engine. "Decidedly novel and courageous" it was called.**

There were no push rods or valve levers. All fuel and starting air valves worked automatically while the camshaft, fuel pumps, starting air mechanism and controls were all concentrated in a single compact unit at floor level.

* Shipbuilder, Vol. 34, page 364-6.
** Shipbuilder, March 1929.

Tha main exception, however, was Doxfords of Sunderland. Their engine became "the only high-power main propelling engine of all-British design to survive the intense competitive efforts of Continental constructors".* Between 1924 and 1927 several new cylinder sizes were introduced so that the 1,250 brake horse power per cylinder obtained from the larger engines represented the highest power output from a single cylinder of any engine in marine service at that time. Several sets of these engines were installed in twin-scrēw motorships for the Comonwealth and Dominion Line.**

An important advance in the Doxford engine was made in 1926 when the balanced type of engine was introduced. The main spur was the loss of a valuable contract because of some criticism of engine balance. Doxford's were able to overcome the problem so effectively that in the same jear their new. engine was chosen for powering the quadruple-screw luxury liner "Bermuda", in a contract that laid emphasis on freedom from vibration. Each of the four main engines of the "Bermuda" developed 2,800 b.h.p. at 110 r.p.m. By 1928 the company had about 60 engines. in service.

Despite the rapid introduction of motor engines, there was still no clear indication as to which was the best type or as to where exactly they excelled over steam engines.

One authority, who compared steam and diesel machinery for a 400 ft. cargo ship of $10 \frac{1}{2}$ knots and for a larger vessel of 14 knots, came to the conclusion that there was a range in the price. of oil within which the diesel engine was the best. Above this range, the coal-burning steamship was superior, while below the range the advantage lay with an oil-burning steamship. So the diesel engine had a serious rival where oil was very cheap as well as where oil was dear and coal cheap.***

* Development of Dozford Marine Oil Engine, by Dr. W. Ker Wilson in "Engineering", January, February and March 1943. ** Ibid.
*** W. G. Cleghorn in"a paper to the Institution of Engineers and Shipbuilders in Scotland, October 1926.

Thus the steam turbine was by no means finished. And in 1926 Sir Charles Parsons made the third great advance in the marine history of his invention - the completion of the first high-pressure turbine-driven steamship. Not only had Parsons invented steam turbine generation and applied it to marine use but he had also already designed the geared turbine in 1910. Now high-pressure turbines widened yet further the application of his genius.

His latest development was applied to the Clyde passenger ship, "King George $\mathrm{V}^{\prime \prime}$, which had a total power of 3,500 s.h.p. Steam was generated at a pressure of 550 lbs . per sq. in ch and then superheated to the very high temperature of $750^{\circ} \mathrm{F}$ and thus reached the extra high-pressure turbine at a pressure of about 500 lbs . per sq. inch. It then left the high pressure turbine at about 200 lbs . per sq. inch to serve the other turbine units working at the usual pressure.

The trials of the "King George V" confirmed that a most remarkable advance had been made.* With the turbines working at full power, steam consumption was no more than eight lbs. per shaft horse power per hour and for all purposes the consumption was 9.67 lbs. The classical comparison tests between the turbine and reciprocating engine for marine work which had been carried out in 1904 had been won handsomely by the turbine with a consumption of 14.6 lbs. per shaft horse power per hour. Now 22 years later Parsons was almost halving that figure, so bringing turbines back into the fight again.

In 1926 Canadian Pacific Steamships Limited placed orders for several vessels in which steam at a boiler pressure of 350 lbs . per sq. inch would be used. Although this was only half way towards true high pressure installation, it was an important trend for the future.

[^26]In hull construction, developments were also in hand. By 1916 several yards had overhead gantries on which ran electric travelling cranes. Palmers', for example, had gigantic wire-rope transporters over several of their building berths. Swan, Hunters had four of their berths covered by lofty glass-roofed sheds amply served by overhead electric travelling cranes, while Armstrong Whitworth's new naval yard contained perhaps the most modern equipment of all.

Electricity was in almost universal use in the yards by war-time thus outdating the dangerous tallow candles and naptha lamps which could so easily start a fire during construction work on board.

Hydraulic and compressed air plants were in use and made a big improvement to the heavy rivetting of ships' keels or double bottoms which no longer needed to be done by hand. The caulking of seams which even as late as 1890 was being done by hand was everywhere in 1916 being done by pneumatic tools. And gas-fired furnaces to heat the frames before being bent to shape had:largely replaced the coal furnaces of earlier days. By 1920 electric wèlding was making gradual progress, particularly with parts not directly connected with the main structure.*

LABOUR RELATTONS

The intense fluctuations of the period provoked great difficulties in the relationships between management and men. In 1919 there was "unparalleled prosperity for the workers in the industry"** By 1923 61 per cent of them in the Yorth East were unemployed. The figure dropped to 26 per cent in 1929 but shot up to 70 per cent only two years later.

Late in 1918 the employers had signed an agreement with the unions for the 47 hour week.** This represented a reduction of seven hours or about $12 \frac{1}{2}$ per cent. Despite the important improvement contained in the agreement and despite ita acceptance by the majority of the workers in a

ballot, it was not enough for some of the men. The boilermakers, shipwrights and blacksmiths in the North East, with the exception of the men on the Wear, did not resume work after the New Year holidays. The stoppage took place without the authority of the unions or without notifying the employers and going through the proper disputes procedure. The North East strike was followed by similar action on the Clyde and at Belfast in favour of the 44 hours week. The attempt failed.*

In 1919, however, the men received a general increase in wages. This was awarded from 26th November and amounted to an extra 5 s .0 d . a week for time workers plus $12 \frac{1}{2}$ per cent for a cost of living increase, making $5 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. Piece workers received the 5 s .0 d . increase, plus $7 \frac{1}{2}$ per cent.

Many employers now held the view that wages were in urgent need of revision. They wanted to create a national wages list with only small variations from district to district. "There is far too much lattitude now being practised, especially in certain districts, which leads to discontent among the men and is detrimental to the best interests of the employer."**

Typical weekly wages for time workers at this period were as follows:

* "Snipbuilder", van. 191y.
** Shipbuilder, Vol. 22, January 1920.

As the boom of 1919-20 continued, labour costs continued to rise. By June 1920 the Federation of Shipbuilding and Engineering Trades had decided to apply for another 6d. an hour or 23.6d. a week. * At the same time the demand for a 44 -hour week was still being pressed. Rising wage costs were affecting not only shipbuilding but also repairing and this was leading to a loss of contracts, particularly against Dutch competition.

There were many stoppages during 1920.** On the Wear, fitters and plumbers at Doxfords went on strike in June over a demarcation dispute. After six weeks, the 400 men returned to work and the dispute went to arbitration. "The stoppage was one which cannot be described as other than utterly foolish and did not place the intelligence of the men concerned on an enviable level", was one comment.***

And there was a strike of platers at Ropner's Shipbuilding Company on the Tees. They wanted a guarantee that piecework earnings would be made up to the average weekly earnings of the squad when they fell below average. The men returned to work defeated.****

And there was a strike of joiners in Sunderland starting in December against the emplogers' call for wage reductions to offset declining demand. *****

By April 1921 the industry's new difficulties were beginning to emerge clearly. So, too, were the employers' demands that the workmen should play their part in trying to retrieve the position. They asked for a 6s.0d. a week reduction in time rates and for a 15 per cent reduction in piece rates to take effect from the end of April.

The unions agreed as long as the reductions could take effect in two instalments on 7th May and 4th June. It was not until August, however, that the shipyard joiners returned to work after a strike of about nine months. They accepted an immediate reduction of 6 s .0 d . a week and a further reduction of 3 s .0 d . a week on lst October.

* Shipbuilder, January 1921.
** Ioid.
*** ibid.
**** 1bid.
***** ibid.

But in the face of an almost total absence of orders employers gave notice that they were going to abolish the Ministry of Munitions war bonuses of $12 \frac{1}{2}$ per cent to time workers and $7 \frac{1}{2}$ per cent to piece workers in three instalments from. November 1921 to January 1922. Harsh though these measures must have seemed, the men agreed to accept them in a ballot.

But when the employers called for more reductions in the spring of 1922 , the men rejected them. After a stoppage of six reeks they had to return to work on substantially the same terms as they had rejected in Marchs an. immediate reduction of 10s.6d. a week to be followed by a reduction of 3s.0d. in May and another 3s.Od. in June. Towards the end of the year, when. so many of them were unemployed in any case, they relatively meekly accepted the abolition of the final 10s.Od. of their war bonus - to be abolished in four instalments from November 1922 to February 1923.

Typical weekly wages for time workers were now as follows: *

	July 1914	January 1923
	s. d.	s. d.
Shipwrights	41. 6.	48. 6
Plumbers	41. 6.	48. 6.
Joiners	41. 0.	48. 0 .
Frame Turners	39. 0.	46. 0.
Platers	39. 0	46. 0
Blacksmiths	39. 0.	46. 0.
Fitters	39. 0.	56. 0.
Angle ironsmiths	39. 0.	46. 0.
Painters	38. 0.	45. 0.
Helpers (inside)	35. 0.	42. 6.
Helpers (outside)	32. 0.	41. 6
Holders up	31. 6.	41. 2.
General labourers	24. 0.	38. 10.

In 1923 labour matters became even more difficult to handle. An agreement on overtime working, agreed between the Employers Federation and Federation of Shipbuilding and Engineering Trades, was turned down by a ballot of members of the Boilermakers Society. They went on strike and this led to a lock-out being imposed from 30th April. *

Thedisipute had a paralysing effect. Many ship repair contracts were sent abroad. In shipbuilding, however, the stoppage of work met with equanimity from shipowners since freights were so low. The Boilermakers' Society was expelled from the Federation of Shipbuilding \& Engineering Trades for its refusal to accept the terms of the overtime agreement. From this point the Employers would have to deal directly with the Boilermakers' Society but they could not re-negotiate the agreement without reopening the question with other trades.

By September 1923 the effect of the lock-out was being called devastating. Not only shipyards but also engine works had to close. Even those yards struggling on with apprentices were working short-time or had to dispense with many other tradesmen. **

The Shipbuilding Empioyers Federation and the Federation of Shipbuilding and Engineering Trades met in Carlisle in September. The Trades Federation refused both an enquiry and arbitration. They felt that the Boilermakers had been a party to the overtime agreement and that if they now refused to accept it then their expulsion as from May was justified. This attitude did not help to resolve the matter, however, and it was not until November that the employers reached agreement with the Boilermakers' Society.

In February 1924, despite the heavy depression in the industry, the Federation of Shipbuilding and Engineering Trades asked for an advance of 10s.0d. a week.***The timing of the claim may have seemed extraordinarily inappropriate but the unions argued that wages were now below a civilised standard and that engineers had not given up the last 10 s .0 d . of the 26 s .6 d .

```
* Snipbuilder, vanuary 1924.
** 1 bia.
*** shipbuilder, marci 1924.
```

war bonus as all other trades had. The employers showed sympathy but nothing else. At a time when contracts were being taken at small or non-existent profit, they argued that they had no room for manoeuvre.

But the unions refused to accept this argument, and in June a Board of Arbitration was set up to diacuss the matter. In their evidence to the Board, the employers threw some interesting light on the effect of competition duringthe previous two years.* On 59 contracts for new work taken between June 1922 and June 1924 an aggregate of $£ 233,000$ had been lost. And on a further 83 contracts for new work not then completed, they estimated that a total loss of $£ 785,000$ would be made even with wages at the existing level. **

The Board, however, took into account other factors. Between August 1923 and June 1924 freight rates over the whole world had risen by about 22 per cent. New work laid down in gards belonging to the Fmployers' Federation had gone up from 403,000 in 1922 to 952,000 in 1923. In 1922 only a quarter of the berths in the country had been occupied. In June 1924 this was up to a half.

It was for these reasons that the Board granted seven shillings of the claim. The new wages structure was now as follows:***

Shipbuilding

Shipwrights	41.	4.	91. 3.	55.	7.	121	35
Ship joiners	40.	0.	101.	4.	57.	9.	153
Labourers	22.	10.	70. 5.	38.	5.	208	44
Baking	.					68	
Fore hands	37.	6.	88. 2.	70.	9.	135	88

Transport
Railmay drivers 40. 6. 103. 6. 87. 5. 155 116 * Shipbuilder, uuly 1924. ** 1bid.
*** Joint Enquiry Committee's final report, Published June 1926.

In June 1926 all the shipyard unions were again applying for increased wages.* The demands were for an extra 10s.0d. a week with proportionate increases for pieceworkers. The unions justified the claim by arguing that employment was now better and prospects more favourable. The employers, naturally, still countered that competition remained stiff and prices depressed. They rejected the claim on 5th August 1926 and again called on the unions to compile with them an index for the automatic regulation of wages in accordance with the industry's ability to pay. Such a syatem, they argued, would remove the constant friction that affected wage discussions. Nothing was achieved.

The employers and most of the unions did sign in 1926 the formal agreement dealing with disputes procedure that still stands today.** All the other unions in the industry, apart from the Boilermakers' Society and the Amalgamated Engineering Union, signed similar agreements with the Froployers' Federation in 1927.

Apart from questions relating to piecework and piecework prices, the following procedure was agreeds

1. The matter was first to be discussed at yard level between the employer and a deputation of the men concerned.
2. Further meetings at the jard attended by local officials of the employers' association and of the union directly concerned.
3. A formal local conference between the local employers' association and the union.
4. A central conference attended by national officers of the employers' federation and the union.

If the central conference fails to reach agreement, the matter may be referred to arbitration by mutual consent. Where general questions that were raised locally were common to two or more unions, the Confederation of ** Industrial Relations in Shipbuilding - Ministry of Labour Handbook, 1961. * shipbuilder, vanuary 192%.

Shipbuilding and Fhgineering Unions could represent the workers at local or national level, but the unions concerned and not the Confederation had to accept the responsibility for any settlement.

There has been criticism about the time required to go through all the stages outlined above. But in fact only one per cent of all questions reach the national tribunal. About ten per cent are settled at a central conference and the other 89 per cent are settled in the yards or districts.*

The 1926 Agreement made a special reference, to piecework and piecework prices. If there was no agreement at yard level, the question would go to a joint committee consisting of three employers and three representatives of the union or unions concerned, none of whom shoüld have any connection with the yard where the dispute had arisen. If they failed to agree, a local or national conference could be called.

Throughout 1927 discussions were held but it was not until February 1928 that agreement was reached on the wage claim. The emplojers agreed to increase the restored bonus of 7s.Od. a week to 10s.Od. in the case of time workers. Pieceworkers were. not included.

Their offer was conditional, however, upon the unions agreeing to join a committee to discuss the setting up of a wages index. **The unions would not accept this bargaining initially but then in June changed their minds. But this was only a partial solution to the wages problem for the majority of workers belonged to six craft unions (boilermakers, shipwrights, woodworkers, electricians, plumbers and painters) that were outside the Federation. Representatives of these unions asked for an improved offer or for arbitration, both of which were turned down by the employers. The unions then moderated their demands and by July 1928 were happy to accept the 3s.Od. offer.

* "Labour Relations in Shipbuilding" by Maurice Ormston, Trans N.E. Coast Institution of Engineers \& Shipbuilders, Vol. 65, page 263.
** Snipbuilder, marcn 1928.

The increase coincided with a steady fall in shipbuilding unemployment. But even so there was still an unemployment rate of 46.7 per cent in December 1928, *the highest figure for any local industry in Great Britain. Instead of the figure continuing to drop, it. was soon to become much, much worse - to produce the terrible years of the 1930 's.

Although they could not appreciate it, the shipyard workers of the North East - once the makers of almost, half the world's navies and merchant fleets were about to become the symbols, and the worst sufferers, from the world-wide depression. Jarrow summed it up and Jarrow, as we have seen, was Palmer's.

No wonder the men felt they were living through terrible and tumultuous times. Even a middle-aged man would have remembered that once they were kings of the world. Then there had been the cruellest war, followed by the cruellest peace - peace intermixed with prosperity and pitiless despair. . And instead of getting better the cruelty of the times got worse.

The result was that the proportion of the total population of fingland and Wales living in the North East, which had been going up for a century, nov started to drop. In 1921 this was by 6.5 per cent. By 1931 the figure was 6.25 per cent. The main reason was undoubtedly the decline of the basic industries of coal, iron and steel, shipbuilding and engineering. In 1924 they employed two thirds of North East workers, a total of 437,460. By 1931 they emploged only half of a much smaller total, 218,000 .

As one commentator put its "It is easy now, in the light of what has happened since, to realise that the pre-war position of Tyneside was precarious. Precarious, because it was so largely based upon a few great industries; precarious, also, because it depended to such an extent upon the demands of foreign countries, which might begin to supply themselves; and precarious because so much of the indutry was due to the race in armaments which could not continue indefinitely".**

It did not continue indefinitely as we shall see in the next chapter.

* Ministry of Labour Gazette, 18th January 1929.
** Industrial Tyneside by Dr. Henry Mess, director of The Tyneside Bureau of Social Research.

TERRIBLE TIMES

CHAPTER 6

$$
1930-1939
$$

The world-wide depression of the 1930's affected shipbuilding probably more than any other industry. Completely open to the harsh economic winds, many firms did not build a single ship for years on end. Some of them went out of existence. Others managed to hang on, despite losses, by living off the profits of previous years. There came a time when four out of every five workers at Jarrow were on the dole; when Sunderland, which was capable of launching a third of a million tons of shipping a year, launched only 2,628 gross tons; when only two of the 77 building berths on the Tyne were occupied; and when over 13 m . tons of shipping was laid up throughout the world.

Yet although these years wasted the industry, the industry did not waste them. Tremendous innovations and impoovements were made in the technical aspects of shipbuilding so that within a few years savings of up to a half were possible to counter the effects of the depression and to provide the shipowners with a reasion for re-ordering.

Slowly the international crisis passed, to be replaced by a new one based on the age-old conflict of arms. At last the Admiralty could start re-ordering and the warship producers of the Tyne could come alive again, but for some, as we shall see, it was too late.

THE OUTPUT PICTURE

The shock was even greater than it had been in the nineteen twenties. Then launchings had dropped by a third from
one year to the next. Now they were to plummet into a new scale altogether. In 1930 the Forth East launched just over 600,000 gross tons, slightly down on the 679,000 of 1929. But in 1931 the figure was only 168,000 gross tons. Hartlepool did not produce a single ship and Sunderland, the "greatest shipbuilding town in the world", produced only 8,800 gross tons.

Work in hand at Sunderland fell from 149,000 gross tons in March 1930 to 2l,000 gross tons a year later. At Hartlepool where only one firm was still in existence there was no work in hand at all for the first six months of 1931.

The decline was largely due to the complete cessation in orders for oil tankers which had accounted for more then a third of the total output in 1930. The impact was naturally greatest in the North East, which between 1924-1930 had built two thirds of Britain's tanker output and a third of the world's.

In January 1930, for example, Vickers Armstrong had 14 oil tankers under various stages of construction, bringing the total number of these vessels built or building by the company up to 173. On 24th July, 1930, Palmers launched their l,000th vessel - a motor-driven oil tanker "Peter Hurll" and three months later Tyne yards launched seven oil tanirers within thirty days. The oil tanker, therefore, was one of the backbones of the industry. In 1931 even this failed.

The president of the Shipbuilding Employers' Federation declared: "The year 1931 will stand in the annals of shipbuilding as the most tragic in its history."* It did not in fact although there was an almost entire absence of orders. About 60 per cent of the work people were unemployed, by far the highes percentage of any basic industry. In the North East the figure was as high as 70 per cent. And these appalling figures were recorded at a time when there had been a large reduction

* In Lloyds List's Annual Review, 3lst 1931.
in the numbers of insured workers in the industry. The number nationally had fallen from 358,790 in November 1921 to 195,390 in November 1931, nearly all of the decline taking place from 1929.

Mr. A.I. Ayre, the President of the Federation, called upon the Government to place orders for Admiralty work, as the U.S.A., France, and Italy were all doing.* "It is not too much to say", Mr. Ayre affirmed, "that the maintenance of a skilful and efficient shipouilding industry is to this island nation a matter of first importance, not only to its essential maritime trade outlook but also to its defence. The Government, public authorities and merchant shipowners, wherever the outlook will in any way justify the action, can perform a great national service by placing orders for any type of vessel at this moment, thereby relieving the existing severity of unemployment and assisting in the maintenance of the skilled crafttsmen required for the production of ships."

Palmer's launched only one ship in 1931. By June, there were 6,700 unemployed in Jarrow, double the number of the year before. By late summer 7,000 were on the dole -80 per cent of the town's insured population.

The company was now tast running downhill. Its last rush of orders had been in 1929 when output had exceeded. 65,000 gross tons, the second highest on the Tyne. The trading account had shown a profit of $£ 25,000$ a quarter of which went to the directors in fees.** Since then there had been little new work and the receiver drew nearer every day.

For some companies that day had already arrived through the activities of the National Shipbuilders Security Limited. This was the organisation specifically set up by the industry itself to reduce its own capacity. By the 1930's the fact

* In'Lloya's Lists Annual Review, 3lst December 1931.
** "Fiery "Ellen" Wilkinson" was quick to point out this fact in "The Town that was Murdered". She also counted the number of other directorships held.
could no longer be overlooked that although demand was unnaturally, low, capacity was also unnaturally high. Even the most wildy optimistic could see no need for a large proportion of the berths available. The companies that ran them were not only in jeopardy themselves, they also threatened the future of other yards which were more efficient or had more resources.

Total British capacity had risen from 580 berths in 1914 to 686 in 1925. By 1930 it was overwhelmingly clear that neither the unaided play of competition nor a succession of mergers could remove this excess capacity.* The National Shipbuilders Security Limited was set up to tackle the problem.

The main inspiration had come from Sir James Lithgow the Clydeside shipbuilder, and he was made chairman of the company** Directors were chosen from yards on the Clyde, Tyne, Tees, Wear and the Forth and from Belfast and Barrow. It was backed by the Bankers' Industrial Development Company, set up by the Bank of England, but its principal source of finance came from the shipbuilders themselves. They agreed to pay a levy of one per cent on the price of the new vessels laid down.

The company had a share capital of $£ 10,000$ in $£$ shares, with borrowing powers of up to £2 $\frac{1}{2} \mathrm{~m}^{* * *}$ Its task was to buy redundant or obsolete shipyards and to resell the sites for any other industrial purpose except shipbuilding. In doing so it had to try to keep a balance between districts and between the class of work. This was not easy. For example, more cargobuilding than liner-building yards were taken over, against an outcry from the North East. But it was in this field that excess capacity lay.

By March 1932 National Shipbuilders Security Limited had purchased nine yards in the North East. They were:- ****

[^27]1. Cleveland Dockyard Co. Ltd., Middlesbrough.
2. Craig, Taylor and Company, Stockton.
3. Northumberland Shipbuilding Co., Howdon on Tyne.
4. Smith's Dock Co. Ltd., Stockton.
5. Charles Rennoldson \& Co. Itd., South Shields.
6. Renwick and Dalgleish, Hebburn.
7. Robert Thompson \& Son, Sunderland.
8. Whitby Shipbuilding Co., Whitby.
9. Osborne, Graham \& Co., Sunderland.

Other yards were bought up later as the depression grew even worse, but first earnest efforts were made to find another solution. On 24th April, 1931 the Shipbuilding Employers' Federation called a meeting with the trade unions. The employers affirmed what the unions knew only too well, that over two and a half million in all industries were unemployed in Britain but that shipbuilding was faring worse than any other. In marine engineering, unemployment was about 30 per cent and in shipbuilding almost 50 perwent. Over 100,000 were unemployed in the industry.

The Newcastle Employment Committee reported that Tyneside had 78,452 unemployed in March 1931. Over 60 per cent of those normally employed in shipbuilding on the river were out of work while in marine engineering the numbers of unemployed had trebled since 1930.

The following year, 1932, was even worse. The North East launched only 79,439 gross tons, just over a thira of the United Kingdom output and ten per cent of the world figure. The situation was worst in the two main rivers of the Tyne and the Wear. The Tyne, which as recently as 1928 had launched over 300,000 gross tons, produced only 24,000 gross tons. And the Wear, which in 1929 launched 245,000 gross tons, produced only 2,628 gross tons - a nadir for which there was no precedent, even if one goes back a hundred years.

A creditors'meeting of Palmers was held in London on 19th February, at which the company was given more time to allow negotiations to be completed on an important contract which, it was hoped, would provide work for some years ahead. There was also some difficulty in obtaining payment of a considerable sum owing to the company and deposited.with a foreign government. The moratorium, however, was to have little effect. On the 19th July 1932 the company launched what was to be its last ship,"H.M.S. Duchess". *
had
Swan, Hunters, which so often/held the Blue Riband for the greatest shipbuilding firm in the world, received between April, 1931 and April 1932 only six orders - for 16,000 tons of shipping.

Hawthorn Leslie, like almost every other company, tried to make every economy it could. Directors, officials and staff all accepted a ten per cent reduction in salary, which was not restored until 1936. The total number of employees fell from 5,004 in June 1931 to 1,049 in June 1933.

As affairs deteriorated, the call for Government subsidies grew louder. Traditionally, the industry had been opposed to any form of interference. But now it could no longer ignore the fact that the U.S. Government had poured out $\$ 1,400,000,000$ to help home shipbuilders since 1915: that Italian owners were not allowed to place orders abroad; and that in Germany about three million tons of modern shipping had been built virtually without cost to the owners.

As a consequence, the supremacy of the seas was passing from British hands. France now had the fastest service on the South American run and was building the "Ile de France", of 70,000 deadweight tons entirely on Government capital. Germany with the "Bremen" and the "Europa" had the two fastest Atlantic

[^28]liners afloat while Italy was about to place in service two express liners "Rex" and "Conte de Savoia" of about 50,000 tons each.

In Britain, Cunard's new challenger for the Atlantic, Ship no. 534, which was on the stocks at John Brown's yard on Clydeside, was being held up because of the difficulty of raising money at attractive rates. The Government was called upon to help the company,* and indeed to help the whole industry.**
"Is it not time that we paid something in subsidies to our vital but depressed trades and so increased employment and wages and reduced our expenditure on unemployment relief? We are paying too much for idleness and not enough for productive work, ${ }^{[* * *}$ Since the war $£ 500 \mathrm{~m}$. had been paid out in unemployment relief.

Shipbuilders themselves still remained unconvinced, however. Dr. G.B. Hunter, Chairman of Swan, Hunter commented: "I do not advocate subsidies for British industries: I am not aware that British shipowners or shipbuilders desire them. But they do ask for fair play. Should we allow subsidised foreign products and ships into our ports?"

The Government also remained unconvinced, at least until 1935 when a "scrap and build" scheme was introduced. By then the industry had come through the worst, which occurred in 1933. In that year the U.K. launched only 133,000 gross tons and the $\mathbb{N} . E$. only 37,000 gross tons. Hartlepools again had no launchings at all and the Tyne and the Wear produced just ll,000 tons each. Middlesbrough and Stockton on the Tees gained the unprecedented distinction of having the highest output in the area, with, 14,000 gross tons. But for some there was at least the taste of hope. During the year the Furness Shipbuilding Company received three contracts and decided to re-open their * Shipbuilder, May 1932.
** Glasgow Weekly Herald, October 1932, article by E.T. Good.
yard and Smith's Dock followed suit with their South Bank yard when they won an order for a diesel-engined trawler from French owners.

On the Tyne, three yards were fading away. The Tyne Iron Shipyard at Willington Quay, which had been in business since 1876, was sold to the National Shipbuilders Security Ltd., in March for dismantling. Eltringham's, with an annual capacity of 18,000 tons, was put up for sale as a going concernt. And, saddest of all, Palmer's finally gave up the long fight at the end of June and appointed a receiver.

The industry had reachea its lowest point and the effects among the unemployed were there for all to see. J.B. Priestley in his "English Journey 1933" wrote of Jarrow: "Wherever we went there were men hanging about, not scores of them but hundreds and thousands of them.'

Another writer commented : "As the years passed, the unemployed man turned grey.* Everyone commented on the greyness of the hard-core unemployed - grey hair, grey stubble, even grey skin. He seemed to be looking at the gound all the time. He wore incongruous clothes, perhaps pin-striped trousers cast off and given to charity by a bank manager. He felt he had no dignity. He knew he had no nope."

He was not given to hope by others, Neville Chamberlain, the Chancellor of the Exchequer at the time, declared: "I do not think that we can look forward with any confidence to the reduction of unemployment to a comparatively small figure within, say, the next ten years."

Some, however, were incapable of despair. Sir Frederick Pyman, a director of Wiliiam Gray's Yard at West Hartlepool, made a remarkable speech at about this time, in which he said:**

* The Jarrow March by Colin Cross, Observer, 6th F'eb. 1966. West Hartlepool Rotary Club Speech, October, 1933.
"Shipbuilders die hard. They hang on in the hope that competitors may go under and that things will get better. In the privately owned yards, which must constitute a substantial proportion of the capacity of the industry, it is common to find the 3 ra , 4 th or 5 th generation at the nelm. Family pride and prestige are at stake..... So there are forces at work which are pulling in the opposite direction from the economic forces. For nearly a decade, the old shibboleth of laisez-faire reigned and what happened? A mere handfiul of yards went into liquidation and of these the best were picked up at scrap prices and reconditioned."

There was one sign of improvement. The merchant tonnage ordered during the year - 300,000 gross tons - was three times higher than in 1932 and tonnage commenced - about 275,000 gross tons - was nearly four times higher. "The industry has just enough work on hand to keep it alive - no more," commented Mr. C.S. Swan, senior vice-president of the Shipbuilding Employers' Federation.*

But 1934 turned out to be a much better year, with production in the North East almost twice as good as it had been in 1933. In the country as a whole the jump was even more spectacular - rising from 133,000 gross tons to 459,000 gross tons, taking the U.K. back to 47 per cent of the world output.

Why was the North East recovery much slower than for the country as a whole? Mainly because new orders for tramp steamers, cargo liners or oil tankers picked up far more slowly than other types of work. Belfast, for example which had almost no work at all in 1932, now had near-record figures for work under construcion or coming forward. The outlook there, in fact, was much brighter than it had been for a long time. It was becoming brighter, too, on the Clyde. But it was not until 1936 that the North East figures approached a "normal" **

[^29]Terrible times - 191
level, though even then they were still historically low and were to remain so until the outbreak of war. The scale of the problem can be judged from the fact that in June 1934, Swan Funters received the biggest order in the North East for some considerable time - a twin-screw passenger liner of just 10,000 gross tons.

In the early summer of 1934, Palmer's was sold to National Shipbuilders Security Limited. As Miss Ellen Wilkinson put it: "The death warrant of Palmer's was signed.* The reason for Jarrow's existence had vanished overnight..... The great shipyard of Jarrow was dead..... killed because it was a pomerful competitor,..... rooted out, not because it was inefficient but because it stood in the way of big financial interests, who wished to consolidate their grip on the shipping industry and get control of shipping prices. In the doing of this.... this group have crippled the British shipbuilding industry."

Miss Wilkinson did not explain how the reduction of excess and burdensome capacity would cripple the industry. Nor that the management had offered the company for sale voluntarily. Another view was put by the biographer of the architect of National Shipbuilders Security Limited:
"The yard was workless and without any promise of work when it was shut down.** The firm that owned it had been unable to meet its debts for years past. It was legally bankrupt and there was no prospect that it could be revived. Its end was inevitable but it was a local disaster.*
"To be politically effective such a story as Ellen Wilkinson's needs something more than an institutional villain. There must be a personal devil too. In her book the organiser of Jarrow's murder was Sir James Lithgow. He was so little known, even by

* The Town that was Ifurdered, p.172.
** "James Lithgow, Master of Work" by J.M. Reid, London 1964,
page 134.
name, to the general public, outside the west of Scotland, that it was easy, by a skilful use of his own forth-right pronouncements, to make him seem a mysteriously threatening cepitalist bogey who cared for nothing but his profits.
"This was the price that had to be paid for leadership in one of the least rewarding tasks of his life..... He suffered long and intensely, though usually silently, from the sort of criticism and misrepresentation which grew out of N.S.S., For him the closing of shipyards had in itself been a painful process. As intensely as any of his crities, he believed in the value of work, in the need of human beings for employment that could occupy, interest and reward them..... No duty could have been more unwelcome than that of ending for thousands the hope of work in his own industry. This was done because it seemed a duty to those who might still find a place in fewer yards."

There seems little doubt that Palmer's collapsed because of inefficient management. In preceding chapters we have shown that it ran into financial difficulties on a number of occasions and indeed for the last forty years of its life was seldom free of a financial sword hanging over its head. In the early l920's as the previous chapter has shown, a period of excessive demand resilited not in the piling up of profits and reserves which could have helped to cushion the effects of the depression, but to acquire at a high price new capacity. Equally the management failed to scrutinse the internal activities of the Company sufficiently rigorously. The unprofitable iron works, once a vital part in the process of vertical integration, should have been scrapped so that the Company could concentrate on its main function- m_{b} taining its steel much more cheaply in a buyer's market. When all these factors are taken into account, there can be no surprise that Palmers should fail to withstand a long war of economic atirition.

