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1. 

@S'IRACT, 

Auditory fatigue is now know as Temporary Threshold Shift 

(subsequently abreviated to. -~s). It has been defined as the temporary 

elevation in the absolute threshold of hearing for a given test so1md 

resulting from prece~ auditory stimulation by a given stimnlus 

sound (see Hirsh, 1952, p~e 1T7). Associated with the phenomenon there 

are six physical variables which sub--divide themselves into stimulus, 

test and recovery factors. In this stUdy each of the latter factors 

was sY.stematically ~vestigated using four groups of six undergraduate 

subjects. Thresholds were measured using the aek$sy (1947) technique 

of' threshold measurement. Control eJq:~eriments were carried out to 

verity that TTS results trom the application of the stimulus tone, to 
:. ' "' , I 

study the mechanisms involved in the Bekesy technique of' threshold 

measurellient and the effects of this technique on the measurement of' 

TTS, to inVestigate ariy additive effects of' TTS and to study the 

possibility of -tm3 measurement errors resulting from the physical test 

environment. 

The rescl ts of the eJq:~eriments showed that the stimulus., test 

and recovery factors all produced a consistent dualitY of results. It 

was concluded that the -'l;llli tary definition of T1'S is inadequate and 

that there are two T'l'S mechanisms. These are referred to as fatigue 

and temporary stiiriulatiqn deafness. Fatigue is associated with 

moderately intense stitnul.us tones of fairly short duration. It 

increases linearly 'With logarithm of the stimulus duration; it is 

maximal at sti.IQ.ulus frequencies of 1000, 2000 and 3000 cps; it does 

not vary significantly with stimulus intensi.ties of up to 90 db. but 

thence- increa~~s rapidly to a maximmn; it is max:imal at a test 
. ' 

frequency equal to the stimulus frequency and recbvery from it is 

complete within one,minute of the cessation ot the stimulus. Temporary 
0 

stimulation deafness is associated with high intensity stimulus tones 

' of fairly long duration. It ,increases l:lnearly with the logarithm of 

the stiln.ul.us duratio~; it is maximal td. th stimtilus frequencies of 

4000 to 6000 cps; it increases rapidly as the stimtilus intensity is 

increased; it is maximal at a test frequency an octave above the 
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from the cessation of the st~ulus tone. 

It is hypothesized that fatigue i~ a .neurBJ., possibly bio-chemical, 

adaptation effect and that temporary stimulation deafness results from 

structural damage to the organ of Corti. Other work supports this 

differentiation. The phenomena of ~atigile support either a "place" 

or a "volley" theory of hearing. The phenomena of temporary stimulation 

deafness are partially ~:x:pllcable .in terms · or the . anatomical · 

characteristics or the ear. 
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PABT 1. 

PREVIOUS WORK, 



CHAPTER 1. 

INiRODUCTIO!l. 

Auditory .fatigue may· be defined as the temporary elevation in 

the absolute threshold of' hearing-for a given .tu,t sound. resulting 

from prior stimulation of the ear by a sui te.ble stimulps sounc] (see 

Hirsh, 1952, page 177). Unfortunately, the term has many theoretical 

implications and consequently in the past ten years the term andi tory 

fatigue ha,s been replaced by the term Temporary . Threshold Shift ( TTS, 

see Meyer, 1953). TTS is not to be confused with Hood's 0 perstimtilatory 

fatigUe", i.e. "adaptati<m" (eee Hood, 1950 and Bocca, 1960). The 

latter phenomenon is a temporary elevation of' the threshold of hearing 

resulting during the application of' a suitable stimulus tone. It is 

closely associated 'With physiological adaptation and Hood- suggests 

that it is localise<! in the end-organs of' the organ of' Corti. It is 

3. 

also closely associated Yith the transient threShold shifts caused by very 

short duration stimuli such as those used by Luscher and Zl-d.slocki 

(1947). Stimulation deafness (see Causal and Chavasse, 1942-43) is 

another phenomenon closely associated with TTS. Howver, stimulation 

deafness is a pei'I!l8llent elevation in the threshold resulting from exposure 

to preceding auditory stimulation. 

Figure 1 illustrates the general procedure .followed in 

experiments on TTS. It can be seen that there are three main stages 

as .follows 1 

(i) The. app~cation of· a given test sound to determine the 

pre-stimulus, i.e. the pre-exposure, threshold. 

(ii) The applicatipn of the stimulus sound, i.e. the 

exposure period. 

(iii) The re-application of' a given test sound to determine 

the post-stimulus, i.e. post-exposure-. threshold. 

The difference between the post-exposure and the pre-exposure thresholds 

provides an operational measure of TTS. Further inspection of figure 1 

reveals that within the :rrs situation the stimulus, test and recovery factors 

are associated with_ six physical independent variables. These are : 

(i) The frequency or type of stimulus sound. 

(11) The intensity of the stimulus sound. 
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In Tens 

1' Stimulus Ton• 
Exposure Period 

Test Tone. Lotent Test Tone 
Teme. 

Polt·Ex,.,IUK Pre-ur:urc. 
P.rod '-- Pef'iod 

VAriables 
Teat Freq&Mncy 
Test Duration 

--)-, Time 

VAriU,Ies 

Stimulua fr•ttuenc.y 
Stimulut Durotion 
Stimulus Intens•ty 

Voriobles 
Teat Fr-.uenc.y 
Test Durcation 
Latent nme 

Figure 1: Illustrates the proceedure and main paramete~s involved in 

TTS experiments. 
,p. 
• 



(iii) The duration of the stimulus sound. 

(iv) The time after the cessation of the stimulus sound 

at which the post-exposure threshold is measured (i.e. 

latent time, see Rodda, 1960). 

(v) The frequency or type of test sound. 

(vi) The duration of the test sound. 

The duration of the test sound in TTS experiments is usually 

5. 

fairly long or continuous,since variations in threshold with test sound 

duration are thought to result from changes in the test duration and 

not from aQY TTS effects. 
• I I 

S~nce the advent of the Bekes.y technique of 

threshold measurement in 1947 (see Bekesy, 1947) this has been used 

almost exclusively for making threshold measurements in TTS experiments. 

The technique enables the subject to determine his ow threshold by 

varying the intensity of a sound and consequently very rapid 

determinations of his threshold can be made. Since the threshold 

shifts resulti.ng from TTS are only temporary, this ability to measure 

rapidly the threshold is of obvious advantage. Unfortunately, since 

the method is comparitively new, knowledge of its psychological basis is 

very limited. 

The first experiments on TTS were probably carried out by Urbant­

schitch (1875). Siilce that date papers have regularly appeared on 

the topic. In the majority of these papers, testing has been 

usually limited to showing the effect of one variable under very 

specific conditions. Consequently, the results obtained are not general 

and a combination of the results from different experiments to provide an 

overall picture is virtually impossible. Hirsh (1952, page 178) refers 

to "the disjointed and apparently unrelated nature of the parts" of the 

probl.em1hat have been studied. In 1962 the position is little better. 

There are three exceptions to the statement made above. Hood (1950) 

has published a fairly eA~nsive study of the problem. He used 

moderately intense stimulus tones of moderate durations. However, in 

the majority of his experiments, he only used one stimulus condition. 

Davis, Morgan, Hawkins, Galambos and Smith (1950); Ward, Glorig and 

Sklar (1959) and Hard, Glorig and Salters (1960) have published very 

extensive work on TTS effects resul. ting from very intense stimulus 
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tories applied for long periods. Howver, as will be shown in subsequent 

sections these intense ex;p_osures· to not produce a TTS similar to that 

produced by more moderate_ ex_posures. 

It can be concluded that there is a grave lack of continuity in 

the study of TTS resulting from moderately intense stimuli and a failure 

to di.tf'erentiate this effect from TTS resulting from more intense 

stimuli. The experiments reported in this thesi~ are an attempt to 

begin inter-relating all of' the TTS variables. The experiments are 

not complete and it -will require many more years of intensive st~ 

before the vast range of possibilities has been studied. However, they 

do cover the effect of variation of the stimulus and test condi tiona 

both separately and concurrently. 
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CHAPTER 11 

HI STaRt. 

7. 

The history of TTS is found to be intimately interlinked 'With 

the more general problem of nuctuations in sensory responses or as 

it has since become know the "fluctuations of attention" controversy 

(see Oldfield, 1955). In 18'15 Urbantschitcb (1875) published a paper 

describing changes in the response of a subject to simple sound stimuli. 

This reported that weak sound. stimuli Wich were of a constant intensity 

around threshold level, such as the ticking of a watch, were irregularly 

detected by the observers •. Physical variations in the actual intensity 

of the sound did not give rise to the effect since a careful control 

experiment showed that different subjects reported not hearing the 

sounds at different times. Urbsntschitcb. explained the observations 

in terms of a dual fatigue and recovery process within the auditory 

nerve. Thus the concept of au.di tory fatigue or TTS entered into the 

terminology of psycho-acoustics. 

However, the.-next fifty two years saw a major conflict of 

opinion as to whether the auditory mechanism could be fatigued or 

whether Urbantschi.tch's and similar results were simply an artifact 

of attentional factors. Thirteen years after the publication of 

Urbantschitch' a paper Lange (1888, see Guildford, 1927) rejected the 

hypothesis of fatigue because : 

(i) There is no evidence that sensory nerves tire so 

quickly from minimal stimuli. 

(ii) "The nerve would have to recover while being 

stimnlated0
• 

(iii) "fhe effect ought to be noticed v.i th intense 

stimuli" • 

. Lange conducted experiments in which he found that w.hen two stimuli 

from tvo modalities "Were presented simultaneously they did not fluctuate 

independently but formed a rythi:m in which one stimulus alternated with 

the other. Hence, he concluded the phenomenon resulted from "fluctuations 

of attention" which gEVB rise to corresponding fluctuations in the 

"apperceptive" process. 

It is at this point in history that the problem of auditory 
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f'atigtte bee- ~~~inate to. ~e pl'oblem ·or whether there are real 
. .· - ·~~ 

varl&tion~ ~ .the threshold re~ti,ng fi.om fatigue, adaptation -or same 

other mdiar plifmome~on. ~ whether such -~-s are merely the result 

of attentiopBl: trregiliarities~ ·. With- the posing of this more general 

problem, the _s~tldy tended to leave the fi~d of audition and auditory 

fatigue and .concentrate .on other se.tlSPry modalities. Possibly due to 
. •· . . ~ . . 

the lntla8nee ,·of Wundt $ld ,the'WurZ.bUrg Schopl; vision tended to 

predominate as the most prollf~c field of. stuey~ Supporters of' the 

11tluctuati:ona;·o:f· attentiC?nn explanation of threshold variations with 

auditory· or other· sensoey stimuli inCluded Slangbter (1901), 

Pillsbury (i9~S) and Galloway (1904). SUpporters of' the adaptation 

or f'atip t~aries inclttded Lebmam (1894), Munsterberg (1889), 
',: • 1 

HeinreiCh and ,Chwiste~· (190'7) and Ferree (1906 ·aDd 1908). 

During the middle of 'the anuctuatiOJlS. of' atten'tl.onn controver87 

there deVeloped a IQinar ··controversy a:s to whether or not there were in 

f'aet 8Zl7 true fluctuations of perceptual responses to auditory stimnl.i. 

Hu:l.j smari (1894):, Heinreich (1900 and ~907), H&lllller (1905) and Schaaf'f'er 

(1905) to1md !lo evidence ,tor such :nt1cttiations, whereas Cook 

(1900), · Titchener (190l),, Wiersma (1901), Bonser (1903), Danlap (1904) 

and Seashore ·and Kent···(l905) did. ,H()we:Ver, ·Jackson (:1906) observed 

that the range· of intensities over. which· fluctuations are observed is 

very small. Hence it seems probable. that· the negative results were 

associated 1oJi th the use of stimuli which were outside the range ill whioll 

Jackson. observed·1;b.e effects to o~ur. 

It was not untill927 when Patti~-_(1~27:) .Published an excellent 
. '·· . 

paper on ~ topic that. auditory fatigUe becaine an established fact and, 

the ~othesis of nnuotuations ·of attentiona as a general explana1;ion 

of &1.1 tbresllold variations fell into dierepute. The rout started 'b7 

the publication of Pattie's paper vas ·completed 'b7 the ind$P&Ddent 

publ1cat1o~ u ·~ s~E( )8ar of' a paper b.r paildtord (1927) 

specifically en •~cttiations of atten:ttonn. 

Prior ·to the p\ibl19ation of Pattie's paper the general conclusion 

of ml)st -of the vbl'k. foll~wing upon lJJ'bantschitch'a original paper vas 

that the ear ·CC?uld ·not be fatipd. H~&man (.op.cit.), Sewall (1907), 

Schaeffer (op•cit •. ·) ~Jlld Bar.tlett and Mark (1922) all obtained negative 
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---------
o~~--~---~~--1f~~~~~~ 

seco!\ds 
Plate 1, 

Illustrates the results obtained by Pattie (1927). Abscissa is 

latent t_ime in seconds. Ordinate is percent of responses judged 

louder in non-fatigued ear. 
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results. The positive results of' other experimenters such as Wilson and 

Myers (1908), Albrecht (1919) and Flugel (1914 and 1920) were e:xplained 

away as resulting from "fluctuations of' attention." The difficulty of' 

most of' the early workers seems to have been one of' finding an adequate and 

reliable measure of' fatigue, i.e. a measure which suitably renected 

changes in hearing acuity. Without exception they used sound stimuli 

well above threshold and used either changes in localization or changes 

in the time f'or which sound f'rom a tuning fork was heard as measures 

of' the effect. The difficulties with these methods and the criticisms 

that can be made in retrospect are that : 

( i) Above threshold sounds are not likely to show fatigue 

effects as easily as sounds at or very close to the threshold. 

(ii) Localization of sound stimuli tends to be accurate 

only for gross changes. 

(iii) It is difficult to equate the loudness of' tuning forks 

and hence to quantify the time for which a sound is perceived. 

(iv) Unless a masking stimulus is applied to the contra­

lateral ear there is often binaural stimulation when a tuning 

fork is placed on the mastoid process. 

However, Pattie used a binaUral loudness balance test to measure tle 

changes in loudness resulting from monaural stimulation of the ear by 

ptn"e tones and this proved to be a more sensitive measure. 

The general form of Pattie's results are show in plate 1 which is 

reproduced from his paper. He reached the conclusion that the e~ could 

be fatigued but that the term "labile" used by Flugel (op. cit.) 

adequately described the phenomenon. A further control experiment using 

binaural. stimulation indicated that the locus of fatigue was peripheral. 

Guildf'ord stated that the problem "is nothing more than a matter of' 

limen; to discover ways in which the phenomenon is dependent upon the 

intensity of' the stimulus, to point out the operation of' certain 

peripheral and central physiological factors." He used visual stimuli 

to study the phenomenon and avoided adaptation b,y utilizing only extremely 

brief presentations of' the stimuli. He found that only with the latter 

condition did the intensity at which the stimulus was perceived for so% 

of presentation time agree w1 th the threshold as determined b,y the method 
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of limits. In: a series of caretully controlled experiments he found 

that retinal adaptation, eye movements and local central fatigue all 

af'tected the period f'or which the stimuli were perceived. He 

justif'iably concluded that there are too many "physiological conditions" 

involved in the ef'f'ect to attribute it to "fluctuations of' attention." 

Following on f'rom Pattie's work several papers were published 

establishing the fact that appropriate preceding auditory stimulation 

has a "fatiguing" etf'ect on the ear. BJkesy (1929) found that 

fatigue was maximal at the frequency of' the stimulus tone. Using 

stimulus tones of' 200 to 2000 cps at an intensity of' 100 db., he found 

that fatigue was produced at test f'requencies of' 1000, 2000 and 3000 cps. 

He also found· that threshold shif't was maxima] at a stimulus/test 

frequency of' 3000 cps and reached the erroneous conclusion that fatigue 

is not caused by stimUlus frequencies of' less than 1000 cps. l'iore 

recent work (see Hughes, 1954) has shown that frequencies of' less than 

1000 cps will produce TTS • 

. Ewing and Littler (1935) extended the range of' stimulus conditions 

covered by studying the ef'f'ects of' stimulation at intensities just below 

the threshold of' pain. They used both normal and partially deaf subjects 

and found tha.t the loss of sensi t1 vi ty ranged over one or two octaves 

but that outside this range the threshold remained normal. They also 

f'otmd that fatigue increased as the duration of' the stimulus was increased. 

Finally, they were the first workers to suggest that there might be more 

than one kind of' fatiguing process. 

Another line of' investigation followed in this period vas the 

ef'f'ects of' preceding auditory s~ulation on the difter~tijU threshold 

of' audition. Rawdon-Smith and Sturdy (1939) found that " a loss of' 

differential sensitivity" f'or intensity resulted from preceding pure tone 

stimulation. They studied the characteristics of' the ef'f'ect and found 

that it was greatest at the stimulus frequency. They also found that 

only frequencies which -were an even multiple of' the stimulus frequency 

were affected. This line of' research was .again 'allowed to lapse and 

it was not until 1962 that further work was carried out on the 

phenomenon. Elliott, Riach and Silbiger (1962) f'otmd that as the amount 

of' fatigue, that is as the severity of the exposure, was increased the 
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differential threshold for intensity was reduced. This they e~lain as 

the result of recruitment Wich is often associated with fatigue and 

which causes an abnormal growth in the perception of loudness. (See 

Dix, Hallpike and Hood, 1948 and Hal.lpike and Hood, 1951). 

The results of Elliott et al. are at first sight contradictory to the 

earlier results of Ravdon-Smith and Sturdy. Hovever, a reconsideration 

Of Rawdon-Smith and Sturdy's data indicates that the difference is partly 

one of emphasis. They emphasized the elevation of the differential 

threshold with increasing stimulus intensities ,but at a constant stimulus 

duration of two minutes. Elliott et al. emphasized the decrease of the 

differential threshold at approxima~ly constant intensities of 105-115 

db •. but at varying stimulus durations which were arranged to produce 

increasing am,opnts ,gf fatigue. Hood (op. cit.) has shovm that the amount 

of fatigue increases only very slightly as the stimulus intensity is 

increased up to about 90 db. Rawdon-Smith and Sturdy used stimulus 

intensities ranging from 0 to llO db. and thus we can assU!Ile that the 

amounts of fatigue produced by their stimuli were relatively constant ·~ 

for the lower stimulus intensities. Hence we can conclude that 

Ramion-SI!lith and Sturdy's results indicate that with constant amounts 

Rt fa.tifNe, the ditf'erential ·threshold for intensity increases in value 

as- the stimulus intensity is increased. The results of Elliott et al. 

directly indicate that with ,increasing amOunts~ fatigue, the differential 

threshold for intensity is reduced. However, this difference only 

resolves the differences between different stimulus conditions. It 

does not resolve the basic differences between the two studies of quantit­

ative. increases or decreases .!:!2 norma! threshold. Unfortunately, 

Elliott et al. do not seem to have been aware of Rawdon-Smi th and Sturdy's 

results and did not carey out 8.ny eJqJeriments with varying intensities. 

In the light of present kn0l11ledge· it would appear that the results of 

Elliott et al. are more logical since they are supported by the recruitment 

phenomenon. However, more work is required in this field. 

Initially Rawdon-Smith (1934) returned to the original fatigue 

hypothesis of Urbantscbitch (op. cit.) and explained the phenomenon in 

terms of increases in the refractory period of the nerve fibres and a con­

sequent reduction in the rate of volleying. In a later paper (Rawdon-
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Smith, 1936) he changed the locus of the effect to a central mechanism 

because of results showing the existence of a "disinhibitory phenomenon." 

Thus if an irmoccuous stimulus was applied to the subj act during recovery 

from fatigue then there was an almost immediate return of the threshold 

to normality followed by a further increase in the threshold. 

Broadbent (1955) has pointed out that this result poses an unanswered 

question in work on TTS. It is nov generally accepted that fatigue is 

peripheral but as ~t nobody has explained how Rawdon-Seith's results 

can be eJq>lained on this basis. Unfortunately, the experiment has never 

been repeated and it does appear to have been om tted from any discussions 

of the locus of fatigue. However, it indicates that overl¢ng the. 

peripheral locus the~e may be under certain conditions a central 

inter-sensory factor. 
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CHAPTER lJJ 

STR1DLUS AND TEST TONE VARIABLES m TTS. 

(a) Stimulus· Duration 1 The resol ts obtained in experiments studying 

the ef-f'ects of stUml.us ·duration on TTS are more conclusive than those 

obtained in experiLlents studying the other stimulus variables. Ewing 

and Littler (1935) noted that TTS increased as the duration of the 

stimulus was increased. Ciluss/ and Chavasse (1942-43) found that with 

a stimulus tone of 1000 cps at stimulus intensities of 10-40 db., the 

amount of TTS increased linearly with the logari tmn of the stimulus 

duration as the latter was increased from 10 to 40 seconds. Hood (1950) 
. / 

has extended the work of Causae ·and Chavasse. He used a stimulus tone of 

2048 cps at an intensity of 100 db. and found that as the duration was 

increased from 10 ·to 320 seconds . the amount of T'l'S increased linearly 

with ·the logarithm of. the stimulus duration. Ward, Glorig and Sklar 

(19.$9J) and Ward, Glorig and Salters (1960) have also obtained a logarith­

mically linear increase in 'i'TS with the stimulus duration as the 

effegtiye duration of the stimulus is increased from 10 to 30 minutes 

or from 30 to 500 minutes respectively. In both of the latter studies 

the stimulus used was octave band noise. 

However, it does not appear that Hood and .Ward et al. are 

studying the same effect since Davis, Morgan, Hawkins, Galambos and 

Smith (1950) have claimed that as the stimulus duration is increased from 

1 to 64 minutes the graph of TTS against stimulus duration changes from 

linearity to positive acceleration. Careful inspection of the results 

of Davis et al. reveals that the linearity at the lower durations is 

rather forced. The resUlt::~ could also represent two stages of a positively 

accelera'ti.ng curve whiCh, when transposed, would give a logarithmically 

linear increase in fi,'S with both long and short stimulus durations. The 

linear increases would of course have different slopes which would 

in~eate that there are tWo 'fTS effects m.anifested. One seemingly 

associated with short stimulus durations and the other seemingly associated 

with fairly long stimulus .durations. 

One would expect that there exists some relationship between 

stimulus doratio~ and stimulus intensity. For example ''Rol has found 

bur~ts of a stimulus are. less effective than a continuous stimulus0 (see 
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Spieth and . .Trittipoe, l958a). The United States Air Force assumes 

that intensity and duration have equal weightings in calculating nois~ 

exposure hazards. (see W_~d et al., op. cit.). By analogy it has been 

suggested (-see Spieth and Trittipoe, 1958a) that a similar condition 

applies in TTS .. _However, ~erimemtal· results do not confirm this 

hypothesis. Spieth and Trittipoe (1958b) have analysed the results of 

Davis et al. (op. cit.) and found "that for two exposures to a tone, 

both having equal total energy, the exposure with the lower intensity 

and the longer duration nearly always produced the greater and more 

persistent TTS." Baris (1953) has reported similar results. 

Spieth and Trittipoe (l958a) offered more evidence against the 

suggestion of equal weighting When they found that 1m/sec. bursts 

of noise had considerably less effect than equivalent continuous stim­

ulation. They also lees extensively tested burst of noise of 10m/sec. 

and 1 second duration. They concluded that these caused no more T'l'S 

than continuous stimulation and probably had a smaller effect. In a 

later study (Spieth and Trittipoe, l958b) £hey found that 20 seconds 

after exposure,TTS was greater with increased stimulus intensities 

irrespective of the stimulus duration. When TTS was measured five 

minutes after exposure they obtained results' (see plate 11) in 'Which 

the relationships were typically bo'ir - shaped. They suggest that at 

moderate intensities a 2 to,. 1 weighting of stimulus duration to 

stimulus intensity mq be mpre appropriate. They also point out that 

as the intensity is increaaed this relationship must eventually 

become invalid. 

Ward et al. (op. cit.) c~ied out further investigations on this 

phenomenon and concluded that the hypotheses of equal weighting and of 

2 to 1 weighting both held under certain limited condi tiona. However, 

they also -concl-uded that the relationship was much more complicated 

than suggested by either of these equations. Unfortunately neither 
. 

Ward et al. nor a:ny other .wrkers studied stimulus intensities of .less 

than the critical stimulus. intensity of approximately 95 db. (see page 

17 ) • Consequently, it becomes impossible to say with any certainty 

whether the dual.i ty of restil. ts associated with variations in the stimulus 

duration would persist in the:relationship. However, the hj~potheses 
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of equal weighting and: "of 2 to 1 weighting both seem to assume a 

logarithmic linear relationship between TTS and ·stimulus duration 

without the existence of any critical duration similar to the critical 

stimulus intensity. It . will be sho't.Jn later that this assUIIIption cannot 

be made (see page 69 ) • Similarly they would also seem to assume a log­

arithmic linear recovery from TTS. However, Ward (1960) has shol>m that 

if TTS is high, this relationship only applies in the initial stages of 

recovery. 

We can conclude that the effect ·of stimulus duration o:n TTS reveals 

a dual effect. It appears that wen the results of different experiments 

are interelated, the ·TTs ·increases linearly with the logarithm of the 

stimulus duration over a wide range of stimulus durations. Houever, 

it also seems fairly clear that this linear increase sub-divides 

itself into two parts. The relationship between stimulus duration and 

stimulus intensity is approximately 1 to 1 or 2 to 1 under certain 

limited condi tiona. However, the complete relationship is much more 

complicated and as yet it has not been related to the eri tical 

stimulus intensity or the critical stimulus duration. 

(b) ·stimulus Ip.tensity : Ewing and Littler (1935) were the first 

. writers to suggest that there might be a critical stimulus intensity 

associated with 'l'rS effects. They did this indirectly wen they 

suggested that there were two kinds of "fatigue11 and that the threshold 

of feeling is not an adequate indicator of"overloading11 of the ear. 

Hood (1950) points out that· this idea is also suggested wen the small 

amounts of TTS recorded by Ewing and Littler and obtained w.ith 

stimulus intensities of up to 110 db. are compared with the much 

greater shifts recorded by Davis, :Morgan, Hawkins, Galambos and Smith 

(1950) with stim.Ulus':intensities of up to 130 db. 

Hood (op. cit.) was the first worker to effectively shov the 

existence of a critical stimulus intensity. Using a stimulus frequency 

of 2048 eps, a stimulus duration of· one minute and a latency of ten 

seconds he fotmd that Tl'S increases only slightly as the stimulus 

intensity is raised from 60 to 90 db. However, he also observed that 

it increases rap~dly as the stimulus intensity is raised from 95 to 
' 
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110 db. 'i'he results of Davis et al. ( op. cit.) also usually show that 

as the stimulus is increased from no to 130 db.' further rapid 

increases in TTS occur. Jerger (1956) in his studies on diphasic 

recovery from TTS also noted that rapid increases in TTS occur with 

stimulus intensities exceeding 95 db. 

\lard, Gl.orig,and Sklar (1958). using octave-band noise and a 

4000 cps test tone, have suggested that the increases in TTS with 

stimulus intensities above the critical stimulus intensity are linear. 

Initially they suggested that the ftmction vas represented by the 

following equation : 

-r TS 1 : I. o& [~1R; ( s, -B.-~ [t.,,. td 
where TTS2 = TTS two minutes after cessation of the stimulus 

Ri = ratio of time on to time off. 1 

si = Stimulus intensity ( \lhich must be greater than 

or equal to 85 db.). 

T = Duration of stimulus 

Later this equation was revised to a 

T T 5 .2. = 0. b 1 [s ~ - 70] [ I 0~ ID T +" 0. 3 3 J - '. r 

where Ri = 1 and the symbols have the same meaning as in the first 
2 . 

equation. These equations of course only apply to the specific data 

collected by Ward et al. 
' . 

It is difficult to judge from Hood's data whether this increase: 

in TTS above 95 db. is linear since he only used stimulus intensities 

of 60, 70, 80, 90, 100 and llO db. However, judging from the above 

"' points, they do not _appear to be so. Hence, at first sight Hood's 

resW. ts .and the re~ ts of Ward et al. appear to be contradictory. 

The discrepancy possibly refiects the existence of two TTS effects. 

Hood measured his TTS ten seconds after the cessation of the exposure 

tone, whereas Ward et. al. measured their TTS over a two minute period 

1. Note; if stimulation is continuous R = 1. 

2. Note; that Ward et al. actually used different symbols in the 

second equation, but these were equivalent. 
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after th~ . cessation of the exposure- ione. The former is definitely 

in the i'irst phase· of recovery from TrS and the 'la~ter is defini te11 

ill the second phase o£ recovery from TTS (see page 29 ) • 

Further evidence for the existence of a critical TTS stimulus 

intensity has been provided by Epstein and Schubert (1957). They used. 

not only the smount of TTS, but also the recovery time and the amount 

of recruitment present in an attempt to determine the critical TTS 

intensity of a themal. noise stimulus with a duration of 3 minutes. 

They used a 4000 cps test tone and found that at latencies of 

5, 10, 20 and 60 seconds there is a sudden increase in TTS at 80 db. 

A composite expresSion utilizing TTS, recovery time and recruitment 

gave a similar increase at 80 db. Unfortunately, the latter result of 

Epstein and Schubert must be viewed with reserve, since they used .the 
I I 

'Width of the excursions in Bekesy tracing to measure the amount of 

recruitment present. The validity of this nethod has been questioned 

( see page ~4 ) • 

There is some evidence that the existence of a critical stimulus 

intensity for TTS is not a universal phenomenon. Davis et al. (op. cit.) 

noted that for some subjects there was a reduction in the emount of TTS 

as the stimulus intensity t.ras raised frat1 120 to 135 db. 1rittipoe 

(1958a) also noted that although he obtained consistent increases in 

the mean TTS as a thermal noise stimulus was increased from 108 to 125 

db., some of his subjects showed a consistently dotmt.Jal'd trend rith 

increased stimulus intensities. In the latter case the intensity 

differences -were tested arid this dotmHard trend was fomid to be 

statistically significant. Ue mq conclude that this difference refiects 

a)iuality of TTS effects and that those subjects shorTing the dowmo1ard 

trend are highly resistant to high intensit,y.TTS. 

Lat.Jrence and Yantis (1957) have claimed that Hirsh and Bileer (1955) 

found "no significant differences in the amotmt of fatigue far the 

stimulus tone follot·~ levels of stimulation up to a. sensation level of 

100 db." In actual fact they obtained this result with only short 

dtn'a.tion exposUre tones 'When m 1m§ measured . .§J: ~ stippjl 'D.§ freonency. 

t·1oreover, even tmen the test and stimulus f'requencies were the S8llle 
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vaJ.ue Hirsh and Bilger found a large increase in TTS at a stimulus 

intensity of 90 db. and with a stimulus duration of four minutes. 

Their negative resul. ts with short stimulus durations mey result frotl 

chance errors associated tdth the small amounts of TTS produced when 

the stimulus and test frequencies have the same value. The majority 

of the shifts they recorded under these conditions ~re less than 5 db. 

Hot.rever, it seems more likely that T'i'S at a 1000 cps test frequency 

does not show any sudden increase with in~eased stimulus intensities. 

Careful study of the results of l·liller (1958) reveals that TTS, after 

exposure to white noise, shows a sudden increase at approximately 95 db. 
' 

stimulus intensity with test frequencies of 2000 - 8000 cps. With test 

frequencies of 500 and 1000 cps it shows no such sudden increase; • ., 

Lawrence and Yantis (op. cit.) have also obtained negative results with 

a 1000 cps stimulus and Davis et al. (op. cit.) have shown that test 

frequencies of 2000 - 6000 cps are most affected by high intensity 

stimulation. Hirsh and Bilger categori9ally state that when TTS was 

measured at a test frequency a half octave above the stimulus frequency 

nabove 90 db. the amount or •••••••••• 'lHL increases sharply."1 

Lawrence and Yantis (op. cit.) used TTS and overload (frequency 

distortion) to measure the effects of preceding stimulation on the 
I / 

responses or the ear. They ust;~d the Bekesy technique to measure both 

the TTS and the o~load. In the case of overload, the pheno:::enon of 

beats between aural harmonics and the test tone determined the Wfdth and 

mean point or fluctuation during the B~ke'ey tracing. They found that 

although there was no increase in TTS, there was an increase in overload 

with increased intensities of stimulation. Lam-ence and Yantis's results 

can be criticised because they measured TTS at a test frequena.y equal to 

the frequency of the stimulus tone. We have already seel;l in the case 

of Hirsh and Bilgers results that under these conditions TTS is very 

small and it is difficult to make an a4equate assessment of any changes. 

Another criticism of Lawrence and Yantis's results is that although they 

1 THL (Temporary Hearing Loss) was the term used by Hirsh aDd Bilger, 

but it means TTS. 
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state that "post-stimulus fatigue •..•••••••• showed little variation 

with stimulus intensity" their results were not completely negative. 

Plate 111 reproduces results obtained by La;t4"ence and Yantis in. another 

experiment designed to ascertain a suitable intensit,y for the co~encement 

of the overload eJq>er:iE.ents. In these they did measure 'l'TS not only 

at equal test and stimulus frequencies but also at test frequencies a 

half ·an octave and one octave above the stimulus intensity. It can be 

seen from the plate that under the latter conditions, there are sudden 

increases in TTS at approximately 100 db. as the stimulus intensity is 

increased. However, in discussing their results they conpletely ignore(. 

this and concentrated upon the results obtained td.th equal stimulus and 

test frequencies. 

Stimuli even e.t lo-w intensities which normally produce very little 
/ 

observable TTS,o~ produce an increased susceptibility to TTS. 'l'bis 

was suggested by studies of Trittipoe (1958 a and b) in which he stimulated 

subjects for 3 minutes with 118 db. noise after previous exposure to 

either 15 minutes silence or 15 minutes noise at a variety of intensities 

ranging from 48 to 88 db. These stimuli, according to 'l'rittipoe, 

produced no observable 'l'TS. He found that 'l"l'S was significantly affected 

by the previous noise exposure. However, there were Hide indi. vidual 

differences. The result is dependent upon Trittipoe' s statenent that 

the noise at the 48-88 db. level produces no observable TTS. Unfortunately, 

he did not use a 11coinmercial0 noise so we cannot directly judge for his 

particular conditions. However, there is great amount of information 

available to show that exposures at this level do produce 'l'TS if the 

I 
latencies are sufficiently small. (See for example Causse and Chavasse, 

op. cit. and Hood, op. cit.) 

The incorrec~ess of Tri ttipoe' s assumption is confirmed by more 

recent experiments of liard (1961). He used stimulus intensities of 

60 and 70 db. to produce latent effects. However, he took precautions 

to pr~vent the obseryable 'l'TS effects produced by the pre-exposure 

stimuli from affecting subsequent measures of TTS. Under these conditions 

he found "that latent effects· are at best neglible •11 It seems unlike'ly 

that exposm-es at stimulus intensities less than the critical stimulus 

intensity (approximately 95 db.) would produce true residual effects 
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for stimulus intensities greater than the critical stimulus intensities. 

Intensities above and belot.,. the critical intensity seem to be associated 

~th different TTS phenanenon. 

In slJl:Jillary it t-rould appear fairly well established that there 

exists a critical stimulus intensity of approximately 95 db. Belm~ 

this the differences in TTS td th stimulus intensity are slight; whereas 

above this, TI'S increases linearly 'With stimulus intensity. The 

effects observable above the critical stimulus intensity do not reveal 

themselves at a 1000 cps test frequency. They are probably associated 

wi tb the wo phases of recovery fron TTS. The high intensity effects do 

not appear to be affected by prior stimulation at intensi ti€ls less than 

the critical intensity. 

