Durham E-Theses

A mathematical study of the generation of microseisms by waves at sea

Redfearn, D. E.

How to cite:

Redfearn, D. E. (1952) A mathematical study of the generation of microseisms by waves at sea, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9777/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

A MATHEMATICAL STUDY OF THE GENERATIIN OF MICROSEICMS BY WAVES AT SEA.

PRESEMT ED BY
DOKALD EDWAFD PEDFEAPN B.SC. (Dunelm); B.A. (London) for the degree of M.Sc. April 1952.

CONTENTS.

Chapter Page

1. Int roduction. 1.
2. The second order pressure variation on 4.sea bed under a train of standing wavesin an incompressible fluid. .
3. Evaluation of the mean pressure beneath 24.
a given mass of moving fluid.
4. The standing wave and the progressive 39.
wave.
5. The total force over a horizontal plane 42.under a surface wave motion of general form
6
6. Application of the results of chapter 6 129.to ocean waves.8. The displacement of the sea bed due to an $\mathbf{2 5 2 .}$oscillatory force applied at the free surface.
7. The displacement of the ground due to 203. ocean waves.
8. Practical spplication of the results of 210. chapter 9.
9. Conclusions. 223.
References. 225.

Chapter 1. Introduction.
Sensitve seismographs record oscillations of the surface of the Earth which have an amplitude of a few microns. Many of these are cleary of local origin and are due to wind gusts against the observatory building, traffic, frozen ground, etc. There are however continuous oscialations of periods between 3 and 10 seconds and amplitudes between 0.1 and 20 microns. The word microseism is reserved for this latter type of seismic disturbance.

It has been noticed that the intensity of microseismic disturbance increases simuitaneously over Large areas of Europe and North America (Gutenberg 1931,1932; Lee 1934). Whipple and Lee (1936) noted that the greatest disturbance is found in coastal. xegions bordering on a well developed depression, but that equally developed depressions did not necessarily give rise to equal amplitudes. Ramirez (1940) has shewn that microseisms recorded at St. Louis are received from the direction of depressions off the Atlantic coast. Banerji (1930,1935) gave evidence that microseisms were recorded in India as soon as a storm was formed in the mid-Arabian ea or in the midebay of bengal, five or six hundred miles away from the coast. He reports that tremendous waves wese produced and concludes that these in some way originate the microseisms. He points out that the waves from the storm would take two or three days to arrive at the coast, so that the waves over shallow water could not account for the microseisms which were recorded as soonaas the storm was established.Lee ($1935+$ tabulated the phases of microseisms received at Kew on six occasions when depressions were located over different parts of the Eastern Atlantic and Western Europe. ${ }^{4}$ e finds that the phase differences between components confirm "the theory that microseisms are Rayleigh waves in the Earth's crust and concludes that microseisms are generated in deep water. Lee(1934) investigated the effect of the subsoil and of the geological formations under observatories on the amplitude of microseiemic disturbances. Analysis of the motion of a seismograph pillar, and measurements of the earth resistance at Durham and Kew, show that the tilting of the pillars due to microseismic oscillations is negligible; consequently the accu.acy with which these oscillations are recorded cannot on the subsoil. He found that variations in microseismic amplitudes are due t_{2}
geographical and geolugical causes, and that the ratio of
horizontal to vertical components at stations on earlier geological formations was in agreement with the theoretical value for Rayceigh waves.

The observations of Lee (1932), Banerji (1935.) and other writers indicate that microseisms must be generated in deep water. The fairly obvious source of energy for microseisms, namely sea waves, has for a long time been neglected owing to the inability of the current first order theory of hydrodynamics to account for
a pressure variation at depths greater thm half a wave--length. Bamerji carried out experiments with waves in tanks and found that ''the disturbance starting from a maximum value at the surface diminished up to a certain depth and then increased to another but lower maximum at the bed''. He considered that this phenomenon was a consequence of the compressibility of the water, and in a subsequent analysis he obtained an expression for this pressure. Banerji's results are difficult to explain and it seems likely that his experiments were on the wrong scale. His work has been severely critised by Whipple and Lee (1935) and mistakes in his mathematics have been indicated by Baxter and Archer(1935). Scho」te (1943) considered a variable pressure applied to the surface of the sea and found the displacement of the sea bed; shewing that such a variable pressure causes the simultaneous development of gravity and compression waves he uses a first order theory to shew that whilst the gravity waves are attenuated exponentially with depth the compression waves are transmitted unaitered to the sea bed and there produce periodic displacements of the ground. The weakness of this as a theory of the origin of microseisms is that sea waves are not generated by such a pressure variation (Jeffreys i925).

An earlier theory due originally to Wiechert and until recently supported by Gutenberg (1931) was that microseiems were generated by the surf breaking along the coast line and transferring the energy of the waves to the ground. Undoubtedly some energy will be imparted to the ground by a ''breaker', but the innumerable breakers along a coast do not break simultaneous so that the surf seems likely to produce a very complex motion. Further most coasts are not of the steep type required by the surf theory.

Bernard (1941) obtained evidence which led him to believe that microseismic oscillations have periods which are hadf those of the sea waves which give rise to them. He reached this conclusion by comparing the microseisms recorded at Averroes, near Casablanca, with : ..simultaneous observations on the sea waves reaching the coast. The same ratio was noticed by Deacon (1947) between the frequency of microseiems recorded at Kew and sea waves recorded at Perranporth on the north east coast of Cornwall. Deacon's work suggests that the waves entering the coastal region west of the British Isles wexe responsible for the microseismic activity at Kew. Darbyshire (1950) shows that it is possible to reconcile the two views that microseisms are generated in deep water and in coastal water if we consider that the microseismic activity at any particular observatory is due to more than one source. He selected three occasions when a single depression cuer the Atiantic was producing large waves whilst the wave activity in the coastal region was smail. The records of the Kew Ga」itzin verticad seismograph were subjected
to frequency analysis, and in each case it was possible to identify two bands of frequency. It was possible to identify the microseismic waves which had a two to one frequency/ with deep water waves in mid-Atlantic and these which had a similar connection with the coastal waves.

Thus a satisfactory theory of the origin of microseisms must be able to explain how surface waves in both deep and coastal waters canfinfiuence the sea bed and why the seismic waves have twice the mean frequency of the generating sea wave group. The key to this problem was provided by Mich (1944) who, in a thorough second order investigation of wave motion in an incompressible medium, obtained expressions for the velocity and pressure under progressive and standing waves. He found that under a standing wave there existed a second order pressure variation which was independent of the depth and had a frequency twice that of the surface wave. A shorter proof of the existence of this second order pressure variation under a standing wave was derived by Longuet - Higgins and Ursell (1948). It has also been investigated experimently at Cambridge by Cooper and Longuet-Higgins (1951). This has been used by Loneuet-Higgins (1950). 5 to demonstrate that opposite wave groups, that is wave groups of similar characteristics but travelling in opposite directions, originating in a depression or near a coast produce seismic waves of the same order of frequency and amplitude as microseisms.
\times Sue also ante mr. 224

Chapter 2.

The second order pressure variation on the bed under a train of standing waves in an incompressible fluid.

In the classical study of Hydrodynamics it has been usual to assume that the wave amplitude and derivatives of it are so small compared with the depth that second and higher powers of these quantities may be neglected. In this section the coordinates of the position of a particie and the pressure at a point will be determined tu the second order in these small quantities. We shall use the Langrangian form of coordinates and consider a two dimensional motion; the wave motion being supposed to occur betweentwo dercralailei planes unit distance apart.

Let (x_{0}, z_{0}) be the initial coordinates of any particle of fluid and (x, z) its coordinates at a time t. Then by Lamb $\oint 13$ the equations of motion are

$$
\begin{align*}
& \frac{\partial^{2} x}{\partial t^{2}} \cdot \frac{\partial x}{\partial x_{0}}+\left(\frac{\partial^{2} z}{\partial t^{2}}-g\right) \frac{\partial z}{\partial x_{0}}+\frac{1}{p} \cdot \frac{\partial p}{\partial x_{0}}=0 \\
& \frac{\partial^{2} \dot{x}}{\partial t^{2}} \cdot \frac{\partial x}{\partial z_{0}}+\left(\frac{\partial^{2} z}{\partial t^{2}}-g\right) \frac{\partial z}{\partial z_{0}}+\frac{1}{p} \cdot \frac{\partial p}{\partial z_{0}}=0
\end{align*}
$$

where ρ is the density in the neighbourhood of the particle and P is the excess pressure over the atmospheric pressure at time t.

Assuming the 1 quid to be incompressible, we have as the equation of continuity (Lamb ρ 14)

$$
\frac{\partial(x, z)}{\partial\left(x_{0}, z_{0}\right)}=1
$$

Where the origin is taken in the resurface at rest, Z_{0} is measured downwards and X_{0} is measured horizontally in the direction of the wave motion and perpendicuiae to the wave crests.

Let h denote the amplitude of the wave motion, then we can write

$$
\begin{align*}
& x=x_{0}+h \phi_{1}+h^{2} \phi_{2} \\
& z=z_{0}+h \psi_{1}+h^{2} \psi_{2} \\
& \frac{p}{\rho}=g z_{0}+h x_{1}+h^{2} x_{2}
\end{align*}
$$

where $\boldsymbol{\phi}_{\boldsymbol{n}}, \boldsymbol{\psi}_{n}, \boldsymbol{X}_{\boldsymbol{n}}(\mathrm{n}=1,2)$ are functions of $\boldsymbol{x}_{0}, \boldsymbol{z}_{0}$ and $t_{\text {. }}$. By substituting from equation (2.3) in equations (2•I)
and (2.2) and equating to zero the coefficients of $\boldsymbol{L}_{\text {and }} \boldsymbol{h}^{2}$ we determine the six functions $\boldsymbol{\phi}_{\boldsymbol{n}}, \boldsymbol{\psi}_{\boldsymbol{n}}$ and $\boldsymbol{X}_{\boldsymbol{n}}(\boldsymbol{N}=1,2)$. Thus from equations (2-1)

$$
\begin{aligned}
& \left(h \frac{\partial^{2} \phi_{1}}{\partial t^{2}}+h^{2} \frac{\partial^{2} \phi_{2}}{\partial t^{2}}\right)\left(1+h \frac{\partial \phi_{1}}{\partial x_{0}}+h^{2} \frac{\partial \phi_{2}}{\partial x_{0}}\right) \\
& +\left(h \frac{\partial^{2} \psi_{1}}{\partial t^{2}}+h^{2} \frac{\partial^{2} \psi_{2}}{\partial t^{2}}-g\right)\left(h \frac{\partial \psi_{1}}{\partial x_{0}}+h^{2} \frac{\partial \psi_{2}}{\partial x_{0}}\right)+h \frac{\partial x_{1}}{\partial x_{0}}+h^{2} \frac{\partial x_{2}}{\partial x_{0}}=0, \\
& \text { and } \\
& \left(h \frac{\partial^{2} \phi_{1}}{\partial t^{2}}+h^{2} \frac{\partial^{2} \phi_{2}}{\partial t^{2}}\right)\left(h \frac{\partial \phi_{1}}{\partial z_{0}}+h^{2} \frac{\partial \phi_{2}}{\partial z_{0}}\right) \\
& +\left(h^{2} \frac{\partial^{2} \psi_{1}}{\partial t^{2}}+h^{2} \frac{\partial^{2} \psi_{2}}{\partial t^{2}}-g\right)\left(1+h \frac{\partial \psi_{1}}{\partial z_{0}}+h^{2} \frac{\partial \psi_{2}}{\partial \Sigma_{0}}\right)+g+h \frac{\partial x_{1}}{\partial z_{0}}+h^{2} \frac{\partial x_{2}}{\partial z_{0}}=0 .
\end{aligned}
$$

From equations (2.2)

$$
\begin{aligned}
& \left(1+h \frac{\partial \phi_{1}}{\partial x_{0}}+h^{2} \frac{\partial \phi_{2}}{\partial x_{0}}\right)\left(1+h \frac{\partial \psi_{1}}{\partial z_{0}}+h^{2} \frac{\partial \psi_{2}}{\partial z_{0}}\right) \\
& -\left(h \frac{\partial \phi_{1}}{\partial z_{0}}+h^{2} \frac{\partial \phi_{2}}{\partial z_{0}}\right)\left(h \frac{\partial \psi_{1}}{\partial x_{0}}+h^{2} \frac{\partial \psi_{2}}{\partial x_{0}}\right)=1,
\end{aligned}
$$

From the terms in h we have

$$
\left.\begin{array}{l}
\frac{\partial x_{1}}{\partial x_{0}}+\frac{\partial^{2} \phi_{1}}{\partial t^{2}}-g \frac{\partial \psi_{1}}{\partial x_{0}}=0, \\
\frac{\partial x_{1}}{\partial z_{0}}+\frac{\partial^{2} \psi_{1}}{\partial t^{2}}-g \frac{\partial \psi_{1}}{\partial z_{0}}=0 \\
\frac{\partial \phi_{1}}{\partial x_{0}}+\frac{\partial \psi_{1}}{\partial z_{0}}=0
\end{array}\right\}
$$

From the terms in \boldsymbol{h}^{2} we have

$$
\left.\begin{array}{l}
\frac{\partial x_{2}}{\partial x_{0}}+\frac{\partial^{2} \phi_{1}}{\partial t^{2}}-g \frac{\partial \psi_{2}}{\partial x_{0}}=-\frac{\partial^{2} \phi_{1}}{\partial t^{2}} \cdot \frac{\partial \phi_{1}}{\partial x_{0}}-\frac{\partial^{2} \psi_{1}}{\partial t^{2}} \cdot \frac{\partial \psi_{1}}{\partial x_{0}}, \\
\frac{\partial x_{2}}{\partial z_{0}}+\frac{\partial^{2} \psi_{2}}{\partial t^{2}}-g \frac{\partial \psi_{2}}{\partial z_{0}}=-\frac{\partial^{2} \phi_{1}}{\partial t^{2}} \cdot \frac{\partial \phi_{1}}{\partial z_{0}}-\frac{\partial^{2} \psi_{1}}{\partial t^{2}} \cdot \frac{\partial \psi_{1}}{\partial z_{0}}, \\
\frac{\partial \phi_{2}}{\partial x_{0}}+\frac{\partial \psi_{2}}{\partial z_{0}}=-\frac{\partial \phi_{1}}{\partial x_{0}} \cdot \frac{\partial \psi_{1}}{\partial z_{0}}+\frac{\partial \phi_{1}}{\partial z_{0}} \cdot \frac{\partial \psi_{1}}{\partial x_{0}}
\end{array}\right\}
$$

For a solution of the first order in h it is enimugh to evaluate $\boldsymbol{\phi}_{1}, \boldsymbol{\psi}_{1}$ and \boldsymbol{x}_{1} and to substitute in equations (2.3), To eliminate $X_{\mathbf{1}}$ between equations (2.4), differentiate the first equation with respect to z_{0} and the second equation with respect to x_{0} and subtract them ; thus

$$
\begin{align*}
& \frac{\partial}{\partial z_{0}} \cdot \frac{\partial^{2} \phi_{1}}{\partial t^{2}}-g \frac{\partial^{2} \psi_{1}}{\partial x_{0} \partial z_{0}}-\frac{\partial}{\partial x_{0}} \cdot \frac{\partial^{2} \psi_{1}}{\partial t^{2}}+g \frac{\partial^{2} \psi_{1}}{\partial x_{0} \partial z_{0}}=0, \\
& \therefore \frac{\partial}{\partial z_{0}} \cdot \frac{\partial^{2} \phi_{1}}{\partial t^{2}}-\frac{\partial}{\partial x_{0}} \cdot \frac{\partial^{2} \psi_{1}}{\partial t^{2}}=0
\end{align*}
$$

Differentiating the third of equations (2, ©) twice with respect to t we have

$$
\frac{\partial}{\partial x_{0}} \cdot \frac{\partial^{2} \phi_{1}}{\partial t^{2}}+\frac{\partial}{\partial z_{0}} \cdot \frac{\partial^{2} \psi_{0}}{\partial t^{2}}=0
$$

From equations $(2 \cdot 6)$ and (2-7) it appears that
$\frac{\partial^{2} \phi_{1}}{\partial t^{2}}$ and $\frac{\partial^{2} \psi_{1}}{\partial t^{2}}$ are conjugate harmonic functions of x_{0} and z_{0}.
It is therefore convenient to introduce a function
$G\left(x_{0}, z_{0}, t\right)$ defined by

$$
\frac{\partial^{2} \phi_{1}}{\partial t^{2}}=\frac{\partial}{\partial x_{0}} \cdot \frac{\partial^{2} G}{\partial t^{2}}, \frac{\partial^{2} \psi_{1}}{\partial t^{2}}=\frac{\partial}{\partial z_{0}} \cdot \frac{\partial^{2} G}{\partial t^{2}}
$$

Whence, after use of equation (2.7)

$$
\frac{\partial^{2}}{\partial x_{0}^{2}} \cdot \frac{\partial^{2} G}{\partial t^{2}}+\frac{\partial^{2}}{\partial z_{0}^{2}} \cdot \frac{\partial^{2} G}{\partial t^{2}}=\nabla{ }^{2} \frac{\partial^{2} G}{\partial t^{2}}=0
$$

If we now integrate equation $(2 \cdot 8)$ twice with respect to t and use the third of equations $(2 \cdot 4)$ we find

$$
\left.\begin{array}{l}
\phi_{1}=\frac{\partial G\left(x_{0}, z_{0}, \epsilon\right)}{\partial x_{0}}+\frac{\partial k\left(x_{0}, z_{0}\right)}{\partial z_{0}} \cdot t+\frac{\partial k^{\prime}\left(x_{0}, z_{0}\right)}{\partial z_{0}}, \\
\psi_{1}=\frac{\partial G\left(x_{0}, z_{0}, t\right)}{\partial z_{0}}-\frac{\partial k\left(x_{0}, z_{0}\right)}{\partial x_{0}} \cdot t-\frac{\partial k^{\prime}\left(x_{0}, z_{0}\right)}{\partial x_{0}}
\end{array}\right\}(\text { (2.10) }
$$

where \boldsymbol{k} and \boldsymbol{k}^{\prime} are any two arbitrary functions of \boldsymbol{x}_{0} and \boldsymbol{Z}_{0}.

$$
\text { If we write } x_{0}^{\prime}=x_{0}+\ell^{\prime} \frac{\partial k^{\prime}}{\partial z_{0}}, \quad z_{0}^{\prime}=z_{0}-k \frac{\partial k^{\prime}}{\partial x_{0}}
$$

we find that the terms in \boldsymbol{k}^{\prime} vanish. Thus the function \boldsymbol{k}^{\prime} is not physically significant as its existence depends on the choice of coordinates. It is thus permissible to neglect the terms in k.'

If we denote by u and w the velocity components of the point (x, z) at time t, we have from equations (2.3)

$$
\begin{aligned}
& u=h \frac{\partial \phi_{1}}{\partial t}+h^{2} \frac{\partial \phi_{2}}{\partial t}, \\
& w=h \frac{\partial \psi_{1}}{\partial t}+h^{2} \frac{\partial \psi_{2}}{\partial t} ; \\
& \text { or to the first order } \quad u=h \frac{\partial \phi_{1}}{\partial t}, w=h \frac{\partial \psi_{1}}{\partial t} .
\end{aligned}
$$

Hence using the determined values of $\boldsymbol{\phi}_{\mathbf{1}}$ and $\boldsymbol{\psi}_{\mathbf{r}}$ (equations 2-10)

$$
\begin{aligned}
& u=h \frac{\partial^{2} G}{\partial t \partial x_{0}}+h \frac{\partial k\left(x_{0}, z_{0}\right)}{\partial z_{0}} \\
& w=h \frac{\partial^{2} G}{\partial t \partial z_{0}}-h \frac{\partial k\left(x_{0}, z_{0}\right)}{\partial x_{0}}
\end{aligned}
$$

Thus it appears that the terms in k represent a current independent of time i.e. a motion independent of, and superposed on the periodic motion. There are an infinity of such possible motions. but according to Miche, such currents (courants entrainements) are known to be very feeble in comparison with those following a periodic disturbance. Hence to the first crier in h we can neglect k and write

$$
\Phi_{1}=\frac{\partial G}{\partial x_{0}} \quad \text { and } \quad \psi_{l}=\frac{\partial G}{\partial z_{0}} \quad \text { (<-lI) }
$$

8.

On substituting for $\boldsymbol{\phi}$ and $\boldsymbol{\psi}$, in the third of equations $(2.47$

$$
\frac{\partial^{2} G}{\partial x_{0}^{2}}+\frac{\partial^{2} G}{\partial z_{0}^{2}}=\nabla^{2} G=0
$$

i.e. $G\left(x, z_{a} t\right)$ is a harmonic function of x_{0}, z_{a}.

Substituting for $\boldsymbol{\phi}$, and $\boldsymbol{\psi}$, in the first two of equations (2-4) we have

$$
\begin{aligned}
& \frac{\partial x_{1}}{\partial x_{0}}+\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{\partial G}{\partial x_{0}}-g \frac{\partial^{2} G}{\partial x_{0} \partial z_{0}}=0, \\
& \text { and } \frac{\partial x_{1}}{\partial z_{0}}+\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{\partial G}{\partial z_{0}}-g \frac{\partial^{2} G}{\partial z_{0}^{2}}=0 ; \\
& \text { i.e. } \frac{\partial}{\partial x_{0}}\left[x_{1}+\frac{\partial^{2} G}{\partial t^{2}}-g \frac{\partial G}{\partial z_{0}}\right]=0 ;
\end{aligned}
$$

$$
\text { and } \frac{\partial}{\partial z_{0}}\left[x_{1}+\frac{\partial^{2} G_{t}}{\partial t^{2}}-g \frac{\partial G}{\partial z_{0}}\right]=0 .
$$

$$
\text { Hence } \quad x_{1}+\frac{\partial^{2} G}{\partial t^{2}}-g \frac{\partial G}{\partial z_{0}}=f_{0}(t)
$$

$$
\text { or } \quad \chi_{p}=g Y_{1}-\frac{\partial^{2} G}{\partial t^{2}}+f_{1}(t)
$$

where $f_{l}(t)$ is a function of t, whose value is determined by the boundary conditions.

If the motion is considered to be irrotational, we have, in Euler's notation,

$$
\begin{equation*}
u=\frac{\partial \phi}{\partial x} \text { and } \omega=\frac{\partial \phi}{\partial z} \tag{2:13}
\end{equation*}
$$

where ϕ is the velocity potential.
But to the first order we have

$$
u=h \frac{\partial \phi_{1}}{\partial E} \text { and } w=h \frac{\partial \varphi_{6}}{\partial E}
$$

Hence using equation (2.11)

$$
u=h \frac{\partial \phi}{\partial t}=\frac{\partial}{\partial x}\left(h \frac{\partial G}{\partial t}\right)=\frac{\partial \phi}{\partial x}
$$

and

$$
\omega=h \frac{\partial \psi_{1}}{\partial t}=\frac{\partial}{\partial z}\left(h \frac{\partial G}{\partial t}\right)=\frac{\partial \phi}{\partial z}
$$

Hence, suppressing an additive function of t which has no importance for the periodic motion,

$$
\dot{\beta}=h \frac{\partial G(x, y, t)}{\partial t}
$$

But the current function ψ satisfies

$$
u=\frac{\partial \psi}{\partial z} \quad \text { and } \quad \omega=-\frac{\partial \psi}{\partial x}
$$

ie.. ψ and ϕ are conjugate functions, hence if K is the harmonic conjugate function of G

$$
\psi=\frac{K \partial K(x, 2, t)}{\partial t}
$$

Determination of $\boldsymbol{\phi}_{2}, \boldsymbol{\Psi}_{2}$ and \boldsymbol{X}_{2}.
ϕ, and $\psi_{\text {/ }}$ and hence G are periodic functions of time. Suppose their period is $2 T$, then

$$
\left.\begin{array}{rl}
\frac{\partial^{2} \phi_{1}}{\partial t^{2}} & =-\left(\frac{\pi}{T}\right)^{2} \phi_{1} \\
\frac{\partial^{2} \psi_{1}}{\partial t^{2}} & =-\left(\frac{\pi}{T}\right)^{2} \psi_{1} \\
\text { and } \quad \frac{\partial^{2} G}{\partial t^{2}} & =-\left(\frac{\pi}{T}\right)^{2} G_{1}
\end{array}\right\}
$$

Using equation (2-11), the first of equations (2.5) becomes

$$
\begin{aligned}
\frac{\partial x_{2}}{\partial x_{0}}+\frac{\partial^{2} \phi_{2}}{\partial t^{2}}-g \frac{\partial \psi_{2}}{\partial x_{0}} & =\left(\frac{\pi}{T}\right)^{2} \cdot\left[\phi_{1} \frac{\partial \phi_{1}}{\partial x_{0}}+\psi_{1} \frac{\partial \psi_{1}}{\partial x_{0}}\right] \\
& =\frac{1}{2}\left(\frac{\pi}{T}\right)^{2} \cdot \frac{\partial}{\partial x_{0}}\left(\phi_{1}^{2}+\psi_{1}^{2}\right) \\
& =\frac{1}{2}\left(\frac{\pi}{T}\right)^{2} \cdot \frac{\partial}{\partial x_{0}}\left[\left(\frac{\partial G}{\partial x_{0}}\right)^{2}+\left(\frac{\partial G}{\partial z_{0}}\right)^{2}\right]
\end{aligned}
$$

Similarly the second of equations (2 5) becomes

$$
\frac{\partial x_{2}}{\partial z_{0}}+\frac{\partial^{2} \psi_{2}}{\partial t^{2}}-g \frac{\partial \psi_{2}}{\partial z_{0}}=\frac{1}{2} \cdot\left(\frac{\pi}{T}\right)^{2} \cdot \frac{\partial}{\partial z_{0}}\left[\left(\frac{\partial G}{\partial x_{0}}\right)^{2}+\left(\frac{\partial G}{\partial z_{0}}\right)^{2}\right]
$$

From these we have, after integration,

$$
X_{2}=g \psi_{2}-\frac{\partial^{2} F}{\partial t^{2}}+\frac{1}{2}\left(\frac{\pi}{T}\right)^{2} \cdot\left[\left(\frac{\partial G}{\partial x_{0}}\right)^{2}+\left(\frac{\partial G}{\partial z_{0}}\right)^{2}\right]+f_{2}(t), \quad(2.18)
$$

where

$$
\phi_{2}=\frac{\partial F}{\partial x_{0}}+\mathcal{V}\left(z_{0}\right) \cdot t
$$

and

$$
\psi_{2}=\frac{\partial F}{\partial z_{0}}
$$

The earlier determination of $\boldsymbol{\phi}_{1}$ and $\boldsymbol{\psi}_{\boldsymbol{\prime}}$ introduced functions \boldsymbol{k} and \boldsymbol{k}^{\prime}; but $\boldsymbol{k}^{\prime}=0$ by a suitable choice of variables and experience is that ascending currents are usually either nil or very feeble, so that $\frac{\partial k}{\partial x_{0}}=0$ to higher than the second order. Further $\frac{\partial k}{\sqrt{Z_{0}}}=\mathcal{\nu}$, a function of Z_{0} only, so that $\mathcal{\nu}\left(\boldsymbol{Z}_{0}\right)$
represents a horizontal current independent of the wave motion, variable with depth and of second order in h.

From the third of equations (2.5) we have, on using equations $2 \cdot 19,2 \cdot 20$, and $2 \cdot 11$,

$$
\left.\begin{array}{l}
\frac{\partial^{2} F}{\partial x_{0}^{2}}+\frac{\partial^{2} F}{\partial z_{0}^{2}}=\nabla^{2} F=-\frac{\partial^{2} G}{\partial x_{0}^{2}} \cdot \frac{\partial^{2} G}{\partial z_{0}^{2}}+\frac{\partial^{2} G}{\partial x_{0} \partial z_{0}} \cdot \frac{\partial^{2} G}{\partial z_{0} \partial x_{0}} \\
\text { ie. } \quad \nabla^{2} F=-\frac{\partial^{2} G}{\partial x_{0}^{2}} \cdot \frac{\partial^{2} G}{\partial z_{0}^{2}}+\left(\frac{\partial^{2} G}{\partial x_{0} \partial z_{0}}\right)^{2} \\
\text { Hence } F=\frac{1}{4}\left[\left(\frac{\partial G}{\partial x_{0}}\right)^{2}+\left(\frac{\partial G}{\partial z_{0}}\right)^{2}\right]+G_{2} \\
\text { or } F=\frac{1}{4}\left[\Phi_{1}^{2}+\Psi_{1}^{2}\right]+G_{2}
\end{array}\right\}
$$

where G_{2} is a harmonic function of x_{0}, z_{0} and periodic in t. The precise value of G_{2} depends on that of $f_{2}(t)$ which in turn depends on the boundary conditions. Hence equation (2.18) becomes

$$
\chi_{2}=g \psi_{2}-\frac{1}{4} \cdot \frac{\partial^{2}}{\partial t^{2}}\left(\phi_{1}^{2}+\psi_{1}^{2}\right)-\frac{\partial^{2} G_{2}}{\partial t^{2}}+\frac{1}{4}\left(\frac{\pi}{T}\right)^{2} \cdot\left(\phi_{1}^{2}+\psi_{1}^{2}\right)+f_{2}(t) \text { (2.22t }
$$

For a progessive wave the classical value of $\boldsymbol{\phi}$ is (Lamb \oint 229)

$$
\phi=-\frac{L}{T} \cdot \frac{h}{\sinh \frac{\pi H}{L}} \cdot \operatorname{Cosh} \frac{\pi}{L}(H-z) \cdot \sin \pi\left(\frac{t}{T}-\frac{x}{L}\right)
$$

$$
\begin{equation*}
=-\frac{b h}{a \sinh a H} \cdot \operatorname{Coh} a(H-2) \sin (b t-a x) \tag{<.23}
\end{equation*}
$$

where $\quad a=\frac{\pi}{L}, \quad b=\frac{\pi}{6}$
and $2 T$ is the period and $2 L$ is the wavelength of the progessive wave and H is the depth at of the mass of water and h is the amplitude of the wave.

Two trains of progressive waves with the same characteristics but travelling in the opposite directions interfere to produce standing waves. Suppose the two trains to be defined by equation $2 \cdot 23$ and by

$$
\phi=-\frac{b h}{a \sinh a H} \cdot \operatorname{Cosh} a(H-z) \cdot \sin (b t+a x)
$$

then the velocity potential of the standing wave train is

$$
\begin{aligned}
\phi & =-\frac{b h \cosh a(H-z)}{a \sinh a H} \cdot[\sin (b t-a x)-\sin (b t+a x)] \\
& =\frac{2 h b}{a} \cdot \frac{\operatorname{Cosh} a(H-z)}{\sinh a H} \cdot \sin a x \cdot \cos b t \quad(2 \cdot 24) .
\end{aligned}
$$

Hence, after using equation 2:14 we have in Langrangian notation

$$
G=\frac{2 \operatorname{coh} a(H-2)}{a \sinh a H} \cdot \sin a x_{0} \cdot \sin b t
$$

From equation $2 \cdot l l$

$$
\left.\begin{array}{l}
\phi_{1}=\frac{2 \cosh a\left(H-z_{0}\right)}{\sinh a H} \cdot \cos a x_{0} \cdot \sin b t \\
\psi_{1}=\frac{-2 \sinh a\left(H-z_{0}\right)}{\sinh a H} \cdot \sin a x_{0} \cdot \sin b t
\end{array}\right\} \quad(2 \cdot 26)
$$

On substituting for ϕ_{1} and ψ_{θ} in equation (2.21)

$$
\begin{aligned}
& F= \frac{\sin ^{2} b t}{\sinh ^{2} a H}\left[\begin{array}{c}
\left.\cosh ^{2} a\left(H-z_{0}\right) \cos ^{2} a x_{0}+\sinh ^{2} a\left(H-z_{0}\right) \sin ^{2} a x_{0}\right]+G_{2} \\
=
\end{array}\right. \\
& \frac{\sin ^{2} b t}{\sinh ^{2} a H}\left[\left(\frac{\cosh 2 a\left(H-z_{0}\right)+1}{2}\right)\left(\frac{\cos 2 a x_{0}+1}{2}\right)\right. \\
&\left.+\left(\frac{\cosh 2 a\left(H-z_{0}\right)-1}{2}\right)\left(\frac{1-\cos 2 a x_{0}}{2}\right)\right]+G_{2}
\end{aligned}
$$

$$
\therefore F=\frac{\sin ^{2} b t}{2 \sinh ^{2} a H}\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\operatorname{Cos} 2 a x_{0}\right]+G_{2}
$$

Hence, after substituting in equations $2 \cdot 19,2 \cdot 20$

$$
\left.\begin{array}{l}
\phi_{2}=-\frac{a \sin ^{2} b t \cdot \sin 2 a x_{0}}{\sinh ^{2} a H}+\frac{\partial G_{2}}{\partial x_{0}}+D\left(z_{0}\right) \cdot t \\
\psi_{2}=-\frac{a \sin ^{2} b t \cdot \sinh 2 a\left(H-z_{0}\right)}{\sinh ^{2} a H}+\frac{\partial G_{2}}{\partial z_{0}}
\end{array}\right\}\left\{\begin{array}{l}
(2 \cdot 28)
\end{array}\right.
$$

From equation 2.12 we have

$$
\begin{aligned}
x_{1}= & -\frac{2 g \sinh a\left(H-z_{0}\right)}{\sinh a H} \cdot \sin a x_{0} \cdot \sin b t \\
& +\frac{2 b^{2} \cosh a\left(H-z_{0}\right)}{a \sinh a H} \cdot \sin a x_{0} \cdot \sin b t+f_{1}(t) .
\end{aligned}
$$

After reflexion at a barrier the horizontal currents will neutralise each other and for standing waves, near the barrier, we can write $\boldsymbol{\nu}\left(z_{0}\right)=0$. Hence to the first order in \boldsymbol{h}

$$
\left.\begin{array}{rl}
x= & x_{0}+2 h \frac{\cosh a\left(H-z_{0}\right)}{\sinh a H} \cdot \cos a x_{0} \cdot \sin b t \\
z= & z_{0}-2 h \frac{\sinh a\left(H-z_{0}\right)}{\sinh a H} \cdot \sin a x_{0} \cdot \sin b t
\end{array}\right\}(2 \cdot 29)
$$

The pressure must be constant at the surface ($\left.Z_{0}=0\right)$

$$
\text { i.e. when } \quad z_{0}=0, \quad p=0
$$

$$
\therefore f_{1}(t)=0 \text { and } \sinh a H=\frac{b^{2}}{a g} \cosh a H
$$

$$
\text { i.e. } \tanh a H=\frac{b^{2}}{a g}
$$

After substituting for $f_{1}(H)$ and $\frac{b^{2}}{a g}$ in equation (2.30)

$$
\begin{align*}
\frac{p}{p g}= & z_{0}+2 h \frac{\sin a x_{0} \sin b t}{\sinh a H}\left[-\sinh a\left(H-z_{0}\right)+\tanh a H \cdot \operatorname{Cosh} a\left(H-z_{0}\right)\right] \\
= & Z_{0}+2 h \frac{\sin a x_{0} \sin b t}{\sinh a H \cosh a H}\left[-\sinh a\left(H-z_{0}\right) \operatorname{CoshaH}\right. \\
& \left.\quad+\sinh a H \operatorname{Coh} a\left(H-z_{0}\right)\right] \\
\therefore \frac{p}{p g}= & z_{0}+\frac{2 h \sin a x_{0} \sin b t}{\sinh a H \cdot \operatorname{losh} a H} . \sinh a z_{0} \quad(2 \cdot 32)
\end{align*}
$$

From equations (2.26).

$$
\phi_{1}^{2}+\psi_{1}^{2}=\frac{2 \sin ^{2} b t}{\sin ^{2} a H}\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\cos 2 a x_{0}\right]
$$

and

$$
\begin{align*}
& \frac{\partial^{2}}{\partial t^{2}}\left(\phi_{1}^{2}+Y_{1}^{2}\right)=\frac{4 b^{2} \cos 2 b t}{\sinh ^{2} a H}\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\cos 2 a x_{0}\right] \\
& \text { also } \frac{\pi}{T}= b \text {. Hence equation }(2 \cdot 22) \operatorname{sives} \\
& x_{2}=-\frac{a g \sinh 2 a\left(H-z_{0}\right)}{\sin ^{2} a H} \sin ^{2} b t \\
&-\frac{b^{2} \cos ^{2} b t}{\sinh ^{2} a H}\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\cos 2 a x_{0}\right] \\
&+\frac{b^{2}}{\sinh ^{2} a H}\left[\cosh 2 a\left(H-z_{0}\right)+\cos 2 a x_{0}\right] \sin 2 b t \\
&+f_{2}(t)+g \frac{\partial G_{2}}{\partial z_{0}}-\frac{\partial^{2} G_{2}}{\partial t^{2}} \tag{2.33}
\end{align*}
$$

where $\nabla^{2} G_{2}=0$ and $\beta=0$ at $z_{0}=0$.

It is now necessary to evacuate G_{2} and $f_{2}(\epsilon)$, after which equations 2.28 and <-53 give the complete values of $\phi_{2}, \psi_{2} \& x_{2}$. Let G_{i} be taken as $\operatorname{Cosh} 2 a\left(H-z_{0}\right) \cdot \operatorname{Cos} 2 a x_{0} \cdot T(b t)$
then $\frac{\partial G_{2}}{\partial z_{0}}=-2 a \operatorname{simh} 2 a\left(H-z_{0}\right) \cdot \cos 2 a x_{0} \cdot T(b t)$

$$
\text { and } \begin{aligned}
\frac{\partial^{2} G_{2}}{\partial t^{2}}= & \operatorname{Cosh} 2 a\left(H-z_{0}\right) \cdot \operatorname{Cos} 2 a x_{0} \cdot \frac{\partial^{2} T}{\partial(b t)^{2}} \cdot b^{2} \\
= & \operatorname{Cosh} 2 a\left(H-z_{0}\right) \cdot \operatorname{Cos} 2 a x_{0} \cdot \frac{\partial^{2} T}{\partial(b t)^{2}} \cdot \text { ag tanh aH } \\
& \text { after using equation } 2 \cdot 31 .
\end{aligned}
$$

Substitute these values in χ_{2} (equation $2 \cdot 33$) and set $Z_{0}=0$. Then using the fact that $p=0$ (and hence $x_{2}=0$ when $Z_{0}=0$, we have

$$
\begin{aligned}
& -\frac{a g \sinh 2 a H}{\sinh ^{2} a H} \sin ^{2} b t-\frac{b^{2} \operatorname{Cos} 2 b t}{\sinh ^{2} a H}\left(\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}\right) \\
& +\frac{b^{2}}{\sinh ^{2} a H}\left(\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}\right) \sin ^{2} b t+f_{2}(t) \\
& -2 a g \sinh 2 a H . \operatorname{Cos} 2 a x_{0} . T(b t)
\end{aligned}
$$

$-\operatorname{Cosh} 2 a H \cdot \operatorname{Cos} 2 a x_{0} \cdot \frac{\partial^{2} T}{\partial(b t)^{2}}$. ag tanh $a H=0$ for asl values of x_{0} and t.

Then since $\quad b^{2}=$ agtamhaH
$-a g \cdot \frac{2 \cosh a H}{\sinh a H} \cdot \sin ^{2} b t-\frac{a g \cos 2 b t}{\sinh a H \cdot \operatorname{Cosh} a H}\left(\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}\right)$
$+\frac{a g}{\text { sinhaH. CnhaH }}\left(\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}\right) \sin ^{2} b t+f_{2}(t)$

- $2 g a \sinh 2 a H \cdot \cos 2 a x_{0}: T(b t)-\operatorname{Cosh} 2 a H \cdot \cos 2 a x_{0} \cdot \frac{\partial^{2} T}{\partial(b t)^{2}} \cdot a g$

$$
x \tanh a t 1=0
$$

$$
\begin{aligned}
\therefore & \sin ^{2} b t\left[-\frac{2 \cos a H}{\sinh a H}+\frac{3\left(\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}\right)}{\sinh a H \cdot \operatorname{Cosh} a H}\right] \\
& -\frac{\operatorname{Cosh} 2 a H+\operatorname{Cos} 2 a x_{0}}{\sinh a H \operatorname{Cosh} a H}+\frac{f_{2}(t)}{a g}
\end{aligned}
$$

-4 sink aH Cosh aH. Cos $2 a x_{0} . T(b t)$

$$
-\operatorname{Cos} 2 a x_{0}-\frac{\partial^{2} T}{\partial(b t)^{2}}\left[\sinh a H \cdot \operatorname{Cosh} a H+\frac{\sinh ^{3} a H}{\cosh a H}\right]=0
$$

$$
\therefore \operatorname{Sin}^{2} b t\left[-\frac{2 \operatorname{Conh} a H}{\operatorname{Sinh} a H}+\frac{3 \operatorname{Cosh} a H}{\operatorname{Sinh} a H}+\frac{3 \sinh a H}{\operatorname{Cosh} a H}\right.
$$

$$
\left.+\frac{3 \operatorname{Cos} 2 a x_{0}}{\operatorname{Sinh} a H \cdot \operatorname{Cosh} a H}\right]-\frac{\operatorname{Cosh} a H}{\operatorname{Sinh} a H}-\frac{\operatorname{Sinh} a H}{\operatorname{Cosh} a H}
$$

$$
-\frac{\operatorname{Cos} 2 a x_{0}}{\operatorname{SinhaHt} \cdot \operatorname{Cosh} a t t}-4 \sinh a H \cdot \operatorname{Cosh} a H \cdot \cos 2 a x_{0} \cdot T(b t)
$$

$$
-\left[\sinh a H . \cosh a H+\frac{\sinh ^{3} a H}{\cosh a H}\right] \cos 2 a x_{0} \cdot \frac{\partial^{2} T}{\partial(b t)^{2}}+\frac{f_{2}(t)}{a g}=0
$$

We now set $\begin{aligned} \text { and } & T\end{aligned} \begin{aligned} & =A \cos 2 b t+B \\ & f_{2}\end{aligned} \begin{aligned} & =a g(C \cos 2 b t+D)\end{aligned}$
where A, B, C and D are constants.
Then writing $\operatorname{Sin}^{2} b t=\frac{1}{2}(1-\operatorname{Cos} 2 b t)$,
we have
16.

$$
\begin{aligned}
& -\frac{1}{2} \operatorname{Cos} 2 b t\left[\frac{\operatorname{Cosh} a H}{\operatorname{Sinh} a H}+\frac{3 \sinh a H}{\operatorname{Cosh} a H}+\frac{3 \operatorname{Cos} 2 a x_{0}}{\sinh a H \cos a H}\right] \\
& +\frac{1}{2}\left[\frac{\operatorname{Cosh} a H}{\operatorname{Sinh} a H}+\frac{3 \sinh a H}{\operatorname{Cosh} a H}+\frac{3 \cos 2 a x_{0}}{\sinh a H \operatorname{Coh} a H}\right] \\
& -\frac{\operatorname{Cosh} a H}{\operatorname{Sinh} a H}-\frac{\sinh a H}{\operatorname{Cosh} a H}-\frac{\operatorname{Cos} 2 a x_{0}}{\operatorname{Sinh} a H \operatorname{Cosh} a H}
\end{aligned}
$$

$-4 A$ sinhat. CoshaH. $\cos 2 a x_{0} \cdot \cos 2 b t$
$-4 B$ simhaH. Coh $a H . \operatorname{Cos} 2 a x_{0}$

$$
\begin{aligned}
& +\left[\sinh a H \cdot \operatorname{Cosh} a H+\frac{\sinh ^{3} a H}{\operatorname{Cosh} a H}\right] \operatorname{Cos} 2 a x_{0} \cdot 4 A \operatorname{Cos} 2 b t \\
& +C \cos 2 b t+D=0
\end{aligned}
$$

for afl values of t and a+i x_{0}.

$$
\left.\begin{array}{l}
\therefore \operatorname{Cos} 2 b t\left[\left(-\frac{\operatorname{Coh}^{2} a H+3 \sinh ^{2} a H}{\operatorname{Sinh} a H \operatorname{Coh} a H}+2 C\right)\right. \\
\left.+\left(8 A \frac{\sinh ^{3} a H}{\operatorname{Cosh} a H}-\frac{3}{\sinh a H \operatorname{Coh} a H}\right) \cos 2 a x_{0}\right] \\
+
\end{array}+\frac{1}{\sinh a+t \operatorname{Coh} a H}-8 B \sinh a H \cosh a H\right] \operatorname{Cos} 2 a x_{0} .
$$

for ald x_{0} and t. Hence

$$
\begin{aligned}
& A=\frac{3}{8} \cdot \frac{1}{\sinh ^{4} a H}, \\
& B=\frac{1}{8} \cdot \frac{1}{\sinh ^{2} a H \cdot \operatorname{Conh}^{2} a H}=\frac{1}{2 \sinh ^{2} 2 a H}
\end{aligned}
$$

$$
\begin{aligned}
& C=\frac{\cosh ^{2} a H+3 \sinh ^{2} a H}{2 \sinh a H \operatorname{Coh} a H}, \\
& D=\frac{\operatorname{Cosh}^{2} a H-\operatorname{Sinh}^{2} a H}{2 \sinh a H \operatorname{Cos} a H}=\frac{1}{\sinh 2 a H}
\end{aligned}
$$

$$
\begin{align*}
& \text { Hence } \frac{f_{2}(t)}{a g}=\frac{1}{\operatorname{Sinh} 2 a H}\left[\left(\cos ^{2} a H+3 \sinh ^{2} a H\right) \cos 2 b t+1\right] \\
& \text { and } T(b t)=\frac{3}{8} \cdot \frac{\operatorname{Cos} 2 b t}{\operatorname{Sinh} h^{4} a H}+\frac{1}{2 \sinh ^{2} 2 a H} \\
& \therefore G_{2}=\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right) \operatorname{Cos} 2 a x_{0}\right]\left[\frac{3 \cos b t}{8 \sinh ^{4} a H}+\frac{1}{2 \sinh ^{2} \operatorname{saH}}\right] \\
& \therefore G_{2}=\frac{\operatorname{Cosh} 2 a\left(H-z_{0}\right) \cdot \operatorname{Cos} 2 a x_{0}}{8 \sinh ^{4} a H}\left[3 \operatorname{Cos} 2 b t+\tanh ^{2} a H\right\} . \tag{2.35}
\end{align*}
$$

Hence after substituting in (2.28) for

$$
\begin{aligned}
& \Phi_{2}=-\frac{a \sin ^{2} b t \sin 2 a x_{0}}{\sinh ^{2} a H}-\left(\frac{a \cosh 2 a\left(H-z_{0}\right) \sin 2 a x_{0}}{4 \sinh ^{4} a H}\right) \\
& \times\left(3 \operatorname{Cos} 2 b t+t_{0} h^{2} a H\right), \quad(2.36) \\
& \psi_{2}=-\frac{a \sin ^{2} b t \cdot \sinh 2 a\left(H-z_{0}\right)}{\sinh ^{2} a H} \\
&-\frac{a \sinh 2 a\left(H-z_{0}\right) \operatorname{Cos} 2 a x_{0}}{4 \sinh ^{4} a H}=\left(3 \cos 2 b t+\tanh ^{2} a H\right) \quad(2.36)
\end{aligned}
$$

Wigan the values of G_{2} and $f_{2}(t)$ equation (2.33) gives

$$
\begin{aligned}
X_{2}= & -\frac{a g \sinh 2 a\left(H-z_{0}\right) \sin ^{2} b t}{\sinh ^{2} a H} \\
& -\frac{b^{2} \cos 2 b t}{\operatorname{Sinh}^{2} a H}\left[\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\operatorname{Cos} 2 a x_{0}\right] \\
& +\frac{b^{2}}{\sinh ^{2} a H}\left[\operatorname{Coh} 2 a\left(H-z_{0}\right)+\operatorname{Cos} 2 a x_{0}\right] \sin ^{2} b t \\
& +\frac{a g}{\sinh a H}\left[\left(\cosh ^{2} a H+3 \sinh ^{2} a H\right) \cos 2 b t+1\right] \\
& =\frac{a g \sinh 2 a\left(H-z_{0}\right) \operatorname{Cos} 2 a x_{0}}{4 \sinh ^{4} a H} \cdot\left(3 \operatorname{Cos} 2 b t+\tanh ^{2} a H\right) \\
& +\frac{3 b^{2} \operatorname{Cosh} 2 a\left(H-z_{0}\right) \operatorname{Cos} 2 a x_{0}}{2 \sinh ^{4} a H} \cdot \operatorname{Cos} 2 b t .
\end{aligned}
$$

But $\quad b^{2}=$ ag tach $a H$,

$$
\begin{aligned}
\therefore \frac{x_{2}}{g}= & -\frac{\sinh 2 a\left(H-z_{0}\right) \sin ^{2} b t}{\sinh ^{2} a H} \\
& -\frac{\operatorname{Cos} 2 b t}{\sinh a H \operatorname{Coh} a H}\left[\operatorname{Coh} 2 a\left(H-z_{0}\right)+\operatorname{Cos} 2 a x_{0}\right] \\
& +\frac{1}{\operatorname{sinhaH} H}\left[\operatorname{Conh} H\left[2 a\left(H-z_{0}\right)+\operatorname{Cos} 2 a x_{0}\right] \sin ^{2} b t .\right. \\
& +\frac{1}{\sinh a H \cosh a H}\left[\left(\operatorname{Cosh}^{2} a H+3 \operatorname{Sinh}^{2} a H\right) \operatorname{Cos} 2 b t+1\right] \\
& -\frac{\sinh 2 a\left(H-z_{0}\right) \operatorname{Cos} 2 a x_{0}}{4 \sinh ^{4} a H} \cdot\left(3 \operatorname{Cos} 2 b t+\tanh ^{2} a H\right) \\
& +\frac{3 \operatorname{Cosh} 2 a\left(H-z_{0}\right) \cdot \operatorname{Cos} 2 a x_{0} \cdot \operatorname{Cos} 2 b t}{2 \sinh ^{3} a H \operatorname{Cosh} a H} .
\end{aligned}
$$

The complete values of $\underset{y}{ }, Z$ and p to the second order in h are given by the following equations (2.38), (23 9) \& (2.40).

$$
\begin{aligned}
x= & x_{0}+2 h \frac{\cosh a\left(H-z_{0}\right)}{\sinh a H} \cdot \cos a x_{0} \cdot \sin b t \\
& -\frac{h^{2} a}{\sinh ^{2} a H} \cdot \sin 2 a x_{0} \cdot \sin ^{2} b t \\
& -h^{2} a \cdot \frac{\operatorname{Cosh} 2 a\left(H-z_{0}\right) \sin 2 a x_{0}}{4 \sin h^{4} a H}\left(3 \cos 2 b t+\tanh ^{2} a H\right) \\
\therefore x= & x_{0}+2 h \operatorname{Cosha(H-z_{0})\operatorname {cos}ax_{0}\operatorname {sin}bt} \\
& -\frac{h^{2} a \sin 2 a x_{0} h}{\sinh ^{2} a H}\left[\sin ^{2} b t+\frac{\cosh 2 a\left(H-z_{0}\right)}{4 \sin ^{2} a H}\left(3 \cos 2 b t+\tanh ^{2} a H\right)\right](2 \cdot 38) .
\end{aligned}
$$

$z=z_{0}-\frac{2 h \sinh a\left(H-z_{0}\right)}{\sinh a H}$. sin $a x_{0} \cdot \sin b t$ $-\frac{h^{2} a}{\sinh ^{2} a H} \cdot \sinh 2 a\left(H-Z_{0}\right) \cdot \sin ^{2}$ bt

$$
-\frac{h^{2} a \sinh 2 a\left(H-z_{0}\right) \cos 2 a x_{0}}{4 \sinh ^{4} a H} \cdot\left(3 \cos 2 b t+\tanh ^{2} a H\right) .
$$

$$
\therefore z=z_{0}-\frac{2 h \sinh a\left(H-z_{0}\right) \sin a x_{0} \sin b t}{\sinh a H}
$$

$-\frac{h_{a}^{2} a \sinh 2 a\left(H-z_{0}\right)}{\sinh ^{2} a H}\left[\sin ^{2} b t\right.$

$$
\left.+\frac{\cos 2 a x_{0}}{4 \sin ^{4} a H}\left(3 \cos 2 b t+\tanh ^{2} a H\right)\right](a-39)
$$

$$
\text { and } \begin{align*}
& \frac{p}{\rho g}=z_{0}+\frac{2 h \sin a x_{0} \sinh a z_{0} \sin b t}{\sinh a H \cosh a H} \\
&+\frac{a h^{2}}{\sinh a H}\left[-\frac{\sinh 2 a\left(H-z_{0}\right) \sin ^{2} b t}{\sinh a H}\right. \\
&+\left\{\operatorname{Cosh} 2 a\left(H-z_{0}\right)+\cos 2 a x_{0}\right\}\left(3 \sin ^{2} b t-1\right) \\
& 2 \cosh a H \\
&\left.-\frac{\sinh 2 a\left(H-z_{0}\right) \cos 2 a x_{0}\left(3 \cos 2 b t+\tanh ^{2} a H\right)}{4 \sinh ^{3} a H}\right] \\
&\left.+\frac{3 \operatorname{Cosh} 2 a\left(H-z_{0}\right) \cos 2 a x_{0} \cdot \operatorname{Cos} 2 b t}{2 \sinh ^{2} a H \cdot \operatorname{Cosh} a H}\right]
\end{align*}
$$

The mean pressure on the bed over a wavelength is denoted by p_{m},

$$
\text { where } \frac{p_{m}}{\rho_{g}}=\frac{1}{2 L} \int_{0}^{2 L}\left[\frac{p}{\rho g} d x\right]_{z_{0}=H}=\frac{1}{2 L} \int_{0}^{2 L}\left[\frac{p}{\rho_{g}} \cdot \frac{\partial x}{\partial x_{0}} \cdot d x_{0}\right]_{z_{\delta}=H} \text { (2.41) }
$$

Putting $Z_{0}=H \quad$ in equation (2.40) we have

$$
\begin{aligned}
{\left[\frac{p}{\rho g}\right]_{z_{0}=H}=} & H+\frac{2 h \sin a x_{0} \sin b t}{\operatorname{Cosh} a H}+\frac{a h^{2}}{\sinh a H}\left[\frac{\left(1+\cos 2 a x_{0}\right)\left(3 \sin ^{2} b t-1\right)}{\operatorname{Cosh} a H}\right. \\
& +\frac{\left(\operatorname{Cosh}^{2} a H+3 \sinh ^{2} a H\right) \operatorname{Cos} 2 b t+1}{2 \cosh a H} \\
& +\frac{3{\operatorname{Cos} 2 a x_{0} \cos 2 b t}_{2 \sinh ^{2} a H \cdot \operatorname{Coh} a H}}{}=1
\end{aligned}
$$

$$
\text { i.e. }\left[\frac{p}{\rho g}\right]_{z_{0}=H}=A+B \sin a x_{0}+C \cos 2 a x_{0}
$$

$$
\begin{aligned}
& \text { where } \\
& =H+\frac{a h^{2}}{a \sinh \alpha H}\left[\frac{\left(3 \sin ^{2} b t-1\right)}{\operatorname{Cosh} a H}+\frac{\left(\operatorname{Cosh}^{2} a H+3 \sinh ^{2} a H\right) \operatorname{Cos} 2 b t+1}{2 \operatorname{Cosh} a H}\right] \\
& \\
& =H+\frac{a^{2}\left[1+\left(2 \sinh ^{2} a H-1\right) \cos 2 b t\right]}{\sinh a H \operatorname{Cosh} a H},
\end{aligned}
$$

$$
\begin{aligned}
B & =\frac{2 h \sin b t}{\cosh a H}, \\
C & =\frac{a h^{2}}{\sinh a H}\left[\frac{3 \sin ^{2} b t-1}{\cosh a H}+\frac{3 \cos 2 b t}{2 \sin h^{2} a H \cosh a H}\right] \\
& =\frac{a h^{2}}{2 \sinh a H \operatorname{coh} a H}\left[1-3 \cos 2 b t+\frac{3 \cos 2 b t}{\sin h^{2} a H}\right] \\
& =\frac{a h^{2}}{\operatorname{ainh} 2 a H}\left[1+\frac{3\left(1-\sinh ^{2} a H\right) \cos 2 b t}{\sin ^{2} a H}\right]
\end{aligned}
$$

Putting $Z_{0}=H$ in equation $2 \cdot 38$ we obtain

$$
\begin{aligned}
x= & x_{0}+\frac{2 h \cos a x_{0} \sin b t}{\sin h a H} \\
& -\frac{k^{2} a \sin 2 a x_{0}}{\sinh h^{2} a H}\left[\sin ^{2} b t+\frac{\left(3 \cos 2 b t+\tan ^{2} a H\right)}{4 \sin ^{2} a H}\right] \\
\therefore\left[\frac{\partial x}{\partial x_{0}}\right]_{z_{0}=H}= & 1-\frac{2 h a \sin b t}{\sin h a H} \cdot \sin a x_{0} \\
& -\frac{2 h^{2} a}{\sinh ^{2} a H}\left[\sin ^{2} b t+\frac{3 \cos 2 b t+\tanh ^{2} a H}{4 \sinh ^{2} a H}\right] \cos 2 a x_{0}
\end{aligned}
$$

$$
\begin{aligned}
\text { i.e. }\left[\frac{\partial x}{\partial x_{0}}\right]_{z_{0}=H}=1+D \sin a x_{0}+E \cos 2 a x_{0} \\
D=-\frac{2 h a \sin b t}{\sinh a H} \\
E=-\frac{2 h a^{2}}{\sinh ^{2} a H}\left[\sin ^{2} b t+\frac{3 \cos 2 b t+t^{2} \sinh ^{2} a H}{4 \sinh ^{2} a H}\right]
\end{aligned}
$$

$$
\text { Hence } \begin{aligned}
& {\left[\frac{p}{\rho g} \cdot \frac{\partial x_{j}}{\partial x_{0}}\right]_{z_{0}=H} } \\
&=\left(A+B \sin a x_{0}+C \cos 2 a x_{0}\right)\left(1+D \sin a x_{0}+E \cos 2 a x_{0}\right) \\
&= A+(B+A D) \sin a x_{0}+(C+A E) \cos 2 a x_{0}+B D \sin ^{2} a x_{0} \\
&+(D C+B E) \sin a x_{0} \operatorname{Cos} 2 a x_{0}+C E \cos ^{2} 2 a x_{0} \\
&= A+(B+A D) \sin a x_{0}+(C+A E) \cos 2 a x_{0} \\
&+\frac{B D}{2}\left(1-\operatorname{Cos} 2 a x_{0}\right)+\frac{D C+B E}{2}\left(\operatorname{ain} 3 a x_{0}-\sin a x_{0}\right) \\
&+\frac{C E}{2}\left(1+\operatorname{Cos} 2 a x_{0}\right) \\
&=\left(A+\frac{B D}{2}+\frac{C E}{2}\right)+\left(B+A D-\frac{D C+B E}{2}\right) \sin a x_{0} \\
&+\left(C+A E-\frac{B D}{2}+\frac{C E}{2}\right) \operatorname{Cos} 2 a x_{0}+\frac{D C+B E}{2} \sin 3 a x_{0} . \\
& \therefore \int_{0}^{2 L}\left[\frac{p}{\rho g} \cdot \frac{\partial x}{\partial x_{0}}\right] d x_{0}=H=\left[\frac{2 A+B D+C E}{2}\right] 2 L, \operatorname{since} a=\frac{\pi}{L} .
\end{aligned}
$$

Hence by equation (2.41)

$$
\frac{p_{m}}{\rho g}=\frac{2 A+B D+C E}{2}
$$

$$
B D=-\frac{2 h \sin b t}{\cos h A} \cdot \frac{2 h a \sin b t}{\operatorname{sanh} a H}=-\frac{4 h^{2} a \sin ^{2} b t}{\sinh a H \cdot \cosh a H}
$$

$C E=0 \quad$ to the second order in h

$$
\begin{aligned}
\therefore \frac{p_{m}}{\rho_{g}} & =H+a h^{2}\left[1+\frac{\left(2 \sinh ^{2} a H-1\right) \operatorname{Cos} 2 b t}{\sinh a H \cdot \operatorname{Cosh} a H}-\frac{2 \sin ^{2} b t}{\sinh a H \operatorname{Cosh} a H}\right] \\
& =H+\frac{a h^{2}}{\sinh a H \operatorname{Con} a H}\left[1+\left(2 \sinh ^{2} a H-1\right) \cos 2 b t-1+\cos 2 b t\right] \\
\therefore \frac{p_{m}}{\rho_{g}} & =H+\frac{a h^{2}}{\sinh a H \operatorname{Cosh} a H}[(2 \sinh a H-1+1) \cos 2 b t] \\
& =H+\frac{2 a h^{2} \sinh ^{2} a H}{\sinh a H \operatorname{losh} a H} \cdot \cos 2 b t \\
\therefore p_{m} & =\rho g\left[H+2 a h^{2} \tanh a H \cdot \operatorname{Cos} 2 b t\right]
\end{aligned}
$$

But PgH is the static pressure at the depth H .
Thus we see that the mean pressure on the bed, under a standing wave, has a variable part. Since the frequency of the standing wave is $b / 2 \pi$ we see that the variation in the mean pressure has a frequency ($\frac{b}{\pi}$), twice (of the standing wave.
Since $\quad b^{2}=$ agtambaH

$$
p_{m}=\rho g H+2 \rho h^{2} b^{2} \operatorname{Cos} 2 b t
$$

The amplitude of the pressure variation is proportional to the square of the wave amplitude, and is independent of the depth.