Terrible Times - 193
The National Shipbuilders Security Limited had now reduced the industry's capacity by a million tons but the remaining capacity could still deal with three timesthe present work. The numbers of people in shipbuilding had fallen from 358,000 in 1923 to 157,000 in 1935 but 64,000 of them were still/ ${ }^{\text {hemployed. }}$

Huring 1935, the most important piece of Government interference so far in the affiairs of shipbuilding took place with the British Shipping (Assistance) Act.* This measure provided that the Treasury could advance a sum not exceeding \&lo m. in loans at three per cent or less, repayable in twelve years, to British owners. There was a vital condition, however. This was that the owners scrapped two tons of shipping for every ton built. It was estimated that the sum set aside would finance the building of about 600,000 gross tons of shipping, thus requiring the scrapping of $1,200,000$ gross tons.** The vessels were mainly to be general cargo ships, so that the measure was designed almost specifically ior the North East. It was not surprising, therefore, that of the eight shipbuilding centres that benefitted the most from this measure, five were in that area - Sunderland gained most of the business, with 24 vessels of 98,000 tons.

The measure, on the whole, "failed in many respects to live up to the hopes pinned upon it. There is no abatement of the crippling effects on British shipbuilding and ship repairing of intense subsidised foreign competition."* **

Theoretically, there should have been no difficulty in finding $1,200,000$ tons to be scrapped but owners were reluctant to take action so long as there was the possibility of higher freight rates. They felt that if full scrapping did take place, freights would inevitably improve, thereby providing an income

[^30]for even the oldest vessels. Everyone waited for everyone else to scrap first.

Shipbuilders, who had hoped for a lot of work, were therefore disappointed. Only 37 applications, relating to the construction of 50 ships of about 186,000 gross tons, were approved. The total advances to owners came to just over £3,500,000.

Despite this failure, the trend in shipbuilding was now firmly upwards again. Sir Maurice Denny, President of the Employers' Federation, was able to report that there was a rapid and substantial improvement in 1936. * There were about five times as many merchant ships being built as during the black period of 1932-3. In fact, tonnage under construction was approaching a million. "At long last, the dark clouds have rolled away," Sir Maurice commented, "the barometer registers 'Fair' and is"rising.

But such feelings were only relative to the period of depression. There was no question of the industry regaining its pre-war size. Not only had the British fercentage of the world tonnage fallen from 44 in 1914 to 28 in 1936. But there had also been a big drop, particularly noticeable since 1930, in the volume of tonnage built in Great Britain for foreign account. The N.E. alone, which at one time had built more than a third of the world tonnage, was now buifding only about 12 per cent.

Foreign yards were taking the place of this country. A third of all the work in these yards was for foreign account. Half of German shipbuilding in 1936 was for foreign countries, including Great Britain. In Sweden, the proportion was over 80 per cent. In the late autumn of 1938 there came a month. when not a single merchant ship contract was booked by British Builders. During one week in the same month; Scandinavian

* Lloyd's Annual Review 3lst December, 1938.

Terrible Times - 195
shipbuilders landed orders for 19 ships. Lloyds Register for September 1938 showed that new tonnage begun in British yards was only 87,463 gross tons compared with a figure six times as great in foreign yards:-"a condition for which we cannot recall any precedent."

This led to a launching figure of just over 600,000 gross tons in 1939 and 842,000 gross tons in 1940. After the traumatic experience the industry had been through in the midthirtfes, however, such figures were relatively good. And indeed in 1938 launchings had exceeded a million tons for the first time in eight years.

The upsurge was powered, in part, by the new Government: aid scheme which came into effect in March 1939** Under this, the Government granted a subsidy of $£ 2.75 \mathrm{~m}$. a year for five years to tramp shipping, a cqpital of $£ 500,000$ a year for five Jears to owners of tramp and cargo lines placing immediate orders in British yards and E 10 m . for loans to owners on low interest terms for two years to build tramps and cergo liners.

The tramp shipping subsidy was to be determined by an index number of freight rates. An important innovation was that no scrapping of old tonnage was now required before loans would be given. Instead, there was to be a careful laying up programme of "care and maintenance" under which these ships were not to be brought out for trading except in an emergency.

The new measures had an immediate effect. Within six weeks shipowners had placed orders for 144 tramp and cargo liners with an aggregate of over 700,000 gross tons. ***

It was the nearest thing to a boom that the industry had seen for ten years. Besides, the full-scale resumption of naval building was giving the industry that extra support that it needed. Towards the end of the thirties it was almost like old times again, although no one could ever forget the experience they had lived through.

* snipbuilder, January 1939.
** L. vones, p. 156 .
*** \lrcorner bid.

Terrible Times - 1996

NAVAL WORK

The dirficulties in merchant shipbuilding were compounded by the Government's naval policy in the early and mid-thirties. Long and eventually vain attempts to achieve a lasting worldwide agreement on disarmament had disastrous repercussions on the industry. Palmer's, which had been one of the greatest suppliers of. warships, went out of business altogether, while the Naval Yard of Vickers-Armstrong was closed for seven years (although a passenger liner, "Monarch of Bermuda" was built there during this time).

The 1931 naval programme, which included the building of three cruisers, nine destroyers and three submarines, was very much subject to the Disarmament Conference then taking place. Indeed $£ 4 \mathrm{~m}$. was lopped $\overline{\text { off }}$ the estimates for $1931-2$ to prove the Government's good intentions.*

In the following year the estimates fell lower still: They were the lowest since 1913 , being just over the $£ 50 \mathrm{~m}$.** The Rt. Hon. Sir Bolton-Eyres-Mansell, the First Lord of the Admiralty, in a printed statement accompanying the estimates, remaried: "The total of $\% 50,476,300$ has been fixed with strict reference to the needs of the financial situation and must not be regarded as an adequate provision for the needs of the Navy. On the contrary, I am satisfied that, on the basis of considering actual requirements, not even the most rigid scrutiny could have justified the restriction of the Navy Estimates to such a figure."***

The worst feature was the postponement by six months of the 1931 programme which would not now start until September 1932. There were to be 28 new vessels, 20 of them built in private yards. Contracts were won by Hawthorn, Leslie for

[^31]
Terrible Times - 1927

hulls and machinery for two destroyers and by Swan, Hunter and Wigham Richardson for the hulls of two destroyers, with machinery. by the Wallsend Slipway and Engineering Co. Itd., a subsidiary. company.

Hawthorn Leslie fared better than any other \mathbb{N}. . firm for naval work during the depression years of 1930's. Between 1930 and 1934 it launched nine warships, four torpedo-boat destroyers for the Admiral.ty and four sloops for the Portugese Government and one for India. The foreign orders were achieved by vigorous efforts by Mr. Robin Rowell who became managing director of the company in 1936. They helped to keep the average annual loss on shipbuilding to $£ 8,000$ for the years 1931-6 inclusive.*

The St. Peter's engine works was the only profitable part of the company and kept the other departments afloat. In three of the depressed years alone it had built machinery for nine naval vessels and five sets of diesel engines.

In February 1933 Swan, Hunter secured the contract to build the hull of the 7,000 ton cruiser "Phaeton" while the Wallsend slipway was to supply the 72,000 S.H.P. propelling machinery. Parsons Marine Steam Turbine Company was to be the main contractor for two destroyers - H.M.S. "Fame" and H.M.s. "Firedrake" - whose hulls were built by Vickers, Armstrong: at Barrow. Palmers were without success inseither the 1931 or 1932 programmes and this fiailure hastened the death of the company.

The estimates for 1933-4, although still curtailed by financial considerations, showed an increase over the previous year. They went up by £ 3 m . to over £ 53 m .** New construction, which had been deliberately retarded since 193l, now played an important part in the increase in expenditure. New ships

[^32]included four cruisers, nine destroyers and three submarines.
The increase was the beginning of a new trend,although the Government would not have admitted it at the time. Hopes of a successful outcome to the Disamament Talks were still lingering and the disastrous effects upon shipbuilding were still a major source of annoyence to shipbuilders. One of them wrote: "Before the slump, the contributjon of British shipping to the national trade was estimsted to be $£ 150 \mathrm{~m}$. a year and of British shipbuilding $£ 80 \mathrm{~m}$, the two industries thus accounting for $£ 230 \mathrm{~m}$. Need it be argued that it is the Government's duty to support industries which are capable of contributing this vast sum annually to our national trade."*

During 1934 and 1935 there wes a gentle increase in Admiralty expenditure up to a level of $£ 60 \mathrm{~m}$. But in 1936 the expiry of the London Naval Treaty prohibiting the building of new capital ships coincided with a worsening of the international situation. Accordingly the Navy Estimates for 1936 foresaw a big increase in naval building. **

Two new battleships were to be laid down in 1937, together with five cruisers, and there was to be a steady replacement programme for destroyers and submarines. Nine new destroyers were to be laid down immediately, four of them in the North East.

The total net estirnates of $£ 69 \mathrm{~m}$. exceeded by $£ 9 \mathrm{~m}$. those for 1935. But even so e supplementary estimate of £1 m. wes issued in July allowing for a start to be mede on another two cruisers, nine destroyers, one aircraft carrier snd four submarines.

One of the two battleships - "King Ceorge V" - was to be built by Vickers-Armstrong at Walker and one of the cruisers by Swen, Hunter and Wigham Richardson.**By September 1936 there were 17 warships under construction or on order in the Tyne.

* C.S. Swan, senior vice-president, Shipbuilding Employers' Febderation, in ShippingWorld 10th Jan. 1934.
** shipbuilder, april 1936.
*** 1bid.

Teririble Times - 199

Vickers, who had re-opened their Walker Naval Yard ini 1935 had received contracts for the battleship mentioned above, for the 9,000 displacement tons cruisers "Newcastle" and "Sheffield" (both of which were afloat by September 1936) and for six destroyers (two of which were afloat and being fitted out).

Hawthorn Leslie had the 9,000 displacement ton City-class cruiser "Manchester" - probably the finest warship ever delivered by the yard - and two destroyers "Imogen" and "Imperial", Swan, Hunter, and Wigham Richardson were building the 9,000 ton cruiser just ordered and four destroyers (two of which "Hunter" and "Hyperion" were afloat).

In January 1937 the Admiralty announced that VickersArmstrong were to be given orders to build two aircraft carriers the "Victorious" and the "Illustrious". The former was to be built at Walker with inachinery supplied by the Wallsend Slipway: and Engineering Company. The latter wias built at Barrow.

Wwo months later the new Navy Estimates showed that the increase in activity was well-founded. * They came to $£ 105 \mathrm{~m} .$, £23 m. more than the total estimates for 1936-7, even including the supplement. Of the increase \&l4: m. was due to new construction. There were to be three battleships, two aircraft carriers, five cruisers of about 8,000 tons, two cruisers of about 5,000 tons, sixteen destroyers and seven submarines and many supporting ships. Altogether 98 new vessels were to be laid down under the 1937 programme, 88 of them by private companies, rather than by the Royal Dockyards. One of the three battleships the 35,000 displacement ton "Jellicoe" - went to Swan, Hunter,

The gathering war clouds lifted expenditure even higher in 1938 when the Naval Estimates were $£ 123 \mathrm{~m}$. and a supplemen: tary estimate in July added another £2.5 m.**

```
* shipouilder, April 193%
** " April-1ソ38.
```

Terrible Times - 200

This was the year when Hawthorn, Leslie launched the destroyers "Jervis" and "Kelly". The latter became the most publicised of all Hebburn vessels. Her exploits under her captain, Lord Mountbatten, made her world-famous and her sinking during the evecuation of Crete served to add further to her faine.

From being a depressed industry, only a few years previously shipbuilding and especially warship building was now rising to full pressure. It startal to experience the difficulties that many had foreseen when so many able men were allowed to drift away durjing the depression, an extreme shortage of skilled labour. Between 1929 and 1935 the total labour force in the indutry had declined from 350;000 to 157,000. By 1938 it had climbed up to 175,000 .

The pressure of activity became even greater, however, on 2lst February 1939, "King George V" was launched Ïrom Vickers' Walker Naval Yard by the reigning King, George VI. The first of a new class of battleship the "George" had a displacement of 35,000 tons. It had a main armament of ten 14 inch guns located in three turrets and a secondary armament of 16 five inch guns in eight turrets.*

It was appreciably faster than its predecessors "Rodney" and "Nelson", which had been launched in 1925, it could carry aircraft which were flown off by means of a catapult and had special protection against gunfire, aerial bombs and mines.

Almost as soon as the launch had taken place, VickersArmstrong received an order for another battleship, one of two placed under the 1938 programme. Besides the b-ttleship, the Tyne when had an aircreft cerrier, five cruisers and ejght destroyers being constructed or fitted out. Neval launchings in the North East increased from 10,000 displacement tons in 1930 to over 20;000 displacement tons in 1938.

But fer more work wes yet to come under the 1939 progremme
 empty years were now a thing of the past. For the next five years - and indeed for the first fifteen years of peace - the yards were to rine again with the clamour of intense activity. The N.E. had returned in full measure to its traditionsl role of makine weapons of destruction with all the skill and energy at its command. In so doing, it underlined yet sgain the old axiom thet it is busiest and most prosperous in times of wer.

TECHNICAL DFVELOFMPNTS

The yesrs of derression were not yesrs of idleness in technical developments. Inceed some of the most important chonges inf history of shipbuilding were being made during these yerrs over the hole renge of technical knowledge. One writer summed up the position in January 1932: * :
"..... It is elmost a truism thot, whenever trade depressjon is severe, technicel development flourishes. For the longest period in record, the industry bos experienced a severe depression and in th-t time merine engineering progress of outstending importance hes been recorded.... Glancing back over the past ten yesrs, one is reminded of the spectacular triumph of the motorship; the introduction and brilliant vindicetion of the bigh-pressure, high tempercture, marine steam-turbine instelletion of the lạ̃te Sir Charles A. Parsons the coming of the double-scting marine diescl eneine, the supercherging of diesel engivea, the gradual chenge-over (Not yet completed) to :irless injection in merine oil engines; the astonishing populerity in the Bauer-Wach and similwr exheust steam turbines of a discarded ideg modernised, the success of the 'unsuitable' water-tube bojler for mercentile vessels; the progress in this country of electric drive for merine propulsion;

* Shipbuilder, Jan. 1932.
the development of the exhaust turbo-electric system: the advent of motor ships approaching end even exceeding the tonnsee of the "Maretenia," the diesel-driven warship with geered machinery, heving veleed freming and veighing less per h.p. then many light-weight, high-speed oil engines: the immediste success, practically and technically, of the hich speed heavy-oil engine; "one lb. of coel per i.h.p. per hour" in the marine stemm engine; specific consumptionsof littile in excess of $\frac{3}{2} \mathrm{lb}$. of oil per s.h.p. por hour vith gesred-turbine plents; the construction of a grest Atlantic liner with turbo-electric machinery (for the Comperije: Generale Transatiantique); and the building of the Cunard Steamship Compeny's Blue Riband challenger, with geared turbine machinery of e rower believed to be con_ siderebly in excess of that ofthe existing joint holders of the Atlantic record or of any of the contenders now being constructed."

The use of electric drive for marine propulsion, one of the many points menti:ned in the nuotetion ebove, becsme a serious prorosition "ith the "Viceroy of India" built in 1928 That ship proved so successful thet the Pefninsular and Orientel Steam Nevigation Compeny decided to order nnother two, both to be built by Vickers-Armstrong at Barrow.*

But the North East played its pert in the developments of "electric" ships too. In 1930 Vickers-Armstrong received another noteble contract for an electrically-propelled liner and decided to build it ot Welker. This was for "Mid-Ocean" to operate on the Bermuda-Nen York service. The turbo-electri.c equipment was supplied by the General Fiectric Compeny of Birminghem.**

The Furness Shipbuildine Compeny on the Tees slso built an intereating "nlectric" ship in 1930.** Whis was the "Cementkarrier" for use on the Great Lakes. It wes eguipped

[^33]** 1bid. *** * lbid.

Terrible Times - 203
with two Holar single-acting, two-stroke cycle, airlessinjection engines, each coupled to a direct current generator. The two units supplied current to a single propulsion motor rated at 775 s.h.p.

Electric propulsion had had a slow start from its early advocacy by Mr. H.A. Mavor in 1911.* During the following 17 years only 38,800 turbo-electric horse-power was installed for propulsion of merchant ships. But then in 1928 34,000 turbo-electric $\mathrm{h} . \mathrm{p}$. was added to the world's fleets..**At the end of 1930 there was l6l,500 turbo-electric hop. on :order. By March of the following year electric propulsion had been installed in 170 ships throughout the world, about 20 of them being Naval vessels belonging to the U.S. Navy.

Despite these advances, electric propulsion still contained two important disadvantages; the loss that occurred in transforming mechanical into electrical energy; and thesslightly greater first cost.***

Electric ships remained therefore an interesting novelty. But the main interest in these years was still the intensifying competition between steam and oil.. The North East had now become the country's main centre for motorship construction and this was true in 1930, despite the decline in output. Tyne shipbuilders had in hand 21 motorships of 150,930 gross tons as compared with 19 vessels at 125,900 gross tons on the Clyde and seven of 99,300 at Belfast.

By 1933 there was a fairly even balance between steam and diesel, coal and oil. Gradually, diesel engines pulled ahead.****

In steam, developments were taking place which a few years previously would have been regerded as impossible. Superineat, tried and abandoned once, had returned withamazing vigour and, in association with poppet valves and balanced slide valves, was being used in large numbers of new and * suipbuilaer; march 1931. ** ibid. *** \&bid. **** snipbuilaer,
converted reciprocating engine sats with outstanding success.
Mauriee Gibi, oï the Central Marine Bingine Works at West Hartlepool, had designed the "Quadropod" engine to achieve higher economy.* It was a quadruple expansion engine which developed 2,100 i.h.p. at $80 \mathrm{r} . \mathrm{p} . \mathrm{m}$. and used steam at a pressure of 260 lbs per sq. inch superheated to 590 degrees F. A special characteristic was that it needed only one steam receiver thus reducing the losses which were inevitable in the normal multi-receiver type of engine. The Central Marine Engine Works forecast that consumption would be about llb. of good coal per i.h.p. per hour.

Another superheat: engine was designed about this time by Albert White, the managing director of White's lifarine Engineering Company of Hebburn.**It was a combination type, consisting of a high-speed reciprocating steam-engine and an exhaust turbine, both geared to the propeller shaft. Steam was taken at 220 Ibs. per sq . inch and superineated to $160^{\circ} \mathrm{F}$. White estimated that steam consumption would be only 9.4 lbs per b.h.p. compared with 15.2 lbs. for a normal engine of this type.

But it was the motor engine that seemed to make the most spectacular progress. Recently with the "Prince Baudouin", diesel engines had broken into the steam engine monopaly in cross-channel work. This break-through was considered to be of great technical significance.

Doxford's had been able to make big improvements to their engine, making it 50 tons lighter, seven feet shorter and with a lower fuel consumption than before. This had been made possible by using electrically-welded construction for the engine-framing.

[^34]Terrible Times - 205

These improvements led to Doxford's gaining the contract for the installation of the main propelling engines in the quadruple-screw passenger liner "Dominion Monarch" built for the Shaw, Savill and Albion Co. in 1939. According to Dr. Ker Wilson, this was "probably the most important Doxford achievement up to date."*

At that time the "Dominion Monarch" built by Swan, Hunter and Wigham Richardson, was the highest-powered motor vessel in the mercantile marine. Each of its four main engines developed 6,500 brakee h.p. and $123 \mathrm{r} . \mathrm{p} . \mathrm{m}$. These figures compared with 2,700 brake $\mathrm{h} . \mathrm{p}$. and. $77 \mathrm{r} . \mathrm{p} . \mathrm{m}$. in the prototype Doxford engine of 1919 .

The "Dominion Monarch" helped to make 1938 a year of "almost unprecedented activity" in diesel-engine eonstruction and to emphasize the dominance of the motorship. For by the end of the 1930's diesel engines had won the battle to propel the world's fleets. In September 1939 Lloyd's Register showed that only ten per cent of new shipping was being fitted with steam turbines and 60 per cent with diesel engines.

In Great Britain alone, however, diesel engines were not as popular. Steam was still being installed in 51 per cent of new vessel and internal combustion engines in 49 per cent. Nevertheless, this country was the biggest producer of diesel engines, turning out 21.4 per cent of the world total, substantially more than any other country. The total output of propelling machinery in this country was 29 per cent of the world total, followed by Germany with 16 per cent, Japan with nine per cent and Italy with eight per cent.

Sir Joseph Isherwood, one of the most fecund N.E. inventors brought out a new hull design in 1933** He called it "Arcform" and the primary object was to give a much lower fuel consumption than had ever been achieved up to that time. Sir Joseph did

* Development of the Doxiord Marine Oil Engine from "Engineering" March 5 and l2th, 1943.

Terrible Times - 206
this by reversing the traditional practice of keeping a ship as narrow in the base as possible. It was thought to be difficult to drive a shịp at economic speed if her length was not at least seven times the breadth. But Sir Joseph's new design had proportions of $6 \frac{1}{4}: 1$ It was the widest design in proportion to length put forward for many a year.*

Sir Joseph ordered the first three vessels himself. The first "Arcwear" was built by Short Brothers of Sunderland and engined by the North East llarine Engineering Company. The sea trials surpassed expectations. Her speed, calculated for design purposes as $11 \frac{1}{2}$ knots, was actually over 12 iknots. "The results already obtained are exceedingly satisfactory and will revolutionise tramp shipping," said Sir Joseph at the time.**

An observer commented "Sir Joseph Isherwood, in his recently-patented Arcform full design, has broken new ground with that courage and originality which have always characterised his work."***

On her maiden trip to Buenos Aires, the "Arcwear" made a little over 11 knots on a daily average coal consumpistion of 19 tons. That was $15-20$ per cent less than in any comparable vessel afloat. But Sir Joseph felt it could still be reduced by another third. He was so confident, in fact, that he ordered another ten vessels to the Arcform design himself.

It was technical innovations of this kind, many of them unfortunàtely." being mãde abroad, that almost alone provided a sign of health and of hope in the barren 1930's. Without such efforts, these years would have been wasteful indeed, But economic forces could not stop the inventiveness of man or kill his optimism. It was these two factors that helped to restore demand from about 1935-6 onwards. For by producing more efficient ships, the builders gave the owners a justification

* \quad Shipbuilder, January 1934.
** Ibid.

Terrible Times - 2007
for placing orders, earlier than would previously have been the case in a world of unfavourable freight rates.

PRICES AND PROFITS

These were desperate years for the financial health of the shipbuilding companies. All of them saw their profits heavily reduced and only the strongest managee to avoid losses. Until 1936-7 when resurgent demand could allow a flexibility in costs and prices again, firms could oniy obtain the small amount of work that was available by tendering to the tightest of profit margins. Some firms even tendered at a loss in order tomaintain employment or to retain contact with a regular customer.

From 1930 to 1934 prices remained virtually stable. The "Fairplay" guide to prices listed a cargo vessel of 7,500 tons deadweight with plain specification as £63,500 in 1931. The price was still the same in 1934. A N.E. builder - John Requhead and Sons of South Shields - was quoting a final cost of $£ 9.4$ a deadweight ton in 1930 and the same figure in 1934. Insbetween the firm had cut its price even further, to $£ 8.8$ per deadweight ton in 1931.*

It was not until 1935 that prices began to edge upwards. The "Fairplay" quotation on the same bases as above was, 2671,700 By 1937, rising demand and a shortage o'f men and materials; was producing a substantial increase. The "Fairplay" quotation went up to £108,000. Between 1937 and 1938 John Readhead's of South Shields lifted their prices by a third - from $£ 9.6$ a deadweight ton to £l2.2. In 1939 the price went even higher, to £14.6 a deadweight ton.

By this time, the companies were beginning to make satisfactory profits again. But for a number of years, life had been very thin.

* See Appendix.
S.P. Austin, the Sunderland shipbuilding firm, made a loss every year from 1923 to 1936 with the exception of 1929. In these years, its aggregate losses came to £ll8,364. By 1936 it was able to make the tiny profit of £415 but the following year had boosted this to $£ 17,300$.

To a verying degree this was the experience of all companies. Swan, Hunter and Wigham Richardson managed to avoid losses. But they did see their net profits fall from over £150,000 in 1931 to \&l8,956 in 1933. From that year, they picked up strongly again. In 1935 net profits were over £190,000 and in 1939 were over £490,000.

Despite the average loss of $£ 8,000$ a year on shipbuilding, Hawthorn Leslie and Company suffered only one, small overall loss in 1932-3. when they produced a deficit of $\mathfrak{\alpha l} 193$. The engine works at St. Peters was keeping the company afloat with average profits of £23,000. By 1938-9 the company was making profits of over £l60,000.

Smith's Dock of North Shielas had a poor time between 1931 and 1933 when their aggregate losses came to about £94,000. But towards.: the end of the decade they were making profits of \&l00,000 a year again.

Some firms as we have seem - such as Palmers and a handful of others - could not sustain the losses and went out of bueiness. Others, such as Vickers, could only do so by closing down one or more yards completely until better times returned. Ail of them, in the mid-thirties, needed a good deal of faith in the future. For those who had the faith, and the resources, to hang on, however, the late thirties and then the war brought them their rewards.

THE HUMAN ASPECT
This period opened with the two most important advances ever made in the wages structure of the industry - a scheme for national uniform time rates, followed by a similar scheme for piece-rate workers. An expert called the first scheme: "The most important wages development in the history of British shipbuilding."* But the second scheme was even more important.

The first scheme, which had been signed by the Employers' Federation and the unions in 1929 and came into effect in 1930, was designed to simplify the wages structure and thereby reduce the many points where friction between groups of workmen could arise.**There were to be three broad categories of payment. Fully skilied plain time workers of 21 or over, apart fror drillers and other iron workers, would receive $\frac{2}{2} 3$ a week, made up of a 50s. basic rate and a l0s. bonus. Unskilled plaintime workers over 21 would receive \&2. ls. Od, made up of a 3ls. basic rate and a lOs. bonus. The semi-skilled would receive an advance in each district that would maintain the district mergins. Thus each group had a similar payment system and also had its wages increased by between ls. and 5s. each week.

The principie of equality was accepted unanimously by the unions, who called it couregeous and constrictive.***hey felt it would remove a deep-seated potential for jealousy and friction.

The wages of piece-workers were not affected by this agreement. θ Their average earnings in 1930 were $£ 4$. 10 s Od a week for a typical 41 hours week. Had there been: enough demand to call on their services for a full-time 47-hours week, their earnings would have been over £5.

* Shipbuilder, January. 1930.
** Ibid. *** 1 bid. \quad lbid.

An attempt to grepple with the problems of piecework payments was made during 1931 and resulted in a General Wages Agreement being signed in October**

The scheme was designed to reduce labour costs and to sweep away anomalies, a constant source of discontent, e.g. skilled men on plain time were receiving $£ 3$ a week for 47 hours while certein clesses of pieceworkers were regularly receiving £7-£8 for 40 bours.**

Negotiations lasted from April to August 1931 with no serious disagreemerts. A.I. Ayre acted as chairman of the Employers' side and Will Sherwood represented the unions.

With orders for the year representing only $1 / 10$ th of the industry's cepacity, with only 17% of building berths occupied and with 25 ysrds closed for lack of work and 60 per cent unemployed in the North Eest and on Clydeside, the employers urged the need for reductions in labour costs. Reductions in the prices of materials hed been obtained and redundent capecity tackled through rationalisation.

Investigations into progress since 1929 had shown that an average time worker earned sbout. £5 for a full week of 47 hours. The averege earnings for pieceworkers ranged from 2s.6d to 5s. lod an hour.

The employers also celled for a new look at over-time and the need for grester union co-operation when new machines were introduced. After several netionsl conferences and a reference to local districts on local excesses affecting time workers, agreement was reached in Augüst.

Some of the union representatives made no secret of their view thet they expected the proposals to be harsher, involving general reductions from time vorkers and a genersl overhead reduction from all pieceworkers. The scheme was introduced in two steges: October 1931 and January 1932.

* Shipbuilder, uan. 1 322. ** 1bid. *** 1bid. **** 10id.

Because of an increase of lls. 6d in weekly wages since the bottom of the previous depression in 1923-4 and because of a fall of 30 points in the cost of living index since the same time, the purchasing power of the wages of skilled shipyard time workers was 50 per cent more than that of the wages they received in 1923-4. The increase in the purchasing power of labourers' wages was not quite so high because their wages did not suffer the same drop as the skilled men in 1923-4.*

In the case of men working on piecework or on other than plain time rates, the scheme involved witharawal of time work bonus of 7s. a week granted in 1924 as "amelioration" money to meet the high cost of living in two equal instalments of 3 s .6 d a week in October and January. Squads of riveters on piecework were specially treated by the introduction of a scheme consolidating and simplifying their basis of payment. In their case the whole of the 7 s time-work bonus was withdrawn in October, along with a special payment of $2 \frac{1}{2} \%$, which had been made to the holders-up since 1913 and instead a compensating percentage payment, amounting in practically all districts to 10 per cent on earnings was paid from the same date.**

The scheme also withdrew from October certain wartime payments, calculated as percentages on piecework prices which applied in some districts but not all.

There was an important provision for consideration to be given locally or even nationally to cases of extreme hardship.

The most important feature of the scheme, apart from removing anomalies and cutting labour costs, was that it proposed to investigate establishing a general index for automatic regulation of wages when prosperity returned to the industry. "The task is one of considerable magnitude, but its solution would be a lasting contribution to the cause of peace in the industry."***

[^35]
GOOSS WEEKIY WAGES TIME KATES*

ime Workers	July	$\begin{gathered} \text { 1923-4 } \\ 47 \text {-hour week } \end{gathered}$		Jan. 1932 47-hour week		
1 lass or	54-hrs	Wage	Increase over 1914	Wage	incr	ease
					1914	1928
Fully skilled	41s.	48s 6d	18\%	60 s .	46\%	24\%
- Riveters \& Caulkers	37 s .	44s.	19\%	57s6d	55\%	31\%
. Holders-up	31s6a	41s2d	31\%	55\%	75\%	34\%
Drillers	27s6d	39sl0d	45\%	55\%	100\%	38\%
- Semi-skilled	24s0d	38s10d	62\%		73\%	
(according to	to	to	to	to	to	0
experience ability \& job)	31s6d	41s2d	31\%	50 s	59\%	21\%
- General Labourerê3s6d		38s6d	64\%	41s.	74\%	

Ministry of Labour
Cost of living index (increase over July, 1914)

Nov. 1923
$+77 \%$

Nov. 1931
$+46 \%$

Unfortunately, the enormous depression meart that the benefits of these two schemes were not immediately noticeable. The dominant fact on the labour side was unemployment, when the dole. was the only income. But even this was hedged around with humiliating restrictions, in particular the "means test". Every applicant had to be before his town council's public assistance committee at Intervals of six months to answer detailed questions about his res:ources and to justify every sixpence that the State could give him.

There were stories of Lancashire committees making a point of asking the mother of a new-born baby whether she fed it from the breast; if she said she did, the baby's allowance was refused."**

[^36]There were stories, too, of officials using cameras to 'spy' on men receiving unemployment benefit to see iff they were genuinely looking for work. If the camera found them idling on street corners or, worse still, digging in their gardens, they would have some hard explaining to dot

It was experiences like these and the years of wasted manhood that finally erupted in the Jarrow March, when 200 unemployed shipyard workers decided to march to Iondon to expose the cruelty of their plight.*

There were skilled men at Jarrow who were unemployed for 12 years at a time. Many boys lefit school, reached manhood married and had children without ever: having a job. **
"The men became cowed - that's the only word for it. They sew no chance of a job, no chance of earning money and the experience broie many of them."***

Eventually and with much heart-searching, there arose the idea of a march on London, a march to shock the complacency of Whitehall. Both the national Labour Party and the T.U.C.: were against.such a venture. They felt it would achieve nothing and would be regarded as just another protest march. In fact, it has become one of the symbolic marches of all time, affirming man's right to work. ****

There were fears that the men would not be physically fit to endure such an ordeal. All those taking part were medically examined before and during the event. And as a matter of fact they ate better during the march than they had done for many a year. There was not one out of the 200 that did not put on weight and look and feel healthier at the end of the journey γ than at the beginning.*****

* . "Ine fown rnat was murdered". ** 1 bid. p. 198.
* ** Ald. J.W. Thomspson, Mayor of Jarrow at the time of the March, in conversation with the author.
**** 1bid. ***** 1bid.

The March was expensive. It was estimated that the cost of feeding each man was £4, while another \&l50 was needed to hire a train to bring them back.

The Mayor of Jarrow, Mr. J.W. Thompson, decided to launch an appeal, which brought in $£ 1,567$ altogether. The money came, not surprisingly, from trade unions; more surprisingly fromwomen's'organisations: and most surprising of all, £l83 came from the people of Jarrow themselves.