(c) Stimulus Freguency. The earlier t-rork of Ewing and Littler (1935) 

and Ratmon-Smith (1934 and 1936) indi~ated that stimulus frequencies 

above 1000 cps produced more TTS than s~ulus frequencies of less than 
.I I 

1000 cps. Bekesy (1929) even reached the erroneous conclusion that 

frequencies of less than 1000 cps did not produce 8:tJY TTS. Hovever, 

Be'kesy' s result probably arose from the lack of a suitable technique 

to obtain a rapid determination of the post-exposure threshold. Hence 

b,y the time he had measured the post-exposure threshold, the TTS effects 

had been dissipated. 

The first conprehensive study on the role of the stimulus frequency 

in producing TTS l-Ja.S carried out by Davis, Hawkins, tlorgan, Galambos and 

Smith (1950). Using stimulus intensities of 120 to 140 db., these workers 

found that a 500 cps stimulus tone was least effective in producing TTSj 

that 1000 and 2000 cps stimulus tones were equally effective in producing 

TTS and that a 4000 cps stimulus tone was most effective in producing 

TTS. Ho\rever, a careful inspection of their results reveals that for 

same individual subjects, a 2000 cps stimulus tone was slightly more 

effective than a 1000 cps stimulus tone. 

These results did not agree 'With results published earlier by CausBff 

and Chav~sse (1942-43). Using a test frequency equal to the stimulus 

frequency, they found that fetigue was ma.xirral at a stil!lulus frequency of 

· 3000 cps with stimulus intensities of 30-40 db. Ho\oiever, since they did 

not use stimulus/test frequencies of 2000 and 4000 cps, it~ be that the 
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3000 cps peak is simply an artifact. However, it seems unlikely that w 

can explain the discrepancy in this way, since Hood (1950) obtained 

maximal TTS at 900, 1800 and 2700 cps stimulus frequencies. A more 

" important difference between the work of Causae and Chavasse and 

Davis et al. is that they used very different stimulus intensities. 

It has been established (see pages 17 to 21) that there is a change in 

the nature of TTS at the critical stimulus intensity of approxt.mately 

95 db. 
/ 

Since Causae and Chavasse used stimulus intensities of 30 to 

40 db. and Davis et al. used stimulus intensities of 120 to 140 db., 

they were obviously measuring two entirely different effects. 

" If Oausse and Chavasse had tested more intermediate frequencies 

they might well have obtained similar results to those of Hood. It was 

stated above that he found that TTS vas maximal at stimulus frequencies 

of 900, 1800 and 2700 cps. His results also show that TTS at these 

peak maxima increases as the stimulus frequency increases. Thus TTS 

at 900 cps is less than TTS at 1800 ar 2700 cps, although it is greater 

than at all other stimulus frequencies. Silllilarly TTS at 1800 cps is 

less than TTS at 2700 cps. He makes no reference to a maximmn at 

4000 cps and again this is contrary to the results of Davis et al. 

However, two of the individual results that he shows do have a further 

maximum at about 4000 cps. In his mean graphs no frequencies above 

3600 cps are shown. Hence it is impossible to judge whether such a max­

imum was present. Hood relates his wrk to the work of Derbyshire and 

Davis (1935) on equilibration and the volleying of the auditory nerve. 

Thus at approximately 1000, 2000 and 3000 cps, the auditory nerve fibres 

are firing at their maximal rate and consequently the time between 

impulses in !l:ndividual fibres is only fractionally greater than the 

absolute refractory period of the fibres. H~ hypothesised that TTS 

would be ma:ximal at these frequencies since the nerve has virtually no 

time to recovery between successive impulses. 

Despite the excellent quality of Hood's work it can be criticised 

on three points : 

(i) He used only one stimulus intensity to study the effect. 

(ii) He used a stimulus intensity of 100 db. which is very 
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close to tbe critical stimulus intensity. 

(iii) He measured TTS at a latency of one tdnute Yhich, 

as we shall see later, is a transition point in the 

two stages of recovery from TTS (see page 17 ). 

The criticisms do not invalidate Hood's work but they do mean that 

:further experimentation is necessary before the results csn be accepted 

as being generally applicable. The author's own work has show that 

there are limitations on the conditions under which Hood's results 

apply. 

The greater influence of 4000 cps in producing TTS at moderately 

high intensities is confirmed by results published by tvard, Glorig and 

Sklar ( 19 5$) • They :found that when octave band noise was used as a 

stimulus, maximal TTS was produced by the band 2400 - 4800 cps at· 

stimulus intensities of 90 to 105 db. Thompson and Gales (1961) have 

shown that TTS at 4 kc is independent of the band1Jidth of the stimulus. 

They used noise stimuli at a sound pressure level of llO db. and with 

})andwi.dths of up to one octave. Hence it seems safe to conclude 

that the results of Ward et al. indicate the greater effectiveness 

of 4000 cps pure tone in producing TTS. Hirsh and Hard's work (1952) 

on diphasic recovery :from TTS is also indicative of the twofold 

nature of the stimulus :frequency variable. They state that "after 

acoustic. stimulation by ·sounds containing Ai least~ frequencies 

below 4000 cps the recovery of the auditory threshold • • • • • • • • is 

represented by a diphasic curve.n 

In conclusion it would appear that depending upon the severity 

of the e:xposrire and particularly upon the stimulus intensity, TTS is 

maximal at 1000, 2000 and 3000 cps or at 4000 cps. With intensities of 

less than approximately 85 to 100 db. the :former condition seems to prevail 

It is difficult to predict "What happens at higher intensities, since 

an intensive study of these has not been reported. Davis et aL ·.(op. cit.) 

used only :frequencies of 500, 1000, 2000. and 4000 cps and the bands of 

noise of Ward et al. (op. cit.) were too "Wide to determine any inter­

mediate frequency effects. A 4000 cps stimulus is the most effective of 

those extensively tested, but whether the maxima at 1000, 2000 and 3000 
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cps stUl persist, is uncertain. 

(d) .~ Tone Relationships in TTS. Once again Ewing and Littler's 

(1935) work was indicative of later results. They suggested that 

maximal TTS occured at frequencies above the stimulus tone and that it 

spread over about two octaves. Perlman (1942) made a similar 

suggestion but neither he mr Ewing and Littler had anything more 

specific to sa:y on the probi:em• 

The first detailed results came from Davis~ Hawkins, r-7organ, 

Galambos and Smith (1950) who found that "the greatest loss of 

sensitivity occurs at a frequency abo:ut half an octave above the 

exposure tone." The results of Davis et al. also showed that a stimulus 

tone of duration one or two minutes produced a spread of TTS over one 

or two octaves. This confirmed the suggestion of Ewing and Littler 

and of Perlman. However,. Davis et al. also noted that with longer 

stimulus durations, i.e. 32 and 64 minutes, the range of test frequencies 

shovdng observable TTS exceeded two octaves. 

Kylin (1961) using filtered l·Ihite noise stimuli has extended the 

work of Davis et al. He found the band of test frequencies affected 

increases in YJidtb as the intensity of stimuletion is increased. 

However, contrary to the results of Davis et al.., he claimed that 

Hhatever the stmulus condi tiona the band of frequenci~s affected never 

covered a range of more than tvio octaves. This discrepancy does not 

seem to be associated tvi th the use of noise instead pure tone stimuli, 

~ since one would expect a greater band of frequencies to be affected 

by noise than by pure tones. The discrepancy is more likely to be 

a function of stirlulus intensity, since Kylin only used stimulus 

intensities of up to ll5 db. whereas Davis et al. used stimulus 

intensities or 120 to 140 db. 

Kylin's results cart~inly do not hold ~men unfiltered noise is 

used as a stimulus. Postman and Egan (1949) used Wlf'iltered white 

noise as a stimulus tone and found that 30 seconds after exposure, a 

range of frequencies from 250 to 8000 cps Here effected. Since 8000 

cps was the highest frequency tested the range of frequencies affected 

may have been even greater. However, the range of frequencies most 
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seri.ousl,v arrested is from 2000 to 8000 cps and this equates l-Ji. th 

the 2 octaves sugeested by Kylin. Davis et al. (op. cit.) have 

suggested that the test frequencies most seriously ~ffected are f'ram 

2000 to 6000 cps and this result has been confirmed by Ruedi and 

Furrer (1946 and 1947) 

It is possible in summarizing these discrepancies to make tHo 

suggestions to explain the differences. These are that : 

( i) Kylin' s results are not general and that they are an 

artifact produced by the use of liiilited stimulus conditions. 

(ii) Kylin' s filtered Hhite noise equates more to pure tones 

than t·rhite noise and that his results hold for ptn"e tone 

but not for noise stimuli. 

The latter suggestion is hardly tenable since Davis used noise as well 

as pure tones. Consequently it would appear that the former suggestion 

is more likely to be correct. 

The results of Davis et al. and Kylin are contrary to those of 

Causst end Chavasse (1942-43) who found that Hith lo'B' intensity stimulus 

tones there is a symmetrical spread of fatisue about a test frequency 

equal to the stimulus frequency. Earlier results by B~k~sy (1929) 

and Rawdon-Snith (1934 and 1936) had also indicated that maximal TTS 

occurs at the stimulus frequency •. Hirsh and Bilger (1955) have 

suggested that~ 1m:! ;intensity leyels of the stimulation, a test 

frequency equal to that of the stimulus tone is most adversly affected • 

They noted that as the stimulus intensity was increased, TTS spread to 

the higher intensities until ma.xi.Llal TTS occured at a test frequency 

a half' octave above the stimulus frequency. Lawrence and Yantis 

(1957) confirmed these results but also noted that although TTS was 

maximllm at a test frequency of 1500 cps, after exposure to a 1000 cps 

tone, recoverY fran T.TS was s1ower at a test frequency of 2000 cps 

than at a test frequency of 1500 cps. 

Hood {1950) has resolved the conflict in a series of experiments 

in which he observed the distribution of TTS with test frequency at 

stimulus intensities of 60, 80 end 100 db. At 60 db. he obtained the 

symmetrical TTS spectrum obtained by CausSEf and Chavasse. At 80 db. 

the higher frequencies shows TTS effects and at 100 db., the higher 



frequencies shou even greater effects and the maximal TTS occurs at 

a frequency half an octave above the stimulus frequency. 

28. 

Agai.n we must conclude that TTS e:xhibits a dual phenonenon. At 

stimulus intensities less than the critical stimulus intensity, the 

TTS distributes itself s,ymmetrically about the stimulus frequency. 

At intensities above the critical intensity, the TTS distributes itself 

~etrically around a frequency a half an· octave above the st:lmul.us 

frequency. The interrelationships of this effect with stimulus 

duration have not been investigated. 
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CHAPTER lV 

RECOVERY FROI-I TEt-!PORARY THR!!!SHOLD SHIFT. 

The main expermental pare.meter in recovery from TTS is the 

latency. The other experimental parameters will of course affect the 

rate or type of recovery; but recovery concerns itself primarily with 

the amount Qf Ti'S specifically observahle after given latent times. 

During the past decade, there has been a great deal of 

controversy over the temporal course of recovery froo TTS. Some 

workers (see Hirsh and, l~a.rd, 1952, Hirsh and Bilger, 1955 and Jerger, 

1956) have suggested that recovery from TTS is diphasic. However, 

other workers (see. Hood, 1950, Harris, 1953 and Epstein and Schubert, 

1957) have disagt>eed with this suggestion and state that recovery is 

simply Iilonophasic. Typical "diphasic recovery" curves are show in plat~ 

lV uhich is reproduced from Hirsh and Wa:rd,{op. cit., page 133~ Typical 

"monophasic recovery" curves are show in plate V Hhich is reproduced 

frooHirsh and L-:ard (op. cit., page 135). 

Hirsh and t.Zard carried out tvo separate experililents into 

recovery from TTS. In the first study, clicks varying in intensity in 

3 db. steps were used to neasure the pre-e±posure and the post-exposure 

thresholds. Using stimulus tones of 125 to 4000 cps and stimulus 

intensities of 120 db., they found that recovecy vas diphasic. Inspection 

of plate lV reveals that the two phases in the recovery are : 
' 

(i) An initial rapid recovery of the threshold to normality, 

near-normal.i ty or super normality 't-Jhich is complete after 

about one I!linute. 

(ii) Follo't-r.i.ng the initial recovery a further gr&lual 

elevation of the threshold which lasts for a further 

minute or thereabouts. . This is folloved by a further 

iiradual. recove:ey of the threshold to normal.i ty. 

They introduced the term "bounce". This referred to the difference betwee 

the lot-rest threshold value reached in the initial phase of recovery 

and the highest threshold value reached in the second phase of recovery. 

They found that bounce was maximal at a stimulus frequency of 500 

cps. Further · experi.m~nts with a 500 cps stimulus tone at stimulus 



·0 
.J 
0 
X en 
1&1 

i· ... 
~ u --I 
u 

IL 
0 

z 
0 -
~ 
:>i 

"" _. 
"" 

15 

I 

15 

~' .. I tt 
I \ 

c& \ 
I \ . 

I ... ..__ \.. . 

IH·L 
500cpa, 120 db 

DURATION: 
o e MIN 

WW-L 

; At --.,..~ cr~ 
5 .. ' "" 0 

' e/ Jl !·· \. D ~ ... ~ .. --o-Cl.--~ "''0 .1 1 •... 0 
' '-!~, I / L '--... ~ ! ··•···· ....... , . ~~~_.. .. / . ...................... .. . 

··. ,._ • -.... D ...... ~ ~ ~. 0 .... ··········· - ····· 

0 60 120 180 240 300 

Time after cessation of Fa_~iQuinQ . Tone (Sec) 
PLATE IV 

Illustrates diphasic recovery ?rom Temporary Threshold 
Shi.f't. (Reproduced .f'rom Hirsh and Ward, 1952). 

30 



.. -D , 
~ 

w 
::» 
C) -... 
4 
&4 

2t~. 

I I I I 
0' I 2 3 4 

IH-L 
1000 

---··-·-------------­•••••• 
•••••••••••••••• ••••• ••••• 

•••••••• 
I I I I I I 

5 6 7 8 9 10 

TIME AFTER CESSATION OF FATIGUING TONE (MIN) 
- Plate V. 

Illustrates monophasic recovery :f'rom Temporary Threshold Shift. (Reproduced :f'rom Hirsh and Ward, 1952). 
w ...... 
• 



32 •. 

intensitie.s of 100, no and 120 db. and tdth stimulus durations of 

1.5, 3 and 6 minutes, revealed that the amount of bounce increased as 

the severity of the stimulus tone increased. This finding Va.s later. 

confirmed by Hirsh and Burn in an unpublished study (see Hirsh and 

Bilger, op. cit.). Similar results were obtained when narrol-r bands of 

noise were used as stimuli instead of pure tones. 
/ I 

In a second series of experiments Hirsh and Ward used the Bekesy 

technique to measure the pre-exposure and the post-exposure thresholds. 

They used white noise and pure tone stimuli and pure tones of 350 to 

8000 cps .and ten bands of noise covering the range 160 to 6600 cps in 

250 mel bands as test sotm.ds. The results showed that the amount of 

bounce was greatest for test frequenci"e.s covering the range 1000 to 

5000 cps. Within this range it was found to be maximal at 4000 cps. In 

the final experiment the effects of increased oxygen intake on recovery 
' 

were found to be slight and there vas 1i ttle evidence of any 

facilitatory effects. 

Work by Lierle and Reger (1954) indicated that the phenomenon 

is related to the stimulus intensity. These workers did not study the 

temporal course of recovery directly. However using a pure tone stimulus 

of 1000 cps at intensities of 20 and 80 db. they found that mth a 

stimulus duration of one minute, the threshold elevation at 20 db. was 

0.28 db. higher than the threshold elevation at 80 db. IDlen the 

stimulus duration was increased to 30 minutes the TTS was fotmd to be 

·greater at an 80 db. stimulus intensity • 
. ~ 

Further information on the role of stimulus intensity in producirig 

diphasic or monophasic recovery was provided by Hughes (1954) and Hirsh 

and Bilger (op. cit.-}. Hughes used a stimulus frequency of 500 cps, 

stimulus durations of one, two or three minutes and a variety of stimulus 

' .I intensities. He used the Bekesy technique for measuring thresholds at 

a var.iety of test frequencies and recorded post-exposure thresholds for 

six to seven minutes after the cessation of the stimulus. He rather 

confusingly defines "sensitization" as the amount of bounce. Hirsh and 

Ward (op. cit.) previously used the term to refer to ,;mether or not in 

the first phase of recovery the threshold decreased below the value of 

the pr~e:Xposure threshold. Since sensitization means an increase in 
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sensitivity, it is felt that Hirsh and vlard' s use of' the term is more 

logical and it will be used in this context throughout this thesis. 

Hughes claimed that Yhenever diphasic recovery was present, so was 

sensitization and he justified his use of the term on these grounds. 

This suggestion is not borne out by later work of' Hughes and Rosenblith 

(1957). They used clicks to measure the first neural response of' the 

ear and then· used this to study TTS effects in cats. They found thet 

in certain cases, depending upon the st:i.m.ulus conditions, their cats 

were consistant in sh~dng sensitization but not diphasic recovery. 

Hughes found that no bounce occured wi. th stimulus intensities of 

less than 60 db. and that when bounce occured -it vas maximal at a stimulus 

duration of three minutes. The former result was partially confirmed 

by Palva (1958) wo found that only 10% of' recovery curves sho11red diphasic 

recovery with a stimulus intensity of 30 db. Hughes also found that bounce 

was Jil.B.Xi.r.al at a test frequency of 500 cps,i.e. at a frequency equal 

to the stimulus frequency. This result does not directly contradict the 

results of Hirsh and Ward (op. cit.) vho found bounce vas maximal at 4000 

cps since Hughes only used test frequencies of 100 to 1000 cps 

whereas Hirsh and Ward tested frequencies up to 8000 cps. It mey be that 

there are two maxima, one at 4000 cps and one at the stimulus frequency. 

Hughes finally states that there are usually two intermediate peaks in 

the initial recovery phase. H~rever, the author feels that- these results 

from variations in threshold produced by the Bekesy method (see page 45 ) ':· 

particularly since the intermediate peaks reflect very small changes 

in the threshold. 

Hirsh and Bilger (1955) confirmed the relationship between 

recovery and stimulus intensity. Using a 1000 cps stimulus tone at 

intensities of' 20 to 100 db. and 'ldth st:imnlus durations of' 5 seconds to 

four minutes, they found that whether recovery was measured at 1000 or 

1400 cps, it was diphasic except ldth st:imnlus durations of 15 seconds. 

In the latter case recovery was monophasic at all intensities. They also 

found that the second phase of recovery was prolonged as the stimulus 

duration was increased. They did not confirm the existence of further 

peaks in the first phase of recovery. 
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Contrary to the above results Hood (op.cit.), Harris (op.cit.) 

and Epstein and Schubert (op.cit.) claim that recovery f'rom TTS is mono­

phasic under all stimulus conditions. Hood used the Bekesy technique 

to study a range of stimulus conditions in his comprehensive study of 

"post-stimulatory fatigae11
• None of his individual or mean results 

show any evidence for diphasic recovery and he makes no reference 

to it in his paper. However, Hood's results have been constructively 

criticised by Hirsh and Ward (op.cit.). The latter point out that 

the construction of Hood's apparatus al.lmred the subj acts to position 

the subject-controlled attenuator by reference to its preceeding 

posi tiona. They state, concerning the absence of diphasic recovery, 

that "this grounding produced by spatial organization might have precluded 

the appearance of this temporal change. n 

Harris used stimulus intensities of 120 to 140 db. and failed 

to find any evidence for diphasic recovery using a Bekesy technique for 

the threshold measurements. He maintained that the results of Hirsh and 

Ward (op.cit.)· were an artifact produced by tinnitus resulting from 

over stimulation of the ear. It is difficult to reconcile this statement 

with the fact that be used mgm seyere exposure than Hirsh and Ward. 

It would be expected that this artifact would be even more evident in 

his results. Harris's results were not easily explained until Jerger 

(op.cit.) showed that diphasic recovery is limited b,y an upper as 

well as a lower stilllulus intensity. Using a 3000 cps stimulus tone 

with a stimulus duration of two minutes, he found that at a 95 db. 

stimulus intensit.y there was a sudden increase in the amount of bounce. 

As the stimulus intensity was further increased, his results showed that 

there was a gradual decrease in the amount of bounce until at llO db. 

it completely disappeared. Spieth and Trittipoe (1958a) have to some 

extent confirmed Jerger's results. They show for other reasons curves 

of recovery f'rom TTS obtained under a variety of stimulus conditions, 

using intensities ranging from 94 to 130 db. in 6 db. steps. 

Careful inspection of these curves reveals that diphasic recovery only 

occurs with stimulus intensities of less than 106 db. Hence, it would 

appear that the negative results of Harris are associated with the fact 

that he used stimulus intensities greater than those at which recovery 
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from TTS is diphasic. 

The negative results of Epstein and Schubert would also seem to 

result .from the use of an inappropriate stimulus. In experiments 'Which 

specifically set out amongst other things to investigate this problem, 

they used a stimulus tone of 4000 cps at intensities ranging from 70 to lOC 

db. with a stimulus duration of 3 minutes. Recovery was observed at test 

frequencies ranging from 3000 to 8000 cps and they obtB.ined no recovery 

curves of the diphasic type. However, Hirsh and Ward {op. cit.) stated 

that recovery with a 4000 cps stimulus was monophasic. It is 

difficul. t to understand t-Jb7 they chose a 4000 cps stimulus in view of 

the earlier resUlts or Hirsh and Ward and one would not expect their 

results to shw diphasic recovery. 

All the papers claiming diphasic recovery from TTS noted that 

there were widespread individual differences in the manifestation 

of the phenomenon. Lightfoot (1955) undertook an extensive study of 

these inter-subject and intra-subject difference. He tested 24 

subjects twice Yith four stimulus/test conditions and obtained 192 

recordings or recovery from TTS. He found that 48% of these were 

judged to be monophasic and 52% were judged to be diphasic. He sub­

divided the diphasic results by classif'ying them into three different 

types. These were : 

{i) Those shomng only one bounce. 

( ii) Those shoi1ing two or more bounces. 

(iii) Those sho'Wing a bounce higher than the in:itial 

elevation in threshold. 

He found that 54 results showed recovery of the first type, 30 results 

showed recovery of the second type, 7 cases showed recovery of the 

third type and in 9 cases. the judges could not agree on the classification. 

With regard to intra-subject variability, he found that 68 out of 96 

pairs of tracings involving the same stimulus/test condi tiona wel'e 

consistent, 24 out of ·49· sets of four tracings involving the same 

stimulus conditions .were consistent, 13 out of 48 sets of four tracings 

involving the same te~ conditions were consistent and 1 out of 24 sets 

of 8 tracings involving all conditions was coneistent. Only one subject 
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was completely consistent ill Showing · diphasi;c recovery in all of the 

experimental sessions. 

However, the impression gained from this study is that the 

widespread individual variations in recovery are as much a quastion 

of experimental technique as of real individual variability. Judgements 

are notoriously unreliable and the initial figures of 48% monophasic 

and 52}?: diphasic ·seem to be 0 statistically" suspicious. Another 

I I 
factor to be born in mind is that Lightfoot used the Bekeq technique 

for measuring the threshold. We have already referred to the lack of 

knowledge of what this technique actually .measures (see page 5). 

The above suggestion is supported by the tiOl'k of Hughes and Rosenbli th 

(op. cit.) wo found tdth cats that ··the recovery of the neural response 

from 0 adaptation° (TTS) .consistently showed cmphasic recovery· or 

monophasic recovery under the appropriate stimulus conditions. 

Furthermore, Lightfoot 1 s resW. ts are not confirmed by Thompson and 

Gales (1961) who found that under the appropriate stimulus conditions, 

0 if an ear'S mean Clll'Ve shOWS 0 botmCe0 the individual CUl"Ve for each 

stimulus type shows "bounce" also .n 

Recovery from TTS exhibits the typical dual natcre or the 

phenomenon. The differenc~s· between monophasic and diphasic recovery 

seems to be a facet of the . stimulus condi tiona. Low or extremely high 

intensity stimuli give a monophasic recovery whereas stimuli of an 

intermediate ~r:rt;~f!ity give diphasic recovery. Stimuli of less than 

4000 cps produce monophasic recovery, whereas stimuli of more than 4000 

cps do not. The effect manifests itself most plainly at a test 

frequency of 4000 cps. 
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Davis, !11organ, Ha\lkins, GalEU!lbos and Smith {1950) have 

suggested that TTS effects are related to temporary demage to the organ 

of Corti. Hood {1950) relates some ··of his findings to equilibration 

and some to place and frequency theories of the action of the cochlea. 

However, the first really systematic attempt to formulate a theory 

regarding the meclumism of TTS came fr.om Rosenblith {1950) in 1950. 

He noted that TTS and masking are similar in that both produce : 

{ i) n shifts in threshold. n 

{ii) 0 Changes in loudness." 

{iii) "Changes in pitch~n 

{iv} "Effects upon localization.n 

{v) A symmetrical spread of the effect 'I:Iith low intensity 

stimulation, whereas high intensity stimulation produces 

an as,ymmetrical spread of the effect. 

Experi.I!lents were reported in 'Which changes in potential were recorded 

from the rotmd wi.ndov, the coclll.ear nucleus and the auditory cortex. 

The changes were associated m th both masking and TTS stimuli and were . 

recorded \11th human and animal subjects. Rosenblith concluded that, 

"although it is clear that the two effects cannot be unrelated unless 

we asstDil9 some strange discontinuities in the behaviour of the auditory 

system, it would seem to be going unnecessarily far to identif)' even 

the short-term after effects of an exposure stimulus as residual. ma6kinB• u 

Rosenbli th • s suggestion that TTS is not entirely, it at all, 

explicable in terms of residual masking is supported by later experiments 

:or van Dishoek (1953). These experments directly compared TTS and 

oaskirig effects for a 1000 cps stimulus. The distribution of these 

results over given test tones were similar. Ho'tlever, the amount of 

TTS was much greater than the B!!lount ~f threshold elevation produced 

by masking •. l·liller {1958) has approached the problerJ in another way 

and measured TTS for critical band stimulus tones producing equal 

masking effects. On a residual masking theory ot i"i'S one 1-10uld 

expect that such stinuli wuld produce equal TTS effects. · However, 
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Miller found that this was not the case. A careful control experiment 

showed that frequency differences within critical bands could not accoun1 

for this phenomenon. 

The relationship between masking and recruitment suggests that the 

masking phenomenon is associated with the organ of Corti (see Garner, 

1947). Despite the dissimilarities between masking and TTS, this does 

suggest that TTS mq be an effect associated with the organ of Corti. 

Hood (op.cit.) implicitly assumes this when he discusses the theoretical 

importance of his results in terms of place and frequency theories of 

hearing. Huizing (1949) offered further evidence for this suggestion 

when he reported that subjects suffering trom recruitment show a greater 

than normal susceptibility to TTS. Jerger (1955) has confirmed the 

importance of the inner ear in mediating TTS effects by studying the 

critical duration of a test tone. Miskolozy - Fodor (1953) has show 

that the critical duration of .! ~ ~ stimulus is decreased in cer­

tain tjtpes of perceptive deafness. Below this critical duration the 

threshold alters as the test tone duration is decreased. Jerger m.easureo 

thresholds at 4000 cps after stimulation b.Y thermal noise and found that 

the critical duration was decreased in a similar manner to Miskolozy­

Fodor' s results. Since perceptive deafness is an inner ear phenomenon, 

we can assume that Jerger's results localize TTS in the inner ear. 

Organ of Corti localization has been confirmed by Hallpike and 

Hood (1951). These workers used a binaural balance technique to measure 

the effect of TTS on the loudness of pure tones. They compared the 

development of changes in loudness as the stimulus duration was increase 

with sensory adaptation as it occurs in the stretch receptors of the 

muscle (see Mathews, 1939). They found a very close agreement between 

the two sets of results. In further experiments they direct~ compared 

TTS effects and recruitment and found them to show similar loudness -

duration relationships. Hence they concluded that TTS is associated wi 

sub-normal functioning of the organ of Carti. More direct evidence of 

the role of the organ of Corti of TTS effects is to be found in studies 

utilizing direct recording of the cochlear microphonic. Unfortunately, 

the only direct study of this nature is by Hughes and Rosenblith (1957). 
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These workers have shown that recovery of the cochlear microphonic 

exhibits many similarities to recovery from TTS. 

Gardner (1947) has suggested a possible theory explaining the 

role of the cochlea in producing TTS. He suggests that TTS is mediated 

by means of "fatigue patterns" developing on the basilar membrane and/or 

the organ of Corti. He suggests that upon the termination of the 

stimulus tone, the fatigue pattern remains but gradually decreases in 

spread as the latent time increases. An applied test tone will be 

responded or not responded to, depending upon its ov.n deformation of the 

membrane and the relationship of its ow pattern to the fatigue pattern. 

Koide, Yoshida, Konno, Nakano, Yoshikawa, Nagaba and Morimoto 

(1960) followed up the work of Wever, Lawrence, Hemphill and Straut (1949) 

and Gulick (1958) on the production of temporary and permanent increases 

in the threshold of the cochlear microphonic by o:x;ygen deprivation. The 

validity of equating temporary and permanent losses is supported by the 

work of Gravendeel and Plomp (1959 and 1961) who 1B case of permanent 

losses induced by continuous noise found that "the permanent dip arises 

from the temporary dip by incomplete but symmetrical recovery." In the 

case of losses induced by intermittent noise they suggest that probably 

"the permanent dip arises from the temporary dip by incomplete asymmetrical 

recovery." However, the slight uncertainty of the latter statement is 

irrelevant since Koide et al.. used continuous noises. They found 

that "sound stimulation and o:x;:ygen deprivation have similar effects", 

that is "decreasing the oxygen tension in the inner ear or al. taring the 

condi tiona of the inner ear blood vessels. 11 After studying these changes 

and relating them to histological findings, they formulated a "physico­

chemical" theory of the onset of acoustic trauma. It was also suggested 

that the same theory could be used to explain TTS effects. The theory 

suggests that the metabolic activity of the inner ear is affected at 

progressive levels. These levels depend on the amount of oxygen tension 

resulting from sound, but not from shock waves. Further study indicated 

that these changes were associated with "morphological changes of the 

mitochondrial structure of the apex" and suggested that o:x;:ygen tension 

was at least a "subordinate factor" in producing this effect. This theory 
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seems to be important in providing a basic account of h.Dw TTS occurs 

at a cellular level; but unfortunately it thrcrus little light on 

the frequency, intensity and duration relationships of TTS. These 

would seem to be ass.ociated with hieher levels of functioning, such as 

the mode of deformation of the basilar membrane. Hotrever, it may be 

that the vork of Koide et al. td.ll lead to a bio-cher:dcal theory of TTS 

in terms of circulatory changes in the ear. 

The dual nature of TTS does not appear to be borne out by the 

experiments relating to its mechanisms. These experiments have usually 

utilized ~ere stimulus conditions and very few. of them h8V9 utilized a 

stimulus intensity of less than 95 db. Consequel)tly the discrepancy 

ma:y partly result from the lack of an adequate study of all of the 

variables. Howver Rosenblith,(op. cit.), Hood (op. cit.) Hallpike 

am Hood (op. cit.) and Hughes and Rosenblith (op. cit.) did use less 

severe condi. tiona and we should expect some indication of a dual 

phenomenon from their work. The only experiments indicative of this are 

those of Hughes and Rosenblith who found a two phase recovery in the 

cochlear miqrophonic. Tbis finding reveals wb;y the dual nature of TTS 

does not reveal itself in experiments on its mechanisms. These 

experiments have tended to treat the organ of Corti as a gross struo tore. 

If both .effects .£2. associated ~ d'i ff'erent m,;m.ects ol the fwctignine 

~ ~ orRan g Corti, then stimuli producing either effect will produce 

a gross cortical localization. 

This suggestion is supported by Hood (1956). Hood suggests that the 

"inflexion" in the curve of TTS against stimulus intensity at 85-100 

db. "suggests a dividing line bet~~en two different kinds of end-organ 

change ~ those that: are physiological and reversible and those that. are 

pathological and irreversible." Similarly Hirsh and Bilger (1955) 

have suggested that the two phases of recovery from TTS ma:y possibly 

be explained in terms of the chemical excitability of receptor cells 

ahd the excitability of nerve fibres. They do not localize these 

effects but it is quite probable that both a6pects of such a process 

could be locs.llz.ed i.il the organ of Ccn"ti. 

We can conclude from work on the mechanisms of T'i'S that the effect 
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is localized in the organ of Corti. However, TTS is ·not residual masking. 

It mq be mediated by "fatigue patterns" remaining after the cessation 

of stimulation. These experiments do not reveal a dual TTS effect, 

but this is probably because of the tendency to treat the organ o£ Corti 

as a unitary whole. Diphasio recoveey reveals itself in the cochlear 

microphonia. It is possible that the dual TTS effects are associated 

with physiological or pathological changes respectively. 
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I I . . .. . 
.TilE EEICESX !:lE:IHOD. 

/ I ' 
The Bekesy Bethod of threshold measurement was introduced 

by B~k~sy (194'7), although Oldfield (1949 and 1955) claims to have 

invented it independently. It was novel in that it took awa;y to some 

extent the e:x:peri.rlenter' s control of the independent variables of test 

intensity and test duration and placed these variables Under the control 

of the subject. The method allo'N's the subject to increase or decrease 

the intensity of a sound b,y pressing or releasing a push button t1hich 

controls the drive mechanism of an autooa.tic recording attenuator. Thus 

he oscillates bet'W'9en just hearing and just not hearing a tone and 

consequently he varies the intensity of the tone around his threshold. 

The most important advantage of the method is the speed Hith which 

thresholds can be measured. The method can also incorporate an automatic 

frequency control. Consequently thresholds over~ who1e ~ the audible 

trecueinS~ range can be me&sured and not just thresholds at the conventional 

audiometric test frequencies· (l25 to 8000 cps in half octave intervals). 

Several papers have been subsequently published on the effects 

ot physical variables, for e:xmnple varying attenuation rates and the 

use of pulsed or continuous tones, on threshold meesurements recorded 

using the Bekesy technique. These tdll be discussed later. Unf'ortunateiy, 

there have been no studies specifically designed to investigate the 

physiological or ps,ychological processes which underlie the method. 

Because of this lack of information many studies utilizing the method 

must· be viewed with reserve until more information is available. 

Epstein (1960) states that "there is no doubt that its potential as 

• • • • • • a diagnostic tool has yet to be fully explored." 

E:x:periinents studying the effects of physical variables on the 

threshold recordings have tended to concentrate on changes in the size 

of the excursions that the subject makes ~tween· responding, i.e. 

hearing the tone, and not responding, i.e. not hearing the tone. 
/ / 

Bekesy (op. cit.) indicates that excursions of about 5 db. can be 

considered to be normal. Lunborg (1952) and Reger (1952) using the 

same attenuation re.tes as B~/sy have respectively reported that 
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excursions of 6-9 db. are normal. Lunborg also suggests that the 

extrema limits of nornality lie between 5 and 20 db. 

Epstein ( op, cit.) has shoun tl:a.t the size of the excursions 

also depends upon the rate of attenuation. He found that as the 

attenuation rate increased, the size of the excursions also increased. 