CHAPTER 3.
Evaluation of the mean pressure beneath a given mass of moving fluid.
In chapter 2 we considered a periodic, irrotaticnal motion in an incompressible fluid, and demonstrated, by actual evaluation, that there is a variation of the mean pressure beneath a standing wave, and that this variation in the mean pressure arises from the second order terms and is independent of the depth.

In the present chapter, we shall not assume that the motion is either periodic or irrotational. But assuming on by that the mass of the fluid remains constant, we shall derive an expression for the pressure at any point. Then by making the motion periodic we shall find the mean pressure over a wavelength.

Consider a quantity of fluid of mass M; the fluid being supposed incompressible. Let us use the Langrangian system of coordinates, x being measured horizontality in the direction of the motion and z verticality downwards.

Then the coordinates of a particular particle of fluid at time t are (x, z), and the coordinates of this particle at an arbitrary time, $t=0$, are $\left(x_{0}, z_{0}\right)$. the pressure at the point $P(x, z)$ is p and the pressure at $Q(x, z+\delta z)$ is $\quad p \nleftarrow \frac{\partial \rho}{\partial z} \delta z+\cdots$
The equation of motion of the fluid in the small volume $P Q$ is approximately

$$
\begin{aligned}
& p-\left(p+\frac{\partial p}{\partial z} \delta z\right)+g \rho \delta z=\rho \delta z \cdot \frac{\partial^{2} z}{\partial t^{2}} \\
& \therefore-\frac{\partial p}{\partial z} \delta z+g \rho \delta z=\rho \delta z \cdot \frac{\partial^{2} z}{\partial t^{2}}
\end{aligned}
$$

Hence the equation of motion of the particle at P is

$$
\frac{\partial p}{\partial z}-g p=-p \frac{\partial^{2} z}{\partial t^{2}}
$$

The equation of continuity is

$$
\rho x d z=\rho_{0} d x_{0} d z_{0}
$$

where ρ_{0} is the density at time $t=0$

$$
\begin{aligned}
\therefore \int_{M} \rho \frac{\partial^{2} z}{\partial t^{2}} d x d z & =\int_{M} P_{0} \frac{\partial^{2} z}{\partial t^{2}} d x_{0} d z_{0} \\
& =\frac{\partial^{2}}{\partial t^{2}} \int_{M} P_{0} z d x_{0} d z_{0} \begin{array}{l}
\text { since } x_{0} z_{0} \text { are } \\
\text { independent of } t
\end{array}
\end{aligned}
$$

ice. by equation (3.2)

$$
\int_{M} \rho \frac{\partial^{2} z}{\partial t^{2}} d x d z=\frac{\partial^{2}}{\partial t^{2}} \int_{M} \rho z d x d z
$$

Integrating equation ($3 \cdot 1$) over the whole fluid M,

$$
\begin{align*}
\int_{M} \frac{\partial p}{\partial z} d x d z-\int_{M} 9 \rho d x d z & =-\int_{M} \rho \frac{\partial^{2} z}{\partial t^{2}} d x d z \\
& =-\frac{\partial^{2}}{\partial t^{2}} \int_{M} \rho z d x d z
\end{align*}
$$

In evaluating the integrals of equation (3.4) it is convenient to regard x, z and t as independent variables, rather than x and z as functions of t, and the boundaries of M must in consequence be functions of t.

At the time $t=0$, let us suppose that the mass M of incompressible fluid is contained by the free surface $z=J$, the horizontal plane $z=z^{\prime}$ and two vertical planes $x=x_{1}$ and $x=x_{2}$. At this instant we denote the pressure in the pane $z=z^{\prime}$ by p_{1} and the constant pressure at the free surface by P_{s}. Then at this instant $t=0$

$$
\begin{align*}
\int_{M} \frac{\partial p}{\partial z} d x d z & =\int_{x_{1}}^{x_{2}}\left(p^{\prime}-p_{s}\right) d x c \\
& =\left(x_{2}-x_{1}\right) \times\left(\text { Mean Value of } p^{\prime}-p_{s}\right) \\
& =\left(x_{2}-x_{1}\right)\left(\overline{p^{\prime}}-p_{s}\right)
\end{align*}
$$

where $\bar{\beta}^{\prime}$ is the mean value of over the interval $x_{1} \leqslant x \leqslant x_{2}$ To evaluate the second integral of equation (3-4)

$$
\int_{M} g \rho d x d z=g p \int_{M} d x d z
$$

(since the fluid is incompressible)

$$
\begin{aligned}
& =g \rho \int_{x_{1}}^{x_{2}}\left(z^{\prime}-J\right) d x \\
= & g \rho z^{\prime} \int_{x_{1}}^{x_{2}} d x-g \rho \int_{x_{1}}^{x_{2}} J d x \\
= & g \rho z^{\prime}\left(x_{2}-x_{1}\right)-g \rho \int_{x_{1}}^{x_{2}} J d x
\end{aligned}
$$

To evaluate the third integral of equation (3.4) it is necessary to find an expression for the integral at times other than $t=0$, and then $t c$ set $t=0$ in this expression.

Suppose that at time t the fluid M is bounded by the surfaces: $z=J(x, t)$

$$
z=z^{\prime}+J^{\prime}(x, t)
$$

$$
x=\boldsymbol{F}_{1}(z, t)
$$

$$
\text { and } \quad x=\xi_{2}(z, t)
$$

$$
\begin{aligned}
& \text { i.e. } A_{1} A_{2} \\
& \text { i.e. } A_{1}^{\prime} A_{2}^{\prime} \\
& \text { i.e. } A_{1} A_{1}^{\prime} \\
& \text { i.e. } A_{2} A_{2}^{\prime}
\end{aligned}
$$

Initially when $t=0$,

$$
J^{\prime}(x, 0)=0, \quad \xi_{1}(z, 0)=x_{1}, \quad \xi_{2}(z, 0)=x_{2}
$$

The intersection of $z=J, x=\xi_{1}(x, t)$ is $A_{1}\left(\alpha_{1}, r_{1}\right)$,
The intersection of $z=J, x=\xi_{2}(x, t)$ is $A_{2}\left(\alpha_{2}, r_{2}\right)$,
The intersection of $z=z^{\prime}+J^{\prime}(x, t), x=\xi_{1}(x, t)$ is $A_{1}^{\prime}\left(\alpha_{1}^{\prime}, \gamma_{1}^{\prime}\right)$,
The intersection of $Z=Z^{\prime}+J^{\prime}(x, t), x=\xi_{2}(x, t)$ is $A_{2}^{\prime}\left(\alpha_{2}^{\prime}, Y_{2}^{\prime}\right)$.

Since the mass does not change,

$$
\begin{aligned}
\iint_{A} d x d z= & A_{1} A_{1}^{\prime} A_{2}^{\prime} A_{2} A_{1} \\
= & A_{1} B A_{2}^{\prime} D-C_{2} A_{2} A_{2}^{\prime} C_{2}+A_{2} D c_{2} A_{2} \\
& -A_{1} C_{1} A_{1}^{\prime} A_{1}+B c_{1} A_{1}^{\prime} B \\
= & \int_{\alpha_{1}}^{\alpha_{2}^{\prime}}\left[\left(z^{\prime}+J^{\prime}\right)-J\right] d x-\int_{r_{2}}^{r_{2}^{\prime}}\left(\alpha_{2}^{\prime}-\xi_{2}\right) d z \\
& +\int_{\alpha_{2}}^{\alpha_{2}^{\prime}}\left(J-r_{2}\right) d x-\int_{r_{1}}^{r_{1}^{\prime}}\left(\xi_{1}-\alpha_{1}\right) d z \\
& +\int_{\alpha_{1}}^{\alpha_{1}^{\prime}}\left[r_{1}^{\prime}-\left(z^{\prime}+J^{\prime}\right)\right] d x
\end{aligned}
$$

This method of evaluating $\iint \mathrm{dx} \mathrm{d} \mathbf{z}$ over the area A of the mass M at a time t leads to the following expression: for $\iint z d x d z$ over the same area:

$$
\begin{aligned}
\iint_{A} z d x d z= & \frac{1}{2} \int_{\alpha_{1}}^{\alpha_{2}^{\prime}}\left[\left(z^{\prime}+J^{\prime}\right)^{2}-J^{2}\right] d x-\int_{r_{2}}^{r_{2}^{\prime}}\left(\alpha_{2}^{\prime}-\xi_{2}\right) z d z \\
& +\frac{1}{2} \int_{\alpha_{2}}^{\alpha_{2}^{\prime}}\left(J^{2}-r_{2}^{2}\right) d x-\int_{r_{1}}^{r_{1}^{\prime}}\left(\xi_{1}-\alpha_{1}\right) z d z \\
& +\frac{1}{2} \int_{\alpha_{1}}^{\alpha_{1}^{\prime}}\left[r_{1}^{\prime 2}-\left(z^{\prime}+J^{\prime}\right)^{2}\right] d x \\
= & \frac{1}{2} \int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}}\left(z^{\prime}+J^{\prime}\right)^{2} d x-\frac{1}{2} \int_{\alpha_{1}}^{\alpha_{2}} J^{2} d x+\int_{r_{2}}^{r_{2}^{\prime}} \xi_{2} z d z \\
& -\int_{r_{1}}^{r_{1}^{\prime}} \xi_{1} z d z-\frac{\alpha_{2}^{\prime 2}}{2}\left(r_{2}^{\prime 2}-r_{2}^{2}\right)-\frac{r_{2}^{2}}{2}\left(\alpha_{2}^{\prime}-\alpha_{2}\right) \\
& +\frac{\alpha_{1}}{2}\left(r_{1}^{\prime 2}-r_{1}^{2}\right)+\frac{r_{1}^{\prime 2}}{2}\left(\alpha_{1}^{\prime}-\alpha_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
\iint_{A} z d x d z= & \frac{1}{2} \int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}}\left(z^{\prime}+f^{\prime}\right)^{2} d x-\frac{1}{2} \int_{\alpha_{1}}^{\alpha_{2}}-\rho^{2} d x+\int_{r_{2}}^{\gamma_{2}^{\prime}} \xi_{2} z d z \\
& -\int_{r_{1}}^{r_{1}^{\prime} \xi_{1} z d z-\frac{1}{2}\left[\alpha_{1} r_{1}^{2}+\alpha_{2}^{\prime} r_{2}^{\prime}-\alpha_{2} r_{2}^{2}-\alpha_{1} r_{1}^{\prime 2}\right]} \\
\cdots \int_{M} z d x d z= & \int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2} d x-\int_{\alpha_{1}}^{\alpha_{2}} \frac{1}{2} J^{2} d x \\
& +\int_{r_{2}}^{r_{2}^{\prime} \xi_{2} z d z-\int_{r_{1}}^{\gamma_{1}^{\prime}} \xi_{1} z d z} \\
& -\frac{1}{2}\left[\alpha_{2}^{\prime} r_{2}^{\prime 2}-\alpha_{1}^{\prime} r_{1}^{\prime 2}-\alpha_{2} r_{2}^{2}+\alpha_{1} \gamma_{1}^{2}\right]
\end{align*}
$$

In order to find

$$
\frac{\partial^{2}}{\partial t^{2}} \int_{M} z d x d z \quad \text { it is }
$$

necessary to apply the following theorem twice to each term on the right hand side of equation $(3 \cdot 8)$: If $f(x, \epsilon)$ ia a continuous function of both variables x and t, and x varies between x_{0} and x_{1} and t between t_{0} and ϵ_{1}, and if x_{0} and x_{j} are functions of t

$$
\begin{aligned}
& F(t)=\int_{x_{0}}^{x_{1}} f(x, t) d x \\
& \text { and } \frac{\partial F}{\partial t}=\int_{x_{0}}^{x_{1}} \frac{\partial f}{\partial t} d x+\frac{\partial x_{1}}{\partial t} \cdot f\left(x_{1}, t\right)-\frac{\partial x_{0}}{\partial t} \cdot f\left(x_{0}, t\right) \\
& \text { (Goursat : Cours d'Analyse section } 97 \text {) } \\
& \text { Hence if a dot denotes a partial differentiation with } \\
& \text { respect to t : }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial}{\partial E} \int_{M} z d x d z \\
& =\int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{\partial}{x_{t}} \cdot \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2} d x+\frac{1}{2} \dot{\alpha}_{2}^{\prime} Y_{2}^{\prime 2}-\frac{1}{2} \dot{\alpha}_{1}^{\prime} r_{1}^{\prime 2} \\
& -\int_{\alpha_{1}}^{\alpha_{2}} \frac{\partial}{\partial t} \cdot \frac{1}{2} J^{2} d x-\frac{1}{2} \dot{\alpha}_{1} r_{2}^{2}+\frac{1}{2} \dot{\alpha}_{1} r_{1}^{2} \\
& +\int_{\gamma_{2}}^{\gamma_{2}^{\prime}} \frac{\partial \xi_{2}}{\partial t}, z d z+\dot{r}_{2}^{\prime} r_{2}^{\prime} \alpha_{2}^{\prime}-\dot{\gamma}_{2} \gamma_{2} \alpha_{2} \cdot\left[\begin{array}{lll}
\text { since } & z & \text { is } \\
\text { indepentent of } \mathrm{t}
\end{array}\right] \\
& -\int_{r_{1}}^{r_{1}^{\prime}} \frac{\partial \xi_{1}}{\partial t} \cdot z d z-\dot{r}_{1}^{\prime} r_{1}^{\prime} \alpha_{1}^{\prime}+\dot{r}_{1} r_{1} \alpha_{1} \\
& -\frac{1}{2}\left[\dot{\alpha}_{2}^{\prime} \gamma_{2}^{\prime 2}+2 \alpha_{2}^{\prime} \dot{r}_{2}^{\prime} \gamma_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \gamma_{1}^{\prime 2}-2 \alpha_{1}^{\prime} \dot{r}_{1}^{\prime} \gamma_{1}^{\prime}-\dot{\alpha}_{2} \gamma_{2}^{2}\right. \\
& \left.-2 \alpha_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} r_{1}^{2}+2 \alpha_{1} \dot{r}_{1} r_{1}\right] \\
& =\int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{\partial}{\partial t} \cdot \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2} d z-\int_{\alpha_{1}}^{\alpha_{2}} \frac{\partial}{\partial t}\left(\frac{1}{2} J^{2}\right) d x \\
& +\int_{r_{2}}^{r_{2}^{\prime}} \dot{\xi}_{2} z d z-\int_{r_{1}}^{r_{1}^{\prime}} \dot{\xi}_{1} z d z \\
& \therefore \frac{\partial^{2}}{\partial t^{2}} \int_{M} z d x d z \\
& =\int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2} d x+\dot{\alpha}_{2}^{\prime} \cdot \frac{\partial}{\partial t}\left(\frac{1}{2} \dot{\gamma}_{2}^{\prime 2}\right)-\dot{\alpha}_{2}^{\prime} \cdot \frac{\partial}{\partial t}\left(\frac{1}{2} \gamma_{1}^{\prime 2}\right) \\
& -\int_{\alpha_{1}}^{\alpha_{2}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2} J^{2} d x-\dot{\alpha}_{2} \cdot \frac{\partial}{\partial t}\left(\frac{1}{2} r_{2}^{2}\right)+\dot{\alpha}_{1} \frac{\partial}{\partial t}\left(\frac{1}{2} r_{1}^{2}\right) \\
& +\int_{r_{2}}^{\gamma_{2}^{\prime}} \ddot{\xi}_{2} z d z+\dot{r}_{2}^{\prime} \dot{\alpha}_{2}^{\prime} r_{2}^{\prime}-\dot{r}_{2} \dot{\alpha}_{2} r_{2}^{\prime}-\int_{r_{1}}^{r^{\prime}} \tilde{\xi} z d z \\
& -\dot{r}_{1}^{\prime} \dot{\alpha}_{1}^{\prime} r_{1}^{\prime}+\dot{r}_{1} \dot{\alpha}_{1} r_{1}
\end{aligned}
$$

$$
\begin{align*}
\therefore & \frac{\partial^{2}}{\partial t^{2}} \int_{M} z d x d z \\
= & \int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2} d x-\int_{\alpha_{1}}^{\alpha_{2}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2} J^{2} d x \\
& +\int_{r_{2}}^{r_{2}^{\prime}} \ddot{\xi}_{2} z d z-\int_{r_{1}}^{r_{1}^{\prime} \ddot{\xi}_{1} z d z} \\
& +\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1} \\
& +\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}+\dot{\alpha}_{1} \dot{r}_{1} r_{1} \\
= & \int_{\alpha_{1}^{\prime}}^{\alpha_{2}^{\prime}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2}\left(z^{\prime}+f^{\prime}\right)^{2} d x-\int_{\alpha_{1}}^{\alpha_{2}} \frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2} J^{2} d x \\
& +\int_{r_{2}}^{r_{2}^{\prime} \ddot{\xi}_{2} z d z-\int_{r_{1}}^{r_{1}^{\prime}} \ddot{\xi}_{1} z d z} \\
& +2\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1}\right]
\end{align*}
$$

We need now to return f_{0} the evaluation of the third term of equation (3.4) i.e. equation (3.9) to the initial instant.
Initially $t=0, \quad \alpha_{1}=\alpha_{1}^{\prime}=x_{1}, \quad \alpha_{2}=\alpha_{2}^{\prime}=r_{2}$, and $r_{1}{ }^{\prime}=r_{2}^{\prime}=z^{\prime}$ 。 Suppose that when $x=x_{1}, \quad J=J_{1}$
and when $x=x_{2}, J=\boldsymbol{J}_{2}, J$
and when $x_{1}=x_{1}, J=J_{2}$, equation (3.9) becomes

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} \int_{M} z d x d z=\int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2}\left(z^{\prime}+J^{\prime}\right)^{2}-\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2} J^{2}\right] d x \\
&+\int_{f_{2}}^{z^{\prime}} \ddot{\xi}_{2} z d z-\int_{f_{1}}^{z^{\prime}} \ddot{\xi}_{1} z d z \\
&+2\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} \dot{r}_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1}\right]
\end{aligned}
$$

31.

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} \int_{M} z d x d z=\int_{x_{1}}^{x_{2}} \frac{\partial^{2}}{\partial t^{2}}\left[\frac{1}{2}\left(z^{\prime 2}+2 z^{\prime} J^{\prime}+J^{\prime 2}-J^{2}\right)\right] d x \\
& \quad+\int_{\rho_{2}}^{z^{\prime}} \ddot{\xi}_{2} z d z-\int_{J_{1}}^{z^{\prime}} \ddot{\xi}_{1} z d z \\
& \quad+2\left[\dot{x}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha_{1}} \dot{r}_{1} r_{1}\right]
\end{aligned}
$$

But z^{\prime} is independent of t, hence

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}} \int_{M_{m}} z d x d z \\
& =\int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{1}{2}\left(J^{\prime 2}-J^{2}\right)+z^{\prime} \ddot{j}^{\prime}\right] d x+\int_{\rho_{2}}^{z^{\prime}} \dot{\xi}_{2}^{\prime} z d z \\
& \\
& -\int_{f_{1}}^{z^{\prime}} \dot{\xi_{1}} z d z+2\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha} \dot{\alpha}_{1} \dot{r}_{1}^{\prime} r_{2}\right]
\end{aligned}
$$

After substituting from equations (3.5), (3.6) and (3.10) equation ($3 \cdot 4$) becomes

$$
\begin{aligned}
& \frac{\overline{p^{\prime}}-p_{s}}{\rho}=g z^{\prime}= \\
& \frac{1}{x_{2}-x_{2}} \int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} \rho^{2}-\frac{1}{2} J^{\prime 2}\right)-z^{\prime} \ddot{f}^{\prime}-g \rho\right] d x \\
&-\frac{1}{x_{2}-x_{1}} \int_{\rho_{2}}^{z^{\prime}} \ddot{\xi}_{2} z d z+\frac{1}{x_{2}-x_{1}} \int_{\rho_{1}}^{z_{1}^{\prime}} \dot{\xi}_{1} z d z \\
&-\frac{2}{x_{2}-x_{1}}\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1}\right]
\end{aligned}
$$

Hence $\quad \frac{\bar{p}^{\prime}-p_{s}}{p}-g z^{\prime}$

$$
\begin{align*}
= & \frac{1}{x_{2}-x_{1}} \int_{x_{4}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}-\frac{1}{2} J^{\prime 2}\right)-z^{\prime} \ddot{J}^{\prime}-g J\right] d x \\
& -\frac{1}{x_{2}-x_{1}}\left[\int_{J_{2}}^{z^{\prime}} \ddot{\xi}_{2} z d z-\int_{J_{1}}^{z^{\prime}} \ddot{\xi}_{1} z d z\right] \\
& -\frac{2}{x_{2}-x_{1}}\left[\dot{\alpha}_{2}^{\prime} \dot{\gamma}_{2}^{\prime} \gamma_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{\gamma}_{1}^{\prime} \gamma_{1}^{\prime}-\dot{\alpha}_{2} \dot{\gamma}_{2} \gamma_{2}+\dot{\alpha}_{1} \dot{\gamma}_{1} \gamma_{1}\right]
\end{align*}
$$

Equation (301) expresses the mean pressure on the plane $\mathbf{Z}=\mathbf{z}^{\prime}$ at the initial instant. It is desirable to transform this into a form which expresses this mean pressure independent of the initial instant chosen.

Let (u; w) denote the velocity components in the plane $z=z^{\prime}$ at the initial instant,
then $\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} \rho^{\prime 2}\right)=\frac{\partial}{\partial t}\left(f^{\prime} \dot{f}^{\prime}\right)=J^{\prime} \dot{f}^{\prime}+f^{\prime 2}$
When $t=0: \frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} f^{\prime 2}\right)=\omega^{\prime 2}$
Since $Z=Z^{\prime}+J^{\prime}$ is the equation of a surface moving with the fluid we must have

$$
\begin{align*}
& \frac{D}{D t}\left(z-z^{\prime}-J^{\prime}\right)=0, \\
& \frac{D^{2}}{D t^{2}}\left(z-z^{\prime}-J^{\prime}\right)=0, \\
& \text { where } \frac{D}{D t} \equiv \frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+\omega \frac{\partial}{\partial z} \\
& \frac{D^{2}}{D t^{2}} \equiv\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+\omega \frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+\omega \frac{\partial}{\partial z}\right) \\
&=\frac{\partial^{2}}{\partial t^{2}}+u^{2} \frac{\partial^{2}}{\partial x^{2}}+\omega^{2} \frac{\partial^{2}}{\partial z^{2}}+2 u \frac{\partial^{2}}{\partial x \partial t}+2 \omega \frac{\partial^{2}}{\partial z \partial t} \\
&+2 u \omega \frac{\partial^{2}}{\partial x \partial z}+\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\omega \frac{\partial u}{\partial z}\right) \frac{\partial}{\partial x} \\
&+\left(\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+\omega \frac{\partial \omega}{\partial z}\right) \cdot \frac{\partial}{\partial z}
\end{align*}
$$

From (3.13) we have

$$
\frac{\partial J^{\prime}}{\partial t}+u \frac{\partial J^{\prime}}{\partial x}-w=0
$$

From (3.14) we have

$$
\begin{gather*}
\frac{\partial^{2} \rho^{\prime}}{\partial t^{2}}+u^{2} \frac{\partial^{2} f^{\prime}}{\partial x^{2}}+2 u \frac{\partial^{2} J^{\prime}}{\partial x \partial t}+\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\omega \frac{\partial u}{\partial z}\right) \frac{\partial^{\prime} J^{\prime}}{\partial x} \\
-\left(\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+\omega \frac{\partial \omega}{\partial z}\right)=0
\end{gather*}
$$

At the initial instant $f^{\prime}=0$ and $\left[\frac{\partial f^{\prime}}{\partial x}\right]_{t=0}=0$
hence $\quad \frac{\partial s^{\prime}}{\partial t}-\omega^{\prime}=0$
ant $\therefore \frac{\partial^{2} f^{\prime}}{\partial r \partial t}-\frac{\partial \omega^{\prime}}{\partial x}=0$
From (3.15) when $t=0$

$$
\frac{\partial^{2} \rho^{\prime}}{\partial t^{2}}+2 u^{\prime} \frac{\partial^{2} s^{\prime}}{\partial x \partial t}-\left(\frac{\partial \omega^{\prime}}{\partial t}+u^{\prime} \frac{\partial \omega^{\prime}}{\partial x}+\omega^{\prime} \frac{\partial \omega^{\prime}}{\partial z}\right)=0
$$

But by the equation of continuity

$$
\frac{\partial u^{\prime}}{\partial x}+\frac{\partial w^{\prime}}{\partial z}=0
$$

$$
\therefore \frac{\partial^{2} J^{\prime}}{\partial t^{2}}+2 u^{\prime} \frac{\partial \omega^{\prime}}{\partial x}-\left(\frac{\partial \omega^{\prime}}{\partial t}+u^{\prime} \frac{\partial \omega^{\prime}}{\partial x}-\omega^{\prime} \frac{\partial u^{\prime}}{\partial x}\right)=0
$$

since $\quad 2 u^{\prime} \frac{\partial^{2} \rho}{\partial x \partial t}=2 u^{\prime} \frac{\partial}{\partial x}\left(\frac{\partial s^{\prime}}{\partial t}\right)=2 u^{\prime} \frac{\partial \omega^{\prime}}{\partial x}$
Hence $\quad \frac{\partial^{2} s^{\prime}}{\partial t^{2}}+u^{\prime} \frac{\partial \omega^{\prime}}{\partial x}+\omega^{\prime} \frac{\partial u^{\prime}}{\partial x}-\frac{\partial \omega^{\prime}}{\partial t}=0$

$$
\begin{align*}
\therefore \frac{\partial^{2} s^{\prime}}{\partial t^{2}} & =\frac{\partial \omega^{\prime}}{\partial t}-\frac{\partial}{\partial x}\left(u^{\prime}, \omega^{\prime}\right) \\
\text { or } \quad \ddot{j}^{\prime} & =\dot{\omega}^{\prime}-\frac{\partial}{\partial x}\left(u^{\prime}, \omega^{\prime}\right)
\end{align*}
$$

Since $x=\xi_{i} \quad(\dot{i}=1, \dot{2})$ is the equation of a surface moving with the fluid we must have

$$
\begin{aligned}
& \frac{D}{D t}\left(x-\xi_{i}\right)=0, \frac{D^{2}}{D t^{2}}\left(x-\xi_{i}\right)=0 \\
& \text { Hence } u-\frac{\partial \xi_{i}}{\partial t}-\omega \frac{\partial \xi_{i}}{\partial z}=0, \\
& \text { and }-\left(\frac{\partial u}{\partial t}+u \frac{\partial u}{\partial x}+\omega \frac{\partial u}{\partial z}\right)+\frac{\partial^{2} \xi_{i}}{\partial t^{2}}+\omega^{2} \frac{\partial^{2} \xi_{i}}{\partial z^{2}}+2 \omega \frac{\partial^{2} \xi_{i}}{\partial z \partial t} \\
& \quad+\left(\frac{\partial \omega}{\partial t}+u \frac{\partial \omega}{\partial x}+\omega \frac{\partial \omega}{\partial z}\right) \frac{\partial \xi_{i}}{\partial z}=0 \\
& \text { Initially } \xi_{i}=x_{i} \\
& \therefore\left[\frac{\partial \xi_{i}}{\partial z}\right]_{t=0}=0
\end{aligned}
$$

Hence $\quad u_{i}=\frac{\partial \xi_{i}}{\partial t}$

$$
\therefore \frac{\partial u_{i}}{\partial z}=\frac{\partial^{2} \xi_{i}}{\partial z \partial t}
$$

Hence initially, when $t=0$, we have

$$
\begin{gathered}
-\left(\frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial u_{i}}{\partial x}+\omega_{i} \frac{\partial u_{i}}{\partial z}\right)+\dot{\xi}_{i}+2 \omega_{i} \frac{\partial u_{i}}{\partial z}=0 \\
\therefore \dot{\xi}_{i}^{\prime}=\frac{\partial u_{i}}{\partial t}+u_{i} \frac{\partial u_{i}}{\partial x}-\omega_{i} \frac{\partial u_{i}}{\partial z} \\
\text { But by the e equation of continuity } \quad \frac{\partial u_{i}}{\partial x}+\frac{\partial \omega_{i}}{\partial z}=0
\end{gathered}
$$

Hence $\quad \ddot{\xi}_{i}=\dot{u}_{i}-u_{i} \frac{\partial \omega_{i}}{\partial z}-\omega_{i} \frac{\partial u_{i}}{\partial z}$

$$
=u_{i}-\frac{\partial\left(u_{i} \omega_{i}\right)}{\partial z}
$$

$$
\begin{equation*}
\text { i.e. } \xi_{i}=\dot{u}_{i}-\frac{\partial}{\partial z}\left(u_{i} \omega_{i}\right) \quad(i=1,2) \tag{3.17}
\end{equation*}
$$

Substituting from equations (3.12), (3.16) and (3.17) into equation ($3 \cdot 11$) we have

$$
\begin{aligned}
& \frac{\bar{p}^{\prime}-p_{s}}{\rho}-g z^{\prime} \\
& =\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial z^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{\prime 2}-z^{\prime}\left\{\dot{\omega}^{\prime}-\frac{\partial}{\partial x}\left(u^{\prime} \omega^{\prime}\right)\right\}-g J\right] d x \\
& -\frac{1}{x_{2}-x_{1}}\left[\int_{\rho_{2}}^{z^{\prime}}\left\{\dot{u}_{2}-\frac{\partial}{\partial z}\left(u_{2} \omega_{2}\right)\right\} z d z-\int_{J_{1}}^{z \prime}\left\{\dot{u}_{1}-\frac{\partial}{\partial z}\left(u_{1} \omega_{1}\right)\right\} z d z\right] \\
& -\frac{2}{x_{2}-x_{1}}\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} \gamma_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} \gamma_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1}\right] \\
& =\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial{\mu^{2}}^{2}}\left(\frac{1}{2} \rho^{2}\right)-\omega^{2}-\dot{z} \dot{\omega}^{\prime}-g J\right] d x \\
& +\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} z^{\prime} \frac{\partial}{\partial x_{c}}\left(u^{\prime} \omega^{\prime}\right) d x \\
& -\frac{1}{x_{2}-x_{1}} \int_{J}^{z^{\prime}}\left[z \dot{u}^{\prime}-z \frac{\partial}{\partial z}(u \omega)\right]_{x_{1}}^{x_{2}} d z \\
& -\frac{2}{x_{2}-x_{1}}\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{r}\right]
\end{aligned}
$$

But $\left[\int_{\rho}^{z^{\prime}} z \frac{\partial}{\partial z}(n \omega) d z\right]_{x_{1}}^{x_{2}}=\left[\{z(n \omega)\}_{\rho}^{z_{1}}-\int_{1}^{z_{1}} n \omega d z\right]_{x_{1}}^{x_{2}}$

HENCE

$$
\frac{\overline{p_{1}}-p_{s}}{p}-g z^{\prime}
$$

$$
\begin{aligned}
&= \frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{\prime 2}-z^{\prime} \dot{\omega}^{\prime}-g J\right] d x \\
&- \frac{1}{x_{2}-x_{1}}\left[\int_{\rho}^{z^{\prime}}(z \dot{u}+u \omega) d z\right]_{x_{1}}^{x_{2}}+\frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}} z^{\prime} \frac{\partial}{\partial x^{\prime}}\left(\mu^{\prime} \omega^{\prime}\right) d x \\
&\left.-\frac{1}{x_{2}-x_{1}}\left[(z u \omega)^{z_{1}}\right]\right]_{x_{1}}^{x_{2}} \\
&-\frac{2}{x_{2}-x_{1}}\left[\dot{\alpha}_{2}^{\prime} \dot{r}_{2}^{\prime} r_{2}^{\prime}-\dot{\alpha}_{1}^{\prime} \dot{r}_{1}^{\prime} r_{1}^{\prime}-\dot{\alpha}_{2} \dot{r}_{2} r_{2}+\dot{\alpha}_{1} \dot{r}_{1} r_{1}\right] \\
&= \frac{1}{x_{2}-x_{1}} \int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{\prime 2}-z^{\prime} \dot{\omega}^{\prime}-g J\right] d x \\
&-\frac{1}{x_{2}-x_{1}}\left[\int_{J}^{z^{\prime}}(z \dot{u}+u \omega) d z\right]_{x_{1}}^{x_{2}} \\
&+\frac{1}{x_{2}-x_{1}}\left[z^{\prime}\left(u_{1}^{\prime} \omega_{1}^{\prime}-u_{2}^{\prime} \omega_{2}^{\prime}\right)+u_{2} \omega_{2} z^{\prime}+\left(u_{2} \omega_{2} \tilde{f}_{2}\right)_{f_{2}}\right. \\
&- \frac{2}{x_{2}-u_{1}}\left[\dot{\alpha}_{1}^{\prime} \omega_{1} z_{1}-\left(u_{1} \omega_{1}^{\prime} J_{1}\right)_{f_{1}}\right] \\
&
\end{aligned}
$$

But $\left(\dot{\alpha}_{i}, \dot{\gamma}_{i}\right)$ and $\left(\dot{\alpha}_{i}^{\prime}, \dot{\gamma}_{i}^{\prime}\right)$ are the velocity components at $\left(x_{i}, f\right)$ and $\left(x_{i}, z^{\prime}\right)$. Hence dropping the dashes we have the exact equation for the mean pressure at time $t=0$.

$$
\begin{align*}
\frac{\bar{p}-p_{s}}{\rho}=g z & \left.=\int_{x_{1}}^{x_{2}}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{2} z \dot{j}-g J\right]\right]_{x=x_{2}} d x \\
& -\frac{1}{x_{2}-x_{1}}\left[\int_{s}^{z}(\dot{u} z+u \omega) d z-(u \omega z)_{z=J}\right]_{x=x_{1}}
\end{align*}
$$

Since the last two terms become

$$
\begin{aligned}
& \frac{1}{x_{2}-x_{1}}\left[z u_{2} \omega_{2}-z u_{1} \omega_{1}+u_{2} \omega_{2} z+\left(u_{2} \omega_{2} J_{2}\right)_{\rho_{2}}-u_{1} \omega_{1} z-\left(u_{1} \omega_{1} \rho_{1}\right)_{f_{1}}\right] \\
& -\frac{2}{x_{2}-x_{1}}\left[u_{2} \omega_{2} z-u_{1} \omega_{1} z-u_{2} \omega_{2} J_{2}+u_{1} \omega_{1} J_{1}\right] \\
& =\frac{1}{x_{2} \rightarrow x_{1}}[(u \omega J)]_{x_{1}}^{x_{2}}=\frac{1}{x_{2} \rightarrow x_{1}}\left[(u \omega z)_{z=J}\right]_{x_{1}}^{x_{2}}
\end{aligned}
$$

Equation ($3 \cdot 18$) is true for all values of z and t, and gives the mean pressure on the plane $\mathrm{z}=\mathrm{constant}$ between vertical planes $x=x_{1}$ and $x=x_{2}$.

By allowing x_{2} to tend to x_{1} in this equation we obtain an expression for the pressure at any particular point. Thus $\frac{p-p_{s}}{p}-g z$

$$
\begin{aligned}
& =\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{2}-z \dot{\omega}-g J \\
& =\frac{\partial}{\partial x}\left[\int_{J}^{2}(\dot{u}+\omega \omega) d z-(u \omega z)_{z=J}\right]_{z=5}(3 \cdot 19)
\end{aligned}
$$

We now suppose that the motion is periodic in x with wave length λ; to fix the motion let us set $x_{1}=0$ and $x_{2}=\lambda$ and suppose that the origin is in the mean surface level. Then since u and \dot{u} have equal values. when $x=0$ and $x=\boldsymbol{\lambda}$

$$
\left[\int_{J}^{z}(\dot{u}+u \omega) d z-(u \omega z)_{z=5}\right]_{x=0}^{x=\lambda}
$$

vanishes identically.

Also

$$
\int_{0}^{\lambda} 9 f d x=0
$$

Also since the net flow of fluid across the plane z constant is zero over a wave length we have

$$
\int_{0}^{\lambda} z \dot{\omega} d x=z \frac{\partial}{\partial t} \int_{0}^{\lambda} \omega d x=0
$$

Hence using $3.18,3 \cdot 20,3 \cdot 21$ and 3.22 the mean pressure over a wavelength is given by

$$
\frac{\bar{p}-p_{s}}{\rho}-g z=\frac{1}{\lambda} \frac{\partial^{2}}{\partial \varepsilon^{2}} \int_{0}^{\lambda} \frac{1}{2} s^{2} d x-\frac{1}{\lambda} \int_{0}^{\lambda} \omega^{2} d x
$$

In water of constant finite depth h, the vertical velocity os vanishes when $Z=\mathbb{k}$; so that equation (3.23) indicates that variation in the mean pressure on the bed over one wavelength in water of constant depth depends upon a second order term in the wave amplitude.

The standing wave and the progessive wave.
In this chapter the results of chapter 3 are used to evaluate the mean pressure on the bed in the cases of a standing and a progessive wave.

Suppose that the water is of constant depth h and that the motion is one which to the first approximation consists of two progressive waves of equal lengths $\boldsymbol{\lambda}$ and period T travelling in opposite directions. Then the equation of the free surface is

$$
J=a_{1} \cos (k x-\sigma t)+a_{2} \cos (k x+\sigma t)+O\left(a^{2} k\right)
$$

where

$$
\left.\begin{array}{rl}
k & =\frac{2 \pi}{\lambda}, \quad \sigma=\frac{2 \pi}{T} \\
\sigma^{2} & =9 k \tanh k h
\end{array}\right\}
$$

and $\quad \sigma^{2}=9 k \tanh k k$
[Lamb 1932, page 364]
$O\left(a^{2} k\right)$ is a term of the second and higher orders in a_{1} and a_{2} the wave amplitudes.
When $z=h, \omega=0$, hence by equation (3-23) the mean pressure \vec{p}_{h} on the bed $(z=h)$ is given by

$$
\begin{aligned}
& \frac{\vec{P}_{h}-p_{s}}{p}-g h=\frac{1}{\lambda} \cdot \frac{\partial^{2}}{\partial t^{2}} \int_{0}^{\lambda} \frac{1}{2}\left[a_{1} \operatorname{Cos}(k x-\sigma t)+a_{2} C_{0}(k x+\sigma t)\right]^{2} d x \\
& +O\left(a^{3} \sigma^{2} k^{2}\right) \\
& {\left[a_{1} \cos (k x-\sigma t)+a_{2} \cos (k x+\sigma t)\right]^{2}} \\
& =a_{1}^{2} \cos ^{2}(k x-\sigma t)+a_{2}^{2} \cos ^{2}(k x+\sigma t) \\
& +2 a_{1} a_{2} \operatorname{Cos}(k x-\sigma t) \operatorname{Cos}(k x+\sigma t) \\
& =\frac{1}{2}\left[a_{1}^{2}+a_{2}^{2}+a_{1}^{2} \cos (2 k x-2 \sigma t)+a_{2}^{2} \cos (2 k x+2 \sigma t)\right] \\
& +a_{1} a_{2}(\cos 2 k x+\cos 2 \sigma t)
\end{aligned}
$$

40.

$$
\begin{aligned}
& \therefore \int_{0}^{\lambda}\left[a_{1} \cos (k x-\sigma t)+a_{2} \cos \left(k_{x}+\sigma t\right)\right]^{2} d x \\
& =\left[\left(a_{1}^{2}+a_{2}^{2}\right) x+\frac{a_{1}^{2}}{4 k} \sin (2 k x-2 \sigma t)+\frac{a^{2}}{4 k} \sin (2 k x+20 t)\right. \\
& \left.\quad+\frac{a_{1} a_{2}}{2 k} \sin 2 k x+a_{1} a_{2} x \cos 2 \sigma t\right]_{0}^{\lambda} \\
& =\frac{\lambda}{2}\left[a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos 2 \sigma t\right]
\end{aligned}
$$

Hence $\quad \frac{\bar{p}_{h_{2}}-p_{s}}{\rho}-g h=\frac{1}{2} \cdot \frac{\partial^{2}}{\partial t^{2}}\left(a_{1}^{2}+a_{2}^{2}+2 a_{1} a_{2} \cos 2 \sigma t\right)+O\left(a^{3} \sigma^{2} k^{2}\right)$

$$
=-2 a_{1} a_{2} \sigma^{2} \cos 2 \sigma t+O\left(a^{3} \sigma^{2} k^{2}\right)
$$

Thus to the second order of approximation in a the variation in the mean pressure on the bed is given by

$$
\frac{\bar{p}_{h}-p_{s}}{p}-g^{h}=-2 a_{1} a_{2} \sigma^{2} \operatorname{Cos} 2 \sigma t
$$

It is apparent that the variationin the mean pressure un the bed ($\overline{\boldsymbol{P}}_{\boldsymbol{h}}$) is independent of the depth of the water (\boldsymbol{k}), that it is periodic in time with a frequency twice that of the surface waves and in magnitude is proportional to the product of the wave amplitudes.

We may derive the mean pressure variation in the two particular cases of the progressive wave and the standing wave from equation (4-3).

Setting $a_{2}=0$, and $a_{1}=a$ we have a progressive wave of amplitude a and period $T=2 \pi / \sigma$, and equation (4-3) gives

$$
\frac{\bar{p}_{h}-p_{s}}{p}-g k=0
$$

Thus to the secondider amplitude the mean pressure on the bed under a progressive wave is constant.
41.

Setting $a_{1}=a_{2}=\frac{1}{2} a$, we have a standing wave, and the equation of the free surface is

$$
\begin{equation*}
J=a \cos k x \cos \sigma+O\left(a^{2} k\right) \tag{4-4}
\end{equation*}
$$

From equation (4.3) the fluctuation in the mean pressure at a depth \mathcal{K} is given by

$$
\frac{\overline{P_{h}}-p_{s}}{P}-g h=-\frac{1}{2} a^{2} \sigma^{2} C_{\cos 2} \sigma t
$$

From this we see that the mean pressure at a depth h beneath a standing wave has a periodic variation, independent of the depth, with double the frequency of the standing wave and with an amplitude proportional to the square of the wave amplitude,

This conclusion was arrived at in Chapter 2 after evaluating the second order approximation in full.

If in equation (2-43) we write
$H=R, f=\sigma$ and $K=\frac{a}{2}$ we have

$$
b_{m}=\rho g h+\frac{1}{2} \rho a^{2} \sigma^{2} \cos 2 t
$$

A result in full agreement with equation (4*5)

CHAPTER 5.
The total force over a horizontal plane under a surface wave motion of general form.

Perfectly periodic trains of progressive or standing waves are of very rare occurence on the oceans: To examine the pressure variation on the bed due to the customary surface wove motion on the seas, we consider that the observable surface motion arises from continuous range or spectrum of wave frequencies.

We measure z vertical dy downwards from the free surface at rest and x and y horizontally in two perpendicular directions. Let u and v denote the velocities of the point (x, y) in the x and y directions. The symbol $A(u, v)$ denotes the complex wave amplitude and also defines the two dimensional frequency spectrum of the wave motion.

We let $z=T$ denote the equation of the free surface, and we imagine that the fluid is incompressible. After assuming the general conditions necessary for the validity of this work, and in particular the possibility of differentiating under the integral sign, we suppose that the values of J and $\partial \boldsymbol{\rho} / \partial t$ at the initial instant $t=0$ can be expressed as

$$
\begin{aligned}
& (J)_{t=0}=R \int_{-\infty}^{\infty} \int_{e^{i(u k x+v k y)}}^{\infty} d u d v,(5 \cdot 1) \\
& \left(\frac{\partial J}{\partial t}\right)_{t=0}=R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B e^{i(u k x+v k y)} d u d v,
\end{aligned}
$$

where \mathcal{R} denotes the real part, and B as well as A is a function of (u,v). We further suppose that \mathcal{B} is defined by

$$
B=i \sigma A
$$

where $2 \pi / \sigma$ is the period of the wave of

$$
\text { length } \quad \lambda=\frac{2 \pi}{\left(u^{2}+v^{2}\right)^{1 / 2} k}
$$

The period equation for waves in water of depth is therefore (Lamb Chapter 9)

$$
\sigma^{2}=\left(u^{2}+v^{2}\right) g k \tan k\left(u^{2}+v^{2}\right)^{\frac{1}{2}} k h
$$

The surface wave defined by (5.4) and (5.5) has its crests parallel to the line

$$
\begin{equation*}
u x+v y=0 \tag{5.6}
\end{equation*}
$$

We shall now derive a transformation which is to be applied to equations (5-1) and (5-2). A continuous and absolutely integrable function $f(x)$ can be expressed by the exponential form of Fourieis Formula (Titchmarsh : : Theory of Fourier Integrals, chapter I) :

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i x u} d u \int_{-\infty}^{\infty} f(t) e^{i u t} d t
$$

Writing cu for u, this becomes

$$
f(x)=\frac{k}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x u} d u \int_{-\infty}^{\infty} f(t) e^{i k u t} d t
$$

Hence

$$
f(x, y)=\frac{k}{2 \pi} \int_{-\infty}^{\infty} e^{-i k \pi n} d u \int_{-\infty}^{\infty} f(s, y) e^{-k u s} d s
$$

where y is taken as constant.
If $\quad g(u, y)=\int_{-\infty}^{\infty} f(s, y) e^{i k u s} d s$
then $f(x, y)=\frac{k}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x u} g(u, y) d u$,
where y is constant.
Also $g(u, y)=\frac{k}{2 \pi} \int_{-\infty}^{\infty} F(u, v) e^{-i k y V} d v$
and $F(u, v)=\int_{-\infty}^{\infty} e^{i k v t} g(u, t) d t$,
where io u is constant.

Hence

$$
\begin{aligned}
f(x, y) & =\frac{k}{2 \pi} \int_{-\infty}^{\infty} e^{-i k x u} d u \int_{-\infty}^{\infty} \frac{k}{2 \pi} F(u, v) e^{-i k y v} d v \\
& =\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(k x u+k y v)} F(u, v) d u d v
\end{aligned}
$$

since u and v are independent,

$$
\text { and } F(u, v)=\int_{-\infty}^{\infty} e^{i k v t} d t \int_{-\infty}^{\infty} f(s, t) e^{i k u s} d s
$$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u s+k v t)} f(s, t) d s d t
$$

since s and t are independent.

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u x+k v y)} f(x, y) d x d y
$$

Interchanging F and $f,(u, v)$ and (x, y) we have

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u x+k v y)} F(u, v) d u d v
$$

where

$$
F(u, v)=\left(\frac{k}{2 \pi}\right)^{2} \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(k x u+k y v)} f(x, y) d x d y
$$

45.

Hence we have the transformation for e continuous and absolutely integrable function $f(x, y)$ of two variables :

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(4 k x+v k y)} F(u, v) d u c d v,(5.7)
$$

where

$$
F(u, v)=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i(u k x+v k y)} d x d y,(5.8)
$$

If $F(u, v)$ denote a complex function of (u, v), then

$$
F_{1}(u, v)+F_{1}^{*}(-u,-v)=R_{2} 2 F_{1}(u, v)
$$

where F^{*} is the conjugate complex function of F_{i}.

$$
\begin{align*}
f(x, y) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[F(u, v)+F^{*}(-u,-v)\right] e^{i(u k x+v k y)} d u d v(5.9) \\
& =R . \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) e^{-i(u k x+v k y)} d u d v \quad(5 \cdot 10)
\end{align*}
$$

where $F(u, v)$ is a complex function.
where R.F $(u, v)=\frac{L}{2}\left[F(u, v)+F^{*}(-u,-v)\right]$

$$
\begin{equation*}
=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) e^{-i(u k x+v k y)} d x \tag{5.11}
\end{equation*}
$$

Apply the principle of equations (5.9), (5.10) and (5.11) to equations (5.1) and (5.2), then

$$
\begin{aligned}
& \left.\frac{1}{2}\left[A(u, v)+A^{*}(-u,-v)\right]=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(f)\right)_{t=0} e^{-i\left(u x+v v_{y}\right) k} d x d y \text { (5.12) } \\
& \frac{1}{2}\left[B(u, v)+B^{*}(-u,-v)\right]=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{\partial J}{\partial t}\right)_{t=0} e^{-i(u x+v y) k} d x d y ;
\end{aligned}
$$

but from equation (5-3)

$$
\frac{1}{2}\left[B(u, v)+B^{*}(-u,-v)\right]=\frac{1}{2}\left[A(u, v) \cdot i \sigma-A^{*}(-u,-v) \cdot i \sigma\right]
$$

$$
\frac{1}{2} i \sigma\left[A(u, v)-A^{*}(-u,-v)\right]=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\frac{\partial J}{\partial t}\right) e_{t=0}^{-i(u x+W y) k} d x d y . \quad(5.13)
$$

From (5.12) and (5-13)

$$
A(u, v)=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(J+\frac{1}{i \sigma} \cdot \frac{\partial J}{\partial t}\right)_{t=0} e^{-i(u x+v y) k} d x d y
$$

Now consider the expression

$$
\eta=R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) e^{i(u k x+v k y+\sigma t)} d u d v,
$$

where $A(u, v)$ is given by equation (5-i4).

$$
z=A(u, v) e^{i(u k x+v k y+\sigma t)}
$$

represents a surface wave of amplitude $A(u, v)$, with velocity components (u, \forall), period $2 \pi / \sigma$ in water depth R, of length given by (5.4)
and satisfying the period equation (5.5) for waves in water of constant depth.
Since $\quad A(u, v) e^{i(u k x+v k y+\sigma t)}$
satisfies the period
equation for waves in water of constant depth, η must also satisfy this equation to the first order of approximation. But from (5-15) we see that

$$
\begin{aligned}
(\eta)_{t=0} & =R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) e^{i(u x+v y) k} d u d v \\
& =(J)_{t=0} \quad(\text { by } 5 \cdot 1) ; \\
\text { also } \frac{\partial \eta}{\partial t} & =R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) \cdot i \sigma e^{i(u k x+v k y+\sigma t)} d u d v \\
\therefore\left(\frac{\partial \eta}{\partial t}\right)_{t} & =R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B(u, v) e^{i(u k x+v k y)} d u d v \\
& =\left(\frac{\partial S}{\partial t}\right)_{t=0} \quad \text { by } 5.3 \quad \text { by }(5.2) .
\end{aligned}
$$

Since the initial values of the surface elevation amd its rate of change with respect to time determine the initial potential and kinetic energies of an irrotational motion, then these initial conditions must determine a unique irrotational motion. Hence since

$$
J=\eta \quad \text { and } \quad \frac{\partial J}{\partial t}=\frac{\partial n}{\partial t} \quad \text { for } t=0
$$

they must also be equal for all values of t;
that is

$$
J=R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) e^{i(u k x+v k y+\sigma t)} d u d v
$$

for all values of t.
Since $u k$ and $v k$ can take all values then equation (5.4) defines all possible wavelengths and equation (5-6) defines all possible directions. Then the free surface $Z=J$ can, by equation (5.16), be regarded as created by the sum of a number of superposed wave motions of all possible wavelengths (equation 5.4) and travelling in all possible directions from the origin 0 . For a given value of k the line $O P$, where P is the point ($-u k,-\nabla k$), is perpendicular to the line
$u x+v y=0$ for all pairs of values of (u,v). That is, every line $O P$ is perpendicular to the crest of a wave. So that each vector $\overrightarrow{O P}$ corresponds to a wave component satisfying the period equation (5:5). The direction of the vector $\overrightarrow{O P}$ gives the corresponding wave component. Since $O P^{2}=\left(u^{2}+V^{2}\right) k^{2}$

$$
O P=\frac{2 \pi}{\lambda}, \text { by equation }(5-4)
$$

So that all wave components of the same length correspond to points P lying on the circle centre 0 and radius $\frac{2 \pi}{\lambda}$. Diametrically opposite points correspond to wave components of the same wavelength, with parallel crests but travelling in opposite directions with the same speed. much pairs of wave components will be called opposite wove components, and will interfere with each other tc produce standing waves.

The total energy of the motion.
Before determining the kinetic and potential energies cf the free motion of the sea surface we mist first extend the Parseval-Plancherel theorem to functions of two variables.

$$
\begin{aligned}
& \text { If } F(n)=2 \pi \int_{-\infty}^{\infty} f(t) e^{i n t} d t, \text { then } f(n)=\int_{-\infty}^{\infty} F(n) e^{-i x u} d u \\
& \text { If } G(u)=2 \pi \int_{-\infty}^{\infty} g(t) e^{i u t} d t \text {, then } g(t)=\int_{-\infty}^{\infty} G(u) e^{-i t u} d u
\end{aligned}
$$

(Titchmarsh: Theory of Fourier Integrals).

Then

$$
\begin{aligned}
\int_{-\infty}^{\infty} F(x) \dot{x}(x) d x & =2 \pi \int_{-\infty}^{\infty} G(x) d x \int_{-\infty}^{\infty} f(t) e^{i x t} d t \\
& =2 \pi \int_{-\infty}^{\infty} f(t) d t \int_{-\infty}^{\infty} G(x) e^{i x t} d x \\
& =2 \pi \int_{-\infty}^{\infty} f(t) g(t) d t
\end{aligned}
$$

Since $G(u)=2 \pi \int_{-\infty}^{\infty} g(t) e^{i n t} d t$
then $2 \pi \int_{-\infty}^{\infty} \bar{g}(-t) e^{-i n(-t)} d t=\bar{G}(n)$,

$$
\therefore \int_{-\infty}^{\infty} F(x) \bar{G}(x) d x=2 \pi \int_{-\infty}^{\infty} f(t) \bar{g}(t) d t
$$

If $\quad g=f$ and $G=F$, then

$$
\int_{-\infty}^{\infty}|F(x)|^{2} d x=2 \pi \int_{-\infty}^{\infty}|f(t)|^{2} d t
$$

the Parsevel Plancherel Thetrem.

By Fourier's Exponential Formula for two variables (see equations 5.7 and 5.8) :

$$
f(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u x+k v y)} F(u, v) d u d v,
$$

where

$$
F(u, v)=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i(k u x+k v y)} f(x, y) d x d y .
$$

Suppose that g and G are similarly related functions.
Then

$$
\begin{align*}
& \text { hen } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) g(x, y) d x d y \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) d x d y \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u x+k v y)} F(u, v) d u d x \\
&= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) d u d v \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) e^{i(k u x+k v y)} d x d y \\
&=\left(\frac{2 \pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) . G(-u,-v) d u d v \tag{A}
\end{align*}
$$

But as $\quad g(x, y)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i(k u x+k v y)} G(u, v) d u d x$

$$
\operatorname{then} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \bar{q}(-n,-v) e^{-i(-n k x-k v y)} d u d v=\bar{g}(x, y)
$$

Hence in (A) replace $G(u, v)$ by $\bar{G}(-u,-v)$
and $g(x, y)$ by $\bar{g}(x, y)$. Then

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \bar{g}(x, y) d x d y=\left(\frac{2 \pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u, v) \bar{G}(u, v) d u d v .
$$

Putting F G and consequently $f(g$

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|f(x, y)|^{2} d x d y=\left(\frac{2 \pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|F(u, v)|^{2} d u d v
$$

where $f(x, y)$ and $F(u, v)$ are related by equations (5.7) and (5-8).
Rewrite equation (5.16) as

$$
J=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[A(u, v) e^{i \sigma t}+A^{*}(-u,-v) e^{-i \sigma t}\right] d u d v v_{(5.17)}
$$

and apply the above theorem :

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J^{2} d x d y \\
& =\left(\frac{2 \pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|\frac{1}{2}\left\{A(u, v) e^{i \sigma t}+A^{*}(-u,-v) e^{-i \sigma t}\right\}\right|^{2} d u d v(5.18)
\end{aligned}
$$

$$
\begin{aligned}
& \left|A(u, v) e^{i \sigma t}+A^{*}(-u,-v) e^{-i \sigma t}\right|^{2} \\
& \begin{aligned}
&= {\left[A(u, v) e^{i \sigma t}+A^{*}(-u,-v) e^{-i \sigma t}\right]\left[A^{*}(u, v) e^{i \sigma t}+A(-u,-v) e^{i \sigma t}\right] } \\
&=A(u, v) \cdot A^{*}(u, v)+A(u, v) A(-u,-v) e^{2 i \sigma t} \\
&+A^{*}(u, v) A^{*}(-u,-v) e^{-2 i \sigma t}+A(-u,-v) A^{*}(-u,-v)
\end{aligned} \\
& =2 R \cdot\left[A(u, v) A^{*}(u, v)+A(u, v) A(-u,-v) e^{2 i \sigma t}\right] \\
& \text { since } A(u, v) A^{*}(u, v)=A(-u,-v) \cdot A^{*}(-u,-v) \text { and } \\
& A(u, v) A(-u,-v) e^{2 i \sigma t}+A^{*}(u, v) A^{*}(-u,-v) e^{-2 i \sigma t} \\
& =2 R \cdot\left[A(u, v) A(-u,-v) e^{2 i \sigma t}\right] .
\end{aligned}
$$

Hence equation 15.18) becomes

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} J^{2} d x d y=
$$

R. $2\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{A(u, v) A^{*}(u, v)+A(u, v) A(-u,-v) e^{2 i \sigma t}\right\} d u d v$ The potential energy of the motion is $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} \rho g J^{2} d x d y$

$$
=R . \rho g\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[A(u, v) A^{*}(u, v)+A(u, v) A(-u,-v) e^{2 i \sigma t}\right] d u d v
$$

by equation (5.19).
53.

The Kinetic Energy of the mutton is $\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\phi \frac{\partial \phi}{\partial z}\right]{ }_{z=0} d x d y \quad$ (5.01)
where z is measured upwards from the disturbed surface (Milne-Thomson \oint g.11).
With a surface displacement $A(u, v) \cdot \operatorname{Cos}\{k(u x+v y)+\sigma t\}$
the complex potential $\boldsymbol{\sigma}(=\boldsymbol{\phi}+i \psi)$ is of the form

$$
P \sin \left[k \sqrt { u ^ { 2 } + v ^ { 2 } } \left\{\frac{(u x+v y)}{\left.\left.\left.\sqrt{\left(u^{2}+v^{2}\right)}+i(z+\alpha)\right\}+\sigma t\right], ~\right], ~}\right.\right.
$$

But $\quad\left(\frac{\partial \phi}{\partial t}\right)_{z=0}=g J$
(Milne-Thomsoni: $\boldsymbol{f} 14$-18)
Then $\frac{\phi+i \psi}{P}$
$=\sin \left[k \sqrt{u^{2}+v^{2}}\left\{\frac{u x+v y}{\sqrt{u^{2}+v^{2}}}+i(z+h)\right\}\right] \cos \sigma t$
$+\operatorname{Cos}\left[k \sqrt{u^{2}+v^{2}}\left\{\frac{u x+v y}{\sqrt{u^{2}+v^{2}}}+i(z+h)\right\}\right] \sin \sigma t$
$=\sin k(u x+v y) \cdot \cosh (z+h) k \sqrt{u^{2}+v^{2}} \cdot \cos \sigma t$
$+i \cos k(u y+v y), \sin k(z+h) k \sqrt{n^{2}+v^{2}} \cdot \cos \sigma t$
$+\operatorname{Cos} k(u n+v y) \cdot \operatorname{Cosh}\left\{k \sqrt{u^{2}+v^{2}} \cdot(z+h)\right\} \cdot \sin \sigma t$
$-i \sin k(u x+v y) \cdot \sin k\left\{k \sqrt{u^{2}+v^{2}} \cdot(z+k)\right\} \cdot \sin \sigma t$.
$\therefore \phi=P\left[\sin k(u x+v y) \cdot \cosh \left\{(z+h) k \sqrt{u^{2}+v^{2}}\right\} \cdot \cos \sigma t\right.$

$$
\left.+\cos k(u x+v y) \cdot \cosh \left\{(2+l) k \sqrt{u^{2}+v^{2}}\right\} \cdot \sin \sigma t\right],
$$

hence

$$
\begin{aligned}
\frac{\partial \phi}{\partial t}= & -P\left[\sigma \sin k(u x+v y) \cdot \cosh \left\{(z+h) k \sqrt{u^{2}+v^{2}}\right\} \cdot \sin \sigma t\right. \\
& \left.-\sigma \cos k(u x+v y) \cdot \cosh \left\{(z+k) k \sqrt{u^{2}+v^{2}}\right\} \cdot \cos \sigma t\right] \\
\therefore\left[\frac{\partial \phi}{\partial t}\right]_{z=0} & =P \sigma \cosh \left(h k \sqrt{u^{2}+v^{2}}\right) \cdot \cos \{k(u x+v y)+\sigma t\} .
\end{aligned}
$$

Hence by equation (5.23)

$$
\begin{gathered}
\operatorname{P\sigma } \operatorname{Cosh}\left(h k \sqrt{u^{2}+v^{2}}\right) \cdot \cos \{k(u x+v y)+\sigma t\} \\
=g A(u, v) \cdot \cos \{k(u x+v y)+\sigma t\} \\
\therefore \quad P=\frac{g A(u, v)}{\sigma \operatorname{Cosh}\left(h k \sqrt{u^{2}+v^{2}}\right)}
\end{gathered}
$$

Hence picking ut the real part of $\boldsymbol{\sigma}$ equation 5.22)

$$
\begin{aligned}
\phi & =\frac{g A(u, v)}{\sigma \cosh \left(h k \sqrt{u^{2}+v^{2}}\right)} \cdot \cosh \left\{(z+h) k \sqrt{u^{2}+v^{2}}\right\} \cdot \sin \{k(u x+v y)+\sigma t\} \\
& =-R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{i g A(u ; v) \cosh \left\{(2+k) k \sqrt{a^{2}+v^{2}}\right\}}{\sigma \operatorname{Conh}\left(h k \sqrt{u^{2}+v^{2}}\right)} \cdot e^{i(u k v+v k y+\sigma t)} d u d v \\
\therefore[\phi]_{z=0} & =-R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{i g A(u, v)}{\sigma} \cdot e^{i(u k x+v k y+\sigma t)} \cdot d u d v .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \phi}{\partial z}=\frac{g A(u, v) \cdot k \sqrt{u^{2}+v^{2}} \cdot \sinh \left\{k(z+h) \sqrt{n^{2}+v^{2}}\right\} \cdot \sin \{k(u x+v y)+\sigma t\}}{\sigma \cdot \cosh \left(h k \sqrt{u^{2}+v^{2}}\right)} \\
& =-R \int_{-\infty}^{\infty} \int_{\infty}^{\infty} \frac{i g k A(u, v) \cdot \sqrt{u^{2}+v^{2}} \sinh \left\{k(2+\alpha) \sqrt{u^{2}+v^{2}}\right\} \cdot e^{i(u k x+v k y+r+)}}{\sigma \operatorname{Con}\left(h k \sqrt{u^{2}+v^{2}}\right)} \cdot d u d v . \\
& \therefore\left[\frac{\partial \phi}{\partial z}\right]=-R \int_{z=0}^{\infty} \int_{-\infty}^{\infty} \frac{i g k A(u, v) \cdot \sqrt{u^{2}+v^{2}}}{\sigma} \cdot \tanh \left(k k \sqrt{u^{2}+v^{2}}\right) e^{i(n k n+v k g+\sigma t)} d u d v \\
& \therefore\left[\phi \frac{\partial \phi}{\partial z}\right]_{z=0}=-R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{A^{2}(u, V) g^{2} k \sqrt{n^{2}+v^{2}} \cdot \tanh \left(h k \sqrt{4^{2}+v^{2}}\right)}{\sigma^{2}} \cdot e^{i(n h x+v h g+\sigma t)} d u d V .
\end{aligned}
$$

But $\quad \sigma^{2}=g k \sqrt{k^{2}+v^{2}}$. tank $\left\{\left(u^{2}+v^{2}\right)^{\frac{1}{2}} k h\right\}$ from equation. (5.5)

$$
\therefore\left[\phi \frac{\partial \phi}{\partial z}\right]=-R \int_{z=0}^{\infty} g A^{2}(u, v) \cdot e^{i 2(u k n+v k y+\sigma t)} \cdot d u d v .
$$

Hence from (5.21), the Kinetic Energy is

$$
\begin{aligned}
& \left.\frac{1}{2} \rho g\right]_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{i A(u, v) e^{i(u k x+v k y+\sigma t)} d u d v\right\} d x d y\right. \\
& =\frac{1}{2} \rho g \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\left\{R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} B(u, v) e^{i(u k x+v k y+\sigma t)} d u d v\right\}^{2}\right] d x d y
\end{aligned}
$$

where $\quad B(u, v)=i A(u, V)$.

$$
\begin{aligned}
& R \cdot \iint_{-\infty}^{\infty} B(n, v) e^{i(u n x+v k y+\infty t)} d u d v \\
= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[B(u, v) e^{i \sigma t}+B^{*}(-u,-v) e^{-i \sigma t}\right] d n d v .
\end{aligned}
$$

Hence by the same transformation that derives equation (5.18) from equation ($5 \cdot 17$), the kinetic energy of the motion is
by the same method as equation (5.19) is derived from (5.18). But $B(u, v)=i A(u, v)$, hence; the kinetic energy of the motion is

$$
\rho g\left(\frac{\pi}{k}\right)^{2} \cdot R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[A(u, v) A^{*}(u, v)-A(u, v) A(-u,-v) e^{2 i \sigma t}\right] d u d v(5 \cdot 24) .
$$

Hence after reference to equations (5.30) and (5.24), the total energy of the motion is

$$
2 \rho g\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) A^{*}(u, v) d u d v
$$

So that the total energy of the general wave motion depends on the square of the modulus of the wave amplitude $A(u, v)$. We shall return to this result in chapter 9 when we find the displacement of the sea bed due to a wave motion in a finite area.