The marchers set off on Monday, 5th October 1936. "Practically the whole town turned out to witness the start... A few women, overcome with emotion, wept," said a local newspaper, but commented: * "We have no liking for thiseffort. At the present season it involves a risk to those taking part that might well have been avoided... it can only be hoped that the appeal they bear will receive the consideration it undoubtedly deserves."

The men reached London on 3lst October, Their march, so disciplined and so sincere, did arouse the attention the men hoped for. But by 1936 the worst of the depression was over. Demand was rising again and a shortage of men ana ma:berials was now being fielt, although ships were never to be built in Jarrow again.

The industry as a whole granted three wage advances between February, 1936 and Febraary 1938, amounting in all to 8s. a week for time workers and to 16 per cent for piece workers.

This was but small reward for the humiliations of the 1930's during which so many men and their families had suffered the miseries of almost permanent unemployment. Their world had changed very rapidly. Only a few years before this had been one of the greatest industrial centres of the world. Now it was the most depressed anc̃ depressing.

* The Newcastle journal.

The reasons were manifold and complex. The international trade depression had a more than proportionate impact upon shipbuilding for not only had demand for ships collapsed following the dramatic drop in freight rates but also this still remained one of the very few basic industries open to the full play of the world-wide competition. With the 1935 and 1939 Shipping Acts an attempt was made to tease owners into placing orders. No protection was given against the subsidised foreign competitor.

It must be admitted that.so often the management of North East companies was poor. The main example described in full above was Palmer's. But there were other firms too that overexpanded at the first sign of prosperity or were not ruthless enough in chopping off unprofitable activites.

But above all, from the regional point of view, specialisation was too great. Success - in coal, iron and steel engineering, shipbuilding - eventually spelled failure. For when these products fiell out of demand, there was no other cushion against unemployment. As one writer put it: "In the degree of concentration of its urben population and their dependence upon a narrow range of industrial occupations, the North East coast has probably been unique in Britain."*

In the early years when the industrial giant was growing faster than the local population, people were sucked into the region. The population increased from less than 350,000 in 1801 to almost 2 million in 1901 and then levelled off at about two and a half million.

But then the tide began to flow back again. "After the first world war, the outílow became a flood and continued without a break to almost 1939."**.

* N.E. England Population Movements, by J.W. House; (Newcastle University 1954).
** Supra.

	TOT.4L	\% INCREASE	NET MIGRATION
1801	349,619		
1821	443,225	16.1	+ 7,251
1841	617,648	20.0	+ 47,502
1861	942,063	24.2	+ 39,416
1881	1,458,918	24.2	+33, 885
1901	1,995,283	17.0	+ 7,131
1921	2,452,551	6.3	- 141,638
1931	2,515, 685	2.5	- 191,178
1951	2,556,276	1.6	

Shipbuilding employment grew and then declined in the same way as can be seen from the following figures:-

	EMPLOYMENT IN N. EAST SHIPYARDS	**	
	persons		
1851	4,980	1891	28,603
1861	7,228	1901	42,773
1871	11,518	1911	46,832
1881	15,722	1923	59,810
		1931	51,100
		1951	45,200

Direct employment in the shipbuilding yards does not represent the full influence of the industry. One can add the same number of people again for those employed in marine engineering and an equal number for those in ancillary trades.

If one sees shipbuilding as part of the coal - iron and steel - engineering complex of industries, the precarious position of the region becomes apparent. nAs Mr. House wrote:-

[^37]"The industrial structure of the North East for the past hundred years has been almost exclusively concerned wi.th the coal export and coasting trade, together with the vast manufacturing developments arising from the output of iron and steel..... Whilst Britain was acheving industrial supremacy in the l9th century such specialisation was a distinct advantage. Capital accumulated and firms amalgamated for greater efficiency, often embracing several industries as in the case of shipbuilding and engineering. Labour became skilled and the metal working and manufacturing industries could absorb generations of workers without serious competition from other forms of employment. With economic depressions, starting with the late 1870's, recurring in the early years of the 20th century and culminating finally. in the catastophic depression of the early 1930^{\prime} s, it was all too clear that the marked specialisation of the regional industries left the local economy very vulnerable to the vacillating trend of world events."*

The sad fact was that the specialities of the $\mathbb{N} . E$. were the basic industries that any industrialised nation would need. Coal extraction and iron and steel making were particularly vulnerable, shipbuilding and engineering less so as long as the region kept ahead in terms of products and techniques. This unfortunately was not always the case. As we saw at the beginning of this chapter, technical changes often occur most rapidly at times of economic depression when producers feel they have to tempt buyers back into the marketaplace.

But if the depression is too severe, as that of the 1930's undoubtedly was, it erodes to an almost intolerable extent. the confidence of producers and their financial reserves.. There has
*. Supra.
got to be a fundamental optimism that things will quickly improve and that innovations will bring a reward. Such a feeling was difficult to maintain in the 1930's.

As we shall see, this depression was then followed by a period of high demand, lasting almost 20 years. During such a time, the producer feels there is little need to innovate. The work is flowing in; he doesn't need to offer more than conventional models, processes and techniques. In the case of the N.E., this basic feeling was heightened as a result of the experiences of the 1930's. Firms felt a need to refill their reserves. They also felt a basic uncertainty about providing fresh capacity. The industry had with such heartache been reduced in size. They were in no mood to expand it again.

Had the industry world-wide experienced its normal cycle, this policy might have succeeded. Instead a new trend of almost constant expansion of demand set in after the war. As: we shall see, this allowed Japan and Germany to re-enter the market with yards modernised by aid from the Aliies. The former, in particular, was able to expand with world demand and chose to specialise in the dominant growth market, oil tankers.

For these reasons, as we shall see in the next chapter, the N.E. began to lose the dominance it had held since the 1840's . By the 1960's in fact, it was over-shadowed by Japan and was no more than an equal partner with Sweden and West Germany.

Thus specialisation is a dangerous policy. It can succeed only if it is allied to progressive management, an expanding market, and, when needed, a measure of protection from international competition.
'The years of depression turned into years of intense activity. For two decades the industry. was pusier than it hag, ever been before. The cynics continually warned that the end was nign but the boom went on and on.

The war and its attermatn created an enormous demand for shipping of a 11 kinds. And the military aefeat of Britain's two main snipbuilding rivals, Germany and japan, lett this country as tne main suppiier of that demand. Mhen, just as orders were beginning to ease, the Korean war stoked the fires again ana five years later tne Suez irisis dia the same.

During tnis period, tae North East regularly launched more tinan nalf a million tons of shipping andiin 1958 launched oठర,000 g.r.t., itsifighest output since $1 y 20$. Net profits of half a million pounds were not uncommon for medium-sized firms and the biggest companies, like Swan, nunter and Wignam Ricnardson, achieved net profits of over a million pounds.

But, altnough it lasted a surprisingly long time, the Doom: did eventually oreak at the end of the Ly50's and left british shipouilding facing the most intense foreign competition it had ever known. the nuge tanker programme born of tne Suez Crisis sent Japan's output soaring anead. From l950 that country replaced Britain as the worla's major shipbuilding nation..

The cynics were now joined by the critics. In a country that seemed to wallow in self-criticism, shipouilding Decame a tavourite target. madn't it failed tre naiion ? Weren't its managers oldi-t'ashiorred members of family dynasties ? And what about the unions? weren't they the most ill-disciplined and strikemprone in the country?

Most of the criticisms were not only unfair but also failed to understand tine nature of shipbuilding's problewis.

For the industry reflectea more accurately than any otner the state of the british economy as a whole. Firstly, it was primarily an assembly industry, two-thirds of whose costs represented bougint-in materials.* It shipbuiiding was inefiicient and subject to inflation, it was Largely because large sectors ot the economy were inefricient and subject to intlation. seconaly, the true position could nol be masked as it coula be in other inaustries because shipouilding was essentially an international business competing without the aia of subsidies or protection in the markets or the world.**

Witnin tnis general framework, the patiern ot demand favoured Japan rather than bittain. The biggest growtn was in tankers, followed by bulk carriers. The construction of these large but essentially simple ships suited japan's method of production, whicn was based on a comparatively hign level of capital investinent, on specialisation and strong management teams.***Britain's fundamental characteristic, on the other hand, remained its versatility not only within tine industry as a whole but even within many of the individual companies. Numerous yards in the Nortn East were - and still are capable of building virtually any type of ship that may be contemplated, from a luxury passenger liner or nignly sophisticated Admiralty ship, to a bulk carrier or nuge oil tarker.

Tnis versatility itself increased the cost of overneads and meant that the basis of successful operations remained a nignly-skilled (and nignly paid) labour torce. And tne cost of versatility became even more onerous with the shortage of orders for tne sopnisticated snips. Only five per cent of tne world's merchant marine now consists of passenger ships, for example, and the increasing popularity of air travel will further reduce the demand for these most beautiful and complicated examples of a shipbuilder's crat't.

* J.k. Parkinson, "The Economics of Snipouidding in the U.K.". Cambridge 1960. p.198-9.
** loid.
*** "Structural unanges in Snipbuilding". Papers prepared by International metal federation Secretariat for a Snipouilding Conference in Newcastle, way lyo\%.

In addition, the highly-skilled crattsuen, who form tne basis of any successful shipbuilding company in this country, were frequently poacned by otner industries, thus creating a manpower snortage. And the nign place given to skilled men and tne fierce pride in craft that that produced, resulted in some difficult labour problems. No other industry was so bedevilled by aemarcation disputes. out in the past two years great improvements have been made.

Tne international nature of shipbuilding nas made companies intensely aware of operating conditions among their rivals. Few matters have caused more controversy than subsidies of one form or anotner which have been granted much more widely abroad than at home.* Ot course, subsidies are not always effective. The experience of U.S. snipbui ding illusirates the point. but where a country is more or less on a par with its rivals and wrere there is intense competition for orders, then subsidies can play - and without doubt have played - a vital part in securing orders. For a number of years British shipbuilders even had to suffer from the farcical position of being able to offer toreign buyers lovernment-assisted credit schemes while british. owners, unable to benefit frou tnese scnemes, continued to place tneir orders abroad.
finally, one must consider tne growtn in tne merchant marine of various countries. The britisn fileet alone of all the major fleets has been virtually static since tise war, at around 20 miliion tons. in contrast, tine fleets Delonging to Panama and Liberia, to Norway, Japan, tine U.S.S.K., and freece nave all snown spectacular increases. inis contrast nas not been nelpful to british builders. For any industry, successrul exports uust be based on buoyant home demand. uritisin shipbuilaers have not been able to lean on tnat support.

* J.K. Parkinson. p.85-6.

In the ligint of this interpretation of events, has tne industry failea trie nation ? it nas not. considering all the difículties, it nas in fact snown remarkable signs ot resilience and has tried co overcome trese difticuluies in a mucn more determinea way tnan tre critics would allow. ' 'he pity is tiat the industry was not given the inelp it so badly reeded and deserved until it was almosi coo late, as tne story of these past 25 years demonstrates very cleariy.

ThE WAR YEAKS

At the beginning of tine war, Admiralty strategy was sti 1 based on the big sinip. Five "ning leorge v" type battleships of 35,000 displacement tons each, witin 14 in. guns had been laid down in 193%. By Septemoer 1939, four "Lion" battleships ot 40,000 tons, witii 16 in. guns had been autiorised. In aqaicion, six fleet carriers of the "lllustrated" class were under construction, togetner witn 20 cruisers. At the naval yard of viokers-Arustrong on the ryne, tine keel had been laid for "Lion" nerself; une cruiser "uganda" was on the bertris; wıile "ning George v", the carrier "Victorious" and trie cruiser "Nigeria" were fitting out. **

Gut tne big snip progranume was revisea not so mucn by inteation as by events. ${ }^{*}$ Trie success of trie German submarines led to an increased demand for antisubmarine vessels and for another 100 escorts. Thus in tne new list of priorities, tne big snips were forced to give way to smaller vessels.

In tine spring of 1440 , the Naval Yard was told to suspend work on "Lion" and "uganaa" and concentrate all efiorts on completing "King George V". The "uganaa" was launched in August $1 y 41$ and altiough it was replaced by a cruiser, the programme for the rest of \quad ne war was mainly for smaller snips.

* J.ע. Scotr, "vickers - A ristory". p. 2.91.
** Ibid.
*** Inid.

In the spring of 1y40, the ivaval Yard was employing 4,250.* The Elswick and Scotswood works of the company in Newcastie, whicn were responsible for naval armament work as well as for a neavy land programme, were togetner employing another lo,500. These numbers increased as tne war effort intensified. Tine same was true in every other yard. The Hebburn firm of nawthorn Lesiie, for example, increased its workforce by more than nali, from 4,000 to 6,600.

Even so, the numbers employed remained smaller for the industry as a whole than in the First World war, yet the output was mucin greater. But the demand for more and more connage was very pressing and raised the possibility of re-opening sone of the yards tnat were closed but not dismantled by tne National Shipiouilders Security Limitea. **

On the 'lees, the old yard of the cleveland Snipouilding Company (formerly occupied by Sir kaylton Lixon) was still intact. iwo yards - tnose of messrs. Craig, faylor and messrs. Richardson, Duck - could easily be restored to shipbuilding. Only one, that of Ropner and Sons, had been completely demolisined. ***

At nartlepool, there was ralk for sone years of re-opening Irvine's Shipbuilaing and Dry bock company and similar schemes were put torward for the four yards that had been closed on the wear. On the lyne, there were erforts to re-open the Nortinuberland Snipiuilding company's premises at Howdon and tnose of the iyne Iron Snipbuilding Company at Wi\&lington Quay. most of these attempts ended fruitlessly. ' capacity but of labour. It was easier and more efrective io absorb any available labour into existing yaras than to re-open ola establishments.

Three yards were re-opened, nowever. 'Ine Snipbuilding Corporation, a lovernment agency, openea the Soutriwick yard at Sunderland at a cost of ま 350,000 , the old Low Walker yard of Armstrong, Mitchell ana anotner yard on the rees.

```
* u.v. Scott. p.292.
** "Snipbuilder", uan. 1940.
*** 10id.
```

In the first year of the war, Britain lost 396 ships of $1,501,000$ gross torns and througrout the conflict as a whole, well over four million tons. Over nalf of tnis figure was replaced by tne North East. Tine Wear alone produced 240 mercnant ships of $1,500,000$ gross tons, "greater than any other snipbuidding centre of comparable size in the world."*

The 'tyne launcined 74 merchant ships of 535,800 gross tons, but it was largely occupied by naval work. ** Swan, Hunter, for exampie, at their fyne and. Clyde yards built 83 warships of all types, with a total displacement oi' over 250,000 tons and 75 merchant ships of nearly 500,000 gross tons. Yards on the rees and at Hartiepool were responsible tor 125 mercinant ships ot 5y\%,000 gross tons.

THE BOOM GOES ON
For tie tirst 15 years atter the war the ivorth East producea well over halt a milliontons of merchant shipping annually, about 40% of tne British total. But like the British total, the ivorth East output showed no strong sign of growtin. 'rne result was tiat its percentage of world output tell from 24% in 1946 to 7% in $1 y 60$.

The reason was two-fola. First, there was a very serious shortage of botn men and materials. Steel was in particulariy short supply. Many firms could nave raisea their output considerably had they been able to obtain all iise steel they wanted. They would even nave been wiifing to pay a migher price to gain supplies iut were not allowed to do so.

Seconaly, and more important, the over capacity of the iyjo's was still a very lively memory. Companies were reluctant to extent their capacity beyond a certain limit and, uniike the situation at the end of the first World War, virtually no new firms came into tne industry. Urder wooks grew extremely Long. Triose who placed the orders had not only to accept long-term aelivery, wui also "time and line" contracts under wnich the price oi the snip rose witn the rising costs of production.

* Rear Admiral Sir wellwood maxwell, Officer commanding tne Tyne Station, "Snipouilder" magazine, April 1945.
** Ibid.

It would not be true to say that the industry did not spent money on modernisation scnemes: It did, in very large amounts, but most of tinese scnemes were intended to meet the new pattern of demand (by increasing the length of berths) or to increase efficiency rather than to extend capacity.

There were tince main problems facing the industry at the end of tine war: the siortage of wen and materiais; the rapid rise in prices; and the re-adjust.ment from naval to werchant building. In the six months from v.E. vay to warch 1946 the Admiralty cancelled orders for 72% naval vessels witr a net saving to the 'lreasury of お125 m.*

The cancellations caused some temporary unemployment, but the spirit of the industry was high. in the saue six montns, vorin East yards alone booked orders for 150 mejcnant vessels and tine outlook was regarded as excellent. Even the increased prices and vessels were costing between 70% - 100% more than in 193 - were not deterring orders. The shortege of sinipping nad to be made good and there was a teeling that prices were never likely to come down.

By september 1946 there were 464 ships of $1,8 \% 5,000$ gross tons under construction in tne country, more than in tne rest of tne world taken togetner: In the North East, the figure was $\% 00,000$ gross tons, of whicn the Tyne was responsible ror 356,000 tons.
vespite tinis large amourıt of work in inand, especially for foreign countries, yards were now beginning to be seriously handicapped by a shortage of Dasic materials and delays in the delivery of vital components. "ine result is that the yards open a year of encouraging promise largely on paper... out in practice tiney face difficulties possibly more disneartening and ceriainly more vexatious than some or' tnose experienced during tne war."* *

[^38]There was a shortage of everything, of steel particuiarly but also of paint, of tisuber, of hardware, even of sanitary and electrical equipment. In consequence numerous launches had to be postponed and a great deal of capacity lay idle. vickers-Armstrong ciaimed that the Naval Yard was only 60% occupied even thougn"owners were gasping for ships." *:

These shortages were raising anxieties for the middle and long-term future of the industry. The North East vevelopment Association forecast tiat altnough yards were likely to de busy for three years, "a decline may tnen set in ana it seems probable that the industry will be faced with a marked contraction within a few years." ** Sunderland, and nartlepools were especially picked out by the survey as likely to suffer again frow high unemployment.

The Government's Economic Survey for 1947 took an equally gloomy view. It warned of the economic dangers anead and called for greater productivity. It wanted to see a 25% increase in shipbuilaing output. The industry would nave been willing to oblige. It was not pleased with its 1946 launchings figure of just over a million tons when it had set itself a target of one and three quarter million tons but tine snortages of materials were not its fault.

The narsh winter of 194'\% aggravated tne general probleu and steel supplies were limited to ou\% of requirements. fur. K. Cyril Thompson of J.L. Thompson \& Co. Ltd., of Sunderland, warned: "The situation will inevitably lead to wholesale unemployment unless it is quickly remedied." $\theta_{\text {his }}$ company's programue was badly retarded and complete disorganisation might follow. A neighoouring firm on the riger wear, only five ships a year instead of an average of ten. Even a lack of door knobs had held up completion of a 9,000 ton passenger ship, "Kio Cnico", being built by bartrams, also on tne wear.

```
* J.D. Scott - "vickers - a nistory". p. 314.
** "Snipbuilder", vanuary 1947.
\(\theta \quad\) "Snipbuilder", April \(194 \%\)
```

The shortage and the delays, allied to the neavy pressure of demand were making prices rise alarmingly. * Ships were costing over three times what tney had done 15 years before and over twice as mucin as in 1938. When ships were finally delivered the` prices had often risen by $15-20 \%$ above the estimates.

In january 2948 Sir stafford Cripps, the Chancellor of the Exchequer, announced that the allocation of steel to the shipbuilding industry would be a fifth less than it nad been in 1947. inis was bitter news for the shipbuilders and they reacted strongly. "That an industry, whose contribution to victory was so massive and which has since contributed handsomely to the nation's economy and to its export programme, should find its resourcefulness, ingenuity, energy and enterprise rewarded by this further strait-jacketing, is surely an ill-conceived and unwarranted affront."* * The builders in the North East estimated that a third of the vessels in their yards would have been delivered had materials been available.

There was a sign at this time tinat orders were beginning to wane and some were even cancelied, but it was not very serious. Tne demand for oil tankers remainea nign. ADout twenty tankers were on order or under construction on the tyne alone. Swan, nunter had an order for a giant 28,000 ton tanker for the AngloSaxon Perroleun Company Ltd. Even jonn Crown © Sons Ltd., a subsidiary of u.l. 'Inompson, had an order for a 23,000 d.w. ton tanker, although they nad never previousdy built anything bigger than 4,000 tons.

In 1949 the Government agreed to increase shipbuilding's allocation of steel by 5% - "a gradging acknowledgement of the industry's important role in the national economy."*** Tne increase was followed a few months later by a rise in price for steel. Steel plates went up oy w2.. 18. Od to w20. 14. od a ton.

It was not until the end of 1949 tnat steel deliveries began to maton requirements but that was because of a lessening demand rather tnan an increasing supply. within a few months, the position was as bad as ever when the Korean War sparked a new boom.

* "Snipbuilder", January 1948.
** "Sinipbuilder", February 1948 .
*** "Snipouilder, rebruary 1949.

By tne end of September 1950 British yards had under construction for tne first time in their history over a mililion tons of tankers. 'hey represented nalf of the total order Dook. "ine New year began with vickers-Armstrong gaining an order for a 31,000 ton tanker, the second of two such ships to be built by the yard.* Within months, the company rad over | |
| :---: |
| 4 | m . worth of orders, half' of tnew to be built on tne 'ryne. In February 1951 the Britisin lanker Company Ltd., placed orders for eignt tankers with North East yards to a value of $\dot{y} \mathrm{~m}$. Later in the montn an order for anouner five tankers was placed in the area.

The month of marcin 1951 saw even more spectacular ordering. A total of 24 ships was booked by ivorth East yards. Every firm in the area now nad very full order books indeed. Swan, Hunters alone nad orders for tankers totalling $400,000 \mathrm{~d} . \mathrm{w} . \operatorname{tons.~Full}$ employment was assured until 1954.

In April, tne(Dutcis rioyalisnell Group placed contracts for 46 tankers, 31 to be built in tae U.K., and 15 in nolland. It was the largest programme of ship construction ever undertaken by one company. The total cost was 45 m . and the programme adied 900,000 d.w. tons of capacity to tne company's fleet. Swan, nunters built five of the cankers; nawtnorn-Leslie five; Smith's Dock 3 and u.L.. 'hompson 1.

By August, North East shipbuilding inad "rarely, if ever, been in a stronger position in terms of potential employment, tnan it is today, Deliyery dates now extend weil into 1955."**

Tne prospect was not entirely pleasant, nowever. Not only did tne shortage of materials persist byt in that year's budget the Cnancelior witharew the 40% tax allowance on tne cost of new plant. Tne Justificarion was that tne modernisation of incustrial plant had now largely taken place. ret many shipbuilders were still in the throes of modernisation schemes.

* "Snipouilder", February 1951. * * "Snipbuilder", September 1y5l.

Doxtords were increasing tneir marine engine and shipbuilding output by 50%. enlarging tneir berth capacity iohnandle fewer but bigger ships. Swan, u unter were spending $\ddagger 1 \mathrm{~m}$. a year. vickers-Armstrong nad spent about the same at the ivaval yard to introduce prefabsication techniques. Flame-cutting tables replaced shearing machines and bulk liquid oxygen replaced gas cylinders.

Tanker orders dominated the neadlines but occasionally shipbuilders were callea upon to exercise the full extent of their craft and buila a luxury passenger ship. In August 1950 Swan, Hunter launched the turbine-driven passenger and cargo liner "Provence", a ship in tine traditions of the elegant floating palaces of tne past, as the official description shows.
"r'he lounge, is remarkahle for the nodility of its proportions. Square columns, in green bronze lacquer sprinkled with gola, support the plaster ceiling witn its luminous recesses.... In a recess covered in gold leat, tne doors of wnich are covered inside with religious subjects in the style of the early French, a gilded altar is arranged uncer a round srained glass window in tine manner of the master glassmakers of the cathedrals... Four green bronze statues sculptured by Poisson give indirect lignting... Tne whole place gives an impression of refined elegance and luxury of the niginest quality." *

The designer was m. Andre' Arbus of Paris and the design work was carried out by Societe, $k o u s s e a u$, also of Paris.

As 1952 opened the British shipbuilding industry had orders for 1,100 ships of adout $6 \frac{1}{2}$ m. gross tons, representing four years work** The demand reflected the very nign level of freignt markets wricn tne North of England Snipowners Association claimed were tne nignest in its 女O-year nistory. θ Tne cost of new ships was continuing to rise. Between 1950-52 large tramp ships rose trom 240 to $\mathbf{x} 60$ a ton - "a staggering and unprecedented rise". Even 15 years old motorships were realising four times their original contract price.

```
* "Snipbuilder", Sept. 1950.
** " January 1952.
```

By 1953 the spate of new ordering nad subsided. In the first quarter of the year there were hardly any. new orders for \bar{N}. E. yards but the situation was masked by tne very tull order books. Tney also masked the challenge from the air. "The sea, so glamorous and adventurous in tine past, is in danger of losing. its crown to the air in tnis age of jet propulsion".* And they masked the growing challenge from Japan and Germany, which detween them were now equal to Britain in ship launchings.

The main tnreat was felt to be japan, whose output was growing at a rapid rate. In march 1953 it had had 450,000 gross tons under construction. By December 1955 tnis had junped to 832,000 gross tons. "'rne significance of this advance in Japanese snipbuilding lies, periaps, not so mucn in tne present as in future potential output and its ultimate competitive strength in world markets." **

This foreboding was realised in tne tnird quarter of 1950 , when Japan establisned itself as tne world'a leading snipbuilding nation witn the completion of 80 ships of 410,689 gross tons, compared with Britain's total of 61 ships of 244,780 gross tons.

In the year as a whole Japan launched
1,735.4'72 gross tons, double her, 1955 figure, and in excess of Britain's $1,37.9$, 308 tons. But snipbuilaers in this country refused to be pessimistic. "Wnile japan's picture is impressive, it nevertheless lacks tne balance of Britain's canvas... Tne major nalt of Britain's programme was well-balanced witn a commendable variety of tonnage, from trans-Atiantic liners of the finest type being built anywhere in the wor $1 a$, to specialised bulk carriers, cargo liners and, among smaller cratt, trawlers of aevanced design."* **

* "Snipbuilder", February 1953.
** "Snipbuilder", Jan. 1956.
*** "Shipbuilder", March $195{ }^{\circ} 7$.

The claim to variety and sophistication was borne out by the launch during lyjb of tne "Eupress of England" fron vickers-Armstrong's ivaval Yara. Capabie of carrying a thousand passengers, it was rne biggest liner yet built at the yard.* It haa also been borne out a year earlier by tine launch of the Norwegian-American Line's lo,000-ton passenger ship "Bergensíjora". This was the most iniportant ship Swan, nunter nad so far vuilt tor the ivorwegian wercantile marine. It was the tirsi ship to have allwelded aluninium superstructure.

The Suez Crisis revived the freight markets and the orders for ships. Every month brought new contracts. In the first nalf of 1956 the wear booked 19 new orders, keeping tne outlook "buoyant". In June, tne Furness Snipbuilding Company, which had been bought five years before by a syndicate headed by the London financier Charıes Llore, booked orders for six new tankers worth $\ddagger 13 \mathrm{~m}$. In August it booked orders for another ten tankers worth 220 m . by the end of the year the Wear had 140 snips on order or under construction worth about 2120 m . and guaranteeing work for four to five years ahead. "it was a period of almost unexampled prosperity." **

It was a period, too, of almost unexampled activity for many yards were involved in re-organisation. scnemes as well as in carrying out tne very neavy programme oí work. nawthorn-ieslie were spending a miliion pounds on an expansion programme. j.l. 'lnompson were installing new bertns and tapricating sheds. A couple of years eariier tie company nad taken part in a large amalgamation involving Sir James Laing \& Sons, 'I.W. Greenwell \& Company, tre ship-repairers, the Sunderland Forge o Engineering Coupany, vohn Lynn and Company, and the Wolsingham steel Company. The new company was called the Sunderland Sinipbuilding, Dry Docks and Engineering Co. Lta., but eacn constituent memoer kept its own iaentity.

[^39]It was not only the big firms tnat were striding anead. The small Sunderland family firm of Bartram \& Sons launcned the cargo motor ship "costis" only 18 weeks after keel-laying. With twenty similar ships on order, trie company nopea to reauce trat time to 14 weeks. A shipowner called the firm "not only one oí the fastest but the fastest of sritisn shipbuilders."

In February 195% another Sunderland tiirm, Austin $\&$ Pickersgill, came under tine joint control of London \& Overseas Freignters Ltd., Philip Hill, Higginson \& Company, the bankers; and Lambert brothers, the shipping and insurance organisation.

During 1957 the orders continued to flow in despite the general shipyard strike, the credit squeeze, Bank kate at 7%, the decline in conmodity market prices and the steep fall in. freignt rates. On the Tyne 25 new vessels were booked in tne first nalt of the year, including almost nalf a million tons of tankers. By the end of 1957 Tyneside yards nad orders for 78 ships of 1.8 m . tons.
sut the orders could not - and did not continue. 'rinrough 1958 and 1959 tne searcn for new work grew more and more dift'icult. cancellations increased. Dr. Ramsay Gebbie, Ĺnairman of Doxfords, said that nali a dozen contracts.with nis firm nad been cancelled by October 1958 :and otners had been deferred. Some talked of the need to look ahead with a "stout neart".*

But everyone realised tinat, for the smaller yards at least, orders were getting perilously low. In lysy britain fell to tnird place in tne tabie of world launcnings, just behind Germany but well benind Japan, which launched 50% more shipping. And in the North East the numbers of unemployed people exteeded 50,000 for the first time in 12 years.

The boom which nad lasted for so long and which had masked, even to some of those within the industry, the new factors in world competition, was over. british shipbuilding now entered upon a struggle to survive. In the face of a rapid rise in world shipbuilding output, her own production remained static and thus her share of the market dwindled.

Some firms went out or the business. Uthers plunged into the red. ine period had a ring of the 1920's and 1930's about it. The region nad been tnere before. Yet the theme had an important variation. ' inen, every country had been in the same situation. Now Britain, once the shipyard of the world, saw Japan. moving further and further ahead. How manfully the industry tried to regain its former position we must now turn to see, for in the long and epic story of British shipbuilding, tine past five years have been as enthralling as any that have gone before.

'I'HE STRUGGGLE TU SURVTVE

In the five years from ly6l-5 inclusive, North tiast output averaged less than half a million. tons and the share of world Launchings tell to an average ot 5%. Meanwhile world output was increasing at a staggering rate, from 8 m . tons in 1961 to 12 m . tons in 1965 - and Japan was responsiole for nearly. all the increase.

Yards in the North East nad remained generally very busy in 1960 but inat was witn contracts booked several years previously. There were very few new orders and 1961 opened on a "gloomy" prospect. * Wiliiam Gray's at West Hartlepool had only two ships to complete and tour barges to build. By mid-summer all its berths were empty, rie company nad nad the country's fourtn biggest output of ships and marine engines during the 1939-45 war and at otner times nad topped the world launching list, but now its future seemed very uncertain. The Furness Company on the 'ees had only one vessel on order.

With the risk of the gloom turning into pessimism, Mir. Join hunter, the chairman of Swan, iiunter and Wigham Richardson found it necessary to give this warning: "unless we are so foolish as to envisage a contraction of our mercnant fleet, shipbuilding wili continue to tririve in the longterm as a vital part of our national economy. I do not think it is always realisea by the people of this country how vital our shipping is to tneir welfare.. ... If we are not to decline as a nation we uust not only uaintain but progressively iricrease the size of our mercinant navy. failure to do so will leave us increasingly at the mercy of toreign carriers, our freedon of action will be lost, our economy undermimed and our standard of living, and indeed our very existence, threatened."*

At this time when the industry needed encouragement, a further blow was delivered by a report on research problems in the industry produced by the Department of Scientific and Industrial Research. 'Inis claimed that shipbuilding was not doing enougin researcn, a cnarge which the industry thought was unfair.

Yet despite the discouragements there were many signs of healtn. J.l. inompson \& Co. Ltd., had Just spent millions of pounds in re-organising tneir facilities to allow tne construction ot mucn bigger ships. With a few additional alterations, they would be able to construct vessels of up to 100,000 tons. vickers-Armstrong were to spent £ 4 m . at their nebburn works to build tine largest dry-dock on the Nortn East coast.**Swan, munter were preparing to install at their Wallsend yard the world's first fully-automaric machine for cutiing steel plates. It had also just introduced tne first slag-welding machines in Britain.

Cise British Productivity Council in a survey of Swan, nunter found that over tne previous tinree years the company had reduced the time taken to build an average ship by a third. 'the survey felt tnis nad been acnieved because tnere was a management able and willing to adopt new methods and a work force ready to co-operate. θ And there was also at this time a notable run of passenger liner launches. in 1960 vickers Armstrong had Launched the "Empress of Canada", the oiggest passenger ship build on the tyne since the "Mauretania".

* Speech at the launch of tine "Clan Forbes" in Marcn 1961.
** "Snipbuilder", June 1960.
θ "مarget" br. productivity, council bulletin, june 1961.