He states that n't .. re measured ranges from 4-9 db., 5-17 db., 8-15 db. and 

10-30 db. for attenuation rates of 1, 2, 3 and 6 db.n Corso (1955) 

obtained s:im.ilar results to Epstein's under more limited condi tiona, 

i.e. attenuation rates of 0.5, 1.0 and 2.0 db. I second. Since wider 

excursions are more prone to response errors, Corso suggests that an 

attenuation rate of 0. 5 db. I second is optimum. Howver, as Epstein 

(op. cit.) points out, it is possible that the slowr attenuation rates 

produce more boredom. This is to some extent confirmed by the results 

of Epstein (op •. cit.) and Harbold and O'Connor (undated U.S. Uavy 

publication). These workers shoved that faster attenuation rates 

produce a lower mean threshold value. Corso (op. cit.) originally 

disagreed with this suggestion and found that neither the attenuation 

rate nor the period of testing affected the mean threshold value. In 

a later paper (Corso, 1956) he revised his findings and obtained similar 

results to Epstein's. A priori the phenotlenon of response time would 

seem to be an icportant consideration in deciding an optimum attenuation 

rete. This is ignored by Epstein and Harbold and 0' Connor. Hol!19Ver, 

it would appear that· the faster the attenuation rate the greater the 

backlash, i.e. the more the subject runs over the point at 'ti'hich he 

actually responds or does not respond to the tone. The response time 

will be much greater than the simple reaction tiEs to sounds, since the 

subject has not only to react, but also he has to decide whether or not 

he hears the tone. If .He assume for illustration that the response 

tiri:e is one second,. then at an attenuation rate of 1 db. I second the 

tddth of the excursion l'Jill only increase by 2 db. because of this 

factor. Howver, "t-Ii.th a 6 db. attenuation rate the Hidth of the 

excursion 'Will increase by 12 db. 

One reason why the trl.dth of the excursions betHeen respondine and 

not responding have been subject to such an intensive study is because of 
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Bekesy's (op. eit.) suggestion that. :they could be used clinically to 

. l I . 
test for recruitment. Bekesy present~d examples of very narrow excursions 

obtained from patients suffering from recruitment-types of perceptive 

deafness. However, Epstein (op. cit~) has pointed out that there 

definitely seemed to exist "narrow sv.ingers" and "wide swingers." 

Although~these only represent the limits of normality,Epstein points out, 

that judging from their excursions th~ narrow swingers would be 

classified as suffering from auditory impairment. 
I I 

Bekes,y's suggestion that the size of the· excursions is 

indicative of recruitment has been supported by Reger (op. cit.) 

Lunborg (1953) and I-ZeUl'Iil8n (1954). However, Hirsh, Palva and. Goodman 

(1954), Palva (1954), Elliott, Riach and Silbiger (1962) have all 

disagreed with this suggestion. They suggest that the size of the 

excursions is not indicative of recrui bnent, but it is simply a measure 

of the difference limen for intensity or of the variability of results 

around the absolute threshold. Landes (1958) has to some extent resolved 

the controversy. He found that if the excursions were measured in 

loudness units (phons) rather than intensity units (decibels), then the 

excursions correlated more highly vi th recruitment as di8gnosed by 

normal clinical tests. However, he noted that "notwithstanding the 

significant differences in group means it proved particularly difficult 

to assign individual subjects to the normal or recruiting groups on 

the basis of measurelilents froi:l standard automatic audiOI:letry. 111 

A consideration of data froo other studies seems finally to 

resolve the controversy. Although recruitment and the difference limen 

for intensity are closely related (see Hirsh, 1952, chapter 8), Hirsh, 

Palva and Goodman (op. cit.) point out that recruitment is greater at 

the laHar speech frequencies, whereas the difference limen for 

intensity is greater at the higher tipeech frequencies. Harbold and 

O'Connor (op. cit.) have sho1-m that as the test frequency is increased, 

there is a trend to wider excursions as indicated in the higher standard 

deviations obtained. They conclude that since the Width of tbe 

1 Standard automatic audiometry means using a db. rather than a 

phon measure. 
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excurSions is greater e.t the higher frequencies, it probably does 

measure recruitment and not the dif'f'eren.ce limen for intensity. The 

above findings do not invalidate clinical tests such as those of' 

Luscher and Z\o.dslocld (1948 and 1949) and Denes and Naunton (1950) • 
. ~-

These workers utilize changes in the difference limen At ~ constant 

f'reguencx to measure recruitment. Hence, frequency relationships 'Will 

not interfere with any diagnostic findings. 
I I 

Bekesy audiometry seeils to display the normal phenomenon that 

pulsed tones produce lower thresholds than continuous tones (see 

unpublished resul.ts by Rosenblith and l-1iller, reported in Hirsh, 1952, 

page 102). Corso (1958) Jerger and Carhart (1958) have both confirmed 

I I ( , this result, using the Bekesy technique. Herbold and O'Connor op. cit., 

disagreed with these results and found that pulsed tones resulted in 

higher threshold values. However, these latter res~ts can be 

cri tisized since they used an analysis of variance technique \iThich 

failed to correct for 1ni tial differences in the data arising from 

other variables, such as the rate of attenuation and whether the 

frequencies were measured in an ascending or in a descending order. 
I I 

An important phenomenon associated with the Bekes,y technique 
, , 

appears to have been completely ignored. BekEisy noted in his original 

paper that when a subject traced his threshold continuously at one 

frequency for a fifteen minute period, then slow oscillatory changes 

of the order of 5 db. occured in the threshold value. Epstein and 

Schubert (1957) also refer to these changes. Similarly Oldfield 

(1955) has stated that the differential threshold for intensity "shows 

/ / 
irregular fluctuations in time, n when measured using the Bekes,y 

technique. It would appear that in exper:inents on TTS, these IJ:i.ght 

seriously affect the results obtained. HolJeVer, all workers who have 

used the technique whether in trork on TTS ~ in studying other phenomem 

have cODpletely ignored this phenomenon. This may be because it -does 

not occur with the shorter periods of testing. However, no published 

information confirms this. Consequently a series of lengthy control 

experiments was undertaken as a preliminary to the present study. 

These were designed to study these slow oscillatory threshold changes. 
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. , , 
Despite the cooperatively recent introduction of the Bekesy 

method, we can conclude that its usefulness is no longer questioned. 

Hm,Jever, at present 1-re have only a limited amount of information about 

the effect of the various e:xperimentel paraneters on thresholds recorded 

using the technique. It seems probable that the width of the excursions 

between respondine and not responding to the tone measure recruitment, 

but the evidence for this is not conclusive. There is virtually no 

knowledge of othel" psycho-physical aspects of tte nethod. The method 

produces variations in the mean threshold of approximately 5 db., but 

ho\or this conpares with threshold varia:tions produced by other methods ·is 

not lmmm. 



PART 2. 

EXPERIMENTAL DESIGN AND BESULTS. 



CHAPTER Vll 

EXffiRnrnTTAL DBSIQN 

4'7. 

(a) Apparatus : Basically the apparatus consisted of a Marconi 

oscillator, (Type TF894A), a. Nein Bridge oscillator, 1 three Advance lot.J 

frequena,y attenuators, (Type A64), a Marconi attenuator,(T,ype 338C), a 

change:..over S\dtch, a Gardners transformer, (Type GR 11471) and a monaural 

standard earphone manufactured by Standard Telephones and Cables,(Type 

4026A). Full technical specifications of the instrunents used are given 
( 

in Appendix 1. The arrengement of the circuit is shmm in a block 

diagram. in figure, 2 and it .can be divided into two channels. The first 

channel provided the test tone and consisted of the t-larconi oscillator, 

one ll.dvance attenuator and the ~larconi attenuator. The second channel 

provided the stimul.us tone and consisted of the tlein Bridge oscillator 

and tlro Advance attenuators. The outp~t from either channel could be fed 

independently into the earphone by meMs of the change~over I*Ii tch and the 

transformer. 

In the first channel the l·1arconi attenuator l'ras adapted to provide 

a subject or expermenter controlled source of attenuation. Hew this was 

achieved is indicated in plate Vl. and full technicel details are given in 

.Appendix 11. By the use of gears and by varying the speed of the driving .. 

motor the a.ttenuator could be adjusted to provide rates of attenuation of 

o.s, 1.0 and 1.5 db. / second. Two smtches veried the amount of 

attenuation provided by the instrument. One was controlled qy the subject 

and the other was controlled by the. experimenter. The switches were 

arranged in parallel and so worked independently of eaeh other. If 

either of the switches was closed the drive motor \-tas activated and the 

amount of attenuation provided by the attenuator increased. ~lhen the 

closed st-ritch vas opened, then dir~ctlon of the motor drive 'Was 

automatically reversed and the amount of attenuation provided by the 

attenuator decreased. Tz!hen the extremes of the attenuation available were 

reached,the drive motor automatically s~dtched itself off at the lC*rer 

extreme or at the upper extreme rapidly reversed its direction and hunted 

1 This was constructed from a circuit published by tfilliemson (1956). 
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backward and forwards. This prevented the attenuator being driven 

beyond its limits and so damaging the instrument. Any alterations 

in the settings of the attenuator were automatically and continuously 

recorded on a strip of paper 4i inches wide moving at a constant speed 

of 1 inch per minute. Figures Sa, Sb and Sc (see page 67) are examples 

of the records obtained in this manner. 

The standard earphone was calibrated at the National Physical 

Laboratory, Teddington and its intensity response re dynes / 9
2 

was 

known at fixed frequencies ranging from 125 to 8000 cps. The 

calibration chart for the earphone is given in Appendix 111. From a 

knowledge of the attenuator settings and b,y reference to the 

calibration chart, the intensity of a given tone could be calculated. 

Alternatively, by pre-setting the attenuators the intensity or a tone 

could be adjusted to any required value within the rana~ of the 

attenuator settings. 

Testing was carried out in a specially constructed cubicle 

built from brick, wood, fibre glass and acoustic tiles. A plan of the 

cubicle is given in figure 3. It can be seen from the plan that the 

walls consisted of a 4 inches thickness of brick, a 6 inches thickness 

of packed fibre glass and a ! of an inch thickness of acoustic tile. 

The roof was similarly constructed but had an additional air space ranging 

from 1 foot to zero inches in thickness. The internal walls and ceiling 

were constructed on a wooden frame which was structurally separate from 

the external walls. The room had double doors. The external door was 

constructed from plywood mounted on a wooden frame. The internal 

door consisted of af of an inch thickness of acoustic tile, a 1 inch 

thickness of fibre glass and a second t of an inch thickness of 

acoustic tile. An air space of 6 inches existed between the two 

doors. The effectiveness of the sound insulation will be discussed 

later (see page 187). 

A signal light system enabled the subject and experimenter 

to communicate with each other when the subject was in the test room. 

As well as the subject's part of the signal light system, the following 
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equipment was situated inside the test toam : 

(i) A chair for the subject to sit on. 

(ii) A push•button switch attached to t~ arm of the 

chair which controlled the subject / experimenter 

controlled attenuatar. 

(iii) The monaural standard earphone. 

(iv) A wall socket into lfhich the earphone could be 

plugged. 

( v) A 60 watt illumination light situated in the roof. 

(vi) A carpet. 

52. 

No· ventilation was provided in the room because of the great d:i.ffieulty 

in providing ventilation tihich was adequately sound-proofed. However, 

a high powered electric blwer was available to clear the air in the 

room when required. 

(b) SubJects TWent,y-four subjects were used in the experiments. 

Six 1trere female and eighteen to19re male. The subjects were divided up 

into groups of six for use in different parts of the study. All the 

subjects were young (18-23 years old) underg~."aduate members ·of the 

department of PSychology in the University of Durham. The only 

information they were given concerning the experiments was that they we~ 

to study changes in the threshold of hearing resulting from stimulation 

of the ear by preceding sounds and that there was no danger of any 

permanent injtiry. The predominance of male subjects was not thought to 

be important since Yard, Glorig and Sklar (1959:!). ~ve show that there 

is no significant difference in susceptibility to TTS between men and 

wcmen. Prior to the experiment the subjects were carefully screened to 

eliminate any subjects suffering from abnormalities of hearing and/ar 

abnormal susceptibility to TTS.
1 Two tests were used far this purpose. 

They were·: 

(i) A modified method of limits determination of pure tone 

1 This vas done so that there would be no danger of susceptible subjects 

suffering from permanent losses of hearing acui t,y. 



thresholds and a comparison of these thresholt;ls mth 

the data of Sivian and Yhi te (1933). 

(ii) Oarha:rt'e (1957) test~ which utilizes TTS to test 

for recruitnent. 

Full details of· the screening procedure and the results obtained are 

given in Appendix 1 V. 

(c) Geser~ Procedure• The subjects attended in pairs for test 

sessions lasting :from 1-} hours to 2 hours. Tbe sessions· :were sub-divided' 

into approximately 15 minute test periods and while one subject was 

being te~ted the other, subject rested. Sataloff (195'7) and Glorig 

(1958) have suggested that fifteen minutes is an adequate rest period 

before administering audiometric tests to workers in nois,y industries. 

This they claim allo"Ws for recovery from TTS. Since the ex,Posures 

used in the experiment were only of very short duration compared ldth 

industrial exposures, a fifteen minute recovery period was thought to 

be adequate. A control experiment to check this was performed and 

will be described later. The subject/experimenter controlled attenuator 

vas set to an attenuation speed of 0. 5 db/second. 

(d) Training : Prior to the commencement of the eJq>eriments, the 

subjects were first given training in the technique of threshold 

measurement using the Bekesy method. This training had three 

purposes :-

(i) It familiarised the subjects ldth the manipulation 9f 

the switches and the waring of the earphone. 

(ii) It familiarised the subjects with the tones used and 

with the detection of such tones at very low intensities. 

(iii) It eliminated practic.e· effects in the e:x;periment 

proper. 

The subjects vere each given tvo practice sessions of It hours and 

two of the subjects W.o had dif'ficW.ty with the techuique ,rare given 

a third practice session. 

Prior to the first practice period of the first test session, 

the follo\dng instructions were given to the subjects : 

"mlen you enter the cubicle _sit dotm, place the earphone 
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on your left (right) ear and adjust it il"iitll .it is· 
comfortable. 11 (During these instructions the subjects 

\Jere shm.m the cubicle .. and the earphone situated in 

the cubicle). "Once you have adjusted the earphone so 
' 

that is is d,Iiltor.teble J!g not interi'Are ~ iJi unt:U 

you coBe out of the cubicle at the end of the test 

session. In the earphone you trill hear a. sound 

similar to the sound of a tuning fork. On the right 

hand side of your chair is an arm ldth a push-button 

switch attached to it. If' you press this button, the 

tone 't-Til.l gradually decrease in loudness untU you 

cannot hear it any more • If' you then release the 

button, the 'tone mll gradtll!lly increase in loudness 

until you can hew it again. Uhat I want you to do 

is to nuctuate bem.reen· just not hearing the tone end 

just hearing it, by pressing and releasing the button. 

If you press the button the tone automatically decreases 

in loudness; if you do not press it, the tone 

auttmaticaJ.ly increases in loudness. So uhen yoa think 

you can ~ ~ ~~ E!J press ~ button ,aml ~ 

E2 thipls ~ caxmot he~r ~ ~~ ED reJ ea.se .ei ~ ,W 

press~ button. Do you understend? 11 
. 

The subject was then allm{ed to ask questions bijt the replies were 

always given within the framework of the above instructions. They were 

also allowed to listen far a feH seconds to one of the tones being 

tested and told that the sound they would be listening to would 11be 

similar only much quieter." This procedure was repeated for the 

second practice period but thereafter, the subject was sioply instructed 

to "trace your threshold as in the previous trials." The subjects 

traced their threshold for f'ii'ieen rninute periods ,n. th a test period of 

fifteen minutes bett.reen each practice period. Practice was given l-Iith 

frequencies or 1000, 1500, 2000, 3000, 4000 and 6000 cps. The order or 

training was randonized for different subjects. 

(cr) Stinpl)l~ Tone ve;ri¢bles : Davis, tiorgan, Halvkins, Galambos 
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and Smith {1950) and Hood {1950) have shmm that Yith high intensity 

stimuli, maxirnurJ. TTS is produced at a frequency half an octave above 

the stimulus tone frequency. Hence throughout the course of these 

e:xperiments, the test tone \faa always :maintained at a frequency half 

an octave above the particular stimulus tone tmcler investigation. 

The procedure folloued in each eJqJer~ntal trial we.S : 

{i) A pre-exposure period during which the subject 

traced his threshold for a given test tone for two 

minutes. 

{ ii) An ex;posure period during Nhieh the subject 

listened to a pre-determined sticulus tone. 

{iii) A post e:xposure period during which the subject 

traced- his threshold for the given test tone for a 

further three minute period. 

The follOYJing instructions were given to the subject on the first and 

second experimental trials : 

"On entering-the cubicle, I want you to trace your 

threshold as before. However, after you have been 

doing this for about two minutes, the signal light 

vill go out and the tone will change. Uhen this 

happens, I want you to stop tracing your threshold. 

The. second tone will be much louder than the first 

and while it is on you ere not required to do anything. 

After a given period, the signal light 'Will cOI!le 

back on and the tone 'Will revert to the original 

tone. I Hant you to recOIIIIIlence tracing your thresh­

old- Hhen this happens. Remember trhen the §i.gna1 

litr.ht !11 . .QD, ZQD must trace. Em:. 'threshold Jm9 when 

i!: .!§ off, m ~ ~ t;race .m threshold. n 

'1\ro gtoups of six subjects were used in these e:nperiments and they 

were subjected to the following experimental conditionsa 

{i) Condition A: TTS was recorded for a fixed stimulus 

frequency {1000 cps), with fixed stil:lulus intensities 
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( 70, 90 and 110· db. re 0.0002 dynes I em ) and at yarying 

stimulus dura.tions (0.5 to 7 minutes in half' minute 

intervals). 

(ii) Condition B: TTS was re.corded for a fixed st:imulus 

frequency (1000 cps),with yarying stimulus intensities 

( 70 to 120 db. re 0.0002 dynes I am
2 

in 5 db. steps) and 

at fixed stimulus durations (1, 2 and 3 minutes). 

(iii) Condition C; TTS vas recorded·far vgryiug sttnulus 
/ 
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) ,.... 
freguenci~s ( 500, 750, 1000, 1500,. 2000, 2500, rooo, asoo,, ~ooc· 

-· ) 

and 6000 cps)' mth fixed stimulus intensities ( 70, 90 

and 110 db. re 0.0002 dynes I cm2) and at fixed stimulus 

durations (1, 2 and 3 minutes). 

In each of the three conditions, the order of testing of' the variables 

was randomized. One group of the subjects ~as used for Conditions A and B 

and the other group ~as used for Condition c. 

(e) Test~ VariabJ;qs : As in the experiments on the st:imul.us 

tone variables the procedure involved a pre-exposure, an exposm-e and 

a post-exposure period and the instructions given to the subject were 

exactly the same. Stimulus tones of 1000, 2000, 3000, 4000 and 6000 

cps were used and their effect on various test frequencies investigeJted. 

Since the subject I experimenter controlled attenuator used a continuous 

tone, it was not possible, to investigate the effect of test tone duration. ' 

Each stimulus tone was used under four different conditions. These were: 

(1) t'lith a stimulus intensity of 70 db. and a stimulus 
I 

duration of 1 minute. 

(ii) With a stimulus intensity of 70 db. and a stimulus 

duration of 3 minutes. 

(iii) tUth a stimulus intensity of 110 db. and with a 

stimulus duration of 1 minute. 

(iv) Uith a stimulus duration of 110 db. and ~dth a 

stimulus duration of 3 minutes. 

TTS was measured for each of the five stimulus tones under each of 

the four conditions, using test tone frequencies of 500, 1000, 1500, 2000, 
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3000, 4000, . 6000 and 8000 eps. The ordal' ··of: ~t!ng of -~e. ~~i- --~s 
,-

and the associated stimulus conditions vas randciui;tzed~ ··One· group ot 

six subjects vas. used tor ~ese ·experiments. · 

(f) Becovm;r- rrs· I . ·Two s~arate-· e~erimeilts were carried out 

on recovery from TTS. 1'}.188e WW.e a 

( 1) An eXperiment ~~7ing ~e t1J!l9. ~en tor the threshold to 
:. -· 1~ -·. 

recovery to normality. 

(11) A stu~ of allJ'the •terial gathered· in sections .. -.. · . 

(d) and (e) o~ the st~s and test tone variables. .... .. .... 

The app81"atus used -~ the f~~t e$r1ment on the. tilDe for tbe_ threshold 

to recovery to ~oriilal1ty":;, .ditt~red slight;Ly trcin the &ppat"atu~ (iescrl~ 

earlier. HoWever~- apart· -troli · thEt_ non-iliclusion ot the aubj~ct / e~-:-.. . . 
. . 

• ! .... ~o,., . • . . . • 

manter controlled attenuator it ·was essentiall:y the same as that used in 

the first (test.: tone) channel of th~ Pz"eVious -.pparatus.; Furi. detalls. 
. '. . i . .. . . . 

of th6'·.apparaius and the tour -~.ta.-~ts used ere reported in $n article . ' '. t . . . . .· 
by Rodda ·(1962). As in the. :q;e:d.ments on the stimulus and test tone 

variables, the procedure-~ ip'V'Qived a pre-Qposure, m exp~ and a 

post-exposure ·P~~cxl· ~~~~ in this ~rtment,_ ~ stimulu~ and 

test" ~e frequencies were . alwqs the ~ for any one exper1mei,t~ 

trial • 
. . 

The thre~old in . the 'pre~eJLpOetll"EJ Period was. determiiled using a 

modified JDB.tllod of lltmlts. ·It vas always de~d ·in an as.ee~ding 

direction aild a -~d per.· cent respe>AS8 cr:ltericm was· alwe.Ye;."·ti~. In 

this period the int.ensi v ot the tcile· ~- .adJusted to ~bout. 20· ~.; below 
.. 

the threshold tar the snbjeet at the part.i~ar. tes1i trequenet. being 

used. The tone ve.S pUlsed w1 th equal on'.otf ~s. ot appro~l)r 

.. ~ . ·.·, 

. ·' 

o.s seeoilds. The intensity was increased iD 1 db. steps until: .. the su.bject . ~: 

responded to -~n consecutive &ppllcati;ons Of the tone at a given intensity .. ·.· 

At this poi!lt the inten,s19' ott~ tane V&El·re-~~ed·az;ld ~s was taken 

as a measure of the SUbj ect··• s threShold.: Daring; tll~ apo~ ~~ic)(l the 

1 The raw da~ presented in this e:zperi;men~~was ased in a ~~Sis_ pioe~ted ·. 

1n part req~s tor the degree of B~Sc. at t~ University ·of Dai-ham. 
!' ', ·- • - . • • 

Bow~, the . .-tt-eatment of the data 1n this theSiS. is c~~te·ly ·different. . . . . :. ' .: 
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tone·was continuou~ applied. to the ear of the sUbject far a period 

of one minute. After this, the tone was cut off and its intensity 

adjqsted to the -threshOld value determined in the pre-exposure period. 

During the post-exposure period the tone at _threshold intensity was 

again pulsed and applied to the ear of the subject. The time from the 

cessation of the stimulus tone to the subject's first response to the 

test tone 1D the post-~osnre period was recorded. This gave a measure 

of latent time. In order to work to the hundred percent threshold 

criterion, the tone was applied to the ear of the subject for a further 

period following upon his first response. If the subject failed to· 

respond to the consecutive applications of the tone, the result ~s 

discarded and the trial_ repDated later in the experimental period. 

SUbjects were given practice sessions using a stimulus I test frequency 

of 1000 cps. 

Freq'!19ncies of 1000, 2000, 4000 and 8000 cps were used in the 

experiment. Each frequency vas tested in turn but the order of testing 

was randomized for ~e different subjects. Halt of the subjects were 

tested on the right ear and half' on the lett ear. The intensity of the 

stimulus tone was varied from 10 to 110 db. re the subjects threshold in 

10 db. steps. The act~ p~sical intensities represented by these 

variations, rai:lged,. from 18.1 to 100.8 db. re 0.0002 d;1nes I cm.
2• Tbree 

trials were given at each stimnl.us intensity and the order of testing of 

the different trials and the different intensities was randomized. A 

mean latent time far each stimulus intensity was obtained by taking the 

mean of the trials at that intensity. 

The second serie.s of experiments on recovery utllized the data 

collected in the experiments on the stit!lulus and test tone variables. 

These necessitated the, recording ·_of threshold recovery- for a period of 

three minutes f'ollo\dng the cessation of the stimulus tone. A total of 

1950 results were obtained as follows : 

(i) Stimulus Tone variables 

Condition • A' : 42 results for six subjects 

Condition 'B': 33 results for six subjects 

Condition •c•: 90 results for six subjects 

(ii) Test Tone variables 

160 results-for six snbjects 
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Each of the individual results ~re studied to ascertain whether 

recovery was diphasic, l·Jb.ether recovery shoued a sensitization period and 

whether bounce was higher than initial TTS. The mean of the first two 

tr&!lsition points in the post-exposure period was also recorded and this· 

was taken as a rneasure of initial TTS. Finally the difference between 

the threshold after its initial return to no!'IJ.Blity .and its subsequent 

·highest value Has calculated. This vas recorded as a measure of the 

amotmt 9f bounce. 

(g) Co11trol F.X"Oer:iments : Four control axperi:lents uere carried out. 

Their fUnction was to test : 

( i) Uhether the recorded TTS could result from chan~3 

variations in threshold measurenents. 

(U) Hhether diphasic :recovery from TTS could result 
I I 

from the use of the Bekesy method of threshold treeing. 

(iii) To test t1hether TTS was additive over the periods 

of time involved in the experiment. 

The experiments wre as follows : 

( i) Experments in uhich the stim.ulus tone was replaced 

by a period of silence. 

(ii) EX~periments in l-ibich variations in threshold using 
I I 

the Bekesy method were compared 'With variations in threshold 

using tbre shold measurements obtained by the ztethod of 

limits. 

(iii) Experii:lents \.JQ.ich compared the tracine of thresholds, 

' I using the Bekesy method, for short periods and for long 

periods •. 

(iv) Experiments to test wether TTS produced additive 

effects over the 1~ to 2 hour test session. 

( v) Experiments to measure the ambient noise level in 

the specially constructed sound-proof room. 

The procedure us._~r.-; in the first series of experiments, in "t-Ihi.ch 

the stimulus tone wes replaced by the period of silence, w.s exactly 

the ssm.e as the procedure adopted in studying the stimulus and test tone 

variables. To avoid any "expr.:;ctQJlcy" or other similar facters affecting 
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the results, these experii!lents were carried out in conjunction with the 

experiments on the test tone variable~;~. The same group of subjects were 

used and the control trials were introduced into the rendomized order of 

testing of the test tone variables. The subjects were not informed that 

in certain cases the stimulus tvould be replaced b,y a period of silence. 

However, after the first control trial they usually commented on the 

absence of the stimulus tone. In this case they lr1Bre informed that this 

tms deliberate and they were not to worry about it. Three periods of 

silence (1, 2 and 3 minutes) t-rere used Bith test frequencies of lCOO, 4000 

and 6000 cps. This gave a total of nine control results for each of the 

six subjects used. 

Two subsidiary experiments were carried out to compare tbre shold 
/ / 

variations using the Bekesy method wi.th threshold variations using a 

modified method of llmi ts. These were : 

(i) A direct c0t1parison of the two methods. 

(ii) Experiments on recovery from TTS in tmich threshold 

measurements were obtained using a I:lOdified method of 

limts instead of the &ktsy cethod. 

The procedure adopted in threshold measarements using the modified method 

of limits necessitated the use of the first channel of the apparatus;. 

Ho\orever, instead of the settings or the subject I e:xperinenter controlled 

attenuator being controlled by the Sllbject, they were controlled by the 

experimenter in the follo~ri.Jlg manner : 

( 1) · Prior to testing the experimenter adjusted the intensity 

of the tone to a level about 10 db. above the subject's 

threshold for the particular test tone under investigation. 

(ii) The experimenter closed the switch activating the 

subject I experimenter controlled attenuator and allowed 

the intensity or the tone to be gt-adually reduce9. by 20 

db. He then opened the std. tch and allowed the intensity 

of the tone to be gradually increased by 20 db. 

(iii) The first and second procedures were alternated 

so that the intensity of the tone gradually de·creased and 

·increased .in loudness over a 20 db. range. 
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( i v) Ini tial1y the experimenter might vary slightly the 

extremes of the 20 db. range so that the subject's mean 

response fell approx:J.mately· at the middle of the range. 

Each intensity at much the subject chenged his response from hearing 

to not hearing and vice-versa was recorded. These points were 

equivalent to the similar transitions obtained using &kley audiometry. 

The choice of a 20 db. intensity rsnge was determined attar 

reference to the data of Steinberg and r-1unson (1936). They give 

! 3.1 db. as the standard deviation of variations in the response of 

an individual subject to pure tone, near 'threshold' stimuli. Hence, 

on this figure 99.8% of 'threshold' responses would fall within a range 

+ of 18.6 db., i.e. - 3#'. That this range vas sufficient is indicated 

by the fact that the subjects always responded to the tone at the upper 

lillli.t of the range and never responded to the tone at the lower limit 

of the range. 
,. ,. 

The c~arison of variations in the threshold using Bekesy 

audiotletry and variations in the threshold using the modified method of · 

limits wa.s carried out in the follcming wey: 

(i) The ~ubjects traced their ·'·threshold far one 15 r:dnute 

period at frequencies of 1000, 1500~ ;2000; 3000, 4000 and 
,. ,. 

6000 cps, using the Bekesy teclmique. 

( ii) The subjects traced their threshold for one 15 minute 

period at a frequency of 1500 cps using the modified method 

of limits technique. 

The single frequency of 1500 cps used in (ii) was chosen after the 

analysis of the data collected in (i) had show that variations in 
, ,. 

threshold were maximmn at this frequency, using the Bekesy technique. 

The procedure adopted in the control experiment on recovery from 

TTS utilized threshold measurements obtained with the modified method 

of limits. Exactly the same procedure 'Was used as in the. experiments 

on the stimulus and test tone variables except that z 

{i) The pre-exposure and post-exposure threshold 

measurements were :made using the modified method 

I / 
of li.Dits and not the Bekeey method. 
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(ii) In~tead of u~ing a 20 db. range for the method 

of limits, the lioits taken ll.'9re + 3 db. and - 3 db. 

above and beloB the intensities at which the subject 

changed his response from not hearing to hearing and 

vice-versa. 

(iii) The onset or cessation of the stimnlus tone was 

not signalled since the signal-light s.ystem was alreaqy 

being used by the subject •. 

The slight f~ther modification of the method of limits .described in 

(ii) was incorpora:~d to increase the number of threshold responses 

obtained in the pre-exposure and-post-exposure test periods. 

Testing u-as carried out with a stimulus tone of 1000 cps. a.t 

intensities of 701. 90 and 110 db. \dth stimulus durations of one, two 

and three minutes. TTS w.s measured using a test-tone of 1500 cps.,. 

i.e. a torie half. an octave above the stimulus tono. 

The next control eliperiment compared the tracing of thresholds 
I I 

for .short periods and for long periods using the Bekesy method. The 

same group of subjects iJ9l'e used as for the previous control experiments. 

'!'hey traced their thresholds for 15 minute periods at frequencies of 
. I I · . 

1000, 1500, 2000 and 3000 cps using the Bekesy ~ethod. Ho"t>.rever, instead 

of tracing con~in~ously for 15 Iilinutes, they traced for 3 minutes ood 

rested for 2 minutes. This cycle occured three times in the 15 

minute period. The tracings obtained under these conditions ~re 

compared mth their. tracings obtained above, i.e. t·rhen the subjects 

traced continuously for the full 15 mnute test period. Unfortunately, 
• • . I I . 

tHo of the sUbJects used J..n the original Bekosy experiments 't'Jere not 

a.veilable for testing on this latter· procedtn"e; and hence results war& 

available for only four of the subjects •. 

To control for additive effects of TTS the folloldng procedure 

t>Ias adopted. At stimulus frequencies of 1000, 2000 and 3000 cps, 'l"l'S 

after exposure to a 110 db. stimulus tone of duretion three minutes 

Has ·recorded e.t the beginning and at the end of a test session. The 

mean shifts at the beginning and at the end of the test session were 

cor:).pared for each frequency. This e:xperi.ment 'W§S designed to confirm 
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that the 15 minute rest period during the test sessions vas sufficient 

to allou not only recovery f.'roE TTS but also recovery fron rmy heightened 

susceptibility to stimulus exposures. 

In the final. co:ptrol ex!;)eriment, recordings "trere made of the 

overall noise level in the test cubicle using a Daue Sound Level t·!eter 

(type l400E) 'trl.th the A, B and C frequency 'ltmightings. r-1easm"ements 

wre taken at fifteen minute intervaJ.s for three three hour periods 

chosen to coincide lrl.th usual test times. Recordings were also taken 

at one minute intervcls for three fifteen minute periods at the beginning-, 

the middle SD.d the end of these test times. 



CHAPmR -ml 

REsut'iS w THE EXPERIMENi's oN THE smmt,us AND 
TEST TONE YAR!ABLES, 

(a) Training : 

A stuey of the comments and tracings of the subjects during the 

training sessions revealed that a great I18.DY of them initial.ly had 
/_ / 

dif'ficol. ty in tracing their threshold using the Bekesy procedure. . The 

main ditticul ty ~eemed to be in deciding whether they could or could not 

hear the tone. The subjects said that in Ill.8ItV cases they were not sure 

whether or not the tone was present. H.owever, this difficulty was 

usuaJ.ly overcome in the first . or second fifteen minute training period. 

Typical results obtained during the first, third and final 

training periods are shown in figares 4a, 4b and 4c~ These figures 

are copies of the recordings obtained from the subject/experimenter 
I I 

co~trolled attenuator 1 using the Bekesy method of threshold tracing. In 

them, time reads from lett to right and attenuation from top to bottom. 

Thus a top to bottom movement of the recording indicates a gradual 

reduction in the loudness of the tone and a bottom to top movement 

indiaates a gradual. increase in the ·loudness of the tone. The values 

written on the edge of the ~ecordings, e.g. + 5 db. on figures 48. and 

4b, indicate that the basic intensity' level of the tone was al:t~ered by 

that amount. i'his was done when the subject ·reached the extremes of the 

subject/experimenter controlled attenuation range and hence was not able 

to increase or decrease the intensity of the tone, The points marked 

A, B, 0, D and E and all such similar points are ;transition. points 1 .e. 
J 

points at which the subject changes his response from hearing to not 

hearing and vice-versa. Inspection of the figures reveals that ·as train­

ing progressed, there is a gradual diminution of the following : 

(i) The rapid and large changes in the mean point of 

nuctua.tion •. 

(11) The rapid and large changes in the range between 

successive transition points. 

(iii) The const8l:lt need· to alter the attenua.tor settings 

to prevent the subject stopping at the extremes of the 
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subject/experimenter controlled attenuator. 

The final. training period (e.g. figure 4c) produced a recording that 

maintained a fairly contds~nt mean point of fluctuation and a fairly 

consistent range of fluctuation. The aperiodic, cyclical changes in 

the point of oscillation will be discussed later. These results 

were typical for a.1:1 subjects. 

(b)· stimplp.e- 4QD~. ~iables. 

Figures Sa, sb and 5c are copies ot typical tracings obtained 

during the TTS ·experimental trials, On the tracings are shown the 

pre-exposure, expo$Ure and post-aposure periods. The pre-cuposure 

and post-exposure thresholds were calculated by taking the mean ot the 

~ansition points~~ each period,1at which the subject changed his response 

from bearing to not b.earillg and vice-versa. TTS . on azq one trial was 

measured by calculating the difference between these two thresholds, 

Three mq»er:lments were carried out to study the stimulus tone 

variables. Tb~se were previously listed (see pages 55 to 56}- as 

follows a 

(i) Condition 'A' : TTS was recorded for a tixad stimUlus·· 

treq~e~cy (1000 cps), with fixed stimulus intensities 

(70, 90 and 110 db. re 0.0002 dynes / cm2) and at va:r:xiD.i ctt~­

~ tJm:tUPQJ: (0.5 to 7 minutes in haJ.t minute interv:als). 