The force on a given area of the ocean bed.
Consider a region of the water, unit thickness in the y-direction, depth h in the z-direction and bounded by the limits $-R \leqslant x<R$.

\bar{p} denotes the mean pressure on the plane $z=z^{\prime}$ in this interval.
F denotes the variable part of the total force acting on the plane $z=z^{\prime}$ in this interval.
p_{s} is the pressure at the free surface $z=J$.
Then for the equilibrium of the bounded fluid

$$
F=2 R\left(\bar{b}-p_{s}-g f z\right)
$$

Then from equation $(3 \cdot 18)$.

$$
\begin{align*}
& \frac{F}{\rho}=\int_{-R}^{R}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} J^{2}\right)-\omega^{2}-z \dot{\omega}-g J\right] d x \tag{5.27}\\
&-\left[\int_{S}^{2}(\dot{u} z+u \omega) d z-(u \omega z)_{z=J}\right]_{-R}^{R}
\end{align*}
$$

From the continuity of the flow of the water in the region between $z=h, z=z^{\prime}$ and $x= \pm R$,

$$
\begin{align*}
\int_{-R}^{R} \omega d x & =\left[\int_{z}^{R} u d z\right]_{-R}^{R} \\
\text { and } \int_{-R}^{R} \dot{\omega} d x & =\left[\int_{z}^{R} \dot{u} d z\right]_{-R}^{R} \\
\text { hence } z \int_{-R}^{R} \dot{\omega} d x & =\left[z \int_{z}^{L} \dot{u} d z\right]_{-R}^{R}
\end{align*}
$$

If the mean level of the free surface $z=J$, is zero at time $t=0$, consideration of the depression of the free surface and the outflow of water gives,

$$
\begin{equation*}
\int_{-R}^{R} J d x=\int_{0}^{R} d t\left[\int_{J}^{R} u d z\right]_{-R}^{R} \tag{5.29}
\end{equation*}
$$

Extending equation (5.28) to the entire depth of the water, that is putting $z=\mathcal{L}$, we have

$$
\int_{-R}^{R} z \dot{w} d x=\left[L \int_{R}^{h} \dot{u} d z\right]=0
$$

Putting $z=l$ and using equations (5.29) and (5-30) for the second term and integrating the third term by parts, equation (5.27) becomes

$$
\begin{aligned}
& {\left[\frac{F}{p}\right]_{z=k}=\int_{-R}^{R}\left[\frac{z^{2}}{v+1}\left(\frac{1}{z} z^{2}\right)-\omega^{2}\right] d x-\left[g \int_{0}^{t} u t \int_{\rho}^{k} u d z\right]_{-R}^{R}} \\
& -\left[z \int_{J}^{R} \dot{u} d z-\int_{J}^{R} d z \int_{J}^{z} u d z+\int_{J}^{R} u \omega d z-(u \omega z)_{z=s}\right]_{-R}^{R}(5 \cdot 31) .
\end{aligned}
$$

This gives $[F]_{z=h}$ the variab e part of the total force, per unit distance in the y-direction, acting on the bed $\mathrm{p}_{\mathrm{z}}=\mathrm{h} \frac{\mathrm{y}}{\mathrm{f}}$ in the interval $-R<x<R$.
Equation (5.31) is completely exact statement. We have already in this chapter, shown that the motion may be analysed into a. frequency spectrum comprising all possible wave frequencies; we suppose that the energy of the motion, given by equation (5.25) is nearly all confined to a narrow band of frequencies; then the motion of the surface will be wavelike. We suppose the mean frequency to be $\sigma / 2 \pi$ correspoipding to a wavelength λ, which is small compared with \mathbb{R}.
We now compare the relative sizes of the terms in equation (5031). In general the relative phase of the motion at two widely separated points on the x-axis will be random. We may, however, suppose that the motion is regular and periodic over any interval of the x-axis less than or equal to $2 R_{f}$ in length. In addition. we suppose that initially the motion was confined to an interval $)-R_{2}<x<R_{2}$, (where R_{2} may be very great compared with R_{1}), so that the elevation and vertical velocity of the free surface at points outside this interval are initially zero.
We may distinguish three distinct cases :
Case I_: When $R \leqslant R_{1}$, so that the motion is regular cover the whole interval $-\mathrm{R}<x<\mathrm{R}$ which we are considering.

Then $\quad \int_{-R}^{R}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} \rho^{2}\right)-\omega^{2}\right] d x$
$\Omega \frac{2 R}{\lambda} \int_{0}^{\lambda}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{1}{2} \rho^{2}\right)-\omega^{2}\right] \underset{\text { periodic over }-R<x<R}{ }$
$\Omega \frac{2 R}{\lambda} \int_{0}^{\lambda}\left[-\rho \frac{\partial^{2} 5}{\partial t^{2}}+\left(\frac{\partial s}{\partial t}\right)^{2}-\omega^{2}\right] d x$
$=O\left(a^{2} \sigma^{2} R\right)$, where a is the maximum wave elevation,
if we assume that u and w are of order $a \sigma$.

For waves in deep water

$$
\sigma^{2}=g k \text { tanh } k h \text { and } \lambda=\frac{2 \pi}{k}
$$

$$
\therefore \quad \sigma^{2}=\frac{2 \pi g}{\lambda} \text { tank } k h
$$

that is $g=O\left(\sigma^{2} \lambda\right)$.
Also $\left[\int_{\rho}^{z} u d z\right]_{-R}^{R}=O(a \sigma \lambda)$ for all z.
The remaining terms of (5.3I) are of order $a \sigma^{2} \lambda z$ or $a \sigma^{2} \lambda^{2}$; hence if R / λ and R / \mathcal{Z} are sufficiently luge we have

$$
\left[\frac{F}{\rho}\right]_{z=2} \approx \int_{-R}^{R}\left[\frac{\partial^{2}}{\partial t^{2}}\left(\frac{L}{2}-\rho^{2}\right)-\omega^{2}\right] d x
$$

to the first order of small quantities.
In establishing equation (3.18) and hence equation (5.31) we have assumed a constant mass of fluid, hence it must be verified that these second-oider pressure variations which are in phase over the whole interval, do not produce any significant motion cross the planes $\boldsymbol{X}=\mathbf{I}$.
The horizontal and vertical displacements of a particle when there is a standing wave are (Lamb $\delta(<8)$

$$
\begin{aligned}
& X=-A e^{k z} \sin k x \cdot \sin (2 \sigma t+\epsilon) \\
& Z=A e^{k z} \operatorname{Cos} k x \cdot \sin (2 \sigma t+t)
\end{aligned}
$$

Consider the effect of a pressure distribution

$$
\frac{p}{p}=\left\{\begin{array}{cl}
2 a^{2} \sigma^{2} \cos 2 \sigma t & (|x|<R) \\
0 & (|x|>R)
\end{array}\right.
$$

acting on the free surface of deep water.

Regarding the pressure as due to ahead of water

$$
\begin{aligned}
& p=2 a^{2} \sigma^{2} \rho \cos 2 \sigma t=g \rho A \operatorname{Cos} k x \cos 2 \sigma t \\
& i . e . \quad A=\frac{2 a^{2} \sigma^{2}}{g \cos k x} .
\end{aligned}
$$

The amplitude of the horizontal component of the velocity

$$
\begin{aligned}
& 2 \sigma A e^{k z} \sin k x \\
& =\frac{4 a^{2} \sigma^{3} e^{k z} \tan k x}{g} \\
& =O\left(\frac{a^{2} \sigma}{\lambda}\right), \\
\text { since } g & =O\left(\lambda \sigma^{2}\right) .
\end{aligned}
$$

Hence the total flow $\left[\int_{-}^{z} u d z\right]_{-R}^{R}=O\left(\frac{1}{k} \cdot \frac{a^{2} \sigma}{\lambda}\right)=O\left(a^{2} \sigma\right)$. Hence when $\frac{R}{\lambda} \gg 1$ and $R / \Sigma \gg 1$ equation (5.31) will be valid. Since $\boldsymbol{\omega}$ diminishes rapidly depth and is almost negligible when $z=\frac{1}{2} \boldsymbol{\lambda}$,
then $\left[\frac{F}{\rho}\right]_{Z=L}=\frac{\partial^{2}}{\partial t^{2}} \int_{-R}^{R} \frac{1}{2} s^{2} d x$
when z is of order λ and $R / \lambda \gg 1$,
Case II: When $R 1<R \leqslant R_{2}$. We suppose that the interval $-R<\boldsymbol{X}<R$ be divided into smaller intervals of length less than or equal to $2 R$, We assume that the motion in each of these sub-intervais is regular and periodic but that there are random phase differences between successive intervals; Since, $\left|\left\{\left(\cos \theta_{1}+\cos \theta_{2}+\cdots+\cos \theta_{n}\right)^{2}+i\left(\sin \theta_{1}+\sin \theta_{2}++\sin \theta_{n}\right)^{2}\right\}^{\frac{1}{2}}\right|$
(where the θ 's are random)

$$
\begin{aligned}
& =\sqrt{1^{2}+1^{2}+\cdots \text { to } n \text { tarns }} \\
& =\sqrt{n}
\end{aligned}
$$

since the products $2 \operatorname{Cos}\left(\theta_{\beta}-\theta_{f}\right)$ have zero sum because of the random values of $\left(\theta_{p}-\theta_{q}\right)$, the sum of n vectors of comparable modulus in random phase relationship with voe another increases like \sqrt{n} times the mean modulus.

Hence

$$
\begin{aligned}
& \int_{-\infty}^{R}\left[\frac{\partial^{2}}{\partial p^{2}}\left(\frac{1}{2} z^{2}\right)-\omega^{2}\right] d x \\
& =\sum_{-R}^{R} \int_{-R_{1}}^{R_{1}}\left[\frac{\partial^{2}}{\partial^{2}}\left(\frac{1}{2} z^{2}\right)-\omega^{2}\right] d x \\
& =\rho\left[\sqrt{n} \int_{-1}^{R_{1}}\left\{\frac{\partial^{2}}{\partial r^{2}}\left(\frac{1}{2} s^{2}\right)-\omega^{2}\right\}\right] d x \\
& =O\left[\left(\frac{R}{R_{1}}\right)^{\frac{1}{2}} \cdot a^{2} \sigma^{2} R_{1}\right] \\
& =O\left[a^{2} \sigma^{2}\left(R R_{1}\right)^{2}\right]
\end{aligned}
$$

after assuming u and $\boldsymbol{\omega}$ to be of order $a \sigma$. The remaining terms of equation (5.31) are of order $a \sigma^{2} \lambda z$ or $a r^{2} \lambda^{2}$; hence if R / λ and R / Z are sufficiently large equation (5.31) $i s$ still valid. ω decreases exponentially with increase of z, hence if z is of order λ and $\sigma^{2}\left(R R_{1}\right)^{1 / 2}$ or $\left(R R_{l}\right)^{1 / 2} / \lambda$ is very much greater than unity, equation (5.32) remains valid. Case III: When $R>R_{2}$.
By allowing R to tend to infinity an exact expression for the total force $[F]_{Z=\boldsymbol{h}}$ over the whole plane $z=$ constant may be obtained. After reference to Lamb (1932, f 238) we see that a standing wave with a surface elevation

$$
\eta=\cos \sigma t \cos k x
$$

velocity potential $\phi=\frac{9}{\sigma} \sin \sigma \epsilon \cdot e^{-k z} \cos k x$ where $\sigma^{2}=g k$.

Generalising this by Fourier's double-integral theorem, an elevation $\quad \eta=\frac{1}{\pi} \int_{0}^{\infty} \cos \sigma t d k \int_{-\infty}^{\infty} f(\alpha) \cos k(x-\alpha) d \alpha$
arises from a velocity potential

$$
\phi=\frac{1}{\pi} \int_{0}^{\infty} \frac{g}{\sigma} \cdot \sin \sigma t \cdot e^{-k z} d k \int_{-\infty}^{\infty} f(\alpha) \cos k(x-\alpha) d \alpha
$$

where the initial conditions are $\eta=f(x), \phi_{0}=0$, where the zero suffix indicates the surface- value ($z=0$). If the initial elevation be confined to the immediate neighbourhood of the origin, so that $f(\alpha)$ vanishes for all but infinitesimal values of α, we have,

$$
\phi=\frac{9}{\pi} \int_{0}^{\infty} \frac{\sin \sigma t}{\sigma} \cdot e^{-k z} \cdot \cos k x d k
$$

after assuming

$$
\int_{-\infty}^{\infty} f(\alpha) d \alpha=1
$$

This value of $\boldsymbol{\phi}$ may be expanded in the form

$$
\begin{aligned}
\phi & =\frac{g t}{\pi} \int_{0}^{\infty}\left\{1-\frac{a^{2} t^{2}}{B}+\frac{a^{4} t^{4}}{5}-\cdots\right\} e^{-k z} \cos k x d k \\
& =\frac{g t}{\pi} \int_{0}^{\infty}\left\{1-\frac{g t^{2} k}{L^{3}}+\frac{\left(g t^{2}\right)^{2}}{k^{2}} k^{2} \cdots\right\} e^{-k z} \cos k x d k, \\
\text { after using } \quad & \sigma^{2}=g k .
\end{aligned}
$$

$$
\begin{aligned}
\text { Now } & \int_{0}^{\infty} e^{k y} \operatorname{Cos} k x \cdot k^{n} d k \\
& =R \cdot \int_{0}^{\infty} e^{k(y+i x)} \cdot k^{n} d k \\
& =R \cdot \int_{0}^{\infty} \frac{1}{y+i x} \cdot d\left(e^{k(y+i x)}\right) k^{n} d k \\
& =R \cdot \frac{1}{y+i x}\left[e^{k(y+i x)} \cdot k^{n}-n \int k^{n-1} \cdot e^{k(y+i x)} d k\right]_{0}^{\infty}
\end{aligned}
$$

Putting $y=-z=-r \cos \theta, \quad x=r \sin \theta$

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-k z} \cos k x \cdot k^{n} d k= \\
& R {\left[\frac{k n \cdot(-)^{n} e^{-k r \cos \theta}}{r^{n} \cdot e^{-n i \theta} \cdot r e^{-i \theta}}\{\operatorname{Cos}(k r \sin \theta)+i \sin (k r \sin \theta)]\right]_{0}^{\infty} } \\
&=\frac{L n}{r^{n+1}} \cdot \cos (n+1) \theta \\
& \text { Hence } \phi=\frac{g t}{\pi}\left\{\frac{\cos \theta}{r}-\frac{L}{13} \cdot \frac{g t^{2} \cos 2 \theta}{r^{2}}+\frac{L^{2}}{L 5}\left(g t^{2}\right)^{2} \frac{\cos 3 \theta}{r^{3}}+\cdots\right\} \\
&=\frac{g t}{\pi}\left\{\frac{z}{x^{2}+z^{2}}-\frac{L}{B} \cdot g^{2} \cdot \frac{\left(z^{2}-x^{2}\right)}{\left(z^{2}+x^{2}\right)^{2}}+\cdots-\right. \\
&=\frac{g t}{\pi} \cdot \frac{z^{2}}{x^{2}+z^{2}}, \text { when } \frac{g t^{2}}{\left(x^{2}+z^{2}\right)^{2}}
\end{aligned}
$$

Thus we have that the velocity potential of the motion due to an initial elevation of the free surface concentrated in the line $x=z=0$ is proportional to $g t z\left(x^{2}+z^{2}\right)^{-1}$, when $g t^{2}\left(x^{2}+Z^{2}\right)^{-2}$ is small. A similar result will hold when the initial disturbance is distributeducver a finite interval of the x-axis. Hence for very large R the velocities across the planes $z= \pm R$ wifinitially be proportional to R^{-2}, and the total flow $\left[\int_{s}^{z} u d z\right]_{-R}^{R}$ will be proportional to The terms of the equation (5.31) to be evaluated at the planes $z= \pm R$ therefore tend to zero. But since the total potential energy is finite, we may assume that the first integral of (5.31) converges. Hence the total force $[F]_{2=h}$ over the who le plane is given by

$$
\left[\frac{E}{\rho}\right]_{z=6}=\int_{-\infty}^{\infty}\left[\frac{\partial^{2}}{\partial r}\left(\frac{1}{2} \frac{v^{2}}{}\right)-\omega^{2}\right] d x
$$

Since ω decreases exponentially with increase of depth

$$
\left[\frac{F}{\rho}\right]_{2=L}=\frac{\partial^{2}}{\partial t^{2}} \int_{-\infty}^{\infty} \frac{1}{2} \delta^{2} d x \quad \text { approximate } 1 y .(5 \cdot 33)
$$

these results may be extended to motion in three dimensions. Let S be a square given by $-R<x<R$, $-R<y<R$ on the $z=0$ plane. Suppose that the motion in S is wavelike with amman wavelength $\boldsymbol{\lambda}$. Then if z is comparable with λ, and R / λ and $\left(R R_{1}\right)^{1 / 2} / \lambda$ are both large compared with unity, where $2 \mathrm{R}_{\mathrm{g}}$ is the side of the largest square over which the second-order pressure variations are effectively in phase, the variable part of the total force acting on the bed inside the square S is $[F]_{2=6}$ where

$$
\left[\frac{F}{\rho}\right]_{z=-}=\int_{-R}^{e} \int_{-R}^{R}\left[\frac{\partial^{2}}{\partial^{2}}\left(\frac{1}{2} \delta^{2}\right)-\omega^{2}\right] d x d y
$$

Since ω diminishes rapidly with depth,

$$
\begin{aligned}
& {\left[\frac{F}{\rho}\right]_{z=e}=\frac{\partial^{2}}{\partial t^{2}} \int_{-R}^{R} \int_{-R}^{R} \frac{1}{2} f^{2} d x d y} \\
& \quad z>\frac{1}{2} \lambda .
\end{aligned}
$$

If it supposed that the motion is initially confined to a finite region of the (x, y) plane, then the motion produces a total force \boldsymbol{F} over the whole bed, given by

$$
\frac{F}{\rho}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\frac{x^{2}}{\partial^{v}}\left(\frac{1}{2} v^{2}\right)-\omega^{2}\right] d x d y
$$

$$
=\frac{\partial^{2}}{\partial k} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} J^{2} d x d y
$$

$(5 \cdot 36)$

$$
\text { if } \quad z>\frac{1}{2} \lambda
$$

Pressure variation at the sea-bed in terms of the

frequency spectrum.

By reference to equations (5.19) and (5.36) we sea that the variable part of the total force acting on the entire area of the sea-bed, that is the whole area of the $x y-p l a n e$ is given by

$$
\begin{align*}
\frac{F}{P} & =R .\left(\frac{\pi}{k}\right)^{2} \cdot \frac{\partial^{2}}{\partial t^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{A(u, v) A^{*}(n, v)+A(n, v) A(-u,-v) e^{2 i \sigma t}\right\} d u d v \\
& =-R \cdot 4\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A(u, v) A(-u,-v) \sigma^{2} e^{2 i \sigma t} d u d v
\end{align*}
$$

Now $A(u, v)$ and $A f-u,-v)$ are the compiex amplitudes of opposite wave-components in the frequency spectrum. So that three conclusions may be drawn from e_{y} uation (5-37), viz.: (I). The variations in the total force on the sea bed arise only from opposite pairs of wavescomponents in the frequency spectrum into which the sea motion may be analysed. (2) The contribution to \boldsymbol{F} from any opposite pair of wave components is of twice their frequency and proportional to the product of their amplitudes.
(3) The total force \boldsymbol{F} is the integrated sum of the contributions from all opposite pairs of wave components. A wave group is a complicated wave motion, the component simple waves all travelling in the same direction; such a motion may be defined as one which most of the energy is confined to a small region of the (u, v) plane, excluding the origin. A single wave group will not possess opposite pairs of wave components and so cannot cause variations in the force on the sea-bed. For appreciable variations in the total force on the bed the surface motion must possess at least two wave-groups which are opposite, im the sense that
some wave-components of the first group are opposite to some wave components of the second.
We now determine the total force over a finite area of the sea-bed. We take as the area a square S, symmetrically situated with respect to the origin and the axes of x and y and defined by $-R<x<R, \quad-R<y<R$.
Let us now define a hypothetical motion of the sea surface, where the equation of the surface at any instant is $z=J^{\prime}$, such that at any time :

$$
\begin{align*}
& \rho^{\prime}=J \\
&\text { and } \left.\quad \begin{array}{rl}
\frac{\partial \rho^{\prime}}{\partial t} & =\frac{\partial J}{\partial t}
\end{array}\right\} \text { within the square } s, \quad(5 \cdot 38) \\
& \text { and } \quad \rho^{\prime}=\frac{\partial J^{\prime}}{\partial t}=0 ; \text { outside the square } S . \quad(5 \cdot 39)
\end{align*}
$$

This motion will not satisfy the equations of motion, especially near the boundaries of S, but it enables us to replace integrals between the limits $-R$ and R by those with limits $\pm \infty$. Thus e uetion (5036) yields :

$$
\frac{F}{P}=\frac{\partial^{2}}{\partial t^{2}} \int_{-R}^{R} \int_{-R}^{R} \frac{1}{2} \rho^{2} d x d y=\frac{\partial^{2}}{\partial t^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2} J^{\prime 2} d x d y \quad(5.40)
$$

We also define $A^{\prime}(u, v ; t)$ by the equations

$$
\begin{aligned}
& s^{\prime}=R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v ; t) e^{i(u k x+v k y+\sigma t)} d u d v, \\
& \frac{\partial s^{\prime}}{\partial t}=R \cdot \int_{-1}^{\infty} \int_{(5 \cdot 41)}^{\infty} i \sigma A^{\prime}(u, v ; t) e^{i(u k x+v k y+\sigma t)} d u d v .
\end{aligned}
$$

by analogy with equation (5•16) and other equations defining J in terms of $A(u, v)$. Hence

$$
\begin{aligned}
& \frac{1}{2}\left[A^{\prime}(u, v ; t)+A^{\prime}(-u,-v ; t)\right] e^{i \sigma t}=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} s^{\prime} e^{-i(u x+v y) k} d x d y, \\
& \frac{1}{2} i \sigma\left[A^{\prime}(u, v ; t)-A^{\prime}(-u,-v ; t)\right] e^{i \sigma t}=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial S^{\prime}}{\partial t} \cdot e^{-i(u x+v y) k} d x d y ;
\end{aligned}
$$

hence

$$
A^{\prime}(u, v ; t) e^{i \sigma t}=\left(\frac{k}{2 \pi}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(f^{\prime}+\frac{1}{i \sigma} \cdot \frac{\partial s^{\prime}}{\partial t}\right) e^{-i(u x+v y) k} \cdot d x d y \text { (5.42) }
$$

The actual motion of the sea surface is taken to be defined by equation (5.16).
Because of (5.38) and (5.39)

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho^{\prime} d x d y & =\int_{-R}^{R} \int_{-R}^{R} \rho d x d y, \\
\text { and } \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial S^{\prime}}{\partial t} d x d y & =\int_{-R}^{R} \int_{-R}^{R} \frac{\partial S}{\partial t} d x d y
\end{aligned}
$$

Then equation (5.42) becomes

$$
A^{\prime}(u, v ; t) e^{i \sigma t}=\left(\frac{k}{2 \pi}\right)^{2} \int_{-R}^{R} \int_{-R}^{R}\left(\jmath+\frac{1}{i \sigma} \cdot \frac{\partial \rho}{\partial t}\right) e^{-i(u x+v y) k} d x d y \quad(5 \cdot 44)
$$

But from equation (5.16), where $A\left(u_{p} v_{f}\right)$ is a neighbouring wave component,

$$
\begin{aligned}
& S=R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A\left(u_{1}, v_{1}\right) e^{i\left(u_{1} k x+v_{1} k y+\sigma_{1} t\right)} d u_{1} d v_{1} \\
&=R \cdot \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t} \cdot e^{i\left(u_{1} k x+v_{1} k y\right)} d u_{1} d v_{1} \\
&=\int_{\text {where }} \sigma_{1}=\sigma\left(u_{1}, v_{1}\right) \\
& \int_{-\infty}^{\infty} \frac{1}{2}\left[A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t}+A^{*}\left(u_{1},-v_{1}\right) e^{\left.-i \sigma_{1} t\right]}\right] e^{i\left(u_{1} k x+v_{1} / 2 y\right)} d u_{1} d v_{1}
\end{aligned}
$$

Similarly

$$
\begin{aligned}
\frac{\partial S}{\partial t} & =R \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} i \sigma_{1} A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t} \cdot e^{i\left(u_{1} k x+v_{1} k \xi\right)} d u_{1} d v_{1} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[i \sigma_{1} A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t}-i \sigma_{1} A^{*}\left(-u_{1}-v_{1}\right) e^{-i \sigma_{1} t}\right] e^{i\left(u_{1} k x+v_{1} k y\right)} d u_{1} d v_{1}
\end{aligned}
$$

Hence $\quad \rho+\frac{1}{l \sigma} \cdot \frac{\partial \rho}{\partial t}$

$$
\begin{array}{r}
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t}+A^{*}\left(-u_{1},-v_{1}\right) e^{-i \sigma_{1} t}+\frac{\sigma_{1}}{\sigma} A\left(u_{1}, v_{1}\right) e^{i \sigma_{1} t}\right. \\
\left.-\frac{\sigma_{1}}{\sigma} \cdot A^{*}\left(-u_{1},-v_{1}\right) e^{-i \sigma_{1} t}\right] e^{i\left(u_{1} k x+v_{1} k y\right)} d u_{1} d v_{1}
\end{array}
$$

That is

$$
J+\frac{1}{i \sigma} \cdot \frac{\partial \rho}{\partial t}
$$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left[\left(1+\frac{\sigma_{1}}{\sigma}\right) A\left(u_{1} v_{1}\right) e^{i \sigma_{1} t}+\left(1-\frac{\sigma_{1}}{\sigma}\right) A^{*}\left(-u_{1}-v_{1}\right) e^{-i \sigma_{1} t}\right] e^{i\left(u_{1} k x+v_{1} k\right)} d u_{1} d x
$$

Hence equation (5.44) becomes $\quad A^{\prime}(u, v ; t)=$

$$
\begin{gathered}
=\left(\frac{k}{2 \pi}\right)^{2} \int_{-R}^{R} \int_{-R}^{R}\left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2}\left\{\left(1+\frac{\sigma_{1}}{\sigma}\right) A\left(u_{1} v_{1}\right) e^{i \sigma_{1} t}+\left(1-\frac{\sigma}{\sigma}\right) A^{*}\left(-u_{1}-v_{1}\right) e^{-i \sigma_{1} t}\right\}\right. \\
\left.e^{i\left(u, k x+v_{1} k y\right)} d u_{1} d v_{1}\right] e^{-i(u k x+v k y+\sigma t)} d x d y \\
=\left(\frac{k}{2 \pi}\right)^{2} \int_{-R}^{R} \int_{-R}^{R}\left[\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } \frac { 1 } { 2 } \left\{A\left(u_{1} v_{1}\right) \cdot\left(1+\frac{\sigma_{1}}{\sigma}\right) e^{-i\left[\left(u-u_{1}\right) k x+\left(v v_{1}\right) k y+\left(\sigma-\sigma_{1}\right) t\right]}\right.\right. \\
+A^{*}\left(-u_{1}-v_{1}\right)\left(1-\frac{\sigma_{1}}{\sigma}\right) e^{-i\left[\left(u-u_{1}\right) k x+\left(v-v_{1}\right) k y+\left(\sigma_{+} \sigma_{1}\right) t\right]} d u, d v_{1}
\end{gathered}
$$

But $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{*}\left(-u_{1}-v_{1}\right) e^{-i\left\{\left(u-u_{1}\right) k x+\left(v-v_{1}\right) k y+\left(\sigma+\sigma_{1}\right) t\right\}} d u_{1} d v_{1}$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{*}\left(u_{2} v_{2}\right) e^{-i\left\{\left(u+u_{2}\right) k x+\left(v_{1} v_{2}\right) k y+\left(\sigma \sigma_{1}\right) t\right\}} d u_{2} d v_{2}
$$

where $\quad u_{1}=-u_{2}, \quad v_{1}=-v_{2}$

$$
=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{*}\left(u_{1}, v_{1}\right) e^{-i\left\{\left(u+u_{1}\right) k x+\left(v+v_{1}\right) k y+\left(\sigma+\sigma_{1}\right) \in\right\}} d u_{1} d v_{1}
$$

$$
\begin{gathered}
\text { Hence } A^{\prime}(u, v ; t)= \\
=\left(\frac{k}{2 \pi}\right)^{2} \int_{-R}^{R} \int_{-R}^{R}\left[\int _ { - \infty } ^ { \infty } \int _ { - \infty } ^ { \infty } \frac { 1 } { 2 } \left\{A\left(u_{1} v_{1}\right)\left(1+\frac{\sigma}{\sigma}\right) e^{-i f\left(u-u_{1}\right) k x+\left(v-v_{1}\right) k y+\left(\sigma-\sigma_{1}\right) t}\right.\right. \\
\\
+A^{*}\left(u_{1} v_{1}\right) \cdot\left(1-\frac{\sigma}{\sigma}\right)
\end{gathered}
$$

Since k is as yet unspecified we can write, for convenience,

$$
\begin{equation*}
k=\frac{\pi}{R} \tag{5-46}
\end{equation*}
$$

$$
\begin{aligned}
& \int_{-R}^{R} \int_{-R}^{R} e^{-i\left(u-u_{1}\right) k x} \cdot e^{-i\left(v-v_{1}\right) k y} d x d y \\
& =\int_{-R}^{R}\left[\frac{e^{-i\left(u-u_{1}\right) k x}}{-i\left(u-u_{1}\right) k} \cdot e^{-i\left(v-v_{1}\right) k y}\right]_{-R}^{R} d y \\
& =\int_{-R}^{R}\left[\frac{e^{-i\left(u-u_{1}\right) \pi}-e^{-i\left(u-u_{1}\right) \pi}}{i\left(u-u_{1}\right)}\right] \cdot e^{-i\left(v-v_{1}\right) k y} d y \\
& =\frac{2 \sin \left(u-u_{1}\right) \pi}{\left(u-u_{1}\right) k} \int_{-R}^{R} e^{-i\left(v-v_{1}\right) k y} d y \\
& =\frac{2 \sin \left(u-u_{1}\right) \pi}{\left(u-u_{1}\right) k(-i)\left(v-v_{1}\right)}\left[e^{-i\left(v-v_{1}\right) \pi}-e^{i\left(v-v_{1}\right) \pi}\right] \\
& =\frac{4 \sin \left(u-u_{1}\right) \pi \cdot \sin \left(v-v_{1}\right) \pi}{\left(u-u_{1}\right) \cdot\left(v-v_{1}\right) R^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { Similarly } & \int_{-R}^{R} \int_{-R}^{R} e^{-i\left(u+u_{1}\right) k x-} \cdot e^{-i\left(v+v_{1}\right) k y} \cdot d x d y \\
= & \frac{4 \sin \left(u+u_{1}\right) \pi \cdot \sin \left(v-v_{1}\right) \pi}{\left(u+u_{1}\right)\left(v+v_{1}\right) \cdot k^{2}}
\end{aligned}
$$

Hence equation (5.45) becomes

$$
\begin{aligned}
& A^{\prime}(u, v ; t)= \\
& \frac{k^{2}}{2 \pi^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[\left\{A\left(u, v_{1}\right)\left(1+\frac{\sigma_{1}}{\sigma}\right) e^{-i\left(\sigma-\sigma_{1}\right) t} \cdot \frac{\sin \left(u-u_{1}\right) \pi \cdot \sin \left(v-v_{1}\right) \pi}{\left(u-u_{1}\right)\left(v-v_{1}\right) k^{2}}\right\}\right. \\
&+\left\{A^{*}\left(u_{1} v_{1}\right)\left(1-\frac{\sigma_{1}}{\sigma}\right) e^{-i\left(\sigma+\sigma_{1}\right) t} \cdot \frac{\sin \left(u+u_{1}\right) \pi \cdot \sin \left(v+v_{1}\right) \pi}{\left(u+u_{1}\right)\left(v+v_{1}\right) k^{2}}\right] d u_{1} d u
\end{aligned}
$$

That is

$$
\begin{align*}
& A^{\prime}(u, v ; t) \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A\left(u, v_{1}\right)\left(1+\frac{\sigma}{\sigma}\right) \cdot \frac{\sin \left(u-u_{1}\right) \pi}{\left(u-u_{1}\right) \pi} \cdot \frac{\sin \left(v-v_{1}\right) \pi}{\left(v-v_{1}\right) \pi} \cdot e^{-i\left(\sigma-\sigma_{1}\right) t} d u_{1} d v_{1} \\
& +\frac{1}{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{*}\left(u_{1} v_{1}\right)\left(1-\frac{\sigma}{\sigma}\right) \cdot \frac{\sin \left(u+u_{1}\right) \pi}{\left(u+u_{1}\right) \pi} \cdot \frac{\sin \left(v+v_{1}\right) \pi}{\left(v+v_{1}\right) \pi} \cdot e^{-i\left(\sigma+\sigma_{1}\right) t} d u_{1} d v_{1} \\
& =I_{1}+I_{2}
\end{align*}
$$

In the derivation of equation (5.32) it has already been stipulated that $\boldsymbol{\lambda}$ is very much less than R, so the frequency spectrum of the motion J consists of waves whose length, given equation (5-4) is small compared with 2 R . The factors in the denominators of I_{1} and I_{2} make the integrands small except when $\left(u_{1}, v_{1}\right) \bumpeq(u, v)$ in I_{1} and $\left(u_{1}, v_{1}\right) \bumpeq\left(-u_{0},-v\right)$ in I_{2}. In either case $\sigma_{1} \bumpeq \sigma$. So that in either case $1-\frac{\sigma_{1}}{\sigma^{2}} \bumpeq 0$ and $1+\frac{\sigma_{1}}{\sigma} \simeq 2$, that is

$$
\begin{aligned}
& A^{\prime}(u, v ; t) \Omega \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A\left(u, v_{1}\right) \cdot \frac{\sin \left(u-u_{1}\right) \pi}{\left(u-u_{1}\right) \pi} \cdot \frac{\sin \left(v-v_{1}\right) \pi}{\left(v-v_{1}\right) \pi} \cdot e^{-i\left(\sigma-\sigma_{1}\right) t} d u_{1} d v_{1}
\end{aligned}
$$

Although $A(u, v ; t)$ is dependent on t the integrals for $\frac{\partial A^{\prime}}{\partial t}, \frac{\partial^{2} A^{\prime}}{\partial t^{2}}$, etc. contain factors $\left(\sigma-\sigma_{0}\right),\left(\sigma-\sigma_{1}\right)^{2}$, etc. which are small over the critical range of integration near (u, v), where the two wave components are nearly alike. These expressions are therefore small, and so $A^{\prime}(u, v ; t)$ is only a slowly varying quantity, in time, Hence we may use $A^{\prime}(u, v)$ for $A^{\prime}(u, v ; t)$.

$$
\begin{aligned}
{\left[\frac{F}{P}\right]_{Z=R} } & =R \cdot\left(\frac{\pi}{k}\right)^{2} \cdot \frac{\partial^{2}}{\partial t^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[A^{\prime}(u, v) \cdot A^{\prime}(u, v)+A^{\prime}(u, v) \cdot A^{\prime}(-u,-v) e^{2(\sigma-t}\right] d u d \\
& \left.=R \cdot\left(\frac{\pi}{k}\right)^{2} \cdot \frac{\partial}{\partial t}\right]_{-\infty}^{\infty} \int_{-\infty}^{\infty} 2 i \sigma A^{\prime}(u, v) \cdot A^{\prime}(-u,-v) \cdot e^{2 i \sigma t} d u d v \\
& \Omega-R \cdot 4\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma^{2} A^{\prime}(u, v) \cdot A^{\prime}(-u,-v) \cdot e^{2 i \sigma \cdot} d u d v .
\end{aligned}
$$

Comparison of equations (5.37) and (5.49) shows that the expression for F the force over a finite area (equation5.49) is similar to that over the whole piane (equation 5.37) except that the original spectrum A of the actual motion is replaced by a nww spectrum A^{\prime}. Equation (5.48) shows that A^{\prime} is the weighted mean of neighbouring wave components, $A(u, v)$ and $A\left(u_{1}, v_{1}\right)$, of the original spectrum. That is each wave component in the new spectrum is a blend of neighbouring wave components in the original spectrum, and further each wave component in the original spectrum contributes to neighbouring components in the new spectrum.
From equations (5.4) and (5.46) $\frac{2 R}{\lambda}=\left(u^{2}+v^{2}\right)^{1 / 2}$ so that the number of wave lengths of any wave component intercepted on the x-axis inside the square region S is u, and the corresponding number on the y-axis is v. Neighbouring wave components of the new spectrum are those such that the number of wave-lengths intercepted on any. diameter of S does not differ by 2 or 3 from the corresponding number for the original wave component.

Thus in order to calculate the total force on the see-bed under a limited region of an actual motion, we may obtain a close approximation to the required result, by calculating the total force over the entire plane for a hypothetical motiom. This new motion being such that over the finite region the elevation of the surface and its rate of change in time are the same as in the original motion, but outside the region they are zero. If the dimensions of the tegion are much greater than the mean wave-length of the original motion, then the new motion will have within the region effrequency spectrum, which differs only slightly from
that of the original motion. The contribution of each wave component of the old spectrum to several neighbouring components of the new spectrum results in the new spectrum being a'blurred' edition of the ald 'sharp' spectrum. This blurring may be regarded as being due to an inability to define the spectrum exactly from a knowledge of conditions over only a limited area. The amount of blurring is not enough to prevent satisfactory results being obtained by the new spectrum A^{\prime}.

Since $A^{\prime}(u, \nabla)$ is the frequency spectrum of the hypothetical free motion in which at time $t=t_{1}, \mathcal{T}$ and $\frac{\partial S}{\partial E}$ take their actual values within the square s defined by $-R<x<R, \quad-R<y<R$ but are zero outside the square. Then when $t=t$, all the potential energy and nearly all the kinetic energy of the motion is contained in the square S. Hence, after reference to equation (5.25), the total energy of the square is very nearly

$$
2 \rho g\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v), A^{\prime *}(u, v) d u d v \quad(5.50)
$$

CHAPPER 6.

Wave motion in a heavy compressible fluid.
In the preceding chapters the fluid has been regarded as incompressible. This assumption is cully valid so lung as the time taken for a disturbance to be propagated to the bed is mali compared with the period of the waves, that is

$$
\frac{k}{c} \leqslant T \quad \text { or } \quad R \leqslant c T
$$

For ocean waves \boldsymbol{h} may be of the order of several kilometers, c is about $1.4 \mathrm{~km} / \mathrm{sec}$, and T lies between about 5 and 20 secs. With these values of c and T we see that $c T$ lies in the range

$$
7.0 \mathrm{~km} . \leqslant \mathrm{cT} \leqslant 28.0 \mathrm{~km} .
$$

That is, condition ($6 \cdot 0$) is not satisfied.
It follows that a satisfactory theory must therefore take account of the compressibility of the sea water.

In this chapter we shall developer the second order the theory of the wave motion, in a compressible medium, which to the first order of amplitudes is a standing wave of the gravity type.

We shall first of ail build up the general equations and then solve them by successive approximations.
General Equations.
Take rectangular axes $O x, O y$ and $O z$ with the origin in the free surface at rest, the z axis vertically downwards and the y axis parallel to the wave crests.

The motion is taken to be periodic in the x-direction with wavelength λ.

Let $z=h$ be the equation of the sea bed (assumed rigid) and $z=J$ the equation of the free surface.

Let $\underline{\underline{u}}$ be the velocity, p the pressure, ρ the density of the fluid, and let p_{s} and ρ_{ρ} denote the values of p and ρ respectively at the free surface.

Assuming that the viscosity is negligible and that the motion is irrotational,

$$
\underline{u}=-\operatorname{grad} \phi
$$

where ϕ is the velocity potential. ϕ Assuming p to be a function of p only,

$$
\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z-\int_{p_{s}}^{p} \frac{d p}{p}=0
$$

(Minne-Thomson: 'Theoretical Hydrodynamics page 82) where ϕ contains an arbitrary function of time t.

Set

$$
P=\int_{\rho_{s}}^{\rho} \frac{d p}{\rho}
$$

Assume that the relation between p and p is

$$
\frac{d p}{d p}=c^{2}=\text { constant }
$$

that is, that the velocity of sound in the fluid, c, is constant.
Then from (6.3) and (604)

$$
P=\int_{P_{s}}^{P} c^{2} \frac{d P}{P}=c^{2} \log \left(\frac{P}{P_{s}}\right)
$$

The equation of continuity (Mine-Thomson page 68) is

$$
\frac{D \rho}{D t}-\rho \nabla^{2} \phi=0
$$

where $\frac{D}{D t}$ denotes (as in chapter 3) the differentiation following the motion.
Hence

$$
\begin{aligned}
\frac{D P}{D t} & =\rho \nabla^{2} \phi \\
\therefore \nabla^{2} \phi & =\frac{1}{\rho}\left(\frac{\partial \rho}{\partial t}+u \frac{\partial \rho}{\partial x}+v \frac{\partial \rho}{\partial y}+\omega \frac{\partial \rho}{\partial z}\right) \\
& =\frac{1}{\rho}\left(\frac{\partial \rho}{\partial t}+\omega \frac{\partial \rho}{\partial z}\right) \\
& =\frac{\partial(\log \rho)}{\partial t}+u \frac{\partial}{\partial x}(\operatorname{los} \rho)+v \frac{\partial}{\partial y}(\log \rho)+\omega \frac{\partial}{\partial z}(\operatorname{los} \rho) \\
& =\frac{D}{D t}(\log \rho) \\
& =\frac{D}{D t}(\log \rho-\log \rho) \text { since } P_{5}=\text { constant } \\
& =\frac{D}{D t}\left(\log \frac{\rho}{\rho_{s}}\right) \\
& =\frac{D}{D t}\left(\frac{P}{c^{2}}\right)
\end{aligned}
$$

Hence

$$
\nabla^{2} \phi=\frac{1}{c^{2}} \cdot \frac{D P}{D E}
$$

Eliminating \mathcal{P} between equations $(6.2),: 6.3)$ and (6.7)

$$
\begin{aligned}
c^{2} \bar{V} \phi= & \frac{\partial}{D t}\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right) \\
= & \frac{\partial}{\partial t}\left(\frac{\partial \phi}{\partial t}\right)+u \frac{\partial}{\partial x}\left(\frac{\partial \phi}{\partial t}\right)+v \frac{\partial}{\partial y}\left(\frac{\partial \phi}{\partial t}\right)+\omega \frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial t}\right) \\
& -\frac{\partial}{\partial t}\left(\frac{1}{2} \underline{u}^{2}\right)-u \frac{\partial}{\partial x}\left(\frac{1}{2} \underline{u}^{2}\right)-v \frac{\partial}{\partial y}\left(\frac{1}{2} \underline{u}^{2}\right)-\omega \frac{\partial}{\partial z}\left(\frac{1}{2} \underline{u}^{2}\right) \\
& +g\left(\frac{\partial z}{\partial t}+u \frac{\partial z}{\partial x}+v \frac{\partial z}{\partial y}+\omega \frac{\partial z}{\partial z}\right) \\
= & \frac{\partial^{2} \phi}{\partial t^{2}}+\underline{u} \nabla\left(\frac{\partial \phi}{\partial t}\right)-\frac{\partial}{\partial t}\left(\frac{1}{2} \underline{u}^{2}\right)-\underline{u} \nabla\left(\frac{1}{2} \underline{u}^{2}\right)+g \omega \\
= & \left.\frac{\partial^{2} \phi}{\partial t^{2}}-\frac{\partial}{\partial t}\left(\frac{1}{2} \underline{u}^{2}\right)+\underline{u} \nabla\left(\frac{\partial \phi}{\partial t}\right)-\underline{u} \nabla\left(\frac{1}{2} \underline{u}^{2}\right)-g \frac{\partial \phi}{\partial t}=\frac{\partial z}{\partial x}=\frac{\partial z}{\partial y}=0\right] \\
& \text { since (o }) \\
& \frac{\partial \phi}{\partial z}=-w
\end{aligned}
$$

But $\underline{u}=-\boldsymbol{\nabla} \boldsymbol{\phi}$, hence

$$
\underline{u} \cdot \nabla\left(\frac{\partial \phi}{\partial t}\right)=\underline{u} \cdot \frac{\partial}{\partial t}(\nabla \phi)=\underline{u} \cdot \frac{\partial}{\partial t}(-\underline{u})=-\frac{1}{2} \cdot \frac{\partial \underline{u}^{2}}{\partial t}
$$

Hence equation $(6 \cdot 8)$ becomes

$$
\frac{\partial^{2} \phi}{\partial t^{2}}-c^{2} \nabla^{2} \phi-g \frac{\partial \phi}{\partial z}-\frac{\partial}{\partial t}\left(\frac{1}{2} \underline{u}^{2}\right)-\underline{u} \cdot \nabla\left(\frac{1}{2} \underline{u}^{2}\right)=0 \quad(6 \cdot 9)
$$

This is our differential equation for $\boldsymbol{\phi}$ for which we now find a solution by successive approximation.

The first thing is to express the boundary conditions which a. solution must satisfy.

At the bed, $Z=\hbar$ and $-\omega=\left(\frac{\partial \phi}{\partial z}\right)_{z=h}=0$
At the free surface $z=J$ and $p=p_{s}$
and by (6.5) $\quad P_{z=s}=c^{2} \log P_{s} / p_{s}=c^{2} \log 1=0$
and \therefore by $(6.2)\left[\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right]_{z=J}=0$
From (6.11) $\quad\left(\frac{D P}{D t}\right)_{z=5}=0$
and hence $\quad\left(\nabla^{2} \phi\right)_{z=5}=\left(\frac{D P}{D t}\right)_{Z=5}=0$
Equations 6•12, 6-13 and 6.14 express the conditions to be satisfied at the free surface $\mathbf{Z}=\mathbf{J}$. It is, however, more convenient to have conditions satisfied at the bed $z=0$. These can be obtained by expanding the equations by Taylor's Theorem:

$$
\left[\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g(z+J)\right]_{z=0}=\left[\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g J\right]_{z=5}^{=0} \text { by }(6 \cdot 1<)
$$

and $\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g(z+5)$

$$
=\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+\xi z\right)+J \cdot \frac{\partial}{\partial z}\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right)
$$

$$
+\frac{y^{2}}{L^{2}} \cdot \frac{\partial^{2}}{\partial z^{2}}\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right)+\cdots \cdot
$$

$$
=\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z+J\left(\frac{\partial^{2} \phi}{\partial t \partial z}-\bar{u} \frac{\partial \bar{u}}{\partial z}+g\right)
$$

$$
+\frac{\rho^{2}}{L^{2}}\left[\frac{\partial^{3} \phi}{\partial t \partial z^{2}}-\underline{u} \frac{\partial^{2} \underline{u}}{\partial z^{2}}-\left(\frac{\partial \underline{u}}{\partial z}\right)^{2}\right]+\cdots
$$

$$
\therefore\left[\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g(z+\rho)\right]_{z=0}=\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right)_{z=0}
$$

$$
+\mathcal{I}\left(\frac{\partial^{2} \phi}{\partial t \partial z}-\underline{u} \frac{\partial \underline{u}}{\partial z}+s\right)_{z=0}+\frac{J^{2}}{L^{2}}\left[\frac{\partial^{3} \phi}{\partial t \partial z^{2}}-\underline{u} \frac{\partial^{2} \underline{u}}{\partial z^{2}}-\left(\frac{\partial \underline{u}}{\partial z}\right)^{2}\right]_{z=0}
$$

That is

$$
\begin{align*}
& \left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}\right)_{z=0}+J\left(\frac{\partial^{2} \phi}{\partial t \partial z}-\underline{u}: \frac{\partial \underline{u}}{\partial z}+g\right)_{z=0} \\
& +\frac{\rho^{2}}{L^{2}}\left[\frac{\partial^{3} \phi}{\partial t \partial z^{2}}-\underline{u} \cdot \frac{\partial^{2} \underline{u}}{\partial z^{2}}-\left(\frac{\partial \underline{u}}{\partial z}\right)^{2}\right]_{z=0}+\cdots=0
\end{align*}
$$

By Taylor's theorem

$$
\begin{aligned}
& F(z+J)=F(z)+J F^{\prime}(z)+\frac{\delta^{2}}{L^{2}} F^{\prime \prime}(z)+\cdots \\
& \text { and } \therefore[F(z+f)]_{z=0}=[F(z)]_{z=5}=F(0)+J F^{\prime}(0)+\frac{J^{2}}{L^{2}} F^{\prime \prime}(0)+\cdots
\end{aligned}
$$

Applying this to equation (6014)

$$
\left[\nabla^{2} \phi\right]_{z=f}=0=\left[\nabla^{2} \phi\right]_{z=0}+J\left[\frac{\partial}{\partial z} \nabla^{2} \phi\right]_{z=0}+\frac{J^{2}}{E^{2}}\left[\frac{\partial^{2}}{\partial z^{2}} \nabla^{2} \phi\right]_{z=0}^{+\cdots(6.16)}
$$

In order to define the solution completely it is necessary to add a further condition expressing the assumption that the origin is in the undisturbed free surface Since the mass contained below the free surface is the same as in the undisturbed state we have

$$
\int_{0}^{\lambda} d x \int_{-}^{h} \rho d z=\int_{0}^{\lambda} d x \int_{0}^{h} \rho_{0} d z
$$

where the suffix o denotes the value in the undisturbed state.
Equation (6.17) can be rewritten

$$
\int_{0}^{\lambda} d x \int_{0}^{h}\left(\rho-\rho_{0}\right) d z-\int_{0}^{\lambda} d x \int_{0}^{1} \rho d z=0
$$

Set

$$
\begin{aligned}
\int_{0}^{\rho} \rho d z & =F(\rho)+=[F(z+\rho)]_{z=0} \\
& =\left[F(z)+\rho \cdot \frac{\partial F(z)}{\partial z}+\frac{\rho^{2}}{\left[^{2}\right.} \cdot \frac{\partial^{2} F(z)}{\partial z^{2}}+-\right]_{z=0}
\end{aligned}
$$

Hence since $F(z)=\int_{0}^{z} \rho d z, \quad F(0)=0$

$$
\text { and } \quad \frac{\partial F}{\partial z}=p \quad \therefore \quad F(0)=[p]_{z=0}
$$

and $\quad \frac{\partial^{2} F}{\partial z^{2}}=\frac{\partial \rho}{\partial z} \quad \therefore\left(\frac{\partial^{2} F}{\partial z^{2}}\right)_{z=0}=\left(\frac{\partial P}{\partial z}\right)_{z=0}$
etc.

$$
\therefore \int_{0}^{f} \rho d z=J[P]_{z=0}+\frac{J^{2}}{L^{2}}\left[\frac{\partial \rho}{\partial z}\right]_{z=0}+\cdots \cdots
$$

Hence equation ($6 \cdot 18$) becomes

$$
\begin{aligned}
& \int_{0}^{\lambda} d x \int_{0}^{h}\left(\rho-\rho_{0}\right) d z- \\
& \quad-\int_{0}^{\lambda} d x\left[J(\rho)_{z=0}+\frac{1}{2} \rho^{2}\left(\frac{\partial \rho}{\partial z}\right)_{z=0}+\cdots\right]=0 \quad(6.19)
\end{aligned}
$$

From equations $(6 \cdot 2),(6 \cdot 3)$ and (6.5)

$$
\left.\frac{p}{P_{s}}=e^{\frac{p}{c^{2}}}=e^{\frac{1}{c^{2}}\left(\frac{\partial \phi}{\partial t}-\frac{1}{2} \underline{u}^{2}+g z\right)} \quad 16 \cdot 20\right)
$$

so that $\quad \frac{P_{G}}{P_{s}}=e^{\frac{G z}{c^{2}}}$
since $\dot{u}=0 \quad$ in the undisturbed state.
From equation ($6 \cdot 4$)

$$
\begin{aligned}
& {[p]_{p_{s}}^{p}=\left[\rho c^{2}\right]_{p_{s}}^{p} } \\
& \therefore p_{-}-p_{s}=\left(p-p_{s}\right) c^{2} \\
& \therefore p_{s}-p_{s}=\left(p_{0}-p_{s}\right) c^{2} \\
&=\left(p_{s} e^{\frac{s 2}{c^{2}}} p_{s}\right) c^{2}
\end{aligned}
$$

$$
(6 \cdot<2)
$$

by (6.21)

$$
\therefore p_{0}-p_{s}=c^{2} p_{s}\left(e^{g 2 / c^{2}} 1\right)
$$

To find solutions for equation (6.9) we write

$$
\begin{align*}
& \phi=\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots \\
& \underline{u}=\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots \\
& J=\epsilon J_{1}+\epsilon^{2} J_{2}+\cdots \\
& p-p_{0}=\epsilon p_{1}+\epsilon^{2} p_{2}+\cdots \\
& \rho-p_{0}=\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots
\end{align*}
$$

where \in is a small parameter.
We can substitute from equation (6.24) in equations (6.9), $(6 \cdot 10)$ and ($6 \cdot 16$):

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial t^{2}}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)-c^{2} \nabla^{2}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}\right) \\
& -g \frac{\partial}{\partial z}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)-\frac{\partial}{\partial t}\left\{\frac{1}{2}\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots\right)\right\} \\
& -\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots\right) \operatorname{grad}\left\{\frac{1}{2}\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots\right)^{2}\right\}=0 ; \\
& \left\{\frac{\partial}{\partial z}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)\right\}_{z=h}=0 ; \quad \text { and } \\
& \left\{\nabla^{2}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)\right\}_{z=0} \\
& \quad+\left(\epsilon J_{1}+\epsilon^{2} J_{2}+\cdots\right)\left\{\frac{\partial}{\partial z} \nabla^{2}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)\right\}_{z=0} \\
& \quad+\cdots \cdots=0 .
\end{aligned}
$$

For a first approximation to the values of $\boldsymbol{\phi}$, $\boldsymbol{\mu}$, etc. we can neglect powers of $\in \in$, and for a second $\quad 1$ above the approximation we neglect powers of \mathcal{E} above the square. fist. By equating to zero the coefficients of ϵ and ϵ^{2} we may thus obtain equations by means of which $\boldsymbol{\phi}_{1}$ and $\boldsymbol{\phi}_{2}$ may be determined.
For the first approximation we have

$$
\begin{align*}
& \frac{\partial^{2} \phi_{1}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{1}-g \frac{\partial \phi_{1}}{\partial z}=0 \\
& \left(\frac{\partial \phi_{1}}{\partial z}\right)_{z=\hbar}=0 \tag{6-26}\\
& \left(\nabla^{2} \phi_{1}\right)_{z=0}=0
\end{align*}
$$

From equations (6.1), (6.15) and (6.22) for the first approximation we have

$$
\begin{gather*}
\underline{u}_{1}=-\operatorname{grad} \phi_{1} \\
\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0}+g J_{1}=0
\end{gather*}
$$

and $\left(p_{0}+\epsilon p_{1}+\epsilon^{2} p_{2}+\cdots-p_{s}\right)=c^{2}\left(p_{0}+\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots-p_{s}\right)$
Equating the coefficient of \mathcal{E} to zero

$$
p_{1}=c^{2} p_{1}
$$

After substituting in equation ($6 \cdot 20$)

$$
\begin{aligned}
& \frac{\rho_{0}+\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots}{\rho_{s}^{\prime}}=e^{\frac{1}{c^{2}}\left[\frac{\partial}{\partial t}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)-\frac{1}{2}\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots\right)^{2}+g z\right]} \\
& =e^{g z / c^{2}} \cdot\left[1+\frac{1}{c^{2}}\left\{\frac{\partial}{\partial t}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)-\frac{1}{2}\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+\cdots\right)^{2}\right\}\right. \\
& \quad+\frac{1}{c^{4}} \cdot \frac{1}{L^{2}}\left\{\frac{\partial}{\partial t}\left(\epsilon \phi_{1}+\epsilon^{2} \phi_{2}+\cdots\right)-\frac{1}{2}\left(\epsilon \underline{u}_{1}+\epsilon^{2} \underline{u}_{2}+-\right)^{2}\right\} \\
& \quad+\cdots \cdots
\end{aligned}
$$

85.