It was 650 ft. long, had a service speed of 21 knots and could accoumodate over a thousand passengers. Sne was completed in ivarch 1961, a few months before Swan,. riunters launched "Principe Perfeito".
'Inis was the largest ship ever built in its Neptune yard and was also capable of carrying over a thousand passengers. In uuly vickers-Armstrong launched the 22,000 ton "ivorthern Star", for the Shaw savil Line. Like its sister ship "Soutnern Cross", it.was unusual in naving its engines aft and in being reserved exclusively for passengers.

Bint the most talked-about ship of this period was never built. This was to nave been a new cunarder to replace the "Queen mary" and the "Queen Elizabetn". Fopularly known as the "Q.3", it attracted a great deal of speculation. When tenders were called for, Swan, munter and vickers decided to form a new company to make a joint bid. Swan, nunter would build tine hull and Vickers-Armstrong would be responsible for the fiiting out. In the event the project was withdrawn because of the sharp fall in passenger traftic and in profits. but the Cunara Company revealed that had the project gone anead, the Tyne consortiun would have won the order.* As if in compensation, the two companies later in tne year received orders for trie first 100,000 ton rankers to be built in Britain. vickers-Armstrong decided to build its vessel at barrow, but Swan, fiunter naturally caose the iyne.
J.L. Thompson of Sunderiand also received an order for a very large tanker at this time. It was for an 80,000 con vessel worth 24 m . and the furness Company on the rees announced it nad gained an order for a 53,000 ton bulk carrier, the largest in the world.

The overall position, however, reanained gloomy. The industry's total order book stood at 346 ships of 2.5 m . tons, representing just two years work. The most disquietening feature was the lack of new orders for large passenger liners, symbolised by tine postponement of the "Q.3". In fact only one passenger ship was being built in the whole country, the "Nortinern Star" wisicis was fitting out in tne Naval yara.

Mr. Allan viarr, the managing director of Sir james Laing and Company Ltd., said that in 1961 inis firm had received a lot of enquiries but no orders. Only a fiftn of the enquiries nad come from Britisn owners, whereas at one time four fifths of the firm's orders had been for the nome market.
inrougnout 1962 tne situation remained uncnanged. In fact in the whole 12 montns, new orders represented only haif a year's work for the industry. by the autumn William Gray and company of west martlepool had decided to give up the tight. the reason, according to the chairman, Sir William Gray, was: "the absence of a sufticient volume of profitable orders." About 1,400 employees were thrown out of work.

By mid-190'3 the situation was worse. The launch of the giant 53,000 ton bulk carrier "Essi Gina" for Norwegian owners weant that the Furness Coinpany had no work in hand for the first time in 30 years. It was forced to pay of $\%$ of its 1,800 employees.
mr. Reginald Ibison, managing director of Hawthorn lesiie of hiebourn, wrote at this time: "Sufticient capacity exists to renew the present aciive world fleet every ten years and shipbuilding will remain a hazardous and unrewarding business until a very large part of the facilities now available for construction have been closed down or turned over to otner activities."*

A few montns later inl904 another ivorth East company, Snort brothers of Sunderland, closed. It nad been in existence since 1849 and was an interesting example of the family firms that characterise the industry. All nine grandsons of the founder were connected witn the business.

As an atmospnere of crisis continued to spread, the Government agreed to finance a $£ 75 \mathrm{~m}$. credit scheme to encourage british owners to place orders at nome. The North East did well from the scheme, winning about two thirds of all tne orders placed.

[^40]And the success continued in 1965. In one week, the Furness Company had its immediate problems solved by winning some of the largest foreign orders ever placed in this country: four 65,000 ton Dulk carriers for Israel worth more than $\dot{\text { fill m., and a }}$ 46,000 ton bulk carrier for Norway worth $\$ 2 \mathrm{~m} . *$, by August the North East nad received orders for 47 snips of 1.5 m . tons valued at 880 m . But these successes did not prevent riawthorn-Leslie from making a loss of ま200,000 and Swan, munter a loss of over $\dot{2} 1 \mathrm{~m}$.**

To counter the difficulties in shipbuilding, some companies began to look for other outlets. Swan, Hunter took over a long-established ivewcastle firm of building contractors. mawtinorn, Leslie, on tne otner hand, aecided to enter the new field of industrialised housing. However, while Swan, Hunter found their new venture a profitable adjunct, hawtnorn Leslie lost over玉 3.5 m . on tneirs by mid-1967.***

All companies continued a constant search for new markets and greater efficiency. In 1962 Swan, runter made a determined effort to persuade owners to accept standard ships. irie company produced three basic designs: for a. 10,000 ton dry cargo ship; for a . 20,000 ton bulk carrier and for a 50,000 ton tanker. The designs incorporated the latest features of ship management and the vessels themselves would be ouilt to the nignest standards. But by allowing batch production, costs would be reduced by 10%. Few owners showed any great interest.

Four years later, in 1966, the company announced that it had discovered a new technique for shipbuilding which would enable it to build vessels of up to a million tons. The announcement gained neadiines. in newspapers all over the world but no owners nurried forward to place orders.

* Company records.
** Lompany's annual statements.
*** Ibid.

Meanwhile, Austin \& Pickersgill of Sunderland was concentrating on another part of the market. During the war, $2,: 700$ tramp cargo vessels called "Liberty" ships had been constructed, mainiy in America. in: 1966 / 100 of them were still in service but clearly coming to the end of tneir useful life. Austin « Pickersgill felt tnere was a very good marke't to go for and designed a standard 14,000 ton shelterdeck vessel as a replacement. Within a few montins of announcing its design, it had received four orders, with the prospect of more to come.*

Hawtnorn, Leslie saw growtn prospects in the carriage of liquefied gases. d'ne firm started research work on this new type of vessel in 1961 and by 1960 nad solved the problems sufficiently well to be able to launch its first purpose-built liquefied petroleum gas tanker "Clerk Miaxwell". 'This was built for Ocean Gas Iransport Company Ltd. **

Ihis vessel could carry propane, butane, butadiene or annydrous ammonia in tnree insulated cargo tanks at sub-zero temperatures. Hine low temperatures were the key to the solution of carrying trese gases. 'the main problem was to reduce tne bulk. Hawthorn, Leslie's answer was to cool the gases down so that they turned liquid and shrank in volume.
'lne success with the "clerk maxwell" led to tre firm gaining orders for two mexican gas carriers, worth about $22.25 \mathrm{~m} .$, and a British order from Bibby Brothers.***y 196% the Company nad worked out design specifications for carrying all tne petro-chemicals. It was tnus anong the world leaders for this specialised type of vessel and stood a good chance of gaining many more orders. In 196% about $1 \% 0$ 1.p.g. carriers were in commission or on orcier throughout the world.

Tne smallest shipbuilding company in the region, clelands of Wallsend, were also making vigorous. efforts to extend its range or activities. This in fact. was already very wide. For altnough its output was generally less than 5,000 gross tons a year, it could produce at least 15 different types of small craft from coasters and barges to lifting vessels and deep-freeze trawlers.

[^41]In October 1960 it launched its first yacnt, the "Suvretta", for the Suvretta Snippirg Coupany, an associate company of tne shipyard.* It was an attempt to break into the charter cruising market witn a special eye on America.

Four years later, the company acquired the sole u. K. building rignts for a new type of nopper barge. An Anerican invention, tne new nopper barge differed radically trom the conventional model. Where the usual method was to have bottom doors tor dumping purposes, the new barge haa a huil built in two halves and ninged at the ends on deck level. The entire hull therefore swung open to allow dumping to take place.**

The smali company of clelands had probably nad more success with their attempts to seil a siandard ship design than any otner yard in Europe. The rirst design, the "Excelship 2600", had brought in nine orders by 1960 .

All this activity meant that the company
continued to expand. in 1957 it constructed an extra shipyard on an adjoining site with two broadsiae launching berths, each $120 \mathrm{t} t .10 \mathrm{r}_{\mathrm{g}}$ and $40 \mathrm{t} t$. wide. Tne rirst ship from the new yard, "Queensgate", was launched in 1959. Although the most important, this was only one of many improvements made since the war at a cost of about $x l$ mi. - a remarkable achievement considering that tne owners, the Craggs family, bought the concern for only $\ddagger 3,000$ in 1934. The yard could now employ up to $\% 00$ men compared witn 200 who nad worked there 30 years earlier.

Yet despite these initiatives and despite the modernisation programme indertaken by the industry (over $\ddagger 150 \mathrm{~m}$. had been spent since the war), British shipbuilding was continuing to lose ground. between 1960 .. and 1965 world merchant ship production went up by 42%. In the same period sapanese production increased by 210% and Swedish by 78%. British output dropped by 19%.

* Lompany's brocnures.
** Ibid.

It was against this background tnat the most constructive and nelpful Government investigation ever undertaken into the industry was published.* It showed that althougin the industry was faced by many difficulties and had been through a most trying period, there could be a good tuture. Changes would be needed, of which the most inportant were the reorganisation of the industry into larger groups and a new spirit between management and men. 'i'o help to spur those changes, the report recommended the establishment of a Board armed with generous financial incentives.

The report summed up: "Here then is the challenge to an engineering and construction industry whicn was a patnfinder not so long ago. It will remain a nard and challenging trade, tnough a ship will always justify the pride of those who build her. A fresh start is needed and the essence of our report is tnat success can come but can only come froui the faith, skill, effort and perseverence of men who are capable of working together towards a common aim and common security."**

This mosi sympatnetic and clear-minded report produced by a committee neaded by mr. Reay Gedmes, nad an immediate beneficial effect on the industry. Not only did tne companies feel that their problems nadbeen properly displayed for the first time but that the Government was commitred to help. As we shall: see later, a new spirit quickly energed in the field of labour relations. And discussions soon started between the companies about re-organisation.:
uust over a year after the Geddes Report was published, the tour principal companies on the ryne announced their intention to merge ineir interests by vanuary 1968. The companies were the Swan, Hunter Group (Swan, Hunter and Wigham kichardson had already merged with Smith's Dock in 1966), Vickers-Armstrong, Hawtnoxn, Leslie and john Readnead. On the Wear, discussions started between the Doxford and Sunderland Group, Bartram and Sons andAustin o Pickersgill.

* Report of tne Snipbuilding Inquiry Committee, 1965-66 (Cund. No. 2937. p.i1).
** Ibid.

The chance for change was being quickly taken. Hope rose. Despite the closure of the Blyth Dry Docks and Shipbuilding Company (wnich had built britain's first aircraft carrier "Ark Royal" in 1915) a new feeling of confidence was emerging. Tne road anead would be difficult but at least the shipbuilders felt they were being given an opportunity which they had never nad. before.

MARINE ENGINEERING
The Nortin East Coast was for many years tne main centre in tne country for marine engineering. About nalf of the national output came from the region. It contained the biggest firm in tie industry, the Ricnardsons, Westgartn Group, and the only firm still carrying out original desigr and development work, William Doxford d Sons (Engineers) Ltd. Tne other marine ergineering firms in the region were subsidiaries of Hawthorn Leslie and of the Swan Hunter Group.

Hut tne diffficulties in shipbuilding were reflected in marine engineering., The Central warine Engine Works at west martlepool, a subsidiary of William Gray, went out of business witn its parent rirul in 1962. ine Swan, munter Group announced in 1967 tnat it was to close its wholly-owned subsidiary, the wallsend Slipway and Engineering Company, whicin nad built engines of over nalf a million n.p. between 1960 and 1905. And a suibstantial run-aown in the number of employees nad to be made in 196% by botin yoxfords and George Clark and $\overline{\text { Ivorth East Marine Limited, subsidiaries }}$ of Richardson westgarin.

The reason in every case was a snarp fallingoff in demand. In 1951 Doxford's slow speed diesel engine was tne most popular in tne world. by 1964 it nad only 1.3% of tne world market in terms of horse power. *'line steam turbine nad also suffered from steeply falling demand. During the same period the slow speed diesel designs of Sulzer in Switzerland and Burmeister and Wain in Demmark nad grown in popularity.

* Report of tne Snipbuilding Enquiry committee, p. 64.

Yet in 1945 britain led the world in research and development into new forms of ship propulsion. During the war two important research organisations had been established. One was the British Ship kesearcn Association and the other the Parsons and Marine Engineering 'furbine Research $\&$ Development Association (known as Pametrada). * In 194'\% Doxford's set up tneir own Research and Levelopment vepartment "to ensure that a diesel engine equal to any otner will in future be available to Doxford licensees and to British marine engineering in general." **

A researcn station for Pametrada was built at Wallsend near ivewcastle and the association began work on the preparation of 80 basic designs for steam turbines. θ The most exciting development at tnis time seemed to be offered by gas turbines whicn had been successfully used in aircraft during the war. With the work being carried out both by the association and by the electrical engineering firm of C.A. Parsons of Newcastle, it was felt that a gas turbine marine engine was not far away. And in 1951 tne first one was fitted to the tanker "Auris" which had been built in 1948 by Hawtnorn, Leslie. The new power unit replaced one of the vessel's four diesel-alternator sets.

During 1946 both North East Narine Engineering Co. Ltd., one of the three constituent members of the Richardsons, Westgarth Group, and voxford's had developed new and more powerful versions of tineir engines.
noxtorde's also produced a smaller version: of their nighly successful opposed piston engine primarily intenaed for trawler propulsion. The design followed the well-tried Doxford practice of all-welded framing and bed-plate, the firm's established form of commonrail airless injection and the differential stroke principle. The first of the new engines was installed in the trawler "Lamnermuir" built at Aberdeen and rated at l, 100 b.h.p.. at 145 r.p.m.
by 1953 the Pametrada team nad run a. gas turbine unit of $3,500 \mathrm{~s} \cdot \mathrm{~h} . \mathrm{p}$. for 1,000 nourson the test bed and was confident that commercial development could now go ' ahead. A few months later tne Anglo Saxon Petroleum Company placed an ordeñ for the first all-gas turbine ship with Cammell Laird of Birkenhead.

At about this time the Doxford researcin team nad started to think of an entirely new version of their engine. They wanted sometning tnat was snorter, lighter and cneaper. The answer was the P-type engine whicn could develop 10,000 n.p. in six cylinders. Construction of the new version began in 1950 and within 5 years 40 had been made or were under construction:*

The mid-fifties saw ail marine ensineers, like all shipbuilders, exceedingly busy. In 1956 the wallsend works of the North East marine Engineering Company completed 15 machinery installations aggregating the very hign figure of $100,000 \mathrm{~b} . \mathrm{h} . \mathrm{p}$. The neavy booking of orders during the year meant the works would be tully employed for tive years anead..**

In December 1956 安he Richardsons, Westgarth Group acquired loo\% interest in the fumber Graving Dock and Engineering Co. Ltd. 'Iwo montns later it acquired tne Parsons Narine Turbine Co. Ltd., which at tnat time nad a tull order book for three years anead.

Ani,indication of tne company's success was given in uune 1958 when shop trials were completed on the looth N.E.m.-Doxford engine in the space of 12 years. meanwhile, 50 Clárk-Sulzer engines, made by George Clark \& Company, another member of the Richarason, Westgartn Group, had been built in nine years.

In 1958 an agreement was signed between iv.E.N. and A.B. Gotaverken ot Gotinenburg, Sweden, under which the North East firm could offer the Swedish engine as an alternative to the joxford engine. The Swedish two-stroke single-acting engine had many unique features which allowed low-cost production. And the main attraction for N.E.M. was that the new line of manutacture could be introduced with a minimuin of disturbance to production facilities. ***

Also in 1958 vir. John Hunter, chairman of Swan, Hunter and Wigham Richardson, announced that nis company had entered into collaboration with the ivuclear Power Plant company for the design and construction of nuclear-powered ships. θ The united States nad already launched the nuclear-powered submarine "Nautilus" and a British nuclear-powered subuarine was at an advanced stage of construction.

* "Tne Link", magazine of Richardsons, westgarth. ** Ibid.
p.t.o.

But. nuclear power, whicin at tnis time seemed to hold a great promise, never became a coumercial possibility for̀ shipping. A Government committee that examinea the subject reported that a nuclearpowerea ship should be postponed indetinitely. inis view was confirmed by the united States Governmeni, which decided in 190 ' y (o lay up tne world's first and only - nuclear powered merchant ship, the "Savannan".

The intense activity of the late ly50's gave. way to tninner and thinner order books in the lyo0's.. By lyol Ricnardsons, Westgartn Boara realised tiey would have to move over to land work and away from the heavy dependence upon marine work if they were to nave a nealthy future.* But this would not we easy. the whole tradition and reason for existence of George Clark, the North East warine Engineering Co. Ltd., the Parsons varine Turbine Co. Ltd., and other elements or the group were to be found in marine work. Atomic power stations which mignt nave apened up a giitterimg new :prospect were noi going anead fast enougin to take up tne slack trom marine engineering.

At tine same time, many organisational changes were made in an attempt to improve. the efticiency of the company.** ihe main cnange was away from the relatively self-contained subsidiary company structure towaras much more centralisea control. By 1962 the company nad plunged into a loss of 玉" $\% 6 \%, 000$ before tax, whereas tnree years earlier it had made a profit of over $\dot{\text { al }} \mathrm{m}$.

In 1966 tne loss had grown to $\pm 631,000$ altnougn there had been some profitable years in between. In that year its subsidiary company of George Glark completed propulsion macninery for its 4,000tn vessel. but by 196% George Clark and iv.E.mi decided to close down the Sunderland factory and concentrate all production at tne Wallsend works.***

```
* "ine Link".
** Ibid.
*** lbid.
```

Doxford's were experiencing the same kind of difficulties. in 1963, somewnat belatedly, the company had produced a more powerful version of its P-type engine. lt was called the J-type and it was able to produce up to $30,000 \mathrm{~b} . \mathrm{n} . \mathrm{p}$. One commentator wrote: "lf the advent of the voxford nign-powered engine nas been tardy, the vigour applied and tne pace at wnich the engine has been built and the design features now revealed, are all impressive."* the new 9 cylinder engine was first installed in the 65,000 ton tanker "North Sands" which neld its acceptance trials at the beginning of 1906.**Even before those trials, 19 orders nad been placed for the new engine and the Geddes Committee felt that the new design should help the company to regain. some of its former share of the market.

But tne coiiipany was running into new
 Snipbuilding and Engineering Group (voxtords nad amalgamated with the Sunderland Shipbuilding Group in 1961) produced a loss of a3,250,000 before tax. A drastic pruning of operations seemed inevitable'- and indeed took place.

The Geddes Report underlined the difiticult future ahead for marine engineers and urged tnat production should be concentrated into four main works. *** They should be independent of shipbuilding operations. ine committee felt that onily two works would de required in the worth East, one of wnich should be based or the Doxtord design team, while the Pametrada design team snould be integrated into the otner.

Tnese reconmendations looked as if they could be implemented very quickly. The Swan, munter Group announced it was to close the Wallsend Slipway and Engineering company. sut wallsend seemed as if it could remain an important centre. George clark and N.E.m. were to concentrate production there, not far from the premises of Pametrada. And the British Ship kesearch Association had recently moved its neadquarters there from London.

[^42]Whetner this concentration of brainpower can restore the inorth East's position, it is Iar too early to say. But it should nelp to overcone the deficiencies in organisation and resources that have witheld success in the past few years. ine future will still be very uncertain but potentially the prospects are of a new and vigorous role in the world markets.

THE MEN AND THE MANAGERS
Since the war the shipbuilding industry has gained an unerviable reputation for poor labour relations. mutuai suspicion turned at times into nostility and inevitably increased costs and delayed deliveries. The employers compiained of frequent demarcation aisputes, lisntning strikes, often just Defore a launcn, in pursuit of a wage claim, and bad timekeeping. 'the men, on tne orner nand, said that the fault lay witn the employers in refusing to listen to tiieir grievances, in refusing to rake sufficient interest in satety and welfare and in refusing to award adequate wages and conditions. in consequence tne industry sulfered a worse sirike record than any otner.
but since about 1965 and especially since trie Geddes Report a new mood ot co-operation nas come into tne industry. Important cnanges in union organisation and practices clearea tne way. but.essentially tne improvement was due to a new attitude on the part of everyone concerned.

Snipbuilding, of course, by its very nature poses special problems of labour relations. Tne type of work, the cyclical pattern of demand and in recent years the lack of orders create a difiticult framework in whicn to operate. Employment in tneindustry nas dropped considerably since tae war. In 1945 about 54,000 men and women were employed in shipbuilding and repairing in tne North sast and a turther 30,000 in marine engineering. These two figures together represented over 9% of the total insured population in the Nortn East.
'Iyneside was dy. far the most important centre. It employed about 30,000 in shipouilaing alone, well over haif the region's total. wearside, with 12,000 was next in importance. 'reesside had 6,000'workers in snipbuilding, Hartlepool 3,000 and blyth 2,0U0.
ihese figures nad, of course, been boosted by the exigencies of wartime. There were, for example, over 3,000 building and construction workers who had been drafted into the industry. Over the next few years most of them returned to their proper trade.

But the long, post-war boom kept employment up and by 1959 there were still 64,000 workers in shipbuilding and marine engineering, 5% of the region's labour force. then, during the 1960's, a snarp contraction set in, cutting tne numbers by a third. In 1966 just over 44,000 were employed in the industry, about 3% of the region's workers.

Virtually every shipyard worker belongs to one of the 25 trade unions involved in the industry. And this nigh degree of union loyalty, togetner with the fragmented structure of the unions, has been the fundamental cause ot so much of the trouble.

From 1949-59 shipouilding was neariy always at the top of tre list of working days lost tnrougn disputes, as tne tollowing table snows:-

WORKING DAYS LOS' (IN LHOUSANDS) *

SmIPbuILuING

1949	125	(3rd worst)	1,807
1.950	53		1,389
1951	73		1,694
1952	8.7		1,792
1953	206	(4tn worst)	2,184
1954	521	(2nd worst)	2,457
1955	122		3,781
1956	324	(4tn worst)	2,083
1957	2,328	(2nd worst)	0,412
1958	336	(3rd worst)	3,462
1959	314	(4tn worst)	5,270

* Source - ministry of Labour Handbook 1961. (Chapter on Industrial Kelations in Snipbuilding).

In 1961 tne ministry of Labour started to calculate tne nours lost per inaustry per nead of tne numbers in tne industry. The true significance of the shipbuilding situation then became clear. In. three of tne four years from lyol-4, snipbuilding nad tne worst strike record in the country. Often the numbers involved were not so nigh as in otner industries snowing that the average lengtn of strikes was longer. In 1964, for example, 105 shipbuilding workers per thousand of the labour force were involved in disputes compared witn 255 in mining and quarrying 187 in venicles and 146 in.transport and communication. but working days lost anounted to 669 per tnousand in shipbuilding compared with 464 in mining and quarrying, 526 in vehicles and 182 in venicles and communications.*

In each of these four years the number of workers involved in the northern region was always proportionately higher than in the average for tre industry as a whole. but in only one of the years was tne number of working days lost proportionately higher than tine industry's national, average.

Consideranle improvement was made in 1965 and 1966 but 1967 was another bad year tor the number of working days lost.
fiany of the disputes were between the unions tnemselves rather than between the unions and management. A frequent cause was the definition of a demarcation line between two trades, made even more difficult by the development of new techniques. For example, blacksmiths are now trained in electrical welding while in the fitting-out trades, the introduction of new materials, such as plastic, removes the need for painting.

And there were frequent disputes over wages. vespite the uniform wages agreement of 1930, many differentials still remained. There were meani to be three grades. The general labourers received in 1966
a basic gross wage of just over $\dot{\text { ill }}$ a week for a standard 40-nour week. The fitting-out trades, such as joiners, fitters, plumbers, electricians, received about $\& 16$ and the structural workers between まl8-む25.

Hut within tnis general framework, many variations have grown up through local agreements or through a shortage at one time or anotner of certain trades. The earnings of the welders, the kings of shipbuilding, caused particular resentment; working piece rates and receiving time and a haif on Saturdays or double time on Sundays they could earn between 30 and $\dot{x} 80$ a week.

Other trades snook their heads enviously and put forward without a great deal of determination the plea for an industry-wide basic rate of, say, zi20 a week. but tney realised it would be impossible to ask the welders to renounce their lucrative earnings.

Union leaders themselves were aware of the impasse into which they were neading. One commented: "I tnink tnat British shipouilding by and large is unbeatable for value and the quality of the work is as good as any in the world. unfortunately, the work force is not alwaysproperly organised. if we can solve tnis problem I am sure we can bring prosperity back to the industry, increase considerably the wages and improve the conditions for the men and tnereby start to attract men back to the industry... We have slowly modernised everything in shipbuilding but the human content."*

Tnere nave been important improvemehts,
however, in union organisations and practice. by the mid-1960's the Boilermakers Society, whose headquarters are in Newcastle, had managed to persuade all the otner structural workers' unions to join togetner in the Amalgamated Society of Boilermakers, Snipwrights, Blacksmitins and Structural Workers. This was a decisive step forward in reaucing tne number of demarcation disputes and in increasing harmony. the new analgamated society is now responsible tor a third of all tine workers in the industry.

[^43]The new structure led to immediate improvements in work proceaures. At tie Furness Company, for example, shipwrigints and platers agreed to excnange jobs wrien necessary on outside construction and fitting. And in August 1960, tise Amalsamated Society signed with tne Snipbuilding tnployers' Federation the first national agreement for dealing with demarcarion disputes.

But altinough they were ready to accept intercnange scnemes, the Amalgamated Society were opposed to the flexibility of operations tnat some managements called for. 'lhey feared tnat tnis would create non-specialised shipyard workers. But they were prepared to allow a plater, who is responsible for erecting the plates of a ship on the berth, to do some tackwelding so that ne was not neld up waiting for a welder. iney would allow also interchange between burners, who are responsible for chipping off edges that cannot be burned.

Such interchange schemes would only be allowed in return for concessions, particularly over wages, by the management. Mr. Dan imcGarvey, President of the Amalgamated Society, had defined nis union policy in this way: "I believe that what is required is militancy with responsiolity.... This is a tough industry with some tougn employees in it and we have got to be ready to match tnem. But at the same time it is an industry tnat nas got to make progress. I believe this is what our men want and wrat we try to do for them."*
'Whe mood of belligerency certainly paid snort-term dividends. In lybj ivortn East shipbuilding employers complained of "fantastic" intlation in wages. 'the shortage of labour allowed the men to press their claims witii vigour and certain trades secured up to lo\% increases in earnings in tue year.

* In conversation witn vhe author, lðth February 1900.

Matters were getring so out of hand tnat the Snipbuilding Conference asked to see :union leaders in February 1966 to tell them of the "parlous financial state of the industry, the neavy losses being incurred on fixed price contracts in consequence of the outstandingly hign increase in costs, particularly of direct labour, the joss of control by union leaders
at yard level and the resultant state of virtual anarchy in labour relations in tine yards."

Since 1965 progress has been made. ine Geddes report said: "ine chief requirement is the creation of an atmosphere of confidence and mutual coust... A start has already been made and we are content that tne climate within the industry can be transformed in a relatively short period of time."
'Inis view nas been contirmed in the year following publication of the Report. Industrial relations are inmeasurably better tnan they were at the beginning of the $1900^{\prime} s$. It is this improvement more than any otner factor wnicn lends confidence to a hopeful view of the industry's future.

End

CHAP'TER ©

AN ANALYSIS

In tnis chapter I atiempt to analyse tne statistical material that is available. The figures are set out in tables at the end of the chapter and cover the following aspects:-

1. Production. (a) merchant sinip output for the worlä, the U.K., the N.E., the Tyne, Wear, Tees, Hartlepool and whitby.
(D) warsnip building on the iyne, at Vickers-Arnstrong, Hawthorn-Lesilie, Palmer and Swan munter * Wigham Ricnardson.
2. Employment. (a) the numbers employed in shipouilding in England and Wales and in the iv.E. from 1861-1965.
(b) average numbers employed at Wallsend Slipway \& Engineering Co., l8'79-1893.
(c) industrial disputes in 1900's.
3. Earnings. (a) earnings at Palmer's in 18'7, 1882 and 1षல5.
(b,) wages at the Wallsend Slipway and Engineering Co. from 18\%9-1893.
(c) wages and earnings in Tyne shipyards in l४४6, lyol and 1904.
(a) N.E. snipbuilding wages bill in 1906.
(e) earnings in shipbuilding in $1 y 06$ by regions.
(土) cnanges in piecework rates on Tees 18'79 - 1892.
4. Profits. (a) company profits froim 1910-1960.
(b) prices cnargea by Jonn Readnead ∞ Sons including price per ion.

PROLUCTIOÑ

Figures of merchant ship production on a regional, national and international basis have been publisned by Lloyd's Kegister ondy since l892. That year becomes tnerefore tre effective starting point for a regional statistical examination, particularly one involving comparisons between tne trree sets of figures.

Witn one exception, tre tnree sets of figures run broadly in parallel until the ly40's. The exception was the period 1918 - 1921 inclusive. in these four years world output was far and away greater than anything it nad ever been before or was to be again until the early l940's. The U.in. and N.E. outputs, altnougn nigh in the years 1918 - 21 , were not so exceptionally large, certainly there had deen very good precedents set in the years 1905 - 7. In the case of the N.E. indeed, its alltime record output was achieved in the year 1906.

The exceptional disparity between tne world figures on the one nand and tre U.K. and iv.E. figures on the other in the 1918 - 21 period can be atiributed to the effect of the war. At first britain was neavily involved in naval ship manufacture winile merchant shipbuilding was only of secondary importance. Later, by 1916 - 1% when attention could return to merchant ships and demand picked up strongly, capacity was found to be inadequate. These difficulties provided a wonderful opportunity for otner shipbuilding nations and the U.S.A. in particular made full use of them. As I have shown in Chapter 5 between 1914 and 1921, it was responsible for 86% of the net increase in world tonnage.

Britisn exports fell to negligible proportions while allied and neutral countries which had previously had their ships built in Britain, set up their own resources as tne following table shows:-.*

	1918	1919	1920
	G.R.Tons	G.R. Tons	G.R. Tons
Denmark	26,000	38,000	61,000
Holland	74,000	13\%,000	183,000
Italy	61,000	83,000	133,000
Japan	490,000	612,000	457,000
Sweden	40,000	50,000	64,000

* Source: "Snipbuilaing in Britain" oy L. vones,p.63.

The same thing nappened during the Second world war but after 1945 the u. k. was not able to reassert itself as it had done at'ter ly20.

This was partly because of ner inability - or, after the traumatic experience of the 1930's, one mignt say unwillingness - to expana ouiput and partly because of ner inability to keep to aelivery dates. Mr. G.C. Allen believes that this in turn was a symptom of the mismanagement of the economy as a whole.* Persistent inflation produced a snortage of workers and materials as well as rapidly increasing costs. In addition, tne policy of rationing steei supplies to keep the price fixed had a detrimental effect on exports.

Mr. J.R. Parkinson nas written: "Anxiety about the future, resting largely on previous setbacks, robbed the industry wotn of the will and tine means to increase its output rapidly in an economy in which so many otner industries seemed to nold out the promise of almost unlimited expansion.** In the event pessiuisw was shown to be ill-founded."

World figures which had fallen towards the end of tne war started to rise rapialy again once tne war was over. The u.K. and N.E. figures remained steady nowever and even to a small extent declined. The effect was that the u!K. and N.E. share of the worla market fell sharply. By 1965 the u.K. was responsiole for $8,8 \%$ of world output and the N.E. for 3.7%. From the early 1y40's onwards, therefore, the close paraliel between all three sets of figures disappears. 'ine U.K. is no longer tne principal producer or tne world's snipping and therefore no longer nas a dominant impact upon worla shipbuiiding returns.

Let us now consider otiner features of the output tables. One of tre most noticeable characteristics of the industry's output is its extrewe unevenness. It is unusial in the $\mathrm{u}^{\prime} \mathrm{K}$. or $\mathrm{N} . \mathrm{E}$. figures to find four consecutive years in whicn output moves in one direction. Instead, tiere is a cirange oi direction about every taree years and sometimes less. For tne world as a whole output is a little steadier out a change occurs on average every $4-5$ years.
** - "'ihe Economics of Shipbuilding", (Parkinson), p.99. *; \therefore G.C. Allen, "Britisn Industries \& their Organisation" Lond on, 1959, Ch. VI. p.155.

The changes, particulariy before 1940, were of ten violent. For example, let us look at the period 1904-8. In 1904 iv.E. output was on the upswing. From 1904 to 1905 production increased almost by a third. From 1905 to 1906 it increased by a furtner quarier. Then in the following year it dropped by a fift k and between 1907 and 1908 ic fell by 60%.

For both the U.K.. and the world, similar important ditferences between one year's output and the next occurred. Between 1907 and 1908 u.i. and world production fell by about 40%. This period of five years is not exceptional equally severe yearly changes can be found over many otner periods up to 1939.

After 1945 output became much more even from one year to the next. From 1945 - 1905 N.E. output never fell below 433,000 gross tons or rose above $0.88,000$ gross tons. Is: one takes the period 1946 - 1961 inclusive, tnen the limits are even narrower; never falling delow 474,000 gross tons or going above 688,000 gross tons. But even these relatively narrow extremities are separated by 11 years. The falls and rises from one year to another are much more gradual. In this way, production since 1945 has been much more stable than prior to 1939.