(11) COndition 'B' : TTS was recorded for a fixed stimulus 

frequency (1000 cps), with varying stimulus intensities 

( 70 to 120 db._ re 0.0002 dynes / =2 1n 5 db. steps) 

and at fixed stimulus durations. 

(iii) Condition •-c• : TTS was recorded for ys.ry:ing 

stimulus greg~enci§!s. ( 500, 750, 1000, 1500, 2000, ~soo, · 
' ' 

30001 3500, 4000 and 6000 cps), with fixed stimulus 

intensitieS. {'70, 90 and 110 db. re 0.0002 dynes / cm2) 

and at fixed ·stimulu~ durations (1, 2 and 3 minutes). 

The results obtained in each ot the e~erimental conditions. are 

described in the succeeding sections. 

(a) Condition '.A.'. : Means vSJ.ues for TTS (see figure 5) vere 
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calculated for the six subjects used 1n· c~dition 'A' at each stimulus 
. . 

duration ~d for each of the three stimulus intensities. The mean 

results were plotted as a logari tbmic function of stitnulus duration am 
the valnes are shown in figure 6. · It can be seen i'~om this figure that 

l :> !, ' ,. • . ~~· . 

with stimulus intensiti$s!;of 70 .nd '90 db. ~e. is a linear increase . . . . 

... 

I 

in TTS with the logarithm of the stimulus duration. It can also be ··-~ 

seen that the 70 and 90 Clb~ line.s lie appro~tely par:allel to each 

other. rli th a stimulus' duration of ·UO db., there is still a linear 

relationship ~tween TTS and the logari t.J:un of the stimulus duration. 

However, tbe 110 db. llne:·divides itself into two parts. With short 

stimulus durations it parallels the 70 and 90 db. lines, ba.t as the stim­

ulus duration is increased there is a change in the slope oi' the line 

so that it no longer remains parallel to the 70 and 90 db. lines. In 

figure 6 th:1.s ~ansition occurs at a stDml.us duration of approximately 

J.t minutes. 

The li.Jles show in figa:re 6 were drawn merely by inspection of the 

data pres.ented. To test whether these lines were essentially correct 

the equations of the lines of best fit were calculated using the method 

of least sqU$1'es (see Yule and Kendall, 1950, pages 342) at the 70, 

90 and 110 db. stimulus intensi-ties. For the llO db. ·line it. was 

necessary to sub-divide the data into two sections because of the chailge 

in tbe· slope of tb:ls line at approximate:cy- J.t minutes. For comparl.eon 

purposes the slopes and intercepts ot th.B lines show in figure 6 were 

calcula:ted by direct measurement. The results of these calculations are 

SUIIIIlal"ized in table l (see page 70). It can be seen fran this table 

that there is close agreement between tl:e theoretical values for the 

slope and intercept of tl:e lines and tm practical values obtained by 

inspecting the data and drmdng in the lines accordingly •. 'fhe theoretical 

values given in tab~ 1 also collfirJn the pat"allelism between the 70, 

90 an<t the early part of the 110 db. lines. i'he table reveals that there 

are only differences of 0.006, 0.014 and 0.009 between the slopes of the, 

lines which theoretically best fit this data. The table also· confirms 

the change 1n the slope of the 110 db. une. Theoretically a slope at 

•• do I .' 

... 
! 

.. 



hble 1. 

X = Stimulus duration 1n logarithmic units a1 = Theoretical slope of line of best fit A1 • Slope of line shown in figure 5 

y • Temporar.y Threshold Shift in db. ao = theoretical intercept ot l:tne of bes.t fit A
0 

= Intercept of line shown in figure 5 

S.timulus Intensity Sum of X Sum of I Sum of XY Sum of x2 
a1 ao A1 A 

0 

70 db. 737 96.67 6()05.86 440'l5 0.173 "!"2.202 0.192 -2.8 
·' 

90 db. 737 115.33 7()18.71 44075 0•179 -1.211 0.193 -1.6 
. ' 

110 db. (First Part) 64 18.8 4~1.80 1529 0.187 2.262 0.198 2.6 

110 db. (Second ;part) 673 201.7 12832.3 42545 0.359 -3.627 0.367 -4.1 

Smmnarizes the calculations of lines of·.best fit for ~a mean data shown in figure 6. 

' 
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0.18'1 best fits the first three points on this line and a slope of 

0.359 best fits the· rSmainder of the points on this une. 
There was a cJ.ose agl"eement between the individual. and the 

mean results. The 1ndividaal results are presen't$d in figures 'la to 

'lf. Allowing for the greater variation of individual results, it can 

be seen from these figures that for five of the subjects the results 

are essentially the ssme as those obtained when mean values were taken. 

However, with individual subjects thsre is some variation in the 

stimulus duration at which the slope of UO db. line changes. Figares 

'la to 'If indicate that it occured for different ~bjects at stimulus 

durations ranging from approximately lt ., 4 minutes. For one of the 

subjects (viz. '0') the results are different from those obtained with 

the other five subjects. In ·-the case or this subject the sl.ope of the 

110 db. line remained consistent and the '10, 90 and 110 db. lines would 

appear to remain parallel over the whole range of· st3mnlua dcrations 

used in the experiment. These observations and the agreem~t be-en 

the theoretical lines of best fit and the lines draw by inspection 

were checked, as for the mean values, by ~aleulat~ the lines o.r:· 
best fit .,-by the method of least sq'WIZ'e s. The results are SUIIlillB%"!z.ed 

in table 1). Inspection of this table indicates tbat allowing for 

chance variation, there is a close &gl"eement betueen the theoretical 

lines of best fit and th!:l lines dr-aw by inspection. Similfl'l;'ly, 

inspection of the table justifies the above observations made concerning 

the individual results. 

Cop,c:ij,;Mm 'B' As in condition 'A' mean results for Tis were 

calcu.lated. 'fhe mean TTS's for the six subjects used in Condition 'B' 

at each of tba stimulus intensities and for each of the· three stimulus 

durations were calculated. Mean TTS at each stimulus duration was 

plotted as a function of ~us intensity and the results are shown 

in figure e. It can be seen from this figure that with stimnlus durations 

of 1, 2 and 3 minutes,there is little increase in TTS as the sti.mulus 

intensity is raised from '10 to 95 db. Above 95 db. there is for all three 

stimulus durations ,an increase in TTS as the stimulus intensity is further 

inareased. 
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Table :J.t 

Summarizes the calculations of the ·lines. of best fit f~r the individual .. 

results shmm in figure 'fa to 7f. 

a1 = Slope "of theoretical line of best.~t. 

a
0 

= Intercept of theoretical line of best fit. 

~ = Slope of line show in figure 7. 

A
0 

= Intercept of 'line show in figure a. 

SUbject 

Stimulus In tens! ty Variable A. B c D E F· 

-,o a1 0.090 0.156 0 .• 239 0.198 0~116 0.279 

70 a 0.539 -1.203 -3.921 -2.892 -2.892 -3.939 
0 

70 A1 0.083 0.162 0.214 0.215 0.150 0 •. 28~ 

70 Ao 0.750 ~1.250 -6.321 -4.875 -4.250 ~4.35C 

90 a· 
1 

0.091 0.165 0.236 0.207 0.163 0.27~ 

90 a 
0 

1.486 0.957 -2.647 -4.326 -2.456 -2.7or, 

90 A1 0.083 0.158 0.225 0.215 0.163 0.28~ 

90 A 1.500 
0 

1.50.0 -3.85 -6.725 -2.725 ..;3.12~ 

llO (first part) · al 0.115 0.167 0.305 0.269 0.171 0.26E 

110 ( n n ) a 
0 

4.302 4.062 1.429 -3.129. 2.635 .0.77~ 

110 ( n n ) A1 0.105 0.166 0.218 0.256 0.189 0.29E 

110 ( n n ) A 
0 

6.000 4.25 3.75 o.soo 3.738 0.25( 

110 (second part) al 0.443 0.289 0.305 0.600 0.241 0~28J 

110 ( n n ) a 
0 

-1 5 .346 0.373 1•429 -16.413 4.012 -3.60( 

110 ( n n ) ~ 0.583 O.Sll 0.218 0.750 0.250 0.:391 

110( n n ) A 
0 

-15.000 -o.5oo 3.75 -15.125 4.000 -3;..98( 



Table 111 

Summarizes the analysis of variance used to test the signifiosnca of the stimulus intensity and stimulus duration 

differences in TTS shown in figure a. 

(a) Intensities less than 95 db. 

Source of Variance 

Stimulus Intensity 

Stimulus Duration 

Residual 

Total 
;~ 

(b) IJ;ltenq,t.tie·s greater than 95 db. 

Source of Variance . '. . . . ~ 

Stimulus Intensity 

Stimulus duratio~ 

Residual 

Total 

Sum of Squares 

6.62 

94.45 

3.55 

105.62 

Sum of Squares 

239.16 

3'74.33 

41.02 

654.51 

Degrees of freedom 

5 

2 

10 

17 

Degrees of freedom 

5 

2 

10 

17 

a Probability less than 0.01 

Varianoe Estimate 

1.32 

47.23 

0.35 

Variance Estimate 

47.83 

187.16 

4.10 

F ratio 

. 3.77 

134.90 a 

-. 

F ratio 

n .. 66 a 

45.64 a 

-::1 
tJ::o 
• 
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Tab],e lV 

Increase in Temporary Threshold Shift in db. at the given stimulus 

intensities and durations ,above the Temporary Threshold Shift at a 

stimulus intensity of 95 db. For cal.colat~on of significance see teat 

and table V 

S~us Intensity 

in db. 

1 min. 

. 100 o.~ 

105 1.2 

110 3.2 

115 4.0 

120 6.6 

l'Iean 3.04 

a . Probability less than 0.01 

b Prob.ability less than 0.05 

b 

a 

Duration. 

2 mins. 3 mins • 

-0.2 3.6 

3.6 7.1 

3.8 b 5.7 

6.8 a 14.2 

9.6 a 15.8 

4.'72 9.28 

a 

a 

a 

a 
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It was decld~d to s~'a~istical.q test the validity of the 

above statements by subj~·cting the data to an anal)"sis of variance. 

The selection of' this method was made after a consideration of the 

population fl"om which ·'the sample was drawn, the manner 1n which t..he 

sample scores were obtained and the level of me~ement employed. 

The population from which the scores were .obtained was considered 

to have a .normal dis~bution ot TTS. Glorig, Summerfield and We.Td 

(1958) :P.ave shmm with a sSrnple of 99 Dormal he8l'ing subjects that 

the distribution ·or ~s .. ~-s ,,normal. The sample scores used in this 

expertment were drawn· tram a population ot normal hearing -subjects 

(.see Appendix lV) and va can assume that tlleir distribution of TTS 

·would be aimilar to that of' the population fram which they were 

draw:.· :A:ll scores witbip 8fi3 ~ven ex;perimantal. condition were 

independent. Fina.Uy the scala of measureD19nt used was an interval 

scale, since it has an arbft,ary zero of' zero TTS. The above 

statements show that the -~ta fulfills all the pre-requisi ts which 

allow a simple ~al.ysis of variance technique to be utilized (see 

Lindquisi, 1953, pages 51 to 52). 

Since it was postulated that intensity differences at stimulus 

intensities· less than 95 db. were ·not signi.f'icant and differences 

at stimlllus iiltensities greater than 95 db. were signif'icant, it 

was neeessSey to sub-divide the data on this basis. Hence, tm 

analysis was applied separately to stimulus interisi ties less than 

and including 95 db. and stimulus intensities greater than and 

including 95 db. Two tables vera draw up vith the .six stimulus 

intensities show as columns and the three stimulus durations sho'Wn 

as rows. These were the tables analysed. The results of the analysis 

ere summarized in table· Ul •. It can be seen from the table that 

intensity differences below 95 db. are not significant and ~tensity 

dif'terenees above 95 db. are significant. 

A f'tirther analysis of ·the data was carried out by calculating 

the differences betwe~ -TTS._ at 95 db. and TTS at higher intensities. 

These results are summari-z~d in table lV. The differeneea of 0.2 
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Table V -
·~:uooary of' t .- test applied to data of' table lY -using. 

t·J.le ·data calc~.¢.ted in table rn 

From table IIi, residual degrees of' i'P~dom = 1 o 

77. 

, :~om tabl.~ IIT,. I>esidual variance estimate (p--2,') .= 4.10. 
·· ... ·.··- ' . 

'.·-
' {;... ~ : 

t fol' 1 o ·-~~~e~s · of'. :fi>eedom = · 2. 23 and 3.17 

at ~ and 1% level respectively. 

Stabdarcl deviation = I? - 2.03 ' . 

St-~~ -a .t;> . ,,.... ) . ·• ·,.,../i... · . .1.. . ~Sl" · . e~x-or o.~. mean "! a . : = v ·I:·,. +. n 
~ . · ~1 ~a 

= 1.65 
' . 

~- ~·'~·.7·P 
. fT¢1 ~· 

',\..!.' 1 

(see Garr.ett, .19,5-5,· ]?:-223). t.,. ... =·· 
• 

• • 01 - ~ . = 2 • 23 X 1 • 6 5 
·' = ~·'for significa~ce at o.os·level 

' . 

= 

= ~ for sighlficance at· 0.01 level.-
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and -0.2 db. at a stimUlus intenSity of no db .• and at stimulus 

durations of 1 and 2 minutes respectively, and the difference of 1.2 

db. at a sti!D.ulus intensity of lOS db. and at a stimulus duration of 

1 minute are pro'babl.y not significant. If this is the case then the 

tabl-e indicates that as the stimulus deration is increased there is 

an increase 1n the .. s~WJ intensity at 'Which increases in 'fTS 

occur. To test this suggestion the data calculated in the analysis 

of variance ·Sllll1tllSrized in table lll was used. Using F •ft the 

differences shown in table lV were tested for significance, u.sing the 

technique outlined by Garrett {1955, page 280). fhe calculations 

are summarized in table V. It can be seen from table V tlia.t the 

following ~fe~nces are not significant: 

{i) Those o_f 0.2, 1.2 and 3.2 db. at a stimulus duration 

of l minute. 

{11) ~se of 0.2 and 3.6 db. at a stimulus duration of 

2 minutes. 

{iii) Tllat of 3.6 db. at a stimulus duration of 3 

minutes. 

Bence the observation is confirmed • 
. I ' 

Inspec~ion of figure 8 indicates that there is divergence of 

the 1, 2 and·· a ininute lines as the stimulus intensity is increased..­

This· divergence is to sOI!le e~nt masked by the drop in HS at llO 

db. with a stimulus duration of' 3 minutes. However, inspection of 

table lV indicates that at 110 db., the. increa~ ~ T'l'S above the. 

95 db. level is larger at S .~utes (5.'1 db.) th~ ~t either 1 or 2 

minu~s { 3.2 and 3.8 db. respectively). Thus the table indicates 

that as the stilli.tilus intensity is increased above 95- db. the in~eases 

in i'TS ~e gt-eater at· 3 minutes than at 2 minutes and at 2 minutes 

than at l·minute and that as the st~us intensity is increased, ·these. 

differences also inerease in magt:litude. 

The agreement between the individual and the ~~ results are 

incU.~ated by figares .8 a to .8 f' which present the data for individual 

subjects. As in Condition 'A' allowing for the greater variation. of 
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S~arizee the ~alyeis of variance used to te"t the significance of the stimulus frequency 'differences shown in figures 

9, 10 and 11. The ten stinlulue frequencies were plotted as rowe and the nine stimulus duration - stimulus intensity conditione 

were plotted· as rows. 

Source of Variance 

S~1mulue frequeno.f 

Conditione 

Residual 

Total 

Smns of Squares 

388.1.2 

274.47 

80.19 

742.78 

a Significant at 0.01 level. 

Degrees :ot freedom 

9 

8 

72 

89 

Varis,nce 
l!:stimate 

43!.12 

34.43 

;1..11 

F ratio. 

38.84 a 

31.02 a 

..::a 
~ 

• 
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individual results there is close agreement between the individual 

and the mean results except in the ~~ of. subject 'C'. In the 

ca.se of the latter, the 1, 2 and 3 minu~ lines tend to remain very 

close together and there are only slight increases in TTS as the 

stimulus intensity is raised above 9 db. There is some individual 

variation in the stimulus intensity at which increases in TTS begin 

to occur. For the incU.vidual subj.ects this oceured over the range 

85-100 db. 

{c) Condition •c•; As in Conditions 'A' and 'B' mean results 

were calculated for the group of six subjects used. in this condition. 

!he mean results are illustrated in figures 91 10 and ll. 'fhe sub­

division of the results into tbree figures· is merely for clarity of 

presentation. The figures indicate that with stimul.ns durations 

of 1, 2 and 3 minutes at stimulus intensities of '16 db. and 90 db., 

TTS is maximal at st:imulus frequencies of 1000, 2000 and 3000 cps •. 

SimUarly, with a st:lmulus duration of 1 minute at a stimulus 

intensity of 110 db., T'l'S is maximal at 1000, 2000 and 3000 cps. 

However, with stimulus durations of 2 and 3 mimltes at a stimulus 

intensity of· 110 db., TTS appears to be maximal at 1000, 2000 and 

4000 cps. In the latter case it is also ·possible that a farther 

maximm might· have occured at 3000 cps; but there are ~sUfficient 

data to determine whether this is so. 

To determine wether the frequency differences were si~icant 

the data was analysed using analysis .of variance. The justification 

for us1ng tbis tecbn1qus has alrea.Cq' been presented (~ee page 76 ). 

In the anal.:ysis, stimulus conditions were plotted as the rOlls and 

stimulus frequencies were plotted as the columns. The results of 

the anal~~ are stmmarized in tabl.e Vl.. It can be seen from this 

tal>].e that the fl"equenc:y differences in fi'S are significant at tha 

0.01 level. Hence the above observations are justified. 

The resUlts for all of the indiVidual subJects are not shown. 
' 

However, figure :12. · shoYs the re~i;;s tor subject 'H' • This subj act. 

vas the most t-ypical. of the subjects. The individual results confirmed·.·. 

the above statements except for four exceptions. Two of the subjects, 
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with stimulus intensities of 110 db. and with stimulus durations of 

three minutes, gave ma.x:i.mal TTS at 1000, 2000 and 6000 cps and not at 

1000, 2000 and 4000 cps. This tends' in figures 9 and 10 to elevate 

the 6000 cps point and lower the 4000 cps point on the lines with these 

parameters. Another two of the subjects, with stimulus intensities 

of 110 db. and a stimulus duration of two minutes, gave results which 

were qualitatively simi.lar to the line shown in figure 9 w1 th a stimulus 

duration of three minutes at a stimulus intensity of 110 db. 

(d) Test Tone Variables : Pre-stimulus and post-stimulus tone 

thresholds were calculated, as in the previous e:xperiments, by taking 

the mean of the transition points in the pre-e:xposure and post-e:xposure 

periods. The mean TI'S for the six subjects in each of the five 

stimulus conditions and at each test frequency were calculated. 

The results are summarized in figures 13a to 13e. It can be 

seen from these figures that for all but two stimulus conditions, 

maximal TTS occurs at a test frequency half an octave above the stimulus 

tone. One exception is a stimulus tone of 2000 cps at a stimulus 

intensity of 70 db. and a stimulus duration of 3 minutes •. The other 

exception is a stimulus tone of 6000 cps at a stimulus intensity of 

70 db. and at a stimulus duration of 3 minutes. With the former 

condition, TTS is maximal at 4000 cps and with the latter condition, TTS 

is maximal at 6000 cps. The figures also reveal that the effect of incr­

easing the severity of the stimulus conditions produces its greatest 

effect at the test frequency at which maximal TTS occurs. Increased sev­

erity of the stimulus condi tiona seems to affect the amount of TTS in 

proportion to the amount by which the test tone frequency deviates from 

the test frequency at which max1mal Tl'S occurs; hence the "bowing" 

of the curves. The distribution of TTS over the various test tone 

conditions is positively skewed, except with a 1000 cps stimulus. The 

frequencies below the test tone frequency at which max:imal TTS occurs 

are much less affected than those above this frequency. The results 

obtained confirm that with high stimulus intensities and fairly long 

stimulus durations, there is a pribportionally larger increase in TTS. 

A stimulus duration of 3 minutes at a stimulus intensity of 110 db. 
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T8ble m 

SUmma-ey of the analysis of variance to test the significance of 

difterences in TTS with the test tone frequency and with ·the 4 stimulus 

conditions. Data used is presented in figure 13. 

Stimulus Tone 
in cps. 

1000 

2000 

sooo 

4000 

6000 

Source of Variance Sum of 
Squares 

Test tones 180.26 

Stimnlus Condi tiona 38.69 

Residual 151.74 

Total 370.69 

Test tones 100.51 

Stimclus Condi tiona 154.89 

Residual 25.39 

Total 279.79 

Test tones 180.81 

S~ulus Condi tiona 86.80 

Residual 79.75 

Total 356.36 

·Test tones 130.07 

Stimulus Condi tiona 39S.Sl 

.Residual 75.67 

Total 599.05 

Test tones 2.53 

Stimulus Condi tiona 28.27 

Residual 4.36 

Total 35.16 

a· Probability less than 0.01 

b Probability less than 0.05 

Degl"ees Variance F 
of estimate Ratio 

Freedom 
4 45.06 3.56 

3 12.90 1.02 

12 12.64 

19 

4 25.13 u.a5 

3 51.63 24.35 

12 2.12 

19 

4 45.20 6.80 

3 28.93 4.85 

12 6.65 

19 

4 32.52 5.15 

s 131.10 20.78 

12 6.31 

19 

1 2.53 1.74 

3 9.42 6.50 

3 1.45 

7 

b 

a 

a 

a 

b 

b 

a 



TaJ?;te-nll 

Shows 1n the body of the table the range (in octaves) of test frequencies affected by the indicated stimulus tones and at 

the indicated at~ul.ua intensities and dUrations. 
Stimulus Frequency 

Stimulus ·. :Stimulus 1000 2000 sooo 4000 6000 

Duration-in minutes Intensity in db. 

1 70 1 lt lt t * s 70 lt lt lt t i-
1 110 lt 1t li 1t t 
s 110 2 2 2 lt i 

~ 
• 
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af'fects all test frequencies much more than any of the other 

conditions.. SUprisingly, at a stimulus frequency of 4000 cps, TTS is 

greater with a stimulus intensity of 70 db.· aDi a stimulus duration of 

3 minutes than with a stimulus intensity of 110 db. and a stimulus dura~on. 

of 1 minute. At aJ.l other stimulus frequencies the reverse is found. 

To teat the significance of the· test-tone frequency differences 

and stimulus condition dii'f'erences, the data was subjected to an analysis 
- . 

of variance (see McNemar, 1962, pages 290 to 296). Tbe justification 

for using this technique has been outlined on p~e 76. Each stimulus 

frequency was treated separately and the results are_ smmnarized in 

table Vll. It can be seen f'rom this table that only at a stimulus frequency 

of 6000 cps are the differe.nces in TTS with test trequency not 

sign:l.ficant. The table also reveals that only at 1000 and 6000 cps are 

the dif:terences between ~ stimulus conditions not significant. These 

non-significant differen~.s are probably due to the fact that differences 

in TTS are relatively wry small between the di.f:terent conditions. 

Since seven out of ten of the dift'erences are significant, it would 

appear that the general conclusions reached above are correct. However, 

it may be that these conclusions do not hold for stimnlus frequencies 

of 1000 and 6000 cps. 

Further ini'ormation was obtained from f'igm"e 13 by considering 

the range of test ~quencies affected at each stilllulu~ ·frequency 8Pd 

under each of the stimulus conditions. These ranges are Slliiiiliari.zed in 

table Vlll. It can be seen t.rom the table that there is an increase 

in the range of octaves affected as the severity of the stimulus 

~osure is increased. It ean also be seen that there is a decrease in 

the range of octaves affected as tls stimulus frequency is raised from 

3000 to 6000 cps. However, the range is relatively constant with 

stimULus frequencies of less than 3000 cps. 

TQ.e indi17idf:lal. results were again very similar to the mean results. 

Allowing for cbanee variations, .five out of the six subjects consistently 

showed maximal TTS at a test frequency a half an octave above the 

stimulus frequency. The ·siXth subject (see figure 14) sbowd a tendene;y 
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Figure 14: Results for subject •o• showing TTS as a function 

of test tone ~equency. Parameters are stimulus duration and 

intensity. 



:'t· 

',:,'. 
-:-:.l 

,_ 

. •,: 
~· .. ; (; : 

: .~. 

;• ... 

. . . . 

~ .. ·· 
·r :,_, 

/-·· 

, . 

(. -'. 

. ' 

. ·_,_. 

~. 

for .~~~.T'l'$' to: .occ~· .~1i a test :trequericy equal to the stimulus 

treqQ.enC,..· -~s-~ not 'generali~; but it oceureA' $.Ufflcientq to 

des~oy the"' tn>ics;L ·pat~ ass.ociated With the-other ~divi~~ 
. . ' . . . . '· . 

_ .. ,, I•'' .. _.)._. ·._,_ ' .. 

·.i; 

... -· 

,-.• 

... ;.· .. 

. . ,. f!, 
·(_ .. -;: 

. -·· ... : 

.·:-: 

' ,: . 
.... -,· .. -~ 

·, . ~~ 

, .. 
_.('. 

• . r~·-

.... i 
•.•• ' ~ 'I! 

.-- .... ( .. ~:· ·-";~ 
,r .. "" 

·:-;:i·.' 

' J ~ 

·.·:··-

' ' 
..... 

·. ·· . 

. '· 

. ·.~·· 



I 
I,. 

,· 
I 

'· 

-~ eHAfQ 1X 

RECOVERY FRCJM. TTS, 

87. 

Two e:xperiments were carried out on recovery from TTS (see 

pages 57 to 59) , These were : 

(i) An experiment studying the time taken for the threshold 

to recover to normality (latent time), 

(ii) A study of the material collected during the • 

· elql8r1ments on the s~ul.us-and test tone variables. 

The results obtained are gi-tfen below. 

(a) Recoyery 'l?:!ll!! 

The mean latent time for recovery was calculated for the four 

subjects used in the experiment at each stimulus, frequency and 

intensity. The stimulus duration was one minute :throughout the course 

of the e:speriments. The results are illustrated in figure ).5. In 

this .figure the stimulus intensity is plotted in terms of db. re 

0.0002 dynes per am2 rather than in terms of db. re .the subjects 

threshold. This equates the physical intensities for the dift"erent 

subjects. Since individual thresholds vary, the points sbowil on the 

abscissa in figure 15 cover a small range of intensities. Far a 

stimnlus / test. frequency of 1000 cps the range was 4 db,, for 2000 

cps the range was 2 db., for 4000 cps the range was 7 db. and for 

8000 cps the range was 3 db. However, since there is no overlap in 

the ranges covered, the only effect this l:Iould have on the results is 

to widen the individual differences. It would not affect the shape 

of the graphs or the general conclusions that can be draw hoiil tbe 

results since for .ush SubJect successive intensity differences are 

always 10 db. 

Inspection of figure 15 gives rise to the follOiling 

observations : 

( i) A.t 1000 and 2000 cps there is a gradual increase in mean 

latent times as the s~~us inten~ty is ·increased from 

20 db. to approxililately · 60 db, From approximately 60 to 

80 db. tl:J3 mean latent times decrease and above 80 db, 
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XabJ,e 1X 

Analysis or Variance or :lntensi ty and replication relationships in recovery from TTS. Data tram 4 subjects. 

Intensity Replications 

Frequena,r in cps Variance Degrees o£ F Variance Degt-ees of F 
Estimate Freedom Ratio Estimate Freedom Ratio 

1000 1.328 7 27.669 a 0.185 2 3.854 

2000 4.274 7 57.756 a 0.055 2 o.74a 

4000 94.128 8 290.518 a 0.620 2 1.914 

8000 51.952 4 125.185 a 0.640 2 1.542 

a Probability less than o.~l 

Error 

Variance 
Estimate 

0.048 

0.074 

0.324 

0.415 

Degrees of 
Freedom 

14 

14 

lo 

8 

Q) 
\1) 

• 



there appear to be slight increases in the mean 

latent t.imes. 

(ii) At 4000 and 8000 cps, there is a gradual 

negatively accelerating increase in latent 

time as the stimnlus intensity is increased. 

(iii) The latent time is maximal at 4000 or 

8000 cps and is minimal at 1000 cps. 

90. 

The significance of these observations was tested statistically 

by means of analysis of Variance and a 't' - te~. To do this 

the original measurei!lents used in calculating the results f.or the 
' 

individual subjec_ts were utilized. The analysis follows that describecl 
., 

by Lindquist (1953, pages 19Q-202) for n'l'he Special Case of Simple 

Replications. a Mean latent t1Iiles for the four subjects were 

calculated for the_ first, second and third replications at each 

intensity. A table was drawn up plotting intensities as colmnns 

and replications as rows. Mean latent times were inserted into the 

bo~ or the table a;nd the table subjected to analysis or variance. 

The advantage of this method or analysis is that it renaves group 

differences from the error variance. Hence only interaction 

effects remain :in the latter (see Lindqoist, op cit.,page 201). The 

justification for using the technique is that ~ replication~ and 

the treatments~ were randomized, the cells in. the analysis. each 

contained the smne .n1JIIlber or cases and replication differences were 

reduced because Of the previous training. This f'ulfills the main 

criteria governing the ti.se of this type or analysis (see Lindquist, 

op cit., page 199 to 200). 

The procedure was repeated at each stim1;il.us/test frequency. 

The results of the analysis are summarized in table lX. It can be 

seen from the table . that at each· of , the four frequencies used in the 

experiment, the mean latent time varies significantly with stimlll.us 

intensity at the 0.01 level or confidence. The table also indicates 

that the di£fe.rences in latent time for the dlfferent replications 

a:re not significant. Sinee the subjects were given considerable 

practice prior to the experiment, this is to be expected. 

I .• 



FrequeJ}oy 
in <?PS 

1000 

2000 

4000 

8000 

TabJ.g X 

Results of t-test to determine number of differences significant in figure 15. {See Garrett, 1958, page 281). 

Data used is presented in table lX. 

Difference required 
for· s18ni£ic~ce at 
0.05 level- of 
confidence 

0.383 

0.475 

0.980 

0.385 

·~ ,:-.\ I 
)_ 

Difference required 
for significance 
at 0.01 level of 
confidence 

0.533 

0.661 

1.356 

0.559 

Num~r of possible 
Differences · 

28 

28 

36 

10 

Number of 
differences 
significant 
at o.os level 

.\\. ' .. 

6 

s 

1 

0 

Number of differ­
ences significant 
at o.ol level 

17 

23 

32 

10 

Number of 
differences 
not significant 

5 

2 

3 

0 

U) .... 
• 
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Table n 

Results of t-test to determine which of the differences (shown in body of table) bett1een sucgessive stio:lulus intensities are 

significant. 

Frequency 
in cps. 

1000 

2000 

4000 

8000 

The differences are measured in db. and the significance figures are given in table x. 

20-30 db 

0.90 a 

1.18 a 

1.87 a 

-

Difference between: 

30-40 db 40-50 db 50-60 db 60-70 db 

-0.67 a 0.60 a -0.17 -o.as a 

0.49 b 1.16 a 1.37 a -1.00 a 

4.16 a 1.36 b · 4.19 a 1.46 a 

- - 1.78 a 2.45 a 

a Significant at 1% level of confidence 

b Significant at S% level of confidence 

70-80 db 80-90 db 

-0.07 0.50 a 

-1.18 a o.oo 
0.47 0.29 

3.39 a 2.37 a 

90-100 db 

1.40 a 

\0 

"' • 
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figure is: Result:J for subject 'Dl' showing· latent time a$ a function of -stimulus ~~tensity. 
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Additional evidence tor the relationships revealed in figure 

15 was obtained by applying a 1 t 1 
- test to .the data used in the 

analysis ot variance. The same method was used as was used to treat 

the data on the relationship between stimnlus intensity and TTS 

(see page 78 and Garrett, 1958, page 281). The results ot this 

test are smmnarized in table X. Inspection of the table reveals 

that at 1000 cps, · only 5 out of' 28 possible differences in latent 

time vere not signiticant; at 2000 cps, only 2 out of 28 possible 

ditf'erences in latent time were not significant; at 4000 cps, 

only S out of 82 possible differences in latent time were not 

. significant, and at 8000 cps all of the differences were significant. 

Hence we can conclude that the intensity differences revealed in 

figure 15 are significant. 

However, there are 5 non-significant differences at 1000 cps and 

S at 2000 cps. It is important with reference to the peaks in the 

figure with these frequencies, to consider where these non-significant 

differences occur. Hence iD table n is presented the differences 

between successive means, that is between stimulus intensities of 20 

and 30 db., 30 and 40 db. and so on. It can be seen from the table 

that the reduction· in latent time between 60 and 70 db. at both 1000 

and 2000 cps is significant at the 1% level, the reduction between 70 

and 80 db. at 2000 cps is significant at the 1% level and the difference 

between 80 and ·90 db. at 1000 cps is significant at the 1% level. At 

4000 cps, all the differences except 2 are significant Slld.:at 8000 cps 

all the differences are significant. Hence, observations (i) and ·(ii) 

made above after inspection of figure 15 (see page 16) seem to be 

reasonably justified. The third observation must remain subjective. 

The 4 stimtil.1Hl/test frequencies used in the experimeut· are insuf'ticient 
0 

to apply statisti.fal. tests becanse of' the ~in which the data was 

collected. 

In figure 15 there does seem to be some contusion of the results 

since the 4000 and 8000 cps lines cross each other. However, this 

confusion was thought to arise from the results of one subject, subject 

1 Dl 1
• The individual results for this subject are :presented in f'igtlre 16 •. 



., 
"0 
c 
0 
u 
I 

.&i 

., 
,11; -.. 
§ 

24 

20 

16 

12 

8 

4 

Means far subjects AJr,. !.Bl , Cl. 

-------

1000 c.p.s. 
2000c.p.s. 
4000c.p.s. 
8000 c.p.s. 