Equating to zero the coefficient of ϵ, we have

$$
\frac{\rho_{1}}{\rho_{s}}=\frac{e^{\frac{s z}{z^{2}}}}{c^{2}} \cdot \frac{\partial \phi_{1}}{\partial t}
$$

Hence $\quad \frac{p_{1}}{p_{s}}=c^{2} \frac{p_{1}}{p_{s}}=\frac{\partial \phi_{1}}{\partial t} \cdot e^{2 r_{2}}$
where $\quad 2 \gamma=9 / c^{2}$
For the second approximation we obtain :

$$
\begin{align*}
& \text { from (6.9) } \quad \frac{\partial^{2} \phi_{2}}{\partial t^{2}}-e^{2} \nabla^{2} \phi_{2}-g \frac{\partial \phi_{2}}{\partial z}=\frac{\partial}{\partial t}\left(\underline{u}_{1}^{2}\right) \tag{6.32}\\
& \operatorname{from}(6.10) \quad\left(\frac{\partial \phi_{2}}{\partial z}\right)_{z=2}=0 \tag{6.33}\\
& \text { from (6.16) } \quad\left(\nabla^{2} \phi_{2}\right)_{z=0}=-J_{1}\left(\frac{\partial}{\partial z} \nabla^{2} \phi_{1}\right)_{z=0} \quad(6.34) \\
& \text { from (val) } \quad u_{2}=-\operatorname{grad} \phi_{2} \tag{6a35}\\
& \text { from (6015) } \quad g J_{2}=-\left(\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2}{\underline{u_{1}^{2}}}_{2}\right)-J_{1}\left(\frac{\partial^{2} \phi_{1}}{\partial t-\partial z}\right)_{z=0}^{(6.36)} \\
& \text { from (6.22) } \quad p_{2}=c^{2} p_{2}
\end{align*}
$$

and after substituting in equation (6020)

$$
\frac{p_{2}}{P_{s}}=c^{2} \frac{p_{2}}{P_{s}}=\left[\frac{\partial \phi_{2}}{\partial t}-\frac{\mu_{1}^{2}}{2}+\frac{1}{2 e^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right] \cdot e^{2 \gamma_{2}}(6 \cdot 37)
$$

On substituting for ρ and J in equation (6.19) we obtain

$$
\begin{aligned}
& \int_{0}^{\lambda} d x \int_{0}^{h}\left(\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots\right) d z \\
& -\int_{0}^{\lambda} d x\left[\left(\epsilon_{1} \rho_{1}+\epsilon_{2} J^{2}+\cdots\right)\left(\rho_{0}+\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots\right)_{z=0}\right. \\
& \left.+\frac{1}{2}\left(\epsilon \rho_{1}+\epsilon^{2} \rho_{2}+\cdots\right)^{2}\left\{\frac{\partial}{\partial z}\left(\rho_{0}+\epsilon \rho_{1}+\cdots\right)_{z=0}\right\}+\cdots\right]=0 .
\end{aligned}
$$

From (6.21)

$$
\begin{aligned}
& \frac{P_{0}}{P_{s}}=e^{\frac{2 g z}{c^{2}}}=e^{2 r_{z}} \\
\therefore \quad & \left(P_{0}\right)_{z=0}=P_{s} e^{0}=P_{s}
\end{aligned}
$$

耳quating the coefficient of \in we have

$$
\int_{0}^{\lambda} d x \int_{0}^{h} p_{1} d z-\int_{0}^{\lambda} d z \cdot J_{1}\left(p_{0}\right)_{z=0}=0
$$

which is $\quad \int_{0}^{\lambda} d x \int_{0}^{L} \rho_{1} d z-\rho_{s} \int_{0}^{\lambda} f_{1} d z=0$

$$
\therefore \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\rho_{1}}{\rho_{s}} d z-\int_{0}^{\lambda} f_{1} d z=0
$$

Substituting from (6.29) and (6.30)

$$
\begin{aligned}
& \int_{0}^{\lambda} d x \int_{0}^{h} \frac{1}{c^{2}} \cdot \frac{\partial \phi_{1}}{\partial t} \cdot e^{2 \gamma z} d z+\frac{1}{g} \int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x=0 \\
& \therefore \frac{g}{c^{2}} \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{1}}{\partial t} \cdot e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x=0 \\
& \therefore 2 Y \int_{0}^{\lambda} d x \int_{0}^{\hbar} \frac{\partial \phi_{1}}{\partial t} e^{-2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x=0
\end{aligned}
$$

Equating the coefficients of ϵ^{2} we have

$$
\int_{0}^{\lambda} d x \int_{0}^{h} \rho_{2} d z-\int_{0}^{\lambda} d x\left[\rho_{1} \rho_{1}+\rho_{0} \rho_{2}+\frac{1}{2} \rho_{1}^{2} \cdot \frac{\partial \rho_{0}}{\partial z}\right]_{z=0}=0
$$

From equations (6.36) and (6.29)

$$
\rho_{2}=-\frac{1}{g}\left(\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}\right)_{z=0}+\frac{1}{g^{2}}\left(\frac{\partial \phi_{1}}{\partial t} \cdot \frac{\partial^{2} \phi_{1}}{\partial z \partial t}\right)_{z=0}
$$

$$
\text { From }(6-21) \quad \frac{\partial P_{0}}{\partial z}=\frac{9}{c^{2}} \cdot \rho_{s} \cdot e^{\frac{9 z}{c^{2}}}=\frac{9}{c^{2}} \cdot \rho_{s} e^{2 Y z}
$$

Substituting these results and from equations (6.37), (6-30) and (6.29) we have

$$
\begin{aligned}
& \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\rho_{s}}{c^{2}}\left[\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}+\frac{1}{2 c^{2}}\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right] e^{2 r_{z}} d z \\
& -\int_{0}^{\lambda}\left[-\frac{\rho_{s}}{\partial c^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2} e^{2 r z}-\rho_{s} \cdot \frac{e^{2 r_{2}}}{g} \cdot\left\{\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}-\frac{\partial^{2} \phi_{1}}{\partial z^{\partial t}} \cdot \frac{1}{g} \cdot \frac{\partial \phi_{1}}{\partial t}\right\}\right. \\
& \left.\left.+\frac{1}{2} \cdot \frac{1}{g^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2} \cdot \frac{g}{c^{2}} \cdot \rho_{s} \cdot e^{2 r_{z}}\right]\right]_{z=0} d x=0 . \\
& \therefore \frac{1}{c^{2}} \int_{0}^{\lambda} d x \int_{0}^{h}\left[\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}+\frac{1}{2 e^{2}}\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right] e^{2 r_{z}} \cdot d z \\
& +\int_{0}^{\lambda}\left[\frac{1}{g c^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}+\frac{1}{g}\left(\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}-\frac{1}{g} \cdot \frac{\partial^{2} \phi_{1}}{\partial z \partial t} \cdot \frac{\partial \phi_{1}}{\partial t}\right)\right. \\
& \left.-\frac{1}{2 g c^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right]_{z=0} d x=0 .
\end{aligned}
$$

But $\quad 2 \gamma=\frac{9}{c^{2}}$

$$
\begin{align*}
& \therefore 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{t}\left[\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}+\frac{1}{2 c^{2}}\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right] e^{2 r z} d z \\
& +\int_{0}^{\lambda}\left[\frac{\partial \phi_{2}}{\partial t}-\frac{1}{2} \underline{u}_{1}^{2}-\frac{1}{g} \cdot \frac{\partial^{2} \phi_{1}}{\partial z \partial t} \cdot \frac{\partial \phi_{1}}{\partial t}+\frac{1}{2 e^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right]_{z=0} d x=0 . \\
& \therefore 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{2}}{\partial t} \cdot e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}}{\partial t}\right)_{z=0} d x \\
& =2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h}\left[\frac{1}{2} \underline{u}_{1}^{2}-\frac{1}{2 c^{2}}\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right] e^{2 \gamma z} d z \\
& \quad+\int_{0}^{\lambda}\left[\frac{1}{2} \underline{u}_{1}^{2}+\frac{1}{g} \cdot \frac{\partial^{2} \phi_{1}}{\partial z^{2} t}-\frac{1}{2 c^{2}} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}\right]_{z=0} d x \quad(6 \cdot 39)
\end{align*}
$$

Suppose that ϕ and J are periodic functions satisfying equations 6.9, 610, 615 and 6.16. If P and ρ are defined by equation $6 \cdot 20$ then these equations imply $6 \cdot 6,6 \cdot 11$ and $6 \cdot 13$. Providing that grad P is not identically zero, equations 6.11 and 6.13 show that $Z=J$ is a surface moving with the fluid. But since the equation of continuity is satisfied (6.6), it follows that the left-hand side of 6.17 , $6-18$, or 6.19 is at most a constant. Hence any periodic solution $\phi=\boldsymbol{\phi}_{\boldsymbol{*}}{ }^{*}$ of equations $6.25,6.26$ and 6.27 must make the left hand side of equation 6.39 a constant, say C_{l}^{*}.
Then a solution of (6.39) is given by

$$
\phi_{1}=\phi_{1}^{*}-\frac{C_{1}^{*}}{\lambda} e^{-2 \gamma \hbar} \cdot t
$$

Since

$$
\begin{aligned}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{1}}{\partial t} e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x \\
& =2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{1}^{*}}{\partial t} \cdot e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{1}^{*}}{\partial t}\right)_{z=0} d x \\
& -\frac{1}{\lambda} \int_{0}^{\lambda} d x\left[e_{1}^{*} e^{-2 \gamma k} \cdot e^{2 \gamma z}\right]_{0}^{h}-\frac{1 f_{0}^{\lambda}}{C_{1}^{*}} e^{-2 \gamma k} d x \\
& =C_{1}^{*}-C_{1}^{*}\left(1-e^{-2 \gamma h}\right)-C_{1}^{*} e^{-2 \gamma h} \\
& =0
\end{aligned}
$$

Hence if $\boldsymbol{\phi}_{\boldsymbol{\prime}}^{*}$ is any periodic solution of $(6-25),(6.26)$ and (6.27), a solution of these equations and (6.39) is found by adding to $\boldsymbol{\phi}_{1}^{*}$ a constant multiple of t. Similarly if $\boldsymbol{\phi}_{2}^{*}$ is any periodic solution of $(6 \cdot 32) ;(6 \cdot 33)$ and $(6 \cdot 34)$, a solution of these equationsiand equation (6.39) is to be found by. adding a constant multiple of t to $\boldsymbol{\phi}_{\mathbf{2}}^{\boldsymbol{f}}$.

Determination of the first approximation ϕ_{1}.
We assume that $\boldsymbol{\phi}_{\boldsymbol{\prime}}$ is a simple progressive wave of the form

$$
\phi_{1}=Z(z) e^{i(k x+\sigma t)}
$$

where $k=2 \pi / \lambda, \sigma=2 \pi / T$ and Z is a function of z only.
Writing

$$
\begin{aligned}
& Z=e^{-\gamma z} \cdot Z_{1}(z) \\
& \phi_{1}= e^{-\gamma z} \cdot Z_{1}(z) \cdot e^{i(k x+\sigma t)} \\
& \frac{\partial^{2} \phi_{1}}{\partial t^{2}}=-\sigma^{2} \phi_{1}, \\
& \frac{\partial^{2} \phi_{1}}{\partial x^{2}}=-k^{2} \phi_{1} \\
& \frac{\partial \phi_{1}}{\partial z}= e^{i(k x+\sigma t)}\left[e^{\left.-\gamma z \cdot \frac{d z_{1}}{d z}-\gamma e^{-\gamma z} \cdot Z_{1}\right]}\right. \\
& \frac{\partial^{2} \phi_{1}}{\partial z^{2}}= e^{i(k x+\sigma t)} \cdot e^{-\gamma z}\left(\frac{d^{2} z_{1}}{d z^{2}}-\gamma \frac{d Z_{1}}{d z}\right) \\
&-e^{i(k x+\sigma t)} \cdot e^{-\gamma_{z}}\left(\frac{d z_{1}}{d z}-\gamma z_{1}\right) \\
&= e^{i(k x+\sigma t)} e^{-\gamma z}\left(\frac{d^{2} z_{1}}{d z^{2}}-2 \gamma \frac{d z_{1}}{d z}+\gamma^{2} Z_{1}\right)
\end{aligned}
$$

Hence $\nabla^{2} \phi_{1}=e^{i(k x+\sigma t)} \cdot e^{-\gamma z}\left(\frac{d^{2} Z_{1}}{d z^{2}}-2 \gamma \frac{d Z_{1}}{d z}+\gamma^{2} Z_{1}-k^{2} Z_{1}\right)$
Hence equation (6.25) gives

$$
\begin{aligned}
& =\sigma^{2} \phi_{1}-c^{2} \cdot e^{-i(k x+\sigma t)} \cdot e^{-r z} \cdot\left[\frac{d^{2} Z_{1}}{d z^{2}}-2 \gamma \frac{d Z_{1}}{d z}+\gamma^{2} Z_{1}-k^{2} Z_{i}\right] \\
& -g \cdot e^{i(k x+\sigma t)} \cdot e^{-\gamma_{z}} \cdot\left(\frac{d Z_{1}}{d z}-\gamma Z_{1}\right)=0 \\
& \therefore c^{2} \frac{d^{2} Z_{1}}{d z^{2}}+\left(g-2 c^{2} \gamma\right) \frac{d Z_{1}}{d z}-g\left(\gamma+c^{2} k^{2}-c^{2} \gamma^{2}-\sigma^{2}\right) Z_{1}=0
\end{aligned}
$$

But $\quad 2 \gamma=\frac{g}{c^{2}}$ (equation 6.31) and we write

$$
\alpha^{2}=k^{2}-\frac{\sigma^{2}}{c^{2}}+\gamma^{2}
$$

So that $\quad \frac{d^{2} Z_{1}}{d z^{2}}-\alpha^{2} Z_{1}=0$
Assuming that $\alpha \neq 0$, this has a solution

$$
z_{1}=A e^{\alpha z}+B e^{-\alpha z}
$$

where A and B are constants, hence from (6.42)

$$
\begin{align*}
\phi_{1} & =\left[A e^{\alpha z}+B e^{-\alpha z}\right] \cdot e^{-\gamma z} \cdot e^{i(k x+\sigma t)} \\
\therefore & \phi_{1}=\left[A e^{-(\gamma-\alpha) z}+B e^{-(\gamma+\alpha) z}\right] \cdot e^{i(k x+\sigma t)} \tag{6.46}\\
\therefore & \frac{\partial \phi_{1}}{\partial z}=\left[-A(\gamma-\alpha) \cdot e^{-(r-\alpha) z}-B \in(\gamma+\alpha) e^{-(\gamma+\alpha) z}\right] \cdot e^{i(k x+\sigma t)}
\end{align*}
$$

Hence equation ($6 \cdot 26$) becomes

$$
\begin{aligned}
&-A(r-\alpha) e^{-(r-\alpha) h}-B(r+\alpha) e^{-(r+\alpha) k}=0 \\
& \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=\left[A(r-\alpha)^{2} e^{-(r-\alpha) z}+B(r+\alpha)^{2} e^{-(r+\alpha) z}\right] \cdot e^{i(k x+\sigma t)} \\
&-k^{2}\left[A e^{-(r-\alpha) z}+B e^{-(r+\alpha) z}\right] \cdot e^{-i(k x+\sigma t)} \\
& \therefore {\left[\nabla^{2}\left(\phi_{l}\right)\right]=} \\
&= {\left[A(r-\alpha)^{2}+B(r+\alpha)^{2}-k^{2}(A+B)\right] \cdot e^{i(k x+\sigma t)} }
\end{aligned}
$$

Hence equation (6.27) becomes

$$
A\left\{(r-\alpha)^{2}-k^{2}\right\}+B\left\{(r+\alpha)^{2}-k^{2}\right\}=0
$$

91.

The eliminant of A and B between equations (6.47) and (6.48) is

$$
\begin{aligned}
& \Delta(\sigma, k)=\left|\begin{array}{ll}
-(\gamma-\alpha) e^{-(\gamma-\alpha) h}, & -(\gamma+\alpha) e^{-(\gamma+\alpha) h} \\
(\gamma-\alpha)^{2}-k^{2}, & (\gamma+\alpha)^{2}-k^{2}
\end{array}\right| \\
&=-e^{-\gamma k}\left[e^{\alpha h}\left(\gamma^{3}+\gamma^{2} \alpha-\gamma k^{2}-\gamma \alpha^{2}-\alpha^{3}+\alpha k^{2}\right)\right. \\
&\left.-e^{-\alpha h}\left(\gamma^{3}-\gamma^{2} \alpha-\gamma k^{2}-\gamma \alpha^{2}+\alpha^{3}-\alpha k^{2}\right)\right] \\
&=-e^{-\gamma k}\left[\left(\gamma^{3}-\gamma \alpha^{2}-k^{2} \gamma\right)\left(e^{\alpha h}-e^{-\alpha h}\right)\right. \\
&\left.+\left(\alpha \gamma^{2}-\alpha^{3}+\alpha k^{2}\right)\left(e^{\alpha h}+e^{-\alpha h}\right)\right] \\
&=-e^{-\gamma k}\left[2 \gamma\left(\gamma^{2}-\alpha^{2}-k^{2}\right) \sin \alpha \alpha h+2 \alpha\left(\gamma^{2}-\alpha^{2}+k^{2}\right) \operatorname{Cosh} \alpha h\right](6-49)
\end{aligned}
$$

In order that equations (6.47) and (6.48) may possess non-zere solutions

$$
\Delta\left(\sigma_{1} k\right)=0
$$

(Ferrar: Higher Algebra I p.173)
i.e. $\gamma\left(\gamma^{2}-\alpha^{2}-k^{2}\right) \sin \operatorname{ch} \alpha h+\alpha\left(\gamma^{2}-\alpha^{2}+k^{2}\right) \cosh \alpha h=0$

$$
\begin{aligned}
& r\left(r^{2}-\alpha^{2}-k^{2}\right)+\alpha\left(r^{2}-\alpha^{2}+k^{2}\right) \operatorname{coth} \alpha h=0 \\
& \alpha h \operatorname{coth} \alpha h+\frac{r\left(r^{2}-\alpha^{2}-k^{2}\right) h}{r^{2}-\alpha^{2}+k^{2}}=0
\end{aligned}
$$

but $\quad k^{2}=\alpha^{2}+\frac{\sigma^{2}}{c^{2}}-\gamma^{2}$

$$
\therefore \alpha h \operatorname{coth} \alpha h+\frac{\gamma\left(\gamma^{2}-\alpha^{2}-\alpha^{2}-\frac{\sigma^{2}}{\alpha^{2}}+\gamma^{2}\right) h}{\gamma^{2}-\alpha^{2}+\alpha^{2}+\frac{\sigma^{2}}{c^{2}}-\gamma^{2}}=0
$$

but $\quad c^{2}=\frac{9}{2 \gamma}$

$$
\begin{align*}
& \therefore \alpha h \operatorname{coth} \alpha h+\gamma\left(2 \gamma^{2}-2 \alpha^{2}-\frac{2 \sigma^{2} \gamma}{9}\right) h \cdot \frac{g}{2 \sigma^{2} g}=0 \\
& \therefore \alpha h \operatorname{coth} \alpha h+\frac{g h}{\sigma^{2}}\left(\gamma^{2}-\alpha^{2}-\frac{\sigma^{2} \gamma}{g}\right)=0 \\
& \therefore \alpha h \operatorname{coth} \alpha h-\frac{g}{2 \sigma^{2}}(\alpha h)^{2}-\gamma h\left(1-\gamma h \frac{g}{h \sigma^{2}}\right)=0 \\
& \text { or } f(\alpha, h) \equiv \alpha h \operatorname{coth} \alpha h-P(\alpha h)^{2}-Q=0 \\
& \text { where } \quad P=\frac{9}{h \sigma^{2}}, \quad Q=\gamma h(1-P r h) \tag{6.51}
\end{align*}
$$

If the depth and the period of the progressive wave are known, that is k and σ are given, then equation (6,50) determines α, and hence since

$$
k^{2}=\alpha^{2}+\frac{\sigma^{2}}{c^{2}}-\gamma^{2}=\alpha^{2}+\frac{\sigma^{2}}{c^{2}}-\frac{g^{2}}{4 c^{4}},
$$

we have k and hence λ, since $\lambda=2 \pi / k$; Where c is a constant, the velocity of sound in the water.
Now $\operatorname{Lut}_{\theta \rightarrow 0} \frac{\theta}{\tanh \theta}=1$, hence as αh tends to zero, $f(\alpha, \vec{h})$ tends to ($1-\mathbb{Q}$), which is assumed positive.
But $\quad Q=\gamma h(1-P r h)=r h\left[1-\frac{g r}{\sigma^{2}}\right]<1$
When αh is large and positive, $f(\alpha h)$ is negative, since $\mathcal{L}_{\theta \rightarrow \infty} \frac{\theta}{\tan \alpha \theta}=\infty$ since tank $\theta \rightarrow 1$ as $\theta \rightarrow \infty$
wite $\eta=\alpha^{2} h^{2}$, then

$$
\begin{aligned}
& f \equiv \eta^{\frac{1}{2}} \operatorname{coth} \eta^{\frac{1}{2}}-P \eta-Q \\
& \therefore \frac{\partial f}{\partial \eta} \equiv \frac{1}{2} \eta^{-\frac{1}{2}} \operatorname{coth} \eta^{\frac{1}{2}}-\frac{1}{2} \operatorname{cosech}^{2} \eta^{\frac{1}{2}}-P \\
& \therefore \frac{\partial^{2} f}{\partial \eta^{2}} \equiv-\frac{1}{4} \eta^{-3 / 2} \operatorname{coth} \eta^{\frac{1}{2}}-\frac{1}{4} \eta^{-1} \operatorname{cosech}^{2} \eta^{\frac{1}{2}}+\frac{1}{2} \eta^{-\frac{1}{2}} \operatorname{cosec}^{2} \eta^{\frac{1}{2}} \cdot \operatorname{coth} \eta^{\frac{1}{2}}
\end{aligned}
$$

If we put $\theta=\eta^{\frac{1}{2}}$

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial \eta^{2}} & =-\frac{1}{4 \theta^{3}} \cdot \operatorname{coth} \theta-\frac{1}{4 \theta^{2}} \cdot \operatorname{cosech}^{2} \theta+\frac{1}{2 \theta} \cdot \operatorname{csceh}^{2} \theta \cdot \operatorname{coth} \theta \\
& =-\frac{\cot \theta}{4 \theta^{3}}-\left(\frac{\operatorname{cosech} \theta}{2 \theta}\right)^{2} \cdot\left(1-\frac{2 \theta}{\tanh \theta}\right) \\
& <0
\end{aligned}
$$

Hence $\frac{\partial^{2} f}{\partial \eta^{2}}$ is always negative.
Thus we have $(1) \quad f(\alpha, k) \rightarrow(1-Q)>0$ as $\alpha \mathscr{L} \rightarrow 0$
(2) $f(\alpha \mathcal{L})<0 \quad$ when $\alpha-2 \rightarrow+\infty$
(3) $\quad \frac{\partial^{2} f}{\partial \eta^{2}}<0 \quad$ i.e. $f=0$ has only one

This real zero corresponds to a gravity type wave. There are an infinity of imaginary zeroes each corresponding to a compression type wave (Whipple \& Lee 1935)

We now assume that α is the positive real root of equation 1650).

Now

$$
\begin{aligned}
f(r h) & =\gamma h \operatorname{coch} \gamma h-\frac{g}{2 \sigma^{2}} \cdot \gamma^{2} h^{2}-\gamma h\left(1-\frac{g}{h a^{2}} \cdot \gamma h\right) \\
& =\gamma h \operatorname{Coth} \gamma h-\gamma h . \\
& =\gamma h(\operatorname{coth} \gamma h-1) \\
& >0 \quad \text { since } \quad|\operatorname{coth} \theta|>1 .
\end{aligned}
$$

Hence $\quad(\gamma h)^{2}<(\alpha h)^{2}$
or $\quad \gamma^{2}<\alpha^{2}$
(6.52)

Hence, by (6.43) $\quad a^{2}-\gamma^{2}=k^{2}-\frac{a^{2}}{c^{2}}>0$

$$
\begin{equation*}
\therefore \quad k^{2}>\frac{\sigma^{2}}{c^{2}}>0 . \tag{6.53}
\end{equation*}
$$

Thus corresponding to α which satisfies equation (6.50) there is a real value of \boldsymbol{k}, that is to say a real wave motion, since $k=2 \pi / \lambda$.
From equations (6.47) and (6.48)

$$
\begin{aligned}
\frac{A}{(\gamma+\alpha) e^{-(\gamma+\alpha) h}} & =-\frac{B}{(\gamma-\alpha) e^{-(\gamma-\alpha) h}} \\
\therefore \quad \frac{A}{(\gamma+\alpha) e^{-\alpha h}} & =-\frac{B}{(\gamma-\alpha) e^{\alpha \hbar}} .
\end{aligned}
$$

Hence after substituting in equation (6.46) the first approximation for ϕ is

$$
\begin{aligned}
\phi_{1} & =\left[(\gamma+\alpha) e^{-\alpha h} \cdot e^{-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha h} \cdot e^{-(\gamma+\alpha) z}\right] \cdot e^{i(k x+\sigma t)} \\
\therefore \phi_{1} & =\left[(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) \cdot e^{\alpha h-(\gamma+\alpha) z}\right] \cdot e^{i(k x+\sigma t)} \quad(6.54)
\end{aligned}
$$

This value should satisfy equation (6.38).
It will now be shewn that it does in fact do so :-
Prom ($6 \cdot 54$)

$$
\frac{\partial \phi_{1}}{\partial t}=i \sigma\left[(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(\gamma+\alpha / z}\right] e^{i(k x+\sigma t)}
$$

95.

$$
\begin{aligned}
& \therefore \int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x=i \sigma\left[(\gamma+\alpha) e^{-\alpha h}(\gamma-\alpha) e^{\alpha \alpha}\right] \int_{0}^{\lambda} e^{i(k x+\sigma t)} d x \\
&=\frac{i \sigma}{i k}\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right]\left[e^{i(k x+\alpha t)}\right]_{0}^{\lambda} \\
&=\frac{\sigma}{k}\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha \alpha}\right] e^{i \sigma t}\left(e^{i k \lambda}-1\right) \\
&=\frac{\sigma}{k}\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha \alpha}\right] e^{i \sigma t}\left(e^{i 2 \pi}-1\right) \\
&=0 . \quad(\text { since } \quad 2 \pi=k \lambda) .
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{h} \frac{\partial \phi_{1}}{\partial t} \cdot e^{2 r z} d z=i \sigma \int_{0}^{h}\left[(\gamma+\alpha) e^{-\alpha h+(r+\alpha) z}-(\gamma-\alpha) e^{\alpha h+(r-\alpha) z}\right]_{e}^{i(k x+\sigma)} \cdot d z \\
& =i \sigma e^{i(k x+\sigma t)}\left[e^{-\alpha h+(r+\alpha) z}-e^{\alpha h+(\gamma-\alpha) z}\right]_{0}^{h} \\
& =i \sigma e^{i(k x+\sigma t)} \cdot\left(e^{\alpha h}-e^{-\alpha h}\right) \\
& \therefore \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{1}}{\partial t} \cdot e^{2 \gamma z} d z=\frac{i \sigma}{i k}\left(e^{\alpha h} e^{-\alpha h}\right)\left[e^{i(k x+\sigma t)}\right]_{0}^{\lambda} \\
& =
\end{aligned}
$$

That is

$$
2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{1}}{\partial t} e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x=0 .
$$

Thus $\boldsymbol{\phi}$, given by (6.54) does satisfy equation (6-38). Since the equations 16.25), ($6 \cdot 26$), ($6 \cdot 27$), ($6 \cdot 28$), ($6 \cdot 29$) and (6.30), which determine the first approximation are all linear, the sum of any number, ${ }^{\circ f}$ solutions is also a solution. Therefore we may take as the first approximation

$$
\begin{aligned}
& \phi_{1}=\left[(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(\gamma+\alpha \mid z}\right] \\
& x\left[b_{1} \sin (k x-\sigma t)+b_{2} \sin (k x+\sigma t)\right](6.55)
\end{aligned}
$$

representing two waves of the same wavelength travelling in opposite directions.

Determination of the sec $n d$ approximation $\boldsymbol{\phi}_{\boldsymbol{L}}$.
We now substitute the value of ϕ, given by equation (6.55) into equations (6.32), (6.33), (6.34) and (6.39) and solve the resulting equations for $\boldsymbol{\phi}_{2}$.

From equation (6.28)

$$
-\underline{u}_{1}=\operatorname{grad} \phi_{1}=i \frac{\partial \phi_{1}}{\partial x}+j \frac{\partial \phi_{1}}{\partial z}
$$

where \mathfrak{i} and \mathfrak{j} are unit vectors in the directions $0 x$, θz respectively.
Then $\underline{u}_{1}^{2}=\left(i \frac{\partial \phi_{1}}{\partial x}+\underline{j} \frac{\partial \phi_{1}}{\partial z}\right)^{2}=\left(\frac{\partial \phi_{1}}{\partial x}\right)^{2}+\left(\frac{\partial \phi_{1}}{\partial z}\right)^{2}$
From (6.55)

$$
\begin{gathered}
\frac{\partial \phi_{1}}{\partial x}=\left[(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(\gamma+\alpha) z}\right] k \\
x\left[b_{1} \cos (k x-\sigma t)+b_{2} \cos (k x+\sigma t)\right] \\
\frac{\partial \phi_{1}}{\partial z}=\left[-\left(\gamma^{2}-\alpha^{2}\right) e^{-\alpha h-(\gamma-\alpha) z}+\left(\gamma^{2}-\alpha^{2}\right) e^{\alpha h-(\gamma+\alpha) z}\right] \\
x\left[b_{1} \sin (k x-\sigma t)+b_{2} \sin (k x+\sigma t)\right]
\end{gathered}
$$

$$
\begin{aligned}
& \therefore \bar{u}_{1}^{2}=k^{2}\left[(\gamma+\alpha) e^{-\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(\gamma+\alpha) z}\right]^{2} \\
& \left.x\left[b_{1}^{2} \operatorname{Cos}^{2}(k x-\sigma t)+b_{2}^{2} \cos ^{2}(k x+\sigma t)+2 b_{1} b_{2} \operatorname{Cos}(k) 1-\sigma t\right) \operatorname{Con}(k n+\sigma t)\right] \\
& +\left[\left(\gamma^{2}-\alpha^{2}\right) e^{-\alpha h-(\gamma-\alpha) z}-\left(\gamma^{2}-\alpha^{2}\right) e^{\alpha h-(\gamma+\alpha) z}\right]^{2} \\
& x\left[b_{1}^{2} \sin ^{2}(k x-\sigma t)+b_{2}^{2} \sin ^{2}(k x+\sigma t)+2 b_{1} b_{2} \sin (k x-\sigma t) \sin (k x+\sigma t]\right. \\
& =k^{2}\left[(r+\alpha) e^{-\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(r+\alpha) z}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Con} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1+\operatorname{Cos} 2(k x+\sigma t)\}\right. \\
& \left.+b_{1} b_{2}(\operatorname{Cos} 2 k x+\operatorname{Cos} 2 \sigma t)\right] \\
& +\left[\left(r^{2}-\alpha^{2}\right) e^{-\alpha h-(r-\alpha) 2}-\left(r^{2}-\alpha^{2}\right) e^{\alpha h-(r+\alpha) z}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1-\operatorname{Cos} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1-\operatorname{Cos} 2(k x+\sigma t)\}\right. \\
& \left.+b_{1} b_{2}(-\operatorname{Cos} 2 k x+\operatorname{Cos} 2 \sigma t)\right] \text {. } \\
& \therefore \frac{\partial}{\partial t}\left(\underline{u}_{1}^{2}\right)= \\
& \alpha\left[k^{2}\left\{(r+\alpha) e^{-\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(r+\alpha) z}\right\}^{2}\right. \\
& \left.-\left\{\left(r^{2}-\alpha^{2}\right) e^{-\alpha h-(r-\alpha) z}-\left(r^{2}-\alpha^{2}\right) e^{\alpha h-(r+\alpha) z}\right\}^{2}\right] \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& -\sigma\left[k^{2}\left\{(r+\alpha) e^{-\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(r+\alpha) z}\right\}^{2}\right. \\
& \left.+\left(r^{2}-\alpha^{2}\right)^{2}\left\{e^{-\alpha \alpha-(r-\alpha) z}-e^{\alpha h-(r+\alpha) z}\right\}^{2}\right] 2 b_{1} b_{2} \sin 2 \sigma t \text {. }
\end{aligned}
$$

The coefficient of $\sigma\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]$ is

$$
\begin{align*}
& k^{2}\left[(\gamma+\alpha)^{2} e^{-2 \alpha h-2(r-\alpha) z}-2\left(\gamma^{2}-\alpha^{2}\right) e^{-2 \gamma z}+(r-\alpha)^{2} e^{2 \alpha h-2(\gamma+\alpha) z}\right] \\
& -\left(\gamma^{2}-\alpha^{2}\right)^{2}\left[e^{-2 \alpha h-2(\gamma-\alpha) z}-2 e^{-2 \gamma z}+e^{2 \alpha h-2(\gamma+\alpha) z}\right] \\
& =(\gamma+\alpha)^{2}\left\{k^{2}-(\gamma-\alpha)^{2}\right\} e^{2 \alpha h-2(\gamma-\alpha) z} \\
& +(\gamma-\alpha)^{2}\left\{k^{2}-(\gamma+\alpha)^{2}\right\} e^{2 \alpha h-2(\gamma+\alpha) z} \\
& +2\left(\gamma^{2}-\alpha^{2}\right)\left(\gamma^{2}-\alpha^{2}-k^{2}\right) e^{-2 \gamma z} \\
& =\frac{c^{\sigma}}{\sigma} e^{-2(\gamma-\alpha) z}+\frac{c^{(2)}}{\sigma} e^{-2(\gamma+\alpha) z}-2 \frac{c^{(3)}}{\sigma} e^{-2 \gamma z} \\
& c^{(1)}=-\sigma\left\{(r-\alpha)^{2}-k^{2}\right\}(\gamma+\alpha)^{2} e^{-2 \alpha h} \\
& \left.c^{(2)}=-\sigma\left\{(\gamma+\alpha)^{2}-k^{2}\right\}(\gamma-\alpha)^{2} e^{2 \alpha h}\right\}
\end{align*}
$$

The coefficient of $2 b_{1} b_{2} \sin 2 \sigma t$ is

$$
\begin{aligned}
& -\sigma\left[k^{2}(\gamma+\alpha)^{2} e^{-2 \alpha h-2(r-\alpha) z}-2 k^{2}\left(\gamma^{2}-\alpha^{2}\right) e^{-2 \gamma z}\right. \\
& +k^{2}(\gamma-\alpha)^{2} e^{2 \alpha h-2(r+\alpha) z} \\
& +\left(r^{2}-\alpha^{2}\right)^{2} e^{-2 \alpha h-2(r-\alpha) z} \\
& \left.+2\left(r^{2}-\alpha^{2}\right)^{2} e^{-2 \gamma z}+\left(r^{2}-\alpha^{2}\right)^{2} e^{2 \alpha h-2(r+\alpha) z}\right]
\end{aligned}
$$

The coefficient of $2 b_{1} b_{2} \sin 2 \sigma t$ is

$$
\begin{aligned}
-\sigma & {\left[(r+\alpha)^{2}\left\{k^{2}+(r-\alpha)^{2}\right\} e^{-2 \alpha h-2(r-\alpha) z}\right.} \\
& -\sigma(r-\alpha)^{2}\left\{k^{2}+(r+\alpha)^{2}\right\} e^{2 \alpha h-2(r+\alpha) z} \\
& +2 \sigma\left(r^{2}-\alpha^{2}\right)\left\{k^{2}+\left(r^{2}-\alpha^{2}\right)\right\} e^{-2 r z} \\
= & c^{(\Theta)} e^{-2(r-\alpha) z}+c^{(5)} e^{-2(r+\alpha) z}-2 C^{6} e^{-2 r z}
\end{aligned}
$$

where $\quad c^{(4)}=-\sigma\left\{(\gamma-\alpha)^{2}+k^{2}\right\}(\gamma+\alpha)^{2} e^{-2 \alpha h}$

$$
\left.\begin{array}{rl}
c^{(\sigma)} & =-\sigma\left\{(r+\alpha)^{2}+k^{2}\right\}(r-\alpha)^{2} e^{2 \alpha h} \tag{6.57}\\
c^{(6)} & =-\sigma\left\{r^{2}-\alpha^{2}+k^{2}\right\}\left(r^{2}-\alpha^{2}\right)
\end{array}\right\}
$$

Hence

$$
\begin{aligned}
\frac{\partial u_{1}^{2}}{\partial t} & =\left[c^{0} e^{-2(r-\alpha) z}+c^{(2)} e^{-2(r+\alpha) z}-2 c^{(3)} e^{-2 r z}\right] \\
& \times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
+ & {\left[c^{(\Theta)} e^{-2(r-\alpha) z}+c^{(5)} e^{-2(r+\alpha) z}-2 c^{(6)} e^{-2 r z}\right] 2 b_{1} b_{2} \sin 2 \sigma t . }
\end{aligned}
$$

Thus equation (6.32) becomes

$$
\begin{align*}
& \frac{\partial^{2} \phi_{2}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{2}-g \frac{\partial \phi_{2}}{\partial z}= \\
& {\left[C^{(0)-2(r-\alpha) z}+c^{(2)} e^{-2(r+\alpha) z}-2 C^{(3)} e^{-2 r z}\right] } \\
& \times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
&+ {\left[C^{(4)} e^{-2(r-\alpha) z}+C^{(5)} e^{-2(r+\alpha) z}-2 C^{(6)} e^{-2 r_{z}}\right] 2 b_{1} b_{2} \sin 2 \sigma t . } \tag{6.58}
\end{align*}
$$

From equations (6.29) and (6.34)

$$
\left(\nabla^{2} \phi_{2}\right)_{z=0}=\frac{1}{g} \cdot\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} \cdot\left(\frac{\partial}{\partial z} \cdot \nabla^{2} \phi_{1}\right)_{z=0}
$$

From equation (6.55)

$$
\begin{aligned}
& \begin{array}{r}
\frac{\partial \phi_{1}}{\partial t}=\left[(\gamma+\alpha) e^{-\alpha h-(r-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(r+\alpha) z}\right] \sigma\left[-b_{1} \operatorname{Cos}(k x-\alpha t)\right. \\
\left.+b_{2} \operatorname{Cos}(k x+\sigma t)\right]
\end{array} \\
& \therefore\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0}=\sigma\left[(\gamma+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha \alpha h}\right]\left[-b_{1} C_{0}(k x-\sigma t)+b_{2} C_{n}(k x+\sigma t)\right] . \\
& \frac{\partial^{2} \phi_{1}}{\partial x^{2}}=-\left[(\gamma+\alpha) e^{\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(\gamma+\alpha) z}\right] k^{2} \\
& x\left[b_{1} \sin (k x-a t)+b_{2} \sin (k x+a t)\right] \text {. } \\
& \frac{\partial^{2} \phi_{1}}{\partial z^{2}}=\left(\gamma^{2}-\alpha^{2}\right)\left[(\gamma-\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma+\alpha) e^{\alpha h-(\gamma+\alpha) z}\right] \\
& x\left[b_{1} \sin (k x-\sigma t)+b_{2} \sin (k x+\sigma t)\right] \\
& \therefore \nabla^{2} \phi_{1}=\left[\left(\gamma^{2}-\alpha^{2}\right)\left\{(r-\alpha) e^{-\alpha h-(r-\alpha) z}-(r+\alpha) e^{\alpha h-(r+\alpha) z}\right\}\right. \\
& \left.-k^{2}\left\{(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(\gamma+\alpha) z}\right\}\right] \\
& x\left[b_{1} \sin (k)(-\sigma t)+b_{2} \sin (k x+\sigma t)\right] \\
& \begin{aligned}
& \therefore\left[\frac{\partial \nabla^{2} \phi_{1}}{\partial z}\right]_{z=0}= {\left[\left(\gamma^{2}-\alpha^{2}\right)\left\{-(\gamma-\alpha)^{2} e^{-\alpha h}+(\gamma+\alpha)^{2} e^{\alpha \alpha}\right\}\right.} \\
&\left.-k^{2}\left\{-\left(\gamma^{2}-\alpha^{2}\right) e^{-\alpha \alpha}+\left(\gamma^{2}-\alpha^{2}\right) e^{\alpha \alpha}\right\}\right]
\end{aligned} \\
& x\left[b_{1} \sin (k x-\sigma t)+b_{2} \sin (k x-\sigma t)\right]
\end{aligned}
$$

$$
\begin{aligned}
\therefore\left[\frac{\partial \nabla^{2} \phi_{1}}{\partial z}\right]_{z=0}= & \left(r^{2}-\alpha^{2}\right)\left[\left\{-(r-\alpha)^{2}+k^{2}\right\} e^{-\alpha h}-\left\{-(r+\alpha)^{2}+k^{2}\right\} e^{\alpha \alpha}\right] \\
& \times\left[b_{1} \sin (k x-\sigma t)+b_{2} \sin (k x+\sigma t)\right] .
\end{aligned}
$$

Hence $g\left(\nabla^{2} \phi_{2}\right)_{z=0}$

$$
\begin{aligned}
= & \sigma\left(\gamma^{2}-\alpha^{2}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right]\left[\left\{k^{2}-(\gamma-\alpha)^{2}\right\} e^{-\alpha h}+\left\{k^{2}-(\gamma+\alpha)^{2}\right\} e^{\alpha h}\right] \\
& x\left[-b_{1} \cos (k x-\sigma t)+b_{2} \cos (k x+\sigma t)\right]\left[b_{1} \sin (k x-\alpha t)+b_{2} \sin (k x+\sigma t)\right] . \\
= & \left.\frac{1}{2} \sigma\left(\gamma^{2}-\alpha^{2}\right)\left[(\gamma+\alpha)\left\{k^{2}-(\gamma-\alpha)^{2}\right\} e^{-2 \alpha h}-(\gamma+\alpha)\right\} k^{2}-(\gamma+\alpha)^{2}\right\} \\
& \left.-(\gamma-\alpha)\left\{k^{2}-(\gamma-\alpha)^{2}\right\}+(\gamma-\alpha)\left\{k^{2}-(\gamma+\alpha)^{2}\right\} e^{2 \alpha \alpha}\right] \\
& {\left[-b_{1}^{2} \sin 2(k x-\alpha t)+b_{2}^{2} \sin 2(k x+\sigma t)-2 b_{1} b_{2} \sin 2 \sigma t\right] . }
\end{aligned}
$$

That is

$$
\left(\nabla^{2} \phi_{2}\right)_{2=0}\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)+2 b_{1} b_{2} \sin 20 t\right]
$$

where $D=-\frac{\sigma\left(\gamma^{2}-\alpha^{2}\right)}{2 g}\left[(\gamma+\alpha)\left\{-(\gamma-\alpha)^{2}+k^{2}\right\} e^{-2 \alpha h}\right.$

$$
\begin{aligned}
& \left.-(r+\alpha)\left\{k^{2}-(\gamma+\alpha)^{2}\right\}-(r-\alpha)\left\{k^{2}-(r-\alpha)^{2}\right\}+(r-\alpha)\left\{k^{2}-(r+\alpha)\right\} e^{2 \alpha h}\right] \\
& =\frac{-\sigma\left(r^{2}-\alpha^{2}\right)}{2 g}\left[(\gamma+\alpha)\left\{k^{2}-(r-\alpha)^{2}\right\} e^{-2 \alpha \alpha}+(r-\alpha)\left\{k^{2}-(r+\alpha)^{2}\right\} e^{2 \alpha h}\right. \\
& \left.+2 \gamma\left(3 \alpha^{2}+\gamma^{2}-k^{2}\right)\right] .
\end{aligned}
$$

But $\Delta\left(\sigma_{1} k\right)=0$, hence by equations (6.48) and (6.47)

$$
\begin{align*}
& (\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} e^{\alpha h}=(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\} e^{-\alpha h} \\
& \begin{aligned}
& \therefore(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} e^{2 \alpha h}=(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\} \\
& \text { and }(\gamma+\alpha)\left\{(r-\alpha)^{2}-k^{2}\right\} e^{-2 \alpha h}=(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} \\
& \text { Hence } D=-\frac{\sigma\left(\gamma^{2}-\alpha^{2}\right)}{29}\left[-(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\}-(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\}\right. \\
&\left.+(\gamma+\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\}+(\gamma-\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\}\right] \\
&=-\frac{\sigma\left(\gamma^{2}-\alpha^{2}\right)}{2 g}\left[2 \alpha\left\{(\gamma+\alpha)^{2}-k^{2}\right\}-2 \alpha\left\{(r-\alpha)^{2}-k^{2}\right\}\right] \\
&= \frac{\sigma \alpha\left(\gamma^{2}-\alpha^{2}\right)}{9}\left[(\gamma+\alpha)^{2}-(\gamma-\alpha)^{2}\right] \\
& \therefore D=-\frac{4 \sigma^{\sigma} \alpha^{2} \gamma}{9} \cdot\left(\gamma^{2}-\alpha^{2}\right) .
\end{aligned}
\end{align*}
$$

We now substitute for ϕ_{1} in equation (6.39).
We have already shewn that

$$
\begin{aligned}
& \underline{u}_{1}^{2}=k^{2}\left[(\gamma+\alpha) e^{-\alpha h-(r-\alpha) z}-(\gamma-\alpha) e^{\alpha h-(\gamma+\alpha) z}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Cos} 2(k x-\alpha t)\}+\frac{1}{2} b_{2}^{2}\{1+\operatorname{Cos} 2(k x+\sigma t)\}+b_{1} b_{2}(\operatorname{Cos} 2 k x+\operatorname{Cos} 2 \sigma t)\right] \\
& +\left(\gamma^{2}-\alpha^{2}\right)^{2} \cdot\left[e^{-\alpha h-(r-\alpha) z}-e^{\alpha h-(r+\alpha) z}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1-\operatorname{Cos} 2(k-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1-\operatorname{Cos} 2(k x+\sigma t)\}\right. \\
& \\
& \left.\quad+b_{1} b_{2}(-\operatorname{Cos} 2 k x+\operatorname{Cos} 2 \sigma t)\right]
\end{aligned}
$$

$$
\begin{align*}
& \int_{0}^{h} k^{2}\left[(\gamma+\alpha)^{2} e^{-2 \alpha h+2 \alpha z}-2\left(\gamma^{2}-\alpha^{2}\right)+(V-\alpha)^{2} e^{2 \alpha h-2 \alpha z}\right] d z \\
& =k^{2}\left[\frac{(\gamma+\alpha)^{2}}{2 \alpha} \cdot e^{-2 \alpha h+2 \alpha z}-2\left(\gamma^{2}-\alpha^{2}\right) z-\frac{(\gamma-\alpha)^{2}}{2 \alpha} \cdot e^{2 \alpha h-2 \alpha z}\right]_{0}^{h} \\
& =\frac{k^{2}}{2 \alpha}\left[4 \gamma \alpha-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(\gamma+\alpha)^{2} e^{-2 \alpha z}+(\gamma-\alpha)^{2} e^{2 \alpha h}\right] \text {. } \\
& \int_{0}^{h}\left[e^{-2 \alpha h+2 \alpha z}-2+e^{2 \alpha h-2 \alpha z}\right] d z \\
& =\frac{1}{2 \alpha}\left[e^{-2 \alpha h+2 \alpha z}-4 \alpha z-e^{2 \alpha h-2 \alpha z}\right]_{0}^{h} \\
& =\frac{1}{2 \alpha}\left[-4 \alpha h+e^{2 \alpha h}-e^{-2 \alpha h}\right] \text {. } \\
& \text { Hence } 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{1}{2} \underline{\mu}_{1}^{2} d z \\
& =\frac{r h^{2}}{2 \alpha}\left[4 r_{\alpha}-4\left(r^{2}-\alpha^{2}\right) \alpha h-\left(r_{+\alpha}\right)^{2} e^{-2 \alpha h}+(r-\alpha)^{2} e^{2 \alpha h}\right] \\
& x\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda+b_{1} b_{2} \cos 2 \sigma t . \lambda\right] \\
& \frac{+\gamma\left(\gamma^{2}-\alpha^{2}\right)^{2}}{2 \alpha} \cdot\left(-4 \alpha h+e^{2 \alpha h}-e^{-2 \alpha h}\right) \\
& x\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda+b_{1} b_{2} \lambda \cos 2 a t\right] . \tag{6.6I}
\end{align*}
$$

104.

$$
\begin{aligned}
& \frac{\partial \phi_{1}}{\partial t}=\sigma\left[(\gamma+\alpha) e^{-\alpha h-(\gamma-\alpha) z}-(\gamma-\alpha) e^{\alpha t-(\gamma+\alpha) z}\right] \\
& x\left[-b_{1} \operatorname{Cos}(k x-\sigma t)+b_{2} \operatorname{Cos}(k x+\sigma t)\right] \text {. } \\
& \therefore\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2}=\sigma^{2} e^{-2 \gamma z}\left[(\gamma+\alpha)^{2} e^{-2 \alpha \alpha+2 \alpha z}-2\left(\gamma^{2}-\alpha^{2}\right)+(\gamma-\alpha)^{2} e^{2 \alpha \alpha-2 \alpha z}\right] \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Cos} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1+\operatorname{Cos} 2(k x+\sigma t)\}-b_{1} b_{2}(\operatorname{Cos} 2 k x+\operatorname{Cos} 2 \sigma t)\right] \\
& \therefore \int_{0}^{L}\left(\frac{\partial \phi_{1}}{\partial t}\right)^{2} e^{2 \gamma z} d z \\
& =\frac{\sigma^{2}}{4 \alpha}\left[4 \gamma \alpha-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(r+\alpha)^{2} e^{-2 \alpha h}+(r-\alpha)^{2} e^{2 \alpha h}\right] \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Cos} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1+\operatorname{Cos} 2(k x+\sigma t)\}-b_{1} b_{2}(\operatorname{Con} 2 k x+\operatorname{Con} 2 \sigma t)\right. \\
& \therefore \frac{\gamma}{c^{2}} \int_{0}^{\lambda} d x \int_{0}^{h}\left(\frac{\partial \phi_{r}}{\partial t}\right)^{2} e^{2 \gamma z} d z \\
& =\frac{\gamma \alpha^{2}}{2 c^{2} \alpha}\left[4 \gamma \alpha-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(\gamma+\alpha)^{2} e^{-2 \alpha h}+(\gamma-\alpha)^{2} e^{2 \alpha \alpha}\right] \\
& x\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda-b_{1} b_{2} \lambda \cdot \operatorname{Cos} 2 \sigma t\right] \text { (6.62) }
\end{aligned}
$$

Using the value of \underline{u}_{1}^{2} determined earlier

$$
\begin{aligned}
& \frac{1}{2}\left(\underline{u}_{1}^{2}\right)_{2=0}=\frac{k^{2}}{2}\left[(r+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha h}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Cos} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\left\{1+\operatorname{Cos} 2(k x+\sigma t)+b_{1} b_{2}(\operatorname{Cos} 2 k x+\operatorname{Con} 2 \sigma t)\right]\right. \\
& +\frac{\left(r^{2}-\alpha\right)^{2}}{2} \cdot\left[e^{-\alpha h}-e^{\alpha h}\right]^{2} \\
& x\left[\frac{1}{2} b_{1}^{2}\{1-\operatorname{Con} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1-\operatorname{Cos} 2(k x+\sigma t)\}+b_{1} b_{2}(\operatorname{Con} 2 \sigma t-\operatorname{Cos} 2 k x)\right] .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int_{0}^{\lambda} \frac{1}{2}\left(\underline{u}_{1}^{2}\right)_{z=0} d x \\
& \frac{1}{2} k^{2}\left[(r+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha \alpha}\right]^{2} \cdot\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda+b_{1} b_{2} \lambda \operatorname{Cos} 2 \sigma t\right] \\
& +\frac{1}{2}\left(\gamma^{2}-\alpha^{2}\right)^{2} \cdot\left[e^{-\alpha h} e^{\alpha h}\right]^{2} \cdot\left[\frac{1}{2}\left(b^{2}+b_{2}^{2}\right) \lambda+b_{1} b_{2} \lambda \operatorname{Cos} 2 \sigma t\right] \text {. } \\
& \frac{\partial^{2} \phi_{1}}{\partial z \partial t}=\sigma\left[-\left(r^{2}-\alpha^{2}\right) e^{-\alpha h-(r-\alpha) z}+\left(\gamma^{2}-\alpha^{2}\right) e^{\alpha h-(r+\alpha) z}\right] \\
& x\left[-b_{1} \operatorname{Cos}(k x-\sigma t)+b_{2} \operatorname{Cos}(k x+\sigma t)\right] \\
& \therefore\left(\frac{\partial \phi_{1}}{\partial t} \cdot \frac{\partial^{2} \phi_{1}}{\partial z \partial t}\right)_{z=0}= \\
& \sigma^{2}\left(\gamma^{2}-\alpha^{2}\right)\left(-e^{-\alpha h}+e^{\alpha \alpha}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right] \\
& x\left[b_{1} \operatorname{Cos}(k x-a t)-b_{2} \operatorname{Cos}(k x+a t)\right]^{2} \\
& =\sigma^{2}\left(\gamma^{2}-\alpha^{2}\right)\left(e^{\alpha h}-e^{-\alpha h}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha h}\right] \\
& x\left[\frac{1}{2} b_{1}^{2}\{1+\operatorname{Cos} 2(k x-\sigma t)\}+\frac{1}{2} b_{2}^{2}\{1+\operatorname{Cos} 2(k x+\sigma t)\}\right. \\
& \left.-b_{1} b_{2}(\cos 2 k x+\cos 2 \sigma t)\right] . \\
& \therefore \int_{0}^{\lambda} \frac{1}{g}\left(\frac{\partial \phi_{1}}{\partial t} \cdot \frac{\partial^{2} \phi}{\partial z \partial t}\right)_{z=0} d x \\
& =\frac{\sigma^{2}\left(\gamma^{2}-\alpha^{2}\right)}{g}\left(e^{\alpha h}-e^{-\alpha \alpha}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha \alpha}\right] \\
& \times\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda-b_{1} b_{2} \lambda \operatorname{Cos} 2 \sigma t\right] \text { (6.64) }
\end{aligned}
$$

106.

$$
\begin{align*}
& \begin{aligned}
&\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0}=\sigma^{2}\left[(\gamma+\alpha) e^{-\alpha h}(r-\alpha) e^{\alpha h}\right]^{2} \\
& \times\left[b_{1} \cos (k x-\sigma t)-b_{2} \operatorname{Cos}(k x+\sigma t)\right]^{2} \\
& \therefore \frac{1}{2 c^{2}} \int_{0}^{\lambda}\left(\frac{\partial \phi_{1}}{\partial t}\right)_{z=0} d x= \\
& \frac{\sigma^{2}}{2 c^{2}}\left[(r+\alpha) e^{-\alpha h}-(r-\alpha) e^{\alpha h}\right]^{2} \\
& \times\left[\frac{1}{2}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda-b_{1} b_{2} \lambda \cos 2 \sigma t\right]
\end{aligned}
\end{align*}
$$

Adding together equations $(6 \cdot 61),(6 \cdot 62),(6 \cdot 63),(6 \cdot 64)$ and (6,065) we have from equation (6.39)

$$
\begin{aligned}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{2}}{\partial t} e^{2 \gamma z} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}}{\partial t}\right)_{z=0} d x \\
&= E^{(1)}\left(b_{1}^{2}+b_{2}^{2}\right)+E^{(2)} 2 b_{1} b_{2} C_{0} 2 \sigma t \\
& E^{0}= \frac{\gamma k^{2}}{2 \alpha}\left[4 \gamma-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(\gamma+)^{2} e^{-2 \alpha h}+(\gamma-\alpha)^{2} e^{2 \alpha h}\right] \frac{\lambda}{2} \\
&+\frac{\gamma\left(\gamma^{2}-\alpha^{2}\right)^{2}}{2 \alpha}\left(-4 \alpha h+e^{2 \alpha h}-e^{-2 \alpha h}\right) \frac{\lambda}{2} \\
&- \frac{\gamma \sigma^{2}}{2 c^{2} \alpha}\left[4 \gamma \alpha-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(\gamma+\alpha)^{2} e^{-2 \alpha h}+(\gamma-\alpha)^{2} e^{2 \alpha h}\right] \frac{\lambda}{2} \\
&+ \frac{k^{2}}{2}\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right]^{2} \frac{\lambda}{2}+\frac{\left(\gamma^{2}-\alpha^{2}\right)^{2}}{2}\left(e^{\alpha h}-e^{-\alpha h}\right)^{2} \cdot \frac{\lambda}{2} \\
&+ \frac{\sigma^{2}\left(\gamma^{2}-\alpha^{2}\right)}{9} \cdot\left(e^{\alpha h}-e^{-\alpha h}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right] \frac{\lambda}{2} \\
&- \frac{\sigma^{2}}{2 c^{2}}\left[(\gamma+\alpha) e^{-\alpha k}-(\gamma-\alpha) e^{\alpha h}\right] \cdot \frac{\lambda}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \therefore E^{0}=\frac{\lambda \gamma}{4 \alpha}\left(\alpha^{2}-\gamma^{2}\right)\left[4 \gamma \alpha-4\left(\gamma^{2}-\alpha^{2}\right) \alpha h-(\gamma+\alpha)^{2} e^{-2 \alpha h}+(\gamma-\alpha)^{2} e^{2 \alpha h}\right. \\
& \left.-4\left(\alpha^{2} r^{2}\right) \alpha h+\left(\alpha^{2} r^{2}\right) e^{2 \alpha h}-\left(\alpha^{2}-r^{2}\right) e^{-2 \alpha h}\right] \\
& +\frac{\lambda}{4}\left(\alpha^{2}-\gamma^{2}\right)\left[\left\{(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right\}^{2}+\left(\alpha^{2}-\gamma^{2}\right)\left(e^{\alpha h}-e^{-\alpha h}\right)^{2}\right] \\
& -\frac{\sigma^{2}\left(\gamma^{2}-\alpha^{2}\right)}{9}\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right] \frac{\lambda}{2}\left(e^{\alpha k}-e^{-\alpha h}\right) \text {. } \\
& \therefore \frac{2 E^{(1)}}{\lambda\left(\alpha^{2}-\gamma^{2}\right)}=\frac{Y}{2 \alpha}\left[4 \gamma \alpha-(\gamma+\alpha)^{2} e^{-2 \alpha h}+(\gamma-\alpha)^{2} e^{2 \alpha k}\right. \\
& \left.+\left(\alpha^{2}-\gamma^{2}\right) e^{2 \alpha h}-\left(\alpha^{2}-\gamma^{2}\right) e^{-2 \alpha h}\right] \\
& +\frac{1}{2}\left[\left\{(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right\}^{2}+\left(\alpha^{2}-\gamma^{2}\right)\left(e^{\alpha h}-e^{-\alpha k}\right)^{2}\right] \\
& -\frac{\sigma^{2}}{9}\left(e^{\alpha h}-e^{-\alpha h}\right)\left[(\gamma+\alpha) e^{-\alpha h}-(\gamma-\alpha) e^{\alpha h}\right] \\
& =2 \gamma^{2}-\left(\gamma^{2}+\gamma_{\alpha}\right) e^{-2 \alpha h}+\left(\alpha \gamma-\gamma^{2}\right) e^{2 \alpha h}+\frac{j}{2}\left(\gamma_{+} \alpha\right)^{2} \cdot e^{-2 \alpha k} \\
& -\left(\gamma^{2}-\alpha^{2}\right)+\frac{1}{2}(\gamma-\alpha)^{2} e^{2 \alpha k}+\frac{1}{2}\left(\alpha^{2}-\gamma^{2}\right) e^{2 \alpha k}+\frac{1}{2}\left(\alpha^{2}-\gamma^{2}\right) e^{-2 \alpha k} \\
& -\left(\alpha^{2}-\gamma^{2}\right)-\frac{2 \gamma \sigma^{2}}{9}+\frac{(\gamma-\alpha) \sigma^{2}}{9} \cdot e^{2 \alpha \hbar}+\frac{(\gamma+\alpha) \sigma^{2}}{9} \cdot e^{-2 \alpha h} \\
& =4 \gamma\left(\gamma-\frac{\sigma^{2}}{9}\right)+2\left[\alpha^{2}-\gamma^{2}-(\gamma+\alpha) \frac{\sigma^{2}}{9}\right] e^{-2 \alpha h} \\
& +2\left[\alpha^{2}-\gamma^{2}+2(\gamma-\alpha) \frac{\sigma^{2}}{5}\right] e^{2 \alpha h} . \\
& =4 \gamma\left(\gamma-\frac{\sigma^{2}}{9}\right)+2(\alpha+\gamma)\left(\alpha-\gamma+\frac{\sigma^{2}}{9}\right) e^{-2 \alpha k} \\
& +2(\alpha-\gamma)\left(\alpha+\gamma-\frac{\sigma^{2}}{9}\right) e^{2 \alpha h}
\end{aligned}
$$

[Since $\frac{\sigma^{2}}{c^{2}}=k^{2}-\alpha^{2}+\gamma^{2}$ and $\left.2 \gamma=\frac{g}{c^{2}} \therefore \frac{\sigma^{2}}{g}=\frac{k^{2}-\alpha^{2}+\gamma^{2}}{2 \gamma}\right]$
108.

$$
\begin{aligned}
& \therefore \frac{2 E^{(1)}}{\lambda\left(\alpha^{2}-\gamma^{2}\right)}= \\
& 4 \gamma\left(\gamma-\frac{k^{2}-\alpha^{2}-\gamma^{2}}{2 \gamma}\right)+2(\alpha+\gamma)\left(\alpha-\gamma+\frac{k^{2}-\alpha^{2}+\gamma^{2}}{2 \gamma}\right) e^{-2 \alpha h} \\
& \quad+2(\alpha-\gamma)\left(\alpha+\gamma-\frac{k^{2}-\alpha^{2}+\gamma^{2}}{2 \gamma}\right) e^{2 \alpha h} \\
& =2\left(\gamma^{2}+\alpha^{2}-k^{2}\right)+\frac{(\alpha+\gamma)\left(k^{2}+2 \alpha \gamma-\alpha^{2}-\gamma^{2}\right) e^{-2 \alpha h}}{\gamma} \\
& +\frac{(\alpha-\gamma)\left(-k^{2}+2 \alpha \gamma+\alpha^{2}+\gamma^{2}\right) e^{2 \alpha h}}{\gamma} \\
& =2\left(\gamma^{2}+\alpha^{2}-k^{2}\right)-\frac{(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\}+(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\}}{\gamma}
\end{aligned}
$$