The fluctuating nature of production caused great difficulties for management in planning, in investment decisions and in its dealings with labour. The fluctuations were so strong that it was often difficult to see the underlying trend. This meant that managements felt that it was almost always the wrong time to invest in new equipment or increase capacity. when trade was depressed, few had the faith to invest; when trade was buoyant, few had the time to do so. The result was that many yards failed to adopt the best techniques and practices. In. $193 y$ there were shipyards on Teesside using machines that were 80 years old.* Welding was late to arrive in many uritish yards, so was prefabrication. In his book, "Snipbuilding in Britain". L. jones maintains in Cnapter 3 that britain failed to take the structural, financial and technical steps to maintain ner former place. One of the reasons for this failure, in my view, was the fiuctuating nature of output which obstructed careful inivestment tnought.

* According to u.W. Scott and R.A. Hugnes, "Tne Administration of war Production" (H.i.s.O.) 1955, p. 186 .

Equally, these tiluctuations had a snatiering effect upon labour relations. whenever orders were thin, managements would call upon workers to relp to meet costs Dy a reduction in wages. In fact, tne wage reductions could nave little impact. Granted, as A.K. Cairncross and u.R. Parkinson show, the wage and salary bills in a sinipyara constitute 70% of tne yardss costs against 60% in all industries, out it is still true tnat tre shipyard costs awount to only 30% of the total costs of the ship.* The other 70% is made up of bougnt-in materials. So wiale the shipyard management might have thougnt that the average wage reduction of 7% would play a significant. part in reducing costs, it would in fact mean a drop of only $1 \frac{1}{2} \%$ - 2%. And this small financial contribution was bought at a wnolly uneconomic price.

Often, these demands led to a strike. And equally, when times were good, the men would press for an increase in wages and this would upset the management.

Table $\dot{\lambda}$ shows tnat piecework rates for iron ship workers on the Tees cnanged 14 times in the 13 years 18\%9-92, a situation that nad neitiner logic nor justice in it.

The bitter resentment these cnanges caused far outweigned the value of any small reauctions in prices that the managements could make in depressed iimes to try to encourage new orders. 'ithe atinospinere in snipyaras became hostile, wary, unco-operative. This sullen, suspicious attitude whicn was bred into tne men made tnem unwiliing to accept change and unwililing, at most times, to do more than the legal minimum of work. The shipyards thus paid dearly for their wages policy and still, to seme extent, continue to do so touay.
'the fluctuations in output, which we have been discussing, were thus severe but tney conformed to a pattern so that it is possiole to ralk of a trade cycle.

* In a chapter on Shipbuilding in vol. II of "The Structure of British Industry" edi\&ted by Duncan burn, Cambriage 1y5b, p.119.

The full cycle generaliy took five years to complete and in its most usual torm consisted of two downward years followed by tiree upward ones. inis is what. it looked like in tabulated form:-

North East

Peak rrough	$1891-2$	1893	1896	1897	1901	1903	1906	1908	1911
Peak			1920						
Trougn		1915							
$\underline{\text { U } . . K . ~}$									
Peak	1896		1901		1906		1911		1920
Trougn	1893	189\%		1903		1908		1916.	

World

Peak	1896		1901		1906	1913	1919	
Trougn	1893	1897		1904		1909		1915

N.E. Between Wars

| Peak
 Trougn | 1920 | | 1924 | 1929 | 1938 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| U.K. | | | | | |

Worla

Peak	1919		1924		1930	1938
Trough		1923		1926	1937	1940

U.K.

Peak	1942		1.94%	1951	1955
Trougn		1945	1948	1952	1956
Peak	195%				
Trougn		1963			

N.E.

| Peak | 1945^{1946} | 1947 | 1951 | 1952^{1953} | $1954^{1958} 1963$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Peak
Trougn

1943

1958
194%

1965 (?)
1961

What causes the cycle ? The usual explanation is that the pattern of demand reflects world trade and more particularly the shipping freight rates. when rates rise above an average level, indicating a shortage of tonnage and giving the opportunity for avove-normal profits, owners place orders for more ships. Since the ships take at least a year and pernaps longer to come into service, demand becomes even more acute and freight rates rise even higner before being satisfied. As the rates rise more owners place orders for new shipping. Shipyard order books lengthen, profitsmargins widen and the worknen ask for increased wages.

As the ships begin to come into service, demand eases and the freight rates drop. sut new ships still continue to cone into service from tine orders placed a year or more previously. Now, relatively speaking, tnere are more ships than required, freignt rates fall even lower, owners stop placing orders, snipyards grow slack and tne companies reduce the men's wages in oraer to try to cut production costs.

For a year or more, the shortage of orders produces tnin times for the sinipbuilaing companies. iney are forced to tender for what orders are available at narrow or non-existent proíit margins. Slowly, the continuous growth in world trade produces a situation where tne demand for snips rises again. ine cycle then begins all over again.
but tnis explanation is too simple and indeed one critic feels there is no "apparent consistency between the yearly tornage production curves and the freight rates." *

Niaxwell ballard in a paper read to the in.E. coast Institution of Engineers \& Snipbuilders, l'7th Dec. 1920.
'rne usual explanation overlooks tne fact tnat there are two sources of supply: new production and a more or less permanent floating supply which is brought into operation when demand rises. It is this permanent supply whicr is especially sensitive to freignt rates while new production, although obviously influenced by them, is less sensitive. After all, orders for new ships placed as a result of high freignts cannot be completed for some time, auring which the emergence of all available supply may we 11 have reduced the rates.

Neverthehess, tine most important factor in persuading businessmen to place new orders is a teeling of confidence and tnis confidence will clearly de nigner when freignt rates are rising. Similarly, orders will tend to be withheld when rates are falling even though when tne ships are delivered - in 12 to 18 months or perhaps furtner anead - rates may again by rising. Investors are thus ciearly involved in a gamble and confidence is a major factor. 'inis invariaoly means that many orders are made together or conversely are not nade. 'rhere is either a feast or a famine for the shipbuilders.

Why is the cycle more inuted today ? ihere seem to be two important factors. Firstly, world output has been consistentiy upward since l940. "rhere are smail dips in the upward trend but without any doubt production and therefore demand - has been rising strongly for the past 20 years. 'lhis in itself has limited the force of any downswings.

The second factor is tne much smaller contribution made by the U.K. and the N.E. to total world output. A worid leader, particularly on the scale that the U.K. achieved in tie last quarter of the lyth century, receives the full force oŕ variations in demand. A smaller industry, and today Japan is in a dowinant position, finds it easier to maintain stable proauction.

NAVAL OUTPUT
This was even more fluctuating than merchant ship production, being dependent not on market forces but on political decisions: Often these two factors conflicted; seldom were they complementary.

The two outstanding examples were the periods 1910-1914 and 1930-1936. In the former example, mercinant shipouilding was at a very inigh peak - tine spate of naval orders stretcned tne capacity of the yards on the Tyne to the utmost. In the second example, the depression of trie 1930's produced a dearth ot merchant ship orders yet this was the tine when the britisin Government was hopefully pursuing a disarmament policy so that contracts for naval work were minimal. vickers Armstrong, for example, gained not a single naval order between 1929 and 1935 even though its yard was specifically geared to naval work.

Naval production has been contined to the river Tyne as tar as the N.E. is concerned, altnough Sunderiand yards did produce negligiole outputs at the turn of the century. Orı tne iyne itselr, vickers Armstrong and Palmers were the main manufacturers. Today Swan nunter is responsible for the majority of naval work available.

Before the First worid war, as we have seen in Cnapter 4, naval shipouilding was an important ajfét of the business. In fact J.K. Parkinson estimates ic accounted for detween 20 and 25% of total output.*

Shipouilding work frequently led to armament rings, formed by ariument and warsinip producers. Armstrong Mitcnell, which became Armstrong Whitworth tnen vickers Armstrong, was a case in point. Tne purchase of the Barrow Shipouilding Company in 189% was a natural avenue of further expansion from the production of guns and armour to tne snips that carried them. **

The period from the 1890° s up to the First World War represented the peak of naval shipbuilding. In those days yards in the region and in other parts of the country were building not only for the british Admiralty but for almost every Navy througnout the world. inis was a situation that could not continue. Nations would want to be responsible for their own naval building - and so it proved. Today the naval work that is available is almost entirely for the Britisn Admiralty.

Ibid.
** "Vickers - A nistory" by J.D. Scott, p.44.

EMPLOYMENi'

For a century, from approximately 1860 to 1960, shipbuilding nas been a major source of employment in the N.E. Table v snows now the numioers employed in the industry rose to a peak in 1921 and since tnen have declined.

From this table we can see that the $\mathrm{N} . E$. figures increased by about 30% between 1861-71, by about 25% between 18'7l-81 and by about 45% between 188l-91. From then onwards the figures level oft. Although tney continue to increase, the rise is much more gentle.

From 1921 onwards, the figures are complicated because tney include not only shippuilding and repairing but also marine engineering too. Marine engineering was almost but not quite as important as the other two combined: the ratio being $48: 52$. So the 1921 shipbuilding and repairing employment figure in the N.E. would be about 53,000.

This represented about 6% of the total N.E. lavour force and. if we include marine engineering, the industry represented 11.6% of the region's total work force.* It was only exceedea by coal mining with 26.6% of the total work force. The third most important sector was the retail trade with 7.5%. The N.E. had 37% of the country's total force in the shipbuilding trades; coal mining in the region represented only 21% of the country's total.

Since 1921 the decline nas been steady and persisient. by 1965 the industry occupied 45,280 workers out of a total regional labour force of $1,333,000$, i.e. about 3\%.** If one took merely tnis figure, it might be easy to conclude tnat the industry was today of little account. One must remember, however, the ancillary trades and those in supplying industries. It would de a fair guess to at least double the figure of direct employment - to give about 100,000 people who are in some way dependent on N.E. shipbuilding.

* \quad Snipbuilding in the ivorth East" by Prof. n. M.
Hallsworth, from an Industrial Survey of i.E. coast
prepared for board of Trade by Armstrong college,

1932.

But similarly a multiplication by two in 1921 would have given a figure of over 200,000. So one can say that in the past 45 years the industry in the N.E. has declined by a nali wnile total regional employment nas increased by a tnird.

Altnough rable v shows a regular increase until 1921 and a regular decrease since, the partern of unemployment is not so simple as that. in an industry in which there are violent fluctuations in ourput, one would expect to find fluctuations in employment and these certainly occur. Luckily the fluctuations largely took place between the Census dates so that by and large the census figures measure employment at the peak of the trade cycle. 'he exceptions are l921, the peak occurred in 1920; 1931, the peak occurred in 1929; and 1901, the peak occurred in 1950. A year or two may not seem significant but as the trade cycle tadle higner in tnis cnapter shows, signiticant changes could take place within tine space of 12 months. Apart from tne tnree exceptions mentioned, tne Census figures do measure like witn like.

Hut between tne peaks of tne trade cycle, large changes in employment could occur, as sable vi illustrates. Hetween 1883 and 1884 the payroll at tne wallsend slipway and Engineering Company fell by a third. Hine figure stayed steady for a couple of years then suddenly increased by 25%. setween $18 \succ 7$ and 1 ㄴ४ it rose by 10%, the following year by 25%. It rose again in 1890 but then started to show a significant drop.

The table perfectily illustrates the precarious state or' shipibuilding empioyment and this precariousness was heightened by tne "open-market". metnod of niring labour. Under this sybtem: the men were chosen daily from a "labour market" by a foreman.

As ir. fienry mess shows, the markets for men were held at $7.30 \mathrm{a} . \mathrm{m}$. and $1.0 \mathrm{p.m.*}$ The best workers worked for only one yard and were known as "royals". Tney were invariably given preference but even they, like all other workers; had gaps in employment. One yard, which employed 900 men in march 1y06, employed 1,586 in June. Anotner yard employed 2,400 men in the summer of 1926 . by November tne figure was down to 250.

These startling variations led ur. mess to call for a better use of labour. "Ihere is no reason to suppose that the probleus of the organisation of labour would prove completely intractable if sufficient attention were devoted to them and especially it prejudices were laid aside and there were co-operation in the searci."*
rhe variations in employment togetner witn the variations in earnings were among the main tactors in the difficult ladour relations experienced by tne industry and wnich 1 discuss later in this chapter.

PROUUELi 1 VI. Y

This is extremely difficult to measure because of the lack of statistics or because or variations in the bases of such statistics as do exist, e.g. the lumping together of employment ifigures for snipbuilding workers and warine engineers after ly2l. but an indication of productivity can be gained from the following table:-

Yeax
Position in
$\frac{\text { Gainfiully }}{\text { Employed }}$
$\frac{\text { Output }}{\text { Tons }}$

Output/ Man (tons)

1901
1911
1921
1931
1951
Peak
45,000
४73,000
19.5

1961
Peak
Average
48,000
53,000
17,000
$9 \% 7,000$
20.3

Average
Average
32,000
663,000
12.5

169,000
9.9

Average
28,000
617,000
19.2

568,000
20.3

Note: the numbers in the employed column from $1 y 21$ are my estimates, derived from dividing tne proper employment tigures by a little less tran two, because after ly2l tne Census rigures combine snipbuilding and marine engineering workers. The 1931 figure has been especially reauced to take account of hign unemployment as indicated in table v.

```
* op. cit.
```

the output per man column, which measures productivity, shows tiat tnere has been no improvement over this century. Output and employment have fallen by roughly equal amounts. In fact J.R. Parkinson believes tnat it nas been the ready supply of skilled labour that has prevented a more capital-intensive approacn.* He even goes so far as to say trat the surfeit of skilled labour nas acted as a drag on the industry, making it put off reorganisation schemes.

Although these figures appear to show no improvement in productivity over the period, we must remember that output is not the simple tigure it appears to be. Changes in the composition of ships nave certainly taken place, not all of these changes of course putring the worker of today at a disadvantage. 'ioday's launch
tigures are boosted by large but simple cargo carriers and tankers - "floating boxes" - and this must largely offset any extra complications in design that tne present-day workers must contend with. A value measurement, in real terus, would be of great interest in this connection but is untortunately impossible to construct.

To an unsatisfactory degree, one can nevertneless conclude that the industry nas remained labour-intensive. but in the late 1950's and early ly60's tnere were signs of a change. Let us take as an example a d f_{m} modernisation schene carried out by the Sunderland firm of Austin and Pickersgill between 1955-59. **

This involved the removal of 250,000 tons of ballast, the physical integration of two adjacent yardsg. tne buiiding of new sneds and shops and the installation of new inachinery.

The effect has been to double output from 50.000 g.r.t. to 100,000 and to reduce building times as the following taple illustrates:-

```
* op. cit.
** Tne company's own records.
```


N.v. Weekends \& noliaay periods includea in building times. Normal production based on 5-day week.

The adove tadle illustrates the substantial
savings in ouilding times that can de made dy flow production metnods and by concentrating on a limited range ot products. Or course tnere can be no sucn concencration as car manufacturers are aule to acinieve - snipowners inave over tne years consistentiy refused to accept the standard sisip but there nas been a consideravie swing away from the many idiosyncrasies of design that owners once used to insist on.

Since 1906 Austin Pickersgill $^{\text {Save proauced }}$ designs for a snelter aeck vessel of 14,000 tons as the nearest equivalent to a standard ship and they and Bartrams, an associated company, nave had considerable success witn tnis design.

This success has helped Austin of Pickersgill to maintain very quick production times. The evidence tnis firm can produce is not unique. Other firms have also increased production times without taking on more workers but not at the same rate as Austin \& Pickersgill, wio. tnus provide the best evidence of a belated improvement in productivity.

EARNINGS

Tables $v I$ to X give an indication of earnings at the end of the lytin century. Here again, the main impression is one of fluctuation - fluctuation from year to year and fluctuations between one trade and another.

The fluctuations from one year to anotner are almost as severe as the fluctuations in employment or production. raole vi, Col. III, shows that not only were men laid off during slack times but that those who were left suffered consideraole decreases in their wages. For example, between 1883 and 1884 when employment fell by a third, average earnings dropped by almost 20%.

The evidence of table X is pernaps even more striking for this shows there were 14 changes in piecerates for iron shipouilding workers on the Tees witinin a period of 13 years. As we have sinown earlier, decreases were invariably resisted by the men and increases were invariably resisted by the management. Tne lack of a cogent employment and wages policy did mucin to narm relationships.

But the workers were not only suspicious of the management, they were suspicious of one another. Tnis suspicion led to the frequent demarcation aisputes we shall consider below. It also led to the maintainance of wage differentials.

As tne Geddes repori said: "There is no
correlation based on skill between the wage rates paid for the various crafts.* Each craft seeks to secure whatever it can and differentials are jealously guarded. Snould an employer agree to give uembers of one craft nigher wages in return for the abandonment of restrictive practices or in order to secure their co-operation in a dititerent deployment of the craft, he is likely ro be faced with demands from tne otner crafts for a restoration of the dirferentials, whetner or not a similar quia pro quo can be offered."

Tnis dilemma has arisen in an acute form on the Tyne in lyb才. As a result ot union amalgamations, the Boilermakers' Society, speaking on benalf of all structural workers, was in a position to ofter the employers - in this case Swan Hunter' and 'iyne Snipbuilders Ltd., - greater flexibility and to sowe extent even interchangeability oetween various crafts. In return the management offered consiaerable improvements in wages. Automatically, other unions applied for wage increases and the management aunounced they were willing to accept these claims sympatnetically but needed quid pro quos similar to those being oftered by the Boilermakers Society. These otner unions; deing mucn'smaller and more fragmented than the builermakers Society, were unable to ofter interesting proposals. Yet they continued to argue strongly in favour of maintaining differentials.

An interesting example of now tnese differentials can be eroded over time is given in the following table:**

GROSS WEEKLY WAGES TLVE RATES

Time Workers Class or Grade 21 Yrs. or Over
$\frac{\frac{\text { July } 1914}{54 \mathrm{hr} . \text { Week }}}{\frac{1923-4}{47 \mathrm{hr} . \text { Week }}}$

1. Fully skilled 41s.
2. RiveterscCaulkers
3. Holders-on
4. Drillers

5: Semi-skilled
laccording to exp-
erience, ability ob
6.6 Gen. Labourers job
ministry of Lapour
Cost of Living Index (Increase over July 1914))

Jan. 1932		
4% hrs.		
	Incr	ease
Hage	Over	
	1914	19293
60s.	46\%	24\%
57s6.d	55\%	31\%
55 s .	75\%	34\%
55\%	100\%	38\%
41s6d	73\%	7\%
to	to	to
50 s .	59\%	21\%
4 ls .	74%	6\%
	$\begin{gathered} \text { vemb } \\ 46 \% \end{gathered}$	1931

November 1923 $+77 \%$

* Shipouilding Enquiry Committee 1965-6, Cnmd. 2937 p. 101. ** Source: "Şhipbuilder", January 1932.

This shows, for example, that arillers received a 100% increase between 1914 and 1932 winile fully skilled workers received an increase of 40%. Tnis reduced the skilled worker's lead over the driller from approximately 50% to 10%. Indeed, the skilled workers were only keeping pace with the increase in the cost of living while all other workers, apart perhaps from the rivetters and caulkers, beat the cost-of-living index increase by substantial margins.

Despite the evidence. of this table, attempts to maintain differentials, certainly in the short-term, present problems for managements. The Geddes Commituee urged that managements should "ensure either that before such extension of increases the other workers should agree to simịar productivity measures or alternatively that they know wnat the ultimate cost is likely to be before waking the productivity bargain."*

INUUSTRLAL LLSPiTES

In earlier chapters I nave traced in some detail the course of industrial relations. The general picture is clearly not anappy one and one autnority nas claimed that not only was snipbuilding more trouble~prone than most otner industries but that the Nortn East coast was the main centre for the trouble.**

While we can understand the general picture clearly enougn, we can only examine, analyse and compare the N.E. position in great detail from 1901 when the ministry of Labour started to publish regional statistics of trade disputes. The figures are to be found in Table x.

Before w'e consiaer these figures, it may be as well to remember tnat shipbuilding and repairing in the country as a wiole has been beset by disputes as the following table shows:-

* Cmind. 2937, p.116-117.
** H.A. Clegg Others in "A inistory of British Trade
\quad unions 1889-1910", London 1964, p.128.

Industry Groups

1. Snipbuilding a repairing
2. coal mining
3. Constructioni
4. Engineering \& vehicles
5. Textiles
6. Port \& Inland Water Transport 2,049
Average Annual Nos.

of Nays Lost per 1,000
Employees in Employment

1949-58 1900-64

263
19
27
11
1,862
71\%
78
1,45.7
667
141
436

41
1,215

Source: Ministry of Lahour
As tne Geddes report commented: "The industry's record remains poor in comparison with otner industries and the number of stoppages wrich are "official" is inign in terms of working days lost 54% as compared with adout 6% in the docks, two per cent in coal mining ana 51% in engineering including veinicle building."*

In the years 1961 to 1964 inclusive shipbuilding nad on three occasions the hignest number of working days lost in disputes per 1,000 of employees in employment. If we consider the Northern region alone the position is even more alarming. In 1961, for example, the working days lost per 1,000 in the labour force saw shipbuilding almost 50% higher than tne next industry for Great britain as a whole. For the northern region only shipbuilding was two and a half times nigner than the next industry. In 1962 and 1964 the same thing occurred. inis means that shipbuilding disputes stood out more in the regional econouy thais in the national one. At the same time, in tirree of the years the national tigures were proportionately mucn nigner than the regional ones - it was just that otner industries were affected more by national than by local strikes too.

* Cmind. 2937, p. 105.

When we look at the number of men involved in. strikes, an almost contrary picture emerges. inow proportionately the figures are nigher for the nortnern region than for Great Britain as a whole. The clear implication is that the nortnern workers were more prone to strike but stayed on strike for a shorter rime.
'Two years stand out in particular: 1962 and 1904. In the first case over 2,700 working alays were lost in disputes in the nortn east per 1,000 of labour force and in 1964 the figure was over l,000 days. vuring 1965 and 1960 tne figures declined and 1966 was a very peaceful year. unfortunately the trend was reversed in 1967.

ShlPbuIlinIng FINANCE

The financial returns for some of the area's shipbuilding companies are given in tables XI and XII. 'they are as eloquent of the industry's fiortunes as the statistics of production. One can see, for example, how Palmer's Shipouilding \& Iron company, having made good profits in 1917-18, 1918-19 and 1919-20, started to decline in 1920-21 and then made substantial losses. in the next four years. True, a number of companies ran into tinancial dif'ficulties at this period but none so severely as Palmer's. Indeed, the latter made even bigeer losses in its last few years and it was these losses that brought the company down, not tne knives of the "financial assassins" of National Snipbuilders' Securities Limited.

To a large extent, of course, output and
financial returns are but different aspects of the same story. When production is low because orders are scarce, one would expect to find narrow profit margins leading to poorer tinancial returns. When output is soaring, the opposite obtains. A simple table, as below, indicates the correspondence of financial results and output. I have compared the movement up or down of Swan nunter's financial returns with a similar movement in the production returns. Sometimes there is no inovement from one year to anotner, indicated dy "S" for "same".
$1915 \quad 1916 \quad 1917$ 1918 1919

Swan riunter Production			D	5	U		UU	U	
				S				D	
1920	1921	1922	1923	1924	1925	1926	1927	1928	1929
1	0	S	1	D	D	U	ν	U	U
U	D	1	D	U	D	D	U	U	U
1931	1932	1933	1934	1935	1930	193%	1936	1946：	1947
S	D	D	U	U	D	U	U	U	D
0	D	D	U	U	U	S	U	U	D
1948	1949	1950	19511	1952	1953	1954	1955	1956	1957.
U	D	U	U	U	S	U	U	U	0
U	U	S	U	D	U	D	U	U	D

This simple table shows that in 19 out of the 36．years，the movement in both these factors was in the same direction．

The next most obvious characteristic is the size of the returns in different periods．Tne tirst World War and its immediate aftermath brougnt handsome profits followed by dirriculties in tne middie and late twenties and early and middle tnirties．These years were then
followed by more profitable ones．Over the period，there is a growth in the size of the returns for tne successful companies．but this growth is largely illusory，created by the permanent inflation of prices．It we qeduce all figures to the London and Cambridge Economic bulletin＇s capital goods index，then we can see there nas been no growth at ail in the level of profits．＊

PROFITS RECOKDED BY SWAN HUNLER

AdJusted
to 1958 ま1，55\％，000 ま1，530，000 ね1，102，000 ま1，588，000
Level
Adjusting the profit figures in the aoove wạy contirms the conclusion reacned earlier that for the past 50 years $b r i t i s h$ and $\mathbb{N} . E . \sin p b u i l a i n g$ has been in decline， ooth absolutely and relatively to the rest of the world． It has tailed to grow during a period wnen otner countries have seen their shipbuilding activities grow consiaerably．
＊＂Key statistics of the british Econony 1900－1964＂ publisned by the London © Cambridge Economic Service． lable for capital goods prices takes 1958＝100．The index taole tnen snows the price ingex for $1 y 14$ as 162 for lyls as 20 ，for $1 y 50$ as y4 and for 1957 as 97.

In earlier cnapters I have explained my view that tnis lack of growth springs from a lack ot confidence in the future and this in turn springs from the experiences in the 1930＇s．The deep recession then sapped the industry ot financial resources and personal wili－power．
＇Tnere nas of course been some investment in the industry．Austin \＆Pickersgill spent \＆ 3 m ．on modernising tneir Soutnwick yard between 1955－5y．The Swan Hunter Group spent $\ddagger 15 \mathrm{~m}$ ．on investment between 1955－65．for tne individual companies they were large sums of money． On an international scale they were not remarkable at all．

While real profits nave not gone up，real prices for ships certainly nave．Tade Xl shows the prices and the prices for deadweight ton cnarged by john Readnead \＆Sons for a fairly standard type of cargo vessel．The column indicating price per deadweight con is especially interesting． It shows a tenfold increase or more since tne beginning of tne century．If we adjust tne figures using the same Cambridge index as above we can construct a price per dead－ weight ton table like the following：－

1902	む50	1922	ま60
1915	ま34	194y	\％60
1919	£55	1960	ま102

Even on an adjusted basis，prices to the cusiomer still increasea over the perioa．Yet profits reanined steady，indicating a rise in ehipouilder＇s costs．It is an excelient indication of the difticulties that tne shipbuilder faced－either from lack of demand or from foreign competi－ tion－that the increased prices were caused by tne increase in costs and not by the increase in protits．This failure to improve profits（in a real sense，i．e．allowing for inflation）has been another important factor in the failure to maintain investment，mentioned above．

For example，iarland \＆Wolff of Beltast spent \＆ 13 m ．（ of which $\ddagger 5 \mathrm{~m}$ ．was a Government grant and the rest was a loan at favourable rates）on a new large building dock in ly67－6．8．This single piece of investment was greater than many otner yards had spent in total．yet， it is only one of eignt similar docks plannea or under construction in Western Europe．In Japan ten docks， capable of building vessels well in excess of 200，000 gross tons，were in operation by 1968.

Thus the industry is becoming increasingly capical intensive but this is a trend that the U.N. is following only at a distance. wany firms are simply too small. but the grouping of yards represents a first step to the acquisition of sufficient tinancial power to build bigger and bigger vessels, especially oil.tankers, where maximum world giowtin has been concentrated. ine biggest. part of \quad apanese proquction comes from large yards; the oiggest part of $u . k$. production from yards incapable of Duilding more than 100,000 gross tons a year. This is one of the biggest and most important differences between the two countries as tne following table snows:-

PEOPUKTION OF TONNAGE LAUNCTED IN SHIPBUILDING COUÑIRIES BY SİZE UF SHIPBUILLIIVG GROUP
(Snips of 100 Gross ions or more in 1964)

In Groups of Firms with	JAPAN		GERinAin Y		SWEDEN		UNITEDKINGDOM	
ings of 1000 Gross ions	Gross tons 1000	$\%$ of Total Launghing	Gross tons : 000 s	$\%$ of Total Laun- chings	Gross tons ' 000	$\%$ of Total Launching	iross tons 1000 S	$\%$ of Total Launchings
Over 750	1, 576:	38.6	-	-	-	-	-	
250-750	1,336	32.7	-	-	'720	70.5	-	-
100-249	508	12.4	458	51.5	230	22.5	440	42.2
under 100	301	४. 8.	397	44.6	63	6.2	597	57.2
unspecified yards	304	7.5	35	3.9	8	0.8	6	0.6
TOTAL	4,085	100	890	100	1,021	100	1,043	3100

* Not individually recorded Source: Glasgow hierald irades Keview (van. 1965).

LAUNCHING OF SHIPS OVER 100 g.r.t. EXCLUDING WARSHIPS

Source: Lloyd's Regis ter of Shipping

EAR	U.K.		WORLD		U.K. $\%$ of World	U.K. \% Export Launchings	NORTH EAST		
	N os.	Tons	Nos.	Tons			Nos.	Tons	$\begin{aligned} & \% \text { of } \\ & \text { World } \end{aligned}$
.892	681	1,109,950	1,051	1,358,045	81.7		251	570,296	41.9
L893	536	836,383	846	1,026,741	81.4		192	431,405	41.9
1894	614	1,046,508	932	1,323,538	79.0		252	544,768	41.1
1895	579	950,967	880	1,218,160	78.0		222	497,564	40.8
L896	696	1,159,751	1,113	1,567,882	74.0		280	611,727	39.0
1897	591	952,486	990	1,331,924	71.4		236	498,594	37.4
1898	761	1,367,570	1,290	1,893,343	72.3		299	763,825	40.0
1899	726	1,416,791	1,269	2,121,738	66.7		276	766,282	36.0
1900	692	1,442,471	1,364	2,304,163	62.5	23	264	794,300	34.4
1901	639	1,524,739	1,538	2,617,539	58.2	23	279	872,723	33.4
1902	694	1,427,558	1,650	2,502,755	57.0	19	258	701,005	28.0
1903	697	1,190,618	1,650	2,145,631	55.5	20	252	581,343	27.0
1904	712	1,205,162	1,643:	1,987,935	62.0	19	257	671,580	33.7
1905	795	1,623,168	1,576	2,514,922	64.5	21.5	276	872,314	34.6
1906	886	1.828,343	1,836	2,919,763	62.6	20.3	334	1,005,148	37.4
1907	841	1,607,890	1,788	2,778,088	58.0	34.1	297	817,510	29.4
1908	523	929,669	1,405	1,833,286	50.7	40.3	154	355,859	19.3
1909	526	991,066	1,063	1,602,057	62.0	24.4	197	434,810	27.1
1910	500	1,143,169	1,277	1,957,853	58.4	19.5	196	578,315	29.5
1911	772	1,803,844	1,599	2,650,140	68.0	22.4	331	977,278	36.8
1912	712	1,738,514	1,719	2,901,769	60.0	23.9	267	888,683	30.6
1913	688	1,932,153	1,750	3,332,882	58.0	21.7	267	974,109	29.2
1914	656	1,683,553	1,319	2,852,753	59.0	24.4	262	854,697	30.0
1915	327	650,919	743	1,201,638	54.2	14.75	110	352,825	29.2
1916	306	608,235	964	1,688,080	36.0	-	108	353,445	20.9
1917	286	1,162,896	1,112	2,937,786	39.6	-	136	611,233	20.8
1918	301	1,348,120	1,866	5,447,444	24.7	-	162	736,858	13.5
1919	612	1,620,442	2,483	7,144,549	22.6	6.0	184	716,295	10.0
1920	618	2,055,624	1,759	5,861,666	35.0	41.0	210	948,902	16.5
1921	426	1,538,052	1,379	4,356,843	35.3	38.5	137	662,753	15.2
1922	235	1,031,081	852	2,467,084	41.8	26.0	90	432,137	17.4
1923	222	645,651	701	1,643,181	39.2	2.9	89	255,542	15.5
1924	494	1,439,885	924	2,247,751	64.1	15.3	202	631,258	28.0
1925	342	1,084,633	855	2,193,404	49.5	16.4	108	382,855	17.4
1926	197	639,568	600	1;674,977	38.2	14.0	57	198,979	11.8

Yran	U.K.		WORLD		D.K. \% of World	U.K. \% Export Launchings	NORTH EAST		
	Nos.	Tons	Nos.	Tons			Nos.	Tons	$\%$ of World
1927	371	1,225,873	802	2,285,679	53.6	21.8	129	567,197	24.8
1928	420	1,445,920	869	2,699,239	53.6	20.2	162	641,120	23.9
1929	489	1,522,623	1,012	2,793,210	54.5	17.1	199	679,321	24.8
1930	481	1,478,563.	1,084	2,889,472	51.2	44.0	148	608,476	21.0
1931	148	502,487	596	1,617,115	31.1	40.7	35	168,796	10.4
1932	100	187,794	307	726,591	25.8	31.2	30	72,252	9.9
1933	108	133,115	330	489,016	27.2	9.1	23	37,419	7.5
1934	173	459,877	536	967,419	47.5	10.2	40	66,717	6.8
1935	185	499,011	649	1,302,080	38.3	12.8	43	134,928	10.3
1936	328	856,257	999	2,117,924	40.4	10.9	96	340,922	16.1
1937	309	920,822	1,101	2,690,580	34.2	13.5	96	341,199	12.6
1938	267	1,030,375	1,119	3,033,593	34.0	19.8	87	398,100	13.1
1939	201	629,705	941	2,539,424	24.8				
1940	229	842,910	495	1,754,198	48.1				
1941	245	1,185,894	510	2,491,173	47.6				
1942	273	1,270,714	1,300	7,815,369	16.4				
1943	243	1,136,804	2,078	13,884,776	8.0				
1944	279	919,357	1,738	11,169,503	8.1				
1945	307	893,515	1,326	7,192,679	12.7	2.03	111	433,758	6.1
1946	314	1,120,526	690	2,114,702	53.3	10.2	107	50.9,995	23.9
1947	343	1,192,759	787	2,102,621	56.9	31.6	103	474,842	22.6
1948	342	1,176,346	872	2,309,743	50.9	34.9	105	500,681	21.6
1949	320	1,267,467	926	3,131,805	40.5	41.2	96	531,121	16.7
1950	275	1,324,570	1,013	3,492,876	38.0	33.3	82	538,956	15.4
1951	261	1,341,024	1,022	3,642,564	36.8	44.9	77	616,894	16.9
1952	254	1,302,548	1,074	4,395,578	29.6	31.8	72	540,333	12.5
1953	220	1,317,463	1,143	5,096,050	25.9	27.7	73	612,110	12.0
1954	253	1,408,874	1,233	5,252,631	26.8	34.2	72	576,111	10.9
1955	276	1,473,937	1,437	5,314,850	27.7	36.6	75	623,970	11.7
1956	- 275	1,383,387	1,815	6,670,218	20.7	31.4	72	639,304	9.5
1957	- 260	1,413,701	1,950	8,501,404	16.6	18.5	72	624,187	7.3
1958	282	1,401,980	1,936	9,269,983	15.1	24.1	78	688,626	7.4
1959	274	1,372,595	1,808	8,745,704	15.7	8.4	70	618,581	7.1
1960	253	1,331,491	2,020	8,356,444	15.9	11.0	66	614,980	7.2
1961	247	1,191,758	1,990	7,940,005	15.01	23.6	61	568,442	7.1
1962	187	1,07,2,513	1,901	8,374,754	12.8	15.4	46	461,420	5.5
1963	160	927,649	2,001	8,538,513	10.9	30.6	36	440,171	5.1
1964	179	1,042,576	2,147	10,263,803	10.1	14.3	45	530,108	5.1
1965	158	1,073,074	2,280	12,215,817	8.8	12.7	36	455,120	3.7

MERCEANT SHIPPING LAUNCHES IN THE NORTH EAST

Source: Lloyd's Register of Shipping

Notes: * In 1918 Whitby figures were included with those of Middlesbrough and Stockton rather than with Hartlepool.
** Some small sailing vessels built by North East in this period, but negligible.

contd.