'/ 
I 

I 

~-- _./ 

I 
~ 

/ 

, , 

/., 

/ 

/--- . .J'/ / . ......_.-_.r 

,., 

,,, .. 
~----..,_--

,"' , 
,., 

, 
I 

_,/ 
.,.,"' ---·---·-·-./ . .r ....... 

~~~~ "" 
.._ ·­·-..-.-·~ 

_, .. 

o~--~~----~----~-----~----~----~----4-----~----~----~ 
0 10 ~0 30 40 50 60 70 80 $0 100 

Stimulus Intensity In db. 

Figure.l7: l·1ean results for m1b~oot13 'Al', 'Bl' and 'Cl' shovdng latent -t.l~.a as a. functloll 

of stimulus intensity. Parameter 1fJ stimulus/test freq1,1ency. 

\0 
c.n 
• 



.... 

f• 
,'}I, 

:-:. 
•::..· 

·,_ 

r .. 
~ . 

. ·. 
r 

( 
) · .. 

,·,.' 

~
·.;: .. 
: .. 
~-- .. 

•. 

-~· .... , .. 
·'· '•'I• • 

... 
~ . ·. 

,· '. 

'. ,: 

.. 
\·i~. 

• .. 

,. 

'- •• ·oi < •. ):·:.·._. ~~ ...... ; 

. ' ~-: .···· . ·: .... ~ .... , .. . . .. ....... ~:: . .' " .;- . ··. ·. ·.,···.· ........ '· 

....... 

Inspection of ·the fiFe reveals that th~. ~oj~et 'sllmred · onJ.y small 

increa6es· ·in latent. time ·as the stimulus ·intenSity ·was inareas~d at 
. ' ' .. . . . . ·. . . . 

4000 cp~, .but~:~.- lar~. in~~es. at 8000 cpa •. ~D the ... me~ resULts .. 

for t~ otl1.ei( ~~e- .eubjects at"e considered, .it ean be seen 'in figar.e 

1 'I that ther~. is no ~~' ~f the . 4000 . and 8oo0 -cps l~es·. .Instead 
. . 

·they ~d tO· r9main p8.1-al,l.e1 to each other.· . 'i'Ae ·Qiver~nt resULt:~ -for · 
.. ' ' ' . ' . . 

this subjeet. ini~t be associated with ~ f'act ~t t.oJ" :this sUbje~t-
.. . . 

bearing above 1200Q_"~s Was virtoally noil~~$nt·. Tb.~ ·Subject 

compl8ined of ~tus wb,en stimulatecl at.~,~~: and ~s JD.&Y have 

been the ·cause ·or .his abilort::l$l behaviotll" at tMs ~Uel;lq. 
' ' . ' • ' I ,. 

. . . 
To stmmlEil"ize. tlle results, we can sq ~~-: 

(1) :ta~nt :tme}~'bits a •boun_~· ·~on.at iooo 
aild 2000 ··®'~.:but. Do.t at 40PQ 'and seoo cps·· 

(11) La~n~. ·ti:ine ~1s maxtmta; at 4000 _eps and is minimal 

at 10~0 cps. 

(J.U) The iDC~s in latent • wi~:ih~~·t)r at 

4000 and 8000 cp~ tend. to parallel each, o@r. 

(iv) Judging,.~ the ;results of subject 'ID;l', there 

mq be large increases 1n latent time aa·•·tbe ·stimtJ;l.us 

intensity ~s incr~is9d at stimtil:i.m·trequenei~s just 

· · belqw the. subject~' uPPer limit of' he~· · .. 

.. :'• .. ... 

' .. · 

·.{_. 

1'-

. ·~ .. 

'· :},.· 

.. (.~). ·~tng.iq(><.n¢+lt~f~ed:; dqt!Ug·5the-'\~t~$?~S-·ony.t~ · a~lJEJ;; .~q·: < 
. . . . . . .· ' . '. - . . . .. ' 

.·· 

BaCh of' the .l9~:ind1Vidual resqlts obt$1ned. on tbe. stttdies .of .the, . 

stimulus and test tnne variables were ~e¢ted and ans.l$sed tO stwtr· ~-:c>~ 
. . ' . . - -~·· 

recoVery· tram ·fts:e The -three minute rec~17 period on· .~e~h record· v&.s· · .... ~~~:~~ 

· ~njijci ~· ~-:stibj.$eti~··judgeme~t made as: to Whether or not recovery ··;:.· 
. ·. . . . . . . . . ~ 

. :was d,:l.pbasic, .. as)~o ~tber or not sensitization:·.~ccured and ·as to whe~~· ... · 

•. or no;t;,' if' 'bpunce o.ccur~~·.~t ·was higher··than the' ipi~ ·m.·. i'he me~ .·.··~ 

~ tb~ ·t~st two tranS$-iioU:p,Oints in the post ~C)su:re period was .. 
.· . ' . . 

cal.~ated and ~thi,~·· was·· taken ·as measure· of iniUat T'iS (see points ·A 
. . ,' 

mid ·iLon,. figures l.Sa to lSc). If bounce . occtJ:ioed, the mean of' the ~e:~·.:·.. }":~. 

transition p~nts, ·~t.£~ initial return to threshold.val:ue (see p_oin~ 

a, b and a on·~#!g1Jres 18 a to 18 c) and tile mean ~:f the thr~ tre.nsitioh:· 

' ·. i · .. 
-~t . -~ . 

",f,·,, 
... _ , ..... -"'· ;. " ;.~-- ,_,;.:_ ... ,_'t •. :.: • .. : : ; 
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Figure 18: Typical tracings illustrating recovery from TI'S (see 

table Xll, page 98). Time reads from left to right (1" to 1.5 

mins). Intensity reads :f'rom top to bottom (1" to 8.89 db.) 
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Figure 

18a 

18b 

18o 

Tab1e ru, 

Swmnarizes the analysis of the three recovery curv~s shown in figure 18 (page 97). 

Diphaaic Recovery Sensitization 

Yes Yea 

Yes No 

No. No. 

Initial TTS. 

3.72 

15.55 

12.22 

Bounce higher than 
ini tiel 'ITS. 

No. 

Yes 

Amount of 
bounce. 

3.52 

11.11 

<D 
(X) 

• 
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ta»e JQ.V 

:?um.marizes the chi-sq~d anal.ysis ot ~he total frequency of j.udgaments of th~ presence of ~ii>hasio 

recoVet-y~_,·eensttization and bounce hi~er than initial cn,s in order to see if this difta:rs sigriifigantq from· 

ohance.-

Chi • sQ.um""e Degrees of freedom Probability 

Diphasic Recovecy 776.28 2 Less than 0.01 

Sansiti;ation . '935.44 2 ~~s than o.o~ 
. . ' 

Bounce higher than 1~ tial T'l'S 139~00 2 Less th8n 0.01 
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Part 1. 

Experiment. Stimulus tone Variables (Condition 'A') 

Hain Variable. 

70 db. 

Diphasic Recovery. 

Subjects 

A 

B 

c 

D 

E 

F 

Sensitization 

Subjects 

A 

B 

c 

D 

E 

F 

. BoWlce higher than 
initial TTS. 

Subjects 

A 

B 

c 

D 

E 

F 

• -.~· ~,,O:j1f 

f? •.' ,,, ,.,,,) 
\ •\ ., . ' f / 

,. 

8 

7 

9 

9 

1 

3 

14 

12 

10 

12 

6 

10 

0 

1 

0 

2 

1 

1 

Stimulus Intensity 

90 db. 

11 

10 

13 

5 

3 

10 

14 

14 

11 

14 

1 

9 

8 

6 

1 

0 

3 

1 

.--

110 db, 

7 

3 

12 

2 

0 

5 

3 

12 

0 

3 

2 

1 
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3 

3 

2 

0 
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Table X!l 

Shows in the body of the table the number of results classified as being diphasic, as 

showing sensitization and in t!hich bollnce was higher than the initial TTS. 

·Part 2. 

Experiment. 

.Main Variable. 

Diphasic Recovery 

Subjects 

A 

B 

c 

D 

E 

F 

Sensitization 

Subjects 

A 

B 

c 

D 

E 

F 

BoWlce higher than 
initial TTS. 

Subjects 

A 

B 

c 

D 

E 

F 

Stimulus tone variables (Condition 'B') 

1.0 min. 

11 

6 

11 

8 

11 

10 

11 

6 

4 

10 

5 

10 

6 

1 

9 

1 

1 

4 

-~---

Stimulus Duration. 

2.0 min. 

5 

11 

3 

11 

9 

2 

9 

6 

7 

10 

3 

7 

5 

6 

3 

3 

4 

10 

3.0 min. 

2 

3' 

9 

4 

6 

0 

2 

4 

4 

4 

1 

5 

0 

3 

2 

2 

2 

1 

• 

Part 3. 

Experiment 

Main Variable 

Dip~asic Recovery 

Subjects 

G 

H 

J 

K 

L 

M 

Sensitization 

Subjects 

G 

H 

J 

K 

L 

M 

BoWlce higher than 
initial TTS • 

Subjects 

G 

H 

J 

K 

L 

M 

: . ', ~' : 
;_ ~I : : 

' .v 
I 

:I 
J ,',I·· 

~-- ., 

~-·~-+-~:. 

.., 

' 

r· . 
I' .: ' . 

ji 
1
.,, .· 
' . 

·._1: ., 

.. _(< 

I 
i 
! 

. ·j 

' 

I , , 

• ' 1-

'. 

i ·-:· 
' \ 

·, 

,. 

' 

•' l 

',·,· 

j> 
I . 
I 

.; ·. 

., 

·:.:;-

. .---. 

Stimulus tone (Condition •c• 
Stimulus Frequency (in cps.) 

500 750 1000 1500 2000 2500 3000 3~ 4000 6000 

5 

5 

0 

0 

0 

0 

0 

0 

2 

0 

4 

2 

0 

0 

0 

0 

0 

0 

4 

2 

l 

0 

2 

0 

3 

0 

0 

1 

0 

9 

0 

0 

1 

0 

2 

0 

6 

6 

7 

9 

1 

0 

2 

1 

3 

2 

4 

2 

l 

1 

0 

1 

0 

0 

3 

0 

1 

8 

1 

2 

1 

0 

4 

0 

11 

2 

1 

0 

1 

5 

1 

2 

6 

8 

7 

9 

0 

4 

0 

0 

2 

6 

2 

4 

6 

4 

3 

0 

0 

3 

• 

3 

1 

9 

6 

0 

0 

1 

1 

6 

2 

4 

3 

2 

1 

4 

1 

0 

0 

9 

4 

9 

9 

1 

1 

1 

2 

0 

4 

5 

3 

4 

4 

5 

1 

0 

1 

l 

2 

0 

4 

4 

l 

0 

0 

1 

0 

2 

5 

3 

2 

0 

2 

2 

l 

0 

0 

3 

4 

5 

4 

1 

() 

0 

0 

1 

0 

4 

0 

2 

1 

0 

0 

1 
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Part 4. 

Experiment. 

Main Variable. 

Diphasio Recovery 

Subjects 

N 

0 

p 

Q 

R 

s 

Sensitization 

Subjects 

N 

0 

p 

Q 

R 

s 

Bounce higher than 
initial TTS, 

Subjects 

N 

0 

p 

Q 

R 

s 

,,.-lr 
I . 

_'/- I • 

! 

i' 

. '' 

,, ,. 

I 

·, f 

I 
I 

' ' 

. I 

~ ' . 

I· 
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Test tone. 

Test tone Frequency (in cps.) 

l 
I 

I 

. . I 

soo 1ooo 15oo 2ooo 3ooo 4ooo 6ooo ro 

1 

3 

3 

7 

3 

2 

2 

3 

5 

5 

4 

2 

1 

1 

2 

2 

l 

1 

5 

7 

3 

4 

2 

3 

2 

2 

6 

6 

5 

9 

3 

5 

0 

0 

0 

1 

3 

4 

1 

4 

3 

1 

5 

3 

3 

5 

6 

1 

2 

2 

1 

1 

0 

1 

.~--

6 

8 

4 

3 

6 

4 

4 

5 

0 

B 

7 

7 

4 

4 

2 

2 

0 

4 

8 

11 

5 

6 

5 

2 

4 

3 

1 

4 

9 

8 

5 

5 

0 

2 

1 

2 

2 

3 

1 

2 

0 

1 

6 

2 

2 

7 

0 

6 

2 

3 

l 

l 

0 

1 

5 

6 

3 

1 

4 

2 

3 

0 

6 

3 

5 

2 

2 

0 

0 

0 

4 

2 
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Experiment 

Part 1. 

Stimulus tone 
variables 
{Condition A) 

It 

It 

Part 2. 

Stimulus tone 
variables 
(Condition B) 

It 

" 
Part 3. 

Stimulus tone 
variables 
(Condition C) 

" 
" 

" 
" 
" 
" 
II 

" 

" 
Part 4. 

Test tone 
variables 

" 

" 
" 

" 
II 

" 
11 

Test Frequency Stimulus Frequency 
in cps. in cps. 

1500 1000 

1500 1000 

1500 1000 

1500 1000 

1500 1000 

1500 1000 

750 500 

1000 750 

1500 1000 

2000 1500 

2500 2000 

3000 2500 

4000 3000 

4250 3500 

6000 

8000 

500 

1000 

1500 

2000 

3000 

4000 

6000 

8000 

4000 

6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

1000 to 6000 

,--' 
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:1 Suwmarizes the result of the analysis of the 1950 individual results for diphasic 
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1.0 

2.0 

3.0 

1.0,2.0 ll: 3.0 

1.0,2.0 ll: 3.0 

1.0,2.0 4 3.0 

1.0,2.0 ll: 3.0 

1.0,2.0 ll: 3.0 

1.0,2.0 &: 3.0 

1.0,2.0 & 3.0 

1.0,2.0 & 3.0 

1.0,2.0 & 3.0 

1.0,2.0 & 3.0 

1.0 & 3.0 

1.0 .ll: 3.0 

1.0 ll: 3.0 

1.0 & 3.0 

1.0 ll: 3.0 
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1.0 ll: 3.0 

·;' .·. 

·I· I' 
.J., 
. ',1 

~ . 
d 
•I! Jq 
II' 
II. ,. 
r 
' 

I 
"1 ;. 

. i 
1'- .. . .j 

I 1 
f.'-·'! 

l \_ -~ ... r ~ 
. ~· ! 

--!I'< 
,1·.1 

.\,I'. 
~ j 
-.. 

" ·r . ! 
i: 

·-~ 
' t: -, 
..... : 

F 
I I 

··t· 
' ! 

,; 
·r· 

-. 

I 
l, 

. :1\ 
'!i 

i 
M 
i 

.)I 

'-i 

h 
" ' . ,<', 

.. ... 

}; 
d , 
·' . ,, 
'i! 

i 
'l: 

•,i 
• ! ~ 

. ) 

--~------

~ecovery, sensitization, bounce higher than-initial TTS, initial TTS and amount of botmce.:. I 

$timulus Intensity 
in db. 

70 

90 

110 

70-120 

70-120 

70-120 

70,90 6: 110 

70,90 &: 110 

. 70,90 & 110 

' : 70,90 & 110 

' 70,90 &: 110 

70,90 & 110 

70,90 & 110 

70,90 & 110 

70,90 ll: 110 

70,90 ll: 110 

70 & llO 

70 & 110 

70 & 110 

70 & 110 

70 & 110 

70 & 110 

70 & 110 

70 & 110 

Number sho;Ting 
diphasic recovery 

Yes No Doubtful 

41 34 

53 19 

28 53 

47 5 

49 8 

22 43 

10 35 

9 29 

29 14 

15 28 

34 13 

19 25 

33 18 

33 18 

11 38 

17 32 

19 98 

24 81 

16 94 

31 89 

37 75 

9 104 

21 93 

15 101 

9 

12 

3 

14 

9 

1 

9 

16 

11 

11 

7 

10 

3 

3 

5 

5 

3 

15 

10 

0 

8 

7 

6 

4 

Total 589 1180 181 

-- - ---------

. --

Total 

Number showing 
sensitization 

Yes No Doubtful 

64 17 

63 19 

21 62 

46 7 

42 9 

20 27 

8 42 

13 38 

14 43 

18 24 

14 38 

17 33 

15 35 

29 24 

11 39 

5 47 

21 95 

30 84 

23 88 

34 81 

29 89 

23 87 

19 95 

20 98 

585 1231 

3 

2 

1 

13 

15 

19 

4 

3 

1 

12 

2 

4 

4 

1 

4 

2 

4 

6 

9 

5 

2 

10 

6 

2 

134 

Hean initial 
TTS in db. 

8.65 

14.83 

21.25 

10.86 

13.37 

25.18 

1.16 

4.69 

12.38 

4.83 

9.23 

7.96 

16.57 

15.18 

24.26 

3.89 

0.86 

5.58 

4.18 

8.39 

9.65 

14.13 

8.17 

3.62 

Total 194.29 
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.Total 

.... 

Number showing bounce 
higher than initial TTS. 

Yes No Doubtful. 

5 33 3 

19 23 11 

15 12 1 

. 18 24 5 

26 13 10 

10 9 3 

0 7 3 

3 5 1 

3 19 7 

10 4 1 

16 16 2 

8 7 4 

15 18 0 

19 11 3 

7 4 

7 8 

8 8 

9 ll 

7 9 

16 14 

14 17 

8 0 

8 11 

6 9 

246 280 

•· 

0 

2 

3 

4 

0 

1 

6 

1 

2 

0 

63 

.--

Mean amount of 
bounce in db. 

3.83 

11.51 

5.36 

7.68 

12.59 

15.35 

0.86 

1.28 

6.57 

2.89 

8.17 

6.72 

12.63 

8.33 

20.24 

2.95 

1.61 

2.24 

5.84 

6,73 

9.81 

13.78 

4.93 

2.44 

Total 170,90 

He an 7.120 

99. 

Total number of individual 
results (from 24 subjects). 

84 

84 

84 

66 

66 

66 

54 

54 

54 

54 

54 

54 

54 

54 

54 

54 

120 

120 

120 

120 

120 

120 

120 

120 

Total 1950 
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points at the highest threshold value thereafter (see points d, e and 

f on figure 18a to 18c) were calculated. The difference bet1r1een 

these values was recorded as a. measure of the amount of bounce. Figures 

l8a. to 18c are examples of records studied in this way and table· Xll 

records the judgements made on these records. 

Table n11 summarizes the results of this analysis. The table is 

sub-divided into four parts dealing with the experiments on the 

stimulus tone variables, Conditions 'A', 'B' and •c• and the experiments 

on the test tone variables respectively. Inspection of parts 1 and 2 

of the table reveal that the proportion of results shoving diphasic 

recovery is :ma.ximal at a stimulus intensity of 90 db. and at a stimulus 

duration of 2 minutes. Parts 1 and 2 also reveal that the proportion 

of results showing sensitization and the proportion of results showing 

bowtce higher than i!U;;tial TTS decrease and increase respectively with 

increased severity of the stimulus conditions. Parts 3 and 4 of the 

table reveal that the presence of diphasic recovery is maximal at 1000, 

2000 and 3000 cps and is minimal at 4000 cps. Sensitization, in these 

sections, is minimal at 2000, 3000, 4000 and possibly 1000 cps, and 

boWlce higher than initial TTS is maximal at 4000 cps and minimal at 

1000, 2000 and 3000 cps. 

In order to test the validity of the judgements made, the total 

results for all conditions wre analysed using a chi-squared test (see 

Garrett, 1958, pages 253 to 266). It would be expected that if no trend 

were apparent, a third of the total results would be assigned to the jes, 

no and doubtful categories in the sections on diphasic recovery, 

sensitization and botmce higher than initial TTS. For excanple a total of 

702 results showed diphasic recovery, 1067 did not show dlphasic recovery 

and 181 were doubtful. These are the obtained frequencies and the 

expected frequencies are 650 in each case (one third of 1950). The 

results of the chi-square analysis are SUiii!Ilarized in table n V. It can 

be seen from the table that in all cases the assignment of the results 

is significantly different from chance. 

To treat the data statistically it was necessary to use the results 

obtained with individual subjects. These are presented in table X:V 

(parts 1 to 4). Only the "yes" classifications are shown in the table 



Experiment 

Stimulus tone 
(Condition 'A') 

n 

n 

Stimulus tone 
(Condition 'B') 

" 
n 

Stimulus tone 
(Condition •c•) 

II 

II 

:l:Able M 

Summarizes the results of the Friedman two-way analysis of variance applied to the data of table nv. 

Factor Number of Columns Number of Rows xz. Probability. 
(Experimental Conditions) (Subjects) r 

Diphasio Recovery 3 6 a.33S 0.012 

Sensitization s 6 10.333 0.0017 

Bounce higher than 
initial TTS 3 6 6.333 0.0~2 

Diphasio Recovery 3 6 7.000 0.029 

Sensitization 3 6 a.333 0.012 

Bounce higher than 
initial 'l'TS 3 6 2.333 0.430 

Diphasio Recovery 10 6 17.381 Less than·0.05 

Sensitization 10 6 17.863 Less than 0.05 

Bounce higher than 
initial. TTS 10 6 45.072 Leas than 0.001 

..., 
0 w 
• 
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Table _XV]. continued 

Experiment Factor Number of Columns Number of Rowe x;t Probability; 
(Experimental Conditione) (Subjects) r 

Test Tone Diphasic Recovery e 6 20.305 Less than 0.01 

II Sensitization 8 6 6.319 Less than 0.50 

II Bounce higher than 
initial TTS 8 6 4.083 Less than 0.80 

.... 
·f! . .. . 
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since the total number of 0 no" and "doubtfUl" cases is determined by the 

number of "yes" classifications. The data on diphasic recovery, 

sensitization and bounce higher than initial TTS and the data in each 

part of the table were analysed sepa;t>ately. If we are to test the dif­

ferences within the different emperimental conditions, the samples in 

table X!1 Caiiilot be treated as beinB independent. The sa!D.e subject was 

used to collect the data 'Within any particular series of e:xperi.Ii:ental 

conditions. Hence, it vas necessary to use a Friedman ~ro-Ha.y analysis 

of variance (see Siegel, 1956, pages 166 tol72) to test the significance 

of the data. This is a non-parametric test used wilen "k matbhecl ·sample~ 

are in at least an ordinal scale. n (Siegel, page 166) • To place the 

data in an ordinal scale it was necessary to divide tba number· of cases 

in any cell by the possible total nuober of cases. However, for the data 

on diphasic recovery and sensitization in any given par~ of the table, the 

divisor 1Jas always the same. For example, in part 1 there are 14 poss~SJ.Ji! 

cases in ~ cell in the diphasic recovery and sensitization sections. 

Consequently, the ordinal ranking utilized in the analysis of this data 

was based on the number of cases of diphasie recovery or sensitization. 

However, for the data on bounce higher than initial TTS the divisor varied, 

since the total nULlber of possible eases was equal to the nUDber of eases 

shol-Jing diphasie recovery. Hence, for this data the ardinal ranking was 

based on tl:Je number of cases divided by the possible total nuober of eases. 

Table XVl. S1liJIIlal"izes the results of the Friedman two-wey- analysis of 

variance used to test the significance differences within different 

experimental conditions. It can be seen from this table that the following 

differences are not significant at either the 0.05 or the 0.01 level of 

confidence : 

(i) The differences in the degree· of bounce with di.i"ferent stimulus 

intensities (stimulus tone experiments, Condition 'A'). 

( ii) The differences in the degt!ee ·of bounce vii th different 

stimulus durations (stimulus tone experiments 1 Condition 'B' ) • 

(iii) The differences in sensitiza~on ldth different test 

tone frequencies (Test tone e:xperments). 

(iv) The differences in the degree of bounce 'With different 

test tone frequencies (Test tone experiments). 
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Table XVll 

Summarizes the-results for individual subjects of the presence-

of diphasic recovery, sensitization and bounce higher than initial 

TTS. 

Part 1. Stimulus 
Tone: Condition 'A'. 

Uo. Diphasic 

No. Honophasic 

No. Doubtful 

No. Sensitization 

No. Non-Sensitization 

No. Doubtful 

No. Bounce Higher 

No. Bounce Lower 

No. Doubtful 

Part 2. Stimulus 
Tone: Condition 'B'. 

No. Diphasic 

No. Monophasic 

No. Doubtful 

No. Sensitization 

No. Non-Sensitization 

No. Doubtful 

No. Bounce Higher 

No. Bounce Lower 

No. Doubtful 

A 

28 

8 

6 

31 

9 

2 

15 

12 

1 

A 

18 

10 

5 

22 

9 

2 

11 

2 

5 

-- Subject.-

B C D 

16 

26 

5 

38 

4 

0 

10 

6 

0 

B 

20 

9 

4 

16 

ll 

6 

10 

8 

2 

35 

6 

1 

21 

18 

3 

4 

29 

2 

Subject. 

c 

23 

5 

5 

15 

5 

13 

14 

5 

4 

20 

15 

7 

29 

13 

0 

4 

14 

2 

D 

23 

7 

3 

24 

4 

5 

6 

14 

3 

E 

5 

32 

5 

9 

32 

1 

4 

1 

0 

E 

24 

7 

2 

9 

8 

16 

7 

14 

3 

F 

18 

24 

0 

20 

22 

0 

2 

6 

10 

F 

10 

18 

5 

22 

6 

5 

6 

3 

1 

. 
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Table m.l (continued). 

Part 3. Stimulus 
Tone: Condition 'C'. 

No. Diphasic 

No. Monophasic 

No. Doubtful 

No. Sensitization 

No. Non-Sensitization 

No. Doubtful 

No. Bounce Higher 

No. Bounce Lo"torer 

No. Doubtful 

Part 4. Test 
Tone. 

No. Diphasic 

No. Monophasic 

No. Doubtful 

No. Sensitization 

G H 

47 33 

30 48 

13 9 

10 

75 

5 

21 

21 

5 

N 

32 

120 

8 

27 

7 

79 

4 

14 

13 

6 

0 

42 

112 

6 

19 

No. Non-Sensitization 130 127 

No. Doubtful 3 14 

No. Bounce Higher 21 20 

No. Bounce Lower 6 19 

No. Doubtful 5 3 

Subject 

J 

51 

33 

16 

21 

61 

8 

26 

22 

3 

p 

21 

131 

8 

23 

133 

4 

7 

10 

4 

K L 

59- 12 

14 67 

7 11 

24 

57 

9 

11 

39 

9 

Subject 

Q 

33 

120 

7 

43 

110 

7 

9 

22 

2 

45 

38 

7 

6 

4 

0 

R 

27 

122 

11 

40' 

109 

11 

5 

17 

5 

106. 

M 

8 

58 

24 

37 

49 

4 

4 

4 

0 

s 

17 

130 

13 

44 

112 

5 

14 

3 

0 



Table XVlll 

Summarizes the results of the chi-square analysis of table XVll to test the significance of the subject differences. 

If necessary the monophasic and doubtful, non-sensitization and doubtful and bounce lower and doubtfUl rows have been 

combined to fulfill the requirements of chi-square. 

Experiment Factor Chi-square d.f. Significance. 

Stimulus Tone Diphasic Recovery 85.12 5 Less than 0.01 
( C ondi ti on 'A' ) 

II Sensitization 48.78 5 Less than 0.01 

" Bounce 19.65 5 Less than 0.01 

Stimulus Tone 
(Condition 'B' ) 

Diphasic Recovery 22.11 5 Less than 0.01 

" Sensitization 35.83 5 Less than 0.01 

" Bounce 21.75 5 Less than 0.01 

Stimulus Tone Diphasic Recovery 100.87 10 Less than 0.01 
(Condition •c •) 

" Sensitization 69.8 5 Less than 0.01 

" Bounce 15.758 5 Less than 0.01 

Test Tone Diphasic Recover.y 36.62 10 Less than 0.0~ ... 
0 

" Sensitization 39.32 5 Less than 0.01 -.:3 
• 

II Bounce 15.758 5 Less than 0.01 
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Apart from these all the other conclusions reached after inspection of 

table Xlll (see page 102) are statistically significant at the 0.01 or 0.05 

level of confidence. 

To analyse the data even further a second table was drawn up shovling 

the results for individual subjects. This is table XVll, (parts 1 to 

4). It can be seen from this table that the individual subjects vary 

considerably in the degree to which ths,y show diphasic recovery, sensitization 

and a bounce higher than the initial TTS. To test the significance of 

these differences 12 contingency tables were constructed and the data 

analysed using chi-squared. (See siegel, 1956, pages 175 to 179). The 12 

contingency tables consisted of the results for diphasic recovery, sensitiza­

tion and a boWlce higher than the initial Tl'S, separately analysed for the 

three stimulus tone experiments and for the test tone experiments. The 

justification for using chi-square is that the results for ~ individual 

subject can be considered to be independent. Hence, the samples (i.e. the 

results for each individual subject) are independent. In table XVll it can 

be seen that there are several sections in which more than 20 per cent of the 

exoecteQ cell values are less than 5 an_d/or any expected cell values are less 

than 1.. Siegel (op.cit., page 178) points out that under these conditions 

"the results of the test are meaningless." Ho-wever, Siegel also points out 

that this difficulty can be obviated by combining adjacent categories, 

provided that the adjacent categories have some common property. In table 

XVll, both the categories not showing a given phenomenon can be combined 

meaningfully, i.e. they become single category recording the number of 

cases not showing the given phenomenon. Hence, wherever necessary the 

"doubtful" cases were combined vith the number of cases showing monophasic 

recovery, non-sensitization or a bounce lower than the initial TTS. When 

this was done, it was found that the requirements for chi-square were not 

violated. The results of this analysis are summarized in table XVlll. It 

can be seen from the table that under all experimental conditions the 

differences in diphasic recovery, sensitization and a bounce higher than the 

initial TTS are significant at the 0.01 level of confidence. Hence, we can 

conclude that there are significant individual differences in susceptibility 

to diphasic recovery, sensitization and bounce higher than the initial TTS. 



Table Xl.X 

Summarizes the results of the chi-square analysis of table XVll to test the interelationships betueen diphasic 

recovery, sensitization and bounce. 

Experiment Chi-square Degrees at freedom Significance 

Stimulus Tone 36.579 5 At 0.01 level 
(Condition A) 

Stimulus Tone 7.758 5 Not significant 
(Condition B) 

Stimulus Tone 46.598 5 At 0.01 level 
(Condition C) 

Test Tone 20.437 5 At 0.01 level 

1-' 
0 
~ 

• 
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Further inspection ·ot ·table XVJ.l reveals that those subjects vdth the 

highest proportion of results shOwing dipbasic recovery~ i2· ~-those 

subjects with the l~west proportion of results Sho~g sensitization. 
- . 

Similarly, thOse subjects with the highest proportion of results Sho-wing 

diphasic recovery tend to be those subjects with the highest prOJ>Ortion 

of resul.ts shovr.i.ng a boonce higher than the initial TTS. To test this 

hypothesis a second. contengency table was dra-wn up for each pa't't of . table 

XVl.l. In this the rim:l'ber of results shoWing diphasic recovery, the 

number of results showing sensitization and the number of results mo't-r.i.ng 

bounce higher than i.ilitial 'i'TS were plotted as rows. The follOVJing 

exemplifies· the procedure t-rl. th part 1 of table XVll 

SUbject 

A B c D E F 

No. Diphasic 28 16 35 20 5 18 

No. Sensitization 31 38 21 29 9 20 

No. Bounce hieher than 15 10 4 4 4 2 
initial TTS 

TOTAL 74 64 60 53 18 40 

These tables were subject to a chi-squared analysis. It was again 

necessary to conbine rows to avoid violation of the assumptions made 

in chi-square {see page lOB). In this case the results for sensitizatiQn 

and bounce were combined. The results of the analysis are summarized 

in table nx. It can be seen i'rom this table that in three out of four 
of the experimental conditions the results are significantly different 

at the 0.01 level of' confidence. Consequently, tbe tt-ro observations 

are jus tifie de. 
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PHAPTER X 

Control Experiments, 

Five control experiments were carried out (see pages 59 to 

63) • · They were : 

( i) Experiments in VIhich the stimulus tone was repl.&ced 

by a period of silence. 

(ii) Experiments in which the B~~sy method of thre.shold 

tracing was compared with threshold measurements 

obtairied using a modified method of limits. 

(iii) Experiments co:nparing the tracing of thresholds, 
I I 

using the Bekes,y method, for short periods and far long 

periods. 

(iv) Experiments on long term TTS effects. 

( v) Experiments studying the ambient noise levels in the 

sound-proof room. 

lll. 

The results obtained in these ~eriments are described in the subsequent 

sectio~s. 

(a) Stim~u~ tone rep1aced bz silence : 

Figures l9a to l9c illustrate the tracings obtained Wen the 

stimulus tone 'Vlas replaced by a period of silence. It can be seen from 

the tracings that there is very little observable shift in threshold 

under these conditions. To check this the mean,. pre-exposure and post-

exposure thresholds w<ere calculated by tald.ng the mean of the transition 

points in these periods. The mean shift in the 54 control trials (6 

subjects with 9 experimente.l conditions) was found to be -1.39 db. The 

standard deviation of these resul. ts was 1.47 dV. 
/ / 

(b) The Bekesy I·1ethod : 

Initially in these experiments the six subj acts traced their · 

threshold using the B~ke"sy method, for one fifteen minute period at 
' . 

frequencies of 1000, 15001 2000, 30001 4000 and 6000 cps. In this tJaY 36 

tracings were obtained. Figures 20a to 2Cc are representative examples 

of the tracings obtained- in this manner. Inspection of these and 

the other· 33 tracings obtained revealed that sloVI aperiodic changes 

occured in the threshold during the 15 minute tracing period. In arder to 
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replaced the stimulus tone. T~me left to right· (l" .to 1.5 min.). 

Intensity top to bottom (1" to 8.08 db.). 



Start 

Start 

Start 

19·11·60 

Subject ·u· 
ISOOc~. 

BEKESY EXPERIMENT 

II 
First vane~ 

13·12·60 
Subject 'V' 
1000~ 

13·12·60 
Slbject 'v' 
3000c.p.a 

Stcond valley 

Second Peall 

lnttnllly 
lnCI'IOSinQ 

I 
lnltntltr 

Decri"*'V 

"'""''" lnc:rtOIIng 

I 
lnllntily 

DtcraallnQ 

lnllnally 
IN:reastng 

I 
lntenaltr 

DecrtoN19 

fl:\Q~i:?O 20 : Ghot.vs typical trocingEJ obtained r,~en. the 
tt.~~,1:~o1U. io 'G!>anod f'or a :fifteen oinute pe:r>iod using 
tl:c :dckcay technique. Teat lfrequ0ney io as shown and 

Finish 

w,q;,;. constant throughout the tracing period. Sce.lEJ : 
In~cnc1:try, I ir.ch to 15.6 db; Tir:le ~ inch to 2. 3 minutes. 



--
Table _ _XX . 

Shol<TS the amount of threshold oscillation for each subject at each frequ~ney, for each subfect with all frequencies 

and for each frequency with all subjects (measured by the number of peaks and valleys on a fifteen minute test record). 

Frequency in_ ope. 

1000 1500 2000 3000 4000. 6000 Total Ivfean 

Subject T 5 8 s 5 4 1 26 4.50 

n U. 6 8 6 3 2 0 25 4.16 

n v 7 11 6 4 3 1 32 5e33 

II w 4 5 4 3 2 0 18. 3.oo 

n X 2 4 4 2 2 l 15 2.50 

n y 5 7 7 3 2 1 25 4.16 

Total 29 44 30 20 15 4 141 = Grand Total 

l-1ean 4.83 7.33 5.00 3.33 2.5 0.66 3.94 = Grand Nean 

1-' 

~ 



us 

facilitate the investigation, each record vas quantified in the 

following manner : 

(i) The number of peaks and valleys, i.e. ~ extremes 

of threshold values and not the transition points, 

were counted. This is termed the ammmt of 

oscillation. 

(ii) The threshold value at each peak and valley 

were computed b,y aVeraging the five transition points 

surrounding it (see a, b, c, d and e; and f, g, h, i 

and j etc. on figures 20a to 20c). 

(iii) The differences betwen the threshold at 

successive peaks and valleys was J::.a:Lculated. This 

was averaged to provide a mean value of the amplitude 

of the threshold oscillation. 

(iv) The subjects were ·ranked by reference to the 

~amount~ pscillat~QD .that they showed on 

the six tracings which were available for each 

subject. 

( v) The subjects were ra.Dked by reference to the 

~ ampli tuqe .2!:· pscillation that they showed on 

the six tracings which were available for each subject. 

Table XX shows the amount of' oscillation produced by each 

·' 

subject at each of the frequencies tested. Inspection of the table 

reveals that the amount of oscillation is maXimal at 1500 cps and 

decreases as the frequencies .deviate from this value. The table 

also indicates that there are significant differences bet~en subjects 

in the amount of' oscillation that they show. These differences 

were not .tested using analysis of variance, since it was suspected 

that the distribution of the amount of' oscillation might be badi.y 

skewed. Oldfield (1955) states of' sir:lilar fluctuations in the 

dif.ferenti§l tJlresbold ~. spund intensitx that, nthe population of values 

is highly skewed, and neither logari tbmic nor square root transformation 



116 

Table XXJ. 

StliiliilB.rizes the analysis of the data presented in table XX, to test 

whether the frequency and subject differences in am.opnt of oscillation 

are significant. 

{a.) Frequency differences: Friedman's two-l:ey a.nalysis of variance. 

Sum of column ranks squared = 3163.50 

Nmnber of rO\IS = 6 

Number of columns = 6 

Degrees of freedom = 5 

. 2. 

X = 14.642 {P less than 0.02) 
r 

{b) Subject differences: Kruakal-lilallis one-wq- analysis of variance 

{incorporating the correction for tied ranks). 

Number of samples 

Number of cases in each 
sample· 

Total nmnber of cases 

= 6 

= 6 

= 36 

Sum of smnple ranks squared = 75730.00 

Degrees of freedom = 5 

Correction for tied ranks = 0.995 

H = 2.721 {P between 0.80 arid 0.70) 



fabl,e p:Ll 

Shows the mean amplitude of oscillation (in db.) for each subject at each frequency, for each subject with frequencies 

of 1000, 1500, 2000 and 3000 and 4000 cps and the means for all subjects (a dash indicates insufficient peaks and valleys 
. ' 

were available to determine the amplitude of the oscillation) • 

Frequency in cps. 

1000 1500 2000 3000 4000 6000 Total l~ean 

Subject T 14.84 6.59 14.36 7.43 5.50 - 43.25 10.81 

II u 4.51 4.00 4.75 8.81 5.08 - 22·07 5.52 

It v 3.99 2.55 3.92 6.72 2.~2 - 17.18 4.30 

It ~1 6 .62 7.18 7.12 13.12 · 8.so - 34.06 8.51 

II X 7.87 5.58 8.58 5.62 .· 4.75 - 27.66 6-.92 

II y 3.76 1.21 5.01 . 4.76 14.00 - 14.74 3.69 

· Total 41.6 27.11 43.74 46.0 30.15 - Grand Total = 158.96 

I· lean 6.93 4.51 7.29 7.66 5.03 - Grand Mean.= 6.623 

s 
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Table XXlll 

Sum:narizes the analysis of the data presented in table XD.l, to test 

whether tm f'l'equency and subject differences in amplitude of 

oscillation are significant. 

(a) Frequency differences: Friedman's two-wey- analysis of variance. 

Sum of column rarlks squared = 974 

Number of rows = 6 

Number of colt:IIilnS = 4 

Degrees of freedom = 3 
~ X = 7.4 (P between 0.20 and 0.10) 
r 

(b) SUbject differences:· Kruskal-Wallis one-wey analysis of variance. 

Nm:1ber of samples = '6 

Number of cases in each sample = 4 

Total number of cases 

s~ of sample ranks squared 

Degrees of freedom 

H = 12.50 (P less than o.os) 

= 24 

= 17,510 

= 5 
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goes far to norr:ialize it.n Similarly in discussing fluctuations of the 

absolute ;!ihl"esho1d a sound inten~+~, Nertheitne_r (1953) states that 

0non-p~ametric techniques wre employed in preference to standard ones." _, 

The significance of the frequency differences wre tested using Friedman's 

tuo-way analysis of variance (see Siegel, 1956, pages 166 to 172). 

The· just~ication for using this technique has been outlined on 

page lOS. To test the subject. diffe,rences · the data was tested using the . ' . 

Krusk81-Wallis one-way analysis of variance (see Siegel, op.cit. pages ·i~4 

to 193). The justification for using this technique is that if we treat · 

the subjects as conditions, the samples are independent. ihe Kruskal­

Nallis test was used in preference to chi-square because the data is in 

an ordinal scale. 

The results of' tbe two analysis are smmnarized in table xn. It 

ean be seen from the table that ~he frequency ditf'erences in the amount 

of oscillation are significant at the 0.02 level of' significance, but 

that the subject differences are not significant. The latter finding is · 

probably an artifact of' the shortness of the test period. For most 

subjects only one or two peaks and valleys occurred at 4000 and 6000 

cps. A longer period would have allowed a more accurate assessment of 