[Since $(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} e^{\alpha h}=(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\} e^{-\alpha h}$

$$
\begin{aligned}
& \therefore(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\} e^{-2 \alpha h}=(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} \\
& \text { and } \left.(\gamma-\alpha)\left\{(\gamma+\alpha)^{2}-k^{2}\right\} e^{2 \alpha \hbar}=(\gamma+\alpha)\left\{(\gamma-\alpha)^{2}-k^{2}\right\}\right] \\
& \therefore \frac{4 E^{0}}{\lambda\left(\alpha^{2}-\gamma^{2}\right)}=2\left(\alpha^{2}+\gamma^{2}-k^{2}\right)- \\
& -\frac{(\gamma-\alpha)(\gamma+\alpha)^{2}-k^{2}(\gamma-\alpha)+(\gamma+\alpha)(\gamma-\alpha)^{2}-k^{2}(\gamma+\alpha)}{\gamma} \\
& = \\
& =2\left(\alpha^{2}+\gamma^{2}-k^{2}\right)-\frac{2 \gamma\left(\gamma^{2}-\alpha^{2}\right)-2 \gamma k^{2}}{\gamma} \\
& = \\
& =4 \gamma^{2}+2 \alpha^{2}-2 k^{2}-2 \gamma^{2}+2 \alpha^{2}+2 k^{2}
\end{aligned}
$$

$$
\begin{equation*}
\therefore \quad E^{0}=\alpha^{2}\left(\alpha^{2}-\gamma^{2}\right) \lambda . \tag{6.67}
\end{equation*}
$$

does not enter into the subsequent work and so need not be simplified. We now have four equations (6.58), ($6 \cdot 33$), (6.59) and (6.66) from which to determine Guided by the form of equation (60.58) we set

$$
\begin{gathered}
\boldsymbol{\phi}_{2}=\left[F^{0} e^{-2(\gamma-\alpha) z}+F^{(2)} e^{-2(\gamma+\alpha) z}-2 F^{(3)} e^{-2 \gamma z}\right] \\
x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
+\left[F^{(4)} e^{-2(r-\alpha) z}+F^{(5)} e^{-2(r+\alpha) z}-2 F^{(6)} e^{-2 r_{2}}\right] \\
\times 2 b_{1} b_{2} \sin 2 \sigma t+\phi_{2}^{\prime}(6068)
\end{gathered}
$$

where $F^{0}, F^{()}, F^{(1)}, F^{(4)} F^{(\Theta)}$ and $F^{(\Theta)}$ are
functions of σ, α, r, k and \mathcal{k}, that is, of the physical properties of the motion and the medium, and $\boldsymbol{\phi}_{2}^{\prime}$ is a function of the variables x, z and t. We now substitute for $\boldsymbol{\phi}_{2}$ from (6.68) in (6.58) :

$$
\begin{aligned}
\frac{\partial \phi_{2}}{\partial z}= & -2\left[F^{0}(\gamma-\alpha) e^{-2(r-\alpha) z}+F^{(2)}(\gamma+\alpha) e^{-2(\gamma+\alpha) z}\right. \\
& \left.-\gamma F^{(3)} e^{-2 \gamma z}\right]\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
- & 2\left[F^{(4)}(r-\alpha) e^{-2(r-\alpha) z}+F^{(5)}(\gamma+\alpha) e^{-2(\gamma+\alpha) z}-2 \gamma F^{(6)} e^{-2 r_{z}}\right] \\
& \times 2 b_{1} b_{2} \sin 2 \sigma t+\frac{\partial \phi_{2}^{\prime}}{\partial z}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi_{2}}{\partial z^{2}}=4\left[(\gamma-\alpha)^{2} F^{(1)} e^{-2(\gamma-\alpha) z}+(\gamma+\alpha)^{2} F^{(2)} e^{-2(\gamma+\alpha) z}\right. \\
& \left.-2 \gamma^{2} F^{(3)} e^{-2 \gamma z}\right]\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +4\left[(r-\alpha)^{2} F^{\Theta} e^{-2(r-\alpha) z}+(\gamma+\alpha)^{2} F^{(5)} e^{-2(r+\alpha) z}\right. \\
& \left.-2 \gamma^{2} F^{6} e^{-2 \gamma z}\right] \cdot 2 b_{1} b_{2} \sin 2 \sigma t+\frac{\partial^{2} \phi_{2}^{\prime}}{\partial z^{2}} \text {. } \\
& \frac{\partial^{2} \phi_{2}}{\partial x^{2}}=-\left[F^{0} e^{-2(r-\alpha) z}+F^{(2)} e^{-2(r+\alpha) z}-2 F_{e}^{(3)}-r_{z}\right] 4 k^{2} \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]+\frac{\partial^{2} \phi_{2}^{\prime}}{\partial x^{2}} . \\
& \nabla^{2} \phi_{2}=4\left[\left\{(r-\alpha)^{2}-k^{2}\right\} F^{(1)} e^{-2(r-\alpha) z}+\left\{(r+\alpha)^{2}-k^{2}\right\} F^{(2)} e^{-2(\gamma+\alpha) z}\right. \\
& \left.-2\left(r^{2}-k^{2}\right) F^{(3)} e^{-2 r 2}\right]\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +4\left[(\gamma-\alpha)^{2} F^{(4)} e^{-2(r-\alpha) z}+(r+\alpha)^{2} F^{\beta} e^{-2(r+\alpha) z}\right. \\
& \left.-2 \gamma^{2} F^{(\ominus)} e^{-2 r_{2}}\right] \cdot 2 b_{1} b_{2} \sin 2 \sigma t+\nabla^{2} \phi_{2}^{\prime} . \\
& \frac{\partial^{2} \phi_{2}}{\partial t^{2}}=-4 \sigma^{2}\left[F^{(0)} e^{-2(r-\alpha) z}+F^{(2)} e^{-2(\gamma+\alpha) z}-2 F^{(3)} e^{-2 \gamma z}\right] \\
& \times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& -\left[F^{(4)} e^{-2(r-\alpha) z}+F^{(G)} e^{-2(\gamma+\alpha) z}-2 F^{(6)} e^{-2 r_{2}}\right] 8 b_{1} b_{2} \sigma^{2} \sin 2 \sigma t \\
& +\frac{\partial^{2} \phi_{2}^{\prime}}{\partial t^{2}}
\end{aligned}
$$

Equation (6.58) becomes

$$
\frac{\partial^{2} \phi_{2}^{\prime}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{2}^{\prime}-g \frac{\partial \phi_{2}^{\prime}}{\partial z}=A^{\oplus}\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]
$$

$+A^{(2)} \cdot 2 b_{1} b_{2} \sin 2 \sigma t$.
Now select $F^{\oplus}, F^{\oplus}, F^{(3)}, F^{\oplus}, F^{(5)}$ and $F^{(\oplus)}$ so that the right-hand side of' this' equation vanishes identically. Then

$$
\begin{aligned}
& F^{(1)} e^{-2(\gamma-\alpha) z}\left[-4 \sigma^{2}-4 c^{2}\left\{(\gamma-\alpha)^{2}-k^{2}\right\}+2 g(\gamma-\alpha)\right] \\
& +F^{(2)} e^{-2(\gamma+\alpha) z}\left[-4 \sigma^{2}-4 c^{2}\left\{(\gamma+\alpha)^{2}-k^{2}\right\}+2 g(\gamma+\alpha)\right] \\
& -2 F^{(3)} e^{-2 \gamma z}\left[-4 \sigma^{2}-4 c^{2}\left(\gamma^{2}-k^{2}\right)+2 \gamma g\right] \\
& \equiv c^{(1)} e^{-2(\gamma-\alpha) z}+c^{(2)} e^{-2(\gamma+\alpha) z}-2 c^{(3)} e^{-2 \gamma z} ; \\
& F_{\text {and }}^{(4)} e^{-2(\gamma-\alpha) z}\left[-4 \sigma^{2}-4 c^{2}(\gamma-\alpha)^{2}+2 g(\gamma-\alpha)\right] \\
& +F^{(6)} e^{-2(\gamma+\alpha) z}\left[-4 \sigma^{2}-4 c^{2}(\gamma+\alpha)^{2}+2 g(\gamma+\alpha)\right] \\
& -2 F^{(6)} e^{-2 \gamma z}\left[-4 \sigma^{2}-4 c^{2} \gamma^{2}+2 g \gamma\right] \\
& \equiv C^{(4)} e^{-2(\gamma-\alpha) z}+c^{(5)} e^{-2(\gamma+\alpha) z}-2 c^{(6)} e^{-2 \gamma z} \\
& \text { Hence } F^{(0)}=\frac{c^{0}}{-4 \sigma^{2}-4 c^{2}\left\{(\gamma-\alpha)^{2}-k^{2}\right\}+2 g(\gamma-\alpha)} \\
& c^{(2)}
\end{aligned}
$$

112.

$$
\left.\begin{array}{rl}
F^{(\Theta)}= & \frac{c^{(14}}{-4 \sigma^{2}-4 c^{2}(\gamma-\alpha)^{2}+2 g(\gamma-\alpha)} \\
F^{(6)}= & \frac{c^{(\sigma)}}{-4 \sigma^{2}-4 c^{2}(\gamma+\alpha)^{2}+2 g(\gamma+\alpha)} \\
F^{(\Theta)}= & \frac{c^{\Theta}}{-4 \sigma^{2}-4 c^{2} \gamma+2 g \gamma}
\end{array}\right\}(6 \cdot 69)
$$

Hence equation ($6 \cdot 33$) becomes

$$
\begin{aligned}
&\left(\frac{\partial \phi_{2}^{\prime}}{\partial z}\right)_{z=h}=G^{0}\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k)(+\sigma t)\right] \\
&+G^{(2} 2 b_{1} b_{2} \sin 2 \sigma t
\end{aligned}
$$

where $G^{\mathcal{O}}=2(\gamma-\alpha) e^{-2(r-\alpha) h} F^{(1)}+2(\gamma+\alpha) e^{-2(\gamma+\alpha) h} F^{(2)}-4 \gamma e^{-2 \gamma h} F^{(3)}$,

$$
\text { and } \left.G^{(2)}=2(r-\alpha) e^{-2(r-\alpha) h} F^{\oplus}+2(r+\alpha) e^{-2(r+\alpha) h} F \Theta 4 e^{-2 r k} F^{0}\right]^{6}
$$

$$
\begin{aligned}
& \left(\nabla^{2} \phi_{2}\right)_{z=0} \\
= & 4\left[\left\{(\gamma-\alpha)^{2}-k^{2}\right\} F^{0}+\left\{(\gamma+\alpha)^{2}-k^{2}\right\} F^{(2)}-2\left(\gamma^{2}-\alpha^{2}\right) F^{(3)}\right] \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +4\left[(\gamma-\alpha)^{2} F^{(4)}+(\gamma+\alpha)^{2} F^{(6)}-2 \gamma^{2} F^{(6)}\right] 2 b_{1} b_{2} \sin 2 \sigma t \\
& +\left(\nabla^{2} \phi_{2}^{\prime}\right)_{z=0} \ldots
\end{aligned}
$$

$$
\begin{align*}
& \left(\nabla^{2} \phi_{2}^{\prime}\right)_{z=0}=\left[D-4\left\{(\gamma-\alpha)^{2}-k^{2}\right\} F^{(1)}-4\left\{(\gamma+\alpha)^{2}-k^{2}\right\} F^{(2)}\right. \tag{2}\\
& \left.+8\left(\gamma^{2}=k^{2}\right) F^{(3)}\right]\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\left[D-4(\gamma-\alpha)^{2} F^{(4)}-4(\gamma+\alpha)^{2} F^{(6)}+8 \gamma^{2} F^{(6)}\right] 2 b_{1} b_{2} \sin 2 \sigma t
\end{align*}
$$

That is $\left(\nabla^{2} \phi_{2}^{\prime}\right)_{z=0}=\left(D+H^{0}\right)\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]$

$$
+\left(D+H^{(2)}\right) \cdot 2 b_{1} b_{2} \sin 2 \sigma t
$$

$$
\left.\begin{array}{l}
\text { where } H^{(1)}=-4\left\{(\gamma-\alpha)^{2}-k^{2}\right\} F^{(0)}-4\left\{(\gamma+\alpha)^{2}-k^{2}\right\} F^{(2}+8\left(\gamma^{2}-\alpha^{2}\right) F^{(3)} \\
\text { and } \quad H^{(1)}=-4(\gamma-\alpha)^{2} F^{(4)}-4(\gamma+\alpha)^{2} F^{(\sqrt{3}}+8 \gamma^{2} F^{(6)}
\end{array}\right\}(6.74)
$$

We now substitute in equation (6.66)

$$
\begin{aligned}
\left(\frac{\partial \phi_{2}}{\partial t}\right)_{z=0} & =\left(F^{(0)}+F^{(2)}-2 F^{(3)}\right) 2 \sigma\left[-b_{1}^{2} \operatorname{Con}(k x-\sigma t)-b_{2}^{2} \operatorname{Cos}(k x+\sigma t)\right] \\
& +\left(F^{(4)}+F^{(5)}-2 F^{(\theta)}\right) 4 b_{1} b_{2} \cos 2 \sigma t+\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{z=0} .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int_{0}^{\lambda}\left(\frac{\partial \phi_{2}}{\partial t}\right)_{z=0} d x=-\frac{\sigma^{114}}{k}\left(F^{(0)}+F^{(3)}-F^{(3)}\right) \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)+b_{2}^{2} \sin 2(k x+\sigma t)\right]_{0}^{\lambda} \\
& +\left(F^{(4)}+F^{(5)+2 F^{(6)}}\right) 4 b_{1} b_{2}[x \cos 2 \sigma t]_{0}^{\lambda}+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{2 \rightarrow 0} d x \\
& =\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{z=0} d x+\left(F^{(4)}+F^{(\theta)}-2 F^{\Theta}\right) 4 b_{1} b_{2} \cdot \frac{2 \pi}{k} \cos 2 \sigma t \\
& \text { since } \quad k \lambda=2 \pi \text {. } \\
& \frac{\partial \phi_{2}}{\partial t} \cdot e^{2 \gamma_{2}}=\left[F^{(1)} e^{\alpha z}+F^{(2)} e^{-2 \alpha z}-2 F^{(3)}\right] 2 \sigma \\
& x\left[-b_{1}^{2} \operatorname{Cos} 2(k x-\sigma t)-b_{2}^{2} \operatorname{Cos} 2(k x+\sigma t)\right] \\
& +\left[F^{(4)} e^{2 \alpha z}+F^{(5)} e^{-2 \alpha z}-2 F^{(6)}\right] e_{1} b_{1} b_{2} \cos 2 \sigma t+e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{\prime}}{\partial t} . \\
& \therefore \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{2}}{\partial t} \cdot e^{2 r_{z}} d z \\
& =-\frac{\sigma}{k}\left[\frac{F^{0} e^{2 \alpha z}}{2 \alpha}-\frac{F^{(2)} e^{-2 \alpha z}}{2 \alpha}-2 F^{(3)}\right]_{0}^{h} \\
& x\left[b_{1}^{2} \sin 2(k x-o t)+b_{2}^{2} \sin 2(k x+o t)\right]_{0}^{\lambda} \\
& +\left[\frac{F^{(4)} e^{2 \alpha z}}{2 \alpha}-\frac{F^{(5)} e^{-2 \alpha z}}{2 \alpha}-2 F^{(6)} z\right]_{0}^{h} \cdot\left[4 b_{1} b_{2} x \operatorname{Cos} 2 \sigma t\right]_{0}^{\lambda} \\
& +\int_{0}^{\lambda} d x \int_{0}^{h} e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{\prime}}{\partial t} \cdot d z \text {. }
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{2}}{\partial t} \cdot e^{215} d z \\
= & {\left[F^{(4)} e^{2 \alpha h}-F^{(\theta)} e^{-2 \alpha h} 4 F^{\Theta} \alpha h-F^{\Theta}+F^{\sigma}\right] \frac{4 b_{1} b_{2} \pi}{\alpha k} \cdot \operatorname{Cos} 2 \theta t } \\
& +\int_{0}^{\lambda} d x \int_{0}^{h} e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{\prime}}{\partial t} \cdot d z
\end{aligned}
$$

Hence equation $(6,66)$ becomes

$$
\begin{aligned}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{\prime}}{\partial t} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{z=0} d x \\
& =E^{\oplus}\left(b_{1}^{2}+b_{2}^{2}\right)+E^{(2)} 2 b_{1} b_{2} \cos 2 \sigma t \\
& -\left\{F^{(6)} e^{2 \alpha t}-F^{(3)} e^{-2 \alpha h}-4 F^{(\theta)} \alpha-F^{(4)}+F^{(\sigma)}\right\} \frac{8 \pi b_{1} b_{2} \gamma}{\alpha k} \cos 2 \sigma t \\
& -\left(F^{(4)}+F^{(5)}-2 F^{(6)}\right) \frac{8 b_{1} b_{2} \pi}{k} \cdot \cos 2 \sigma t
\end{aligned}
$$

That is

$$
\begin{align*}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{\lambda} e^{2 \gamma z} \frac{\partial \phi_{2}^{\prime}}{\partial t} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{z=0} d x \\
& \quad=E^{(1)}\left(b_{1}^{2}+b_{2}^{2}\right)+\left(E^{(2)}+I\right) 2 b_{1} b_{2} \cos 2 \sigma t
\end{align*}
$$

Where

$$
\begin{align*}
I=-\frac{4 \pi r}{\alpha k} & {\left[F^{(\oplus)} e^{2 \alpha h}-F^{(3)} e^{-2 \alpha h}-4 F_{\alpha}^{\Theta} h-F^{(\Theta)}+F^{(\Theta)}\right] } \\
& -\frac{4 \pi}{k}\left[F^{\Theta}+F^{\Theta}-2 F^{\oplus}\right]
\end{align*}
$$

We now have $\boldsymbol{\phi}_{\mathbf{2}}$ given by equation (6.68) involving $\boldsymbol{\phi}_{\boldsymbol{z}}$, which is determined by equations ($6 \cdot 70$), ($6 \cdot 71$), ($6-73$) and (6.75).

We now seek to reduce the right hand members of equations (6.71) and (6.73) to zero by writing

$$
\begin{aligned}
& \boldsymbol{\phi}_{2}^{\prime}=\left[J^{0} e^{-(r-\alpha \prime) z}+J^{(2)} e^{-(r+\alpha) z}\right] \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\left[J^{(3)} e^{-\left(r-\alpha^{\prime \prime}\right) z}+J^{(\Theta)} e^{-\left(\gamma+\alpha^{\prime \prime}\right) z}\right] 2 b_{1} b_{2} \sin 2 \sigma t+\phi_{2}^{\prime \prime}(6.77)
\end{aligned}
$$

where $J^{(1)} J^{(2)}, J^{(3)}$ and J^{\oplus} are functions of the constants of the motion and the medium, and

$$
\left.\begin{array}{rl}
\alpha^{\prime 2} & =4 k^{2}-\frac{4 \sigma^{2}}{c^{2}}+\gamma^{2} \\
\text { and } \quad \alpha^{\prime \prime} & =-\frac{4 \sigma^{2}}{c^{2}}+\gamma^{2}
\end{array}\right\}
$$

Substitute for $\boldsymbol{\phi}_{\mathbf{2}}^{\prime}$ in equation (6.71).

$$
\begin{gathered}
\frac{\partial \phi_{2}^{\prime}}{\partial z}=-\left[J^{0}\left(r-\alpha^{\prime}\right) e^{-\left(r-\alpha^{\prime}\right) z}+J^{(2)}\left(\gamma+\alpha^{\prime}\right) e^{\left.-\left(r+\alpha^{\prime}\right) z\right]}\right. \\
\times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
-
\end{gathered}
$$

Hence by equation (6.71)

$$
\begin{align*}
& \left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial z}\right)_{z=\hbar}=\left[G^{(1)}+J^{0}\left(\gamma-\alpha^{\prime}\right) e^{-\left(r-\alpha^{\prime}\right) \hbar}+J^{(2)}\left(r+\alpha^{\prime}\right) e^{-\left(r+\alpha^{\prime}\right) k}\right] \\
& x\left[b_{1}^{2} \sin 2(k x-a t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\left[G^{(2)}+J^{(3)}\left(r-\alpha^{\prime \prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) R}+J^{(\Theta)}\left(r+\alpha^{\prime}\right) e^{-\left(r+\alpha^{\prime \prime}\right)}\right] \\
& x 2 b_{1} b_{2} \sin 2 \sigma t \text {. } \\
& \therefore\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial z}\right)_{z=h}=0 \tag{6.79}\\
& \text { if } G^{0}+J^{0}\left(\gamma-\alpha^{\prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) h}+J^{(2)}\left(\gamma+\alpha^{\prime}\right) e^{-\left(\gamma+\alpha^{\prime}\right) h}=0, \quad(6.80) \\
& \text { and } G^{(2)}+J^{(3)}\left(\gamma-\alpha^{\prime \prime}\right) e^{-\left(\gamma-\alpha^{\prime \prime}\right) h}+J^{(1)}\left(\gamma+\alpha^{\prime \prime}\right) e^{-\left(\gamma+\alpha^{\prime \prime}\right) \&}=0_{0}^{(6.81)}
\end{align*}
$$

From equation (6.77)

$$
\begin{gathered}
\frac{\partial^{2} \phi_{2}^{\prime}}{\partial z^{2}}=\left[J^{(1)}\left(\gamma-\alpha^{\prime}\right)^{2} e^{-\left(r-\alpha^{\prime}\right) z}+J^{(2)}\left(r+\alpha^{\prime}\right)^{2} e^{\left.-\left(r+\alpha^{\prime}\right) z\right]}\right. \\
\times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
+\left[J^{(3)}\left(\gamma-\alpha^{\prime}\right)^{2} e^{-\left(\gamma-\alpha^{\prime \prime}\right) z}+J^{(4)}\left(r+\alpha^{\prime \prime}\right)^{2} e^{-\left(\gamma+\alpha^{\prime \prime}\right) z}\right] \\
\times 2 b_{1} b_{2} \sin 2 \sigma t+\frac{\partial^{2} \phi_{2}^{\prime \prime}}{\partial z^{2}}, \\
\frac{\partial^{2} \phi_{2}^{\prime}}{\partial x^{2}}=-4 k^{2}\left[J^{0} e^{-\left(r-\alpha^{\prime}\right) z}+J^{(2)} e^{\left.-\left(\gamma+\alpha^{\prime}\right) z\right]}\right. \\
\times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]+\frac{\partial^{2} \phi_{2}^{\prime \prime}}{\partial x^{2}}
\end{gathered}
$$

$$
\begin{align*}
& \therefore\left[\nabla^{2} \phi_{2}^{\prime}\right]_{z=0} \\
& =\left[J^{(1)}\left(\gamma-\alpha^{\prime}\right)^{2}+J^{(2)}\left(\gamma+\alpha^{\prime}\right)^{2}-4 R^{2} \sigma^{(1)}-4 k^{2} J^{(2)}\right] \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\left[J^{(3)}\left(\gamma-\alpha^{\prime \prime}\right)^{2}+J^{(4)}\left(\gamma+\alpha^{\prime \prime}\right)^{2}\right] 2 b_{1} b_{2} \sin 2 \sigma t \\
& +\left[\nabla^{2} \phi_{2}^{\prime \prime}\right]_{z=0} \text {. } \\
& {\left[\nabla^{2} \phi_{2}^{\prime \prime}\right]_{z=0}=\left[D+H^{O}-J(1)\left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\}-J^{(2)}\left\{\left(\gamma+\alpha^{\prime}\right)^{2}-4 k^{2}\right\}\right]} \\
& x\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& \left.+\left[D+H^{(2)} \cdot\right]^{(3)}\left(\gamma-\alpha^{11}\right)^{2}-J^{(1)}\left(\gamma+\alpha^{\prime \prime}\right)^{2}\right] 2 b_{1} b_{2} \sin 2 \sigma t . \\
& \text { That is }\left[\bar{V}^{2} \phi_{2}^{\prime \prime}\right]_{z=0}=0 \text {. } \quad(6.82) \\
& \text { if } D+H^{(1)}=J^{0}\left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\}+J^{(2)}\left\{\left(\gamma+\alpha^{\prime}\right)^{2}-4 k^{2}\right\}(6.8 .3) \\
& \text { and } D+H^{(2)}=J^{(3)}\left(r-\alpha^{\prime}\right)^{2}+J^{(4)}\left(r+\alpha^{\prime \prime}\right)^{2} \\
& \text { In order to determine } J^{(0)} \text { and } J^{(2)} \text { we cross multiply } \\
& \text { equations (6.80) and (6.83), thus }
\end{align*}
$$

$$
\begin{aligned}
& \frac{J^{0}}{-\left(\gamma+\alpha^{\prime}\right) e^{-\left(\gamma+\alpha^{\prime}\right) h} \cdot\left(D+H^{0}\right)-\left\{\left(\gamma+\alpha^{\prime}\right)^{2}-4 k^{2}\right\} \cdot G} \\
= & \frac{J^{(2)}}{\left(\gamma-\alpha^{\prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) h} \cdot\left(D+H^{0}\right)+\left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\} \cdot G^{0}} \\
= & \frac{1}{\left(\gamma-\alpha^{\prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) h}\left\{\left(\gamma+\alpha^{\prime}\right)^{2}-4 k^{2}\right\}-\left(\gamma+\alpha^{\prime}\right) e^{-\left(\gamma+\alpha^{\prime}\right) h} \cdot\left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\}}
\end{aligned}
$$

$$
\begin{align*}
& \text { But } \\
& \left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\}\left(\gamma+\alpha^{\prime}\right) e^{-\left(\gamma+\alpha^{\prime}\right) h}-\left\{\left(\gamma+\alpha^{\prime}\right)-4 k^{2}\right\}\left(\gamma-\alpha^{\prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) h} \\
= & e^{-\gamma h}\left[\left(\gamma+\alpha^{\prime}\right)\left(\gamma^{2}-2 \gamma \alpha^{\prime}+\alpha^{\prime}-4 k^{2}\right) e^{-\alpha^{\prime} h}-\left(\gamma-\alpha^{\prime}\right)\left(\gamma^{2}+2 \gamma \alpha^{\prime}+\alpha^{\prime}-4 k^{2}\right) e^{\alpha^{\prime} h}\right] \\
= & -e^{-\gamma h}\left[\gamma\left(\gamma^{2}-\alpha^{\prime 2}-4 k^{2}\right)\left(e^{\alpha^{\prime} h}-e^{-\alpha^{\prime} h}\right)+\alpha^{\prime}\left(\gamma^{2}-\alpha^{\prime 2}+4 k^{2}\right)\left(e^{\alpha^{\prime} h}+e^{-\alpha^{\prime} k}\right)\right] \\
= & -2 e^{-\gamma h}\left[\gamma\left(\gamma^{2}-\alpha^{\prime 2}-4 k^{2}\right) \operatorname{ainh} \alpha^{\prime} h+\alpha^{\prime}\left(\gamma^{2}-\alpha^{\prime 2}+4 k^{2}\right) \cosh \alpha^{\prime} k\right] \\
= & \Delta(2 \sigma, 2 k) \quad \tag{6.05}
\end{align*}
$$

Hence

$$
\begin{aligned}
& J^{(1)}=\frac{\left\{\left(\gamma+\alpha^{\prime}\right)^{2}-4 k^{2}\right\} G^{(0}+\left(\gamma+\alpha^{\prime}\right) e^{-\left(\gamma+\alpha^{\prime}\right) h}\left(D+H^{(0)}\right)}{\Delta(2 \sigma, 2 k)}(6.86) \\
& J^{(1)}=-\frac{\left\{\left(\gamma-\alpha^{\prime}\right)^{2}-4 k^{2}\right\} G^{0}+\left(\gamma-\alpha^{\prime}\right) e^{-\left(\gamma-\alpha^{\prime}\right) h} \cdot\left(D+H^{(0)}\right)}{\Delta(2 \sigma, 2 k)}(6.07)
\end{aligned}
$$

providing

$$
\begin{aligned}
& \Delta(2 \sigma, 2 k) \equiv-2 e^{-\gamma h}\left[\gamma\left(\gamma^{2}-\alpha^{\prime 2}-4 k^{2}\right) \sinh \alpha^{\prime} h+\alpha^{\prime}\left(\gamma^{2}-\alpha^{\prime}+4 k^{2}\right) \cosh \alpha^{\prime} h\right] \\
& \neq 0
\end{aligned}
$$

J^{120}
In order to determine $J^{(3)}$ and $J^{(4)}$ we cross multiply equations $(6 \cdot 61)$ and (6084), thus

$$
\begin{aligned}
& \frac{J^{(3)}}{-\left(\gamma+\alpha^{\prime \prime}\right) e^{-\left(\gamma+\alpha^{\prime \prime}\right)} \cdot\left(D+H^{(2)}\right)-\left(\gamma+\alpha^{\prime \prime}\right)^{2} \cdot G^{(2)}} \\
= & \frac{J^{\Theta(4)}}{\left(\gamma-\alpha^{\prime \prime}\right)^{2} G^{(2)}+\left(r-\alpha^{\prime \prime}\right) e^{-\left(\gamma-\alpha^{\prime \prime}\right) h} \cdot\left(D+H^{(2)}\right)} \\
= & \frac{1}{\left(\gamma-\alpha^{\prime \prime}\right)\left(\gamma+\alpha^{\prime \prime}\right)^{2} e^{-\left(\gamma-\alpha^{\prime \prime}\right) h}-\left(\gamma-\alpha^{\prime \prime}\right)^{2}\left(\gamma+\alpha^{\prime \prime}\right) e^{-\left(\gamma+\alpha^{\prime \prime}\right) \ell}}
\end{aligned}
$$

when

$$
\begin{gathered}
k=0 \quad \alpha^{\prime 2}=\alpha^{\prime \prime} \text {, hence } \\
\left(\gamma-\alpha^{\prime \prime}\right)\left(\gamma+\alpha^{\prime \prime}\right)^{2} e^{-\left(\gamma-\alpha^{\prime \prime}\right) \hbar}-\left(\gamma-\alpha^{\prime \prime}\right)^{2}\left(\gamma+\alpha^{\prime \prime}\right) e^{-\left(\gamma+\alpha^{\prime \prime}\right) \ell}=-\Delta(2 \sigma, 0)
\end{gathered}
$$

Hence

$$
\begin{aligned}
& J^{(3)}=\frac{\left(\gamma+\alpha^{\prime \prime}\right)^{2} G^{(1)}+\left(r+\alpha^{\prime \prime}\right) e^{-\left(r+\alpha^{\prime \prime}\right) h} \cdot\left(D+H^{(2)}\right)}{\Delta(2 \sigma, 0)}(6.88) \\
& J^{(4)}=-\frac{\left(\gamma-\alpha^{\prime \prime}\right)^{2} G^{(2)}+\left(\gamma-\alpha^{\prime \prime}\right) e^{-\left(\gamma-\alpha^{\prime \prime}\right) h} \cdot\left(D+H^{(2)}\right)}{\Delta(2 \sigma, 0)}(6.89)
\end{aligned}
$$

provided that

$$
\Delta(20,0) \equiv-2 e^{-\gamma R}\left[\gamma\left(\gamma^{2}-\alpha^{\prime \prime 2}\right) \sinh \alpha^{\prime \prime} h+\alpha^{\prime \prime}\left(\gamma^{2}-\alpha^{\prime \prime 2}\right) \operatorname{Coh} \alpha^{\prime \prime} h\right] \neq 0(16.90)
$$

We now substitute for $\boldsymbol{\phi}_{\mathbf{2}}^{\prime}$ in equation (6.75)

$$
\begin{aligned}
& \frac{\partial \phi_{2}^{\prime}}{\partial t}= 2 \sigma\left[J^{(0} e^{-\left(r-\alpha^{\prime}\right) z}+J_{e^{(\mathcal{O}}-\left(\gamma+\alpha^{\prime}\right) z}\right] \\
& \times\left[-b_{1}^{2} \cos 2(k x-\sigma t)-b_{2}^{2} \cos 2(k x+\sigma t)\right] \\
&+2 \sigma\left[J^{(3)} e^{-\left(\gamma-\alpha^{\prime \prime}\right) z}+J^{(\Theta)} e^{-\left(\gamma+\alpha^{\prime \prime}\right) z}\right] 2 b_{1} b_{2} \cos 2 \sigma t+\frac{\partial \phi_{2}^{\prime \prime}}{\partial t} .
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime}}{\partial t}\right)_{z=0} d x= \\
& 2 \sigma\left(J^{O}+J^{(2)}\right)\left[\frac{-b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)}{2 k}\right]_{0}^{\lambda} \\
& +2 \sigma\left(J^{(3)}+J^{(6)}\right)\left[2 \times b_{1} b_{2} \cos 2 \sigma t\right]_{0}^{\lambda}+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial t}\right)_{2=0} d x \\
& =2 \sigma\left(J^{\theta}+J^{(\theta)}\right) 2 \lambda b_{1} b_{2} \cos 2 \sigma t+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial t}\right)_{z=0} d x . \\
& \int_{0}^{h} \frac{\partial \phi_{2}^{\prime}}{\partial t} e^{2 \gamma z} d z=2 \sigma\left[\frac{J^{0} e^{\left(\gamma+\alpha^{\prime}\right) z}}{r+\alpha^{\prime}}+\frac{J^{\left(\omega_{e}\right.}\left(\gamma-\alpha^{\prime}\right) z}{r-\alpha^{\prime}}\right]_{0}^{h} \\
& x\left[-b_{1}^{2} \operatorname{Cos} 2(k x-o t)-b_{2}^{2} \operatorname{Cos} 2(k x+\sigma t)\right] \\
& +2 \sigma\left[\frac{J^{(3)} e^{\left(\gamma+\alpha^{\prime \prime}\right) z}}{\gamma+\alpha^{\prime \prime}}+\frac{J^{\Theta}\left(\gamma-\alpha^{\prime \prime}\right) z}{\gamma-\alpha^{\prime \prime}}\right]_{0}^{\hbar} 2 b_{1} b_{2} \operatorname{Cos} 2 \sigma t \\
& +\int_{0}^{h} \frac{\partial \phi_{2}^{\prime \prime}}{\partial t} e^{2 \gamma^{z}} \cdot d z \\
& \therefore \int_{0}^{\lambda} d x \int_{0}^{h} \frac{\partial \phi_{2}^{\prime}}{\partial t} e^{2 \gamma z} \cdot d z \\
& =2 \sigma\left[\frac{J^{(3)}\left(e^{\left(\gamma+\alpha^{\prime \prime}\right) h}-1\right)}{\gamma+\alpha^{\prime \prime}}+\frac{J\left(e^{\left(\gamma-\alpha^{\prime \prime}\right) h}-1\right)}{\gamma-\alpha^{\prime \prime}}\right] 2 \lambda b_{1} b_{2} \cos 2 \sigma t \\
& +\int_{0}^{\lambda} d x \int_{0}^{z} e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{4}}{\partial t} \cdot d z \text {. }
\end{aligned}
$$

Thus equation $(6 \cdot 75)$ becomes

$$
\begin{aligned}
& 4 \gamma \sigma\left[\frac{J^{(3)}\left\{e^{\left(\gamma+a^{\prime \prime}\right)}-1\right\}}{\gamma+\alpha^{\prime \prime}}+\frac{J^{(\Theta)}\left\{e^{\left(\gamma-\alpha^{\prime \prime}\right)}-1\right\}}{\gamma-\alpha^{\prime \prime}}\right] 2 \lambda b_{1} b_{2} \cos 2 \sigma t \\
& +2 \gamma \int_{0}^{\lambda} d x \int_{0}^{t} e^{2 \gamma z} \frac{\partial \phi_{2}^{\prime \prime}}{\partial t} d z \\
& +2 \sigma\left(J^{(3)}+J^{(\boxed{)}}\right) 2 \lambda b_{1} b_{2} \cos 2 \sigma t+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial t}\right)_{z=0} d x \\
& =E^{(0}\left(b_{1}^{2}+b_{2}^{2}\right)+\left(E^{(2)}+I\right) 2 b_{1} b_{2} \cos 2 \sigma t .
\end{aligned}
$$

That is

$$
\begin{aligned}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{A} e^{2 \sqrt{z}} \cdot \frac{\partial \phi_{2}^{\prime \prime}}{\partial t} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial t}\right)_{z=0} d x \\
& =E^{0}\left(b_{1}^{2}+b_{2}^{2}\right)+\left(E^{(2)}+I+K\right) 2 b_{1} b_{2} \operatorname{Cos} 2 \sigma t(691)
\end{aligned}
$$

$$
K=-2 \sigma\left(J^{(3)}+J^{(\alpha)}\right) \lambda-4 \gamma a \lambda\left[\frac{J^{(3)}\left\{e^{\left(\gamma+\alpha^{\prime \prime}\right) \ell}-1\right\}}{\gamma+\alpha^{\prime \prime}}+\frac{J^{(6)}\left\{e^{\left(\gamma-\alpha^{\prime \prime}\right)}-1\right\}}{\gamma-\alpha^{\prime \prime}}\right]
$$

It now remains to express equation $(6 \cdot 70)$ in terms of $\boldsymbol{\phi}_{\mathbf{2}}$ ". We have

$$
\begin{aligned}
\frac{\partial^{2} \phi_{2}^{\prime}}{\partial t^{2}}= & {\left[J^{0} e^{-\left(\gamma-\alpha^{\prime}\right) z}+J_{e^{(2)}}^{-\left(r+\alpha^{\prime}\right) z}\right] 4 \sigma^{2} } \\
& x\left[-b^{2} \sin 2(k x-\sigma t)+b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
- & {\left[J^{(3)} e^{-\left(r-\alpha^{\prime \prime}\right) z}+J^{(\Theta)}-\left(r+\alpha^{\prime \prime}\right) z\right] 8 \sigma^{2} b_{1} b_{2} \sin 2 \sigma t } \\
+ & \frac{\partial^{2} \phi_{2}^{\prime \prime}}{\partial t^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\nabla^{2} \phi_{2}^{\prime}= & -4 k^{2}\left[J^{0} e^{-\left(\gamma-\alpha^{\prime}\right) z}+J^{(2)} e^{-\left(\gamma+\alpha^{\prime}\right) z}\right] \\
& \times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
+ & {\left[J^{0}\left(\gamma-\alpha^{\prime}\right)^{2} e^{-\left(\gamma-\alpha^{\prime}\right) z}+J^{0}\left(\gamma+\alpha^{\prime}\right)^{2} e^{-\left(r+\alpha^{\prime}\right) z}\right] } \\
& \times\left[b_{1}^{2} \sin 2(k x-\alpha t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
+ & {\left[J^{(3)}\left(\gamma-\alpha^{\prime \prime}\right)^{2} e^{-\left(\gamma-\alpha^{\prime \prime}\right) z}+J^{\Theta}\left(\gamma+\alpha^{\prime \prime}\right)^{2} e^{-\left(\gamma+\alpha^{\prime \prime}\right) z}\right] 2 b_{1} b_{2} \sin 2 \sigma t } \\
+ & \nabla^{2} \phi_{2}^{\prime \prime} .
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial \phi_{2}^{\prime}}{\partial z}= & -\left[J^{(1)}\left(\gamma-\alpha^{\prime}\right) e^{-\left(r-\alpha^{\prime}\right) z}+J^{(2)}\left(\gamma+\alpha^{\prime}\right) e^{-\left(r+\alpha^{\prime}\right) z}\right] \\
& \times\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right] \\
- & {\left[J^{(3)}\left(\gamma-\alpha^{\prime \prime}\right) e^{-\left(\gamma-\alpha^{\prime \prime}\right) z}+J^{(\theta)}\left(\gamma+\alpha^{\prime \prime}\right) e^{-\left(r+\alpha^{\prime \prime}\right) z}\right] 2 b_{1} b_{2} \sin 2 \sigma t } \\
+ & \frac{\partial \phi_{2}^{\prime \prime}}{\partial z}
\end{aligned}
$$

Hence , in $\frac{\partial^{2} \phi_{2}^{\prime}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{2}^{\prime}-g \frac{\partial \phi_{2}^{\prime}}{\partial z}$, the coefficient
of $J^{0} e^{-(r-a / j 2}\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]$

$$
\begin{aligned}
& -4 \sigma^{2}+4 c^{2} k^{2}-c^{2}\left(\gamma-\alpha^{\prime}\right)^{2}+5(\gamma-\alpha) \\
& =-4 \sigma^{2}+4 c^{2} k^{2}-c^{2}\left(\gamma^{2}-2 \gamma \alpha^{\prime}+\alpha^{\prime 2}\right)+2 c^{2} \gamma\left(r-\alpha^{\prime}\right) \\
& =-4 \sigma^{2}+4 c^{2} k^{2}-c^{2}\left(r^{2}-2 \gamma \alpha^{\prime}+\alpha^{\prime 2}-2 \gamma^{2}+2 \gamma \alpha^{\prime}\right) \\
& =-4 r^{2}+4 c^{2} k^{2}-c^{2}\left(-\gamma^{2}+4 k^{2}-\frac{4 \sigma^{2}}{c^{2}}+\gamma^{2}\right) \text { by }(6.78) \\
& =0 .
\end{aligned}
$$

The coefficient of

$$
\begin{aligned}
& J^{(2)}-\left(\gamma+\alpha^{\prime}\right) 2 \\
& -4 \sigma^{2}+4 c^{2} \sin 2(k x-\sigma t)-k^{2}-c^{2}\left(\gamma+\alpha^{\prime}\right)^{2}+g\left(r+\alpha^{\prime}\right) \\
& =-4 \sigma^{2}+4 c^{2} k^{2}-c^{2}\left(\gamma^{2}+2 \gamma+\alpha(t)\right] \text { is } \\
& \left.=-4 a^{\prime}+4 a^{\prime 2}\right)+2 c^{2} \gamma\left(\gamma+\alpha^{\prime}\right) \\
& =-4 \sigma^{2}\left(\gamma^{2}+2 \gamma \alpha^{\prime}+\alpha^{\prime 2}-2 r^{2} k^{2}-2 \gamma \alpha^{\prime}\right) \\
& =0 .
\end{aligned}
$$

Hence the coefficient of $\left[b_{i}^{2} \sin 2(k x-\theta t)-b_{2}^{2} \sin 2(k x+0 t)\right.$ is zero. ${\text { The coefficient of } J^{(3)} e^{-\left(8-\alpha^{\prime \prime}\right) 2}}_{\sigma} 2 h_{2} \sin 2 a t$ is

$$
\begin{aligned}
& -4 \sigma^{2}-c^{2}\left(\gamma-\alpha^{\prime \prime}\right)^{2}+9\left(\gamma-\alpha^{\prime \prime}\right) \\
& =-4 \sigma^{2}-c^{2}\left(\gamma^{2}-2 \gamma \alpha^{\prime \prime}+\alpha^{\prime 2}\right)+\alpha^{2} \gamma\left(\gamma-\alpha^{\prime \prime}\right) \\
& =-4 \sigma^{2}-c^{2}\left(\alpha^{\prime \prime 2}-\gamma^{2}\right) \quad \text { by }(6.78) \\
& =0 .
\end{aligned}
$$

The coefficient of $J^{(4)} e^{-\left(\gamma+\alpha^{\prime \prime}\right) 2}$. $2 b_{1} b_{2} \sin 20 t$ is

$$
\begin{aligned}
& 4 \sigma^{2}-c^{2}\left(\gamma+\alpha^{\prime \prime}\right)^{2}+\mathscr{S}\left(\gamma+\alpha^{\prime \prime}\right) \\
& =4 \sigma^{2}-c^{2}\left(\gamma^{2}+2 \gamma \alpha^{\prime \prime}+\alpha^{\prime \prime 2}\right)+c^{2} \gamma\left(\gamma+\alpha^{\prime \prime}\right) \\
& =4 r^{2}-c^{2}\left(-\gamma^{2}+\alpha^{\prime \prime 2}\right) \\
& =0
\end{aligned}
$$

125.

Hence the coefficient of $2 b_{1} b_{2} \sin 20 t$ is zero, and so equation (6.70) transforms into

$$
\frac{\partial^{2} \phi_{i}^{\prime \prime}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{2}^{\prime \prime}-g \frac{\partial \phi_{2}^{\prime \prime}}{\partial z}=0
$$

We thus have four equations from which to determine $\boldsymbol{\beta}_{2}^{*}$, namely :

$$
\begin{align*}
& \frac{\partial^{2} \phi_{2}^{\prime \prime}}{\partial t^{2}}-c^{2} \nabla^{2} \phi_{2}^{\prime \prime}-8 \frac{\partial \phi_{2}^{\prime \prime}}{\partial z}=0, \\
& \left(\frac{\partial \phi_{1}^{\prime \prime}}{\partial z}\right)_{2=2}=0, \\
& \left(\nabla^{2} \phi_{2}^{\prime \prime}\right)_{z=0}=0, \\
& \text { (6.92) } \\
& \cdot 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} e^{2 \gamma z} \cdot \frac{\partial \phi_{2}^{\prime \prime}}{\partial t} d z+\int_{0}^{\lambda}\left(\frac{\partial \phi_{2}^{\prime \prime}}{\partial t}\right)_{z=0} d x \\
& =E^{(1)}\left(b_{1}^{2}+b_{2}^{2}\right)+\left(E^{2}+I+k\right) 2 b_{B} b_{2} \cos 2 \sigma t_{8}(6.91)
\end{align*}
$$

It has already been shewn that a solution $v f$ the four equations $6 \cdot 25,6 \cdot 26,6 \cdot 27$ and $6 \cdot 39$ is to be found by adding a constant multiple of t to a solution of the equations 6.25 , 6.26 and $5 \cdot 27$. Also equations 6.92 . 6.79 , 6.82 and 691 are derived from equations 6.25, 6.26, 6-27 and 6.39 respectively by the same changes of variable. Hence a solution of equations $6.92,6.79,6.82$ and 6.91 is to be found by adding a constant multiple of t to a solution of $6.92,6 \cdot 79$, and $6 \cdot 62$,
Now $\phi_{2}^{\prime \prime}=0$ satisfies these last three equations. Hence a^{2} solution of all four equations for $\phi_{2}^{\prime \prime}$ is

$$
\begin{equation*}
\phi_{2}^{\prime \prime}=c^{\prime \prime} t \tag{6.93}
\end{equation*}
$$

On substituting from (6.92) into (6.91) we have

$$
\begin{aligned}
& 2 \gamma \int_{0}^{\lambda} d x \int_{0}^{h} c^{\prime \prime} e^{2 \gamma z} d z+\int_{0}^{\lambda} c^{\prime \prime} d x \\
& =2 \gamma \cdot \frac{c^{\prime \prime}}{2 \gamma}\left(e^{2 \gamma k}-1\right) \cdot \lambda+c^{\prime \prime} \cdot \lambda \\
& =c^{\prime \prime} \lambda e^{2 \gamma \hbar}=E^{\theta}\left(b_{1}^{2}+b_{2}^{2}\right)+\left\{E^{2}+I+k\right\} 2 b_{1} b_{2} \cos 2 \sigma t
\end{aligned}
$$

Hence

$$
\begin{equation*}
c^{\prime \prime \lambda} \lambda e^{2 \gamma \hbar}=E^{\infty}\left(b_{1}^{2}+b_{2}^{2}\right) \tag{6.94}
\end{equation*}
$$

and $E^{(1)}+I+K=0$.
Hence $\phi_{2}^{\prime \prime}=\frac{E^{\oplus}\left(b_{1}^{2}+b_{2}^{2}\right)}{\lambda e^{2 \gamma \hbar}} \cdot \epsilon$,
From equation (6.7.7)

$$
\begin{aligned}
\phi_{2}^{\prime} & =\left[J^{(0} e^{-\left(\gamma-\alpha^{\prime}\right) z}+J^{(\Omega)} e^{-\left(\gamma+\alpha^{\prime}\right) z}\right]\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \operatorname{ain} 2\left(k_{1}(+\sigma t)\right]\right. \\
& +\left[J^{(3)}-\left(\gamma-\alpha^{\prime \prime \prime}\right) z\right. \\
& +\frac{\left.J^{(\Theta)} e^{-\left(\gamma+\alpha^{\prime \prime}\right) z}\right] 2 b_{1} b_{2} \operatorname{sen} 2 \sigma t}{\lambda e^{2 \gamma k}} \cdot t .
\end{aligned}
$$

$$
\begin{align*}
& \text { Then from equation (} 6.68 \text {) } \\
& \phi_{2}=\left[F^{0} e^{2 \alpha 2}+F^{(2)} e^{-2 \alpha z}-2 F^{(i)}\right] e^{-2 \gamma 2}\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+o t)\right] \\
& +\left[F^{\oplus} e^{2 \alpha z}+F^{\theta} e^{-2 \alpha z}-2 F^{(6)}\right] e^{-2 \gamma z} \cdot 2 b_{1} b_{2} \sin 20 t \\
& +\left[J^{\mathcal{O}_{e} \alpha^{\prime} z}+J^{(2)} e^{-\alpha^{\prime} z}\right] e^{-\gamma_{z}} \cdot\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2\left(k_{x}+\sigma t\right)\right] \\
& +\left[J^{(3)} e^{\alpha^{\prime \prime} z}+J^{(\theta)} e^{-\alpha^{\prime \prime} z}\right] e^{-\gamma z}, 2 b_{1} b_{2} \sin 2 \sigma t \\
& +E^{0}\left(b_{1}^{2}+b_{2}^{2}\right) \lambda^{-1} e^{-2 \gamma \hbar} \cdot t \tag{6*95}
\end{align*}
$$

127.

We thus have an expression for involving a number of quantities

$$
F^{0}, F^{\Theta}, F^{\Theta}, F^{\Theta}, F^{\Theta}, F^{\Theta}, J^{\oplus}, J^{\infty}, J^{\infty}, J^{\Theta}
$$ and

$\phi_{2} \mathbb{E}_{\text {will }}^{\infty}$ be finite provided that $J^{\Phi}, J^{\infty}, J^{(3)}$ and $J^{(4)}$ remain finite.
For this, it has already been stipulated that neither $\triangle(2 \sigma, 2 k)$ nor $\Delta(2 \sigma, 0)$ must vanish. Hence before proceeding with ϕ_{2} we must examine these functions further. By definition

$$
\begin{aligned}
& \Delta(2 \sigma, 2 k)= \\
& -2 e^{-\gamma k}\left[\gamma\left(\gamma^{2}-\alpha^{\prime 2}-4 k^{2}\right) \sinh \alpha^{\prime} h+\alpha^{\prime}\left(\gamma^{2} \alpha^{\prime 2}+4 k^{2}\right) \cosh \alpha^{\prime} h\right] \\
& \text { since } \alpha^{\prime 2}=4 k^{2}-\frac{4 c^{2}}{\sigma^{2}}+\gamma^{2}, \\
& \begin{aligned}
& \Delta(2 \sigma, 2 k) \\
&=-2 e^{-\gamma k}\left[\gamma\left(\frac{4 \sigma^{2}}{c^{2}}-8 k^{2}\right) \sin h\left(4 k^{2}-\frac{4 c^{2}}{\sigma^{2}}+\gamma^{2}\right)^{\frac{1}{2}} h\right. \\
&\left.+\left(4 k^{2}-\frac{4 c^{2}}{\sigma^{2}}+r^{2}\right)^{\frac{1}{2}} \cdot \frac{4 \sigma^{2}}{c^{2}} \cdot \cosh \left(4 k^{2}-\frac{4 \sigma^{2}}{c^{2}}+\gamma^{2}\right)^{\frac{1}{2}} h\right]
\end{aligned}
\end{aligned}
$$

Hence $\quad \Delta(\theta \sigma, \theta k)=$

$$
-2 e^{-\gamma k}\left[\gamma\left(\frac{\theta^{2} \sigma^{2}}{c^{2}}-2 \theta^{2} k^{2}\right) \sin h\left(\theta^{2} k^{2}-\frac{\theta^{2} \sigma^{2}}{c^{2}}+\gamma^{2}\right)^{\frac{1}{2}} h\right.
$$

$$
\left.+\left(\theta^{2} k^{2}-\frac{\theta^{2} \sigma^{2}}{c^{2}}+\gamma^{2}\right)^{\frac{1}{2}} \cdot \frac{\theta^{2} \sigma^{2}}{c^{2}} \cdot \cosh \left(\theta^{2} k^{2}-\frac{\theta^{2} \sigma^{2}}{c^{2}}+\gamma^{2}\right)^{\frac{1}{2}} h\right]
$$

Putting $\beta^{2}=\theta^{2} k^{2}-\frac{\theta^{2} \sigma^{2}}{c^{2}}+\gamma^{2}$

$$
\Delta\left(\theta \sigma_{1} \theta k\right)=-2 e^{-\gamma k}\left[\gamma \frac{\beta^{2} \sigma^{2}}{c^{2}}\left(1-\frac{2 k^{2} c^{2}}{\sigma^{2}}\right) \sinh \beta h+\frac{\beta \theta^{2} \sigma^{2}}{c^{2}} \cos \beta k\right]
$$

$$
\begin{aligned}
& \therefore \Delta(\theta \sigma, \theta k) \\
& =-2 e^{-\gamma k} \cdot \frac{\theta^{2} \sigma^{2}}{c^{2}} \operatorname{Aixh} \beta\left[\left(\left(1-\frac{2 k^{2} c^{2}}{\sigma^{2}}\right)+\beta \operatorname{Coth} \beta h\right](6.96)\right.
\end{aligned}
$$

From (6.53) $\quad k^{2}-\frac{\sigma^{2}}{c^{2}}>0$, hence
$\beta^{2}=\theta^{2}\left(k^{2}=\frac{\sigma^{2}}{c^{2}}\right)+B^{2}$ is a positive increasing function of θ^{2}. But β coth $\beta \ell$ is an increasing function of β^{2} when $\beta^{2}>0$ and hence is an increasing function of θ^{2}. Hence equation (6.96) shows that $\Delta(0,0$) can only vanish for one positive value of $\boldsymbol{\theta}$
But $\Delta\left(\sigma_{1}, k\right)$ must vanish in order that ϕ shall exist. Hence $\Delta(2 \sigma, k)$ cannot vanish.
It is however still possible that $\Delta(20,0)$ should vanish. This will be considered in the next chapter; for the time being it is assumed that $\Delta(2 \pi, 0)$ is not zero.

CHAPTER _工.
Application of the results of chapter 6 to ocean waves.
For ocean waves we may take

$$
\left.\begin{array}{c}
\sigma=0.5 \mathrm{sec}^{-1}, g=0.98 \times 10^{3} \mathrm{~cm} / \mathrm{sec}^{2} \\
h=10^{6} \cdot \mathrm{~cm}, \text { velocity of sound in water } \\
=c=1.4 \times 10^{5} \mathrm{~cm} / \mathrm{sec}
\end{array}\right\}
$$

By equation (6.51)

$$
\begin{align*}
\operatorname{Pr} h & =\frac{\gamma g}{\sigma^{2}}=\frac{g}{2 c^{2}} \cdot \frac{g}{\sigma^{2}}=\frac{9.8^{2} \times 10^{4}}{2 \times 1.4^{2} \times 10^{10} \times 0.5^{2}}=0.98 \times 10^{-4} \\
\therefore P Y & =1.0 \times 10^{-4} \\
\quad \gamma h & <\frac{9.8 \times 10^{2} \times 10^{6}}{2 \times 1.4^{2} \times 10^{10}}=\frac{1}{0.4} \times 10^{-2} \\
\therefore \gamma h & <2.5 \times 10^{-2}
\end{align*}
$$

By equation (651)

$$
\begin{align*}
& Q=\gamma h(1-\operatorname{Pr} h)<2.5 \times 10^{-2}\left(1-10^{-4}\right) \\
& \therefore Q<2.5 \times 10^{-2}
\end{align*}
$$

Hence, since $\alpha k \operatorname{Coth} \alpha k \geqslant /_{\text {for real }} \alpha h_{\text {, }}$ equation (6.50) shews that

$$
\alpha h \operatorname{coth} \alpha h-P(\alpha h)^{2}=0
$$

i.e. $P \alpha h$ is of the same order as $\operatorname{Coth} \alpha h$

Then $\frac{r}{\alpha}=\frac{P r h}{P \times h} \simeq \frac{P r h}{\operatorname{cothah}} \simeq \frac{1.0 \times 10^{-4}}{1}$

$$
\begin{equation*}
\therefore \quad \frac{r}{\alpha} \Omega 10^{-4} \tag{7.5}
\end{equation*}
$$

From equation (6.50)

$$
\begin{aligned}
\operatorname{Coch} \alpha h & =P_{\alpha} h+\frac{Q}{\alpha h} \\
& <P_{\alpha} h+\frac{2.5 \times 10^{-2}}{\alpha h} \\
\text { Coth } \alpha h & <P_{\alpha} h\left[1+\frac{2.5 \times 10^{-2}}{P_{\alpha^{2} h^{2}}}\right] \\
& <P_{\alpha} h\left[1+\frac{2.5 \times 10^{-2}}{P(\gamma h)^{2}} \cdot\left(\frac{\gamma}{\alpha}\right)^{2}\right] \\
& <P_{\alpha} h\left[1+\frac{2.5 \times 10^{-2} \times 10^{-8}}{2.5 \times 10^{-2} \times 1.0 \times 10^{-4}}\right]
\end{aligned}
$$

by ($7 \cdot 2$) and ($7 \cdot 3$)
That is $\operatorname{coth} \alpha h \bumpeq \operatorname{Pak}\left[1+10^{-10}\right]$

$$
\begin{equation*}
\text { or } \operatorname{costah}=\operatorname{Pah}\left[1+O\left(\frac{k}{\alpha}\right)\right] \tag{7-7}
\end{equation*}
$$

$$
\frac{\sigma^{2}}{c^{2}}=\frac{g}{p h} \cdot \frac{2 \gamma}{g}=\frac{2 \gamma}{p h}=\frac{2 \gamma_{\alpha}}{p a h} .
$$

$$
=2 \gamma \alpha \cdot \tanh \alpha h \cdot\left[1+O\left(\frac{\gamma}{\alpha}\right)\right]
$$

By (6.43) $\quad k^{2}=\alpha^{2}+\frac{\sigma^{2}}{c^{2}}-\gamma^{2}$

$$
\begin{align*}
& \therefore R^{2}=\alpha^{2}\left[1+\frac{1}{\alpha^{2}} \cdot 2 \gamma \cdot \tanh \alpha \operatorname{ch}\left\{1+O\left(\frac{r}{\alpha}\right)\right\}-\left(\frac{\gamma}{\alpha}\right)^{2}\right] \\
& \therefore R^{2}=\alpha^{2}\left[1+2\left(\frac{r}{\alpha}\right) \operatorname{tank} \alpha h+O\left(\frac{r}{\alpha}\right)^{2}\right] \tag{7-8}
\end{align*}
$$

We now determine the functions $\boldsymbol{\phi}_{1}$ and $\boldsymbol{\phi}_{2}$ after expanding the coefficients $F^{\oplus}, F^{(1)}$, etc., and neglecting powers of $\frac{\gamma}{\alpha}$ after making use of equations (7.7) and (7.8).