Hartlepools and Whitby		Middlesbrough and Stockton		Newcastle		Sunderland		Totals	
No.	g.r.t.	No.	g.r.t.	No.	g.r.t.	No.	g.r.t.	No.	g.r.t.
6	34,101	28	129,559	73	354,813	30	144,280	137	662,753
4	18,822	17	45,814	42	240,788	27	126,713	90	432,137
5	23,864	23	42,709	44	137,408	17	51,561	89	255,542
14	55,804	56	105,707	76	275,672	56	194,075	202	631,258
9	37,874	25	58,786	51	194,614	23	91,581	108	382,855
3	14,814	21	22,369	25	126,609	8	35,187	57	198,979
13	65,588	18	64,783	61	274,056	37	162,770	129	567,197
9	39,743	33	93,223	70	300,508	50	207,646	162	641,120
15	70,385	61	91,824	65	271,601	58	245,511	199	679,321
14	39,481	40	71,935	54	323,750	40	173,306	148	608,476
-	-	9	38,990	19	120,992	7	8,814	35	168,796
7	31,911	14	13,487	7	24,226	2	2,628	30	72,252
-		14	14,685	4	11,033	5	11,701	23	37,419
2	1,100	21	16,238	9	30,169	8	19,210	40	66,717
2	10,228	14	12,582	19	80,736	8	31,382	43	134,928
9	41,015	40	51,667	21	109,441	36	138,799	96	340,922
10	43,615	30	39,740	18	102,121	38	155,723	96	341,199
11	47,633	16	$39,569{ }_{W}$	25	$\begin{aligned} & 141,897 \\ & \text { EAR } \end{aligned}$	35	169,001	87	398,100
10	45,270	15	50,342	37	122,635	49	215,511	111	433,758
13	46,653	14	87,279	35	184,052	45	192,011	107	509,995
11	43,309	16	56,072	35	185,914	41	189,547	103	474,842
12	40,443	25	75,348	30	206,845	38	178,045	105	500,681
7	27,967	22	104,075	30	217,971	37	181,108	96	531,121
7	35,693	19	105,344	22	206,501	34	191,418	82	538,956
9	50,506	16	125,556	24	243,499	28	197,333	77	616,894
8	45,347	13	122,756	25	201,338	26	170,892	72	540,333
6	29,180	13	153,544	27	234,714	27	194,672	73	612,110
7	45,891	11	125,076	28	214,967	26	190,177	72	576,111
6	32,665	10	130,776	30	238,146	29	222,383	75	623,970
6	39,916	10	129,120	27	259,391	29	210,877	72	639,304
5	38,238	10	111,877	29	263,274	28	210,798	72	624,187
5	39,143	11	131,303	32	249,837	30	268,343	78	688,626
3	20,305	7	92,875	32	257,874	28	247,527	70	618,581
2	23,503	7	120,959	34	262,085	23	208,433	66	614,980
2	19,559	5	95,628	27	193,942	27	259,313	61	568,442
-		3	50,275	22	196,790	21	214,355	46	461,420
-	-	5	81,830	15	154,355	16	203,986	36	440,171
-		7	72,047	20	226,533	18	231,528	45	530,108
-	-	2	43,513	18	158,930	16	252,677	36	455,120

NAVAL SHIPBUILDING

Source: T. A. Brassey's Navol Review

Year	Name	Type	Displacement Tons	Owner
1882	MIDDLESBROUGH	Cruiser	925	Admiralty
	Dolphin			
	SUNDERLAND			
1895	Hardy	Torpedo Boat Destroyer	265	Admiralty
1895	Haughty	" " "	265	Admiralty
1899	Lee	" " "	300	Admiralty
1899	Voilet	" "	283	Admiralty
1901	Success	" "	380	Admiralty
1901	Sylvia	"	350	Admiralty
1916	11 Vessels	"	1,100	Admiralty
1917	5 Vessels	"	1,200	Admiralty
1918	5 Vessels	" 1	1,300	Admiralty
1919	Shamrock	" ${ }^{\prime}$	905	Admiralty
	BLYTH			
1914	Ark Royal	Aircraft Carrier	6,900	Admiralty

NAVAL TONNAGE LAUNCHED FROM THE TYNE

Source: T. A. Brassey's Annual Review

Year	Displacement Tons	Year	Displacement Tons
1870	3,480	1909	43,228
1872	20,780	1910	28,515
1873	6,640	1911	33,090
1875	1,815	1912	35,245
1876	2,515	1913	136,976
1878	2,950	1914	46,371
1882	1,350	1915	85,210
1883	10,088	1916	104,224
1885	12,282	1917	44,266
1886	2,297	1918	74,927
1887	6,742	1919	20,308
1888	26,364	1920	9,567
1889	19,975	1925	35,662
1890	16,050	1926	1,444
1891	30,767	1927	1,930
1892	11,150	1928	18,400
1893	37,792	1929	3,560
1894	15,500	1930	4,240
1895	32,206	1931	8,160
1896	42,240	1932	2,750
1897	35,989	1934	12,500
1898	17,182	1936	31,075
1899	43,265	1938	86,100
1900	10,503	1939	19,380
1901	34,100	1940	9,450
1902	14,757	1941	21,585
1903	33,745	1942	10,860
1904	30,830	1943	40,260
1905	21,825	1944	110,290
1906	19,250	1945	45,310
1907	37,602	1946	2,315
1908	22,161	1947	$\begin{array}{r} 4,630 \\ 22,030 \end{array}$

Note: These totals frequently differ from the Company's own records for a reason that is not clear to me. After 1940 many Companies refuse to provide statistics regarding tonnage for security reasons

NAVAL SHIPBUILDING BY SWAN HUNTER

NEPPIUNE YARD

Source: 'T. A. Brassey's Annual Review and Compenys Own Records

Year	Name	Type	Owner
1915	Acacia	Sloop	Admiralty
1915	Anemone	Sloop	
1916	Greenwich	Naval Repaitr	
1915	Zinnia	Sloop	
1915	Jessamine	Sloop	
1915	Poppy	Sloop	
1915	Primula	Sloop	
1917	Eldorol	Fleet Oiler	
1917	Elmol	Fleet Oiler	
1918	Andromede	Sloop	
1917	Sweetbriar	Sloop	
192.8	Tuberose	Sloop	
1918	Flying Fox	Sloop	
1918	Aro Patrick	Sloop	
1918	Rock Sand	Sloop	
1918	Cicero	Sloop	
1918	Spearmint	Sloop	
1918	Orby	Sloop	
1918	Minoru	Sloop	
1936	Abbey Dale	Fleet Oiler	
1936	Arndale	Fleet Oiler	
1940	Bull Finch	Cable Ship	
1943	Porchester Castle	Frigate	
1943	Rushen Castle	Frigate	
1944	Tunsberg Castle	Frigate	
1944	Loch Morlich	Frigate	
1944	Loch Shin	Frigate	
1945	Natal	Frigate	
1945	Derby Haven	Frigate	
1945	Woodbridge Haven	Frigate	
1944	St. Margarets	Cable Ship	
1944	Bullfrog	Cable Ship	
1945	Bullhead	Cable Ship	
1944	L.C.T. 7097		
1944	L.C.T. 7098		
1944	L.C.T. 7099		
1944	L.C.T. 7100		
Plus	Three Landing Craft	,	

TOTAL $=119,310$ Tons Displacement.

NAVAL SHIPBUILDING BY SWAN HUNTER
WAIISEND YARD

Source: T. A. Brassey's Annual Review and Company's Orn Records

Year	Name	Type	Displacement Tons
1909	Hope	Destroyer	780
1910	Sandfly	Destroyer	750
1913	Shark	Destroyer	935
1913	Sparrowhawk	Destroyer	935
1913	Spitfire	Destroyer	935
1913	Laertes	Destroyer	965
1913	Lysander	Destroyer	965
1914	Matchless	Destroyer	965
1915	Comus	Cruiser	3,895
1915	Marmion	Destroyer	1,000
1915	Martial	Destroyer	1,000
1916	Mary Rose	Destroyer	1,000
1916	Menace	Destroyer	1,000
1916	L.43	Sub.	1,000
1916	L44	Sub.	1,200
1916	L49	Sub.	1,200
1914	Stonewall Jackson	Monitor	1,000
1915	Nessus	Destroyer	1,200
1916	Nestor	Destroyer	1,200
1916	Partridge	Destroyer	1,300
1916	Pasley	Destroyer	1,300
1916	Radstock	Destroyer	1,300
1916	Raider	Destroyer	1,300
1916	Sorceress	Destroyer	1,300
1917	Torrent	Destroyer	1,300
1917	Torrid	Destroyer	1,300
1917	Tower	Destroyer	1,300
1918	Coventry	Cruiser	4,290
1918	L5	Sub.	1,000
1917	Vimiera	Destroyer	1,200
1917	Violent	Destroyer	1,200
1918	Vittoria	Destroyer	1,200
1918	Whirlwind	Destroyer	1,200
1918	Wrestler	Destroyer	1,200
1919	L33	Sub.	1,000

NAVAL SHIPBUILDING EY SWAN HUNTEER
WALISEND YARD

Year	Name	Type	Displacement Tons
1918	Shark	Destroyer.	1,000
1918	Sparrowhawk	Destroyer	1,000
1918	Splendid	Destroyer	1,200
1918	Tilbury	Destroyer	1,200
1918	Tintagel	Destroyer	1,200
1918	Sportive	Destroyer	1,200
1919	Stalwart	Destroyer	1,200
1920	Whitehall	Destroyer	1,200
1919	Whitshed	Destroyer	I,120
1919	Wildswan	Destroyer	1,120
1930	Codrington	Destroyer	1,540
1930	Folkstone	Sloop	900
1930	Scarborough	Sloop	-
1931	Brilliant	Destroyer	1,360
1931	Bulldog	Destroyer	1,360
1930	Hindustian	Sloop	-
1934	Esk	Destroyer	1,375
1934	Express	Destroyer	1,375
1935	Sydney	Cruiser	7,000
1936	Hunter	Destroyer	1,350
1936	Hyperion	Destroyer	1,350
1937	Somali	Destroyer	1,850
1938	Tartar	Destroyer	1,850
1939	Edinburgh	Cruiser	10,000
1939	Jarms	Destroyer	1,690
1939	Khartoum	Destroyer	1,920
1942	Anson	Battleship	35,000
1942	Mauritius	Cruiser	8,000
1940	Hambledon	Destroyer	1,690
1940	Holderness	Destroyer	1,690
1942	Gambia	Cruiser	8,000
1940	Mendip	Escort	1,690
1940	Meynell	Escort	1,690
1941	Eridge	Escort	1,375
1941	Farndale	Escort	1,690
1941	Heythrop	Escort	
1941	Lamerton	Escort	1,375

NAVAL SHIPBUILDTNG BY SEAN HUNTER

WALISERN YARD

Year	Name	Type	Displacement Tons
1943	Newfoundland	Cruiser	8,000
1941	Exmoor	Escort	-
1941	Calpe	Escort	1,375
1942	Grove	Escort	-
1942	Hursley	Escort	-
1942	Quality	Destroyer	1,710
1942	Queenborough	Destroyer	1,710
1942	Pindus	Escort	1,375
1942	Adrias	Escort	-
1942	Melbreak	Escort	-
1942	Miaoules	Escort	-
1943	Tuscan	Destroyer	1,710
1943	Tyrian	Destroyer	1,710
1943	Vindex	Auxiliary Aircraft Carrier	-
1943	Grenville	Destroyer	1,710
1943	Ulster	Destroyer	-
1943	Vigilant	Destroyer	-
1943	Virago	Destroyer	1,710
1945	Superb	Cruiser	8,000
1945	Barfleur	Destroyer	2,315
1945	Trafalgar	Destroyer	2,315
1946	St. Kitts	Destroyer	2,315
1945	Vengeance	L.A.C.	14,000
1945	Leviathan	L.A.C.	14,000
1947	Gabbard	Destroyer	2,315
1947	Corunna	Destroyer	2,315
1946	Gudenarde	Destroyer	-
1954	Albion	Aircraft Carrier	18,300
1952	Daring	Destroyer	--
1956	Pellew	Frigate	-
1957	Russell	Frigate	-
1960	Lion	Cruiser	-
1961	Falmouth	Cruiser	-
1963	London	G.M.	-
1964	Galatea	Frigate	\cdots
?	Norfolk	Destroyer	-

Source: T. A. Brassey's Annual Review and Company's Own Records

Year	Name	Type	Displacement Tons	Owner
1888	Kostroma	C	7,975	Mussian Vol. Fleet
1889	Orel	C	7,990	Russian Vol. Fleet
1890	Grand Duke Alexis	C	2,350	Pussian Vol. Fleet
1890	H.ilis. Bellona	C		
1891	Grand Duke Constantine	C	2,400	Russian Vol. Fleet
1894	Roumantzeff	C	760	Pussian Vol. Fleet
1894	Petersburg	C	9,252	Russian Vol. Fleet
1895	Kherson	C	10,225	Russian Vol. Fleet
1895	Ranger	T	264	Admiralty
1895	Opossum	T	290	Admiralty
1895	Sunfish	T	290	Admiralty
1896	Ekaterinoslav	C	10,500	Russian Vol. Fleet
1897	Cheerful	T	300	Admiralty
1898	Mermaid	T	355	Admiralty
1899	Viper	T	363	Admiralty
1900	Greyhound	T	385	Admiralty
1900	Racehorse	T	385	Admiralty
1901	Roebuck	T	385	Admiralty
1902	Velox	T	419	Admiralty
1903	Derwent	T	534	Admiralty
1903	Eden	T	527	Admiralty
1903	Waveney	T	534	Admiralty
1904	Boyne'	T	600	Admiralty
1904	Doon	T	600	Admiralty
1904	Kale	T	600	Admiralty
1907	Ghurka	T	880	Admiralty
1907	H.B.T.B. No. 21	T	305	Admiralty
1908	H.B.T.B. No. 22	T	307	Admiralty
1909	H.B.T.B. No. 33	T	310	Admiralty
1909	H.B.T.B. No. 34	T	310	Admiralty
1909	Zulu	T	1,000	Admiralty
1910	Scourge	T	925	Admiralty
1910	Nemesis	T	780	Admiralty
1910	Nereide	T	780	Admiralty
1911	Nymphe	T	780	Admiralty
1911	Jackal	T	780	Admiralty
1911	Tigress	T	780	Admiralty

AT HEBBBURN

Year	Name	Type	Displacement Tons	Owner
1913	Christopher	T	935	Admiralty
1913	Cockatrice	T	935	Admiral \ddagger y
1913	Contest	T	1,089	Admiralty
1914	Mentor	T	1,189	Admiralty
1914	Mansfield	T	1,199	Admiralty
1915	Champion	C	4,657	Admiralty
1915	Marksman	F	1,853	Admiralty
1915	Talisman	T	1,199	Admiralty
1915	Termagant	T	1,202	Admiralty
1915	Trident	T	1,201	Admiralty
1916	Turbulent	T	1,201	Admiralty
1916	Pigeon	T	1,127	Admiralty
1916	Plover	T	1,131	Admiralty
1916	Sarpedon	T	1,179**	Admirelty
1916	Starfish	T	1,206	Admiralty
1916	Stork	T	1,206	Admiralty
1917	Thruster	T	1,207	Admiralty
1917	This be	T	1,207	Admiralty
1917	Verdun	T	1,464	Admiralty
1917	Versatile	T	1,464	Admiralty
1917	Verulam	T	1,464	Admiralty
1917	Warwick	T	1,524	Admiralty
1917	Calypso	C	4,942	Admiralty
1918	Wessex	T	1,512	Admiralty
1918	Montrose	F	1,996	Admiralty
1918	Stuart	F	1,996	Admiralty
1918	Tenedos	T	1,226	Admiralty
1918	Thanet	T	1,226	Admiralty
1919	Turbulent	T	1,226	Admiralty
1920	Thracian	T	1,226	Admiralty
1926	El Amir Farouq	C	1,444	Egypt
1927	San Juan	S	992	Argentine
1927	San Luis	5	992	Argentine
1928	Sussex	C	13,084	Admiralty
1928	Bridgewater	5	1,357	Admiralty
1928	Sandwich	5	1,361	Admiralty
1929	Active	T	1,773	Admiralty
1929	Antelope	T	1,773	Admiralty

AT HEBBURN

Year	Name	Type	Displacement Tons	Owner
1930	Blanche	T	1,767	Admiralty
1930	Boadicea	T	1,774	Admiralty
1932	Goncalves Zarco	S	1,413	Portugal
1932	Goncalo Velho	S	1,413	Portugal
1934	Aronso de Albuquerque	S	2,434	Portugal
1934	Bartoloneu Dias	S	2,439	Portugal
1934	Electra	T	1,920	Admi ralty
1934	Encounter	T	1,922	Admiralty
1934	Indus	5	1,590	India
1936	Imogen	T	1,892	Admiralty
1936	Imperial	T	1,887	Admiralty
1937	Manchester	C	9,000	Admiralty
1939	Naiad	C	5,450	Admiralty
1938	Jervis	F	1,600	Admiralty
1938	Kelly	F	1,600	Admiralty
1939	Legion	T	1,920	Admiralty
1940	Lightning	T	1,920	Admiralty
1940	Cleopatra	C	5,450	Admiralty
1940	Welshman	M	2,650	Admiralty
140/41	10 Landing Craft			Admiralty
1941	Packenham	F	-	Admiralty
1941	Pathfinder	T	-	Admiralty
1941	Slazak	H	-	Admiralty
1941	Bicester	H	-	Admiralty
1941	Quilliam	F	-	Admiralty
1942	Blean	H	-	Admiralty
1942	Quail	T	-	Admiralty
1942	Quadrant	T	-	Admiralty
1942	Diadem	C	5,770	Admi ralty
1942	Savage	T	1,695	Admiralty
1942	Saumarez	F	1,695	Admiralty
1943	Apollo	M	-	Admiralty
1943	Whelp	T	1,710	Admiralty
1943	Whirlwind	T	2,880	Admixalty
1943	Armada	F	2,200	Admiralty

AT HEBBURN

Year	Name	Type	Displacement Tons	Owner
1944	Solebay	F	2,200	Admiralty
1944	Saintes	F	2,200	Admiralty
1944	Triumph	LFC	18,300	Admiralty
1945	9 Landing Craft	-	-	Admiralty
1945	Agincourt	-	2,550	Adiralty
1945	Alamein	F	2,550	Admiralty
1955	Llandaff	Fr	2,350	Admiralty
1966	Argonaut			

H	$=$ Funt Class Destroyer
F	$=$ Flotilla Leader
Fr	$=$ Frigate
LFC	$=$ Light Fleet Carrier
T	$=$ Torpedo Boat Destroyer
C	$=$ Criser
S	$=$ Sloop
M	$=$ Minelayer

JARPON and HEBBURN
Source: Lompany's Own Kecoras

Year	Name							Disolacement Tons	H.P.
1913	BATMLE CRUISER								
	Queen Mary	-	-	-•	-•	-•	-•	27,000	75,000
	BATITESHIPS								
1856	Terror ..	-	--	.	-	-	-•	1,844	800
1862	Defence	-	-•	-•	-•	-	-	6,270	2,540
1872	Cerberus	-	-	-	-•	-	-	3,480	1,670
1872	Gorgon . .	-	-	-•	-•	-•	-•	3,480	1,670
1872	Swiftsure	-	-	-	-	-	-•	6,910	4,910
1872	Triumph	-	-	-	-	-	-	6,910	4,910
1893	Resolution	-	-	-	-•	-	-	14,150	13,000
1893	Revenge	-	-	-	-	-	-	14,150	13,000
1902	fussell	-	-	-	-	-	-	14,000	18,000
1908	Lord Nelson	-•	-	-	-	-	-	16,500	16,750
1911	Hercules	-	-•	-•	-*	-	- 0	20,000	25,000
1916	Resolution	-	-	-•	-	-	-•	25,750	41,000
	CRUISERS								
1885	Surprise	-•	-•	-	-	-	-•	1,650	3,000
1885	Alacrity	-•	-	-	-	-	-	1,650	3,000
1888	Orlando	-	-	-	-	-	-	5,000	8,500
1888	Undaunted	. .	-	-	.	-	-	5,000	8,500
1891	Pique ..	-	3,600	9,680
1891	Rainbow	-	-	-	3,600	9,680
1891	Retribution	-	.	3,600	9,680
1898	Pegasus	.	-	.	-	-•	. .	2,135	7,000
1898	Pyramus	.	.	-	-	-	-	2,135	7,000
1905	Sapphire	.	-	-	-	-	-•	3,000	9,800
1918	Dauntless	.	- 0	- 0	-•	-	. .	4,730	40,000
1928	York	-	-	-	-	.	.	8,400	80,000

JARROW and HEBBURN

PALMERS SHIPBUIIDING AND IRON COMPANY LIMTTED

JARROW and HEBBUPN

Year	Name						Displacement Tons	H.P'.
	TORPRDO BOAT D	TRO	YERS	contin	ued			
1899	Spiteful	-•	-•	-•	-•	-	322	6,000
1899	Peterel	-	-	.	-	. .	322	6,000
1901	Myrmidón	-	\cdots	.	.	.	322	6,000
1901	Kangaroo	-	-	-	-	-	322	6,000
1901	Syren ..	-•	-	-	-	\bullet	322	6,000
1904	Erne ..	-	\bullet	-•	-	.	560	7,000
1904	Rttrick	-	-•	-•	.	\bullet	560	7,000
1904	Exe	560	7,000
1904	Cherwell	560	7,000
1904	Dee	-	-•	-•	-	-•	560	7,000
1905	Ure	.	.	.	-•	.	560	7,000
1905	Wear	-	. .	560	7,000
1905	Swale ..	-	\cdots	.	-•	-	560	7,000
1905	Rother ..	-•	-	-	-•	-•	560	7,000
1909	Albacore	440	8,000
1909	Bonetta	-•	-	-•	-•	-•	440	8,000
1910	Viking ..	-	-	-•	.	-•	1, 050	15,500
1914	Leonidas	.	-	-	-	.	1,034	24,500
1914	Lucifer	-•	-	.	.	-	1,034	24,500
1914	Murray	-•	-	-•	-•	-•	1,120	25,000
1915	Myngs ..	.	-	.	.	-	1,120	25,000
1916	Nonsuch	-	-	-	.	.	1,120	25,000
1916	Negro ..	-	-	-	-	-	1,120	25,000
1916	Norman . .	.	-•	-•	-•	-•	1,120	25,000
1916	Northesk	.	.	-	-	.	1,120	25,000
1916	Oriole	-	. \cdot	.	1,120	25,000
1916	Osiris ..	-	-	-	-	-	I,120	25,000
1917	North Star	-	-	-	-	.	I,120	25,000
1917	Nugent	-•	-•	-	.	.	1,120	25,000
1917	Urchin .. .	-	-•	- 0	-	-	1,120	27,000
1917	Ursa ..	-	-	-•	-	-	1,120	27,000
1918	Waterhen	1,420	27,000
1918	Wryneck	-•	.	-	-	-	1,420	27,000
1919	Steadfast	.	-	-	-	.	1,120	27,000
1919	Sterling			-		-	1,120	27,000
1919	Stonehenge ..	-	-	-			1,120	27,000
1920	Stormeloud .	-.	- ${ }^{\circ}$. .	-•	-•	1,120	27,000

JARRON and HREBBUENN

NAVAL SHIPBUILDING BY VICKERS ARMSTRONG
NAVAL YARD, WALKER.
Source: Lompany's own Records

эar	Name	Type	Owner
375	HoMrs. Malaya	Ratileship	Adminalty
316	H. Mis. Centaur	Cruiser	Admiralty
316	H.M.S. Concord	Cruiser	Admiralty
316	H.M.S. Courageous	Battle Cruiser	Admiralty
316	H.M.S. Furious	Battle Cmiser	Admiralty
316	Al exander	Ice Breaker	British (ex Russian)
318	M3	Submarine	Admiralty
319	M4	Submarine	Admiralty
218	H.M.S. Danae	Cruiser	Admi ralty
317	H.M.S. Anchusa	Sloop	Admiralty
317	H.M.S. Bergamot	Sloop	Admiralty
17	H.M.S. Candytuft	Sloop	Admiralty
317	H.M.S. Ceanothus	Sloop	Admi ralty
317	Train Ferry No. 1	Sloop	British
317	Train Ferry No. 2	Sloop	British
	L52	Submarine	Admi ralty
718	L53	Submarine	Admiralty
217	H.M.S. Arbutus	Sloop	Admiralty
217	'H.M.S. Auricula	Sloop	Admiralty
317	H.M.S. Bryony	Sloop	Admiralty
317	H.M.S. Chrysanthemum	Sloop	Admiralty
919	L67	Submarine	Admiralty
)19	L68	Submarine	Admiralty
318	H.M.S. Delhi	Cruiser	Admiralty
讧8	H.M.S. Dunedin	Cruiser	Admiralty
319	H.M.S. Hermes	Aircraft Carrier	Admiralty
318	N41	Submarine	Admiralty
318	N42	Submarine	Admiralty
)19	N43	Submarine	Admiralty
)19	N44	Submarine	Admiralty
318	R9	Submarine	Admiralty
)18	R10	Submarine	Adiniralty
120	H.M.S. Emerald	Cruiser	Admiralty
325	H.M.S. Nelson	Battleship	Admiralty

NAVAL YARD, WALKER.