the number of' peaks and valleys. Hence, subject differences would have 

been increased. 

The data obtained regarding the amplitude of oscillation was 

treated in a similar manner. Table m.l shows the mean amplitude of' 

oscillation at each frequene.y for each stibject and the mean at each 

frequency for all subjects. In the analysis the results at 4000 cps were 

discarded, since these were obtained from only tlilO or three peaks and 

valleys and hence were thought, as a group, to be unreliable. 'l'he 

results of' the analysis are summarized in table XXlll. It can be seen 

from the table that the frequency differences are not significant, but 

that the subject differences are significant at the 0.05 level of' 

confidence. 

Inspection of' the mean values. in tbe bod;y of' table XX and in tbe 

body of' table XXll indicates that there appears to be some negative 

relationship between the amount and the amplitude of the oscillations. 



TabJ,e m.v 

Calculation of Spearman's rank differences correlation coefficient for the rankings of the mean amonnt and mean 

~plitude of oscillation for the different subjects. 

Subject 

v 

T 

u 

y 

w 
X 

X y 

Mean amount of 
oscillation. 
(See table nx) • 

5.38 

4.50 

4.17 

4.17 

s.oo 
2.50 

Mean amplitude of 
oscillation. 
(See table JOQ.) • 

4.33 

10.8 

5.5 

3.69 

8.51 

6.92 

X 

Rank for 
amount. 

1 

2 

3.5 

3.5 

5 

6 

R~ gi(ferences correlation goefgioient = 0,23 

y 

Rank for 
amplitude. 

5 

1 

6 

4 

3 

2 

d 

4 

1 

2.5 

6.5 

2 

4 

" 

d2 

16.00 

1.00 

6.25 

0.25 

4.00 

16.00 

....... 
!.') 
0 
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tal SubJect 'r' 
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(b) Subject 'u' 
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Smoothed responses over the fifteen minute test period 

Figure 23: The ·smoothed threshold responses obtained 
. , , 

during a fifteen minute Bekesy tracing period at 1500 

cps. Smoothing_ was obtained by taking a five-point 

moving average. 
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To test this observation the _-subjects were ranked by reference to their 

mean amount of oscillation and by ·reference to their mean amplitude of 

oscillation. Spearman's rank-differences correlation. coefficient was 

calculated, after applying a correction for tied ranks (see Yule and 

Kendall, 1950, page 265). The results of this analysis are summarized 

in table m.v. The rank-differences coefficient was foUlld to be -0.23 

and this confirms tba t there is a slisht negative relationship betveen 

the amount and the amplitude ot the oscillatar;r changes. However, the 

relationship is not significant since tiith 6 casas, a coefficient of 

0.829 is required for significance at the 0.05 level of confidence (see 

Siegel, op. cit., pages 210 to 212). 
/ I , 

To ascertain whether the chal:Jges show in the Bekesy recordings · 

were an m-tifact of the method used, data was collected for the same 

subjects using a modified method of limits (see pages 60 to 61). Each 

subject's threshold was recorded far a fifteen minute period at 1500 cps 

using this method. The responses made by the subj act in this period are . 
shotm in figures 2la to 2l.t'. Inspection of these figures reveals that 

again there m-e aperiodic oscillatory changes in the threshold. However, 

intra-subject comparison with the results obtained at 1500 cps using the 
I I 

Bekesy technique indicated that 1:;he changes produced by the latter 

method were mnch greater. 

To facilitate the comparison the two sets of curves were smoothe_d 

by taking a simple five-point mOVing average (see Yule and Kendall, 19501 

pages 617 to 633). This technique smooths out any chance irregalariti~s 

in the curves without destroying the general trands. 'fhe smoothed 

curves for the two techniques are shown in figures 22a to 22f and 

figures 23a to 23f. Visual comparison of the two curves indicates that 

there is a mnch greater variation in both the amount and the el)lPlitude 
I I -

of variations using the Bekesy technique. The difference in threshold 

oscillation between the two techniques was statistically tested by 

calculating for each subject, the mean amplitude of oscillation. Since 

the same subjects were used in each sample it was necessary to utilize 

a test for related samples, to test t-he significance of the differences 

between the two Llethods. The non-parametric l'lilcoxon I!lB.tched-pairs 
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Table XXV 

Summarizes the calculation of the 1JUcomn catclled-pairs 

signed-ranks test. This wa.~ used to test the significance of the 

difference between. the amplitude of threshold oseiUation produced 

by the Bekesy. method and the modified I:l.9thod of liraits. Data is 

pre~nted in f'igares 22 and 23. 

Subject Hean amplitude- Nean ampl~tude- d Rank of 
Bekesy method. l-1Erthod of limits. 'd. 

T 7.30 1.23 6.07 +5 

u 3.46 1.86 1.60 +1 
--· v 3.93 1.35 2.58 •O:> ----:'-)) +3 

'li1 5.80 2.57 .3.23 +4 

X 10.90 1.48 9.42 +6 

y 3.71 1.80 1.91 +2 

There are no negative rBllks 

Therefore. T = 0 

Tr1i th N = 6 and T of 0, the 

differences are significant 

at the 0.05 level of confidence. 
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Figure 24a: Shows typical recovery curves from TTS. Obtaire d using 

modified method of limits, with a 1000 cps stimulus tone and a 

stimulus duration of 1 minute. · Responses he.ve been smoothed using 

a five-point moving average. Figures in parenthesis are time in 

seconds. 
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Figure 24c: More graphs of recovery from TTS obtained using the 

modified method of limits. 
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Tabl,e XXV1 

Surmnary of the analysis of the recovery from.TTS using the modified method of limits technique to measure 

the thresholds. 

Diphasic Recovery 

Sensitization 

Bounce higher than 
initial TTS. 

Yes 

36 

16 

12 

No Doubtful To tel. 

9 9 54 

37 1 54 

16 8 54 

1-' 
-~ 
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signed-ranks test (see Siegel-, op, ait., pages 75 to 83) til"as used. The 

choice of a non-parametric test Wa.s determined by the non-normality of 

the distribution (see page 115). The tJilcoxon test was used in preference 

to others such as the Sign Test (see Siegel, op. cit., pages 68 to 75) 

beca.tise it takes account of the magnitude of the differences between the· 

means. The calculations are stmmiarized in table XXV. It can be seen 

from this table that the differences are significant at the 0.05 level of 

confidence, or if we assame a one-tailed test, at the 0.025 level of 

confidence. 

(c) Control experiments on recovery from. iTS. 

Figures 24a to 24c are graphical representations of the results obtained 

"tmen TTS was studied using · the modified method of limits technique to 

measure the pre-exposure an~ the post-exposure thresholds. The c'lll"V9s 

have been smoothed by taking a five-point Iiloving average. The fifty four 

cnrves obtained were analysed in the same manner as the recovery curves 

obtained using the Bekesy I:lethod ( ~e page 94). The results of this 

analysis are smmnarized in table XXVl. 

To compare the recovery phenomena. associated tirith the t"Uo techniques, 

a chi-squared analysis was applied to the data obtained in these experilr.ents 

and the data collected under similar conditions· but using the Bekesy 

method. (See table Xlll, part 1). The justification for using chi~squared 

is that the data was collected Hith two different groups of subjects, i.e. 

the samples are independent. Three contingency tables til"ere drawn up for 

the three phenomena as e:xemplif'ied, tor diphasic recovery, in the 

follotdng :table : 

Table : .Number shmyinf.Y Qi.;phasic recoyery 

All stimulus intensities • 

. Bekesy Nethod raethod of Limits 

Yes 

No 

Doubtful 

Total 

122 

106 

24 

252 

36 

9 

9 

54 

Total 

158 

115 

33 

806 

The table l-IaS then analysed using chi-squared (see Siegel, op.cit.,pages 
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Table XXV11 

Smmnarizes the results of the chi-square analysis of the 

distribution of results showing diphasic recovery, sensitization and 

bounce higher than initial TTS, using the B~lu{sy and modified method 

of limits technique of threshold measurement. Data 'lilsed is presented 

in table nll, part 1 and in table XXVl. 

Variable Ch1-S~uare d.f. Significance 

Diphasic Recovery 12.624 2 At 0.01 level. 

Sensitization 16.443 2 " 
Bounce higher than 2. 791 2 Not Significant. 
initial TTS. 
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175 to 179) to ascertain whether the classification of the recovery 

curves differed significantly in the two :cethods. In all cases the 

number of expected frequencies less than 5 was less than 20 per cent 

of the total nmnber of expected frequencies. Hence, no combination 

of c~tegories was required. The results of the whole analysis are 

S1.1:iiiilElrized in table XXVll. It can be seen from the table that for diphasic 

recovery and sensitization, the. distribution. of the results ditf'ers 

significantly V1i th the t-wo . methods. Consequently, we must conclude that 

the way in which the threshold is measured affects the number of results 

showing diphasic recovery and sensitization. 
/ / 

(d) Bekesy traci.M for long and short periods. 

In view of the relatively large variations in threshold observed 
/ / 

wen the Bekesy :cethod was used .to trace the threshold far fifteen minute 

periods at one frequency, a further control EDper::iment was devised~ In­

stead of tracing continuously tbe subject Wa.s asked to trace for three 

minutes and he was then allowd to rest for two minutes. This cycle 

was repeated three times to give a total testing time of fifteen· minutes. 

Figures 25a to 25c are examples of tracings obtained in this manner. 

It can be seen from the figures that there is vrary little 

cyclical variation over aey given three minute sub-period or over the 

total fifteen minute test period. None of the records showed any of the 

aperiodic cyclical variations which characterised the periods during 

t.Jhich the threshold was traced continuously for fifteen minutes. To 

investigate the validity of the control experment in which the stimulus 

tone was replaced by a period of silence (see page lll), the threshold 

vel.ne for each three :cinute period was calculated by taking the mean 

of all the transition points in that period. Difterences between 

successive periods were calculated for each subject. Then the mean 

and standard deviation of these values were calculated for the four 

subjects used in the experiment. The mean threshold shift was .fotmd to· 

be -0.87 db. and the standard deviation 2.98 db. 

Only four subjects were available (see page 62) for the 

tracing for long and short periods and parametric statistics are not 
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• 
applicable to the data (see page ,115). Hence it was decided that it 'WaS 

impracticable to apply a statistical test to this data and the data 

collected in the control experiment in which the s~ulus tone was 

replaced by silence. Hmrever, tm two meells {-0.87 and -1.39) and the 
. . 

two standard deviations {-;.! .. 4? and 2.98) at"e reasonably close to each 

other. 

(e) Control for additiye ef'feqts of i'TS, 

- 'l'TS was recorded at the beginning and the end of a one and a 

half to two hour test session, after eJ!Posure to an 110 db. tone at 

stimulus trequencies of 1000, 2000 and 3000 cps. · The 'l'TS at each 

frequency, for each subject and far each period was c81culated. Group 

means for the whole of the experii:lent were then calculated. 'l'he mean 

i'TS for the periods at the beginrQ.ng of the session was found to be 7 .a 

db. and for the periods at the end of the period was fotmd to be 8.4 db. 

i'he standard deviations of th-e two sets of scores wre f'otmd to be 3.67 

db. and 3.82 db. respectively. The product IllOtlent correlation coef'ticient 

between the two sets of scores was calcUlated and found to be 0.86. It 

can be seen from the above that there was an increa.se in mean TTS of 0.6 

db. f'ron the beginning to the end of test session. 

Since the distribution of TTS is noroa.l {see page 76 ) , a 't'-test; 

. taking account of the corre+ation, was applied' to the data {see Garrett, 

1955, pages 226 to 228). The results of this are S1Jillllla1"ized in table 

XXVl.ll. It can be seen frotl the table that the diff'erence between the 

two means is not significant. Hence we must conclude that there vere no 

significant additive effects of successive eJq)osures over the duration of' 

the test session. 

(f) - Test Enyironment. 

The final control ~eriments consisted of measuring the 

oversll noise level in the test cubicle. No measurements were obtainable 

on the frequency ranges A and B of the meter. These weight the 

frequencies in relation to the 40 and 70 phon Fletcher-:-tunson {1933) 

equal loudness curves. The ninimmn intensity I:l.easurable on the meter was 

24 db. Thus the overall intensity of the sound on these frequencies mat 
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Table XX1X 

Overall noise .level in the test cubicle as measured b,y the Da~re 

Sound Level tleter (TYPe 1400E, setting C) for three three hour periode; 

at i'i£teen minute intervals. 

Time of Testing 

ll.30 a.m. to· 2.30 p.m. to 8.45 a.m. to ·· 
2.30 p.m. 5.30 p.m. ll.45 a.m •. 

Time .from commencement l,leter readings in db. re 0.002 dynes/cm2 

of testing (in minutes) 

15 39 34 36 

30 36 38 39 

45 41 40 42 

60 39 33 44 

I 

75 46 35 43 

90 40 36 41 

105 42 37 40 

.. · ~ 120 34 43 38 

135 42 40 38 

150 34; 35 40 

165 38 3'7 41 

180 44 3'7 42 

t.le~n. N~ise Leve~· in db. re 37 37 40 
0.0002 d:yn~s/cm 

Stand.ard DeViation in db• 4.61 2.97 2.33 
re 0~0002 dynesjam2 

t1ean for all three three. hour periods = 38 db. 

·' 
Standard devi.ation for all three three hour 
periods= 3.5l.db. 

-.-.· 
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Table XXX. 

Overal.l noise level in the test cub~9le as measured by the Dave· 

So1md Level 1-Ieter (T.fpe·l4oOE, Setting C) for three fifteen minute 

periods at one minute intervals. 

Time of Testing 

11.30 am ·to 4.00 p.m. to 10.45 a.o. to 
11.45 a.m. 4~15 p~m. 11.00 a.m. 

' 

Time from coiill:lencement ~eter readings in db.· re 0.002 dynes/cr:J.2 

of testing (in minutes) 

1 39 36 38 

2 38 35 34 

3 36 37 39 

4 42 37 32 
r 

5 38 37 33 

6 36 36 36 

7 3~ 38 36 

8 34 38 38 

9 37 41 37 

10 37 38 35 

11 36 37 40 

12 35 39 38 

13 38 35 36 

14 35 38 36 

15 36 37 38 

Average 37 37 37 

~ of ra"f7 values within ! 
2 db. of average 86% 94% 73% 

<j, of raw values within ! 
9acfo 1CO"fo 93% 4 db. of average 
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have been less than 24 db. On a setting c' ~e sound level meter 

equally weights all frequencies between 32 and 80CO cps. The noise level 

readings obtained during the three hoQr and ~e fifteen minute recording 

periods are given in table XXlX and XXX. It c~ be -seen frmn table xxix 

that on setting C the mean noise level over the three hour periods was 

38 db. ·and the mean. standard deviation over the three hour periods wa.s 

· 3.51 db. Table XXX indicates the constancy of the noise level, since in_ 

the three recording periods 86~, 93% and 73% of the raw values come 

within ! 2 db. of the mean· and 93%, 10~ and 93% of the raw values 

+ come within - 4 db. of the mean. 
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CHAPTER xi 

Stllilmary of the results presented in chapters Vlll 

to X Cinclusiye) 

To refreSh the memory of the reader the main results of each 

of the experiments performed are summarized below : 

Experiment. 

{a) Training 

{b) Stimulus Variables 

{i) Condition 'A' 

{ii) Condition 'B' 

{iii) Condition 'C' 

{c) Test Tone Variables 

(d) Recovery fraa TTS 

{ i) Latent Time 

Results. 

A gradual diminution of variability 

of results. 

(_,, . 

A linear increase in TTS with stimulus 

duration. With 110 db. stimulus 

intensity, the linear increase divides 

into seperate parts. 70, 90 and"early 
. . 

110 db. increases parallel each other. 

No significant increase in Ti'S as the 

stimulus intensity is increased from· 

70 to 95 db. Thereafter, significant 

increases; the severity of the increase 

being· dependent on the severity of ! 

the stimulus conditions. 

TTS ma.x:imal at 1000, 2000 and 3000 

cps or at 1000, 2000 and 4000 cps 

depending on the severity of the 

stimulus conditions. 

TTS maximal at a frequency half' an 

octave above stimulus frequency. 

Increased severity of stimulus con-

di tions produces maximal effect at 

this frequency. Range of frequencies 

affected rslatively constant with 

stimulus frequencies below 3000 cps• 

Sh01.vs a "bounce 11 type phenomenon at 



(ii) Data frOI:l stimulus and 

test-tone variables 

I 

(e) Control Exper-~ents 

(i) Stimulus Tone replaced 
I 

by silence 

/ / 
( ii) Bekesy method . 

(iii) Recovery 

(iv) Tracing for short 

periods.· 
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1000 and 2000 cps. Latent time is 

maximal at 4000 cps and minimal at 

1000 cps. Increases at 4000 and 8000. · 

cps parallel each other. 

Diphasic recovery is maximal at a gc) 

db. stimulus intensity and a 2 minute· . 

stimulus duration. Sensitization and· · 

bounce higher than initial TTS deerease 

and increase· respectively, as the 

severity of the stimulus conditions • .·· 

increasa. Diphasic recovery is 

ma.xi.I:lal. at 1000, 2000 and 3000 cps 

and minimal at 4000 cps. Sensitization 

is minioa1 at 1000, 2000, 3000 and 

4000 cps. Bounce higher than initi.S.l'.·: 

TTS is minimal at 1000, 2000 and 30GQ : 

cps and is maximal at 4000 cps. There· 

are individual variations in the 

incidence of diphasic recovery. 

Individuals most susceptible to 

diphasic recovery are least susceptible 

to sensitization. 

Mean shif't in threshold vas -1.39 db. 

with a standard deviation of 1.47 db. 

Produces aperiodic, cyclical variations 

in the threshold "t.mich are larger 

than those produced by a modified metn­
od of limits. 

Pheno:!l~non observed are quantitatively 

dependent on the method used to m.easur_e 

them. 

Does not produce aperiodic, cyclical 

variations in threshold. Mean shifts 



{ v) Additive effects of TTS 

{vi) Test Enviroment 

141 

similar to those obtained l.Jb.en 

stimulus tone replaced by silence. 

Did not significantly effect 

experimental results. 

1·1ean noise level was 38 db. on '0' 

l.ziighting of socnd level meter. Little 

variation over fifteen cinnte test 

periods. 
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cmptER pl 

JliscussiQD Of re§lllts of tb' _QRe~ipte~s QtUcii!nt(-the 

Qhlp)pl us; and· ~st tone vaz:iabl.9 "!• 

(a) Stimgl.us¢one V#M~s.· 
: • ' •• • • • 4~ ~.. • • 

The general conciusion vbich arises tram 'the .r~sul.ts in whieh the . . . . . . - .. ' --. - . 

stimulUs ~ne variables 118re studied is that tllere is more than" one ld.nd ..... 

of TTS. This suggestion· hBs been made by earlt~ writers such as C8ll~~?-· 
and Cbavaase (1947), Hood (1950) and Hirsh· an~ Bilger (1955). Howevet", _ ::-~ 

., .~ 

apart from the discussions on dipbasic recovery it ~ems to have bee~ 

lat"gely ignared by the majority of •rkers. Hirsh.(l952, pages 177 to 

1sr>, for. example, disousse~ the re~ts ot Davis, }iorge.n, Hawkins,· G~· 

bOa and Smith (195p) and Cansse_ and Ch8vasse {op.eit.) and Qf many 

other studi,e·s as a:~unitar;v·:.vhole~ .. Be -makes no attempt to sub-tti.vi48. the_· 
' '• ,.-

data into elc;perillients .,Ppertai~ t~ tvo separate but ~lated phenomerio~. - ' . ' . . . ·. 

More. recently, Ward and hi_ii co-workers (see, for ~1e, Ward, Gloris 

and Sklc, 1959 a and 1959\,') make no attempt to el!iphasise the difteren- . 

tiation between their ~gh.,~tensit,. fi'S and iTS resulting frOm more 

moderate exposures. It·.-seems Ul'll.ik~ that they are ~aWare Or the 

difference, but they d."o ':iiofi Bpecificalq state this. The ~sults of the·:·.· 
' . . ' 

three st1millus ton~ .. e:xperiments are describ~ in the _subsequent secti_on•• 

The existe~ce bf ... twO efTS phenomena is most strikiri~;r revealed ~ ~~;' 
• ~ -.l'i' 

experiments on stimulus ·u~tion. The change in the· slope of the 110 -~•\, 
• ..• I . .. 

line in tipre 6 (page 6~1 and the. consistency of :thh change·_with 

individ~ subjects une'qUi-voe.all;y indicates that the short ~~WI 
.. ·.,<1 • 

durations at llO db.' h~ -~f. ··different etf'ect than lOilgfJr st1inulus 

durations at the same ihtenaity. The TTS e.f'fects at stimulus .inten~~e~-' 
. . ' . . ' . . 

of 70 and ~G db. appear to equate with the effects produced by shon 

duration 110 db. stimuli. Hence, the paral.leliSIJl betwen -th8 ~~ ~ 

The :.Gttect associated with 70 Snd 90 db. stimulus intensities ana· shan .. . . ·. ·; .. ' . . . ~ 

dUration llO stimuli will be subsequently referred to as· fatimp~ · Th8 ' 

ettect associated with 110 db. stimuli of long duration will su1Jf.:18quentl7:_ 

be referred· to as temp_m;arv s~a~on cieatness. 

The results showing the existence at a ·critical stimulus dura"tten ~~.~: 

./ ~ -:·~- .•. ~ ... ~ ... -:.-•.,., -·-....-. •.•.· ··..-·~-·--~·-··-- _._ ... ·: ,_ ~. ,:_ : ~·, ;_ . _1,··-:.···.-.. :..·' . . ·· ... _. ~ ..... 
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contrary to the results of Hood (op. cit.), t>rho found that no such 

aritical duration existed. There are tw possible explanations or this 

discrepancy. Hood used only a. stinulus intensity of 100 db. This 

intensity is only just above the critical stimulus intensity of 85-95 

db. Consequently, l..Je can conclude that Hood's stimulus intensity was 

very close to the minimal intensity at which temporary stimulation 

deafness is manifested. The results of tbis study (see figure 6, 

page 68) indicate that no critical duration exists at a 90 db. stimulus 

intensity. Consequently, i£ a critical duration exists viith a 100 

db. stimulus intensity, it m~ be so slight as to be onobservable 

without highly refined techniques of measurement. Hood also 

measured his TTS at a latency of 10 seconds. Howver, the work on 

diphasic recovery has show. (see pages 29 to 36) that recovery from 

fatigue can be separated from recovery fi'om tet~porary stimulation 

deafness. 'i'he subject recovers from fatigue in approxir:la.tely tl:e first 

minute after the cessation of the stimulus tone, whereas recovery from 

temporary stimulation deafness appears to take longer than one minute. 

Hood's 10 second latency seams to have allowed fatigue to affect the 

T'.i'S ceasurements far more than tem,orary stimulation deafness. 

Temporary stimulation deafness· w.i.ll be present at this latency, but we 

shall see later it produces a much caller TTS effect than fatigue. 

Hence, it tdll only have slight effect on the TTS measurements. 

The above hypothesis was tested by a re-llllalysing of the e~eri.I:lenta.l 

data. In the re-analysis the :cean post-exposure threshold in the 

fir at minute and the third minute after exposure were calculated far 

each subject at the 110 db. stimulus intensity. The mean threshold for 
..... 

the third mnute of the post-exposure period was substracted fi'Otl the 

mean threshold for tm first minute of the post-exposure period. 

Recoveey from temporary stimulation deafness is much slower than 

recovery from ~atigue. Hence it was thought that the corrected 

threshold for the first minute of the post-exposure period would be 

largely but not completely representative of fatigue effects. The 

mean threshold shift in the third minute of the post-exposure period 

~as thought to result fram tempor&r,1 stimulation deafness, since 

recovery from fatigue is completed Hithin approx:i.r:lately one minute of 
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the cessation of the stimulus tone. TwO measures of 'l"i'S were then 

calculated b.Y snbstracting from the ~~o post-exposure thresholds the 

pre-exposure threshold. The means of these tw TTS effects were then 

calculated separately and plotted as a function of the stimulus duration. 

The results are show in figure 26. It can be seen from this figure 

that both T.i'S measures show a linear increase in TTS with stimulus 

duration. However, neither of them independently show the existence 

of a eri tical stimulus duration. Instead the tw lines cross at a 

stimulus duration appro#ma:tely equal to the cri. ti.cal stitmlus duration 

shown in figure --6.- Hence we may conclude that showing the existence 

of a critical stimulus duration is dependent upon allowing both fatigue 

and temporary stimulation deafness to influence the T'.i?S measures. This 

was one of the reaaons .far choosing a post-exposure threshold period 

of three Ili:inutes in the present experiments. . . ' 

J.W Stimulus Intensity. 

The experiments o·n the variation of TTS with stimulus intensity 

confirl:l the existence of fatigue and temporary stimulation deafness. 

Intensities below the critical stimulus intensity produce fatigue 

effects which are independent of the stimulus intensity. Intensities 

above the critical stimulus .intensities produce temporary stimulation 

deafness effects which increase rapidly a.S the stiD~us intensity is in-

creased. 

The critical stinniltis intensity is related to the stimulus duration •.. 

F'igure 8 (page 72) and table lV (page 75) revealed that it decreases as 

the stioul.us duration is increased. Unfortunately no stimulus durations 

of less than a minute were used in these experiments. However, it SE!emB 

likely that because of the ~xistence of a critical stimulus duration~ -that 

durations of less than a critical value will produce constant effects 

over a ~Jide range of stimulus intensities. Similarly we can hypothesise 

that with stimulus durations of less than the critic3l dUr-ation, the 

critical stimulus intensity v.lll remain relatively constant. It 

also seems likely that the converse of the critical stir:lul.us intensity -
. . 

stimulus duration relationship will apply, i.e. the critical stimulus 

duration will vary m. th the degl"ee to T:Jhich. the stimulus intensity 

.I 

i 
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Figure 27: Shows fatigue and temporar.1 stimulation deafness 

as a function of stimulus intensity. Parameter is stimulus 

duration. Mean results for six subjects. 
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used exeeeds the c:t'iticSJ. _stb).ul:qs in~~ty--··.-.pnt~tely tll···t~,'. '.' l 

ezperilllents on: ~be -d1ll"&:itfpn only' Oi]~\SttDulus inte~~ ty·· &xceeded. • ' 
~ ·. .. . . ··~ . . ' . . . 

hYPothesis. ·,r; •. ; 

The resul.ts o'f)taine4 ~ '- tbGse e:xpe~-nts · d~ not· a8r8e vi th those 
;. - .. ······ . . . . . . . 

- ' ..... 

Qf Ward, Glarig ··and Skl~;t('l9S9a'l, wo f~ · tliat · tbe .. i.!icreases in 'l'fs ~~; 
. ' ··\ 

the critical intensity incre~ed Uneatl.y:>witb· ~~ duration. A 
. •' _._ . . . . ' . 

~omparison ot figure a ri-:th~,tbe results of'· Hood· (19.50·) ·shov th&t hif . ' .'. . .. ·. : 
.. '~-· ~ 

results lll"e qual.itat1ve17-s~ar to t~se o~ed in thifil study.-

However, quantitatively He;~- :obtdnecl·:~b ~atet lnCr&~s in 'J;TS nth. 

stimulus intensity than-:the.··~-creases ·shl:nm -~ ft!g(lre: a. ~jectively 

···.:·:.. 
.~: 

',• 

,. 

. . ' . . . .. ~ ...:. . . . ~ - . . . 

it would app_ear that the resul~s obtained·iD -tlll~. s;t~y fall in between· .. ··::~, 

those of Ward et at .. and Hood. Th~ d"iff'erencie appears to be associated · 
. ' • .. ....... f: • .• . ' • 

... ' .l, • • • . • 

with t® way· in wioh ~ ·:~:a·-~e.d. Pl;" .produced·, th.at is with the 
. ., • ·!' _. . 

. '· . ·. ~ .,. 
~!: ,. 

degree to which fatigue ·qr. ~~Q.y. st:lmulatian de&fness predominates . .:f 

in the result~. Ward at·_ &l~·.used ~:l intense sirtmtli for extremel7 -.~ 

long durations. It see~ -l~ely 1;b.at ncb cond1ti~s wou:J.ci. pr_oduce ~ts' 

of temporary etimulati~ deatness sufficient to obviate any fatigue 
. . . f 

effects. Hood, as in ~s-~ents on at~~ dui'ation, me~ed TT'S· _·::.: . 

. 10 seconds attar th9 ce~~tlbD. of the ~timulu~ -'t~ne. · We· liaVe · ~&dy ~ii :; 

in the previous. ~ction that this allows fatigue to predominate· .in~·· 
.. . . . ' . . . . . I . . ··/I 

measure of TTS. In this study-the 'cho~ee of.~ TrS-~ure reneottng @h:;;· 
fatigue and :tempor8J!y stimulation <leatness .. SSetllS to' haVe p%!qdnced. 

results which have· com'bine4 tbe tvo · ef:f'eOts. · 

To test th:ls ·!Jsl»othesis the data was ·re_-SZ)8].ysed in the salD;e-:way- · 

'•."I 

: . ' ... ~ 

that· the data on ·st~us duration vas. re•en8lys$d.·· ~~-the ·t!ilf~sbQld. 

in the. first and tbh"d minute of the po~~~e~o~~ p-e~- vas Cal~~~cl· : : 
'. ' 

. \ 

ezpostire threshold. was subtracted ·rrCmi: ~e cpr~Qted ~shOl.d for .• ~ 2; 
. '~' 

first minute of poet-eJIPoSUX"e and frQlll the ~old for.·the. third-~~.~;:, 
. •. ~ . - . ·. . . ··: 

of· post exposure. Thus two meastll'e~ of TTS ~e. obt~ and the means· -~~ 

of these ~ m ·. etf'e_cts · were ca,l~tad ·eepar~~ly ~ F~gures 2'1a and · · : .. ~: 

27'b :.$b.QV 1;he t~ i'TS -~urea plottecJ. aB .~ f\Ulcti.On of: st1uiuJ.U@ interisi.tY,.• 
• I . ' ' • • •· ·' ' • ·• I · .. '". •' 

Figlll'e 27a- initially ahws the rap~ ;Ui~~~-~: -~ ;~ abOve thQ <n'1t1c~-' :,/ 

intensity vhich. cbal"acter~.n. Hood's-.re~t.- J;IQwe~,. at intetlaities ·-
. . ... ~ .· - . . ·.' . . . 

·.; 

-. '\ 

- :..- .. ·.~-· _-- . ' .-/ - ' . ,. ,. ··~ -· .... ,.~:_.'""· .. · .· .. .,.,,- .. ' ,_ 
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above those used by Hood, the graph changes from acceleration to 

decelere..tion. Figure 27b shws ~ linear increases characterizing tJie 

restd ts of Uard et a1.. 

Figure 27a seems to indicate that fatigue increases rapidly at 

intensities above the critical stimulus intensities arid then as the 

intensity is further increased the rate of increase declines re.pid.ly. 
' 

This interpretation is contrary to that of Hood's and other writers 

who suggest that changes in the TTS - intensity relationship, at the 

critical intensity, reflect only a change frOI!l fatigue to temporary 

stimulation deafness. It woUld. appear from the data presented in 

figures 27a to 27b that the critical stimulus intensity not only 

demarcates fatigue and temporary. ~~ulatio:ri deafness; but it also 

represents an intensity at whiCh _fati"BD;e begins to increase rapidly. If 

we assume a neural locus for fatigne then this phenomenon can be 

explained (see ·page 1~3). Hhether· the critical intensity is the seme 

TL I. 

for these two phenomena is undeci4~d. Holrever, it seems quite possible 

since further inspection of figures 2'Ta and 27b reveals that the critical_ 

intensity for increases in fatigue- c~ges in a s:ii:lilar manner to the 
.. 

critical intensity for the cammencenent-'.of temporary stmul.ation 

deafness. There appears to be .an intertrelationship betvreen the tvro 

phenomena. Consequently fatigue reaches its maximal values at those 

intensities at which temporary stimulation deafness first makes its 

appearance. 

This suggestion woold appear to be relevant l.Jben the hazardous 

effe.cts of noise are being dis.cuss~d idth reference to the results of 

'fTS experiments. However, in experiments such as some of Spieth and 

Trittipoe (1958b), it is unimportant since they measured TTS ~ve 

minutes after the cessation of.the·s~us tone (see page 16). 

Fatigue effects will have dissipated by this time.. In experiments such 

as those of Harris (1953) and some of the other experiments of Spieth 

and Tri ttippe ( op. cit.), Tl'S was measured fairly quickly after the 

cessation of the stimulus duration. Under these eondi tions it would 

seem possible that TTS is affected not only by tenporary stimulation 

deafness but also by fatigue. FigDres 27a. and 27b also sug~ests that 
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changes in the vreighting of stim~us duration and stimulus intensity in 

setting dam88e risk criteria (see pages 14 to 17) ere dependent upon 

the relative vall:les of these factors. It can be seen from figure 27a 

that although the critical intensity varies there is little change in 

the maximal at:ionnt of fatigue. .However figure 27b shows that the amount 

of temporary stimulation deafness produced varies as the critical stimulus. 

intensity changes ~n association wit~ the. stimulus duration. 

The divergency between 'l'TS at one minute, tuo minute and three 

m.inu.te duration was referred to in discussing the results presented in 

figure 8 (see pages 72 and 78). It can be seen in figure 27b that this 

divergency is associated with temporary stimnlation deafness and not 

'trith fatigue. Uthough it is not apparent in figure 8 (page 72), it 

is apparent in figure 27b that this divergency represent.s three straight 

lines diverging· frO!Il a common point,· "t-r.l.th abscissa 74.8 db. It would 

seem reasonable to state that this point represents the true critical 

stimulus intensity at which all stimulus durations produce no temporary 

stimulation deafness. The .difficulty with this hypothesis is that it 

means that a negative amonnt of TTS is produced at the critical intensity. 

Uard, Glorig and Sklar (1951l>) have explained this by suggesting that the 

measured threshold. does not represent the ntrue" minimum threshold of 

the ear. The measured threshold is higher than tba "true" threshold 

because of the presence of' internal masking within the ear •. 'i'hey 

postulate the existence of "sensory elements" mdch are constantly 

activated by these internal masking stimuli. They state that, "It is 

reasonable to suppose that these ~.rill be the first el.enents to be 

fatigued.n They do not justi.f'y this stateraent, but it seems reasonable 

since : 

(i) These eletl6lnts must be more ·sensitive to sound stiiiluli; 

other'fdse all elements would be activated by the internal 

masking noise. 

(ii) If the elements are a:J..rea.dy firing, they nil be 

already fatigued to some degree and consequently mare 

sensitive to subsequent stimuli. 

The main critiSill of the theory lies in the :ii:lplication that a special 
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. gtooup of ,cells are involve~. ··It ~s mare li,kely iJl&t· th9se ee~s­

are not a sp~cial group -btl~'·.~t they •e constanU, e~gi:Dg. The · 
,.., -.,-·-· . .... ' 