From equations (6.56) and (6.69)

$$
\begin{align*}
& F^{0}=\frac{-\alpha\left\{(r-\alpha)^{2}-k^{2}\right\}(r+\alpha)^{2} e^{-2 \alpha h}}{-4 \sigma^{2}-4 c^{2}\left\{(r-\alpha)^{2}-k^{2}\right\}+2 g(r-\alpha)} \\
& =\frac{-\sigma\left[\frac{r^{2}}{\alpha^{2}}-\frac{2 r}{\alpha}+1-1-\frac{2 r}{\alpha} t \tanh \alpha h-O\left(\frac{r}{\alpha}\right)^{2}\right]\left[\frac{r^{2}}{\alpha^{2}}+\frac{2 r}{\alpha}+1\right] e^{-2 a h}}{-\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4 c^{2}}{\alpha^{2}}\left[\frac{r^{2}}{\alpha^{2}}-\frac{2 r}{\alpha}+1-1-\frac{2 r}{\alpha} \text { tanh } \alpha h-O\left(\frac{r}{\alpha}\right)^{2}\right]+\frac{2 g}{\alpha^{3}}\left(\frac{r}{\alpha^{2}}-1\right)} \\
& \approx \frac{\frac{2 r}{\alpha} \cdot \sigma(\tanh \alpha h+1) e^{-2 \alpha h}}{-\frac{4 \sigma^{2}}{\alpha^{4}}+\frac{4 \sigma^{2}}{\alpha^{2}} \cdot \frac{1}{2 \gamma \alpha} \cdot \operatorname{Coth} \alpha h}\left[1-O\left(\frac{r}{\alpha}\right)\right] \frac{2 r}{\alpha^{2}}(1+\tan \alpha \alpha)-\frac{29}{\alpha^{3}} \\
& =\frac{\frac{2 r}{\alpha} \cdot \sigma(1+\tanh \sigma h) e^{-2 \alpha h}}{-\frac{4 \sigma^{2}}{\alpha^{4}}\left[1-\operatorname{coth} \alpha h-1+O\left(\frac{\gamma}{\alpha}\right) \operatorname{coth} \alpha h+O\left(\frac{\gamma}{\alpha}\right)\right]-\frac{2 g}{\alpha^{3}}} \\
& \bumpeq \frac{2 \gamma_{\alpha}^{3}}{4 \sigma} \cdot \frac{1+\tanh \alpha h}{\operatorname{coth} \alpha h} \cdot e^{-2 a h} \\
& =\frac{\gamma \alpha^{3}}{2 \sigma} \cdot t \operatorname{arah} \alpha h \cdot \frac{2 e^{-\alpha h}}{e^{\alpha h}+e^{-\alpha h}} \\
& =\frac{\gamma \alpha^{3}}{2 \sigma} \cdot \tanh \alpha h \cdot \frac{e^{-\alpha h}}{\operatorname{Cosh} \alpha h} \\
& \therefore F^{O}=\frac{\gamma \alpha^{3}}{2 \sigma} \cdot \frac{e^{-a h} \sinh \alpha h}{\cos ^{2} \alpha h} \tag{709}
\end{align*}
$$

$$
\begin{align*}
& F^{(2)}=\frac{-\sigma\left\{(r+\alpha)^{2}-k^{2}\right\}(r-\alpha)^{2} e^{2 \alpha k}}{-4 \sigma^{2}-4 c^{2}\left\{(r+\alpha)^{2}-k^{2}\right\}+2 \delta(r+\alpha)} \\
& =\frac{-\sigma\left\{\frac{\gamma^{2}}{\alpha^{2}}+\frac{2 \gamma}{\alpha}+1-1-\frac{2}{\alpha} \frac{r}{\alpha}\left(\operatorname{san} \alpha \beta-\alpha \frac{r}{\alpha}\right)^{2}\right\}\left\{\left(\frac{r}{\alpha}\right)^{2}-2 \frac{\gamma}{\alpha}+1\right\} e^{2 \alpha h}}{-\frac{4 \sigma^{2}}{\alpha^{2}}-\frac{4 c^{2}}{\alpha^{2}}\left\{\frac{\gamma^{2}}{\alpha^{2}}+\frac{2 \gamma}{\alpha}+1-1-\frac{2 \gamma}{\alpha}\left(a \alpha-\alpha\left(\frac{r}{\alpha}\right\}^{2}\right\}+\frac{2 g}{\alpha^{2}}\left(\frac{r}{\alpha}+1\right)\right.} \\
& \Omega \frac{-2 \sigma \cdot \frac{\gamma}{\alpha}(1-\tanh \alpha x) e^{2 \alpha h}}{-\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4}{\alpha^{2}} \cdot \frac{\alpha^{2}}{2 \gamma \alpha} \operatorname{coth} \alpha h\left[1-O\left(\frac{r}{\alpha}\right)\right] \cdot \frac{2 \gamma}{\alpha} \cdot(1-\tanh \alpha \alpha)+\frac{2 g}{\alpha^{3}}\left(\frac{\gamma}{\alpha}+1\right)} \\
& \leadsto-\sigma 2 \gamma \alpha^{3}(1-\tanh \alpha \alpha) e^{2 \alpha h} \\
& -4 \sigma^{2}(1+\operatorname{coc} \alpha \cos -1)+2 g \alpha \\
& \Omega \frac{\gamma \alpha^{3}(1-\tanh \alpha h) e^{2 \alpha h}}{2 \sigma \cosh \alpha h} \\
& =\frac{\gamma \alpha^{3} \cdot \operatorname{senh\alpha h} \cdot 2 e^{-\alpha h} \cdot e^{2 \alpha h}}{2 \sigma \cdot \operatorname{cosh\alpha h} \cdot\left(e^{\alpha \alpha}+e^{-\alpha \alpha}\right)} \\
& =\frac{\gamma_{\alpha^{3}}}{\sigma} \cdot \frac{\sinh \alpha h}{\operatorname{coh} \alpha h} \cdot \frac{e^{\alpha h}}{e^{\alpha h}+e^{-\alpha h}} \\
& \therefore F^{(2)}=\frac{Y \alpha^{3} e^{\alpha h}}{2 \sigma} \cdot \frac{\sinh \alpha h}{\operatorname{coh} \alpha h} \tag{7•10}
\end{align*}
$$

133.

$$
\begin{aligned}
F^{(3)} & =\frac{-\sigma\left(\gamma^{2}-a^{2}-k^{2}\right)\left(\gamma^{2}-\alpha^{2}\right)}{-4 \sigma^{2}-4 c^{2}\left(\gamma^{2}-k^{2}\right)+2 g \gamma} \\
& \approx \frac{-\sigma\left(\frac{\gamma^{2}}{\alpha^{2}}-1-1-\frac{2 \gamma}{\alpha} \tanh \alpha h\right)\left(\frac{\gamma^{2}}{\alpha^{2}}-1\right)}{-\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4 c^{2}}{\alpha^{2}}\left(\frac{\gamma^{2}}{\alpha^{2}}-1-\frac{2 \gamma}{\alpha} \tanh \alpha h\right)+\frac{2 g \gamma}{\alpha^{4}}} \\
& \approx \frac{-2 \sigma\left(1+\frac{\gamma}{\alpha} \operatorname{tash} \alpha h\right)}{-\frac{4 \sigma^{2}}{\alpha^{4}}+\frac{4}{\alpha^{2}} \cdot \frac{\sigma^{2}}{2 r^{\alpha}} \cdot \operatorname{coth} \alpha h\left[1-0\left(\frac{r}{\alpha}\right)\right]\left(1+\frac{2 \gamma}{\alpha} \operatorname{tana\alpha h}\right)+\frac{2 g \gamma}{\alpha^{4}}} \\
& \approx \frac{-\left(1+\frac{\gamma}{\alpha}\right) \tanh \alpha h}{-\frac{2 \sigma}{\alpha^{4}}+\frac{\sigma}{\gamma \alpha^{3}}\left(\operatorname{coch} \alpha h+\frac{2 \gamma}{\alpha}\right)+\frac{2 g \gamma}{\sigma^{\alpha}}} \\
& \approx-\frac{\alpha^{3} \gamma}{\sigma \operatorname{coth} \alpha \ell}
\end{aligned}
$$

$F^{(3)} \Omega-\frac{\alpha^{3} \gamma}{\sigma} \cdot \tan h \alpha h$

$$
\begin{aligned}
& F^{(4)}=\frac{-\sigma\left\{(r-\alpha)^{2}+k^{2}\right\}(r+\alpha)^{2} e^{-2 \alpha h}}{-4 \sigma^{2}-4 c^{2}(r-\alpha)^{2}+2 g(r-\alpha)} \\
& \Omega-\sigma\left\{\frac{\gamma^{2}}{\alpha^{2}}-\frac{2 \gamma}{\alpha}+1+1+\frac{2 \gamma}{\alpha} \tan k \alpha h\right\}\left(\frac{\gamma^{2}}{\alpha^{2}}+\frac{2 \gamma}{\alpha}+1\right) e^{-2 \alpha k} \\
& -\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4 c^{2}}{\alpha^{2}}\left(\frac{\gamma^{2}}{\alpha^{2}}-\frac{2 \gamma}{\alpha}+1\right)+\frac{29}{\alpha^{3}}\left(\frac{\gamma}{\alpha}-1\right) \\
& \Omega \frac{-\sigma\left(2-\frac{2 r}{\alpha}+\frac{2 r}{\alpha} \tanh \alpha h\right) e^{-2 \alpha h}}{\alpha^{2}} \\
& -\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4}{\alpha^{2}} \cdot \frac{\sigma^{2}}{2 \gamma \alpha} \cdot \operatorname{cothoh}\left[1-O\left(\frac{r}{\alpha}\right)\right]\left(1-\frac{2 r}{\alpha}\right)+\frac{29}{\alpha^{3}}\left(\frac{r}{\alpha}-1\right) \\
& \sim \frac{\alpha^{3} \gamma e^{-2 \alpha h}}{\sigma \cos t \alpha h} \\
& \therefore F^{(4)}=\frac{\alpha^{3} \gamma e^{-2 \alpha h}}{\sigma} \cdot \text { Taukach. (7.12) }
\end{aligned}
$$

134.

$$
\begin{aligned}
& F^{(5)}=\frac{-\sigma\left\{(\gamma+\alpha)^{2}+k^{2}\right\}(\gamma-\alpha)^{2} e^{2 \alpha k}}{-4 \sigma^{2}-4 c^{2}(\gamma+\alpha)^{2}+2 g(\gamma-\alpha)} \\
& \approx \frac{-\sigma\left\{\frac{\gamma^{2}}{\alpha^{2}}+\frac{2 \gamma}{\alpha}+1+1+\frac{2 \gamma}{\alpha}(\tan \cos \}\left(\frac{\gamma^{2}}{\alpha^{2}}-\frac{2 r}{\alpha}+1\right) e^{2 \alpha h}\right.}{-\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4 c^{2}}{\alpha^{2}}\left(\frac{\gamma^{2}}{\alpha^{2}}+\frac{2 \gamma}{\alpha}+1\right)+\frac{2 g}{\alpha^{3}}\left(\frac{\gamma}{\alpha}-1\right)} \\
& \approx \frac{-2 \sigma\left(\frac{\gamma}{\alpha}+1+\frac{\gamma}{\alpha} \operatorname{tash} \alpha h\right) e^{2 \alpha k}}{-\frac{4 \sigma^{2}}{\alpha^{4}}-\frac{4}{\alpha^{2}} \cdot \frac{\sigma^{2}}{2 \gamma \alpha} \operatorname{coth} \alpha \operatorname{ach}\left[1-O\left(\frac{\gamma}{\alpha}\right)\right]\left(1+\frac{2 \gamma}{\alpha}\right)+\frac{2 g}{\alpha^{3}}\left(\frac{\gamma}{\alpha}-1\right)}
\end{aligned}
$$

$$
\approx \frac{\alpha^{3} \gamma e^{2 \alpha h}}{\sigma \cdot \operatorname{coth\alpha h}}
$$

$$
\therefore F^{(5)}=2 \frac{\alpha^{3} \gamma e^{2 a h}}{\sigma} \cdot t \tanh a c h .
$$

$$
F^{(6)}=\frac{-\sigma\left(\gamma^{2}-\alpha^{2}+k^{2}\right)\left(\gamma^{2}-\alpha^{2}\right)}{-4 \sigma^{2}-4 c^{2} \gamma+2 g \gamma}
$$

$$
\Omega \frac{-\sigma\left(\frac{\gamma^{2}}{\alpha^{2}}-1+1+\frac{2 \gamma}{\alpha} \tanh \alpha h\right)\left(\frac{\gamma^{2}}{\alpha^{2}}-1\right)}{-4 \frac{\sigma^{2}}{\alpha^{4}}-\frac{4 \gamma^{2}}{\alpha^{4} \sigma^{2}} \cdot \frac{\operatorname{coth} \alpha h}{2 \alpha \gamma}\left[1-0\left(\frac{\gamma}{\alpha}\right)\right]+\frac{2 g \gamma}{\alpha^{4}}}
$$

$\frac{28}{\alpha} \cdot \sigma \cdot \operatorname{tanch} \frac{\alpha}{2}$

$$
-\frac{4 \sigma^{2}}{\alpha^{4}}
$$

$\therefore F^{(6)} \simeq=\frac{\alpha^{3} \gamma}{2 \sigma}$. Tacach och.

From equation 6.60) $D=\frac{8}{9} \gamma \alpha^{4}$
From equations (6.72), since $F^{\infty}, F^{(2)}, F^{(3)}, F^{(6)}, F^{(3)}$ and $F^{(6)}$ are all of order $\frac{\gamma^{3}}{\sigma^{3}}$, we have

$$
\begin{align*}
& G^{(1)} \bumpeq-2 \alpha e^{2 \alpha h} \dot{F}^{0}+2 \alpha e^{-2 \alpha \cdot h} F^{(2)} \\
& \bumpeq-\frac{\gamma \alpha^{4}}{\sigma} \cdot \frac{e^{\alpha h} \sinh \alpha h}{\cosh ^{2} \alpha h}+\frac{\gamma_{\alpha}^{4}}{\sigma} \cdot \frac{e^{-\alpha h} \operatorname{sinh\alpha \alpha }}{\cosh ^{2} \alpha h} \\
&(\text { by equations } 7 \cdot 9 \text { and } 7 \cdot 10) ;
\end{align*}
$$

that is $G^{(1)} \bumpeq-\frac{2 \gamma_{\alpha^{4}}{ }^{4}}{\sigma} \cdot \frac{\sinh ^{2} \alpha h}{\cosh ^{2} \alpha h}$

$$
\text { Similarly } G^{(2)} \bumpeq-2 \alpha e^{2 \alpha h} F^{\Theta}+2 \alpha e^{-2 \alpha h} F^{\Theta}
$$

$\Omega-\frac{2 \gamma_{\alpha}^{4}}{\sigma}$. $\tanh a h+\frac{2 r_{\alpha}^{4}}{\sigma}$. tanh αh
(by equations 7.12 and $7 \cdot 13$)
That is $G^{(2)}=O\left(\frac{\gamma^{2} \alpha^{3}}{\sigma}\right)$ at most (7.17)
From equations 1674)

$$
\begin{aligned}
H^{0} & \bumpeq-4\left(\alpha^{2}-k^{2}\right) F^{0}-4\left(\alpha^{2}-k^{2}\right) F^{(2)}-8 k^{2} F^{(3)} \\
& \simeq-8 k^{2} F^{(3)}+0\left(\alpha \gamma F^{(1)}\right) \text { (by equation } 7.87
\end{aligned}
$$

$\bumpeq \frac{8 \alpha^{5} \gamma}{\sigma}$. (ankh ah (by equation 7.11) (7.18) and $H^{(2)} \bumpeq-4 \alpha^{2} F^{(\theta)}-4 \alpha^{2} F^{(\theta)}$

$$
\Omega \frac{4 \gamma_{\alpha}^{5}}{\sigma} \cdot e^{-2 \alpha h} \tanh a h-\frac{4 \gamma_{\alpha}^{5}}{\sigma} \text { tank } \text { (an equations } 7 \cdot 12 \text { and } 7 \cdot 13 \text {) } e^{2 \alpha h}
$$

that is $H^{(2)}-\frac{8 \gamma_{\alpha}^{5}}{\sigma} \cdot \operatorname{Cosh} 2 \alpha h . \tanh \alpha h$
From equation (6.50)

$$
\alpha h \operatorname{coth} \alpha h-\frac{g(\alpha h)^{2}}{h \sigma^{2}}=20
$$

or $\quad \frac{\sigma}{g} \Omega \frac{\alpha \tanh \alpha h}{\sigma}$
and so equation ($7 \cdot 15$) may be written

$$
D \Omega \frac{4 \gamma \alpha^{5}}{\sigma} \cdot \tanh \alpha h .
$$

Therefore

$$
\begin{equation*}
D+H^{\oplus} \bumpeq \frac{12 \gamma_{a}^{5}}{\sigma} \tanh \alpha h \tag{7.20}
\end{equation*}
$$

and

$$
\begin{aligned}
D+H^{(2)} & =\frac{4 \gamma \alpha^{5}}{\sigma} \cdot \tanh \alpha h\{1-2 \cosh 2 \alpha h\} \\
& =\frac{4 \gamma \alpha^{5}}{\sigma} \frac{\tanh \alpha h}{\operatorname{Cosh} \alpha h} \cdot(\cosh \alpha h-2 \cosh \alpha h \cdot \cosh 2 \alpha h) \\
& =-\frac{4 \gamma \alpha^{5}}{\sigma} \cdot \frac{\tanh \alpha h}{\cosh a \operatorname{sen}} \cdot \operatorname{Cosh} 3 \alpha h \quad(7.21)
\end{aligned}
$$

From equations (6.78)

$$
\begin{align*}
& \alpha^{\prime 2}=4 \alpha^{2}\left[1+\frac{2 \gamma}{\alpha}\right. \\
&\left.\tanh \alpha \sec +O\left(\frac{r}{\alpha}\right)^{2}\right] \\
&-8 \gamma \alpha \tanh \sec \left[1+O\left(\frac{\gamma}{2}\right)\right]+\gamma^{2} \tag{7•22}\\
&=4 \alpha^{2}
\end{align*}
$$

and $\quad \alpha^{\prime \prime 2} \xlongequal{2} 0$.
Also from equation ($6 \cdot 67$)

$$
E^{(1)} \Omega \lambda x^{4} .
$$

By definition

$$
\begin{aligned}
& \Delta\left(2 \sigma_{1}, 2 k\right)=-2 e^{-\gamma}\left[\gamma\left(\gamma^{2}-\alpha^{\prime 2}-4 k^{2}\right) \sinh \alpha^{\prime} h\right. \\
&\left.+\alpha^{\prime}\left(\gamma^{2}-\alpha^{\prime 2}+4 k^{2}\right) \cosh \alpha^{\prime} h\right]
\end{aligned}
$$

Hence, by equations (7.8) and (7.22),

$$
\begin{align*}
\Delta & (2 \sigma, 2 k) \Omega-2 e^{-\gamma h}\left[-8 \gamma^{2} \sinh 2 \alpha h+16 \alpha^{2} \gamma \tanh \alpha h \cosh 2 \alpha h\right] \\
& =-16 \gamma \alpha^{2} e^{-\gamma h}\left[-2 \sinh \alpha h \operatorname{Coh} \alpha h+2 \tanh \alpha h\left(\operatorname{Cosh}^{2} \alpha h+\sinh ^{2} \alpha h\right)\right] \\
& =-32 \gamma \alpha^{2} e^{-\gamma h} \cdot \text { tanh } \alpha h \cdot \sinh \alpha h
\end{align*}
$$

Also equation (6.90) gives

$$
\Delta(2 \sigma, 0)=-2 e^{-\gamma h}\left[\gamma\left(r^{2}-\alpha^{\prime \prime}\right) \sinh \alpha^{\prime \prime} h+\alpha^{\prime \prime}\left(\gamma^{2}-\alpha^{\prime \prime 2}\right) \cos \alpha^{\prime \prime} h\right]
$$

But $\quad \alpha^{\prime \prime 2} \Omega-\frac{4 \sigma^{2}}{c^{2}}=-8 \gamma_{\alpha} \tanh \alpha h \cdot\left[1+0\left(\frac{r}{\alpha}\right)\right]$,
hence

$$
\begin{align*}
& \Delta(20,0) \Omega-16 e^{-\gamma h} \gamma_{\alpha} \tanh \alpha h\left(\gamma \sinh \alpha^{\prime \prime} h+\alpha^{\prime \prime} \cosh \alpha^{\prime \prime} h\right) \\
& \Omega-16 e^{-\gamma k} \gamma \alpha \alpha^{\prime \prime} \tanh \alpha h . \cosh \alpha^{\prime \prime} h \\
&(7.26)
\end{align*}
$$

Hence from equation (6.86)

$$
J^{0} \Omega \frac{\alpha^{\prime} \cdot e^{-\left(\gamma+\alpha^{\prime}\right) k} \cdot\left(D+H^{0}\right)}{\Delta(2 \sigma, 2 k)}
$$

That is

$$
J^{0} \Omega-\frac{\alpha^{\prime} \cdot e^{-\left(\gamma+\alpha^{\prime}\right) h} \cdot 12 \gamma \alpha^{5} \text { tanh } \alpha h}{\sigma \cdot 32 \gamma \alpha^{2} e^{-\gamma k} \cdot \text { tanhach } \sinh { }^{2} \alpha h}
$$

by ($7 \cdot 20$)

$$
\therefore J-\Omega-\frac{3}{4} \cdot \frac{\alpha^{4}}{\sigma} \cdot \frac{e^{-\alpha^{\prime} h}}{\sin h^{2} \alpha h}
$$

From equation (6.87)

$$
\begin{aligned}
J^{(2)} & =\frac{-\alpha^{\prime} \cdot e^{-\left(\gamma-\alpha^{\prime}\right) h} \cdot\left(D+H^{0}\right)}{\Delta\left(2 \sigma_{1}, 2 k\right)} \\
& =-\frac{\alpha^{\prime} \cdot e^{-\left(\gamma-\alpha^{\prime}\right) h} \cdot 12 \gamma \alpha^{5} \text { tanh } \alpha h}{\sigma \cdot 32 \gamma \alpha^{2} e^{-\delta h} \cdot t a n h a h \cdot \sinh }{ }^{2} \alpha h
\end{aligned}
$$

by 7.20 and 7.25

$$
\therefore J^{(2)} \Omega-\frac{3 \alpha^{4}}{4 \sigma} \cdot \frac{e^{\alpha^{\prime} h}}{\sin h^{2} \alpha h}
$$

From equation (6.88)

$$
\begin{aligned}
J^{(3)} & \Omega \frac{\alpha^{\prime \prime} e^{-\left(\gamma+\alpha^{\prime \prime}\right) h} \cdot\left(D+H^{(2)}\right)}{\Delta(2 \sigma, 0)} \\
& =\frac{\alpha^{\prime \prime} \cdot e^{-\left(\gamma+\alpha^{\prime \prime}\right) h} \cdot 4 \gamma \alpha^{5} \cdot \tanh \alpha h \cdot \operatorname{Cosh} 3 \alpha h}{\sigma \cdot \operatorname{Cosh} \alpha \cdot 16 e^{-\delta t} \cdot \gamma \alpha \alpha^{\prime} \tanh \alpha h \cdot \operatorname{Conh} \alpha^{\prime \prime} h}
\end{aligned}
$$

by equations 7.21 and 7.26

$$
\therefore J^{(3)} \Omega \frac{\alpha^{4}}{4 \sigma} \cdot \frac{e^{-\alpha^{\prime \prime} h}}{\cosh \alpha^{\prime \prime} h} \cdot \frac{\cosh 3 \alpha h}{\cosh \alpha h} \quad \text { (7.29) }
$$

From equation (6.89)

$$
J^{(4)} \bumpeq \frac{\alpha^{\prime \prime} \cdot e^{-\left(r-\alpha^{\prime \prime}\right) t} \cdot\left(D+H^{(2)}\right)}{\Delta(2 \sigma, 0)}
$$

That is

$$
\begin{align*}
& J^{(4)} \Omega \frac{\alpha^{\prime \prime} e^{-\left(\gamma-\alpha^{\prime \prime}\right) h} \cdot 4 \gamma \alpha^{5} \cdot \tanh \alpha h \cdot \operatorname{Conh} 3 \alpha h}{\sigma \operatorname{Coh} \alpha h \cdot 16 e^{-\gamma h} \cdot \gamma \alpha \alpha^{\prime \prime} \tanh \alpha h \cdot \operatorname{Cosh} \alpha^{\prime \prime} h} \\
& \therefore J^{(4)} \frac{\alpha^{4}}{4 \sigma} \cdot \frac{e^{\alpha \prime \prime}}{\operatorname{Cosh} \alpha^{\prime \prime} h} \cdot \frac{\operatorname{Cosh} 3 \alpha}{\operatorname{Coh} \alpha h} \quad(7 \cdot 30)
\end{align*}
$$

By equation (7.8)

$$
\begin{aligned}
k^{2} & =\alpha^{2}\left[1+2\left(\frac{r}{\alpha}\right) \tanh \sec +O\left(\frac{r}{\alpha}\right)^{2}\right], \\
& =\alpha^{2}\left[1+2 \gamma h \cdot\left(\frac{\tanh \alpha h}{\alpha x}\right)+O\left(\frac{\gamma}{\alpha}\right)^{2}\right],
\end{aligned}
$$

but $\frac{\alpha h}{\text { towhoth }} \geqslant 1$, hence neglecting, not only terms of order $\frac{Y}{h}$ but also of order $\gamma \boldsymbol{h}$,

$$
k^{2} \bumpeq \alpha^{2} \quad \therefore \quad k=\alpha .
$$

Hence, from equations (6.78)

$$
\alpha^{\prime}=2 \alpha \text { and } \alpha^{\prime \prime}=2 i \frac{\sigma}{c} .
$$

Hence we may replace $\alpha h, \alpha^{\prime} h, \alpha^{\prime \prime} h$ and $e^{\gamma h_{b y}}$ $k h, 2 k h, 2 i \sigma \frac{k}{c}$ and $e^{0}=1$, respectively.
But

$$
\begin{aligned}
\alpha^{2} & =k^{2}-\frac{\sigma^{2}}{c^{2}}+\gamma^{2} \\
\therefore \quad \frac{\sigma^{2}}{c^{2}} & \Omega k^{2}-\alpha^{2} \\
& \bumpeq \alpha^{2}+2 \alpha \gamma \tanh \alpha h-\alpha^{2} \text { by (7 8) } \\
\therefore \quad \frac{\sigma^{2}}{c^{2}} & =2 \alpha \gamma \text { tamhah } \\
\text { or } \quad \sigma^{2} & \bumpeq 2 c^{2} \gamma k \text { tanh } \alpha h
\end{aligned}
$$

By equations (7.1) and (7.3)

$$
\begin{align*}
& 2 c^{2} \gamma \Omega \frac{2 \times 1.4^{2} \times 10^{10} \times 2.5 \times 10^{-2}}{10^{2}} \\
& \Omega 980 \\
& \Omega g \tag{7*31}
\end{align*}
$$

Hence $\quad \sigma^{2} \approx g k \tanh k \hbar$.
We now find the values of $\boldsymbol{\phi}$, and $\boldsymbol{\phi}_{2}$ to the order of greatness used so far in this chapter.
From equation (6.55),

$$
\begin{aligned}
\phi_{1}= & {\left[(r+\alpha) e^{-\alpha h-(r-\alpha) z}-(r-\alpha) e^{\alpha h-(r+\alpha) z}\right] } \\
& x\left[b_{1} \sin (k x-\alpha t)+b_{2} \sin (k x+\sigma t)\right] \\
= & e^{-r z} \cdot\left[(r+\alpha) e^{-\alpha h+\alpha z}-(r-\alpha) e^{\alpha h-\alpha z}\right] \frac{\sigma}{2 k^{2} \sin h k k} \\
& x\left[\frac{b_{1}^{2} 2 k^{2} \sin h k h}{\sigma} \sin (k x-\alpha t)+\frac{b_{2}^{2} 2 k^{2} \sin h k h}{a} \sin (k x+\alpha t)\right]
\end{aligned}
$$

That is

$$
\begin{aligned}
\phi_{1}=\frac{\sigma e^{-\gamma}}{2 k^{2} \sinh k}[& {\left[(\gamma+\alpha) e^{\alpha(z-2)}-(\gamma-\alpha) e^{-\alpha(2-\alpha)}\right] } \\
x & {\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right], }
\end{aligned}
$$

where $a_{1}=\frac{2 k^{2} \sinh k k}{\sigma}, b_{1}$.

$$
\begin{equation*}
a_{2}=-\frac{a k^{2} \operatorname{sinhk}}{\sigma} \cdot b_{2} \tag{7-32}
\end{equation*}
$$

$$
\begin{aligned}
\therefore \phi_{1}=\frac{\alpha e^{-\gamma z}}{2 k^{2} \operatorname{sinhkh}}[& {\left[Y\left\{e^{\alpha(z-h)}-e^{-\alpha(z-h)}\right\}+\alpha\left\{e^{\alpha(z-h)}+e^{-\alpha(z-h)}\right\}\right] } \\
x & {\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right] } \\
=\frac{\sigma e^{-\gamma z}}{k^{2} \sinh k h} & {[Y \sin h(z-h)+\alpha \cosh \alpha(z-h)] } \\
& x\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right] .
\end{aligned}
$$

Neglecting terms of order of $\gamma \mathcal{h}$, and setting

$$
\alpha=k, e^{-\gamma z}=l \text {, we have }
$$

$$
\phi_{1}=\frac{\sigma}{k^{2} \sinh k h} \cdot k \operatorname{Cosh} k(z-h) \cdot\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right]
$$

That : is

$$
\phi_{1}=\frac{\sigma}{k} \cdot \frac{\cosh k(z-h)}{\sinh k h} \cdot\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right](7 \cdot 33 t]
$$

Using equations (7.9), (7.10), (7.11), (7.27) and (7.28) the coefficient of $\left[b_{1}^{2} \sin 2(k x-a t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]$ in ϕ_{2}, given ${ }^{\text {bl }}$ equation (6.95), is

$$
\begin{aligned}
& e^{-2 \gamma z} \cdot \frac{\gamma \alpha^{3}}{\sigma} \cdot \tanh \alpha h\left\{\frac{e^{-\alpha h+2 \alpha z}}{2 \cosh \alpha h}+\frac{e^{\alpha h-2 \alpha z}}{2 \operatorname{losh} \alpha h}-2\right\} \\
& -\frac{3 \alpha^{4} \cdot}{4 \sigma \sinh ^{2} a h} \cdot\left\{e^{\alpha^{\prime} h+\alpha z}+e^{\alpha^{\prime} k-\alpha z}\right\} e^{-\gamma z} ;
\end{aligned}
$$

on neglecting terms of order $\gamma \boldsymbol{h}$ this becomes

$$
\begin{aligned}
& \frac{-3 k^{4}}{4 \sigma \sinh ^{2} k h}\left\{e^{k(2 h-2)}+e^{-k(2 h-2)}\right\} \\
& =\frac{-3 k^{4} \cdot \operatorname{Cosh} k(2 h-2)}{2 \sigma \cdot \sinh ^{2} k h}
\end{aligned}
$$

Hence the term involving $\left[b_{1}^{2} \sin 2(k x-\sigma t)-b_{2}^{2} \sin 2(k x+\sigma t)\right]$ becomes

$$
\begin{aligned}
& -\frac{3 k^{4} \cdot \cosh k(2 h-2)}{2 \sigma \sinh ^{2} k h} \cdot \frac{\sigma^{2}}{4 k^{4} \cosh ^{2} k h}\left[a_{1}^{2} \sin 2(k x-\sigma t)-a_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& =-\frac{3 \sigma}{8} \cdot \frac{\cosh k(2 h-2)}{\sin h^{4} k h}\left[a_{8}^{2} \sin 2(k x-\sigma t)-a_{3}^{2} \sin 2(k x+\sigma t)\right]
\end{aligned}
$$

Where a_{1} and a_{2} are defined by equations (7-32).

$$
\text { Using equations } 17.12),(7.13),(7.14),(7 \cdot 29) \text { and }(7 \cdot 30)
$$

the coefficient of $2 b_{1} b_{2} \sin 2 \sigma t$ is

$$
\begin{aligned}
& e^{-2 \gamma z} \cdot \frac{\gamma \alpha^{3}}{\sigma} \cdot \tanh \alpha h\left\{e^{2 \alpha z-2 \alpha h}+e^{-2 \alpha z+2 \alpha h}+\right\} \\
& +e^{-\gamma z} \cdot \frac{\alpha^{4}}{4 \sigma} \cdot \frac{\operatorname{Conh} 3 \alpha h}{\operatorname{Conh} \alpha^{\prime \prime} h \cdot \operatorname{Conh} \alpha}\left\{e^{-\alpha^{\prime \prime} h+\alpha^{\prime \prime} z}+e^{\left.\alpha^{\prime \prime} h-\alpha^{\prime \prime} z\right\}}\right.
\end{aligned}
$$

On neglecting terms of order γ hand putting $\alpha=k$, this becomes

$$
\begin{aligned}
& \frac{k^{4}}{4 \sigma} \cdot \frac{\cos 3 k h}{\cos 2 i \frac{\sigma k}{c} \cdot \cosh k h} \cdot\left\{e^{i \cdot \frac{2 \sigma}{c}(z-k)}+e^{-i \cdot \frac{2 \sigma}{c}(z-h)}\right\} \\
& =\frac{k^{4}}{4 \sigma} \cdot \frac{\cosh 3 k h}{\cos \frac{2 \sigma h}{c} \cdot \cosh k h} \cdot \frac{2 \cos 2 \sigma(z-h)}{c} .
\end{aligned}
$$

Hence, after substituting for b_{1} and b_{2} the term involving $b_{1} b_{2} \sin 2 \sigma t$ becomes

$$
\begin{aligned}
& -\frac{k^{4}}{2 \sigma} \cdot \frac{\cos 3 k h \cdot \cos \frac{2 \sigma(z-h)}{c}}{\cos \frac{2 \sigma h}{c} \cdot \cosh k h} \cdot \frac{2 \sigma^{2}}{4 k^{4} \operatorname{sonh}^{2} k h} \cdot a_{1} a_{2} \sin 2 \sigma t \\
& =-\frac{\sigma}{8} \cdot \frac{\cosh 3 k h}{\sinh ^{2} k h \cdot \cosh h} \cdot \frac{\cos \frac{2 \sigma(z-h)}{c}}{\cos \frac{2 \sigma h}{c}} \cdot 2 a_{1} a_{2} \sin 2 \sigma t .
\end{aligned}
$$

The remaining term in equation (6-95) becomes

$$
\begin{aligned}
& \lambda k^{4} \cdot \lambda^{-1} \cdot \frac{\sigma^{2}}{4 k^{4} \sinh ^{2} k t} \cdot\left(a_{1}^{2}+a_{2}^{2}\right) t \\
& =\frac{\sigma}{4} \cdot \frac{a_{1}^{2}+a_{2}^{2}}{\sinh ^{2} k \hbar} \cdot \sigma t
\end{aligned}
$$

Thus the value of $\boldsymbol{\phi}_{2}$ is

$$
\begin{align*}
\phi_{2}= & -\frac{3 \sigma}{\sigma} \cdot \frac{\cos k(z-h)}{\sinh ^{4} k h} \cdot\left[a_{1}^{2} \sin 2(k x-\theta t)-a_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& -\frac{\sigma}{8} \cdot \frac{\cos 3 k h}{a h^{2} k h \cdot \cos k h} \cdot \frac{\cos 2 \sigma(z-h) / c}{\cos 2 \sigma k / c} \cdot 2 a_{1} a_{2} \sin 2 \sigma t \\
& +\frac{\sigma}{4} \cdot \frac{a_{1}^{2}+a_{2}^{2}}{\sinh ^{2} k h} \cdot \sigma t
\end{align*}
$$

We now use equations (7-33) and (7-34) to investigate the changes with depth which occur in the second order pressure term, β_{2}, given by equation ($6 \cdot 37$).
Let λ_{9} and λ_{c} be the lengths of a gravity wave and a compression wave;
then $\quad \lambda_{g}=\frac{2 \pi}{h} \quad$ and $\quad \lambda_{c}=\frac{2 \pi c}{\pi}$

$$
\left(\frac{\lambda_{G}}{\lambda_{c}}\right)^{2}=\frac{1}{k^{2}} \cdot \frac{\sigma^{2}}{c^{2}}
$$

neglecting terms of order $\frac{\gamma}{\alpha}$ and γ th,
$\left(\frac{\lambda_{g}}{\lambda_{z}}\right)^{2}=\frac{1}{\alpha^{2}} \cdot 2 \gamma a \tanh a k$
$\cdot\left(\frac{\lambda_{s}}{\lambda_{c}}\right)=2^{\frac{1}{2}}\left(\frac{r}{\alpha}\right)^{\frac{1}{2}} \operatorname{tanch}^{\frac{1}{2}} \operatorname{osh}$
$\therefore 2^{\frac{1}{2}} \cdot 10^{-2}$. $\cos ^{\frac{1}{2}}$ ch by equation (7.5)

$$
\because \lambda_{9}>\frac{\sqrt{2}}{100} \cdot \lambda_{c}
$$

Case (1): When the depth is less than half the length
of a gravity wave.

$$
z<\frac{1}{2} \lambda_{g} \text { i.e. } \quad z<\frac{\pi}{k}
$$

Also by (7.37) and (7.35)

$$
\begin{aligned}
& Z<\frac{1}{100 \sqrt{2}} \cdot \lambda_{c}=\frac{2 \pi c}{100 \sqrt{2} \cdot \sigma} \\
\therefore & \frac{2 \sigma z}{c}<\frac{2 \pi \sqrt{2}}{100}
\end{aligned}
$$

$$
\frac{\cos 2 \sigma(z-\alpha) / c}{\cos 2 \sigma \alpha / c}=\cos \frac{2 \sigma z}{c}+\sin \frac{2 \sigma z}{c} \cdot \tan \frac{2 \sigma \alpha}{c}
$$

$<\cos \frac{2 \pi \sqrt{2}}{100}+\sin \frac{2 \pi \sqrt{2}}{100} \cdot \tan \left(\frac{10}{1.4}\right)$ by $7 \cdot 1$
1
Hence from $\$ 7 \cdot 34\}$

$$
\begin{align*}
\phi_{2} \Omega & -\frac{3 \sigma}{8} \cdot \frac{\cosh 2 k(z-h)}{\sinh ^{4} k h} \cdot\left[a_{1}^{2} \sin 2(k x-\sigma t)-a_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& -\frac{\sigma}{8} \cdot \frac{\cosh 3 k h}{\sinh ^{2} k h \cdot \cosh k h} \cdot 2 a_{1} a_{2} \sin 2 \sigma t \\
& +\frac{\sigma}{4} \cdot \frac{a_{1}^{2}+a_{2}^{2}}{\sinh ^{2} k h} \cdot \sigma t
\end{align*}
$$

which is independent of c.
That is, the motion is unaffected by the compressibility of the water, since $\boldsymbol{\phi}_{\mathbf{1}}$ is also independent of c.

Case (ii). When the depth is of the order of one gravity wave length.

$$
\begin{aligned}
& Z \Omega \frac{\sqrt{2}}{100} \lambda_{c}=\frac{\sqrt{2}}{100} \cdot \frac{2 \pi \sigma}{c} \\
& \therefore \frac{2 \sigma z}{c} \approx 4 \pi \cdot \frac{\sqrt{2}}{100} \text { and } \frac{2 \sigma h}{c}<\frac{10}{1.4}
\end{aligned}
$$

Hence, again, $\quad \frac{\operatorname{Cos} 2 \sigma(\Sigma-h) / c}{\operatorname{Cos} 2 \sigma K / c} \sim 1$.
Also $e^{-k z} e^{-k \lambda_{g}}=e^{-k \cdot \frac{2 \pi}{k}}=e^{-2 \pi} \leqslant 0.002$.
hence, from equation (7.33)

$$
\begin{aligned}
\frac{\partial \phi 1}{\partial t} \Omega 0 ; & \nabla^{2} \phi_{1} \Omega 0 . \\
\text { also } \frac{\cosh 3 k h}{\sinh ^{2} k h \cdot \operatorname{Cohkh}} & =\frac{4\left(e^{3 k h}+e^{-3 k h}\right)}{\left(e^{k h}-e^{-k h}\right)^{2} \cdot\left(e^{k h}+e^{-k h}\right)} \\
& =\frac{400^{3} \times 4}{400^{2} \times 400}
\end{aligned}
$$

$$
\pi \quad 4 .
$$

$$
\begin{aligned}
& \text { Hence } e^{-k h}<e^{-k z}<0.002 \\
& \text { and } e^{k h}>e^{k Z}>400 \text {. } \\
& \text { Hence } \frac{\cosh k(z-k)}{\operatorname{ach} k h}=\frac{e^{k z} \cdot e^{-k h}+e^{-k z} \cdot e^{k h}}{e^{k k}-e^{-k k}} \\
& \Omega \frac{2 \times 400 \times 0.002}{400-0.002} \\
& \cong 0.004
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\cos 2 k(z-h)}{\sinh ^{4 k}} & =\frac{\left(e^{2 k z} \cdot e^{-2 k h}+e^{-2 k z} \cdot e^{2 k k}\right) 8}{\left(e^{k h}-e^{-k h}\right)^{4}} \\
& \approx \frac{(400 \times 0.002)^{2} \times 4 \times 8}{4000^{4}} \\
& \approx 0 .
\end{aligned}
$$

$$
\text { also } \frac{1}{\operatorname{sen} h^{2} k h}=\frac{4}{\left(e^{k h}-e^{-k h}\right)^{2}} \bumpeq \frac{4}{40 x^{2}} \Omega 0 \text {. }
$$

Hence $\phi_{2}=-\frac{\sigma}{8} \cdot 4 \cdot 2 a_{1} a_{2} \sin 2 \sigma t$

$$
\therefore \frac{\partial \phi_{2}}{\partial t} \approx-2 a_{1} a_{2} \sigma^{2} \cos 2 \sigma t
$$

Then equation (6.37) gives

$$
\begin{equation*}
\frac{P_{2}}{P_{8}}-2 a_{1} a_{2} \sigma^{2} \cos ^{2} 2 \sigma t . \tag{7-39}
\end{equation*}
$$

[Since $e^{2 \gamma z}<e^{2 \gamma R}<e^{5 \times 10^{-2}}=e^{0.02} \Omega 1$]
That is at the depth equal to the length of a gravity wave there is a second order pressure variation with twice the frequency of the gravity wave.

Case (iii). When the depth is compar able to the length of of a compression wave.

$$
\begin{aligned}
& z \bumpeq \lambda_{e} \leqslant \frac{100}{\sqrt{2} \cdot \lambda_{g}} \\
& e^{-k z} \bumpeq e^{-k \cdot \frac{100}{\sqrt{2}} \cdot \frac{2 \pi}{2}}=e^{-\frac{20017}{\sqrt{2}} \bumpeq 0} \\
& \therefore \quad \phi_{1} \bumpeq 0 .
\end{aligned}
$$

AND $\phi_{2} \Omega-\frac{\sigma}{8} \cdot 4 \cdot \frac{\cos 2 \sigma(z-h) / c}{\cos 2 \sigma h / c} \cdot 2 a_{1} a_{2} \sin 2 \sigma t$.

$$
\therefore \phi_{2} \Omega-\sigma \cdot \frac{\cos 2 \sigma(z-h) / c}{\cos 2 \sigma h / c} \cdot a_{1} a_{2} \sin 2 \sigma t \quad(7-40)
$$

That is, the motion reduces to a compression wave at depth of the order of the length of a compression wave. Equation ($6 \cdot 9$) is the general differential equation for a wave motion in a heavy compressible fluid. It is. interesting to see which terms in this equation dominate for the ocean waves of this section. If we take the value of $\boldsymbol{\phi}$, given by equation (7.33), for $\boldsymbol{\phi}$ we find that

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial x^{2}}=-\frac{k \sigma \cosh k(z-h)}{\sinh k t} \cdot\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right] \\
& \frac{\partial^{2} \phi}{\partial z^{2}}=\frac{k \sigma \cosh k(z-h)}{\sinh h h} \cdot\left[a_{1} \sin (k x-\sigma t)-a_{2} \sin (k x+\sigma t)\right]
\end{aligned}
$$

that is $\nabla^{2} \phi=0$.
So that no compression term appears.

$$
\begin{aligned}
\frac{\partial \phi}{\partial z} & =\frac{\sigma \sinh k(z-h)}{\sinh k h} \cdot\left[a_{1} \sin (k x-o t)-a_{2} \sin (k x+\sigma t)\right] \\
& \rightarrow 0 \text { as } z \rightarrow h .
\end{aligned}
$$

These results are in full agreement with the usual first order theory.

If we now take the value of ϕ_{2}, given by equation (7-38) for ϕ we find that

$$
\begin{aligned}
\frac{\partial \phi}{\partial z}= & -\frac{3 \sigma k}{4} \cdot \frac{\sinh 2 k(z-h)}{\sinh 4 k h} \cdot\left[a_{1}^{2} \sin 2(k x-\sigma t)-a_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\frac{\sigma^{2}}{4 c} \cdot \frac{\cosh 3 t h}{\sinh ^{2} k h \cdot \operatorname{coh} k h} \cdot \frac{\sin 2 \sigma(z-k) / c}{\cos 2 \sigma k / c} \cdot 2 a_{1} a_{2} \sin 2 \sigma t .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial^{2} \phi}{\partial z^{2}}=-\frac{3 \sigma k^{2}}{2} \cdot \frac{\cosh 2 k(z-h)}{\sin ^{4} k h} \\
& \times\left[a_{1}^{2} \sin 2(k x-\sigma t)-a_{2}^{2} \sin 2(k x+\sigma t)\right] \\
& +\frac{\sigma^{3}}{2 c^{2}} \cdot \frac{\operatorname{coh} 3 k h}{\sinh ^{2} k h \cdot \operatorname{Cosh} k h} \cdot \frac{\cos 2 \sigma(z-h) / c}{\cos 2 \sigma h / c} \cdot 2 a_{1} a_{2} \sin 2 \sigma t \text {, } \\
& \frac{\partial^{2} \phi}{\partial x^{2}}=\frac{3 \sigma^{2} k^{2}}{2} \cdot \frac{\cosh 2 k(z-k)}{\sinh ^{4} k z} \cdot\left[a_{1}^{2} \sin 2(k x-\sigma t)-a_{2}^{2} \sin 2(k x+\sigma t)\right], \\
& \text { That is } \\
& \nabla^{2} \phi=\frac{\sigma^{3}}{2 c^{2}} \cdot \frac{\cosh 3 k h}{\sinh ^{2} k h \cdot \cosh k h} \cdot \frac{\cos 2 \sigma(z-h) / c}{\cos 2 \sigma h / c} \cdot 2 a, a_{2} \sin 2 \sigma t . \\
& \text { As } \quad z \rightarrow 0 \quad c^{2} \nabla^{2} \phi \rightarrow 0 \\
& \text { and } g \frac{\partial \phi}{\partial z} \text { remains finite for large } h \text {. } \\
& \text { As } \quad Z \rightarrow h \quad \frac{\partial \phi}{\partial z} \rightarrow 0 \\
& \text { and } \quad c^{2} \nabla^{2} \phi \rightarrow \frac{\sigma^{3}}{2} \cdot \frac{\cosh 3 k h}{\sin ^{2} k h \cdot \operatorname{Cosh} k} \cdot \sec \frac{2 \sigma h}{c} \\
& x 2 a_{1} a_{2} \sin 2 \sigma t \text {. }
\end{aligned}
$$

It thus appears that the ocean may be considered as comprising two layers: a surface layer in which the gravity term of equation (6.9) dominates the motion and the remainder of the ocean, below a depth equal to the length of gravity wave, in which the compression term of equation (6.9) determines the motion. In the surface layer the motion is similar to that to be expected in a heavy non-compressible fluid (see chapter 2) and produces a

But $\frac{2 \sigma}{c \gamma}=\frac{2 \sigma}{c g} \cdot 2 c^{2}=\frac{4 \sigma c}{9}$

$$
=\frac{4 \times 0.5 \times 1.4 \times 10^{5}}{9.8 \times 10^{2}} \text { by equation (7.1) }
$$

$\approx 2.8 \times 10^{2}$

That is $\frac{2 \sigma h}{c} \bumpeq n \pi+\frac{\pi}{2}$.
This is the same result as is obtained by putting $\cos 2 \pi \mathscr{k} / \mathrm{c}$ equal to zero in equation (7.40); which is to be expected since equation (7.40) is derived from equation (6.95). His condition, when $\frac{2 \sigma \hbar}{c}=n \pi+\frac{\pi}{2}$, is one of resonance between the surface and the sea bed.

From equation (7.40) wevsee that the length of a compression wave is $\frac{\pi c}{\sigma}$, so that resonance occurs when

$$
\begin{equation*}
\mathcal{R}=\left(\frac{n}{2}+\frac{1}{4}\right) \frac{\pi c}{\sigma} \cdot\left(\frac{1}{2} a+\frac{1}{4}\right) \tag{7.41}
\end{equation*}
$$ that is when the depth is about $\left(\frac{1}{2} a+\frac{1}{4}\right)$ times the length of a compression wave.

Summary: In an incompressible fluid, there is a second order pressure variation under a standing wave. This pressure variation exists at all depths and has a frequency twice that of the standing wave and an amplitude proportional to the square of the mean amplitude of the surface wave (see chapters 2 and 3).

In a compressible fluid, the elasticity of the liquid has little effect on a surface layer of depth equal to a wave length of the gravity wave, and the liquid in this layer has a motion very much as would be expected if the whole liquid were inelastic. In the lower layer the motion is small and is controlled by the elasticity.

The compression wave in the lower layer has the same frequency as the pres~ure variation, and may be regarded as a consequence of the pressure variation at the interface of the two layers.

The fluid being regarded as incompressible, a pressur variation applied to the free surface, may be used to estimate the displacement at the bed, due to a standing wave which produces a similar pressure variation at a depth of the length of a gravitational wave.

CHAPTER 8.
The displacement of the sea bed due to an oscillatory force applied at the free surface.

In this chapter we shall make a first order investigation similar to that made by Stoneley(1926) and by Scholte (1943).

The origin is taken on the surface of the ground, the z-axis is measured vertically downwards and the x and y axes are taken in the horizontal plane and are perpendicular.

The superficial water is of depth h, so that in the undisturbed state the equations of the sea bed and the surface of the sea are $Z=0$ and $Z=-\mathcal{L}$ respectively.

We shall neglect the effect of the water's viscosity. Let $\mathbb{Q ^ { \prime }}, \mathbb{M}, \mathbb{N}^{\prime}$, denote the displacement components of the water in the x, y and z directions respectively.
P_{0} and P_{0} are the pressure and the density of the weter in the undisturbed state; \boldsymbol{P}_{i} and P_{i} are the changes in the pressure and density respectively. Then the actual pressure β and the actual density ρ are given by

$$
\left.\begin{array}{l}
p=p_{0}+p_{1} \\
p=p_{0}+p_{1}
\end{array}\right\}
$$

In the Eulerian system the equations of motiom are

$$
\left.\begin{array}{l}
\rho_{0} \frac{\partial^{2} u^{\prime}}{\partial t^{2}}=-\frac{\partial p_{1}}{\partial x}, \\
\rho_{0} \frac{\partial^{2} v^{\prime}}{\partial t^{2}}=-\frac{\partial p_{1}}{\partial y}, \tag{8.2}\\
\rho_{0} \frac{\partial^{2} \omega^{\prime}}{\partial t^{2}}=-\frac{\partial p_{1}}{\partial z},
\end{array}\right\}
$$

The continuity equation for a compressible fluid (Lamb: chapter I, section 7) is

$$
\frac{D \rho}{D t}+P_{0}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}+\frac{\partial w}{\partial z}\right)=0
$$

where $\quad \frac{D}{\partial t} \equiv \frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+v \frac{\partial}{\partial y}+\omega \frac{\partial}{\partial z}$,
and $\boldsymbol{u}, \boldsymbol{V}, \boldsymbol{\omega}$ are the velocity components in the x, y and z directions respectively.
Also the changes in the pressure and density are connected by the relation

$$
\begin{align*}
& \frac{D p}{D t}=c^{2} \frac{D \rho}{D t}, \\
& \text { where } \quad c^{2}=\left(\frac{d p}{d \rho}\right)_{\rho=\rho_{0}} \\
& \frac{D p}{D t}=\frac{\partial p_{1}}{\partial t}+\frac{\partial\left(\Sigma+\omega^{\prime}\right)}{\partial t} \cdot \frac{\partial p}{\partial\left(z+\omega^{\prime}\right)}-\frac{\partial p_{1}}{\partial t}+\frac{\partial p_{0}}{\partial z} \cdot \frac{\partial \omega^{\prime}}{\partial t}(8.5)
\end{align*}
$$

Hence by equations (8.4) and (8.5)

$$
\begin{aligned}
c^{2} \frac{D P}{D t} & =\frac{\partial p_{1}}{\partial t}+\frac{\partial p_{0}}{\partial z} \cdot \frac{\partial \omega^{\prime}}{\partial t} \\
& =\frac{\partial p_{1}}{\partial t}+p_{0} g \frac{\partial \omega^{\prime}}{\partial t}, \text { since } \quad p_{0}=p_{0} g z
\end{aligned}
$$

Hence by equation ($8 \cdot 3$)

$$
\frac{\partial P_{1}}{\partial t}+\rho_{0} g \frac{\partial \omega^{\prime}}{\partial t}+c^{2} \rho_{0} \frac{\partial}{\partial t}\left(\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial w^{\prime}}{\partial z}\right)=0
$$

From the first of equations 18.2)

$$
p_{0} \frac{\partial^{3} u^{\prime}}{\partial t^{3}}=-\frac{\partial}{\partial x} \cdot\left(\frac{\partial p_{1}}{\partial t}\right)
$$

Hence from (8 2) and (86)

$$
\begin{align*}
& \rho_{0} \frac{\partial^{3} u^{\prime}}{\partial t^{3}}=\frac{\partial}{\partial x}\left\{\rho_{0} g \frac{\partial \omega^{\prime}}{\partial t}+c^{2} \rho_{0} \frac{\partial}{\partial t}\left(\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial \omega_{0}^{\prime}}{\partial z}\right)\right\}, \\
& P_{0} \frac{\partial^{3} v^{\prime}}{\partial t^{3}}=\frac{\partial}{\partial y}\left\{\rho_{0} g \frac{\partial \omega^{\prime}}{\partial t}+c^{2} \rho_{0} \frac{\partial}{\partial t}\left(\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial \omega^{\prime}}{\partial z}\right)\right\}, \\
& P_{0} \frac{\partial^{3} \omega^{\prime}}{\partial t^{3}}=\frac{\partial}{\partial z}\left\{\rho_{0} g \frac{\partial \omega^{\prime}}{\partial t}+c^{2} \rho_{0} \frac{\partial}{\partial t}\left(\frac{\partial u^{\prime}}{\partial x}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial \omega^{\prime}}{\partial z}\right) .\right.
\end{align*}
$$

If the motion is assumed to be irrotational, we can write

$$
\left.\begin{array}{l}
u=\frac{\partial u^{\prime}}{\partial t}=-\frac{\partial \phi}{\partial x}, \\
v=\frac{\partial v^{\prime}}{\partial t}=-\frac{\partial \phi}{\partial y}, \\
\omega=\frac{\partial \omega^{\prime}}{\partial t}=-\frac{\partial \phi}{\partial z},
\end{array}\right\} \quad(0 \cdot \overline{)}
$$

where ϕ is the velocity potential.
Then

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(\frac{\partial u^{\prime}}{\partial z}+\frac{\partial v^{\prime}}{\partial y}+\frac{\partial w^{\prime}}{\partial z}\right) \\
= & \frac{\partial}{\partial x}\left(\frac{\partial u^{\prime}}{\partial t}\right)+\frac{\partial}{\partial y}\left(\frac{\partial w^{\prime}}{\partial t}\right)+\frac{\partial}{\partial z}\left(\frac{\partial \omega^{\prime}}{\partial t}\right) \\
= & -\left(\frac{\partial^{2} \phi}{\partial u^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right) \\
= & -\nabla^{2} \phi .
\end{aligned}
$$

Also $\quad \frac{\partial^{3} u^{\prime}}{\partial t^{3}}=\frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial u^{\prime}}{\partial t}\right)=-\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{\partial \phi}{\partial x}$, etc.
Hence the first of equations ($8 \cdot 7$) becomes

$$
-\rho_{0} \frac{\partial^{2}}{\partial t^{2}}\left(\frac{\partial \phi}{\partial x}\right)=\frac{\partial}{\partial x}\left\{-\rho_{0} g \frac{\partial \phi}{\partial z}-e^{2} \rho_{0}\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)\right\} \text {, }
$$

that is

$$
\frac{\partial^{2}}{\partial t^{2}} \cdot \frac{\partial \phi}{\partial x}=\frac{\partial}{\partial x}\left(c^{2} \nabla^{2} \phi+\rho \frac{\partial \phi}{\partial z}\right) .
$$

Similarly the second and third of (8.7) become

$$
\begin{aligned}
& \frac{\partial^{2}}{\partial \partial^{2}} \cdot \frac{\partial \phi}{\partial y}=\frac{\partial}{\partial y}\left(c^{2} \nabla^{2} \phi+\frac{\partial \phi}{\partial z}\right) . \\
& \frac{\partial^{2}}{\partial z^{2}} \cdot \frac{\partial \phi}{\partial z}=\frac{\partial}{\partial z}\left(c^{2} \nabla^{2} \phi+9 \frac{\partial \phi}{\partial z}\right) .
\end{aligned}
$$

Hence ϕ must satisfy

$$
\frac{\partial^{2} \phi}{\partial t^{2}}=c^{2} \nabla^{2} \phi+g \frac{\partial \phi}{\partial z}
$$

In what follows we shall assume that the depth of the ocean remains constant and that the density of the suboceanic layer of the earth is uniform, and equal to ρ_{2}. We shall also assume the density of the water to be constant and equal to P_{p}. We suppose that ϕ varies according as

$$
\phi=e^{i(\sigma t-\xi x-\beta z)}
$$

then substituting for $\boldsymbol{\phi}$ in (8.9)

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial t^{2}}-c^{2} \nabla^{2} \phi-g \frac{\partial \phi}{\partial 2} \\
= & -\sigma^{2} \phi-c^{2}\left(\xi^{2}+\beta^{2}\right) \phi+i g \beta \phi \\
= & 0 \\
& c^{2} \beta^{2}+i g \beta+c^{2} \xi^{2}-\sigma^{2}=0 \\
\therefore \beta= & -\frac{i g}{2 c^{2}} \pm \sqrt{\frac{\sigma^{2}}{c^{2}}-\xi^{2}-\frac{g^{2}}{4 c^{2}}} \\
= & -\frac{i g}{2 c^{2}} \pm J
\end{align*}
$$

(8.13).