өar	Name	Type	Owner
936	H.M.S. Newcastle	Cruiser	Admiralty
936	H.M.S. Hero	Destroyer	Admiralty
936	H.H.S. Hereward	Destroyer	Admiralty
936	H.M.S. Sheffield	Cruiser	Admiralty
937	H.M.S. Afridi	Destroyer	Admiralty
937	H.M.S. Cossack	Destroyer	Admiralty
937	H.M.S. Eskimo	Destroyer	Admi ralty
937	H.M.S. Mashona	Destroyer	Admiralty
939	H.M.S. King George V	Battleship	Admiralty
939	H.M.S. Victorious	Aircraft Carrier	Admiralty
939	H.M.S. Nigeria	Cruiser	Admi ralty
939	H.M.S. Eglint on	Fast Escort Vessel	Admiralty
940	F.M.S. Exmoor	Fast Escort Vessel	Admiralty
941	H:M.S. Uganda	Cruiser	Admiralty
940	H.M.S. Marne	Destroyer	Admiralty
940	H.M.S. Martin	Destroyer	Admiralty
940	H.M.S. Liddesdale	Fast Escort Vassel	Admiralty
940	H.in.S. Cakley	Fast Escort Vessel	Admiralty
941	H.M.S. Penn	Destroyer	Admiralty
941	H.M.S. Petard	Destroyer	Admiralty
941	H. in.S. Porcupine	Destroyer	Admiralty
941	H.M.S. Haworth	Fast Escort Vessel	Admiralty
941	H.M.S. Midaleton	Fast Escort Vessel	Admiralty
941	H.M.C.S. Iroquois	Destroyer	Canadian Government
941	H.f.C.C.S. Athabaskan	Destroyer	Canädian Government
-	前C 59,66	Landing Craft	Admiralty
941	H.M.S. Bleasdale	Fast Escort Vessel	Admiralty
940	T.L.C.3.	ii.L. Craft	Admiralty
940	T.L.C.4.	M.I. Craft	Admiralty
941	H.M.S. Hatherleigh	Fast Escort Vessel	Admiralty
942	H.iil.S. Haydon	Fast Escort Vessel	Admiralty
941	T.L.C.21.	M.L. Craft	Admiralty
941	T.L.C.22.	M.L. Craft	Admiralty

NAVAL YARD, WALKER.

ear	Name	Type	Owner
941	Triple Screw T.L.C.	M.L. Craft	Admiralty
941	Triple Screw T.L.C.	M.L. Craft	Admiralty
941	Triple Screw T.L.C.	M.L. Craft	Admiralty
942	H.M.C.S. Huron	Destrojer	Canadian Government
942	H.M.C.S. Haida	Destroyer	Canadian Government
942	H.M.S. Abercrombie	Monitor	Admiralty
943	H.M.S. Swiftsure	Cruiser	Admiralty
942	H.M.S. Unsparing	Submarine	Admiralty
942	H.M.S. Usurper	Submarine	Admiralty
942	H.M.S. Untamed	Submarine	Admiralty
943	H.M.S. Untirinc	Submarine	Admiralty
943	H.M.S. Varangian	Submarine	Admiralty
943	H.M.S. Uther	Submarine	Admiralty
943	H.M.S. Unswerving	Submarine	Admiralty
943	H.M.S. Myngs	Destroyer	Admiralty
943	H.M.S. Zephyr	Destroyer	Admiralty
943	H.M.S. Colossus	Aircraft Carrier	Admiralty
944	H.M.S. Perseus	Aircraft Carrier	Admiralty
943	H.M.S. Vivid	Submarine	Admiralty
943	H.M.S. Voracious	Submarine	Admiralty
943	H.M.S. Vulpine	Submarine	Admiralty
944	H.M.S. Varne	Submarine	Admiralty
945	H.M.S. Hercules	Aircraft Carrier	Admiralty
944	H.M.S. Cossack	Destroyer	Admiralty
344	H.M.S. Constance	Destroyer	Admiralty
344	H.M.S. Virulent	Submarine	Admiralty
744	H.M.S. Volatile	Submarine	Admiralty
944	H.M.S. Votary	Submarine	Admiralty
344	H.M.S. Vagabond	Submarine	Admiralty
345	H.M.S. Aisas	Destroyer	Admiralty
345	H.M.S. Al buera	Destroyer	Admiralty
344	T.I.C.	Landing Craft	Admiralty

NAVAL SHIPBUII.DING BY VICK ERS ARASTRONG
NAVAI YARD, WAIKER.

ear	Name	Type	Owner
944	T.L.C.	Landing Craft	Admiralty
944	T.L.C.	Landing Craft	Admiralty
944	T.L.C.	Landing Craft	Admiralty
944	T.L.C.	Landing Craft	Admiralty
944	T.L.C.	Landing Craft	Admiralty
945	Transport	Ferry	Admiralty
945	Transport	Ferry	Admiralty
945	Transport	Ferry	Admiralty
945	Transport	Ferry	Admiralty
H.M.S. Eastbourne	Frigate		

NAVAL SHIPBUIIDING BY VICKERS ARMISTRONG
ELSWICK YARD
Source: Company's Own kecords

ear	Name	Type	Displacement Tons	Nationality
385	Panther	Cruiser	1,541	Austrian
386	Leopard	Cruiser	1,541	Austrian
387	Dogali	Cruiser	2,050	Italian
888	Victoria	Battleship	10,810	British
886	Rattler	Gunboat	691	British
886	Wàsp	Gunboat	679	British
887	Chich Yuan	Cruiser	2,317	Chinese
887	Ching Yuan	Cruiser	2,317	Chinese
387	Isla de Luzon	Cruiser	1,054	Spanish
387	Isla de Cuba	Cruiser	1,054	Spanish
889	Piemonte	Cruiser	2,597	Italian
388	Castore	Cruiser	624	Italian
388	Polluce	Cruiser	624	Italian
388	Eiisabeta	Cruiser	1,331	Roumanian
391	25 de Mayo	Cruiser	3,312	Argentine
391	Catoomba	Cruiser	2,571	British
391	Mildura	Cruiser	2,571	British
391	Wallaroo	Cruiser	2,571	British
391	Boomerang	Gunboat	755	British
391	Carrakatta	Gunboat	755	British
391	Plassy	Gunboat	755	British
391	Assaye	Gunboat	755	British
391	Sirius	Cruiser	3,493	British
392	Spartan	Cruiser	3,493	British
393	9 de Julìo	Cruiser	3,587	Argentine
391	Para	Launch	29	Brazilian
392	Tiradentes	Cruiser	728	Brazilian
393	Republica	Cruiser	1,260	Brazilian
393	Gistavo Sampaio	Gunboat	465	Brazilian
393	Yoshine	Cruiser	4,180	Japanese
394	Blanco Encalada	Cruiser	4,568	Chilean
394	Tatsuta	T.B.D.	920	Japanese
396	Buenos Aires	Cruiser	4,620	Argentine

EWSWICK YARD

ear	Name	Type	Displacement Tons	Nationality
896	Swordfish	T.B.D.	280	British
896	Spitfire	T.B.D.	280	British
895	Fei Ting	T.B.D.	350	Chinese
897	Yashima	Battleship	12,330	Japanese
896	Ministro Zenteno	Cruiser	3,437	Chilean
897	Almirante Barroso	Cruiser	3,437	Brazilian
898	Almazonas	Cruiser	3,437	Brazilian
897	Esmeralda	Armoured Cruiser	7,032	Chilean
898	0^{\prime} Higgins	Armoured Cruiser	8,476	Chilean
898	Pactolus	Cruiser	2,136	British
899	Asama	Armoured Cruiser	9,700	Japanese
899	Tokiwa	Armoured Cruiser	9,700	Japanese
899	Hai Tien	Cruiser	4,514	Chinese
889	Almirante Reis	Cruiser	4,253	Portuguese
902	Capitan Thompson	T.B.D.	348	Chilean
901	Cobra	T.B.D.	348	British
899	General Baquedano	Training Ship	2,335	Chilean
900	Al bany	Cruiser	3,437	American
901	Hatsuse	Battleship	14,967	Japanese
900	İzumo	Armoured Cruiser	9,733	Japanese
901	Iwate	Cruiser	9,733	Japanese
901	Norge	Battleship	3,847	Nomwegian
901	Eidsuold	Battieship	3,847	Norwegian
704	Lancaster	Armoured Cruiser	9,901	British
904	Abdul Hamid	Cruiser	3,805	Turkish
904	Swiftsure	Sattleship	11,728	British
905	Hampshire	Armoured Cruiser	10,726	British
905	Amethyst	Cruiser	3,009	British
305	Adventure	Scout	2,850	British
904	Erthogroul	Yacht	896	Turkish
306	Attentive	Scout	2,850	British
907	Achilles	Armoured Cruiser	13,658	British
3.06	Kashima	Battleship	16,400	Japanese

NAVAL SHIPRUILDING BY VICK ERS ARISTRONG
EHSWICK YARD

三ar	Name	Type	Displacement Tons	Nationality
309	Afridi	T.B.D.	795	British
309	Invincible	Battle-cruiser	17,480	British
310	Minas Geraes	Battleship	19.281	Brazilian
314	Agincourt	Battleship	27,500	British
309	Superb	Battleship	18,663	British
110	Bahia	Scout	3,100	Brazilian
310	Rio Grande do Sul	Scout	3,100	Brazilian
309	Rosario	Armoured Gunboard	1,055	Argentine
309	Parana	Gunboat	1,055	Argentine
310	Newcastle	Cruiser	4,821	British
311	Weymouth	Cruiser	5,257	Eritish
312	Monarch	Battleship	22,645	British
313	Chao Ho	Training Ship	2,750	Chinese
315	Canada	Battleship	28,000	British
314	Birmingham	Cruiser	5,440	British

In addition to thoselisted one aircraft carrier, two coast derence vessels, and ten submarines were launched at Elswick, but completed at Walker Naval Yard.

EMPLOMMENT IN SHIPBUIHDING

SOURGE CENSUS RETURNS \& MMNISTRY OF LABOUR STATISITCS

YEAR	ENGGAND \& WALES	NORTH EASI	NEWCASILE	SUNTDERLAND	MTDDLESBROUGH
1861	43,779	9,475	-	-	-
1871	45,066	12,470	-	-	-
1881	54,080	16,878	808	4,737	657
1891	70,517	29,722	2,037	6,354	1,689
1901	86,637	45,242	3,131	8,821	2,467
1911	104,750	47,973	6,882	9,178	1,924
1921	283,443*	104,631*	-	-	-
1931	200,779*	78,262*	12,838	15,880	2,169
1951	199,938*	60,283*	6,977	10,777	107
1961	261,000*+	55,270*	-	-	-
1965	222,000**	45,280*	-	-	-

The 1931 totals shown above include the following numbers who were out of work:

1931	82,683	48,337	6,973	11,821	1,299

* These figures include those working in marine engineering.
+ These totals are for the U.K.

TABLE V

AVERAGE NUMBERS EMPLOYKD \& ARNYUAL WAGE BIIC
"WALLSIEND SLIPPAI \& EHGINEEHRING CO. LITD. ${ }^{\prime \prime}$

Year	Average number of men employed	Wages paid in the year	Average annual earnings per man
		ε	\ldots
1879	640	49,000	76. 108.
1883	1245	108,200	89
1884	812	57,546	71
1885	854	58,676	68. 10s.
1886	846	57,930	69
1887	1033	75,154	72. 13s\%
1888	1172	86,669	74
1889	1465	121,595	82. 108.
1890	1565	128,284	82
1891-93	1264	95,070	75

from Whe Story of the Wallsend Slipway and Fngineering Co. Limited" by W. Boyd.

PALMER'S JARRON SHIPYARD

	Sept. 1871 60 hours		Nov. 1871 57 hours		Sept. 1882 54 hours		Dec. 1885 54 hours	
	Week	Day	Week	Day	Week	Day	Week	Day
	s. ${ }^{\text {d }}$	s. d.	s. d.	s. d.	B. d.	s. d.	s. d.	s. d.
ters	54.6.	10.11.	67.9.	13.6.	77.6.	15.6.	57. 1.	13. 0.
etters	34.5.	$6.10 \frac{1}{2}$	35.6.	7. 1.	51. 2.	10. 3.	37.3.	7.10
- Smiths	45.9.	9. 2.	37.11.	7. 7.	84.10.	16.11.	55. 3.	11. 0.
1 kers	38. 6.	7. $8 \frac{1}{2}$	38.9.	7.9.	45.9.	11. 2.	40.7.	8. 1.
11ers	35.7.	7. 1.	32. 0.	6. 5.	34.0.	6. 9.	25.8.	4.8.

(The drillers of course were not members of the Boilermakers' Society, dat dwask provided for comparison.)

Three reductions had preceded the figures for December 1885 from 1884.

Data from information provided by J. Price to the Royal Commission on Depression, 1886, 3rd Report p. 299.

	(a)			(b)		(c)
	1886		1901		1904	
	No. Men	Earned s. d.	No. Men	Earned s. d.	No. Men	Earned s. d.
Angleamiths Platers Rivetters Caulkers Holders-up Smiths Smiths strikers A.I.S. strikers Platers' helpers Fitters : Drillers Shipwrights Ships joiners Ships painters Labourers Frame Turner Asst. Time Work Rate日 Rivetters Platers Caulkers Holders-up Drillers	8	54. 1.	7	109.	3	62.9.
	73	61. 6.	96	97. 6.	26	96. 9.
	148	40. 8.	136	59.0.	8	64.9.
	42	49. 0.	48	71. 6.	7	4\%̈. 0
	80	35. 0.				
	28	30.8.	20	37.10.	21	35.11.
	12	20. 3.				
	4	26.6.				
	192	24.8.				
	56	29.4.	141	35.11.	189	35. 2.
	41	34.10.	75	54.6.	16	40.9.
	153	33. 1.	272	40.6.	155	39.0.
	107	30. 3.	220	39.6.	239	38.6.
	44	28. 4.	40	34.3.	74	33. 2.
	223	19. 1.				
	67-12328	$\begin{array}{ll} 30 . & 0 . \\ 30 . & 0 . \\ 24 . & 0 . \\ 22 . & 6 . \end{array}$	9		10	
			15	38. 0.	6	36. 6.
			13	36. 0.	8	34.6.
			2	30. 0.	11	29.0.

SOURCES (a) from the Wages Census 1886 - C. 6889 quoted by Bowley \& Wood p. 589 Jrnl Royal Stat. Soc. 1905.
(b)(c) Information privately supplied to Bowley \& Wood p. 589 Journal of Royal Statistical Society 1905.

SEPTTEMBER 1906

	A.I. Smithe	Platers	R. Heaters	Hêlpers	Shipwrights
	s. d.	s. d.	s. ${ }^{\text {d. }}$	s. d.	s. d.
United Kingdom	71. 10.	71. 3.	23. 1.	30. 2.	36. 4.
TTNE, WEAR \& TEES	77. 2.	82. 0.	24. 0.	30. 5.	39.11.
Mersey \& Barrow	51. 6.	56. 0.	22. 0.	30. 3.	40. 10.
South of England	45. 9.	66.9.	21. 10.	23. 9 TW	34. 9.
Clyde	67. 1.	63. 1.	22. 6.	29.9.	37. 5.

These figures are for Smiths (general) matching figures for this class were: Tyne etc: 55/9 Clyde: 54/9. U.K. $23 /-$

All men
Ho. of men covered

United Kingdom	Tyne etc.	 Barrow	South of England	Clyde
35 s .11 d	40 s .5 d.	$35 \mathrm{~s} .1 \mathrm{d}$. 2,521	32 s .3 d 10,400	36 s .1 d
41,066	9,149	23,380		

SHIPWRICHTS were paid time work, all other rates are piecework and the figures for 'all men' is an average of time and piece rates.

CHANGES IN THE PIECEWORK RATES FOR IRON

SHIPBUIIDEER ON THE THES

(1872-1892)

Decreases	\&	Increases	
Feb. 1879	$7 \frac{1}{2}$	Nov. 1880	5
Hov. 1879	713	Mar. 1881	5
Feb. 1884	10	Jul. 1881	5
Jun. 1884	7글	Jun. 1888	5
Jan. 1885	$7 \frac{1}{2}$	Feb. 1889	$7 \frac{1}{2}$
Mar. 1886	8	Nov. 1889	27
Jan. 1892	5	Jan. 1890	5
TOTAS	53	TOTAL	35

from the answer of R. Rothwell to Q. 21,176
before the Royal Comisission on Labour, 1892-4.

Industrial Group	1961				1962				1963				1964						
	A		B		A		B		A		B		A		B				
	N.R.	G. B.	N.R.	G.B.	N.R.	G.B.	N.R.	G.B.	N.R.	G.B.	N.R.	G. B.	N.R.	G.B.	N.R.	G.B.			
Mining and Quarrying	54	339	67	1003	45	215	$\begin{array}{r} 90 \\ 1107 \end{array}$	429	7	221		471	46	255	50	464			
Metals and Engineering	15	40	47	2213	1072	908		1038	92	38	187	130	35	58	76	241			
Shipbuilding and Marine Engineering	108	95	323	1452	1697	1204		1716	71	59	143	439	175	105	634	669			
Vehioles	74	164	135	538	1291	1002	1149	1300	4	192	70	442	72	187	355	526			
Textiles and Clothing	10	6	59	16	33	9	58	31	23	5	38	16	28	8	17	24			
Construction	28	32.	113	189	56	35	259	140	32	44	163	220	19	15	51	73			
Transport and Communioations	15	35	32	137	226	176	285	244	3	23	22	42	43	14637		18296			
All Industries	20	32	45	134	252	190	325	248	20	25	53	75	25		106 60				
A = No. of Workers involved in disputes per 1,000 of Labour Force. $B=$ Working Days lost in disputes per 1,000 of Labour Force. N.R. = Northern Region G.B. - Great Britain																			

	1965				1966				1967			
	A		H		A		H		A		B	
	N.K.	G.B.	IN.K.	G. B.	N. K.$_{1}$	G. B	. N. K .	L.t.	IV.K.il	ir.B.	N.K	G.D.
Mining and Quarrying	14	187	1'\%	655	12	8%	28	203	4	:/4	10	193
Engineering	¢ 2	64	36:3	213	105	\cdots	349	23%	163	10\%	549	378
Shipbuilding \& warine Eng'g.	110	114	420	580	3%	39	114	146	110	113	760	675
venicles	121	307	86	1,05	$1-$	178	-	454	130	269	348	051
'lextiles and Clotning	\%	6	-	31	4	2	-	7	12	34	20	100
Construction	24	16	86	'7'7	3%	20	'78	81	39	22	135	122
Transport and Communication	51	79	104	184	42	10	$1,1 \% 9$	641	32	68	228	500
A11 Industries	28	36	41	119	21	22	133	47	32	31	118	117

$A=$ No. of workers involved in disputes per 1,000 of labour force.
$b=$ Working days Lost in disputes per 1,000 of laiour force.
N.i. = Northern Region. G. $\dot{\text { N. }}=$ Great Bricain.

VESSELS BUILT TO THE ORDER OF HAIN STEAMSHIP CO. LIMITED

BY JOHN READHEAD \& SONS.

Hull No.	Name of Vessel	Date	Contract plus extras	Dwt.	Price per Dwt.
			£		
363	Trevider	1902	37250	5310	7.0
364	Treloske	1902	37250	5310	7.0
365	Trevean	1902	37250	5310	7.0
366	Tregantle	1903	37250	5310	7.0
367	Trewyn	1903	37250	5310	7.0
368	Tregothnan	1903	37250	5310	7.0
375	Tregarthen	1904	26020	3620	7.2
376	Trematon	1904	26020	3620	7.2
383	Tremeadow	1905	36750	6270	5.8
384	Tremorvah	1905	36750	6270	5.8
391	Treneglos	1906	36600	6700	5.4
392	Tremayne	1906	36600	6700	5.4
398	Trelawny	1907	37250	6700	5.5
399	Trecarrell	1907	37250	6700	5.5
400	Trevinge	1907	37250	6700	5.5
408	Trelissick	1909	38800	7077	5.4
410	Treveal	1909	38800	7100	5.4
412	Treverbyn	1909	38800	7129	5.4
418	Trevorian	1911	38800	7585	5.1
419	Tregurno	1911	38800	7565	5.1
421	Trevalgan	1911	38800	7585	5.1
425	Trevanion	1912	42100	7700	5.4
429	Treglisson	1912	42142	7700	5.4
430	Trevaylor	1912	42642	7700	5.5

contd.

Hull No.	Name of Vessel	Date	Contract plus extras	Dwt.	Price per Dwt.
			£		
431	Trevethoe	1913	42642	7700	5.5
432	Trevilley	1913	43142	7700	5.6
433	Trevider	1913	43142	7700	5.6
434	Tregathen	1913	43142	7700	5.6
442	Trewellard	1914	52545	7790	6.7
443	Trematon	1914	52545	7830	6.7
445.	Trevarrack	1914	53545	7855	6.8
446	Trecarne	1915	53545	7850	6.8
447	Trehawke	1915	53545	7820	6.8
454	Trewidden	1917	80598	8000	10.0
455	Tregenna	1917	83448	8000	10.4
456	Treneglos	1918	88448	8000	11.0
457	Trevose	1918	90948	8000	11.3
458	Tregantle	1918	124886	7865	16.0
459	Treloske	1918	125156	7865	16.0
Std.Vessel 11	Trelyon	1919	160715	8210	19.6
Std.Vessel 12	Trekieve	1919	167127	8210	20.0
Std.Vessel 13	Trewyn	1919	166781	8210	20.0
462	Trevorian	1920	216822	8367	26.0
463	Trebartha	1920	220181	8387	26.3
464	Tredinnick	1921	222669	8387	26.6
469	Min	1922	191586	8450	22.7
470	Treworlas	1922	171560	8450	20.4
564	Tregenna	1949	371500	9430	39.4
565	Treothnan	1949	364810	9430	38.7
604	Trewidden	1960	1045746	10350	102.0
609	Trefusis	1961	1108430	13060	85.0
610	Trebartha	1962	1071720	13560	79.0

309-

	Year Ending	Net Profit	Year Fnding	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	Net Profit
SWAN HUNTER	Dec. 1914	$\begin{gathered} \boldsymbol{\mathcal { L }} \\ 218,498 \end{gathered}$	Dec. 1915	$\begin{gathered} \boldsymbol{L} \\ 306,083 \end{gathered}$	Dec. 1916	$\begin{gathered} \boldsymbol{\varepsilon} \\ 298,440 \end{gathered}$	Dec. 1917	$\begin{gathered} \varepsilon \\ 316,473 \end{gathered}$
VICKERS	Dec. 1914	,019,034						
ARMSIROVYG WHITWORTH	Dec. 1914	801,885	Dec. 1915	852,349				
WIULIAM DOXFORD	Dec. 1914	161,294						
S. P. AUSTITN	Dec. 1914	11,968	Apr. 1916	12,820	Apr. 1917	17,203	Apr. 1918	13,866
JOS. T. EHTRINGHAM	Dec. 1914	8,198					Jun. 1918	134,321
R. \& W. HAWTHORN LESTIE	Jun. 1915	169,726	Jun. 1916	200,284	Jun. 1917	181,023	Jun. 1918	190,292
PALMER'S	Jun. 1915	103,822	Jun. 1916	33,754			Jun. 1918	180,546
SMITH'S DOCK	Aug. 1915	156,201	Aug:1916	177,402	Aug. 1917	183,890	Aug. 1918	191,483
BLYTH	Sep. 1915	58,115						
Noter The figures are tax but before di	net tradi dend payme	grofits ts.	- i.e. aft	providi	for dep	iation,	benture	terest ax

(Shipbuilder)

$-311-$
(Shipbuilder)

-312-
(Shipbuilder)

	Year Flading	Net Profit	Year Ending	Net Profit	Year Bnding	Net Profit	Year Mnding	Net Profit
SWAN HUNTIER	Dec. 1926	$\begin{gathered} \boldsymbol{\alpha} \\ 198,782 \end{gathered}$	Dec. 1927	$\begin{gathered} \text { £ } \\ 126,380 \end{gathered}$	Dẹc. 1928	$\begin{gathered} \kappa \\ 168,695 \end{gathered}$	Dec. 1929	$\begin{gathered} \mathcal{L} \\ 188,388 \end{gathered}$
VICKIPRS	Dec. 1926	562,283	Dec. 1927	992,984	Dec. 1928	939,902	Dec. 1929	941,971
ARMSTRONG WHITWORTH	Dec. 1926	-531,210**	Dec. 1927	-527,953	Deo. 1928	9,884		
S. P. AUSTIN	Apr. 1927	-14,404	Apr. 1928	$-20,749$	Apr. 1929	-5,940	Apr. 1930	5,605
R. \& W. HAMPHORN LESLIE	Jun. 1927	178,816*	Jun. 1928	20,021	Jun. 1929	26,617	Jun. 1930	36,802
PALMERS	Dec. 1926	-669,712	Dec. 1927	10,490	Dec. 1928	1,744	Dec. 1929	6,596
SMITH'S DOCK	Dec. 1926	48,736			Sep. 1928	85,224	Sep. 1929	144,153
**Before Depreciation								

SHIPBUILDING FINANCE
(Shipbuilder)

	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Tear Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$
		\&		\&		\&		\ldots
SWAN HUNTER	Dec. 1930	158,293	Dec. 1931	150,384	Dec. 1932	34,544	Dec. 1933	18,956
VICKERS	Dec. 1930	775,926	Dec. 1931	574,493	Dec. 1932	529,038	Dec. 1933	543,364
S. P. AUSIIT	Apr. 1931	-6,616	Apr. 1932	-11,585	Apr. 1933	-6,231	Apr. 1934	-6,909
R. \& W. HAPlTHORN LESLIE	Jun. 1931	35,398	Jun. 1932	14,428	Jun. 1933	-1,193	Jun. 1934	16,157
PALMER'S	Dec. 1930	-49,802	Dec. 1931	-88.968				
SHITTH ${ }^{\text {'S }}$ DOCK	Sep. 1930	80,754	Sep. 1931	-47,215	Sep. 1932	-7,869	Sep. 1933	-39,035

SHIPBUILDING FINANCE
(Shipbuilder)

	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Fnding	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Inding	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$
		ε		\ldots		\&		¢
SWAN HUNTTER	Dec. 1934	96,416	Dec. 1935	191,919	Dec. 1936	1762,583	Dec. 1937	249,925
VICKRRS	Dec. 1934	613,261	Dec. 1935	928,105	Dec. 1936	1,162,610	Dec. 1937	1,361,056
S. P. AUSTIN	Apr. 1935	-2,610	Apr. 1936	-4,138	Apr. 1937	415	Apr. 1938	17,300
R. \& W. HAWTHORN LESLIE	Jun. 1935	23,194	Jun. 1936	25,648	Jun. 1937	36,439	Jun. 1938	77,377
SMITH'S DOCK			Sep. 1935	28,982	Sep. 1936	46,601	Sep. 1937	-

SHIPBUILDING FINANCE

(Shipbuilder)

	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Bnding	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$
SWAN HUNTIER	Deo. 1938	$\begin{gathered} \boldsymbol{\varepsilon} \\ 426,362 \end{gathered}$	Dec. 1939	$\begin{gathered} \boldsymbol{\varepsilon} \\ 490,315 \end{gathered}$	Dec. 1940	$\begin{gathered} \boldsymbol{£} \\ 238,445 \end{gathered}$	Deo. 1941	$\underset{312,568}{\boldsymbol{\varepsilon}}$
VICKERS	Dec. 1938	1,398,953	Dec. 1939	1,226,871				
S. P. AUSTIN			Apr. 1940	7,560	Apr. 1941	5,885	Apr. 1942	11,451
R. \& W: HaWTHORN LESLIE	Jun. 1939	160,815	Jun. 1940	161,536	Juni1941	132,271	Jun. 1942	130,934
SMTTH'S DOCK	Sep. 1938	100,673	Sep. 1939	82,697	Sep.1940	78,700	Sep. 1941	36,902

$-316-$
SHIPBUILDING FINANCE
(Shipbuilder)

	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Inding	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$
SWAN HUNTIER	Deo. 1942	$\begin{gathered} \kappa \\ 398,018 \end{gathered}$	Dec. 1943	$\begin{gathered} \boldsymbol{f} \\ 368,744 \end{gathered}$	Dec. 1944	$\underset{390,275}{\AA}$	Dec. 1945	$\begin{gathered} \AA \\ 434,245 \end{gathered}$
VICKERS							Dec. 1945	951,682
S. P. AUSTIT	Apr. 1943	5,447	Apr. 1944	2,235	Apr. 1945	10,992	Apr. 1946	9,392
R. \& W. HAWTHORN LESLIE	Jun. 1943	133,632	Jun.i 1944	130,486	Jun. 1945	126,549	Jun. 1946	191,298
SMITH 'S DOCK	Sep. 1942	42,662	Sep. 1943	54,331	Sep. 1944	44,766	Sep. 1945	83,835

SHIPBUILDING FINANCE
(Shipbuilder)

	Year Fnding	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Inding.	$\begin{gathered} \text { Net } \\ \text { Proflt } \end{gathered}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$
-		\ldots		\boldsymbol{L}		$\boldsymbol{\varepsilon}$		\ldots
SWAN HUNTIER	Dec. 1946	502,800	Dec. 1947	395,316	Dec. 1948	453,957	Dec. 1949	421,956
S. P. AUSTIT	Apr. 1947	9,980	Apr. 1948	32,584	Apr. 1949	38,673	Apr 1950	43,499
R. \& W. HAWIHORN LESLIE	Jun. 1947	209,487	Jun.1948	177,019	Jun. 1949	202,444	Jun. 1950	223,795
SMITH'S DOCK	Sep. 1946	156,660	Sep. 1947	253,108			Sep. 1949	317,451

SHIPBUILDING FINANCE
(Shipbuilder)

	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year minding	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$	Year Ending	$\begin{aligned} & \text { Net } \\ & \text { Profit } \end{aligned}$
SWAN HUNTER	Dec. 1950	$\begin{gathered} \boldsymbol{\varepsilon} \\ 480,600 \end{gathered}$	Dec. 1951	$\begin{gathered} \varepsilon \\ 573,137 \end{gathered}$	Dec. 1952	$\begin{gathered} \boldsymbol{£} \\ 601,863 \end{gathered}$	Dec. 1953	$\begin{gathered} \boldsymbol{\kappa} \\ 597,640 \end{gathered}$
S. P. AUSTIN	Apr. 1951	57,791	Apr. 1952	33,478	Apr. 1953	19,981	Apr. 1954	19,130
R. \& W. HAWITHORN LESLIE	Jun. 1951	205,689	Jun. 1952	272,507	Jun. 1952	275,866		
SMITH'S DCOK	Sep. 1950	391,647	Sep. 1951	291,016	Sep. 1952	384,880	Sep. 1953	389,015

SHIPBUILDING FINANCE
(Shipbuilder)

	Year Ending	$\underset{\text { Mrofit }}{\text { Net }}$	Year Ending	$\underset{\text { Profit }}{\text { Net }}$	Year Ending	$\begin{gathered} \text { Net } \\ \text { Profit } \end{gathered}$	Year Ending	$\xrightarrow[\text { Mrofit }]{\text { Net }}$
		ε		\&		2		\ldots
SWAN HuNTER	Dec. 1954	720,756	Deo. 1955	839,959	Deo. 1956	1,036,251	Deo. 1957	1,482,952
AUSTIN \& PICKERSGILL*	Jun. $1955{ }^{\text { }}$	28,791	Jun. 1956	29,370	Jun. 1957	44,809	Jun. 1958	32,349
Sumta 's dock	Sep. 1954	278,586	Sep. 1955	471,449	Sepaz1956	413,313	Sep. 1957	421,985
hawthorn lestie			Jun. 1956	508,343	Jun. 1957	521,435		
*Amalgamation of Austin \& Piokersgill	+14 months trading							

EPGTOGUE

So far,this thesis nas tried to descride and analyse Nortn East shipbuilding only in the light of documentary evidence. there are two tinal questions let't to consider where one must take a more subjective, impressionistic stance: why did the industry decline in the post-war period in the face of rising world demand; and what is the prospect for the future. There is clearly no definitive answer to either of these questions; the subjective approach. must.be the maingguide.

In 194\%, britisn shipbuilding was responsible for 5 '7 per cent of world output (1.2 m. g.r. tons out of $2.1 \mathrm{~m} . \mathrm{g.r}$. tons). Since then, with only minor exceptions in 1954 and 1955 and 1959 and 1960, the percentage share has dropped steadily. sy 1965 the U.K. snare represented only ช. \quad per cent of world output ($1.0 \mathrm{~m} . \mathrm{g} . \mathrm{r}$. tons out of 12.2 m . g.r. tons).

The same trend is clearly discernible witn regard to North East shipbuilding. from 22 per cent of the worla's output in 1947, the region's percentage output was reduced to $3 . \%$ in 1905.

The percentage reduction was caused not so much by an absolute drop in output, altnough this did happen marginally, but rather by a Dig increase in world output while british production remained almost static.

In 194\% British output was 1,192,000 g.r. tons. It slowly climbed to a post-war peak of $1,4 \% 3,000 \mathrm{~g} . \mathrm{r}$. tons in 1955 and then fell to a low point of $92 \%, 000 \mathrm{g.r}$. tons in. 1963.e For the North East alone, output was 474,842 in 194\%, rising to a post-war peak of $680,626 \mathrm{~g} . \mathrm{r}$. tons in 1958 and falling to a low point of $440,17.1 \mathrm{g.r}$. tons in 1963. Meanwhile, world proauction increased froin 2,102,000 g.r. t. in 1947 to l2,215,000 g.r.t. Dy 1965. In other words, world production increased sixfold over the period, while oritish production never increased oy more than 25\% and North East never increased by more than 50 per cent. In addition, both trese relatively suall increases were followed by setbacks so that output in 1965 was less than in 194'? while world output was six times greater. why did Britain and the Nortn East in particular fail to expand witn the rest of the world ?

*	See Appendix, Table I.
**	
(Ibid.	
Ibid.	

One reason is that the united kingdom nad an unuaually large share of world output in 194%. As otner competitors, particularly japan and Germany, started to bid for work again, tnis percentage was bound to drop.

Secondly, tne size of tne british fleet has remained constant at about $20 \mathrm{~m} . \mathrm{g.r}$. tons.* Meanwhile, the Panamanian and Liberian fleets, "flags of convenience" nave grown from 3.5 m . gross tons in 1948 to 20 m . gross tons in 1965. the Norwegian tleet has grown from 4.25 m . gross tons to 15 m . gross tons in the same period and the japanese; fleet almost exclusively home-built, has grown from 1 m. gross tons to $i l \mathrm{~m}$. gross tons.

The domestic fleet must usually be the most important customer for any nation's shipbuilders. Certainly despite its nigh share of world output over the years, oritish snipbuilding in every year tnis century nas relied on britisn shipping for most of its work. The hignest export figures were recorded in 1930 and 1951 witn 44% of output for foreign customers. As table I has shown, the average percentage of foreign work is about 20.

So clearly if british shipping was not growing, this was a handicap for uritish shipbuilders. It was even more of a handicap considered in relation to the growtn of foreign fleets, most of them built by tne domestic shipbuilding industry. For example, the toral fleets of tne u.S.A., France, Gerwany and ltaly increased to about $24 \mathrm{~m} . \mathrm{g} . \mathrm{r}$. tons between 1900 and 1965. But these countries were outsnone by Japan whicn built up a very big fleet very quickly. by 1965 this fleet exceeded 11 m . g.r. tons and by une end of ly68 was expected to be about 17 m . g.r. tons. This growth naturally led to growtin by Japanese shipbuilding companies. And tnis growtn was reserved to domestic producers by the pontection of a 15% tariff and special credits.

With this firm base, Japanese yards could tender for foreign work at extremely competitive terms and they nave won a major share of the uncommitted market represented by Norway, Greece, Liberia and Panama - a market that grew at 8% a year between 1960 and 1965. In these conaitions it is pernaps little surprise that japanese output should almost. double between 1964 and 196% or that of her output in 196\% of $7.4 \mathrm{~m} . \mathrm{g} . \mathrm{r}$. tons, 2.9 m . was for home buyers and 4.5 m . for export. **

* Shipbuilding Enquiry Committee 1965-6, Report (Cmnd.2937) ** Ibid, p. 39 .

The lack of growth in the british fleet compared with the rapid increase in other fleets does not wholly explain british shipbuilding's failure to expand, however. We must also look at other factors.

The immediate post-war period was a time of exhaustion and complacency. 'tne war had draingd away a lot of energy and at the same time victory had produced a feeling of euphoria. Demand for ships was hign, competition among shipbuilders was almost non-existent. In this seller's market, the british industry simply postponed delivery dates with impunity or increased prices when necessary. At the same time tre memories of the 1930's prevented managements from indulging in large-scale investment programmes. In short, there was a lack of urgency.

This feeling lasted too long, however. By the early 1950's Japan and Germany had rebuilt their shipbuilding industries and were ready to offer keen competition to the Britisn. Especially in Japan, shipping and shipbuilding were chosen as two of tne key industries to re-establisn Japanese supremacy. The new yards were part of large groups, often practising vertical integration. until recently, tnere was a ready supply of cneap labour for shipbuilding offtered higher wages in Japan than most otner industries yet wage costs were still well below the European level.

In addition, the new yards incorporated the latest technology. They nad plenty of space, nad plenty of access to water for launcning, were less nemmed in on the landward side than British yards and usually operated under a different building system. Wnere British shipbuilding still uses launching ways the Japanese build their ships in dry, docks, using a large measure of prefabrication. the British are now developing prefabrication but apart from Harland and Wolff's new dry dock at belfast, ships are still launched into the water in this country rather than floated out..