. cc;~tuti~ 0~ the group. will. depend on ·the ·ov.er..al.l . state of all of 
. . ... ' ' • ;' • ·-·hl . • . ·. 

· the_ ~--ce~~~··;at ·any p&l"Mcul.ai- instant 1ri time. 
' . 

'{.·iU}··.·S;Mmplps. tregenqv. 
. .... \ ·~ . .. . . 

"':.... ... ·. 

The ~imen~ on· stimulus trequenci ~~·eo~. the existence of 

two kinds ot TTS etfe-dts .. ' · Al.l·~ot th9 graph~ .(see:.ttgu:res. 9, .10 aild 11 
. ..·.··· .·· .. - . . -· ·. ' ' . . 

em pages 79a, 79b ana:"i79e.)"oi ttimule £Mqu~7 ~a1Dst TTS ~how 
Jll8'dmal T'l'S · at st:lmulu's treq~ctes of loe·o, ~o · aD.d aooo ·cps vi~ 

. .. 
- .. r 

- .~ . . .:..· .... _ 

• ~ ,7' 

. , . · ... · 
.·, 

.. fl· 

·.·, .. ... 

l ~ -~ 

.8ti.JJlu1,us durations of 1 .tej 2 minu't$·s· or 3 .in:tiiutes ~·with stmUlQs ·. ,;; 
~-- . .,. ., ' ', -. .· ... . , 

iD,~nsities of 70 ·db. and .9o~·db, The g&ph ot 8timulus trequenq ~t '_. .· 
. . . . . 

·: ~ show~· maxlmal TTS at iooo, 2000, 800() ·SllC}. 4000 cps -with ·a st1nml1;1s 

dliF&Uon of 2 and 3 minht~s amf a stimul~ 1ntenSi't1 of Uo db. ·The 
. . . 

1000, 2000 arid 3000 maxima &l"e similar to tbe resUlts obtained by BoQd 

· (1950) and the 4000. maximum is s1mil&l" to that· obtained by Davis, Mo~an 

Hawkins, GalaDibos and .Smith, (:J-950). and ·by Ward, Glarig and Sklar (1959a) .- · 

The 1000, 2000 and 3000 epa maxima &l"e probably produced by fat1g1ie ~$ 

they are present at tbe loVer intensities and durations. The 4000 cps 

maxlmmn appears to be associated. with temporary: stimule.tlon · de~ss, 

since it is only present at. the bigher.i.Dtenaftls·r;J and durations. 

The ma'x;ima at l(}OO, 2000 and .3_000 #s ~ve··been SJq)lamed .bJ' Hood in 

terms· ot equilibration and the voll~ of . the audi. tory nel"Ve (see · 

page· 24). The Close similarit~ b8~n Hood's resUlts and the results· 

o~··nerb;yshire_ and Davis (1935) ~- equ:tllbration cont,t.rm the validity pt 

this 1\YPOthesis (see· Hood, ·op.eit.). B~ver; ~.res~ts Shown .in 

·figures 9, 10 and U. .~nd the observa1;ions · ot Jlood. The results at 

. ,0 · an4 9Cl db. stimUlus intensitie~ $ld ·a.t.l, 2 er 3 JD4,nute·~- ·at1mulus 

duration and at a uo db. stimnlus inteJisiv- and at a st1nlulus darat.t~ · 

ot 1· minute are·- qual1 tii.~~:I.l ~lar to ~s.e Qbtained by Hood·. At · 
... : 

' J . I 

a st~us intensity ~ ,Wt ~·i and _at a .stimUlo.s duration of. 2· or · 3 

'Iid!mtes there is one hnportaii.t. differemce:~: WbSreas Hood's r~sults and 
'· 

the former results _Show increasing amounts ·ot ftS with ~ ~e critical 

stilDiil.us frequemeies, .the-iatter results ao·. not. There .mq be. acme 
. . ~ ' . . . 

increases but thSse · &l"e Wi'Y_ . &:!-ight. The e~lall&tion of this d1sarep$ncy 

-

.. · 

. ~·: 

-·~- ,' 

·-;.., . 

-
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seems to be that t4~:~ ·sti.I!l14~ E~~ed l?~~~ · th~· dttical. ~imulus 
.' .. 

. · ·~-:· ,:. 

intensitlr $ou~ that above the· QJ"itical stiinlius intenisi-ty. the emo~t . 

. of fatigne in~e.~ses rapidly mttil a me.JQTDJJm is re~ed (see figm:e 27a, ·· ~ 

. page l~) •. · · Co~quantly · it wo~d- .~·ar; ·.that '~tb.a~ constant or . sli~tly .• . · ~ 

increasing amonnt of -TTS :at the three trequen~·es 'ia. associated with the · 

production of mA:Jdmal fatigUe. Hence~' When tbe· etiiiiulus ~eds both 

the cri tieel s~u~ inteusitY and' the critiet;il 6timul.us duration, the. 

Ina.x:ira.um amount of pQssible fatigue .is being FQdu~d at all of the 

equilibration tr.equ~cies. 

The most 'probable eJ~;Pl~siion for this :.is that fibres, instea!i 

. of firing in response to the post-e:R;powre test sound early in the 

relative refractory perio4,-.. are ·f10VJ' .f~ng touaros. the ~ation of 

~s period. ~ nerve fibres cannot, under theSe ccmditfons, fire any 

earlier because this would mean firing in the ab$Qlute ·refractory 
. .~' 

period. Consequen:t;ly. the recoVerY tililes available t~ nerve fibres· 

firing in rotations of three,. two or one becoris equ8lized. 'fhe uscllial 

reducti¢as in the difference between the 1000, ·2(?00 and 3000 cps I::J.aXina 

., 
·--{ 

. f . 

. ···1 

as the severity of tbe stimulus condi tiona is inereased, renect in~d-

iate pQsitic~s betwen. ths ektrene~ of the ~le.~ve refractory pmod·. 
Thus the ~e. :iDtense the stimulus' the more prolti~ is the reiati Ve. 

refractory period 1-.n the po~~exposure period • 
., 

The ma.xiJnum' a.t a stimulus frequency of 4000 cps eonfirio.s the 

results of .Davis et·al.. (.op. cit.) anclWerd et al .. (op. cit,.). Ho~r~.·-. 

it can be seen trom- the resUlts ·that this maximum occurs only w.i.th 
' . - . . 

stimuli whicb ex('~ed the criticsl. intensity and daration. ~ ·important 

finding 1~ that even When the 4000 cps is :·~resent, the ·maXima at 1000, 

2000 and SOOO C})s. :~ persiat. Howver, this woul~ appear to result 

..... , 

. .~ .. -

• • , ~: ' I 

fron the in;elusll.o~ of fatip in ~e 'l"l'S measure. We have alreadY-, seen · .·.-.: 

·that fatigtte effects ~redomi~ate i,n the first cinute of the post-e~u;r~­

period. To ~st this S1J8gestion -the post-exposure thresholds were once· . 

. . again calculated in. the fjrst. and' tm..rd minut-e of'· tbe test per~od' (.:s~~ . 

page '143) a.nd measures of fatigue and teoporary s~ation de~ess . 

calculated. ·. -~ resUits of this. tmaly~~ are -~~zed in fi~.s .-28. 

· .. · .. -•- _-...._ .,.,, .. • .. '' ,.· .. ',, - .... - ·' 

·-. ... 
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F'-gure 28: Shows fatigue as a 

funotion at the st~ulus frequency. 

Parameter is stimulus duration and 

intensity. Mean results for six 

subjects. 
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and 29. It can be seen from figure 28 that the 4000 cps oa.ximum is not 

so pronounced wen the .(atigue measure is plotted against stimulus frequency. 

Figure 29 reveals that the 1000, 2000 and 3000 cps marlma. co;:npletely 

disappear 'When the threshold is recorded only for the third minute of 
. . . 

the test period. These results confirm that the 1000, 2000 and 3000 cps 

maxima are associated with fatigue and the 4000 cps DaxlmU!il is associated 

"tor.ith temporary stimul.ation deafness. 

The 4000 cps maxima probably partially results from the resonant 

characteristics of the outer ear. Uiener and Ross (1946) have shotm that 

the closed tube t..rhich is formed by the external auditory canal has a 

natural frequency of vibratiop of 2000 - 4000 cps and this is maXimum 

at 3000 to 4000 cps •. Thus sotmds of ~hese frequencies will tend to be 
: . 

amplified in their transmission to the tyrJpanic membrane. As the intensity 

of the sound is increased the magnitude of these resonance effects will 

become more and more important. Howver, this is probably only a minor 

factor. Hilding (1953) and Kalrrata (1960) have e::xpl.a.i.ned the 4000 cps 

(c5) cU-p in industrial deafness in terms of the anatomical and 

circulatory structure of the ear respectively. Although the arguments 

presented by these Horkers refer to the test tone variations they are 

applicable to the stiz:lulus tone effects .. They will be discussed later 

( see page f~s ) • 

,W:) Test Tone Relatipnships. 

The dual nature of 'i'TS again reveals itself in the results of 

the experiments studying the variation of TTS with the frequency of the 

test tone. The increases in T'i'S are greater tdth the more severe stimuio.s·. 

conditions (see figure 13, page 82). The effect is particularly 

noticeable with a stimtllus intensity of 110 db. The range of test 

frequencies affected also sub-divides itself into two parts (see table 

Vlll, page 84). Uith frequencies of less than 3000 cps the range of 

frequencies (in octaves) affected is relatively constant as the test 

fr~queney is increased and it never exceeds ~ro octaves. He have already 

noted that the frequencies of 1000, 2000 and 3000 cps are closely 

associated \lith fatigue and equilibration. Above 3000 cps, the range 

of frequencies (in octaves) affected decreases as the test frequency is 
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Figure 30: Graph of fatigue as a function of test tone 

frequency. Parameters are stimulus duration and intensity. 

!,1ean results for six subjects. 
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increased. These frequencies, as we have again noted, are closely 

associated with temporary stimulation deafness. 

The results confirm the observation of Davis, Morgan, Hawkins~ 

Galambos and Smith (1950) that maximal TTS is produced at a test 

frequency half an octave above the stimulus freql,lency. However, the 

results do not confirm the suggestion of Hood (1950) and Hirsh and 

Bilger (1955) that with low intensity stimuli, TTS is maximal at a test 

frequency equal to the stimulus frequency. In the results of these 

experiments the half octave phenomenon is general, except at a stimulus 

frequency of 2000 cps at an intensity of 70 db. and a stimulus duration 

of 3 minutes and at a stimulus frequency of 6000 cps at an intensity 

of 70 db. and a stimulus duration of 3 minutes. In the former case 

TTS was maximal at a test frequency an octave above the stimulus 

frequency and in the latter case, TTS was maximal at the stimulus 

frequency. The fact that these exceptions occur at the extreme ends 

of the test frequency distribution seems to indicate that the half 

octave phenomenon is associated with temporary stimulation deafness. 

It may be that the failure to observe a symmetrical effect results from 

the influence of temporary stimulation deafness on TTS measures. This 

influence is associated with the use of a three minute post-e~osure period 

Hood and Hirsh and Bilger measured their TTS shortly after the cessation 

of the stimulus tone. 

The above assumption was tested by again calculating the mean 

threshold in the first and third minute of the post-exposure period. 

The threshold for the first minute was corrected ~ subtracting from 

this threshold the threshold for the third minute. The pre-exposure 

thresholds were subtracted from the corrected threshold for the first 

minute and the threshold for the third: minute. This provided 

measures of fatigue and temporary stimulation deafness respectively. 

Figures 30a to 30e and figures 3la to 3le sho~J the distribution of 

these two measures with the test tone frequency. It can be seen from 

figure 30 that. fatigue distributes itself symmetrically about a test 

frequency equal to the stimulus frequency. It can be seen from figure 

31 that temporary stimulation deafness is maximal at a test frequency 
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one octave.· abdve: ·the ~~ fieqli~~Y,. With stiilu4us ftieqt:te1ioie~-
. . . . . . . . . . . . . ~ 

ot le~s-than 4000 eps~ ~:re a:r~:·_ ti.~ emep1f1ons ~ ~J:iese gener&t ·. .... . . .... . 

. . ····-\·-:. _.-: ' . . ... 
statements ~·.these are as tol1owir :<; . 

I. .•· . • 

(1) With a a~us treqde~c,. ot·. ·2000 CJ?~· .at a S'Umulus 

in~nsity· ~ .110 db •. and a ~:~·,d!D,'a~iQD of 3 ~utes, 

m.miJPal fatigue occurs ...t a. test_ floeq~cy-_a. halt an· 
. . . . , • . . . 'lr-

• o.c~ SboVe tbe stimulus .f'io~quency• 

(U.) With a -st1mulus ~equency .ot:~o::'Cps at ···stimulus 
/'' ( 

intensity ·of ).10 ·db. aDd with a stDtllu.s duration of .S 

·minutes, maximal tAttimfa occurs at a test trequen~ a 

halt octave above. the ·st1Ja.u1118. ~quen¢:1i 

( 111) With a stimulus t.L,~c;y o~: J.'()_OO·· cps ·at· a Sttmul.us 

a test frequency eqlial· to the .stimtilus 'trequency. . . . . 

(iv) ·With a st:Imnlns ~quenc;W ot 1000 cps. at a 

stimulus intensity ot 70 db. and with a stim'illus· duration 

ot S mi~s, ~o~gy §aa-§.14PR::¢g·g~ .. :W.S .maXima] 

at ·a ·test frequency equal ·to· the .. St~ui:Qs ··ti-equenoy. 

,,j • .... . 

-. 

It is interesting to note that two at the tempora,ey ~t~t1011· deafness 
• . • , • -· J • •• ...... . . . . 

eJD:eptlons 'occur at 1000 cps. with stiJillilus treqti&ncies. ot 40dQ c:Ps.' ,:·:.~ 
I • I ~ 

- .. ' ·. 

frequency a ~f' an octave abOve tbe. st1mulus ~queJl~ or a.t· &· ~·st.· : /_ 

floequancy· or eq~ to the stimul~ lrf)f:iU~. 
. ' ' . 

The con~usicm from t~se findings is that t~ half oc:t.ave 

phen~·ts·®.der cert$ ·cond:i,tions· an·~~~ ot a c~J:IB.Ucm . .· ~ ' . 

'. ;r,:_,: 

ot tatigne ·and· tell!pora:ey stimUlation de1:ne8s eft"ects. -: t~r 

prod.-s 1 ts ef.fe.ct ~t a test frequency. :equal to: the stm~us_. ·:recauen~~· . . . ' .. . ' .. 

The latter produees i.t8-,e#'eoi at a test fl"eq~ency":ane qctave above·~·'' 
' ;:' . . . . .. ' 

... 
. ·r· . . • , 

. sti,mutlis tre9-~~01:, with stimulu$ &equenc!e$. ·· Qt ·less··~·-4000 .cps. · 

Howe,er,_ wit~ s~ulus ftoequenc18s above ·4000 -cp~,. tem.por-&17 ~atiOD_. . . , . . ... 

deafneSs appears_ .. io pi'odtlee its maxfm81 ~ttect -at·· a ~st: tZoequenCJ • . ·.'·· 

halt' octaje ,a bote the · _ stiJnul us · treque!lC7. 

. "'' ,., . . \_. . . .. ; ~. ~ . . .· ---~.' ;, ., 0' j' L 0 ·--~··~ ', • : f •j 



CHAfTER nU 

Recoverx from TTS. 

(a) Latent Time. 

The experiments on latent time showed that 

159. 

(i) At 1000 and 2000 cps, latent time increases with 

stimulus intensity up to 60 db., decreases with stimulus 

intensity from 6.0 to 80 db. and increases with 

stimulus intensity from 80 to 90 db. 

(ii) At 4000 and 8000 cps, there is a gradual negatively 

accelerating incn-ease in latent time with stimulus intensity. 

(iii) Latent time is maximal at 4000 and is minimal at 

1000 cps. 

(iv) Increases in latent time at 4000 and at 8000 cps, 

· parallel each other. 

These results seem to sub-divide into those concerned with 1000 and 2000 

cps and those concerned with 4000 and 8000 cps. It may be simply a 

phenomeDon associated with the acoustic reflex (see Wever and Lawrence, 

1954). However,. this sub-division would seem more likely to be associated 

with the existence or two TTS effects. 

The results offer indirect evidence for the existence of diphasic 

recovery with stimulus frequencies of 1000 and 2000 cps, since recovery 

from TTS at these frequencies is slo,.rer at stimulus intensities of less 

than 60 db. than at stimulus intensities or 70, 80 and 90 db. This 

phenonenon associates itself with the absence of diphasic recovery with 

stimulus intensities less than 60 db. It confirms the results of Lierle 

and Reger (1954) who foWld under certain conditions that recovery is 

faster at an 80 db. stimulus intensity than at a 20 db. stimulus intensity. 

The recovery time for 4000 and 8000 cps always increases as the stimulus 

intensity is increased and it does not show the characteristic inflexion 

of the 1000 and 2000 cps curves at 60 db. This finding agrees with the 

results of Hirsh and Ward (1952) and Hirsh and Bilger (1956) who found 

that stimuli above 4000 cps did not produce diphasic recovery. 

Since recovery time e:xhibits two separate phases with 1000 and ·2000 

cps stimuli, it seems logical to asstlDle that at some point in the recovery 

curves both fatigue and TTS ere present. We know from the results on 

diphasic recovery that only one effect is present below a 60 db. stimulus 
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intensity, since the recovery curve is nonophasic. Hence, we can 

conclude that fatigue, the phenomenon associated ui th less intsnse 

eJqJosures, is the predominating factor at stimulus intensities of less 

than 60 db. It is unlikely that temporary stimulation deafness alone 

predo::dnates at the 70, 80 and 90 db. intensities far tuo reasons. 

These are : 

(i) Teoporar.y stimulation deafness is more closely 

associated with intensities above the critical stimulus 

intensity of approxinataly 85 to 95 db. 

( ii) Recovery from temporary stimulation deafness seems 

to take longer than recovery fr001 fatigue. 

Hence w ean conclude that the reduced latent times at 70, 80 and 90 db. 

result frot1 a c6nbination of fatigue and te1:1porary stiriulation deafness. 

The increase in lat9nt time at 90 db. confirms this hypothesis since it 

is at this inte.nsi ty that temporary stimulation deafness be cones noticeable. 

The importance of this indirect evidence for the. existence of 

diphasic recovery is that uithout using the B'krfgy teclmique, it 
. ' 1 . 

suggests that recovery is diphasic. Nr. D.E. Broadbent. (private 

com:mnication) has suggested that diphasic recovery eight be an artifact 
/_ / 

of the Bekesy technique of threshold measurement. Howev<n", the results 

of Hirsh and Ward ( op. cit.) in. which they used clicks to neasure the 

threshold, the results of Lierle and Reger (op.cit.) and the results 

of the abOve experiments conclusively indicate that this is not the case. 

Diphasic recovery or associated phencmena e:xist VIhather or not "He· use 

" / the Bekesy technique to measure the post-exposure 'tln-eshold. 

The ca.x:irra1' latent times occur at 4000 cps and the min:ii:al' latent 

times occur at 1000 eps. This is in accordance with the dual fatigue 

hypothesis. We have. already seen (see pages tso to 154 ) tb:at a 

stimulus frequency of 4000 cps produces max:i.mel:. temporary stimulation 

deafness. Thus we Yould e:xpect naximal t~orary stinulation deafness 

to be produced with the 4000 cps stimulus. Since reeovery from 

temporary stimulat~on deafness is slo1.-rer than fro:i!l fatigue, the 4000 

cps oaximun oould appear to reflect the predO!Ilinance of this factor at 

· this frequeney. 

1 Applied Psychology Unit, Cambridge. 
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This finding is ·confirmed tp a certain extent by results of 

earlier studies.. If the recovery tb_s of Davis, :Morgan, Hawkins, 

Galar:1bos and Srllth (1950), using high intensity stimuli, are coripared 

'With those of Hood (1950), using moderate intensity stimuli, it can 

be seen that the fomer are longer. Lamoence and Yantis {1957) have 

shol-m that recovery time is ma.x:imal at a 2000 cps rather than at 1500 

cps test stimuli, after exposm-e to a 1000 cps tone, even though TTS 

is greater at the 1500 cps frequency. This indicates that the loD$er 

recovery times are associated ~th temporary stimulation deafness 

which we have already seen {see paee 158 ) is I:l8.Xi:mal at a frequency 

an octave above the stimulus frequency. 

The parallel increases at 4000 and 8000 cps are not similar to 

those occtn"ing nth stimulus duratiOn. (see fi~e 6, pase 68) • The 

latter were associated with fatigue, whereas the former are seen to be 

associated with temporar.y stfmulation deafness. This effect predominates 

at 4000 cps and in view of the parallelism ~e must assume that it 

manifests itself at 8000 cps. The results of Hard, Glorig and Sklar 

(195~ are indicative of a similar parallelism. These workers 

suggest that it is the initial TTS that is the inportant factor in 

recovery. This is probably true, but they also tend to force curves 

obtained tdth different octave bands stimuli to I:J.eet at a co:::mon point. 

They have done this '¢ th their data and tended to destroy an inherent 

paralleliSIJ 'i-lhicll t-rould appear, in the author's opinion, to fit data 

just as ·t-rell. 

'i'be recovery time at 4000 and 8000 cps seans to reach a constant 

value as the higher stimulus intensities are reached {see figure i 7 ) . 

This result is in accordance with the results of Glorig et.al. (op.cit.) 

tiho found that recevery time 'l.i'as constant and independent of initial 

TTS or stimulus intensity. However, the results given in figure 

extend this finding. It is only true at the higher sti!:mlus intensities. 

Since Glorig et a.l. only used intensities above 85 db. they did not 

obtain the increases in latent time 1.-r.l.th stimlll:us intensi-cy which 

characterize the early part of the 4000 and 8000 line shOl.-m 1n figure i rr • . 

• 
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_(b) necgyery in stimul.us a.1d· test 

tgne exreriments. 

The resul. ts obtained in this section :must be viewed \dth some 

reserve, because of the results obtained in the control experiment in 

Hhich recovery t-~as measured using a codified c.ethod of lmits technique. 

Hhen this data uas ccmpared 1.dth the data obtained using the B'ke"sy 

technique, it t-ras fo;md that the proportions of results showing di.pb.a.sic 

recovery, sensitization and bounce hi@ler than i.ni tial T'l'S was 

signi.f'icantly- different with the two methods (see pages 130 to 133). 

It is unlikely that this difference is produced by mis-class:ification 

on the part of the observer, since one would expect such errors to cance1 

each other out. 

However, to check this 15 recovery curves ~ere drawn at random 

from the 54 curves obtained on _recoVE47 using the modified method of 

limits. 1 Three volunteers were asked to assess whether these showed 

diphasic recovery, sensitization arid bounce higher than the initial 

TTS after these phenomena had been explained 1x> thel!l. The results of 

their analysis are shown in table XXXI. a, b and c, along w.i.th the 

author's analysis of the same curves. Since the observers can be 

treated as independent sacples, the results shoti.n in each table were 

treated as a continsency table and subjected to a chi-squared analysis 

( see Siegel 19 56, pages 194 to 111) • In part a and part b of the table , 

there are more than 20 per cent of the expected frequency having a cell 

value of less than 5. Hence it was necessary to combine the conophasic 

and doubtfUl and the non-sensitization and doubtful categories in order to 

over cone this (see ~iege1, op. cit., page llO. ) Houever, in part c of 

the table even t·Jhen the 'no' and 'doubtful' roHs wre conbined nora than 

20 per cent of the e~ected f'.requencies were less than 5. Hence a 

chi-square analysis could not. be applied to this part of the table. :I'lie ... 

results of the analysis ere given in each part of the table. Since 

a chi-square of 5.684 or 4.000 is not significant tdth 3 degrees of 

1 Undergraduate menbers of the Depart!:!ent of Psychology, University 

of Canterbury, Christchurch. 
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Table XIXl.· 

Smmnarizes the judgements of the author and three other observers 

on 15 curves of recovery from TTS. Note that the monophasic and 

doubtfUl and non-sensitization and doubtful columns have been combined 

in the chi-square analysis (see text). 

(a) Diphasic Recovery. 

Observer, 

Author A B c Total 

Diphasic 7 6 7 7 27 

Monophasic 6 6 5 7 24 

Doubtful 2 3 3 1 9 

Total 15 15 15 15 60 

Chi-square = 5.684 (with 3 degrees of freedom) 

(b) Sensitization. 

Observer.: 

Author A B c Total 

Sensitization 4 5 6 5 20 

No Sensitization 8 7 7 8 30 

Doubtful 3 3 2 2 10 

Total 15 15 15 15 60 

Chi-square = 4.000 (with 3 degrees of freedom) 

(c) Bounce higher than initial 'ITS. 

Observer· 

Author A B c Total 

Yes 5 4 5 6 20 

No 2 1 0 1 4 

Doubtful. 0 1 2 0 3 

Total 7 6 7 7 27 

Expected frequencies too small to 

calculate chi-square. 
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of freedom, we can conclude that the judges did not differ significcntly 

in the wa;y they classified the curves as shol-Jing diphasic recovery 

or sensitization. This result is not suprisi.IJ.3 duce: the phenomena 

to be judged are objective and do not rely on intangibles. Hence 

w must conclude that the differences in recovery obupned using the 

B:It£s;:r and the method of limits technique a:re the result of 

differences in the method. Hence the re,sults of the analysis of recovery 

during the stimulus tone arxl the test tone experimental trials can 

only be regarded as suggestive, since they are dependent to a certain 
I I 

extent on using the Bekesy technique of oeasurement. The analysis 

of the total results obtained was shown {sea table nn, page 98 and. 

table XlV, page 99) to differ significantly !'rom chance; but how 

much of this difference is an artifact resulting frOl:l the use of 

" / the Bekesy :o.ethod it is impossible to· say. 

Part 1 and 2 of table Xlll (page. 98) 'revealed that as the 

sti.rn.ulus intensity and duration are increasad the proportion of 

results shmdng d:i.phasic recovery is maximal at a stinulus intensity 

I. 

\ 
\ 

of 90 db. and a stimulus duration of 2 r:d.nutes (see page 102). This 

intensity and duration are approximately the critical stimulus intensity 

and duration. Hence, l<Te must conclude that the presence or absence of 

diphasic recovery is closely ·associated 't..rith the simolta'lSous presence 

of f'atigtie and temporary stimulation deafness. At 70 db. and 110 db. 

Y.here fatigue and temporary st~ulation deafness predoninate respectively 

then the presence of diphasic recovery is reduced to a minimum. 

This result indirectly confirms Jerger's {1956) result that the 

amount of botmce is naxitmm at approximately 95db. It is not ·a 

direct confirmation since the re su1 ts of the author si.mply refer .tD 

the number of subjects sho"t>r.i.ng an observable bounce effect. This 

difference in technique may eXplain why the author obtained maximum 

proportion of botmce at a sti.Dul.us duration of two minutes; t-rhereas 

Hughes (1954) obtained I::t.aJdrn.mn amop.nt of boanc~ at a stimulus duration 

of three I:Jinutes. Hm1ever, Hughe's' result is not in accordance 'trl.th 

the general pattern of bounce occuring at the transition points ooween 

fatigue and ~orary stimulation deafness. 
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Sirlilarly parts 1 and 2 of table Xlll {see page 102) revealed that 
'. ,_ 

the presence of sensitization decree.sed as the stimulus intensity and 

duration t19l"e increased. This indicates that sensitization is independent 

of diphasic recovery and confirms the results of Hughes and Rosenblith 

(1957). If sensitization and diphasic recovery t.rere closely associated, 

then ne uould expect that there "tifOuld be a 90 db. na.Jd..lr.tD or miniLmD to 

correspond to the 90 db. caximuo in diphasic recovery. The decrease _in __ 

sensitization as the sevsrity of the stimulus conditions are increased 

reveals that it is a fatigue and not a temporary stimulation deafness 

phenomenon. The more the latter. predominates the less observable is 

sensitization. 

Finally parts 1 and 2 of table nn {see page 102) revealed that as 

the s~us intensity and.duration are increased, then the proportion 

of individual results sho"t-Ting a bounce higher than initial TTS increase. 

This seems to be :incompatable w.i.tb the first observation that diphasie 

recovery is associated tdth the trensition from fatigue to te::~.porary 

stioulation deafness. However, the discrepancy is easily explained if 

w accept Eirsh and Bilger's {1955) assm::Iption that the second phase of 

recovery is associated with long term TTs· effects, i.e. with temporary 

stimulation deafness. The results of the experiments on stiDulus tone 

vsriables (see pages +:42to ·1:'54) have sh011ll that the increases in 

temporary stimulation deafness m th stimulus duration and intensity 

increase much more rapidly than the increases in fatigue with the same 

variables. 'l'hus as the stimUlus duration and intensity increase, then 

the amount of 'i":i.'S in the latter phase of recovery increases very ra:pialy 

compared to the amount of T'l'S in ths first phase of recovery. Hence the 

probability of bounce exceeding the initial TTS increases. 

The fact that bounce can exceed the initial Tl'S indicates that 

either there is some interaction between fatigue and temporary 

stimulation deafness Bhich reduces the initial T'i'S or that the latter 

does not reach its :max:ioa.l value until some time after the cessation of 

the stimulus tone. The fomer hypothesis does not seem likely, since 

an additive rather then a negative interaction seaoa most reasonable. 

The second hypothesis is implicit in the dual recover.y nechanism 
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postulated by HirsJ:l and Bilger (1955). It ldll be discussed later 

(see page .1~1). If correct, then it de:f'ini tely indicates that 

temporary stimulation deafness is not a neural "adaptation." effect sirice · 

the latter would be ma.x:imal ii:!rnedia.tely after the cessation of the 

stimulus tone. 

Parts 3 and 4 of table nll revealed that a.s the sti.nnlus and test 

frequencies were increased the proportion of individual results shoHing 

diphasic recovery is m~ at 1000, 2000 and 3000 cps and is IJininal 

at 4000 cps (see page 102). Further inspection of the table also 

reveals that there are less cases at 1000 cps than at 2000 cps and 

at 2000 cps than at 3000 cps. It vould appear that these ma:rlma 

disprove the hypothesis that diphasic recovery is maximal at the 

transition bettieen fatigue and temporar,r stimulation deafness,since as 

we have alre&tr seen, fatigue is maximal at these frequencies. However, . 

it must be remenbered that the amount of temporary stimnla.tion deafness 

is distributed a.sym.:letrically about a stimulus frequency of 4000 cps 

Bhereas fatigue at· frequencies intermediate betueen 1000 and 2000 and 

2000 and 3000 cps is very slight. Hence it 'I:TOuld . appear that at these 

intermediate frequencies, we tend to obtain a monophasic recovery 

ctn"ve representative of recovery from tampore.ry stmulation deafness. 

The increased proportions at 1000,· 2000 and 3000 cps confirm the 

transition hypothesis _since the closer the frequency approaches to the 

temporary stimulation deafness maximum, the greater the number of 

results sholdng diphasic recovery. The 4000 cps minimum offers further 

evidence for this hypothesis, since at this frequency we have already 

noted that ter:rpora.ry st.imulation deafness is the predominating effect. 
- . 

Sensitization is seen in parts 3 and 4 of table nu to shcru peak 

minima at 2000 and 3000 cps and possibly lOCO cps and to be nini.D.al 

at 4000 cps (see paee 102). The 1000, 2000 and 3000 cps minima Hould 

indicate that sensitization is a neural effect in some ~ associated 

'tdth equilibration and the volleying of· the auditory nerve. HOW'ever, 

the 4000 cps Dini.I:lU\ll does not support this hypothesis. This 

discrepancy is probably an artifact produced by te!JpoX"ary stimulation 

deafness. The relatively high T'i'S produced at this frequenCl' may 
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obviate any sensitization. This ar@llllElnt cannot be applied to the 

1000, 2000 and 3000 cps c:i.niE:a -~ee the high values of TTS at these 

, frequencies are produced by fatigue, ·w'hich predominates in the period 

·before sensitization is observed. 
0 

Observation of parts 3 and 4 ·of table nn also shows that the 

proportion of individual results shomng bounce higher than initial TTS 

is IJi.nimal at 1000, 2000 and 3000 cps and maximal at 4000 cps. The 

4000 cps maximum confirms the resUlts of Hirsh and Nard (1952) who found 

that bounce is maximal at a te·st frequency of 4000 cps. Hirsh and Uard 

(1952) also found that bounce Has _oaxi.I:ial over the renge 1000 to 5000 cps, 

but since they did not concentrate on the equilibration frequencies this 

finding does not invalidate the ICOO, '2000 and 3000 cps oinioa. 

These results are e::gple.ined .by reference to the relative values of 

fatj,.gue and temporary stimulation deafness. High values of fatigue are 

obtained at lCOO, 2000 and 3000 cps. 'i'hese tend to' raise the value of 'l"l'S 

during 1:he initial stage of recovery and reduce the probability of 

recovery in the second stage exceeding initial 'i'TS. Similarly at 40CO 

cps, temporary stimulation deafness predoi:linates. Hmrever, since this 

predominates in the second stage of recovery, it increases the 

probability of bounce exceeding the initial T'l'S. 
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CTIL\P~. XIV 

!Ddiyidpal Variations. 

In all of the three experinents on the stimulus tone variables, the 

oa.jority of tha individual variations in the results (see figures 7a to 
l 

) 

7f, Sa. to 8f and 12; pages 7l, 77a end 80a reSpectively) conf'iri!l the 

dual J;lature of 'i'?S. In the experiments on the stimulus duration, subject 

'C' shoood a conplete absence of a critical duration. This presumably 

means that he is highly resistant to ter:Iporery stioulation deaf'ness. 

Since separate meohenisms are postulated for this and .fatigue, it seems 

likely that subjects t-rill vary in susceptibility to the two effects. It 

is interesting to note that inspection of table 11 (see page 71), for the 

110 db. slopes of the Ti'S.,sti.nulus duration gra;?hs, reveals that subject 

'C' is the subject~ susceptible ..!£2 4tim.te• Ho"t-rever, this ruay be a 

chance result~·. lll of the other subjects show a dual susceptibility to 

both fatigue and temporary stililulation deafness. However, th.e individual 

variations in the slopes of '!Jle lines relating n'S and st:ii:mlus duration 

and in the value of the critical duration, all indicate individual 

variations in susceptibility to fatigue and temporary stimulation deafness. 

The results for subject 'C' in the stimulus intensity experiments 

confirm this subject's resistance to temporary stii:mlation deafness effects. 

!~25 
Fatigue appears as the .predominating factor at all stioulus intensitf• 

This subject confirms the results of Spieth and Trittipoe (1958b) t,.'bo 

found that so~ subjects did not hsve a 'critical stimulus intensity. 

If we consider the results for the other subjects, the individual 

variations in critical intensity are indicative of their varying 

susceptibility to the two TTS effects. C~parison of figares 7a to 7f 

and Sa to Sf reveals that those subjects with high critical stimulus 

durations also tend to have high critical stinulus i.atensi ties. 

Sirlilarly low critical st:ii:lulus durations tend to be associated 'With low 

critical intensities. This suggests that it is susceptibility to 

temporary stimulation decl"ness that decides the critical stimulus 

duration and intensity, rather than ·these latter factors determining 

susceptibility to "the former. 
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In the experiments oo stimulus--frequency, ~Io subjects have maxima 

at 1000, 2000, 3000 and 4000 cps -,.nth a stimulus duration of 2 minutes 

at a stimulus .intensity of 110 db. These subjects were obviously more 

susceptible to temporary stimulation deafness than the other subjects. 

Two other subjects gave maxi:ilS. at 6000 cps rather than at 4000 cps. This 

variation trould seem to be associated 'With anatomical variation in the stru­

cture of individual ears. Nat\ll"al frequency of reasonance of the canal, · 