Hence by $8 \cdot 10,8.12$ and $8 \cdot 13$,

$$
\phi=e^{i(0 t-\xi x)-\frac{\xi z}{2 c^{2}}} \cdot\left[A e^{-i f z}+B e^{i f z}\right],(8 \cdot 14)
$$

where A and B are determined by the boundary conditions. Also

$$
u=-\frac{\partial \phi}{\partial x}=i \xi e^{i(\operatorname{ot}-\xi x)-\frac{g z}{2 c_{2}}}\left[A e^{-i \rho_{z}}+B e^{i f z}\right](8.15)
$$

and

$$
\begin{aligned}
& \omega=-\frac{\partial \phi}{\partial z} \\
& =e^{i(\partial t-\xi x)-\frac{g z}{2 c^{2}} \cdot\left[\left(i \rho+\frac{g}{2 c^{2}}\right) A e^{-i \delta z}+\left(-i J+\frac{g}{2 c^{2}}\right) B e^{i \rho z}\right](8 \cdot 16)}
\end{aligned}
$$

By Lamb section 40

$$
\frac{p}{p_{1}}=\frac{\partial \phi}{\partial t}-\Omega-\frac{1}{2} q^{2}+F(t)
$$

Where Ω is the potential function of the body forces.

$$
\text { Hence } \frac{p}{p_{1}}=\frac{\partial \phi}{\partial t}+g z-\frac{1}{2} q^{2}+F(t) \text {. }
$$

At the surface

$$
\theta=-g h-\frac{1}{2} q^{2}+F(t) \text { at the same instant. }
$$

Hence $\quad \frac{p}{\rho_{1}}=\frac{\partial \phi}{\partial t}+g(\Sigma+d)$

$$
\text { or } \quad p=\rho_{1} \frac{\partial \phi}{\partial t}+9 \rho_{1}(z+h)
$$

For the displacements in the material of the sea bed Sullen (page 2l) gives

$$
\rho_{2} \frac{\partial^{2} u_{i}}{\partial t^{2}}=(\lambda+\mu) \frac{\partial \theta}{\partial x_{i}}+\mu \nabla^{2} u_{i}
$$

after neglecting external forces, whore λ and μ are Lame 's elastic coefficients and

$$
\begin{aligned}
\theta & =\frac{\partial u_{i}}{\partial x_{i}}=\operatorname{div}(u) \\
\therefore \frac{\partial \theta}{\partial x_{i}} & =\frac{\partial \theta}{\partial x_{1}}+\frac{\partial \theta}{\partial x_{2}}+\frac{\partial \theta}{\partial x_{3}}=\operatorname{grad} \theta=\nabla \theta \\
& =\operatorname{grad}\{\operatorname{div} u\}=\nabla(\operatorname{div} u)
\end{aligned}
$$

Hence $\rho \frac{\partial^{2} u_{i}}{\partial t^{2}}=(\lambda+\mu) \nabla\left(\operatorname{div} u_{i}\right)+\mu \nabla^{2} u_{i}$
for a displacement vector $\boldsymbol{u}_{\mathbf{i}}(i=1, \dot{2}, 3)$.
Let U and W denote the components of the displacement of the sea bed in the x and z directions respectively.
Following Sullen (page 86) we set

$$
\left.\begin{array}{l}
V=\frac{\partial \phi^{\prime}}{\partial x}+\frac{\partial \psi^{\prime}}{\partial z} \\
W=\frac{\partial \phi^{\prime}}{\partial z}-\frac{\partial \psi^{\prime}}{\partial x}
\end{array}\right\}
$$

A displacement of the sea bed satisfies

$$
\begin{gathered}
\rho_{2} \frac{\partial^{2} r}{\partial t^{2}}=(\lambda+k) \nabla \cdot d i v r+\beta \nabla^{2} r, \\
r=i V+k W
\end{gathered}
$$

i and K being unit vectors in the x and z directions respectively. Equation (8 19) becomes

$$
\begin{aligned}
& \rho_{2} \frac{\partial^{2}}{\partial t^{2}}(i v+k w)=(\lambda+k) \nabla \cdot \operatorname{div}(i v+k w)+\mu \nabla^{2}(i v+\underline{k} w) \\
&=(\lambda+\mu) \nabla\left(\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}\right)+\mu\left[i\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} u}{\partial z^{2}}\right)+\underline{k}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)\right] \\
&=(\lambda+\mu)\left[i \frac{\partial}{\partial x}\left(\frac{\partial v}{\partial x}+\frac{\partial w}{\partial z}\right)+k \frac{\partial}{\partial z}\left(\frac{\partial U}{\partial x}+\frac{\partial w}{\partial z}\right)\right] \\
&+\beta\left[i\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} v}{\partial z^{2}}\right)+\underline{K}\left(\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial z^{2}}\right)\right]
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P_{2} \frac{\partial^{2} U}{\partial t^{2}}=(\lambda+\mu) \frac{\partial}{\partial x}\left(\frac{\partial U}{\partial x}+\frac{\partial W}{\partial z}\right)+\mu\left(\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial z^{2}}\right), \\
& \text { and } \\
& P_{2} \frac{\partial^{2} W}{\partial t^{2}}=(\lambda+\mu) \frac{\partial}{\partial z}\left(\frac{\partial u}{\partial x}+\frac{\partial W}{\partial z}\right)+\mu\left(\frac{\partial^{2} W}{\partial x^{2}}+\frac{\partial^{2} W}{\partial z^{2}}\right) .
\end{aligned}
$$

But

$$
\frac{\partial U}{\partial x}+\frac{\partial W}{\partial z}=\frac{\partial^{2} \phi^{\prime}}{\partial x^{2}}+\frac{\partial^{2} \psi^{\prime}}{\partial x \partial z}+\frac{\partial^{2} \phi^{\prime}}{\partial z^{2}}-\frac{\partial^{2} \psi^{\prime}}{\partial x \partial z}=\nabla^{2} \phi^{\prime},
$$

and

$$
\begin{aligned}
\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial z^{2}} & =\frac{\partial^{3} \phi^{\prime}}{\partial x^{3}}+\frac{\partial^{3} \psi^{\prime}}{\partial x^{2} \partial z}+\frac{\partial^{3} \phi^{\prime}}{\partial x \partial z^{2}}+\frac{\partial^{3} \psi^{\prime}}{\partial z^{3}} \\
& =\frac{\partial}{\partial x} \nabla^{2} \phi^{\prime}+\frac{\partial}{\partial z} \nabla^{2} \psi^{\prime}
\end{aligned}
$$

Hence

$$
\begin{align*}
P_{2} \frac{\partial^{2} U}{\partial t^{2}} & =(\lambda+\mu) \frac{\partial}{\partial x} \nabla^{2} \phi^{\prime}+\mu \frac{\partial}{\partial x} \nabla^{2} \phi^{\prime}+\mu \frac{\partial}{\partial z} \nabla^{2} \psi^{\prime} \\
\therefore P_{2} \frac{\partial^{2} U}{\partial t^{2}} & =(\lambda t \mu) \frac{\partial}{\partial x} \nabla^{2} \phi^{\prime}+\mu \frac{\partial}{\partial z} \cdot \nabla^{2} \psi^{\prime} \tag{8.20}\\
\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial z^{2}} & =\frac{\partial^{3} \phi^{\prime}}{\partial x^{2} \partial z}-\frac{\partial^{3} \psi^{\prime}}{\partial x^{3}}+\frac{\partial^{3} \phi^{\prime}}{\partial z^{3}}-\frac{\partial^{3} \psi^{\prime}}{\partial x \partial z^{2}} \\
& =\frac{\partial}{\partial z} \cdot \nabla^{2} \phi^{\prime}-\frac{\partial}{\partial x} \cdot \nabla^{2} \psi^{\prime}
\end{align*}
$$

Pence

$$
P_{2} \cdot \frac{\partial^{2} \omega}{\partial t^{2}}=(\lambda+2 \mu) \frac{\partial}{\partial z} \nabla^{2} \phi^{\prime}-\mu \frac{\partial}{\partial x} \nabla^{2} \psi^{\prime} \text { (8.21) }
$$

Substituting for U and $W_{\text {from (}}$ (8.18) into (8.20) and (8.21)

$$
\rho_{2}\left[\frac{\partial}{\partial x} \cdot \frac{\partial^{2} \phi^{\prime}}{\partial t^{2}}+\frac{\partial}{\partial z} \cdot \frac{\partial^{2} \psi^{\prime}}{\partial t^{2}}\right]=(\lambda+\partial \mu) \frac{\partial}{\partial x} \nabla^{2} \phi^{\prime}+\mu \frac{\partial}{\partial z} \nabla^{2} \psi^{\prime}
$$

and

$$
P_{2}\left[\frac{\partial}{\partial z} \cdot \frac{\partial^{2} \phi^{\prime}}{\partial t^{2}}-\frac{\partial}{\partial x} \cdot \frac{\partial^{2} \psi^{\prime}}{\partial t^{2}}\right]=(\lambda+2 \mu) \frac{\partial}{\partial z} \nabla^{2} \phi^{\prime}-\mu \frac{\partial}{\partial \Sigma} \nabla^{2} \psi^{\prime} .
$$

Hence

$$
\left.\begin{array}{l}
p_{2} \frac{\partial^{2} \phi^{\prime}}{\partial t^{2}}=\left(\lambda+2 \mu \nabla^{2} \phi^{\prime}\right. \\
P_{2} \frac{\partial^{2} \psi^{\prime}}{\partial t^{2}}=\mu \nabla^{2} \psi^{\prime}
\end{array}\right\}
$$

and

Take $\quad \phi^{\prime}=\frac{c}{i \sigma} \cdot e^{i(0 t-\xi x-p z)}$

$$
\text { and } \quad \psi^{\prime}=\frac{D}{i \sigma} \cdot e^{\left.i(\sigma t-\xi x-q)^{2}\right)}
$$

In order that (8.23) should satisfy the first of (8.22)

$$
\left.\begin{array}{rl}
P_{2}(i \sigma & =-(\lambda+2 \mu) \frac{c}{i \sigma}\left(\xi^{2}+\beta^{2}\right) \\
\therefore P_{2} \sigma^{2} & =(\lambda+2 \mu)\left(\xi^{2}+\beta^{2}\right) \\
\therefore p^{2} & =\frac{P_{2} \sigma^{2}}{\lambda+2 \mu}-\xi^{2} \\
& =\frac{\sigma^{2}}{\alpha_{2}^{2}}-\xi^{2}
\end{array}\right\}
$$

($8 \cdot 25$)
where

$$
\alpha_{2}=\sqrt{\frac{\lambda+2 \mu}{P_{2}}}
$$

that is α_{2} is the velocity of the compression (dilatational or irrctational $)$ wave. (bullen section $4 \cdot 1$). In order that $(8 \cdot 24)$ should satisfy the second of $(8 \cdot 22)$

$$
\begin{aligned}
p_{2} i \sigma & =-\frac{\mu}{i \sigma}\left(\xi^{2}+q^{2}\right) \\
\therefore \quad p_{2} \sigma^{2} & =\mu\left(\xi^{2}+q^{2}\right)
\end{aligned}
$$

$$
\text { that is } \left.\begin{array}{rl}
q^{2} & =\frac{p_{2}^{2} \sigma^{2}}{\mu}-\xi^{2} \\
& =\frac{\sigma^{2}}{\beta_{2}^{2}}-\xi^{2},
\end{array}\right\}
$$

where $\beta_{2}=\sqrt{\frac{\beta_{1}}{\beta_{2}}}$
that is β_{2} is the velocity of the distortional (rotational or equivoluminal or shake) wave. (Mullen 4•1) The velocity components of a solid particle are

$$
u_{2}=\frac{\partial V}{\partial x} \quad \text { and } \quad \omega_{2}=\frac{\partial W}{\partial z} \quad \text { (8.29) }
$$

From equations $(8 \cdot 18),(8 \cdot 23)$ and $(8-24)$

$$
\begin{aligned}
& U=-\frac{1}{\sigma}\left[C \xi^{-i p z}+D q e^{-i q z]} e^{i(\sigma t-\xi x)}\right. \\
& \text { and } \\
& W=-\frac{1}{\sigma}\left[C p e^{-i p z}\right] e^{-i q z]} e^{i(\sigma t-\xi x)}
\end{aligned}
$$

hence by equation $(8 \cdot 29)$

$$
\left.\begin{array}{l}
u_{2}=-i\left(C \xi e^{-i p z}+D q e^{-i q^{2}}\right) \cdot e^{i(\sigma t-\xi x)} \tag{8.80}\\
\omega_{2}=-i\left(C p e^{-i p z}-D \xi e^{-i q^{2}}\right) \cdot e^{i(\sigma t-\xi x)}
\end{array}\right\}
$$

The stresses across the XOY plane parallel to $O X$ and $O Z$ respectively are $p_{z x}$ and $p_{z z}$, where by Sullen (\oint 5.1)

$$
\left.\begin{array}{l}
p_{z x}=\mu\left(\frac{\partial w}{\partial x}+\frac{\partial U}{\partial z}\right) \\
p_{z z}=\lambda \text { dir } r+2 \mu \frac{\partial w}{\partial z}
\end{array}\right\}
$$

Hence

$$
\begin{aligned}
p_{z x} & =\mu i \frac{\xi}{\sigma}\left(C p e^{-i p z}-D \xi e^{-i q z}\right) \cdot e^{i(\sigma t-\xi x)} \\
& +\mu \frac{i}{\sigma}\left(c p \xi e^{-i p z}+D q^{2} e^{-i q z}\right) e^{i(\sigma t-\xi x)} \\
& =\mu \cdot \frac{i}{\sigma}\left[2 p \xi c e^{-i p z}+D\left(q^{2}-\xi^{2}\right) e^{-i q z}\right] e^{i\left(\sigma t-\xi_{x}\right)} \\
\therefore p_{z x} & =i \mu k^{2}\left[\frac{2 \xi p}{k^{2}} \cdot c e^{-i k z}+\left(\frac{q^{2}}{k^{2}}-\frac{\xi^{2}}{k^{2}}\right) D e^{-i q z}\right] e^{i(\sigma t-\xi x)}
\end{aligned}
$$

where $\quad k^{2}=\frac{\sigma^{2}}{\beta_{2}^{2}}=\frac{\sigma^{2} \rho_{2}}{\mu}$
That is

$$
p_{z x}=i \rho_{2} \sigma\left[\frac{2 \xi p}{k^{2}} \cdot C e^{-i p z}+\left(\frac{q^{2}}{k^{2}}-\frac{\xi^{2}}{k^{2}}\right) D e^{-i z^{2}} \cdot\right] e^{i(\sigma t-\xi x)}(8033)
$$

$$
\begin{aligned}
p_{z z}= & \lambda d \omega r+2 \mu \frac{\partial W}{\partial z} \\
= & \lambda \frac{\partial U}{\partial x}+(\lambda+2 \mu) \frac{\partial W}{\partial z} \\
= & \frac{\lambda \xi i}{\sigma}\left[C \xi e^{-i p z}+D q e^{-i q z}\right] e^{i(\sigma t-\xi x)} \\
& +(\lambda+2 \mu) \frac{i}{\sigma}\left[C p^{2} e^{-i p z}-D \xi q e^{-i q z}\right] e^{i(\sigma t-\xi x)} \\
= & \frac{i}{\sigma}\left[\left\{C \lambda \xi^{2}+(\lambda+2 \mu) C p^{2}\right\} e^{-i p z}\right. \\
& \left.+D\{\lambda \xi q-(\lambda+2 \mu) \xi q\} e^{-i q z}\right] e^{i(\sigma t-\xi x)} \\
= & \frac{i}{\sigma}\left[C\left\{\lambda \xi^{2}+(\lambda+2 k) p^{2}\right\} e^{-i p z}-D \cdot 2 \mu \xi q e^{-i q z}\right] e^{i(o t-\xi x)}
\end{aligned}
$$

But by equation (8.25)

$$
\begin{aligned}
&(\lambda+2 \mu) \beta^{2}=\rho_{2} \sigma^{2}-(\lambda+2 \mu) \xi^{2} \\
& \therefore p_{2 z}=\frac{i}{\sigma}\left[C\left\{\rho_{2} \sigma^{2}-2 \mu \xi^{2}\right\} e^{-i p z}-D \cdot 2 \mu \xi q e^{-i q z}\right] e^{i(\sigma t-\xi x)} \\
&=\frac{i k^{2}}{\sigma}\left[C\left(\frac{p_{2} \sigma^{2}}{k^{2}}-\frac{2 \mu \xi^{2}}{k^{2}}\right) e^{-i p z}-D \cdot \frac{2 \mu \xi q}{k^{2}} e^{-i q z}\right] e^{i(\sigma t-\xi x)}
\end{aligned}
$$

Hence using equation (8.32)

$$
p_{z z}=i \rho_{2} \sigma\left[c\left(1-\frac{2 \xi^{2}}{k^{2}}\right) e^{-i p z}-D \cdot \frac{2 \xi q}{k^{2}} e^{-i q z}\right] \cdot e^{i\left(o t-\frac{\xi x}{(8.34)}\right.}
$$

Continuity of velocity and stress at the ocean bed.
Equations $(8 \cdot 15),(8 \cdot 16)$ and $(8 \cdot 17)$ give the components of velocity and pressure at a point (x, z) in the ocean.

Equations (8.30), (8.33) and (8.34) give the components of velocity and of stress at the point (x, z) of the sea bed.

At the surface of the ocean-bed the normal components of velocity and stress must be continuous.

The continuity of ronal stress gives:

$$
\left.\begin{array}{l}
{\left[\rho_{1} \frac{\partial \phi}{\partial t}+g \rho_{1}(z+h)\right]_{z=0}+g \rho_{1}(\text { Elenetion of lower surface of }} \\
\text { sea })
\end{array}\right)
$$

That is

$$
\begin{aligned}
& p_{1} \cdot \sigma \cdot e^{i(\sigma k-\xi x)}(A+B)+ \\
& \frac{g p_{1}}{i \sigma} \cdot e^{i(\sigma t-\xi x)}\left[A\left(i f+\frac{g}{2 c^{2}}\right)+B\left(-i J+\frac{g}{2 c^{2}}\right)\right] \\
& =i p_{2} \sigma\left[C\left(1-\frac{2 \xi^{2}}{k^{2}}\right)-D \cdot \frac{2 \xi q}{k^{2}}\right] e^{i(\sigma t-\xi x)} \\
& \\
& +\frac{g p_{2}}{\sigma^{2}}\left[C \beta-D \xi^{i(\sigma t-\xi x)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{1}}{P_{2}}\left[A\left(1-\frac{i g \rho}{\sigma^{2}}-\frac{g^{2}}{2 c^{2} \sigma^{2}}\right)+B\left(1+\frac{i g j}{\sigma^{2}}-\frac{g^{2}}{22^{2} \sigma^{2}}\right)\right] \\
& =C\left(1-\frac{2 \xi^{2}}{k^{2}}-\frac{i g p}{\sigma^{2}}\right)-D\left(\frac{2 \xi q}{k^{2}}-\frac{i g \xi}{\sigma^{2}}\right)
\end{aligned}
$$

The continuity of normal velocity at the seabed gives:

$$
\begin{align*}
& {\left[e^{i\left(\sigma t-\xi x-\frac{\xi z}{c^{2}}\right)\left\{A\left(i f+\frac{g}{2 c^{2}}\right) e^{-i f z}\right.}\right.} \\
& \left.\left.+B\left(-i j+\frac{g}{2 c^{2}}\right) e^{i f z}\right\}\right]_{z=0} \\
& =\left[-i C p e^{-p z}+i D \xi e^{-q z}\right]_{z=0} \cdot e^{i(0 t-\xi x)} \\
& \therefore A\left(i \rho+\frac{g}{2 c^{2}}\right)+B\left(-i \rho+\frac{g}{2 c^{2}}\right)=-i p C+i \xi D
\end{align*}
$$

Since we assume that the viscosity of the water may be neglected it follows that the horizontal movements of the ocean-bed and the ocean are independent and that there is no stress in the plane $z=0$,
that is $\left[\beta_{2 x}\right]=0$
Hence from equation (8.33)

$$
2 \frac{\xi p}{k^{2}} \cdot C+\left(\frac{q^{2}}{k^{2}}-\frac{\xi^{2}}{k^{2}}\right) D=0,
$$

But

$$
\begin{array}{rlr}
q^{2} & =\frac{\sigma^{2}}{\beta_{2}^{2}}-\xi^{2} & \text { (equation } 8 \cdot 27) \\
& =\beta^{2}-\xi^{2} & \text { (equation } 8 \cdot 32 \text {) }
\end{array}
$$

Hence

$$
\frac{2 \xi p}{k^{2}} \cdot c+\left(1-\frac{2^{2} \xi^{2}}{k^{2}}\right) D=0
$$

To determine A, B, C and D we need a fourth equation in addition to $(8.35),(8.36)$ and (8.37). This extra equation can be derived from the conditions at the free surface of the ocean. Let us suppose that the pressure at the free surface is the real part of $P e^{i(\sigma t-\xi n)+G R / c^{2}}$, then

$$
\left.\begin{array}{rl}
{\left[\rho_{1} \frac{\partial \phi}{\partial t}\right]_{\tau}=-h}
\end{array}\right] \rho \rho_{1}\left[\begin{array}{c}
\text { elevation of the free surface above } \\
\text { the plane } z=-h
\end{array}\right] .
$$

That is

$$
\begin{gather*}
P_{1} i \sigma e^{i(\sigma t-\xi n)+\frac{g h}{c^{2}}}\left[A e^{i J h}+B e^{-i J h}\right] \\
+\frac{g P_{1}}{i \sigma} e^{i(\sigma t-\xi x)+\frac{g h}{c^{2}}}\left[\left(i J+\frac{g}{2 c^{2}}\right) A e^{i J h}+B\left(-i \rho+\frac{g}{2 c^{2}}\right) e^{-i J h}\right] \\
=P e^{i(\sigma t-\xi n)+\frac{g h}{c^{2}}} \\
\therefore \quad i \sigma \rho_{1}\left[A\left(1-\frac{i g 5}{\sigma^{2}}-\frac{g^{2}}{2 \sigma^{2} c^{2}}\right) e^{-i J h}\right. \\
\left.+B\left(1+\frac{i g 5}{\sigma^{2}}-\frac{g^{2}}{2 c^{2} \sigma^{2}}\right) e^{-i J h}\right] \\
=P
\end{gather*}
$$

167.

We know by chapters 6 and 7 that a periodic disturbance of the free surface of the sea sets up both gravitational and compression waves and that the former are attenuated exponentially with increase of depth. In any case we wish to investigate the effect of the compression waves at depth h, so we neglect the gravitational terms in the four boundary equations.
It is convenient to write

$$
\eta=\frac{\xi}{k}=\frac{\xi \beta_{2}}{\sigma}
$$

Equations $(8 \cdot 35),(8 \cdot 36),(8 \cdot 37)$ and $(8 \cdot 38)$ then give :

$$
\begin{align*}
& \frac{P_{1}}{\rho_{2}}(A+B)=C\left(1-2 \eta^{2}\right)-2 D q \frac{\eta^{2}}{\xi}, \\
& (A-B) J=-p C+\xi D \\
& \frac{2 \eta^{2} p}{\xi} \cdot c+\left(1-2 \eta^{2}\right) D=0, \tag{8.43}\\
& i \sigma \rho_{1}\left[A e^{i J h}+B e^{-i J h}\right]=P
\end{align*}
$$

From (8:41) and (8.42)

$$
\begin{aligned}
& 2 A=\left\{\frac{p_{2}}{\rho_{1}}\left(1-2 \eta^{2}-\frac{p}{\sigma}\right\} c-\left\{\frac{2 \rho_{2}}{\rho_{1}} \cdot \frac{q \eta^{2}}{\xi}-\frac{\xi}{J}\right\} \cdot D\right. \\
& 2 B=\left\{\frac{p_{2}}{\rho_{1}}\left(1-2 \eta^{2}\right)+\frac{p}{J}\right\} c-\left\{\frac{2 \rho_{2}}{\rho_{1}} \cdot \frac{q \eta^{2}}{\xi}+\frac{\xi}{\xi}\right\} D
\end{aligned}
$$

Substituting for A and B in equation ($8-44$)

$$
\begin{aligned}
& 2 P=i \sigma \rho_{1}\left[\left\{\frac{\rho_{2}}{\rho_{1}}\left(1-2 \eta^{2}\right)-\frac{p}{3}\right\} \mathcal{C} e^{i \beta h}-\left(\frac{2 \rho_{2}}{\rho_{1}} \cdot \frac{q \eta^{2}}{\xi}-\frac{\xi}{J}\right) D e^{i \beta \hbar}\right. \\
& \left.+\left\{\frac{\rho_{2}}{\rho_{1}}\left(1-2 \eta^{2}\right)+\frac{p}{s}\right\} C e^{-i 5 h}-\left(\frac{2 \rho_{2}}{\rho_{1}} \cdot \frac{q \eta^{2}}{\xi}+\frac{\xi}{5}\right) D e^{-i f h}\right] \\
& =i \sigma \rho_{1}\left[c \cdot \frac{P_{2}}{p_{1}}\left(1-2 \eta^{2}\right)\left(e^{i J h}+e^{-i J h}\right)-\frac{p}{\beta} C\left(e^{i J h}-e^{-i \delta h}\right)\right. \\
& \left.-\frac{2 p_{2}}{p_{1}} \cdot \frac{q \eta^{2}}{\xi}\left(e^{i \delta h}+e^{-i \delta \hbar}\right)+\frac{\xi}{J} C\left(e^{i \delta \hbar}-e^{-i \delta \hbar}\right)\right] \\
& \therefore \frac{P}{i \sigma \rho_{1}}=C\left[\frac{\rho_{2}}{\rho_{1}}\left(1-2 \eta^{2}\right) \cos J h-i \frac{p}{3} \sin \rho-h\right] \\
& -D\left[\frac{2 \rho_{2}}{\rho_{1}} \cdot \frac{q \eta^{2}}{\xi} \cdot \cos f h-i \frac{\xi}{f} \sin f t\right]
\end{aligned}
$$

gut by (8.43) $C=\frac{\left(2 \eta^{2}-1\right) \xi D}{2 \eta^{2} p}$

$$
\begin{aligned}
\therefore \frac{p}{i \sigma p_{1}} & =D\left[\frac{\left(2 \eta^{2}-1\right) \xi}{2 \eta^{2} p}\left[\frac{p_{2}}{p_{1}}\left(1-2 \eta^{2}\right) \cos \xi h-\frac{i p}{5} \sin 5 h\right\}\right. \\
& \left.-\frac{2 p_{2}}{p_{1}} \cdot \frac{q^{\eta} \eta^{2}}{\xi} \cos \rho h+\frac{i \xi}{J} \sin \rho h\right]
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \frac{p}{i \sigma \rho_{1}}=D\left[-\frac{\rho_{2}}{\rho_{1}}\left\{\frac{\left(2 \eta^{2}-1\right)^{2} \xi}{2 \eta^{2} p}+\frac{2 q \eta^{2}}{\xi}\right\} \cosh i \rho h\right. \\
& \left.\quad+\frac{1}{2 \eta^{2}} \cdot \frac{\xi}{5} \cdot \sinh i \rho h\right] \\
& \therefore D=\frac{P}{i \sigma \rho_{1}\left[\frac{\rho_{1}}{\rho_{2}}\left\{\frac{\left(2 \eta^{2}-1\right)^{2} \xi}{2 \eta^{2} p}+\frac{2 q \eta^{2}}{\xi}\right\} \cosh i \rho h-\frac{1}{2 \eta^{2}} \cdot \frac{\xi}{5} \sinh i f h\right]}
\end{aligned}
$$

We let W_{0} denote the vertical displacement of the ocean bed at the point ($x, 0,0$) ; then after putting $z=0$ in the expression for W,

$$
\begin{aligned}
W_{0} & =-\frac{1}{\sigma}\left(C_{p}-D \xi\right) e^{i(\sigma t-\xi x)} \\
& =\frac{D}{\sigma}\left[\frac{\left(2 \eta^{2}-1\right) \xi}{2 \eta^{2}}-\xi\right] e^{i(\sigma t-\xi x)} \\
& =\frac{\xi}{\sigma} \cdot \frac{D}{2 \eta^{2}} \cdot e^{i(\sigma t-\xi x)}
\end{aligned}
$$

After using equation (8.45)

$$
\begin{aligned}
& W_{0}=\frac{-\xi P e^{i(\sigma t-\xi x)}}{i \sigma^{2} \rho_{1} 2 \eta^{2}\left[\frac{\rho_{2}}{\rho_{1}}\left\{\frac{\left(2 \eta^{2}-1\right)^{2} \xi}{2 \eta^{2} p}+\frac{2 q \eta^{2}}{\xi}\right\} \operatorname{Cosh} i J h-\frac{1}{2 \eta^{2}} \cdot \frac{1}{j} \cdot \sinh i S h\right.} \\
& =\frac{-P e^{i(\sigma t-\xi x)}}{i \sigma^{2} \rho_{2}\left[\left\{\frac{\left(2 \eta^{2}-1\right)^{2}}{\beta}+\frac{4 q \eta^{4}}{\xi^{2}}\right\} \operatorname{Cosh} i J h-\frac{\rho_{1}}{\rho_{2}} \cdot \frac{1}{J} \cdot \sinh i J h\right]}
\end{aligned}
$$

That is

$$
W_{0}=\frac{-P e^{i\left(\sigma t-\xi_{x}\right)}}{\sigma^{2} P_{2} G(\xi)},
$$

where

$$
G(\xi)=\left\{\frac{\left(2 \eta^{2}-1\right)^{2}}{p}+\frac{4 q \eta^{4}}{\xi^{2}}\right\} \operatorname{Coh} i \rho h-\frac{p_{1}}{p_{2}} \cdot \frac{1}{\rho} \cdot \sinh i \rho h .
$$

But $\quad \eta=\frac{\xi}{k}=\frac{\xi \beta_{2}}{\sigma}$ by equation (8.40)

$$
\begin{aligned}
p & =\left(\frac{\sigma^{2}}{\alpha_{2}^{2}}-\xi^{2}\right)^{\frac{1}{2}}=i\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{1}{2}} \text { by }(8.25) \\
q & =\left(\frac{\sigma^{2}}{\beta_{2}^{2}}-\xi^{2}\right)^{\frac{1}{2}}=i\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}} \text { by }(8.27) \\
\text { and } \quad J & =\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{\frac{1}{2}}=i\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} \text { by }(8.13) .
\end{aligned}
$$

Hence $\quad G(\xi)=$

$$
\begin{gathered}
i\left[\left(\frac{2 \xi^{2} \beta_{2}^{2}}{\sigma^{2}}-1\right)^{2} \cdot \frac{\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}}{i}+4 i\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right) \cdot \frac{\xi^{4} \beta_{2}^{4}}{\sigma^{2} \xi^{2}}\right] \operatorname{CoshiJh} \\
-\frac{\rho_{1}}{\rho_{2}} \cdot\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{-\frac{1}{2}} \cdot \sinh i J h \\
=\left[\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left\{\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}} \xi^{2}\right\}\right] \operatorname{Cos} i \rho h \\
-\frac{\rho_{1}}{\rho_{2}}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{-\frac{1}{2}} \text { sinh } i J h .
\end{gathered}
$$

but $\operatorname{Cog} i \rho h=\operatorname{Cosh}\left[-\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h\right]=\operatorname{Coh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h$
and Sinh if $h=\operatorname{Sunh}\left[-\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h\right]=-\operatorname{Sinh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h$

$$
\begin{align*}
& \therefore G(\xi)= \\
& \left(\frac{\beta_{2}}{\sigma}\right)=\left\{\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}} \xi^{2}\right\} \cdot \operatorname{Coh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2} h} \\
& \tag{8.47}\\
& +\frac{\rho_{1}}{\rho_{2}} \cdot\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{-\frac{1}{2}} \cdot \sinh \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h .
\end{align*}
$$

With the aid of equation ($8 \cdot 46$) we may now determine the vertical displacement of a point of the sea bed caused by a force at the surface which is represented by a more general function. The new function of force selected is $P e^{i \sigma t-\frac{r}{a}+\frac{g h}{c^{2}}}$
applied to the free surface, where r is the distance of the point on the sea surface from the point ($0,0,-\mathrm{d}$) and \boldsymbol{a} is the distance at which the force is e times that at the point where $r=0$. The maximum force is at ($0,0,-d$) that is vertically above the origin, and the force decreases radially symmetrically. With this pressure system we have only to deal with a limited area within which the waves are generated.

Denote the displacements U and W of the sea bed, produced by the pressure variation $P e^{i(\sigma t-5 x)+9 k / c^{2}}$ by $F e^{-i \xi x}$ and $G_{1} e^{-i \xi x}$ respectively.

Then the displacements due to a pressure variation

$$
\begin{aligned}
& P e^{i(\sigma t-\xi x \operatorname{Con} \gamma-\xi y \sin \gamma)+\frac{g l}{c^{2}}} \text { will be } \\
& U^{\prime}=F \operatorname{Cos} \gamma \cdot e^{-i(\xi x \operatorname{Cos} \gamma+\xi y \sin \gamma)} \\
& V^{\prime}= F \sin \gamma \cdot e^{-i(\xi x \operatorname{Cos} \gamma+\xi y \sin \gamma)}
\end{aligned}
$$

and $W^{\prime}=G_{1} e^{-i(\xi x \operatorname{Cos} \gamma+\xi y \sin \gamma)}$
parallel to Oz .
By allowing Y all values from 0 to 2π we can find the average value of these functions for all $\boldsymbol{\gamma}$. The result, which will be independent of the azimuth γ, will be The average force $=\frac{1}{2 \pi} \int_{0}^{2 \pi} P e^{i(\sigma t-\xi x \cos \gamma-\xi y \sin \gamma)} d \gamma ;$
on writing $\quad x=r \cos \theta, y=r \sin \theta$, where $\quad r^{2}=+\sqrt{x^{2}+y^{2}}$,

$$
\text { this becomes } \frac{P e^{i \sigma t}}{2 \pi} \int_{\alpha}^{2 \pi+\alpha} e^{-i \zeta r \cos (\gamma-\theta)} \cdot d(\gamma-\theta)
$$

That is, the average force

$$
=\frac{P e^{i \sigma t}}{2 \pi} \int_{0}^{2 \pi}\{\operatorname{Cos}(\xi r \operatorname{Con} \phi)-i \operatorname{Sin}(\xi r \sin \phi)\} d \phi
$$

Since $\quad \operatorname{Cos} \phi=-\operatorname{Cos}(\pi-\phi)$ and $\operatorname{Cos}(2 \pi-\phi)=-\operatorname{Cos}(\pi+\phi)$, the imaginary part is zero,
the average force $=\frac{P_{i}^{i \sigma t}}{2 \pi} \int_{0}^{2 \pi} \operatorname{Cos}(\xi \cos \phi) d \phi$

$$
=P_{e}^{i r t} \cdot J_{0}\left(\xi_{r}\right) \quad(8.48),
$$

where Jo denies Bessel's function of the first kind and zero order.
The average value of \boldsymbol{W}^{\prime} is

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} G_{1} \cdot e^{-i\left(\xi x \cos \gamma+\xi_{y} \sin \gamma\right)} \cdot d \gamma
$$

$$
\begin{equation*}
=G_{r} J_{0}\left(\xi_{r}\right) \tag{8.49}
\end{equation*}
$$

After reference to equations (8.46) and (8.48) we see that the value of W_{0} caused by the pressure

$$
P_{e}{ }^{i \sigma t} . J_{0}\left(\xi_{r}\right)
$$

$$
\text { is } W_{0}=-\frac{P e^{i \sigma t}}{\sigma^{2} \rho_{2} G(\xi)} \cdot J_{0}(\xi r)
$$

We now seek to transform the function

$$
P e^{i \sigma t} J_{0}\left(\xi_{r}\right) \text { into } P e^{i \sigma t-\frac{r}{a}}
$$

According to Titchmarsh (''Theory of Fourier Integrals'' section $8 \cdot 1$)

$$
f(x)=\int_{0}^{\infty} k(x, u) d u \int_{0}^{\infty} k(u, y) f(y) d y
$$

for an arbitrary function $f(x)$.

With $k(x, u) \equiv J_{0}(x, u) \quad$ we have

$$
e^{-\frac{r}{a}}=\int_{0}^{\infty} J_{0}(\xi r) \xi d \xi \int_{0}^{\infty} J_{0}(s \xi) s e^{-\frac{s}{a}} d s(8.51)
$$

According to Watson ('Theory of Bessel's Functions'' chapter XIII section 13.2)

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-a t} J_{D}(b t) t^{\nu+1} d t=\frac{2 a \cdot(2 b)^{\nu} \cdot \Gamma\left(\nu+\frac{3}{2}\right)}{\left(a^{2}+b^{2}\right)^{D+3 / 2} \cdot \sqrt{\pi}} \\
&=\frac{2 a \cdot(2 b)^{\nu}}{\left(a^{2}+b^{2}\right)^{\nu+3 / 2}} \cdot \frac{2 \nu+1}{2^{2 \nu+1} \cdot \Gamma\left(\frac{1}{2}\right)} \\
&=\frac{a b^{\nu}}{2^{\nu}\left(a^{2}+b^{2}\right)^{\nu+3 / 2}} \cdot \frac{1 \nu \nu+1}{1 \nu}
\end{aligned}
$$

Setting $\nu=0$

$$
\int_{0}^{\infty} e^{-a t} \cdot J_{0}(b t) t d t=\frac{a}{\left(a^{2}+b^{2}\right)^{3 / 2}}
$$

Replacing a by $\frac{1}{a}, \quad$ toby \mathbb{S}, b by ξ and \mathcal{U} by μ we have that

$$
\int_{0}^{\infty} e^{-\frac{s}{a}} \cdot J_{0}(s \xi) . s d s=\frac{1}{a} \cdot \frac{1}{\left(\frac{1}{a^{2}}+\xi^{2}\right)^{3 / 2}}(8 \cdot 527
$$

Hence using equations (8.51) and (8.5%)

$$
\begin{equation*}
e^{-\frac{r}{a}}=\int_{0}^{\infty} J_{0}(\xi r) \xi \cdot \frac{1}{a} \cdot \frac{1}{\left(\frac{1}{a^{2}}+\xi^{2}\right)^{3 / 2}} \cdot d \xi \tag{8.53}
\end{equation*}
$$

By considering the force on an annulus of radius r and centre ($0,0,-h$) we see that the total force exerted on the free surface $z+h=0$ is

$$
\begin{align*}
& \int_{0}^{\infty} P e^{i \sigma t-\frac{r}{a}} \cdot 2 \pi r d r \\
= & 2 \pi P e^{i \sigma t} \int_{0}^{\infty} e^{-\frac{r}{a}} \cdot r d r \\
= & 2 \pi P e^{i \sigma t}\left[-r a e^{-\frac{r}{a}}\right]_{0}^{\infty}+2 \pi P e^{i \sigma t} \int_{0}^{\infty} a e^{-\frac{r}{a}} d r \\
= & 2 \pi a^{2} P e^{i \sigma t} \tag{0.54}
\end{align*}
$$

We now suppose that a tends to zero in such a way that $2 \pi P a^{2}$ keeps throughout the value \boldsymbol{K}. Then the force over the surface is equivalent to a force concentrated at a point distance r from ($o, c,-h$) cf value

$$
\begin{aligned}
\operatorname{lt}_{a \rightarrow 0} P e^{i \sigma t-\frac{r}{a}} & =\int_{a \rightarrow 0} P e^{i \sigma t} \int_{0}^{\infty} J_{0}(\xi r) \frac{\frac{1}{a}}{\left(\xi^{2}+\frac{1}{a^{2}}\right)^{3 / 2}} \cdot d \xi \\
& =\operatorname{dex}_{a \rightarrow 0} P a^{2} e^{i \sigma t} \int_{0}^{\infty} \frac{J_{0}(\xi r) \xi d \xi}{\left(1+a^{2} \xi^{2}\right)^{3 / 2}} \\
& =\frac{K}{2 \pi} e^{i \sigma t} \int_{0}^{\infty} J_{0}(\xi r) \xi d \xi \cdot(8.55)
\end{aligned}
$$

Application of the operator

$$
\int_{0}^{\infty} \frac{a^{2} \xi d \sqrt{\xi}}{\left(1+a^{2} \xi^{2}\right) 3 / 2}
$$

 function P er $P^{T / a}$, so that applying the same operator to equation $(\delta .50)$ we see that a pressure variation $P e^{i o t-r / a}$ applied to the free surface produces a vertical displacement W_{0}^{\prime} of the bed at a point distance r from the origin, where

$$
\begin{aligned}
W_{0}^{\prime} & =-\int_{0}^{\infty} \frac{a^{2} \xi}{\left(1+\alpha^{2} \xi^{2}\right)^{3 / 2}} \cdot \frac{P e^{i \sigma t}}{\sigma^{2} \rho_{2} G(\xi)} \cdot J_{0}(\xi r) d \xi . \\
& =-\frac{k e^{i \sigma t}}{2 \pi \sigma^{2} \rho_{2}} \int_{0}^{\infty} \frac{J_{0}(\xi r) \xi d \xi}{\left(1+a^{2} \xi^{2}\right)^{3 / 2} \cdot G(\xi)}
\end{aligned}
$$

Putting $a=0$, we have that a point force

$$
\frac{k}{2 \pi} e^{i \sigma t} \int_{0}^{\infty} J_{0}(\xi r) \xi d \xi
$$

applied to the free surface produces a vertical deflection

$$
\left.-\frac{k e^{i N t}}{2 \pi r^{2} f_{2}^{\infty}} \int_{0}^{\operatorname{Tr}(\xi r) \xi d \xi}\right)
$$

at a distance r from the origin.
Hence a concentrated force $R e^{i o t}$ applied at a point ($0,0-h$) produces a vertical deflection of the bed equal to

It is convenient to let $W(\sigma, r) e^{i \sigma t}$ denote the vertical displacement of the sea bed, at a distance r from the origin due to force $e^{i \sigma t}$ applied to the sea surface immediately above the origin, then

$$
W(\sigma, r) e^{i \sigma t}=-\frac{1}{2 \pi} \int_{0}^{\infty} \frac{J_{0}(\xi r) \xi e^{i \sigma t}}{\rho_{2} \sigma^{2} G(\xi)} \cdot d \xi \quad(8.56)
$$

We notice that as \mathcal{L} tends to er

$$
G(\xi) \rightarrow\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4 \xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\right]
$$

then $\dot{G}(\xi)=0 \quad$ becomes

$$
\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4 \xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}} \Omega 0
$$

which is the Rayleigh wave equation; it is in fact Stuneier's equation (24). For th .s to be so it is essential that the square roots $\left(\xi^{2}-\sigma^{2} / \alpha_{2}^{2}\right)^{\frac{1}{2}}$ and $\left(\xi^{2}-\sigma^{2} / \beta_{2}^{2}\right)^{\frac{2}{b}}$ be taken positive or zero. Since $\operatorname{Coh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{2} h$ and $\left(\xi^{2} \frac{\sigma^{2}}{\sigma^{2}}\right)^{-\frac{k}{2}} \sinh \left(\xi^{2}-\frac{\sigma^{2}}{\sigma^{2}}\right)^{\frac{1}{2}} h$ are singled valued functions of ξ, the choice of sign for

$$
\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} \text { is immaterial. }
$$

To evaluate the right hand side of equation (8.56) we take ξ to be a complex variable, so that for $G(\xi)=0$, when h tends to zero, to be the Rayleigh wave equation the real parts of $\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{1}{2}}$ and $\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}$ must be positive or zero. Thus the field of integration is restricted to one sheet of the Riemann surface (see Osgagd; Functions of of a complex variable) bounded by the cuts

$$
\begin{equation*}
R\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{1}{2}}=0, \quad R\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}=0 \tag{8.57}
\end{equation*}
$$

where σ is also taken as complex.

These cuts are rectangular hyperbolas :

Figure 7.
Before proceeding further it is necessary to consider more fully the function $G(\xi)$. Since $G(\xi)$ vanishes at certain points on the real axis if \sim is real, we take as complex and allow arg σ to tend to zero. $W(\sigma, r) e^{i \sigma t}$ will then contain converging ur diverging waves as argo tends to zero through positive or negative values. Since we require diverging waves we allow arg σ to tend to zero through negative values.

When σ is real.
It is assumed throughout the following that we are restricted to that part of the ξ-plane in which

$$
-\frac{\pi}{2} \leqslant \arg \left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{1}{2}} \leqslant \frac{\pi}{2} ; \quad-\frac{\pi}{2} \leqslant \operatorname{aog}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}} \leqslant \frac{\pi}{2} \quad \text { (} 8.58 t
$$

When $\operatorname{Cosh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h \neq 0$, we write

$$
\begin{equation*}
G(\xi)=4 \cosh \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} 2, \sigma_{1}(\xi), \tag{8.59}
\end{equation*}
$$

where $G_{1}(\xi)=\left(\frac{\beta_{2}}{\sigma}\right)^{4} \cdot\left[\left(\xi^{2}-\frac{\sigma^{2}}{2 \beta_{2}^{2}}\right)^{2}\left(\xi^{2} \frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}} \xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right]$

$$
\begin{align*}
& +\frac{1}{4} \cdot\left(\frac{\rho_{1}}{\rho_{2}}\right)\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{-\frac{1}{2}},\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} \\
& =G_{11}(\xi)+G_{12}(\xi), \text { sexy }
\end{align*}
$$

When $\operatorname{Coh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{h}{2}} h=0$, we have

$$
\begin{align*}
G(\xi) & =\frac{\rho_{1}}{\rho_{2}}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{-\frac{1}{2}} \cdot \sinh \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h \\
& =\frac{\rho_{1}}{\rho_{2}} \cdot \frac{2(-1)^{n} d}{(2 n+1) \pi} \tag{8-61}
\end{align*}
$$

where n is an integer.
By (8.59) every zero of $\quad G_{1}(\xi)$ is also a zeru of $G(\xi)$. But since $(8 \cdot 60)$ never vanishes it follows that $G(\xi)$ cannot vanish unless $\operatorname{Coh}\left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} 2 \neq 0$.
Hence, by (8.59), every zero of $G(\xi)$ is also a zero of $G(\xi)$ and the zeroes of $G(\xi)$ and $G_{\|}(\xi)$ are identical.
In the following we shall find it more convenient to deal with $\left.G_{\theta} \mid \xi\right)$ than with. $G(\xi)$.

We shall first suppose that σ is real.

Let $C,=c_{1}+c_{2}+c_{3}+c_{4}+c_{5}$, be closed contour in the है-plane.
Where c_{1} is the imaginary axis from iR to; c_{2}, c_{3} and c_{4} are the real axis from 0 to σ / α_{2}, and from σ / β_{2} to R respectively; and c_{F} is
 an arc of a large circle of radius, R in the first quadrant. c_{2} and c_{3} are taken along the upper side of the cuts along the real axis defined by equations (8.56), and the contour is indented inwards at $ह=\sigma / \alpha_{2}$ (where in general G_{11} has an infinity, at $\xi=\sigma / \beta_{2}$, and at any zero of \mathcal{G}_{11} on the real or imaginary axis.
By considering the variation of G_{11} round this contour we shall prove that, when
$0<\arg \xi<\frac{\pi}{2} \quad$, then $-\pi \leqslant \arg G_{11} \leqslant 0$ On c_{1} and c_{2}, ξ^{4} is real and nonnegative, so that

$$
\begin{aligned}
& >0 \text {, since } \quad \alpha_{2}>\beta_{2}
\end{aligned}
$$

On $c_{1}, \quad \xi^{2}=-\eta^{2} \quad$, say, where $\boldsymbol{\eta}$ is positive.
Let $1+\frac{\sigma^{2}}{\alpha_{2}^{2} \eta}=p^{2}, 1+\frac{\sigma^{2}}{\beta_{2}^{2} \eta}=q^{2}$, then $p<q$, and

$$
\begin{aligned}
\text { Li } \eta p G_{11} & =\left(\frac{\beta_{2}^{4} \eta^{4}}{\sigma^{4}}\right) \cdot\left[\left(1+\frac{\sigma^{2}}{2 \beta_{2}^{2} \eta^{2}}\right)^{2}-p q\right] \\
& >\left(\frac{\beta_{2}^{4} \eta^{4}}{\sigma^{4}}\right) \cdot\left[1+\frac{\sigma^{2}}{\beta_{2}^{2} \eta^{2}}-p q\right] \\
& =\left(\frac{\beta_{2}^{4} \eta^{4}}{\sigma^{4}}\right) \cdot\left(q^{2}-p q\right) \\
& =\left(\frac{\beta_{2} \eta^{4}}{\sigma^{4}}\right) \cdot q(q-p) \\
& >0 \\
\therefore i G_{11} & >0
\end{aligned}
$$

that is G_{11} is of the form (-i) (poisitive quality) so that $\quad \arg _{11}=-\frac{\pi}{2} \quad$, say on c_{1}.
on c_{2}; let $\frac{\sigma^{2}}{\alpha_{2}^{2} \xi^{2}}-1=P^{2}$ and $\frac{\sigma^{2}}{\beta_{2}^{2} \xi^{2}}-1=Q^{2}$.
Then

$$
\xi(i P) G_{11}=\left(\frac{\beta_{2} \xi}{\sigma}\right)^{4} \cdot\left[\left(\frac{\sigma^{2}}{2 \beta_{2}^{2} \xi^{2}}-1\right)^{2}-(i P)(i Q)\right]
$$

which is positive.
Hence G_{n} is of the form (-i).(positive quantity)

$$
\therefore \quad \arg G_{11}=-\frac{\pi}{2} \quad \text {, say on } c_{2} \text {. }
$$

So that on c_{1} and c_{2} (excluding the point $\frac{\sigma}{\alpha_{2}}$)

$$
\begin{equation*}
\arg G_{\prime \prime}=-\frac{\pi}{2}, \text { say. } \tag{8.63}
\end{equation*}
$$

In the neighbourhood of σ / α_{2}

$$
G_{11} \rightarrow \frac{\left(\frac{\beta_{2}}{\alpha_{2}}\right)^{*} \cdot\left[1-\frac{\alpha_{2}^{2}}{2 \beta_{2}^{2}}\right]}{\left[\left(\frac{\sigma}{\alpha_{2}}+\rho e^{i \theta}\right)^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right]^{\frac{1}{2}}}=\frac{\text { positive quantity }}{\sqrt{\frac{2 \sigma \rho}{\alpha_{2}}} \cdot e^{i \theta / 2}}
$$

182.

$\arg G$ lies between 0 and $-\frac{\bar{\pi}}{2}$.
In the special case when $\alpha_{2}^{2}=2 \beta_{2}^{2}$ the first term of $G_{1 \prime}$ becomes negligible compared with the second. Hence we have in any case $-\frac{\pi}{2}-\in \leqslant \arg G_{n} \leqslant \in \quad$ (8.64) where \in is arbitrarily small.
On $c_{3},\left(\xi^{2}-\frac{\sigma^{2}}{2 \beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{1}{2}}$ is real and $\xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}$ is imaginary and non-vanishing, except at σ / β_{2}, where the former term is positive. Hence G_{1} is non-vanishing and

$$
-\frac{\pi}{2}<\arg G_{\|}<0
$$

On $c_{\psi}, G_{\|}$is real ide. $\arg G_{I}$ is zero, and for large positive ξ we have

$$
\begin{align*}
G_{\|} & =\left(\frac{\beta_{2}}{\sigma}\right)^{4} \xi^{3}\left[\left(1-\frac{\sigma^{2}}{2 \beta_{2}^{2} \xi^{2}}\right)^{2}\left(1-\frac{\sigma^{2}}{\alpha_{2}^{2} \xi^{2}}\right)^{-\frac{1}{2}}-\left(1-\frac{\sigma^{2}}{\beta_{2}^{2} \xi^{2}}\right)^{\frac{1}{2}}\right] \\
& \Omega\left(\frac{\beta_{2}}{\sigma}\right)^{4} \xi^{3}\left[\left(1-\frac{\sigma^{2}}{\beta_{2}^{2} \xi^{2}}\right)\left(1+\frac{\sigma^{2}}{2 \alpha_{2}^{2} \xi^{2}}\right)-\left(1-\frac{\sigma^{2}}{2 \beta_{2}^{2} \xi^{2}}\right)\right] \\
& =\left(\frac{\beta_{2}}{\sigma}\right)^{4} \xi^{3}\left[\frac{\sigma^{2}}{2 \alpha_{2}^{2}}-\frac{\sigma^{2}}{2 \beta_{2}^{2}}\right] \cdot \frac{1}{\xi^{2}}
\end{align*}
$$

$$
<0 \text { since } \frac{\sigma}{\alpha_{2}}<\frac{\sigma}{\beta_{2}}
$$

Since $G_{\|}>0$ when $\xi=\frac{\sigma_{1}}{\beta_{2}} \quad, G_{\|}$has an odd number of zeroes, say : $2 \mathrm{~N}+1$, on c_{4}. At each zero arg G_{n} is diminished by π (since we travel round it in a clockwise direction). Thus on the real axis arg G_{m} takes successively the values:
$\arg G=0,-\pi,-2 \pi, \cdots, \ldots,-(2 N+1) \pi . \quad$ (8.68).
On c_{5} equation (8.64) is still valid, so that when R is large $\arg G_{11} \sim-(2 N+1) \pi+\arg \xi$. (8.69)
Hence the final value of $\arg G \|$ on completing the circuit C is $-(2 N+1) \pi+\frac{\pi}{2}$

The values of arg $G_{\|}$round the contour C are as shewn :

Thus starting at B, with an initial value arg $G_{11}=-\frac{\pi}{2}$, and completing the circuit C in an anticlockwise direction the final value of arg G_{11} is $-(2 N+1)+\frac{\pi}{2}$. Hence the increase in arg $G_{\|}$in describing the circuit once equals

$$
-(2 N+1) \pi+\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=-2 N \pi .
$$

Now, since $G_{\|}$is regular and has no poles inside C, the increase in $\arg G_{\|}$in describing the circuit once equals (by Cauchy's Integral iheorem) $2 \pi n$, where n is the number of zeroes in the interior of C. Hence we have

$$
\begin{array}{ll}
& -2 N \pi=2 n \pi \\
\text { or } \quad & -N=n
\end{array}
$$

Since N and n are both essentially non negative we must have $\quad N=n=0$
(8.71).

In other words G_{f} has no zeroes inside C, and has just one zero on the positive real axis.

Now if $f(z)$ is any fminction of z (not a constant), regular and non-vanishing within a simile clo.jed contour C,
then it is possible to define without ambiguity a function $f_{1}(z)$ given by $\quad f_{1}=e^{-i \text { log } f}$
Since $\left|f_{1}\right|=e^{\arg f}$ it follows from the maximum modulus theorem (Titchmarsh : Theory of Functions, 1932, chap. V; If $f(z)$ be an anglytic function, regular in a region D and on its boundary C, then $|f(z)|$ reaches its maximum on the boundary C and net at an interior point) that $e^{a r s f}$, and hence arg f, takes its greatest and least values only on C itself.

Applying this result to $G_{\|}$, we see that from equations $(8.63),(8.64),(8.65),(8-60),(8-69)$ and (8.70) that, at all interior points of the first quadrant,

$$
\begin{equation*}
-\pi-\epsilon<\arg G_{n} \leqslant \epsilon \tag{8.73}
\end{equation*}
$$

where \in is as small as we please. Hence

$$
-\pi \leqslant \arg G_{n} \leqslant 0
$$

But any interior point of the quadrant may be surrounded by a contour consisting entirely of interior points, at each of which (8.73) holds good. Therefore in (8.73) the inequality signs may be replaced by strict inequalities; that is, when $\left.0<\arg \xi<\frac{\pi}{2}, \quad \arg G_{\|}<0_{0}\right\}$

Also when $0<\arg z<\frac{\pi}{2}$, we can shew that

$$
-\frac{\pi}{2}<\operatorname{arj} \tan z<\frac{\pi}{2}
$$

Thus

$$
\arg \tanh z=\arg \frac{\sinh x \cos y+i \cosh x \sin y}{\cos h x \cos y+i \sinh x \sin y}
$$

where both x and y are positive, since $0<\arg z<\frac{\pi}{2}$.

$$
\therefore \arg \tanh z=\arg (\operatorname{donh} x \ln y+i \cosh x \sin b)
$$

$$
x(\operatorname{Con} x \operatorname{Cos} y-i \sinh x \sin y)
$$

\therefore the imaginary part of arg tanh z

$$
=\cosh ^{2} x \sin y \cos y-\sinh ^{2} x \sin y \cos y
$$

$$
=\frac{1}{2} \sin 2 y
$$

and the real part of arg tanh z

$$
\begin{aligned}
& =\cos ^{2} y \sinh x \cosh x+\sin ^{2} y \sinh x \cos x \\
& =\frac{1}{2} \sinh 2 x>0 \\
& \text { since } x>0 .
\end{aligned}
$$

Hence, since the real part of arg tank Z is positive, tanh (z) lies in the first or fourth quadrant, and so

$$
\left.\begin{array}{l}
-\frac{\pi}{2}<\arg \tanh z<\frac{\pi}{2} \tag{8.75}\\
0<\arg z<\frac{\pi}{2}
\end{array}\right\}
$$

when $0<\arg z<\frac{\pi}{2}$,
Also when $\quad 0<\arg z<\frac{\pi}{2}$,

$$
\begin{aligned}
\arg \left\{\frac{\tanh z}{z}\right\}= & \arg \left\{\frac{\sinh (x+i y)}{\cosh (x+i y)} \cdot \frac{1}{(x+i y)}\right\} \\
= & \arg \left\{\frac{\sinh x \cos y+i \cosh x \sin y}{\cosh x \cos y+i \sinh x \sin y} \cdot \frac{x+i y}{x}\right\} \\
= & \arg \{(\sinh x \cos y+i \cosh x \sin y) . \\
& (\cosh x \cos y-i \sinh x \sin y) \cdot(x-i y)\} \\
= & \arg \frac{1}{2}\{(\sinh 2 x+i \sin 2 y)(x-i y)\} \\
\text { Imaginary part of } & \quad \operatorname{ary}\left\{\frac{\tanh (x}{z}\right\} \\
& =\frac{1}{2}(x \sin 2 y-y \sinh 2 x)
\end{aligned}
$$

since

$$
\frac{\sinh 2 x}{x}>\frac{\sin 2 y}{y},
$$

since these are both unity when $x=y=0$ and thereafter $\frac{\sinh 2 x}{x}$ increases while $\left|\frac{\sin 2 y}{y}\right|<1$.
Hence we have that, when
then $\left.\quad-\pi<\arg \left\{z^{-1} \tanh z\right\}<0\right\}$
We shall now apply the results $(8.74),(8.75)$ and (8.76)
to the function G_{f}.
At all points in the interior of the first quadrant we have

$$
0<\arg \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}}<\frac{\pi}{2}
$$

and thereafter, by (8.76),

$$
-\Pi<\arg G_{12}<0
$$

Also by (8.74) $G_{\boldsymbol{H}}$ is non vanishing and

$$
-\pi<\arg G_{\|}<0
$$

$\therefore \quad G_{1},=G_{11}+G_{12}$, is non-vanishing in the interior of the first quadrant and

$$
-\pi \arg G_{1}<0
$$

Since, when σ is real,
$G_{j}(-\xi)=G(\xi) ; \quad G_{j}\left(\xi^{*}\right)=G_{j}^{*}(\xi)$
(star denoting a conjugate complex),
G_{g} is a non-vanishing in all the other three quadrants. Thus G has no complex zeroes. But every zero $G(\xi)$ is a zero of $G_{\boldsymbol{\prime}}(\xi)$. Hence $G(\xi)$ has no complex zeroes when σ is real.

On the imaginary axis, and on the real axis when
$|\zeta|<\frac{\sigma}{\beta_{2}}$ we have seen that $G_{\|}$is non-vanishing and

$$
-\frac{\pi}{2} \leqslant \arg _{n} \leqslant 0
$$

On the other hand G_{12} is real on either of the axes and so G/ has no zeroes on the imaginary axis or on this part of the real axis.

On the positive real axis, when $\xi \geqslant \frac{\sigma^{-}}{\beta_{2}}$, G_{1} is real, and therefore, if the axis is approached from the interior of the first quadrant we have from (8.76)

$$
\arg G_{1}=-\Pi \text { or } 0
$$

$$
(8-78)
$$

But, if we travel along the real axis in the direction of
$\boldsymbol{\xi}$ increasing, passing above the poles and zeroes of $G_{\mathbf{l}}$, at each pole arg $G \|$ is increased by $\boldsymbol{\Pi}$ and at each zero it is diminished by $\boldsymbol{\Pi}$. Therefore, the poles and zeroes of $G_{\boldsymbol{I}}$ must occur alternately. Further, for large ξ, G is ultimately negative and arg $G_{1}=-\Pi$. There is, therefore, at least one zero in the interval $\xi \geqslant \frac{\sigma}{\beta_{2}}$. For, either there is a pole in this interval or a ot. If there is a pole, arg G_{ρ} must at some $\mathrm{m}_{\mathrm{W}} \mathrm{X}$ point be changed back from 0 to $-\pi$. If there is no pole, $G_{12}(\boldsymbol{\xi})$ is always positive and $G_{1}\left(\frac{\sigma}{\beta_{2}}\right)>G_{11}\left(\frac{\sigma}{\beta_{2}}\right)>0$
Therefore continuity requires that G_{g} should vanish at some point. In this latter case, however, there is only one positive zero, since if there were two zeroes there would be a pole separating them. But the zeroes of $G(\xi)$ and $G_{d}(\xi)$ are identical and every zero of $G(\xi)$ is also a zero of $G_{1}(\xi)$, also the function $G(\xi)$ has zeroes only when $\operatorname{Cob}\left(\xi=\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} \mathcal{L}$ is not zara, so we conclude that when $\sigma_{i s}$ real, the positive zeroes of $G(\xi)$ are all $\geqslant \sigma / \beta_{2}$ and are separated altemately on the real axis by the zeroes of $\cosh \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}} h$

We shall now suppose σ to be complex.
Suppose arg $\sigma=-\theta$, where $0<\theta<\frac{\pi}{2}$, since we wish arg σ to approach zero through negative values.
Let L, $=L_{1}+I_{2}+L_{3}+L_{4}$, be a closed contour in the $\boldsymbol{\xi}$-plane L_{1} is part of the line
$\arg \xi=\frac{\pi}{2}-\theta, \quad 0 \leqslant|\xi| \leqslant R ;$
\mathbb{L}_{2} is part of the line $\arg \xi=-\theta, 0 \leqslant|\xi| \leqslant\left|\frac{\sigma}{\alpha_{1}}\right|$;
L_{3} is part of the rectangular hyperbola $\arg \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}}=0$,
L_{4} is an arc of the
circle $|\xi|=R$.

We shall now consider the variation of G I round L.
$G_{11}=\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[\left(\frac{\xi^{2}}{\sigma^{2}}-\frac{1}{2 \beta_{2}^{2}}\right)^{2}\left(\frac{\xi^{2}}{\sigma^{2}}-\frac{1}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-\frac{\xi^{2}}{\sigma^{2}}\left(\frac{\xi^{2}}{\sigma^{2}}-\frac{1}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right]$.
On LI, since $\arg \left(\frac{\xi}{\sigma}\right)=\frac{\pi}{2}$, we have from ($8.60 t$

$$
\arg G_{\|}=\theta-\frac{\pi}{2}
$$

also@, since
$0<\arg \left(\xi^{2}-\frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}}<\frac{\pi}{2}$, wehave by (8.76)
$-\pi<\arg G_{12}<0$,
$\therefore \quad-\Pi<\arg G_{1}<0$.
When $-\theta<\arg \boldsymbol{\xi}<\frac{\pi}{2}-\theta$ it follows from ($8-74$) that

$$
\theta-\pi<\arg G_{\|}<\theta
$$

So that on L_{2} we have, taking the limit as $\arg \xi \rightarrow-\theta$,

$$
\theta-\pi \leqslant \arg G_{\|} \leqslant \theta
$$

But, on $L_{2}, \arg \left(\xi^{2} \frac{\sigma^{2}}{c^{2}}\right)^{\frac{1}{2}}=\theta-\frac{\pi}{2}$, and so using (8-75) we find, except possibly at $\xi=\sigma / Q$,

$$
\theta-\pi<\arg G_{12}<\theta
$$

At $\xi=\frac{\sigma}{c}$, we have $\arg G_{12}=0$.
Hence at all points on L_{2} we have

$$
\theta-\pi<\arg G,<\theta
$$

$$
\theta-\pi \leqslant \arg G \notin \theta, \text { and } \arg G_{1_{2}}=0
$$

so that

$$
\theta-\pi<\arg G_{1}<\theta .
$$

On L_{4}, if R is sufficiently large, G_{12} is small compared with and we have

$$
\arg G_{1} \sim \arg _{G_{1}},
$$

so that $\quad \theta-\pi-\epsilon<\arg G,<\theta+\epsilon$,
where \mathcal{E} is arbitrarily small.
$\therefore G 1$ has no zeroes inside L. (Since it pecans to it $\begin{aligned} & \text { initial value after dexcribiog L) }\end{aligned}$
Thus, when $-\frac{\pi}{2}<\arg \sigma<0, G$, has no zeroes on the positive real axis, and so, as arg σ tends to zero, the zeroes cannot approach the positive real axis from above. But the zeroes ere continuous functions of σ, hence it follows that they must approach the positive real axis from below.

We now return to the evaluation of the right hand side of equation (8.56).. The cuts in the ξ-plane given by equations (5.57) and shewn in figure 7 approach the positive real axis from below as arg σ tends to zero. So that we are restricted to a single sheet of a Riemann's surface bounded by a cut along the negative imaginary axis from the origin to -ios and along the real positive axis from the origin to σ / β_{2}. Also, as seen above, the zeroes of $G(\xi)$ approach the positive real axis from below as arg σ tends to zero through negative values. Hence the path of integration must be taken along the upper side of the cuts from 0 to σ / α_{2} and from 0 to σ / β_{2} and must be indented above the real axis near the zeroes of $G(\xi)$.

The path of integration is shewn in figure 8; where $\xi_{1}, \xi_{2}, \ldots . .$. are the real zeroes of $G(\xi)$:

Fig. 8
$\xi-$ plane.