One further factor aided the Japanese. Tne main. growth in the post-war period has been in tankers and bulk carriers. In 1967, for example, these. two types of vessel represented two thirds of the total world launches. These. large but essentially simple ships eminently suited japan's methods of production.

Furthermore, the Japanese Government has introduced numerous measures over the past 20 years to help tine industry: granting funds; paying the interest on the industry's debts; reducing the price of steel.*

For all these reasons, uapan was able to move anead, to grow and expand. By 196% it was responsiole for 47.5 per cent of world output. The united Kingdom, on the other hand, was responsiole for only $\quad .2$ per cent. the essential reason was this country's inability to.increase production because of its tailure to operate efficiently and to reduce its costs. between 1955 and 1965 the industry spent $\begin{gathered} \\ 6\end{gathered} 5 \mathrm{~m}$. on new investment but as the Geddes keport commented: "particular investment aecisions were seldom based on a thorough assessment ot benefits having regard to the market to be served." * 'hose yards which invested most did not necessarily pecome the most competitive. roo of ten we copied current practice in, say, uapan witnout realising that thisrepresented thinking that had taken place five years previously.

Investment programmes were often undertaken without a fuil study of the market. at which they were aimed or of the benefits theit would result. In nearly every case investment was designed to increase capacity and a saving could be snown because fixed costs and overneads could be spread over bigger resources. Seidom was investment undertaken to improve plant utilisation and tnereby increase productivity. This was tre essential area of difference between the british and the vapanese.**

Let us now turn to tne question of the future. As already shown in an earlier cnapter, a conmittee of enquiry was set up to investigate the industry. It produced a very constructive report in March lyoo, which suggested, inter alia, the reorganisation of the industry into groups. It suggested, too, that a Shipbuilding Indus\&ry Board should be set up for a limited period to supervise the reorganisation and provide finance, where necessary, to lubricate the process. ***
rinis reorganisation is now taking place. On the Clyde eignt individual companies have formed two groups. All tne companies on the lyne and tne lees belong to one group and there are two groups on the river Wear.

The advantages are beginning to emerge. Tne groups are now clearly competing against foreign competition. Previously individual yards were fignting one anotner as well as overseas competitors. 'rhis showed itselt' in unnecessarily low tendering, resulting in unprofitable work. l'here was also a duplication of effort in the task of tendering itself.

$*$	Cmnd. 293\% p. 23.
$* *$	Ibid. p. $81-2$.
$* * *$	Ibid.

Economies of scale are becoming apparent, particularly in regard to the buying. power of the companies. it is possible to gain large discounts: from steel mills and component manufacturers tor bulk purchase. In fact, the discounts are even larger tnan the most optimistic estimates had expected. *

Work can. now be spread around tne yards in a more
logical way. It could nappen in the past tnat one yard was solidly dooked witn work while another yard nad very little work. In the same way, workers can be moved around trom one yard to another. linis leads to more efficient production and to greater security for the workers.

To the benefits of reorganisation, one can now add tne power ot' devaluation. 'This nas resulted in a reduction of British prices in terms of the American dollar by about six to eight per cent. Assuming that this reduction is not wnittled away by wage increases or rising prices for steel and components, tnis will be enough to undercut japanese prices for some years anead. In fact, tne latter are beginning tu rise quite sharply is a resulu of wage increases.

An interesting example is the replacement market for Liberty general cargo snips. Tne Sunderland yard of Austin and Pickersgill has produced a model called the S.D. 14 with a deadweignt capacity of 15,000 tons. The Japanese have also produced a model called "Freedom" which is about 2,000 tons smaller than the SaD. 14. until devaluation trie price for the Japanese or Suncerland ships was about the same. Today tne Sunderlañ sinip is between 290,000 and まlu0,000 cneaper than its Japanese competitor. As a result tne yard has increased its orders from lo to 30 this year while the Japanese order booknas stuck at 47 for 18 montris. **

Two other financial consiaerations must be taken into account. Credit terms available in tnis country for eitner british or foreign buyers are now as good as any in the world. They amount to $\succ 0$ per cent of tne cost with 5 per cent interest repayable over tenyears. Secondly, the industry is almost wholly concentrated in development areas and tinus benefits trom the considerable grants that are available for new buildings or equipment. It also benefits from the Selective Employment Tax premium and the Regional Employment premium. inese are two sets of grants payable for each employee. Togetner they are worth to a company $\% 90$ a year per employee. In addition training and retraining grants are available.

* Sir Jonn munter, Chairman, Swan munter Group, in conversation with the autror.
** Mr. K. Louglas, Hanaging Director, in conversation with the autnor.

Finally, in our attempt to consider tne future of North East shipbuilding, let us take a detailed look at labour relations.

We have already seen in the previous chapter that there was a marked decline in the number of man hours lost through industrial disputes between 1960 and 1966. The figure rose again in 1967 primarily because of the fovernment's incomes policy rather than because of a deteriorating fielationsinip between management and men. *

Disputes, nowever, are not a satisfactory touchstone of labour relations. They measure only one extreme. We must therefore turn again to impressions. Let us look, first of all, at the experience of the furness yard at haverton nill near middlesbrough. .

In Marcn 1968 une Furness Snipbuilding Company, which had been in existence since 1917 and was part of the Sears Holding Group, announced that it was to close at the end of 196 ${ }^{\prime}$ when existing contracts were completed. 'the reason given was an inability to secure furtner profitable work.

One mignt nave expected that the morale of the men would sink to zero, that they would demonstrate, perhaps even. go on strike. In fact, nothing of the kind occurred. The last three ships were completed on or before schedule. As a result the men qualified for bonus payments.

Part of the figh spirits must be atcributed to the management's policy of trying to place the men in other work. men were allowed to go off for interviews during the company's time and Ministry of Employment and Productivity teams were regularly in tne yard advising the men of otner opportunities. Between marcn and September l96\% the total labour force snrank from 3,000 to 2,000.

Why were relations so amicable $?$ One reason was tre management policy outlined above. But more important, tne men felt that a nign standard of workmanship and timekeeping would force the ministry of Tecnnology to consider every possibility of keeping the yard open.

The upsurge in orders during tne suminer provided the opportunity for Swan Hunter and Tyne Snipbuilders to acquire the yard. The sum was' 22.5 m. ; of which $\begin{gathered}\text { (1. } 5 \mathrm{~m} . \\ \text { was }\end{gathered}$ to be in cash (with the nelp of a ministry grant of $\dot{x} \mathrm{~m}$) and tne rest in shares. Swan runter and lyne Shipbuilders was able to put $2: 24 \mathrm{~m}$. worth of orders into the yard immediately.

At a conference to announce the above arrangements, mr. Anthony Wedgewood Benn, the minister of rechnology, declared that it was the calm, sensible attitude of the men that nad provided the greatest stimulus to finding a solution to the Furness problem when at many tines the prospects for the yard inad looked extremely pleak.

Anotner speciftic example of improving labour Helations was tne shipyard cnarter signed on the river Tyne in October l968. This charter.standardised working practices tnrougnout tne five yards on the river now that they were part of the same group. The document covered such points as overtime, disputes procedures, timekeeping and double shift working. Une of the interesting features of tne way the document was drawn up was that, besides management and union representatives, each meering was attended by two shop stewards from eacn yard, in an attempt to bring the feelings of the men to bear on tine problems in hand. *

Anotner example was tne negotiations tnat went on for most of 1968 between the boilermakers Society, which controls platers, welders, caulkers and burners, shipwrights and virtually all structural workers, and Swan runter and Tyne Shipbuilders on new rates of pay tor more tilexible operating practices. The Boilermakers Society was prepared to offer mucn greater flexibility and to some extent even intercnangeability between men doing different jobs. Flexibility, in particular, would considerably cut production times and prevent workmen hanging arouna for colleagues to ao small jobs ror them. **

In return, the union wanted nigner wages and a simpler wages structure. 'Inere were, for instance, 30 different rates of pay for platers in one yard alone. The proposal was ro institute tnree or four pay grades for all tne boilermkers. Agreement between union and management ofticials nad been reached, when these words were written. the next task was for union ofticials to sell the package to their members.***

* See the autnor's article in tne Financial Times, loth Sept. 1y6y ** Ibid.
*** Ibid.

The effects of better labour relations, devaluation reorganisation and other factors are now oeginning to show through. In tne first six months of ly6 britisn shipbuilders booked slightly more than a million tons worth of oraers. In the second half of the year, the rising momentum seems to be continuing and total new orders tor the year in excess of two million cons seem a distinct possibility. At the end of seprember 1960 the industry nad a total order book of ま5\% 0 世.

There are tnus numerous signs inciicating a renewed vigour in the industry. some close observers are prepared to say tnat the slifpuilding industry is now in a stronger position than it nas been in at any time since before the war. At tipst signt, sucn claims may look exaggerated but the main basıs for making tnem is tnat tae industry is truly more efficient than it has ever been, tnat grouping is beginning to provide real strength, that shipyard management is demonstrably more professional, and that tre unions are taking. a more positive role.

These of course are impressions. Japan has a huge lead whicn it will not be easy to pull back. but one should remember that the chief deficiency in britisin snipouilding in recent years nas been in the structure of the industry. Technically, the sritish proquct has always been as good as any in the world. As regards price, tre prouuct is on a par witn or actually undercuts the main competitor nations. It was in production costs and to a lesser extent production methods that the main riouble lay. 'Ine indications are tnat those deficiencies are being corrected.

Given a continuqng high level of world demand, there now seems no reason why british shipbuilding should not experience a period ot growth and of profitability. It seems equally likely that tne North Last coast will provide most of the leadersnip. The movement towards amalgamation has gone furtner than anywnere else، Industrial relations are noticeably more anicable. Many of Britain's past shipbuilding successes new models, changes in techniques - were inspired in the refion. Together witn the clyde, it is the main snippuilding district in the country. Regional and national prosperity are tnerefore closely interwoven. joth should now experience a big change for the better.

BIBLIOGRAPHY

 London, 1951.
Armstrong, W.G. "Incustrial Kesources of Tyne, Wear \& iees in l863." Transactions of Britisn Association meeting, Newcastle, 1863.
Asnworth, W. Economic History of England, l8\%0-1939. London, 1960.
Appleyard, R. Sir Charles Parsons, London, 1933. Austin \& Pickersgill. Full Anead, Company brochure ol Bartram \& Sons, Centenary Souvenir or the Company's nistory of British Snip Research Association. Annual Reports. \therefore
British Association. Transactions of annual meetings neld. in Newcastie in 1838, 1863, 1889, 1916 and 1949. Burn, D. The Structure of British Industry, Cambridge 1958. Clark, U.F. Industrial Relations in the ivortn East, l8501914, M:A. Tnesis, Newcastle University, 1966.
Clegg, ri.A. History of British Trade unions Since 1৫89, vol. 1, 1964.
Cochrane, Alfred. "The Early History ot Elswick", Newcastle, 1909. Davidson, j.F. Palmers of varrow, 1852-1933. Doxford, W. William voxford © Company.. Sunderland, 1921. Fordyce, T. Local Records of Sunderland, vol. 1, 1ช8.3-1867, Vol. 2, 186'7-18'74.
Fairbairn, W. Treatise on Iron Shipbuilding, its History and Progress. London, 1865.
Hallswortn, h. ${ }^{\text {Hi }}$. Industrial Survey, Nortn East Coast. Board of Trade, 1932.
Hawthorn, Leslie. Our Snips at Work, 1946-1952
Hobson, A.C. Industrial Structure of the Nortn East. M.Sc. Thesis, ivewcastle universityl, 1950.
Hodgson, G.B. History of Soutin Snields, 1924. Hougn, R. The Big Battleship, London, 1906. Henry, U.L. Thirty Five lears of Oil Transport. London, 190\%. Jackson, P. Jwo Decades of Kesearch o Developinent on the Doxford Engine. Newcastie, 1963. dohnson, R.W. The making of the Tyne, 1895. vones, L. Shipbuilding in Britain, Cardiff, 195'. Lawson, W.D. Tyneside Celebrities, Newcastle, 18.73. Laing, Sir James. Concerning Ships. Company brochure. Middlebrook, S. Newcastle upon Tyne, Its Growth and Achievements. Newcastle, 1950. Bitchell, A. Splendid Sisters. London 1966. Mess, H.A. Industrial Tyneside. Naval Yard Review, 1947-1954. Aagazine of vickers-Armstrong. Newcastle Corporation. Inventory of Armstrong papers. North East Coast Institution of Engineers \propto Snipouilders. Transactions 1884-1966.

Parkinson, $\bar{j} \cdot \boldsymbol{K}$. The Economics of Shipbuilding in the United Kingdom. Cambridge, 1960.
Pollard, S. Economic History of Snipbuilding. Pn.D. vegree, London University.
Pollock: $\mu_{\text {. }}$ wodern Snipbuilding. London, 1884.
Readnead, J^{\prime}. Centenary Brochure of the Company, 1948. Richardsons, Westgarth. The Story of the "Turbinia". Newcastle 1960.
Richardson, W. History of the Parisin oi Wallsend. Newcasile, 1923.
Scott, j. History of vickers, London 1962.
Shipbuilder. Copies of the Magazine from 1906.-1967.
Snipyard. Magazine of the Swan Hunter Group, 1947-1960.
Short Bros.' History of the Company 1850-1950.
Smith, J.W. © Holden, T.S. Where Ships are Born. Sunderland, 194\%.
Smitn's Dock. A Jubilee History 1949.
Swan Hunter \& Wignam Richardson: Launching ways/1953.
Wilkinson, E. The Town That was Nurdered. London, 1939.

ABERDEEN, shipbuilding. 28.
AimIkAli'Y. 117, 222, 225; work for, 41, 111, 115, 149.
AIR Challenge 'o ShipBuIluting. 230.
AIRCRAFI CARKIEKS. 19Y, 222.
AdiALliAMAITION OF SnIPPIIVG FTRivS. 232.
AMERICA REVERTS TO WUODEN SinIPS. 154.
AMERICAN WARSnIPS. 94.
AVIEKICAN KAR OF INUEPENUENCE. 9, 11, 14; Effects of, 44.
AnGlo-Awerican oIl Thane. 79.
ANTI-SUUMARINE VESSELS. 222.
ARbUS - M. ANDRE, designs liner. 229.
ARGENTINE - Warsinip for. 94, 96.
ARwSTRONG, MITCrELL \& © CO. 71, 78., 85, 92.
AR!STRONG WחITWORTH \& CO. LID. 94, 115, 137, 163. ARMSTRONG, WILLLAir. 23, 24, 61; (later Sir) il, y2. ARmSTRONG, SIK W.\& CO. LID. 91, 92, 94, 95, 96, 98, 70. AUSTIN, PETEK. 20.
AUS'IIN, S.P. andiron snips. $89,208$.
AUSIIN \& PICKERSGLLL. 264, 266, 272, 324; and Liderty Snips, 238.
AUSiRIA, bulk carriers for. ४2.
AUSirRO-HUNGARY, vessels for. 7.8, 93.
"AUXETOPHONE". 120.
AUXILIARY SCREW PRUPELLEK. 48.
BALLAKD, M. 258.
BARTKAM \& SONS. 20, 47,160, 226, 232, 240.
"BEDLINGTON". 27.
BETIFLEHEM STEEL CURPOKATLON. 154.
BLYTH. 75. 76.
bLYTh SnIPbuILDING \& DKY HOCKS COmpaNY. 160, 241.
BOAIS. 7.
HONAR LAW. 162.
BOILEHuAKERS SUCIE'IY. 64, 6'7, 141, 177, 249, 267, 326. "BOWES, JOHN°. 32, 33, 34, 48.
BOYע, WILLIAN. 69-72, 73.
BKITISH PRODUCiIVI'Y COUIVCIL. 234.
BKITISHi SIIPPING (ASSISTANLE) ACT. 193.
HRITLSH SHIP KESEAKCH ASSUCTAITON. 242.
BKOLERICK, L. 13.
BuLwan, ن. l'7, 3'7, 100, 197.
BUKN. ע. 256.

Chariberlain，NEville． 189.
＂Charloicte nuivdas＂． 16.
ClARK，GiLORGE．39；and Co．241， 244.
ClaRne，U．F．50－53，60－62，64－6У，139， 143.
CLEEGG，H．A．139－144，26
©LEGHOKN，w．A．171．
ULELAives．238， 239.
＂CLEKッONT＂． 16.
＂CLERK $m A X W E L L "$ 238．
CLEvElAN． 24.
CLEVELANU SiiIPijuILDLNG UOmPANY． 223.
COAL． $8,23,25,30,31,33$.
COAIES，JARVIS． 10.
COCriHANE，A．Hi．v．148．
COOK，CAPIAIN． 11.
iOUTIS，u．r．26，29，38．
CKASiER，SIik Eiliund．163．
UROSS，UULIN．189， 212.
CK』PPS，S IR S＇AFFOKD，on allocation of steel，227．
CRLMEAN WAK．51， 52.
CULVEK，п．B． 11 ， 105.
CUNAKD UOMPANY and the Government order vessels，101；new challenger，l8४；turbine ship，ll9．
＂DE BRUS＂． 40.
DEFOE，LAN\＆EL，on North East shipbuilding，lo．
DEPKESSION，effects of，50，52，59，＇212，213， 214.
D＇EYNLOUK＇T，SIR E．91－93， 96.
DIESEL ENGINE．121，203，204， 205.
＂DLXON，uAMES．＂ 33.
＂DONINION w ONAKCin＂． 205.
vUUGLAS，K． 324.
DOXFOKD，WILLTA以 © $40.20,121-6,136,161,171,175,204$ ， 226，229，240，242， 245.

EAST INDIANEiN． 14.
EUWAKD I．－snips for．7．
EvWAKUS，N． 249.
ELECTкiC Propulsion o SrilPs． 203.
ELIZABEITR，LUEEN． 7.
HLSW1CK．23，92－94．
kivPLOYEKS，complaints against workers． 246.
EMPLOYERS＇FEDEKATION．17\％．
＂EMPRESS OH ENGLAND＂． 231.
＂EXPEKImEN＇I＂．19：。
EXPOKIS． 4.

FAIRBAIRI, WILLIAM. 2'7.
FAULhNeR, uOniv meade. 153.
FEUERATION UH SMIPHUILDING \& ENGINEERING TKANES. 1\%5, 177. "FERGUSONS". 81, 82.
FıSabuRn. 10, 11,
FORDYCE, WILLLAM. 15, 45.
FURNESS STIPHUILDING COMPAINY. 5, 156, 202, 231, 233, 325, 237, 250.
FURNESS, SIK UnRISTOPnER. 131.
"GARROW, uOnN". 28.
GEUDES, STK ERIC. 151.
GEDLES, MK. KEAY. 240.
GEDDES KEPUK'. 21, 66, 240, 245, 26\%.
GENEKAL WAGES AGKEEMEN'T. 210.
GLBB, vAURICE, designs "Quadropod". 204.
GOOL, E.T. 188 .
GOVEKNHEIVI. 151, 162, 187-8, 193, 236, 240.
GLAUSTONE, W.E. 57.
GLASGOW WEEKLY MEKALU. 18ర.
"GLOCKAUF". 85, 86.
LiRAY, SIK WTLLTAm \& COMPANY. 83, 127, 130, 155, 161, 233, 236.

HAlLSWOKi'n, PkOF. si.m. 261.
Haklaive \& WOLFF. 1'70, 272.
HAIKY, ULAKENLE. 156.
HATFIELU, BISMOP. 7.
HAVELOLK, ' 13.
HAVER, A.H. 123.
HAW, '1'. '14.
HAWnS, CRAWSHAY. 19.
HAWLHORN, LESLIE. 59, 70, 71, 79, ర3, Y1, 100, 138, 1ర'7, 197, 199, 200, 208, 223, 237, 238, 240.
HAWIHOXIN, R. \& W. 17, 18, 23, 39, 40, 48, 49, 70.
nENAY, 」.D. 80.
MOLSON, GEOKGE. 12.
MOLUEN, 1.S. 7.
HOLI, LAWHENCE. 159.
MOUSE, U.W. 26, 58, 215, 216, 21'7.
HUNHEK, JK. G.H. 188.
HUNAER, Mik. ت̈. 234, 243. Sir J. 324.

IBISON．，K． 236.

IRON．24，2\％，2४，2y，35，36，40－42，8४－y0．
ISHERWOOD，SLK J．128－130，205， 206.
JACnSON，P． 243.
uAPAIV．5，93，239，220，231，233．
UAvES，M．C．\＆L．E．SMI＇r． 149.
UARTIOW．213．March． 214.
$\checkmark A R H O W$ SLAKE． 149.
UOMNSON，R．W．16，33，54，79．
〕OnES，L．185，190，193， 253.
＂KELLY＂，Him．S． 200.
nek W LLSON，UK．W．171， 204.
＂KING GEOKGE y＂．200．Batrleship Types． 222.
KOKEAN WAR． 227.
LabuUk，mInistry Or． 248.
LACEY，UUIVAIHAN． 11.
LAING，SIK \checkmark AirES．231， 236.
LALIVG，P．13，21， 46.
LAWSUN，WILLIAH． 43.
LESLIE，ANIRREW．36，37，48，64． LESLIE，RAWIHOKN \＆CO．（See under H．） ＂LIGEK＇Y＂ShIPS．238．
LIME． 8 ．
＂LINA，HHE＂．（Magazine of Ficnardsons Westgarth）． 243.
LONGBORNT，G．o m．10，11．
LIAHGROW，SIR UAmES． 191.
LLOYD GEOKGE． 149.
LLOYD＇S KEGIS＇EK．16；85，109．
＂LOF＂IUS＂． 39.
LOiNDUN \＆LAmBRILIEE ELONOmIU BULLEITIN．3，271．
LONJJIN． 9.
MCGARvEY，i． 2 jO．
MARK，A． 236.
MAKDrALL，f．l．59，7U，7l．
HAKSHALL，1．D．12，19，2\％， 28.
＂MAURETANTA＂．100－10\％， 121.
MAXWELL，KEAR ADNIRAL SLR WELLWOOD． 224.
MESS，LR．MENKY．181， 262.
MIレบLE゙нROOK，S．7，12， 24.
＂нIUuLeSbRUUGi＂． 21.
MITLMELL，し．36，76，78，84，92．
MOLOK CAKGO LINERS． 159.

NA $1 \perp$ ONAL SHAPbUILDERS SECURATY LLMITED. 184, 185, 193. NAVY ESTHMAIES. 1Yy.
NAYY. 42, 222.
NEWCASILE. $8,16,23,25$.
inEwFUuNuLAND PAPEk mills sCrEmE. 164.
NOBLE, SIR A. 95.
n OriTl EASI MAKLNE EINGLNEERING COMPANY. 73.
NOKLi\#UMBERLANL SHIPbUILUiNG CUmPANY. 101, 223.
inOkiH EASI DEveLOPMENI CUUNCLL. 220.
"NOK'HERIN SHAR". 235.
NTive HOUik mOVEmEivi. 60.
NUCLEAR POWER. 244.
OIL HAVMEKS. 19, 80, 80.
OKMS'ION, HAURIUE. i४O.
PALuEik, umARLES. 32, 33, 35, 36, 40, 42, 60, 63, 88-9, sir C. 172.
 $183,184,18 \%, 191,192$.
PARKINSUN, U.K. 24, 70, 220, 221, 254.
PAKSUNS, SLR U.A. 102, 108, 111-121, 158.
PERKEII', J.K. 7.8, 98.
PICKEKSGILL, WILLLAM. 20.
PILE, WILLIAM. 34, 45, 46.
POn'OON DOUK, Govermment's. 149.
PuPulaiton. 25, 58.
PkILE, u. 10.
PRIUE, \cup Orin. 26.
PkIESTLEY, U.B. 189.
PAKSUNS \& mARINE ENGINEEKING TUKBLNE RESEAKCR \& LEvELUPiviNNM ASSOUIAIIUN ("PAriETKADA"). 242.
"PKOvENCE". 229.
PYE, mAKK. 14.
PYINAN, SIR FKELERICK. 189.
"Q.3". 235.
"Q.E.L.". 29.
"QUADRUPOD". 204.

KAnE，KIviHER \＆UO． 40.
אEAUHEAL，U．75，20\％，240．
HE゙NWICK． 155.
R\＆ChakDSUN，DUCh \＆COmPANY．40． klChArcis UN，u．W．16，38， 59.
R\＆UHAKDSUNS，WESTMArïn．111，1\％O，241，243， 244.
KlimakDSoiv，w．29，55，56，\％4．
RICHmOND，1．14，39．
KIISON＇S SHIPPING \＆ENG 1 NEEKING COMPANY LID．125， 100.
ROPNER＇S SIIPォUILDING CUNPANy．175，223．
RÖWE，u．59， 90.
ROWE，W． 14.
KOWN＇SEE，T． 19.
KOYAL UUHCH SIELL GROUP．228．
SGmLestivgek，m．74．
SCu1＂1，U．ע．23，95，99，164，105，222， 226.
SUOiT，U．W．\＆K．A．HUGBES． 255.
SniEllus，nURTM．12， 27.
ShIEluS，south．12，16，19， 27.
SHIPbUILUING AumISUKY COminissiun． 150.
SHIPロUILDLING EmPLOYERS＇FEDERATION．143，183，186，209， 210.
SnIPbuILDIivg CukPurailon．223．
SHIPBUILDING ENGUIFX CUMmiSSIUN．240，241，245，321．
ShOKT，BROS．62，89．
SnORT，LEORGE． 47.
Smili \＆mOLUEN．7，34．
SMITH＇s DOUK LOMPANX．14，208， 240.
sinith， 1 ． 14.
＂SiAR＂． 27.
SHEPRENSUN，K．∞ W．18， 23.

SWAN，CO．S．193，198．
SWAN，RUNIEK GKUUP．28，76，91，100，241，326．Protits， 271.
SWAN RIUN＇LEK \＆WLGMAM KICHARDSON．158，160，166，1\％3，18＇7， 197，198，224，22\％，229，234，23\％，240，245．
STKLnes．49， 50.
＂Sikuciural Changes In Shipbulhding＂．Paper． 220.
SUNDEikLAND．7，19，20，26，39，45－7，52，62，65， 132.
SUPEK HOOD，battle cruiser． 162.
SymINüluiv，W ． 16.

1EES．19，25，40，47，48，54．
＂iERKUk＂． 42.
Hriompsung UイKıL к． 226.
Tromirsuin，u．L．\＆UOmPAivy LTD．220，234，235．
TnOMPSUN，K．19，20，158．And vo．107．．
＂HOKRENS＂． 89.
＂YuRbinIA＂．107－111．
TURBINE machineky． 149.
＂iukret＂SiIP．121－2．
＇I＇WELVETKEES，IV NOBLE 150 ． TYNE．8，19，23，26，37，40，54．「rıAves， 24.
vEKilCAL INIEGKAITUN． 6.
－vIUnERS AKMsikUNG Lid．105，166，163，198，199，200， 202，222，231，234，235，240， 260.
vILKERS，DARKUW． 163.

HALLIS，кObERT． 12.
WAnE，UASPEK． 11.
WAR OF INDEPENLENCH．（American）．11， 14.
WAS』INGTUN CUNFEHENCE． 161 ．
WASmINGUUN NAVAL LLMiAAMIUN TrEATY．162， 163.
WEAK，26， 40.
WEALHEKमL，R CraAKU． 10.
WEBB，B．© S．138－9．
WILLINGTON QuAY．i2．
WhHiBY．8， 10 ．
WrIIWOKIH，AKMSIKUNG． 94.
WILNINSUN，ELLEN．35，41，43，133，135，184， 191. WALLSEND SLIPWAY COAFANX．72，163， 241.

YARMOU＇Ir． 16.
YOUNG，KEV．GEORGE． 10.

[^0]: * "Tyneside Celebrities" by Wm. Lawoon, published Newcastle 1873.
 ** "The Town That was iniuriered", p.81.

[^1]: * "Fragments of the Early ristory ot tne Tees" by W. Fellowe, published $18 \% 6$.
 ** "ine making of the 'tyne" by R.W. jonnson.

[^2]: * Report of tine jepartmental Committee on Snipping and Snipbuilding, soard of Trade, 1918. J.W. nouse, "Population movement in N.E." *** Ibid. **** Total U.K. tonnage 903,697, of wnich N.E. coast was responsiole for 500,907, the Clyde 280,037, Kest of England 116,953.

[^3]: * J.F. Clarke.
 ** See "Mowbray Quay to Pallion Yard" a nistory of Snort Brotners Limited, puolisned 1950.
 *** The Times, 13th September 1890.

[^4]: * "Where Ships Are Born".
 ** From Koyal Comuission on Depression, l 806 , 3rd keport, page 299.

[^5]: ** J.F. Clarke.

[^6]: * William soyd. ** "ristory of the Parish of Wallsena," *** "The waking of the Tyne", p.258.

[^7]: * Perrett to N.E. Institution of Snipbuilders \propto Engineers, 1914.

[^8]: * T.A. Brassey's Annual Naval keviews.
 ** Perrett.

[^9]: * Richard hougn, "Ine big battleship", London 1966, p.17.
 ** Ibid. *** Ibid. p.37-8.

[^10]: * "The Big Battleship" by Richard Hough, p.63. ** Ibid. *** Ibid.

[^11]: * U. Bulman in "Tne Private history of R . $\propto \mathrm{W}$. nawtnorn, Leslie \propto Co. " ** lbid. *** "Launching ways".

[^12]: * "Shipbuilder", Vol. l, page 6l.
 ** Ibid. *** Ibid.

[^13]: * "Charles Parsons" by Rollo Appleyard, p. 32.
 ** "Cnarles Parsons" by Rollo Appleyara, p. 74.

[^14]: ** "The Steam Turbine" by R.H. Parsons.

 * "Sir Cnarles Parsons \& Tne Royal Navy" by Sir stanley Goodall in a lecture of the koyal Society of Arts, marcn 1942.

[^15]: * "Longitudinal Framing of snips", article in "Shipouilder" Autumn 1907.
 ** David Pollock in "Snipbuilder", magazine, spring 1904.

[^16]: * "Snipbuilder" January 1914.

[^17]: * Robert Wood, "history of West nartlepool." p.274-8.
 ** lbid.
 *** Ibia.

[^18]:

[^19]: * The figures for the first 3 columns are earnings of Boilermakers at Palmers, Jarrow, quoted to the Royal Commission on Depression, 1886, 3rd Report p. 299.

[^20]: ＊＊Ibid．

[^21]: * "Snipouilder", January 1918.
 ** Ibid.

[^22]: ** Shipbuilder, April 1921.

 * Shipbuilder, july 1920.

[^23]: The Cowpen Dry Docks \& Shipbuilding Company was formediin 1926 to acquire the premises and equipment of the Blyth Shipbuilding \& Dry Docks Company and Ritson's Shipbuilding \& Engineering Company. It was formed by R. S. Dalgleish, a Newcastle shipowner.

[^24]: *** Sir Edmund Craster in a biographical introduction to the World Classic Editions of Falkner's novels.

 * "Snipbuilder", January 1923.
 ** Ibia.

[^25]: * "ine Town lnat Was vurdered". p.137.

[^26]: * Sir Charles Parsons in a paper to N.E. Coast Institution of Engineers and Shipbuilders, January 1927.

[^27]: * L. vones, "Snipbuilding in britain", Lardity 195\%. p.133-7. ** ibid. $*^{*} *$ iuid. $* * * *$ ibid.

[^28]: * "Ine Town Tnat Was murdered", p.157.

[^29]: * L. Jones, "Snippuilding in mritajn", Cardifi 195\%, p.106-7.
 * Shipoing World, lOth January 1934.

[^30]: *** C.S. Swan in Lloyds Annual Review, 3lst Dec. 1935. L. vones, "Snipbuilding in britain", p.llo.
 ** \quad bid.

[^31]: * Snipouilder, April 193l.

 Aprid 1932.
 *** iuid.

[^32]: * Private history of R. \propto W. Hawtnorn, Leslie, vy u. dulman. ** snipouilder, April 1933.

[^33]: * shipbuilder, 」anuary 1y3i.

[^34]: * sinipbuilaer, vail. 1 y 32 .
 ** 1 Dia.
 *** $\mu \mathrm{r} . \mathrm{Ker}$ wilson.

[^35]: * Snipbuilder, uart. 1932. ** 1bid. *** 10 id.

[^36]: * Snipbuilder, uan. ly32.
 ** Colin Cross in the Observer Article quoted above.

[^37]: * Census frigures.
 ** Ibid.

[^38]: * "Shipbuilder", April 1946.
 * "Snipbuilder", january 194'7.

[^39]: * "S.nipbuilder", June 1956.
 ** "in.E. Inaustrialist ", עecember ly56.

[^40]: * "Snipouilder", vanuary 1963.

[^41]: * Company's own records \& booklets.
 ** Company's own pamphlets.
 *** Company records.

[^42]: * Line motor Snip, may 1963.
 ** Ioid.
 *** Keport of the Shipbuilding Enquiry Committee, p.160.

[^43]: * Mr. Don Edwards, Secretary of tne iyneside Branch of the cionfederation of Snipbuilaing and Engineering unions, in conversation witn the author, 14 tin February 1960.