Now Bessel's function of the first kind and zero order can be expressed as the sum of two Hankel's functions (Watson; Theory of Bessel Functions $\boldsymbol{f} 7.22$) :

$$
\begin{align*}
J_{0}(\xi r) & =\frac{1}{2}\left[H_{0}^{\odot}(\xi r)+H_{0}^{\ominus}(\xi r)\right] \\
\text { Let } I & =\int_{0}^{\infty} \frac{J_{0}(\xi r) \xi d \xi}{G(\xi)} \\
& =\frac{1}{2} \int_{0}^{\infty} \frac{H_{0}^{\ominus}(\xi r) \xi d \xi}{G(\xi)}+\frac{1}{2} \int_{0}^{\infty} \frac{H_{0}^{\ominus}(\xi r) \xi d \xi}{G(\xi)} \\
& =I_{1}+I_{2}
\end{align*}
$$

For I_{1} the path of integration is transformed into $C_{1}+C_{2}$, where C_{l} is the positive imaginary axis from 0 to $i \infty$ and C_{2} is the quadrant of the circle $|\xi|=R$ from in to R and R is made to tend to infinity. (see figure Φ):

$$
\begin{align*}
& \text { So that } \begin{aligned}
I_{1} & =\frac{1}{2} \int_{c_{1}} \frac{H_{0}^{0}(\xi r) \xi d \xi}{G(\xi)}+\frac{1}{2} \int_{c_{2}} \frac{H_{0}^{(2)}(\xi r) \xi d \xi}{G(\xi)} \\
& =I_{1}^{0}+I_{1}^{(2)}
\end{aligned}
\end{align*}
$$

The integral I_{2} is evaluated along a contour specially : selected so that the integral over part of it will cancel out. This part of the contour is C_{3}, which is taken along the left hand side of the imaginary axis cut from 0 to $-\mathbf{i \infty}$. Along $C_{1}, \xi=R e^{i \frac{\pi}{2}}$. , and along $C_{3}, \xi=R e^{-i \frac{\pi}{2}}$ also $G(\xi)=G(-\xi)$ and $H_{0}^{(2)}\left(t e^{-i \frac{\pi}{2}}\right)=-H_{0}^{Q}\left(t e^{\frac{i \pi}{2}}\right)$.
Hence

$$
\int_{C_{1}} \frac{H_{0}^{0}(\xi r) \xi d \xi}{G(\xi)}=-\int_{c_{3}} \frac{H_{0}^{(2)}(\xi r) \xi d \xi}{G(\xi)}
$$

or

$$
I_{1}^{0}=-I_{2}^{0}
$$

where $I_{2}^{0}=\frac{1}{2} \int_{c_{3}} \frac{H_{0}^{(1)}(\xi r) \xi d \xi}{G(\xi)}$
To extend the contour to infinity we use C_{5} which is a quadrant of the circle $|\boldsymbol{F}|=R$ from $-i R$ to R.
Now C_{5} starts on the right hand side of the imaginary axis cut from 0 to $-i \infty$, so that a contour C_{4} is necessary to link up C_{3} with C_{5}. This contour C_{4} surrounds the cuts in the $\bar{\xi}$-plane. The contour C_{5} sweeps over the zeroes of $G(\bar{\xi})$ (approached from below), so that these must be compensated for by integration round small circles $C_{6}^{\prime}, C_{6}^{\prime \prime}$, etc. round the zeroes ξ_{1}, ξ_{2}, etc.
The complete contour for I_{2} is shewn by figure 10. So that

$$
\begin{align*}
I_{2} & =\frac{1}{2} \int_{C_{3}} \frac{H_{0}^{(3)}(\xi r) \xi d \xi}{G(\xi)}+\frac{1}{2} \int_{C_{4}} \frac{H_{0}^{(®)}(\xi r) \xi d \xi}{G(\xi)} \\
& +\frac{1}{2} \int_{C_{5}} \frac{H_{0}^{(2)}(\xi r) \xi d \xi}{G(\xi)}+\frac{1}{2} \int_{C_{6}} \frac{H_{0}^{(2)}(\xi r) \xi d \xi}{G(\xi)} \\
& =I_{2}^{(1)}+I_{2}^{(2)}+I_{2}^{(3)}+I_{2}^{(1)}
\end{align*}
$$

According to Watson (Theory of Bessel Functions) : when $|z|$ is large and $-\pi+\epsilon \leqslant \arg z \leqslant 2 \pi-\in$

$$
f_{0}^{f}(z) \sim\left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \cdot e^{i\left(z-\frac{\pi}{4}\right)}
$$

when $|z|$ is large and $-2 \pi+\epsilon \leqslant \arg z \leqslant \pi-\epsilon$

$$
H_{0}^{\otimes}(z) \sim\left(\frac{2}{\pi z}\right)^{\frac{1}{2}} \cdot e^{-i\left(z-\frac{\pi}{4}\right)}
$$

Hence when $|\boldsymbol{\xi}|$ is large and

$$
-\pi+\epsilon \leqslant \arg \xi \leqslant \pi-\epsilon
$$

$$
\frac{1}{2} H_{0}^{0}(\xi r) \sim \frac{\xi^{-\frac{1}{2}} \cdot e^{i\left(\xi r-\frac{\pi}{4}\right)}}{(9 \pi r)^{\frac{1}{2}}}
$$

$$
\frac{1}{2} H_{0}^{(2)}(\xi r) \sim \frac{\xi^{-\frac{1}{2}} \cdot e^{-i\left(\xi r-\frac{\pi}{4}\right)}}{(2 \pi r)^{\frac{1}{2}}}
$$

The B.A. Mathematical Tables VI give the value of $J_{0}(25)$ as 0.0962667833.
The asymptotic series for $J_{0}(25)$ is
$0.11338892 \sin 25^{c}+0.11226159 \operatorname{Cos} 25^{c}$
$=0 . i 1338892 \operatorname{cin} 1432.39448783^{\circ}+0.11226159 \operatorname{Cos} 1432 \cdot 39448783^{\circ}$
$=0 \cdot 11338892 \operatorname{Sin}(1440-7 \cdot 60551217)$

$$
+0 \cdot 11226159 \operatorname{Cos}(1440-7 \cdot 60551217)
$$

$=0.11338892 \operatorname{Sin}\left\{8 \pi-\left(7^{\circ} \cdot 36 \cdot 331^{\prime}\right)\right\}$

$$
0 \cdot 11226159 \cos \left\{8 \pi-\left(7^{\circ} 36 \cdot 331^{\prime}\right)\right\}
$$

$=-0.11338892 \operatorname{Sin}\left(7^{\nu} 36.331^{\prime}\right)+0.11226159 \operatorname{Cos}\left(7^{\circ} 36.33 I^{\text { }}\right)$
$=-0.015007+0.111274$
$=0.096267$.
So that to six decimal places, the limits of working with seven figure tables, the asymptotic value of $J_{0}(25)$ agrees with the values of $J_{0}(25)$.
Now in chapter 10 it is shewn (see 10-4) that a likely value of ξ_{1} is $5 .<9125 \times 10^{-6}$, so that when $r=2 \times 10^{8} \mathrm{~cm} ., \quad \xi_{1} r=1006 \times 10^{2}$.
Hence it is justifiable to use the asymptotic values of $H_{0}^{0}(\xi r)$ and $H_{0}^{(3)}(\xi r)$ in the evaluation of $I_{1}^{(3)}$ and

$$
I_{2}^{(3)}, I_{2}^{(4)} \text { respectively. }
$$

Using the asympto-tic value for $H_{0}^{(2)}(\xi r)$ the contribution to \boldsymbol{I}_{2} from the neighbourhood of the zeroes of $G(\xi)$ is, by Cauchy's Residue Theorem, $(-2 \pi i) x$ residues of the integrand at $\xi_{m}(m=1, \cdots, \cdots, N)$ That is

$$
I_{2}^{\Theta}=-2 \pi i \cdot \frac{e^{i \frac{\pi}{4}}}{(2 \pi r)^{\frac{1}{2}}} \cdot \sum_{m=1}^{N} \frac{1}{\frac{d}{d \xi}\left\{\xi^{-\frac{1}{2}} \cdot e^{i \xi r} \cdot G(\xi)\right\}_{\xi_{m}}}
$$

But $\quad \frac{d}{d \xi}\left\{\xi^{-\frac{1}{2}} \cdot e^{i \xi r} G(\xi)\right\}$

$$
\begin{aligned}
&=-\frac{1}{2} \xi^{-3 / 2} \cdot e^{i \xi r} \cdot G(\xi)+i r \xi^{-\frac{1}{2}} \cdot e^{i \xi r} \cdot G(\xi) \\
&+\xi^{-\frac{1}{2}} \cdot e^{i \xi r} \cdot \frac{d G}{d \xi} .
\end{aligned}
$$

But $[G(\xi)]_{m=1,2, \cdots N}=0$

$$
\left.\therefore I_{2}^{(4)}=-\frac{2 \pi i \cdot e^{-i \frac{\pi}{4}}}{(2 \pi r)^{1 / 2}} \cdot \sum_{m=1}^{N} \frac{\xi_{m}^{\frac{1}{2}} \cdot e^{-i \xi_{m} r}}{\left(\frac{d G}{d \xi}\right)_{\xi_{m}}} \quad 18.85\right)
$$

When $\boldsymbol{\xi}$ is large, as it is along C_{2} and C_{5},

$$
\begin{aligned}
& G(\xi)=\frac{\beta_{2}^{4}}{\sigma^{4}} \cdot 4 \xi^{3}\left[\left(1-\frac{\sigma^{2}}{\xi^{2} \beta_{2}^{2}}\right)\left(1+\frac{\sigma^{2}}{2 \xi^{2} \alpha_{2}^{2}}\right)-\left(1-\frac{\sigma^{2}}{2 \xi^{2} \beta_{2}^{2}}\right)\right] \\
& \times \cosh \xi\left(1-\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \\
& +\frac{\rho_{1}}{\rho_{2}} \cdot \frac{1}{\xi} \cdot\left(1+\frac{\sigma^{2}}{2 \xi^{2} c^{2}}\right) \sinh \xi h\left(1-\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \\
& =\frac{\beta_{2}^{4}}{\sigma^{4}} \cdot 4 \xi^{3}\left[1+\frac{\sigma^{2}}{2 \xi^{2} \alpha_{2}^{2}}-\frac{\sigma^{2}}{\xi^{2} \beta_{2}^{2}}-1+\frac{\sigma^{2}}{2 \xi^{2} \beta_{2}^{2}}\right] \\
& +\frac{\rho_{1}}{\rho_{2}} \cdot \frac{1}{\xi}\left(1+\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \sinh \xi \xi\left(1-\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \\
& =\frac{\beta_{2}^{4}}{\sigma^{2}} \cdot 2 \xi\left(\frac{1}{\alpha_{2}^{2}}-\frac{1}{\beta_{2}^{2}}\right) \cosh \xi \hbar\left(1-\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \\
& +\frac{\rho_{1}}{\rho_{2} \xi} \cdot\left(1+\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \sinh \left(1-\frac{\sigma^{2}}{2 c^{2} \xi^{2}}\right) \\
& \Omega \\
& \Omega \frac{\beta_{2}^{2}}{\sigma^{2}} \cdot 2 \xi\left(\frac{1}{\alpha_{2}^{2}}-\frac{1}{\beta_{2}^{2}}\right) \operatorname{Cosh} \xi \hbar \\
& \Omega
\end{aligned}
$$

Hence by $(8 \cdot 81)$ and $(8 \cdot 84)$

$$
I_{1}^{(2)} \frac{e^{-\frac{i \pi}{4}} \cdot \sigma^{2} \alpha_{2}^{2}}{\beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right) \cdot(2 \pi r)^{2}} \int_{C_{2}} \xi^{-\frac{1}{2}} \cdot e^{i \xi r} \cdot e^{-\xi h} d \xi
$$

Then putting $\xi=R e^{i \theta}$,

$$
\begin{aligned}
I_{1}^{(2)} \Omega & -\frac{e^{-\frac{i \pi}{4}} \sigma^{2} \alpha_{2}^{2} R^{\frac{1}{2}}}{(2 \pi r)^{\frac{1}{2}} \cdot \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{0}^{\frac{\pi}{4}} r R(i \cos \theta-\sin \theta)-h R(\cos \theta+i \sin \theta) \\
\therefore\left|I_{1}^{(2)}\right| & <-\frac{\sigma^{2} \alpha_{2}^{2} R^{\frac{1}{2}}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{0}^{\frac{\pi}{2}} e^{-r R \sin \theta-h R \cos \theta} \cdot d \theta \\
& =-\frac{\sigma^{2} \alpha_{2}^{2} R^{\frac{1}{2}}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{0}^{\frac{\pi}{2}} e^{-R \sin R \theta+\phi)} \cdot d \theta \\
& <\frac{\sigma^{2} \alpha_{2}^{2} R^{\frac{1}{2}}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{0}^{\frac{\pi}{2}} e^{-\frac{2 R}{\pi}(\theta+\phi)} \cdot d \theta \\
& =\frac{\sigma^{2} \alpha_{2}^{2} R^{\frac{1}{2}}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \cdot \frac{\pi}{2 R}\left[e^{\left.-\frac{2 R}{\pi}(\theta+\phi)\right]}\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{\sigma^{2} \alpha_{2}^{2} \pi}{2(2 \pi r)^{\frac{1}{2}} \cdot \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \cdot \frac{1}{R^{\frac{2}{2}}\left[e^{-R-\frac{2 R \phi}{\pi}}\right.}\left[e^{-\frac{2 R \phi}{\pi}}\right]
\end{aligned}
$$

Hence $\quad I_{1}^{(2)} \longrightarrow 0$ a. $\mathrm{F} \rightarrow \infty$.
similarly from (8.82) and (8.84)

$$
I_{2}^{3} \Omega \frac{e^{i \frac{\pi}{4}} \cdot \sigma^{2} \cdot \alpha_{2}^{2}}{(2 \pi r)^{\frac{1}{2}} \cdot \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{C_{5}} \xi^{-\frac{1}{2}} \cdot e^{-\xi h} \cdot e^{-i \xi r} \cdot d \xi
$$

after putting $\xi=R e^{i \theta}$,

$$
\begin{aligned}
& I_{2}^{(3)} \Omega \frac{e^{i \frac{\pi}{4}} \cdot \sigma^{2} \alpha_{2}^{2}}{(2 \pi r)^{\frac{i}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{\frac{3 \pi}{2}}^{2 \pi}\left[R^{-\frac{1}{2}} \cdot e^{-\frac{1}{2} i \theta} \cdot e^{-\operatorname{Rr}(\operatorname{Cos} \theta+i \sin \theta)}\right. \\
& \left.\times e^{-R h(\operatorname{Cos} \theta+i \operatorname{Sin} \theta)} \cdot i R e^{i \theta}\right] d \theta \\
& \therefore\left|I_{2}^{(3)}\right|<\frac{\sigma^{2} \alpha_{2}^{2}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{\frac{3 \pi}{2}}^{2 \pi} e^{r R \sin \theta-R h \cos \theta} \cdot d \theta \\
& =\frac{\sigma^{2} \alpha_{2}^{2}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \int_{\frac{3 \pi}{2}}^{2 \pi} e^{R \sin (\theta-\phi)} d \theta \\
& {\left[\tan \phi=\frac{k}{r}\right]} \\
& <\frac{\sigma^{2} \alpha_{2}^{2}}{(2 \pi r)^{\frac{1}{2}} \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \cdot \frac{\pi}{2 R}\left[e^{-\frac{2 R}{\pi}(\phi-\theta)}\right]_{\frac{3 \pi}{2}}^{2 \pi} \\
& =\frac{\sigma^{2} \alpha_{2}^{2} \pi}{2(2 \pi r)^{\frac{1}{2}} \cdot \beta_{2}^{2}\left(\beta_{2}^{2}-\alpha_{2}^{2}\right)} \cdot \frac{1}{R^{\frac{1}{2}}}\left[e^{\left(-\frac{2 R \phi}{\pi}+4 R\right)}-e^{\left(-\frac{2 R \phi_{\phi}}{\pi}+3 R\right)}\right] \\
& \rightarrow 0 \quad \text { a. } \quad R \rightarrow \infty
\end{aligned}
$$

Hence $\quad I_{2}^{(3)} \rightarrow 0$ as $R \rightarrow \infty$.

We may deform the contour C into C; see figure 11.

The contributions to $\mathbb{I}_{2}^{(2)}$ from the straight portions of C_{4}^{\prime} cancel each other and we are left with the contributions from approximately circular paths of small radius about

$$
\xi=\sigma / \alpha_{2} \quad \text { and } \quad \xi=\sigma / \beta_{2} .
$$

With the values (10.3)
$\frac{\sigma r}{\alpha_{2}} \bumpeq 2 \times 10^{2} ; \quad \frac{\sigma r}{\beta_{2}} \bumpeq 3.5 \times 10^{2}$.
Hence it is justifiable to use the asymptotic value of $H_{0}^{(2)}$ in the evaluation of I_{2}^{2}.
Hence $I_{2}^{2} \Omega \frac{1}{2} \int_{r_{1}} \frac{H_{0}^{(2)}\left(\xi_{r}\right) \xi d \xi}{G(\xi)}+\frac{1}{2} \int_{r_{2}} \frac{H_{0}^{(2)}(\xi r) \xi d \xi}{G(\xi)}$,
where γ_{1} and γ_{2} are circles of infinitesimal radius about the branch points σ / α_{2} and σ / β_{2} respectively. That is

$$
I_{2}^{(2)} \Omega \frac{e^{i \frac{\pi}{4}}}{(2 \pi r)^{2}} \int_{r_{1}} \frac{\xi^{\frac{1}{2}} e^{-i \xi r} d \xi}{G(\xi)}+\frac{e^{\frac{i \pi}{4}}}{(2 \pi r)^{\frac{1}{2}}} \int_{r_{2}} \frac{\xi^{\frac{1}{2}} e^{i \xi r} \cdot d \xi}{G(\xi)}
$$

200.

Near the branch point $\frac{\pi}{\alpha_{2}}$ we have $\xi=\frac{\sigma}{\alpha_{2}}+\rho_{e}^{i \theta}$

$$
\begin{aligned}
\text { and } G(\xi) & =\left(\frac{\beta_{2}}{\sigma}\right)^{4} \cdot\left(\frac{2 \rho \alpha^{i \theta}}{\alpha_{2}}\right)^{-\frac{1}{2}} \cdot \frac{\sigma^{4}}{\alpha^{4}} \cdot\left(1-\frac{\alpha_{2}^{2}}{2 \beta_{2}^{2}}\right)^{2} \\
& =\frac{\left(2 \beta_{2}^{2}-\alpha_{2}^{2}\right)^{2}}{4\left(2 \rho \sigma \alpha_{2}^{y} e^{i \theta}\right)^{1 / 2}}
\end{aligned}
$$

Hence $\int_{\gamma_{1}}^{\xi^{2} e^{-i \xi i} d \xi^{i}}$

$$
\Omega \frac{\left(2 \beta_{2}^{2}-\alpha_{2}^{2}\right)^{2}}{4\left(2 \rho \sigma \alpha_{2}^{7}\right)^{\frac{1}{2}}} \int_{0}^{-i \frac{\theta}{2}}\left(\frac{\sigma}{\alpha_{2}}+\rho e^{i \theta}\right)^{\frac{1}{2}} \cdot e^{-i r\left(\frac{\sigma}{\alpha_{2}+\rho e^{i \theta}} e^{i \rho} d \theta\right.} \cdot i \theta
$$

Near the branch point σ / β_{2} we have $\xi=\frac{\sigma}{\beta_{2}}+\rho e^{i \theta}$

$$
\text { and } \begin{aligned}
G(\xi) & \Omega\left(\frac{\beta_{2}}{\sigma}\right)^{4} \cdot\left[\frac{\sigma^{4}}{4 \beta_{2}^{4}} \cdot \frac{\alpha^{2} \beta_{2}}{\sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}-\frac{\sigma^{4}}{\beta_{2}^{4}} \cdot\left(\frac{2 \sigma \rho^{i \theta}}{\beta_{2}}\right)^{\frac{1}{2}}\right] \\
& =\frac{\alpha_{2} \beta_{2}}{4 \sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}\left[1-\frac{4 \sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}{\alpha_{2} \beta_{2}} \cdot\left(\frac{2 \sigma^{-}}{\beta_{2}}\right)^{\frac{1}{2}} \rho^{\frac{1}{2}} e^{i \theta / 2}\right]
\end{aligned}
$$

$$
\therefore \frac{1}{G(\xi)}-\frac{4 \sigma\left(\alpha_{2}^{2}-\beta_{3}^{2}\right]^{\frac{1}{2}}}{\alpha_{2} \beta_{2}}\left[1+\frac{4 \sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}{\alpha_{2} \beta_{2}} \cdot\left(\frac{2 \sigma}{\beta_{2}}\right)^{\frac{1}{2}} \rho^{\frac{1}{2}} \cdot e^{i \theta_{2}}\right]
$$

Hence $\int_{\gamma_{2}} \frac{\xi^{\frac{1}{2}} \cdot e^{-i \xi r} d \xi}{G(\xi)}$

$$
\begin{array}{r}
\Omega \frac{4 \sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}{\alpha_{2} \beta_{2}} \int_{0}^{2 \pi}\left[1+\frac{4 \sigma\left(\alpha_{2}^{2}-\beta_{2}^{2}\right)^{\frac{1}{2}}}{\alpha_{2} \beta_{2}} \cdot\left(\frac{2 \sigma}{\beta_{2}}\right)^{\frac{1}{2}} \rho^{\frac{1}{2}} e^{i \theta / 2}\right] \\
\times\left(\frac{\sigma}{\beta_{2}}+\rho e^{i \theta}\right)^{\frac{1}{2}} \cdot e^{-i r\left(\frac{\sigma}{\beta_{2}}+\rho e^{i \theta}\right)} \cdot i \rho e^{i \theta} \cdot d \theta
\end{array}
$$

$\rightarrow 0$ as $P \rightarrow 0$ and r is large.
Hence by equations (8.88), (8.89) and (8.90) we see that the contribution of $\boldsymbol{I}_{2}^{(3)}$ is very small. After reference to $(8.80),(8.81),(8-82),(8.83),(8.85),(8.86),(8.87)$, (8.88), (8.89) and (8.90) we see that the only appreciable part of the integral I comes from the contribution of the integrand at the poles, that is (8.85). So that.

$$
\int_{0}^{\infty} \frac{J_{0}(\xi r) \xi d \xi}{G(\xi)}=-\frac{2 \pi i e^{i \frac{\pi}{4}}}{(2 \pi r)^{\frac{1}{2}}} \int_{m=1}^{N} \frac{\xi_{m}^{i} \cdot e^{-i \xi_{m} r}}{\left(\frac{d G}{d \xi}\right)_{\xi_{m}}} \text { (8.91). }
$$

Hence e cation (8.56) becomes :

$$
W(\sigma, r) e^{i \sigma t}=\frac{i e^{i\left(\frac{\pi}{4}+\sigma t\right)}}{\rho \sigma^{2}(2 \pi r)^{\frac{1}{2}}} \sum_{m=1}^{N} \frac{\xi_{m}^{\frac{1}{2}} \cdot e^{-i \xi_{m} r}}{\left(\frac{d G}{d \xi}\right)_{\xi_{m}}}
$$

202.

$$
\begin{aligned}
& \therefore W(\sigma, r) e^{i \sigma t} \\
& =\frac{\sigma^{\frac{1}{2}}}{\rho_{2} \beta_{2}^{5 / 2}(2 \pi r)^{\frac{1}{2}}} \sum_{m=1}^{N} i \cdot\left(\frac{\beta_{2}}{\sigma}\right)^{5 / 2} \cdot \frac{\xi_{m}^{\frac{1}{2}} \cdot e^{i\left(\sigma t-\xi r+\frac{\pi}{4}\right)}}{\left(\frac{d G}{d \xi}\right)_{\xi_{m}}} \\
& =\frac{\sigma^{\frac{1}{2}}}{\rho_{2} \beta_{2}^{5 / 2}(2 \pi r)^{\frac{1}{2}}} \sum_{m=1}^{N} C_{m} \cdot e^{i\left\{\sigma t-\xi_{m} r+\left(m+\frac{1}{4}\right) \pi\right\}}
\end{aligned}
$$

where $C_{m}=(-)^{m} \cdot\left(\frac{\beta_{2}}{\sigma}\right)^{5 / 2} \cdot \frac{\xi_{m}^{\frac{1}{2}}}{\left(\frac{\alpha G}{d \xi}\right)_{\xi_{m}} \text {. } \quad \text { (8.93). }}$
Each term in equation (8.9~) represents a diverging wave of length $2 \pi / \boldsymbol{\xi}_{m}$ and amplitude proportional to C_{m}.

CHAPTER 9.

The displacement of the ground due to Ocean Waves.
In chapter 5 we have shewn that a general wave motion, on the surface of an incompressible liquid, in a square S $(-\mathrm{R}<x<\mathrm{R},-\mathrm{R}<\boldsymbol{y}<\mathrm{R})$ where $2 \mathrm{R} \gg \lambda_{\boldsymbol{g}}$, produces a total force with a frequency twice that of the mean frequency of the surface motion at all depths. This force seta up seismic waves in the sea-bed.

Inchapter 7 we have shewn that if the compressibility of the water is taken into account, the pressure variation can be regarded as due to gravity waves in the surface layer which is regarded as compressible. We can consider then a variable force applied to the surface of an incompressible sea instead of a motion at the surface of a compressibce sea and producing the same variable force at the bed.

Then in chapter 8 we have found an expression for the displacement of the sea bed at distance r due to a variable force applied to the surface of an incompressible sea.

Now since the wave lengths of the compression and seismic waves are comparable and $\lambda_{g} / \lambda_{c} \Omega 10^{-2}$, the square s can have a side very much greater than $\boldsymbol{\lambda}_{\boldsymbol{g}}$ and yet be only a fraction of the length of a seismic wave.

We therefore divide a storm area into squares, such as S, and by considering the surface motion in each square as being equivalent to a suitable variable force at the centre of that Gquare, make an estimate of the vertical dispıacement of the ground at a distant point due to each square. Summing the results for the whole storm area, we derive an estimate of the vertical displacement of a point distant from the storm area.

If microseisms recorded in Europe are generated by storms in the Atlantic, the estimate should accord with recorded measurements.

From chapter 8 we have that a variable force applied to the surface of the sea above the origin produces a vertical displacement $W(\sigma, r) e^{i \sigma K}$ of the sea bed at a distance r from the origin. Hence a force

$$
-R \cdot 4 \rho\left(\frac{\pi}{k}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v), A^{\prime}(-u,-v) \sigma^{2} e^{2 i \sigma t} d u d v \text { (9.1) }
$$

applied to the surface will produce a vertical displacement, at distance r from the origin, of

$$
\delta=-R \cdot 4 \rho\left(\frac{\pi}{R}\right)^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v) \cdot A^{\prime}(-u,-v) \sigma^{2} W(2 \sigma, r) e_{(9 \cdot 2)}^{2 i \sigma t} d u d v
$$

But (9.1) is the total force at the bed due tu the motion in a square S given by $-R<x<R,-R<y<r$; see equation (5-49).
Thu e δ represents the vertical displacement of the ground at a $1 \perp$ points at a distance r from the centre of rathe square S.

The area of the square s is $4 R^{2}=\left(\frac{2 \pi}{k}\right)^{2}$ after using equation ($5 \cdot 46$). If E is the mean energy per unit area of the square s, then the total energy of s is $\left(\frac{2 \pi}{k}\right)^{2} E$. Hence after reference to equation (5.50):

$$
E=\frac{1}{2} \rho g \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v) . A^{\prime *}(u, v) d u d v .
$$

We define the mean amplitude, a of the motion within S as half the height, from trough to crest of the simple progressive wave train having the same mean energy per unit area.

By Lamb ($f 230$) the mean energy of a progressive wave of amplitude a is $\frac{1}{2} g \rho_{a^{2}}$,
hence $E=\frac{1}{2} \rho a^{2}$.
That is, by equation (9.3)

$$
\begin{aligned}
& 15, \text { be equation } \\
& a^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v) \cdot A^{\prime}(u, v) d u d v . \\
& \text {. }
\end{aligned}
$$

We have already postulated, in chapter 5, that for the motion to be wavelike, the energy of the motion must be confined to a narrow band of frequencies and directions characteristic of the group of waves. this range will be very nearly the same for the hypothetical spectrum A as for the original spectrum A. Let Q denote the region and its area in which the point (-uk, $-\nabla k$), defining the length and direction of the wave components of the group (see chapter 5) must lie. But this area is also $(2 R)^{2}$, hence $\quad \frac{Q}{k^{2}}=(2 R)^{2}=\left(\frac{2 \pi}{R}\right)^{2} \quad$ by equation (5A6). Let \bar{A} denote the root mean square value of the modulus of the amplitude $A^{\prime}(u, v)$, so that
$\bar{A}=\left[\frac{1}{4 R^{2}} \iint_{-\infty}^{\infty}\left\{\left|A^{\prime}(u, v)\right|\right\}^{2} \text { duav}\right]^{\frac{1}{2}}$
or
$\bar{A}^{2}=\frac{k^{2}}{Q} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{\left|A^{\prime}(u, v)\right|\right\}^{2} d u d v$
since $\quad S^{\prime}=0$, outside s,
$=\frac{k^{2}}{Q} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A^{\prime}(u, v) A^{\prime *}(u, v) \operatorname{dnav}$

$$
=\frac{k^{2}}{Q} \cdot a^{2} \quad \text { by equation (9.4) }
$$

so that $\bar{A}=\frac{k a}{\mathbb{Q}^{1 / 2}}$.

As we have seen in chapter 5 at least two separate wave groups are required to provide the opposite wave components needed to give rise to a pressure variation at the sea bed. We therefore suppose that the motion defined by \mathcal{J}^{\prime} and A^{\prime} comprises two distinct wave groups with spectra $A_{1}^{\prime}(u, v)$ and $A_{2}^{\prime}(u, v)$ Then $A^{\prime}(u, v)=A_{1}^{\prime}(u, v)+A_{2}^{\prime}(u, v)$.

Let us suppose that the A_{1}^{\prime} wave group has its energy in the region Q_{1}, which has an area Q_{1}, and that the mean amplitude of this wave group in Q_{1} is $\boldsymbol{a}_{\mathbf{1}}$.
Let Q_{2} and a_{2} be the corresponding features of the $A_{\mathbf{2}}^{\prime}$ wave group.

By analogy with equation (9.5) the root mean square values of the moduli of these two wave groups are $\overline{A_{1}}$ and $\overline{A_{\mathbf{2}}}$, where $\quad \overline{\boldsymbol{A}}_{1}=\frac{k a_{1}}{\boldsymbol{Q}_{1}^{\prime / 2}}, \quad \overline{\boldsymbol{A}}_{2}=\frac{k a_{2}}{\boldsymbol{Q}_{2}^{1 / 2}} \quad(9-7)$.
Equation (9-2) may now be written

$$
\begin{aligned}
& \delta=-R .4 \rho\left(\frac{\pi}{k}\right)^{2} \iint\left[\left\{A_{1}^{\prime}(u, v)+A_{2}^{\prime}(u, v)\right\}\right. \\
&=Q_{1}+Q_{2} \\
&\left.\times\left\{A_{1}^{\prime}(-u,-v)+A_{2}^{\prime}(-u,-v)\right\} \sigma^{2} W(2 \sigma, r) e^{2 i \sigma t}\right] d u d v
\end{aligned}
$$

since neither $A_{1}^{\prime}(u, v)$ nor $A_{2}^{\prime}(u, v)$ exist outside the region

Since a wave does not possess opposite pairs of wave components, then either $A_{1}^{\prime}(u, v)$ or $A_{1}^{\prime}(-u,-v)$ is zero and either $A_{2}^{\prime}(u, v)$ or $A_{2}^{\prime}(-u,-v)$ is zero.
We suppose the two wave groups to be motion in opposite senses and set

$$
A_{1}^{\prime}(-u,-v)=0 \quad \text { and } \quad A_{2}^{\prime}(u, v)=0 .
$$

Then δ

$$
=-R 4 \rho\left(\frac{\pi}{k}\right)^{2} \iint_{Q_{12}} A_{1}^{\prime}(u, v) A_{2}^{\prime}(-u,-v) \sigma^{2} W(2 \sigma, r) e^{2 i \sigma t} d u d v
$$

where Q_{12} denotes theregion common to Q_{1} and $-Q_{2}$ since this common region is the only region in which opposite pairs of wave components can exist, and so the contribution to $\boldsymbol{\delta}$ from other parts of $\left(Q_{1}+Q_{2}\right)$ must be zero.
If wee let σ_{12} denote the mean value of σ over Q_{12}, then since u, v, r and σ are independent of t we can write

$$
\delta e^{-2 i \sigma_{12} t}
$$

$$
\begin{equation*}
-R \cdot 4 \rho\left(\frac{\pi}{k}\right)^{2} \iint_{Q_{12}} A_{1}^{\prime}(u, v) A_{2}^{\prime}(-u,-v) \sigma^{2} W(2 r, r) e^{2 i\left(\sigma=\sigma_{12}\right) t} d u d v \tag{9.9}
\end{equation*}
$$

It may be assumed that there is no correlation between the phases of the wave components of the true spectrum $A(u, v)$ at different points of the (u, v) plane. Owing to the fact that neighbouring wive components of the original spectrum $A(u, v)$ contribute to wave components of the new spectrum $A^{\prime}(u, v)$ there may be some correlation for points which are close together in the (u, v) plane for the phases of the wave components of $A^{\prime}(u, v)$. For points more than unit distance apart, equation (5.48) indicates that the correlation will be very slight, whereas for those closer it wi fl be appreciable. So we may divide the region Q_{12} into Q_{12} / k^{2} unit squares and carry out the integration of equation ($9 \cdot 9$) over each square Separately. The result will be the sum of Q_{12} / k^{2} vectors
of random phase and each of order of magnitude of

$$
8 p\left(\frac{\pi}{k}\right)^{2} \bar{A}_{1}(u, v) \bar{A}_{2}(u, v) \sigma_{12}^{2} W\left(2 \sigma_{12}, r\right)
$$

So that the order of magnitude of the right hand member of equation (9-7) is

$$
\left[\frac{Q_{12}}{k^{2}}\right]^{\frac{2}{2}} \cdot 8 \rho\left(\frac{\pi}{k}\right)^{2} \bar{A}_{1}(u, v) \bar{A}_{2}(u, v) \sigma_{12}^{2} W\left(2 \sigma_{12}, r\right)
$$

since the sum of n vectors in random phase relation increases as $n^{\frac{1}{2}}$. Hence

$$
\delta \bumpeq 8 \rho\left(\frac{\pi}{k}\right)^{2} \bar{A}_{1}(u, v) \bar{A}_{2}(u, v) \cdot \frac{Q_{12}^{\frac{1}{2}}}{k} \cdot \sigma_{12}^{2} W\left(2 \sigma_{12} r\right) e_{(9 \cdot 11)}^{2 i \sigma_{12} t}
$$

If the total storm area is $\boldsymbol{\Omega}$, then this may be divided into $\frac{\pi}{4 R^{2}}=\frac{\pi k^{2}}{4 \pi^{2}} \quad$ squares ike S.
Then the total displacements of the ground, Δ, from the whole storm area is of the order

$$
\Delta \bumpeq\left(\frac{\Lambda k^{2}}{4 \pi^{2}}\right)^{\frac{1}{2}} \cdot \delta
$$

That is

$$
\Delta \bumpeq 8 p\left(\frac{\pi}{k}\right)^{2} \bar{A}_{1}(u, v) \bar{A}_{2}(u, v) \frac{\Lambda^{\frac{1}{2}} Q_{12}^{\frac{1}{2}}}{2 \pi} \cdot W\left(2 \sigma_{12}, r\right) e^{2 i \sigma_{12} t}(9012)
$$

Let $\bar{W}^{2}(\sigma, r)$ denote the sum of the squared moduli of the terms in the asymptotic expansion of $W(\sigma, r) e^{i \sigma t}$. Then

$$
\begin{equation*}
\bar{W}(\sigma, r)=\frac{\sigma^{\frac{1}{2}}}{\rho_{2} \beta_{2}^{5 / 2}(2 \pi r)^{\frac{1}{2}}}\left[\sum_{m=1}^{N} e_{m}^{2}\right]^{\frac{1}{2}} \tag{9.13}
\end{equation*}
$$

Then to the same order of approximation

$$
W\left(2 \sigma_{12}, r\right) \bumpeq \bar{W}\left(2 \sigma_{12}, r\right) .
$$

Hence

$$
\Delta \bumpeq \frac{4 \pi \rho}{k^{2}} \cdot \bar{A}_{1}(u, v) \cdot \bar{A}_{2}(u, v) \cdot \sigma_{12}^{2} \cdot\left(\Lambda Q_{12}\right)^{\frac{1}{2}} \cdot \bar{W}\left(2 \sigma_{12}, r\right) \cdot e^{2 i \sigma_{12} t}
$$

But from equation ($9-7$)

$$
\begin{align*}
& \bar{A}_{1}(u, v) \cdot \bar{A}_{2}(u, v)=\frac{k^{2} a_{1} a_{2}}{\left(Q_{1} Q_{2}\right)^{1 / 2}}, \text { hence } \\
& \Delta=4 \pi \rho a_{1} a_{2} \sigma_{12}^{2}\left(\frac{\pi}{Q_{1} Q_{12}}\right)^{\frac{1}{2}} \cdot \bar{W}\left(2 \sigma_{12}, r\right) e^{2 i \sigma_{12} t} \tag{9:0.14}
\end{align*}
$$

We notice that the displacement $\boldsymbol{\Delta}$ is periodic with a frequency twice the mean frequency of the generating wave groups and with an amplitude which depends on the product of mean amplitudes of the two generating wave groups and the square of the mean frequency. In this it beats a marked similarity to the mean pressure variation produced by the interference of two wave trains travelling in opposite directions (see equation 4.5) as is to be expected. Further $\boldsymbol{\Delta}$ is independent of the sizes of squares used for subdivision of the area $\boldsymbol{\pi}$, but depends only on the area $\boldsymbol{\pi}$ of the generating region. It will be noticed that Δ increases with Q_{12} and decreases with $Q_{1} Q_{2}$; so that the greater the area of interference the greater is the displacement; but the greater \boldsymbol{Q}_{1} and $\boldsymbol{Q}_{\mathbf{2}}$, that is, the more widely distributed is the energy of each spectrum the smaller is the resulting disturbance.

- CHAPFER 10.

Practical Application of the results of chapter 9.

Ghapter 9 indicates that a periodic vertical displacement of the ground will ociur if two groups of waves of the same wave-lengths but travelling in opposite directions interfere, ©o that in order to explain the generation of microseisms by this theory it is necessary to louk for co nditions which will give rise to opposing wave grcups of surface waves.

When Bernard (1941) suggested that microseisms were the consequence of standing waves he considered that suitable standing waves would be generated at the centre of a cyclonie depression or off a steep coast where there was interference between the incident and reflected waves.

Microseisms from a circular depression:
Since the lowest pressure in a cyclone is near the
middle the winds necessarily blow inwards from all sides, but because they are deflected to the rifht (in the northern hemispherel they do not blow directly towards the centre (Lake). At each point of an isobar there is a considerable component towards the centre of the depression. Observation suggests that when a wind blows steadily in a particular direction there is eventually generated a swell traveiling more or less in the direction of the wind. So that the centre ϕf a depression should be recèiving swells from several radial directions. Thims would be the necessary condition for the generation of large standing waves, and may be the reason for the large pyramidal weves reported from centres of low pressure and low wind velocity.

Suppose then that in the centre of a circular depression in the Atlantic, wave energy is being received equally from all directions with a range of periods between 10 and I6 seconds.

The speed of propagation of waves in deep water V is given approximately by $V^{2}=\frac{G \lambda}{2 \pi}$ (Milne-Thomson 14•17) whilst the period T of the wave of length λ is given by

$$
V=\lambda / T
$$

Hence approximately for waves in deep water

$$
\lambda=\frac{g \tau^{2}}{2 \pi}
$$

If λ_{1} and λ_{2} are the lengths of waves of periods 10 seconds and 16 seconds respectively,

$$
\begin{aligned}
& \lambda_{1}=\frac{981 \times 10^{2}}{2 \pi}=1.54 \times 10^{4} \mathrm{~cm} \\
& \lambda_{2}=\frac{981 \times 16^{2}}{2 \pi}=4.00 \times 10^{4} \mathrm{~cm}
\end{aligned}
$$

Referring to chapter 5 and taking the centre of the circular depression as the origin we see that the energy of the frequency spectrum entering the area of the depression is contained between the two circles with centres at the origin and radii
the $\frac{2 \pi}{\lambda_{i}}$ and $\frac{2 \pi}{\lambda_{2}}$. In ${ }_{A}^{*}$ haldothis annular region formed by drawing any common diameter of the two circles, the two wave groups will be moving in opposite directions. Such a region is the $\boldsymbol{Q}_{\mathbf{1}}$, the \mathbb{Q}_{2} and the region $\mathcal{Q}_{\text {re }}$ of equation (9.14).
Hence

$$
\begin{aligned}
Q_{1}=Q_{2}=Q_{12} & =\frac{1}{2} \pi\left[\left(\frac{2 \pi}{\lambda_{1}}\right)^{2}-\left(\frac{2 \pi}{\lambda_{2}}\right)^{2}\right] \\
& =\frac{2 \pi^{3}}{10^{8}}\left[\frac{1}{(1.54)^{2}}-\frac{1}{4^{2}}\right] \\
& =2.16 \times 10^{-7} \mathrm{pq} . \mathrm{cm} .
\end{aligned}
$$

Taking a storm area of $1000 \mathrm{sq} . \mathrm{Km}$, , a mean period of 13 secs. and a mean amplitude of 3 metres;

$$
I=1000 \times 10^{10} \mathrm{sq} . \mathrm{cm} ; \quad \sigma_{12}=\frac{2 \pi}{13} \mathrm{sec}_{2}^{-1} ; \quad a_{1}=a_{2}=300 \mathrm{~cm}(10 \cdot 1)
$$

Then the coefficient of $\bar{W}\left(2 \sigma_{12}, r\right) e^{2 i \sigma_{12} t i n}$ equation (9.14) is

$$
\begin{aligned}
& 4 \pi \times 300^{2} \times \frac{4 \pi^{2}}{169} \times\left(\frac{1000 \times 10^{10}}{2.16 \times 10^{-7}}\right)^{\frac{1}{2}} \\
& =1.826 \times 10^{15} \text { dynes. }
\end{aligned}
$$

Hence $|\Delta| \bumpeq 1.8 \times 10^{5} \times \bar{W}\left(2 \sigma_{12}, r\right)$
To evaluate $\bar{W}\left(2 \sigma_{12}, r\right)$ we assume the values

$$
\begin{array}{ll}
P_{1}=1.0 \mathrm{gm} / \mathrm{cm}^{3}, & P_{2}=2.5 \mathrm{gm} / \mathrm{cm}^{3}, \\
c=1.4 \times 10^{5} \mathrm{~cm} / \mathrm{sec}, & \beta_{2}=2.6 \times 10^{5} \mathrm{~cm} / \mathrm{sec} \\
& \alpha_{2}=\sqrt{3} \times 2-0 \times 10^{5} \mathrm{~cm} / \mathrm{sec}
\end{array}
$$

(According to Poisson's Hypothesis

$$
\text { -- Sullen } \boldsymbol{f} 4 \cdot 12 \text {) }
$$

$$
L^{\circ}=3 \mathrm{Km}=3 \times 10^{5} \mathrm{~cm}, \quad r=2000 \mathrm{Km} . \quad=2 \times 10^{8} \mathrm{~cm} .
$$

With these values $G(\xi)$ vanishes only once, and

$$
\begin{align*}
& G\left(\xi_{1}\right)=0, \\
& \xi_{1}=5.29125 \times 10^{-6}
\end{align*}
$$

Equation (9.13) becomes

$$
\begin{aligned}
\bar{W}(\sigma, r) & =-\frac{\sigma^{\frac{1}{2}}}{\rho_{2} \beta_{2}^{5 / 2}(2 \pi r)^{\frac{1}{2}}} \cdot c_{1} \\
& =-\frac{\sigma^{\frac{1}{2}}}{\rho_{2} \beta_{2}^{5 / 2}(2 \pi r)^{\frac{1}{2}}} \quad \frac{\left(\beta_{2} / \sigma\right)^{5 / 2} \cdot \xi_{1}^{\frac{1}{2}}}{[d G(\xi) / d \xi]_{\xi=\xi_{1}}}
\end{aligned}
$$

From equation (847):

$$
\begin{aligned}
& \frac{d G(\xi)}{d \xi}=\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4 \xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right] \\
& \times\left(\frac{\sigma^{2}}{\sigma^{2}}-\xi^{2}\right)^{-\frac{1}{2}} \xi h \cdot \sin \left(\frac{\sigma^{2}}{\alpha_{1}^{2}}-\xi^{2}\right)^{\frac{1}{2}} h \\
&+\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[-\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-3 / 2} \xi\right. \\
&+ 8 \xi\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}}-4 \xi^{3}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{-\frac{1}{2}} \\
&-\left.8 \xi\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right] \operatorname{Cos}\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{\frac{1}{2}} h \\
&-\left(\frac{\rho_{1}}{\rho_{2}}\right) \cdot\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{-\frac{1}{2}} \xi h\left(\frac{\sigma^{2}}{\sigma^{2}}-\xi^{2}\right)^{-\frac{1}{2}} \operatorname{Cos}\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{\frac{1}{2}} h \\
&+\left(\frac{\rho_{1}}{\rho_{2}}\right) \cdot \xi \cdot\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{-3 / 2} \sin \left(\frac{\sigma^{2}}{\alpha_{1}^{2}}-\xi^{2}\right)^{\frac{1}{2}} h
\end{aligned}
$$

Hence

$$
\left[\frac{d G(\xi)}{d \xi}\right]_{\xi=\xi_{1}}=-1527.19 \times 10^{8}
$$

Hence using (10 3), (104), (10 5) and (106):

$$
\begin{aligned}
\bar{W}\left(2 \sigma_{[2}, r\right) & =\frac{13^{2}}{2.5 \times(2 \pi)^{\frac{1}{2}} \times 2^{\frac{1}{2}} \times 10^{4} \times(4 \pi)^{2}} \times \frac{(5.291)^{\frac{1}{2} \times 10^{-3}}}{1527 \times 10^{8}} \\
& =1.82 \times 10^{-19} \mathrm{c}_{\mathrm{m} / \text { dynes }} .
\end{aligned}
$$

Substituting in equation (10 2)

$$
\begin{align*}
|\Delta| & \Omega 1.8 \times 10^{5} \times 1.82 \times 10^{-19} \\
& =3.276 \times 10^{-4} \mathrm{~cm} \tag{10.7}
\end{align*}
$$

Hence the amplitude from peak to trough of the vertical displacement of the ground is

$$
6.5 \times 10^{-4} \mathrm{~cm}=6.5 \mu
$$

at a distance of 2000 km . from a wave in water of depth 3 Km ., and the period of the displacement is approximately 6.5 seconds.

Microseisms from Coastal Reflection.

When a wave group is incident on a steep coast some measure of reflection occurs and the reflected wave group will contain the same frequencies as the incident wave group and the necessary conditions for the generation of microseisms are realised. It has been demonstrated experimentally by Cooper and Longuet-Higgins (1950) that there is a sharp decline in the value of the coefficient of reflexion against a plane surface, when the plane is inclined at less than 45 degrees to the horizontal. At 15 degrees the coefficient of reflexion is less than 10% and the foremost edge of the incident wave is becoming turbulent. The coasts of Europe are anything but plane surfaces and the beaches are frequently shelving, so that a high degree of reflexion is not to be expected. Exactly how much energy is reflected is difficult to assess and we shall assume that the mean amplitude of the reflected wave is 5% of that of the incoming wave.

Let us suppose that a swell of mean amplitude 2 metres and period 12 to 16 seconds whose direction of propagation lies within an angle of 30 degrees is approaching a coast, so that the shoreline makes 10 degrees with the mean direction of the incoming waves.

The direction of the reflected wave is also spread over an angle of 30 degrees, so that only one third of the angle of the reflected waves overlaps that of the incoming waves. We assume that the effective shoreline is 600 km . and that the reflected wave extends outwards a distance of 10 Km. , this gives us a value $6000 \mathrm{sq} . \mathrm{Km}$. for $\boldsymbol{\Lambda}$. Normally the depth up to 10 Km . from the shore is negligible compared with that at the storm centre in the Atlantic, so we may take $\mathcal{K}=0$. For the quantities in equation (9 14) we have the values:

$$
\begin{aligned}
& \left.\begin{array}{rl}
a_{1}=200 \mathrm{~cm} ., \quad a_{2}=10 \mathrm{~cm},, \quad h=0, \quad \mathrm{r}=1000 \mathrm{~km} .(\mathrm{say}) \\
\rho=1 \mathrm{gm} / \mathrm{cm}_{3}^{3} \quad \sigma_{12}=14 \mathrm{sec}^{-1}, \quad \Lambda=6000 \mathrm{sq} \cdot \mathrm{Km} .
\end{array}\right\}(20 \cdot 8) \\
& \lambda_{1}
\end{aligned}=\frac{9 \cdot 12^{2}}{2 \pi}, \quad \lambda_{2}=\frac{9.16^{2}}{2 \pi} .
$$

$$
\left.\begin{array}{ll}
\text { hence } & Q_{1}=Q_{2}=1.396 \times 10^{-8} \tag{10.9}\\
\text { and } & Q_{12}=0.465 \times 10^{-8}
\end{array}\right\}
$$

With the values (10.8) and (10.9) the coefficient of $F\left(2 \sigma_{12}, r\right) e^{2 i \sigma_{12} t} \quad$ in equation (9.14) is

$$
\begin{aligned}
& 4 \pi \times 200 \times 10 \times\left(\frac{2 \pi}{14}\right)^{2} \cdot\left[\frac{6 \times 10^{3} \times 0.47 \times 10^{-8}}{1.4 \times 1.4 \times 10^{-16}}\right]^{\frac{1}{2}} \\
& =1.945 \times 10^{14} \text { dynes. }
\end{aligned}
$$

When $\boldsymbol{h}=0$

$$
\begin{align*}
& G(\xi)=\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}} 4 \xi^{2}\left(\xi^{2} \frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right] \\
& \\
& =0, \\
& \text { when } \xi=3 \cdot 755 \times 10^{-6} \tag{10.11}\\
& \text { also } \frac{d G}{d \xi}=\left(\frac{\beta_{2}}{\sigma}\right)^{4} \xi\left[-\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-3 / 2}\right. \\
& \left.+8\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{-\frac{1}{2}} 4 \xi^{2}\left(\xi^{2} \frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{-\frac{1}{2}} 8\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}\right] \\
&
\end{align*}
$$

Hence

$$
\begin{align*}
& \bar{W}\left(2 \sigma_{12}, r\right)=\frac{1}{\rho_{2} \cdot(2 \pi r)^{\frac{1}{2}} \cdot \sigma_{12}^{2}} \cdot \frac{\xi_{1}^{\frac{1}{2}}}{\left(\frac{d G}{d \xi}\right)_{\xi=\xi_{1}}} \\
& =\frac{13^{2}}{2.5 \times(2 \pi)^{\frac{1}{2}} \times 10^{4} \times(47)^{2}} \times \frac{(3.755)^{\frac{1}{2}} \times 10^{-3}}{4574 \times 10^{8}} \\
& =8.393 \times 10^{-20} \mathrm{~cm} .1 \text { dynes }
\end{align*}
$$

From (10.10) and (10.12)

$$
\begin{align*}
& \mid \Delta 1 \Omega 1.945 \times 8.393 \times 10^{-6} \\
&=16.32 \times 10^{-6} \mathrm{~cm} \\
&=0.1632 \mathrm{f} \\
& \therefore 2 \mid \Delta 1 \approx 0.33 \text { micron }
\end{align*}
$$

So that the reflexion of a wave group, of mean amplitude 2 metres, will produce microseisms of amplitude 0.33 micron.

The effect of Resonance.

It has been shewn in chapter 7 that we may expect resonance at certain depths.
The asymptotic expansion of
$W(\sigma, r) e^{i \sigma t}$ namely
$(-)^{m} \cdot \frac{1}{P_{2} \sigma^{2}(2 \pi r)^{\frac{1}{2}}}$

represents a set of waves of length $2 \pi / \xi_{m}$ and amplitude proportional to $\xi_{m}^{1 / 2} /\left(\frac{d G}{d \xi}\right)_{\xi=\xi m}$
By giving ξ. particular values and solving the equation $G(\xi)=0 \quad$ the following table is obtained. There will be no real values of \mathcal{Z} for $\xi<3.452$.
It will be noticed that there are several values $\mathcal{L}_{1}, \mathcal{K}_{2}$, $\mathcal{L}_{3}, \mathcal{L}_{4}$, etc. at which particular values of ξ satisfy $G(\xi)=0$; these correspond to the roots of the
equivalent equation
$\operatorname{trm}\left(\frac{\sigma^{2}}{c^{2}}-\xi^{2}\right)^{\frac{1}{2}} \mathcal{A}=\frac{\left(\frac{\beta_{2}}{\sigma}\right)^{4}\left[4 \xi^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{\frac{1}{2}}-\left(2 \xi^{2}-\frac{\sigma^{2}}{\beta_{2}^{2}}\right)^{2}\left(\xi^{2}-\frac{\sigma^{2}}{\alpha_{2}^{2}}\right)^{\frac{-1}{2}}\right]}{\rho_{1} / \rho_{2} \cdot\left(\frac{\sigma^{2}}{\sigma^{2}}-\xi^{2}\right)^{-1 / 2}}$
The values of $\left(\xi \frac{1}{2} / \frac{d G}{d \xi}\right)_{\xi}$
It is observed that $\left(\xi^{\frac{1}{2}} / \frac{d G}{d \xi}\right)_{\xi}$, rises to a maximum at

$$
h_{1}=2.462 \mathrm{Km} ; \quad\left(\xi^{1 / 2} / \frac{d G}{d \xi}\right)_{\xi_{2}} \quad \text { has a maximum at }
$$

$h_{2}=7.281 \mathrm{Km}$; these and the other maxima must correspond to resonance. Co that we may expect with a standing wave group of mean period $2 \pi / / 3$ seconds to find resonance occurring when the depth is $2.462 \mathrm{Km}, 7.821 \mathrm{Km}$. , 13.12 Km ., etc.

$\xi_{\times 10^{6}}$	h_{1} Kms.	h_{2} Kms.	h_{3} Kons.	h_{4} Koms.	$\left(\begin{array}{c} \left(\xi^{\frac{1}{2}} / \frac{d G}{d \xi}\right. \end{array}\right)_{\xi}$	$\begin{gathered} \left(\xi^{\frac{1}{2}} / \frac{d G}{d \xi}\right)_{\xi} \\ \times / 0^{15} \end{gathered}$	$\begin{gathered} \binom{\xi \frac{1}{2} / d C}{d \xi} \xi_{3} \\ x / 0^{15^{3}} \end{gathered}$	$\left(\begin{array}{c} \xi^{\frac{1}{2}} / \frac{d C}{d \xi} \\ \\ x / 0^{15} \end{array}\right]$
3.452		2.925	8.198	13.44				0.686
3.46		3.012	8.285	13.53		1.683	1.55	1.439
3.469		3.070	8.343	13.58		2.391	2.17	1.993
$3 \cdot 486$		$3 \cdot 157$	8.429	$13 \cdot 71$		$3 \cdot 122$	2.79	$2 \cdot 546$
3.493		3.302	8.604	13.90		3.582	3-344	3.056
3.530		3.476	8.808	$14 \cdot 10$		3.941	3.609	3-321
3.586		3.708	9.01	14-34		3.986	3.646	3.432
3.621		3.940	9.298	14.63		3.919	$3 \cdot 654$	3.453
3.653		4.230	9.616	14.97		3.830	3.609	$3 \cdot 432$
3.685		4.547	9.965	15.36		3.763	3.587	3.410
3.718		4.982	10.37	15.96		3.806	3.631	3.476
3.750		$5 \cdot 388$	10.8	16.22		3.982	3.763	3.631
3.781	0.2897	5.736	11.18	16.60	$4 \cdot 562$	4.295	4.044	3.875

Examination of the table shows that there is a very steep rise to and decline from the maximum values of the amplitude. That these do not become infinite as chapter'indicated must be due to the fact that energy is being continuously removed from the region of the disturbance. The graph shews how the amplitudes of the different wave components of the displacement $W(\sigma, r) e^{i \sigma t}$ come to a maximum at different depths. The amplitudes of successive wave components are of opposite sigm. Remembering this fast quantity prupurtional to the displacement may be obtained by adding algebraicaily the ordinates for any value of h. The effect of resonance is to increase the amplitude of the displacement at certain depths by some multiple of the average value. This factor may be as much as five for certain depths.

CHAPHER 1l.

CONCLUSION.

Miche has indicated that a pressure fluctuation independent of depth is not produced by a swell (houle) but by a choppy sea (clapotis). This phenomenon is wide-spread and occurs whenever the motion of the sea comprises a frequency spectrum in which there are wave groups of similar characteristics moving in opposite directions; these opposite wave groups produce a generalised choppiness which is shewn by the tumultuous waves noted near the centre of a depression. Opposite wave groups produce a fluctuation cf pressure with a mean frequency twice that of the mean frequency of the wave groups; this pressure variation is not attenuated with depth and will produce a periodic displacement of the ground with a frequency equal to that of the pressure variation.

The required opposite wave-groups occur in a region of depression and in cosstal waters. The existence of more opposite wave groups in a circular depression than in coastal waters will give rise to microseisms of greater amplitude from interference in mid-ocean than near coasts. Owing to the damping of the higher frequencies by the viscosity a greater proportion of the energy will be carried by the lower frequency components near coasts than near storm centres, so the coastal microseisms are likely to be of smaller amplitude and lower mean frequency than the deep water micrcseisms. In both cases the mean frequency of the microseisms will be twice that of the mean frequency of the generating waves. Since resonance between the compression weves and the sea-bed will occur at certain depths, there will be microseisms of unusuelly large amplitudes from certain ocean depths.

This will acocount for the change in amplitudes noticed as a. depression moves and also for the fact that depressiens of equal intensity but of different location do not produce equal microseismic activity.

I should like to express my thanks to Mr. E. F. Baxter for suggesting the subject of this thesie and for his encouragement and supervision.

This thesis is not an account of an original investigation, but a synthesis of detailed treatments of several original papers.
M. Miche in a paper "Mouvements Ondulaires de la Mer en profondeur constante et decroissante" published in four parts in the Annales des Ponts et Chausses (1944) discusses several problems. Chapter 2 in this thesis is a detailed presentation of the relevant parts of Miche's work on the existence of a second order pressure variation under a standing wave. Miche's work is very contracted and parts consist of statements of results. Miche's notation has been maintained and the missing steps in his mathematical treatment have provided. Thus the values of the functions G_{2} and $f_{2}(t)$ have been determined by considering the boundary conditions end the associated cifferential equations, whereas Miche is content to state e velue for G_{2} (his equation 66), to give no velue for f_{2} (Hand to atate in his Equation (57), our equations (2.38), (2.39) anc (2.40), (values of the coordinates and pressure.)

Chapters $3-7,9$ and 10 are a detailed treatment of the paper in the Phil. Trans. Roy., Vol. 243, No. 857 September 1950 by M.S.Longuet-Higgins. This work is elso very contracted and the details have been provided.

Longuet-Higgins in equation 178 , (our equation (8.56)) states a result given by J.G.Schoite in a paper "Over het verband tussen zeegolven en microseismen". (Nederlandsche Akademie van Wetenschappen Vol. LII, 1943). Scholte starts his paper by assuming an equation given by K. Sezawa ("On the transmission of Seismic Waves on the Bottom Surfaee of an Ocean"-- Bulletin of the Earthquake Research Institute, Tokio Imperial University, Vol. IX,1931). Chapter 8 gives a full determination of Longuet-Higgins' equation 778 and the evaluation of the integral which he has stated in equations 183 and 184 .

REFERENC ESS.

Banerji,S.K. 1930 Phil.Trans. A, 229,(287)
Banerji,S.K. 1935 Proc. Indian Acad. Sci. I, (727)
 Bernard, B. 194l, Étude sur l'Agitation Microséismique,

Presses Universitaires de France.
Bullen, K.E. ''The Theory of Seismology'' C.U.P. 1947.
Cooper, R.I.B. \& Longuet-Higgins, M.S. 1951. Proc. R.S. A 206
Darbyshire, J 1950 Proc. R.S. A202, 439.
Deacon, G.E.R.,1947 ''Nature'', 160, 4⒐
Goursat, E.\& Hedrik, E.R. 1904 ''Mathematical Analysis'' Ginn\& Cò Gutenberg, B. 1931 Bull. Seis. Soc. Amer. 21, l
Jeffreys, H. 1925 Proc. R.S. A, 107, 189.
Lake, P. 1926 ''Physical Geography'' C.U.P.
Lee, A.W. 1932 Mon. Not. R.A.S. Geophys. Cuppl. vol. 3 no. 2
Lee'A.W. 1934 Geophys. Mem. no. 62
Lee A.W. 1935 Proc. R.S. A 149, 183
Lamb,H. 1932 ''Hydrodynamics'' 6th. Ed. C.U.P.
Longuet-Higgins, M.S. \& Urseil, F. 1948 'Nature', i62, 700
Longuet-Higgins, M.S. 1950 Phil. Trans. R.S., A 243,1
Miche, M. 1944 Annales des Ponts et Chaussees 2, 42.
Milne-Thomson, L.M. 1949,'Theoretical Hydrodynamics' Macmillan
2 nd. Edition
Ramirez, J.E. 1940 BUl. Seis. Soc. Amer. 30,35-84 and $139-178$ Titchmarsh, E.C. 1937 'Theory of Fourier Integrals' O.U.P. Scholte, J.G. 1943 Versl. gewone Vergad. Akad. Amst. 52, 669 Stonelay, R. 1926 Mcn. Not. R. Astr. Soc. Geophys. Suppl 1, 349 Whipple, F.J.W. \& Lee, A.W. Mon. Not. R.A.S. Geophys. Suppl. 3,8 Watson, 'Theory of Bessel Function' C.U.P.