cochlear place relationships and blood circulation must all be subject 

to individual variations. Presuoably these differences are large enough 

to produce variations the 4000 cps ma.x::i.mum. This finding is donfirmed 

by the -work of Keneddy and Carrell (1959) and Rodda, Smith and Nilson 

(1963). These wrkers have shot-m that the 4000 cps dip in occupational 

deafness is partially a statistical phenoman. Uany occupational 

deafness cases shot-r dips at 6000 and at 3000 cps. Since the 1000, 2000 

and 3000 cps maxima are ne\ll"al effects then they are probably less 

subject to variation. 

One subject in the test tone experiments tended -to shw ma.xi.mal TrS 

at a test frequency equal to the stimulus frequency. This subject~ 

have been resistent to temporary stimulation deafness, since we have 

noted that this produces its maximal effect at a test frequency an oc.tave 

above the stimulus frequency. Hovever, this conclusion is only tent~ti ve 

since the results wre only partially consistent and the more extreme 

exposures produced TTS at a test frequency a half octave above the 

stimulus frequency. 

In the experiments on latent time, subject 'Dl' shot-red abnormal 

increases in recovery time at 8000 cps., a frequency just belot-1 his 

upper frequency limit of hearing. This is most probably associated ~r.ith 

the interfering effects of tinni tu.s, Wich w.s experienced by . the 

subject after exposure at this frequency. However, the result indicates 

the need for fUrther investigation of these frequencies. 

The individual results on recovery during the sti.Iwlus and test tone 

experiments indicate that subjects· differ trl.dely in their susceptibility 

to diphasic recovery, sensitization and bounce higher than initial TTS 

(see table XVU, PB.ot76 104). It wuld appear that these variations are 

:- ' . 
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associated Hith susceptibility to fatigue _and temporary stimulation 

deafness. Thus thosa subjects uith the hi¢lest proportion of 

results shol.dng diphasic recovery t9nd to be those subjects Hith 

the highest proportion of results shotdne bounce higher than initial TI'S. 

In the extreme case, those subjects ~nth very Slight susceptibility 

to temporary stimulation deafness would probably ShoM no diphasic recovery 
0 .. 

am thus no bounce higher than initial 'l'l'S. He can conclude that 

susceptibility to diphasic recovery and bounce higher tlwn initial TTS 

is associated 111ith susceptibility to temporat"y stii:lulation deafness. 

The negative association betueen diphesic recovery and sensitization is 

not indicative of a con:mon mechaniStl for tlle tuo. Since diphasic 

recovery seems to be associated with susceptibility to teoparar.y 

stinulation dea.f'ness,;high values of the latter 'Will tend to· obscure 

sensitization. 
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CHf\P'lml- XV. 

!-Iechani8ms. of tatiffilfj! and temnorary . st~~n.l.ati~Jl 

deSf'nees. 

The consistent duality of the TTS results IJeans that, to a certain 

extent, fatigue and temporary stilml?-ation deafness IJust be treated as 

separate o.echanism.s. They may have a co:nmlon localization in the auditory · 

· system and they combine in m.a.ey cases to produce a joint TTS, but they s~­

ill represent two distinct phenomena. It would seem likely that the 

short term fatigue is a neural and/or organ of Corti effect and that 

the longer lasting temporary stimulation deafness is more closely 

associated ld tb the anatomical s~ucttire of the ear. Temporary 

stimulation deafness lasts too long to be completely nearal in nature. 

It is proposed to discuss each of these phenomena in turn and then 

to discuss the interaction between the two •. 

(a) Fatieue: 

The :main characteristi~s of fatigue are as follows : 

(i) It increases linearly VJith the logaritmn 

of the stinulus duration. 

(ii) It is maximal at 1000, 2000 and 3000 cps. 

(iii) It shot-Is no si¢ficant increase with stimulus 

intensities belov approX:i.ma:tely 95 db. 

(iv) ~hove a stirilW.us intensity of 95 db., it increases 

rapidly to a J;llaximum 

( v) It is I"Jaxi.mal at a test frequency equal to the stimulus 

frequency. 

(vi) Recovery is almost complete 'Within approximately 

one I'linute of the cessation of the stimulus tone. 

The linear increase in fatigue Mith the ;J.ogarithiJn of the 

stimulus duration appears to be purely. a function of the temporal. 

course of the changes involved. +be log-lineetr relation occurs in a 

great .t:l!my sensory phenomena. For example Bronk (1929) has show thet 

fatigue of single stretch receptors of the voluntary nuseles shovrs a 

linear increase 'With the logarithmn of the stinulus duration. There 

does not seem to be any adequate explanation of the effect but it is 



1

·-. ·--
..... . : 
•.·· 

,. '. 

(. 
·, ,,. 
:'' 

.,,, 

/. . 

1. 

.. ·· 
1- • . •' 

•.. · .. 

-, 
,, 

~ . ·. 
~-- -· 

i" 

-~-' ' ' . ..,_ 

.... •. •. . .. - ---- --- ~----,--,----~~----,-.,---,--..,.-

. • ~ . . ,. r· -~-

1'72. 

~sumabl.y as~oci~ted w:L~~.'-t~· logarit~c- scale ot sound, t.D~ity. 
~~ ~ . . 

.., 

' .. -
AlternatiVely it m.--_.be that~ on a place ~e.orj the effect .is asso~t$cl . -·' ·:. 

' . ' . 
W1 th variation·s ·1n the. namber ~Df fib;res serving different are~ of 

' . . 

the basUar- ~&De.··:-~ ~tmibex• of filres per- unit 'length seems . 

to b8 re~ti~q-constant (sea Qsg~od, 1953, p~ 91). H~~' the Jilap 

of Steven, Davis: and Lurie 0.'9.3S) of' 8pi.~" localization and. Cull$r's 

(193S) map of -frequency loc~tiOD.-~eve&l that· there ·ia a pro~es~j,ve· . . . . . . ' . 

•crowding• ot the frequencies. t~- the h~llco~. : Appr~mately 

62 cps •. to sao 6ps. are served;: by the fust t~ Of' ·the 'coeblea, 

1000·-Cl>s to 1600 cps~ are served· bi·-~ second t*D. of t!lS_ cO,ch~ea. 
and ·so on •. -Thua. there- is a progre:sd~ recijlcrt.iem b.. the dd~:O.f 

different bands of frequencies eerved ~ diftei;ant · •eas •. Co~'$8quentl.y 

it seems reasonable to. suppose that ~s- the · stimUlus tNq9,enct i:s inc­

reased, there will be- $1'8&8 of maxh!al -effect vhic;h will b8 deperident 

. ·~. 

···:~ 

' 

However, it seems that Hood's is the simpler and more lOgic~ ezpl~tiem,:' 
. . . . . •r 

since the above explanation coUld just as e•sU,. fit a progre·~ve 

inCr-ease in fatigue with stimulUs frequency. 

The fa:U¢re of fatigue to v8.J!7 td th the s~us intensity ··mq-

be related to ·the spre~ oi.-ilnpuises ·to_ neibour~ fibres. ·'fhls 
b1Pothesis wllld . tit both. a "P.lace an~ a vQlley theQry' since both can 

.. 

eJqJress intensity as a func-tion of the ntailber of fibres firing. At 
. . 

low levels of intensiw 9-t:· stimnl~tiob:we can ~81Dil9 that···thSre is a 
.,..") .:· . . . 

·. 

~. J. - •• .. , .. 

fibres must be avail~~: ~ ~~-a'ny ~-higher. a·o~- .in~sities. ·. 'lhua 
- • • .. <' • ~ 

. . . ' . . . . ~. ~~ . : :. -. .· . . . . ': ' . 
wheJ:t- a low lewl stSmnlus· is applled .it will only f~tip t~e fibres 

' • • I •' ' 

thst ·are used to varey_ it. "' ~·~~tis h.ttenaitt_ is ·in~ased, 
. . . - '', . . .. . . ... . . . 

other alte~ti~· tibf.es""'.W:t.~ be ta~. A. tbre'sllold ~imulus 

wUl actiVate even .less .rt'~a. but the fibres aot:lva&ed' nil a 
. . . ~ f . . . -

-;_ ,·. :- '-'} ,_: ..... ~ . ... ~·,) : ..... : . _,. ... ... . 

,, 
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reacbad.a constant anount of fatigue and consequently the observed 

amount of fatigue w.ill also remain constant. 
. . 

The above hypothesis uill only hold as long as auy al terna.tive 

fibres are available to accomodate ruv increases in stimulus intensity. 

Once all pos~ible fibres are firing an increase in the stimulus 

intensity can have only one effect, that is an increase in the a!llount 

'of fatigue of those fibres activated by it. Consequently there is an 

increase in the observed amount of fatigue. This can be explained by 

ass'lli!Iing an increaBing rate of firing of the fibres. 'i'hi.s argnoent wuld 

fit in Hi th a place but not Hi th a volley theory of hearing. Once 

both the nuaber of fibres activated and their rate of firing reaches 

the maximal level then fatigue cannot increase. Hence, we obtain 

increases in fatigue e.bove a stimulus intensity of 95 db. and fatigue 

eventually reaches a maximal level. 

The place theories of hearing assuoe that 'I.·Jhatever its intensity, 

a given stimulus will al"t>rays produce mamwm displacement of the basiler 

membrane at the se:me place. Hence, on a place theory the phenomenon 

of maximal fatigue at a test frequency equal to the stimulus freque:r:.c~r 

is easily explained. Fatigue will be maximal at the central area of 

displaceilent. Hence, it v.rill be maxi:mal at a test frequency Hhich 

displaces this ereC~., that is at a test frequency equal to the stimulus 

frequency. Similarly, if ,,.re assune that the fibres have a specific 

order of firing, the phenomenon is easily e21pledned onta·.volle)' 

principle. Those fibres activa.ted bi the stimulus will be fatieued 

and the same fibres Bill be ~oat susceptible to activation by a test 

tone of rm equal frequency to the stimulus tone. Hot:rever, it is 

possible that other non-fatie;ued fibres Hill be activated by the test 

tone. In this case the argun.ent \rould not hold. 

It r:mst be remembered that the tmount and duration of fatign~ as 

observed e,t a psycho-physical level is only indicative of the mnount 

and duration of fatigue at a cochlear level. 'i'hus although p.wcho­

peysical fatigue does not last for JilUCh more than a minute, it is 

quite probable that there rem&ins residual cochlear fatigue much 

is not observable by conventional psycho•physical techniques. However, 
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the tact that recovery is relatively 'quick indicates that it is 

localized in a neural mechani151D. The localization can onl.1' be 

b;ypothesised but in view or earlier work, it ~~~ey be in the hair cella 

of the organ of Corti. It is probably b1o-cbem.:1cal iD nature and it 

· is possibly associated with the production or the cochlear microphonic by 

a •piezo-electric• type effect (see .Wever, 1949, pages·~4;7 to 154 ) • 

Meyer (1954) has suggested that it mq be associated with brui8ing ot the 

phragma but tbis will be discussed later (see page ,178 ) • 

(b) Tsmporm S1;1mn1 &tion Dea.f'ness. 

The main characteristics of temporsry, stimulation deafness are 

as follows : 

(i) It increases linearly with the logaritbmn of the 

stimulus duration. 

( 11) It is ma;dmal at a stimulus frequency of 4000 cps. 

( 111) The lines associated w1 th different dnration parameters 

provide a f&m:Uy of curves in which temporary stimulation 

deafness increases linearq with stimUlus duration. These lines 

stem from a common point with co-ordinates 72.8,<!~-4.8 db. for 

stimulus intensity and temporsry stimUlation deafness respectively. 

(iv) It is mmdmaJ at a test ~q.uency an octave above the 

stimulus frequency, except w1 th e~us frequencies of 4000 

and 6000 cps. 

( v) Recovery time from temporary sUmulat1on deatne.ss can exceed 

one minute' depending upon tbe severity of' the stimul.us condi tiona. 

The work on acoustic trauma in gn:inea pig~ and other en1maJ s (see for 
I 

example Eldr~dge and Covell, 1958) has definitely associated stimulation 

deafness with displacement and disruption of the· hair cells of the organ_ 

of Corti. Because temporary stiliml.,tion deafness is an ~~~ct associated 

with :lntense expostll'es and becanse of i.ts great e~larity to stimulation. 
•'' ·• ' _I.·,. ,'_ •, 

deafness, it e;eems that it is ~so most probabJ.7 associated with sOme 

temporary or unobservable impairment or tlle tunc'tionlng of the hair­

cells. Hence, anY ~xpl.anation ot its cberacta-istic.s w1ll be in terms 

ot the anatomical characteristics ot the ear. 



The linear relationship between temporary stimulation deafness 

and the logaritbl:im of the st:l.mulus dnration is, as in the case of fatigue~ 

a purel,- temporal fUnction of the increases in sound e~osure. There 

is once again no saUsfactory explanation of the phenomenon. The 

whole problem might be associated v.l.th the storing of potential energy 

1il1 thin the basilar membrane. Equations 8re avaUable (see for eX!IJ!lple 

Rayleigb., 1894, Vol. 1, p. 91-129 for classical work on this topic) for 

calculating this 1D fafrly simple structnres Sllch as vibrating strings. 

We can assume tb.a t the snount of· stored potential energy is dependent 

upon the stimulus duration, it so, it is quite conceivable that with 

the other stimulus -variables kept constant, the destructive effects of 

the stimulus would bear a logari tl:mdc relationship to the stimulus 

duration. Buell a theory would also predict that there would be a limit 

to the linearity, The potential energy carmot go on iricreasing indefin-, 
itely but it muat reach a maximal value. 

The maxfmum associated with the 4000 cps ~timDJ.us f'requency bas 

already been discm~sed briefly (see page 154). Hilding (1953) has 
. ' 

considered the flow of sound forces through the cochlear and concluded 

that they restil. t in an area of high pressure at a point 6 to 8 mm. 

from the begi,nning of the first tarn of· the cochlear. This he 
. . 

considers results in ·the 4000 cps dip associated with ii'ldus~ial 

deafness. The reverse process vould also apply. A stimulus tone of 

4000 cps will prOduce an optimum effect, sin~ ·tJ:te forces generated are 

alrea~ going to af'tect that region of the membrane. The fUnneling 

of somd hypothesised by Bilding will merely increase the m&gnitude of 

the forces ~rated. Kawata (1960) found that there was a 

remarkable ischaemia··particularly in the basal coil of the cochlea. He 
'· 

concluded that 8 i t mq be said that\~ individual w1 th a lively acoustic 

~panic mwscle reflex vUl have an extremely clear c5 dip md that • 

vigourous vasomoton~1 reaction in the coch:tear blood vessel may also 

be aroused 1n him." ·Once again the reverse argcmentbolds and the 

basal area w1li be. predisposed to show the ma:ximlal shift. 

Kawata argue_s that Hilding's and other sim:U.ar explanations (see 

t Kawata• s term" 
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Onebi, 1951 and Ruedi and Furrer, 1948) cannot be correct, since the 

c5 dip is also fo'imd is some cases of perceptive deafness due to alcohol_ 

poisoning and in some cases of head tra1lDl&. However, he appears to be 

mixing cause and e~fect. The manifestation of acoustic tramna within 

the cochlea mq be vasomotor, but somethiDg must cause these vasomotor 

effects and be responsible . tar them oectlring at the 4000 cps region of 
5 

the basilar meml:n"ane. In the case of a C dip resnlting from noise 

exposure, it seems reasonable that an explanation similar to that of 

Hildi.J:lg will eventual.ly answer the problem. 

The linear increases in temporar;y stimulation deafness w1 th 

stimulus intensity are more ditfmcul t to explain than the inerease in 

fatigue with stimnlus intensities above 95 db. It appears to be 

associated with the forces to which the response mechanism is subjected, 

that is to the logarithmic scale of sound intensity. It mat be that the 

relationeb:lp- is logari thm:lcally linear with respect to the absolute 

stimulus energy. However 1 since we mea·sare stimulus intensity on a 

logaritlmd.e scale, the result of this would be logarithmically linear 

relationship vi th stim1llus intensity. Another important factor will be 

the ext,ept of impairment of the hair cell•. Stimulation deafness studies 

could provide information on this possibility. However, the studies up 

to the present time have not provided sufticientl7 accurate data about 

the total area of d8mage. Hence ve are unable to assess aey relationship 

between this and the intensity of stimulation, although the above 

considerations would predict that it would be saDS simple monotonical.l7 

increasing f'tmction. 

Vith a variety ot ·stimulus durations, it was fom1d that the l.i.Dear 

increases in temporary stimulation deafness, with increased stimulus 

intensit;r, originated from a common point. 1his common point had a 

negative ordinate ·( .. 4.8 db., see figure 2'1b and page 149), that is a 

negative amount of· TTS. We have already suggested that this negative value 

results from the presence of aaensory elements• which are. constantly 

activated .'b7 internal masking stimuli (see page 149). In accordance 

vith the 811ggestion8 made above, these sensory elements could be. the 

hair cells of the organ ot Corti. The existence ot a resting D.C. 

potential in auditory nerve transmission (see Ruch and Fulton, 19601 pages 
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398 to 399) supports this suggestion. It is clear that some elements 

may be activated in the absence of an eJ(ternally imposed stimulus. This 

is in accordance with the above suggestion. 

Temporary stimulation deafness is maximal at a test frequency an 

octave above the stimulus frequency. This is not in accordance with 

the hypothesis of Meyer (op.cit.). He suggests that there are t'!.ro 

effects which will be discussed more .fully later (see page 178). One 

of these he refers to as fatigue and states that it is symetrically 

distributed about a test tone of 4000 cps. The other he calls "bruising 

of the phragma" and states that it increases with the test frequency. 

D.E. Broadbent1 has suggested in private communication that the basilar 

membrane may "whip" with high levels of stimulation. If this is the 

case then it is quite conceivable that this "vrhipping" may occur in the 

region roughly an octave above the stimulus frequency. This theory 

could also explain the irregularities in the results for the test fone 

experiments at a stimulus frequency of 1000 cps. This frequency is 

represented towards the end of the basilar membrane. In this case there 

may be an insufficient length of the membrane lying beyond the 1000 cps. 

localization for whipping to take place. Similarly, the discrepancies 

at 4000 and 6000 cps may be caused b,y the position of representation on 

the membrane. These frequencies are located towards the basal end. 

Consequently the fixing of the membrane at this end, may tend to reduce 

the distance between the point of martimal vibration and the area of 

whipping. 

Finally, recovery from temporary stimulation deafness takes much 

longer than recovery from fatigue. This suggests that two effects can 

be separated from each other and that they involve different mechanisms. 

The time for recovery from temporary stimulation deafness is sufficient 

to allow· the effect to be bio-chemical in nature, althoggh long recovery 

times do not specifically indi-cate a bio-chemical effect. Alternatively, 

the effect may be associated with deformation of the crystalline structure 

of the hair cells. Whatever the mechanism, the recovery is complete at a 

psycho-physical level; although this does not mean that slight unobserved 

1 Applied Ps.ychology Unit, Cambridge. 
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damage might not remain at a cellular leVel. 

(c) Fatigue fDd~Te:inpQJ:C S'ti.JP)JJ.&yon Deafriesg. 

In most cases fatigue and temporary stim.Ul.ation deafness can be sep.:. 

arated very clearly in the ejperi:in~ntal. data. However, there are two 

cases when it is .necessary to c9~si~~~ speciticall.y the ~terelationsbip 

between them. T~se are : 

(1) The half-octave phenomenon in lobich 'fi'S, recorded With 

a three minute post-exposure period, occurs at a test 
' . 

frequency a half octave above the atimnlus frequency. 

(ii) The temporal course of recovery from T'l'S. 

In both of these cases the observed phenomena may not be dependent upon 

fatigue or temporary' stimulation deafness alc;me, but on an interaction 

between the two effects. 

To explain the halt octave phenomenon, Meyer" ( op. cit.) has 

:postulated a combination of two_ effects. These are a •bruising" of the 

basilar membrane lihich increases monotonically with the stimulus 

frequency and a •fatigue11 effect which is distributed symmetriceJ.l.y 

about the atmulus frequency. 'fhese are illustrated in figures 32& 

and 32b. Figure 32c shove how a sii'Ilple additive combination of the two 

w1il produce maximal TTS at a test frequency, a h8lf octave above the 

stimulus frequency. However, we can disregard this !11Pothesis, · since 

the distribution of the two types of TTS does not tit in with Meyer's 

postulated effects. 

The distributions ot fatigue and temporary stimulatiQn deafness 

around test frequencies equal to the stimulus frequency and a test 

treqp.ency of 4000 cps respectively, could just &S eaeil.y result in a 

half octave eftect. Figures S3a and SSb represent theoretical 

distributions ot ~atigue and tempor81'7 stimulation deafness. When 

additively' combined in figure 33c, they produ~e a half octave phenomenon. 

If the ditf'erences between the tw vere made large enough, this 

diagramatic effect would be destroyed. This ·presmnably does not happen 

in the experiment~ situation. However, this hypothesis does not appear to 

fully explain the p~nomenon. Tempore.t'J' stimulation deafness m~ be max:l.mal. 

at a test frequency a halt octave above the stimulus frequency with 

stimulus frequencies of 4000 and 600.9 cps. Under these conditions, it 
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(o) Bruising of Phrogmo 

(b) Fatigue 

(c) Temporary Threshold Shift 

1,000 2POO 3,000 4,000 5,000 6,000 7,000 

Test tone frequency 
Figur~ 32: Illustrates Meyer's (1954) explanation of the half octave 

phenomenon in TTS. Bruising and fatigue combine to produce maximal 

TTS at a test frequency a half octave above the 4000 cps stimulus 

frequency. 



.0 
"0 

>-... 
0 -:0 ... 
0 

c 

c 
0 -0 
> 
CD 
CD 

"0 
0 
~ 
Cl) 
CD ... 
.c. .... 

180. 

(o) Temporary Stimulation Deafness 

(b) Fatigue 

(c) Temporary Threshold Shift 

IPOO 2POO 3POO 4poo 5POO spoo 7POO 

Test tone frequency 

Figure 33, Illustrates the combination of fatigue and temporary 

stimulation deafness to produce maximal Tl'S at a test frequency 

a half octave above the 3000 cps stimulus frequency. 
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would seem the half octave phenomenon does not result from an additive 

combination of fatigue and temporary stimulation deafness. It is 

a maximum associated with the latter effect. 

Hirsh and Bilger (1955) e:x;plained dip~c recovery as the result 

of an additiw combination of two TTS ei'tects. They suggested a possible 

near&l. (R-1) and a possible bio-chemical effect (R-2). R-1 they 

suggested is completed in one minute and is independent of stimulus 

intensity and R-2 is slow and is "clearly' dependent on the stimulus 

intensity. a The author (see R¢da, 19~2l) has criticised Hirsh and Bilger's 

formulation, since at the time at writing there vas no evidence of an 

usoci~tion betveen diphasio recovery and the equilibration frequencies. 

He has postUlated (see Rodda, 1960) a theory based on facilit$tory and 

inhibitory effects Within the cochlear. This theory utilizes the concept 

of orgen, of Corti aratigue patterns" (see Gardner, 194'1). These fatigue 

~tterns represent a residual, dec¢ng pattern of excitation after the 

cessation ot a stimulus tone. Depending on the inter-relationship 

betlileen the pattern of test tone stimulation and the fatigue p~ttern, 

there mq be facilitation or . inhibition. of ne1m&l. impulses and 

consequently the decay of the fatigue pattern will, it it is initially 

large enongh, produce a period of facilitation followed by a period of 

inhibition. 

The original criticism of Hirsh an~. B1lger's theory no longer holds. 

The results of the 9Jq)Sriments on recowry have show conclusively that 

there is a close association betwen the presence or absence of diphasic 

recovery and the equilibration frequencies. However, Hirsh and Bilger's 

theory can still be criticized. U two independent recovery processes 

exist, then it i.e stiU difficult to conceive ot them producing 

diphasic recovery. It seems more likely that they would combine to 

produce a monotonic negatively accelerating recovery curve. It is also 

difficult to fit the equilibration effects into the authol-'s theory. The· 

dii'ticulties of both thearie.s can be obviated it we postulate, in~tead · 

of two separate recovery process, two independent TTS effects. Each of 

these wotJld have its own recovery process; but the combination of the 

tvo processes would result in facilitatory and inhibitory effects as 

postulated by the author. 'fhe advantage or such .a theory is that it 
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also explains the sensitization effects. These are mere~ a fUnction 

ot the amount of facilitation present. Hirsh and Bilger have 

great difficulty in explaining these effects and mere~ state that 

the "structure in which R-1 is fotmd is rendered. mare sensitive than 

it was before the exposure". 
() 
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CRAfTER XVl 

Controls for Externa1 Conditions. 

Two control experiments involved periods of silence or non-tracing 
I I 

interspaced between successive periods of Bekesy tracing. These gave 

mean shifts of -1.39 db. and -0.87 db. between the threSholds recorded 

in successive tracing periods (see page 111 and pages 133 to 135). 

The smallness of these changes, when compared with the shif'ts resulting 

from exposure to a stimulus tone, indicate that TTS results from the 

introduction of the stimulus tone and is not merely the result of 

chance fluctuations in the threshold measurements. or the 271 

experimental means obtained in the experiments studying the stimulus 

and test tone variables (see figures 6, a, 9 to 11 and 13, pages 68, 72a, 

79a, 79b, 79c and 82 respectively), a total of 89 lie within 2.58 ~ 

of the mean shift of -1.39 shown in the first control experiment. 

Similarly, a total of 126 out of the 271 experimental means lie within 

2.58 cr of the mean shift of -0.87 shown in the fourth control 

experiment. At first sight, these numbers may seem rather high. 

However, the majority of the means involved tend to be associated 

with the minimum severity of stimulus conditions (70 db. for one 

minute) or to occur at the extremes of the test tone distribution. 

Consequently their effect, if any, will only be serious under these 

conditions. 

It would be argued that negative shif't in the control experiments 

reflects over-cautiousness on the part of the subject in the earlier 

test period. Alternatively it may reflect a facilitatory effect 

arising fro:o the period of silence or non-tracing. The mechanisms 

or such a facilite.tory effect are difficult to understand. Howrever, 

evidence for this suggestion comes from work of Ozbaydar (1961) who 

has shown that auditory threshold are lower in light than in darkness. 

He explains this phenomenon as being due to an increased level of 

cortical arousal. 

The effect could be explained in terms of Broadbent's filter theory 

and the novelty of stimuli. Broadbent's (1957 and 1958) theory 

assumes a limited perceptual capacity in the human organism. 
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Coasequen~ he stresses the aeed for the performance of same 

selective operation· on all sensory inputs mediated within the organiiii!l. 

Thus the organism 0 chooses" to respond to certain stimuli and to 

neglect others. In so doing, ~t avoids a 0 jemming11 of aensoey inputs 

and a resulting .complete inability to respond. A basic assumption 

in the theory is that an unchanging stimulus situation is associated 

with a 11 switching11 to other channels of sens0%7 input, pm-ticularly 

it such channels provide a 11noveltyH of senS)ry input. Broadbent 

(195a, page 98) has stated that "novel stimuli themselves receive 

adequate response··and so seem di~acting rather than pm-alysing." 

He explains the detrimental effects of noise on efficiency and the 

azmoyance effects of' noise in terms of this distracting effect (see 

Broadbent, 19~8, chapter 5). 

~ing the periods of silence Or non-tracing 1n ·the. contrOl 

expariiDents, there is very little or only a continuollS low level 

auditory input. This continUity of a eonstant low level sensory 

input would result iD a neglect of the auditory channel and a 

concentration on other sensory channels. Consequently at the 

commencement of testing of the post-exposure threshold, the sound 18 

a "novel0 stimulus. As such it receives more attention than other 

sens0J7 inputs and is percei vsd more eaa11y. The detrimental 

distracting effects of the nevel stimulus will be obviated far two 

reasons 1 

(i) The sound is at a low intensity. 

(ii) The subject i8 warned to expect it by means ot the 

signal light. 

The result of the orientation towards auditory information and the 

increase in perceptual ability, is a loweriDg ·of the threshold. 

Although there is. little evidenCe for the suggestion, it seems 

likely that a mechanism of this nature could be mediated throUgh 

the activity ot the RAS. 

A prediction of the theory is that as the test period progresses, 

the amount of facilitation will decrease. The reason for this 18 

that as tbe test period is prolonged, then .the tendency will be to 
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•switch• for increasingq longer periods to other sensory chaiinels. 

To test this suggestion, the mean thresholds in the first, second and 

third minute of the period immediately following a period ot silence 

or non-tracing were calculated separately for each of the control 

experiments. These values were substracted tram the mean threshold 

immediately preceding. the per1od ot silence or non-tracing. 1'h1s 

provided an assessment of the amotmt of facilitation in each period. 

In the first control experiment the mean differences between the pre­

silence and post-silence thresholds in the first, second and third 

minute tolloving silence wer~ found. to be -2.64, -0.98 and -0.59 db. 

respectively. In the fourth control experiment the mean differences 

between the pr;e-non-tracing and_ post-non-tracing thresholds in the 

first, second and third mimite following silence were found to be 

-1.88, +0.17 and -0.92 db. respectively. In calculating these means, 

the second three minute tracing period vas used as the pre-non­

tracing period for the third ·tbNe. minute tracing period. It .can be 

seen from the results that there ·is a progressive reduction in. the 

amount ot facilitation as the test period progresses; although in 

the second control experiment, there is no facilitation in the second 

minute of the test period. This l~~Ltter result is probably caused by 

chance errors. 

The larger ·amount of facilitation in the first control eJqJeriinent 

offers further tentative support for the theory, despite the smallness 

of the difference betveen this ·and the amount of facilitation in the 

second control experiment (see page 133). In the fourth control 

experiment the subject traced his thr'eshold for three minutes and then 

rested f<or two minutes. This cycle vas repeated three times to give 

a fifteen minute test period. It can be seen that only the first of 

the three minute tracing periods vas not preceeded by a period of non­

tracing. The second three minute trac!Dg period provided the pre-non­

tracing threshold for the final three minute tracing period. However,· 

this period had itself been preceeded by a non-tracing period and 

must have been affected by the facill tatory phenomenon. This would 

reduce the amount of facilitation recorded in the final three minute 
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TABLE mal 

StiDliD81')" of ·the . t-test used to test the significence . or the difference 

between the mean smotmt· of facilitation between successive tbree minute 

test periods (A) and between the first $11d second and the first and 

third three minute periods (B) in the control eXperiment studying 
/ / 

Bekesy tracing far short periods. 

No. of subjects 

Mean Shift 

Standard Deviation · 

A 

4 

-0.87 db. 

1.98 db. 

r a. b = 0.74 

' 

B 

4 

-1.86 db. 

2.32 db. 

Standard Errar of the difference (S.E.D.) = 2.15 

t = M_ -M. -0 
'll a 

S.E.D. 

= 0.4;60 

(see Garrett, 1958, p. 223-224) 

A t of 0.460 with 3 degrees of freedom is not significant. 
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tracing period. Consequently, the lowered amount of facilitation 

recorded in the second control e]rperiment could result ~m .. the 

facilitation itself. 

To check the above suggestion the man difference in thresholds 

between the first and gecgpd and the first and th1M three minute tes~ 

periods was calculated. The standard deviation vas also recorded. The 

mean was -1.86 db. and the standard deViation -2.32 db. The product­

moment correlation between these results and the results obtained 

taking successive three minute periods was 0.74. The significance 

of the difference between the above threshold Change and the threshold 

change of -0.87 db. obtained by taking successive three minute periods, 

was tested using at-test (see Garrett, 1958, pages 226 to 228). The 

results ot this calculation are stmmarized in table XXXll.. It can be 

seen from tbe table that the difference is not significant. Howver, 

it is suggestive~ in the right direction. 

Additive effects of TTS were controlled for in the fifth control 

experiment (see page 135). ~s showed that there was a mean increase 

of 0.6 db. in TTS produced, by 1000, 2000 and 30.00 eps stimulus tones 

at an intentd.ty UO db., at the beginning and the end ot a test session. 

This increase was not signif:lesnt and consequently w can assume that 

there were no significant additive effects and that the recovery period 

of 15 minutes was adequate. 

The sixth control experimtint recorded the mean noise level in the 

test cubicle over three hour periods and over fifteen minute periods. 

The mean noise level on the 'C' weighting of the sotmd level meter was 

38 db. in the three hour test periods (see pages 135 to 138). A 

frequency analysis of the noise was not nnderteken since the appropriate 

equipment was not available. B;owever, the mean of 38 db. is much less 

than any of the levels suggested by Glorig ( 1958, page 132), as 

permissable ambient noise levels in an industrial test situation. Even 

if we assumed that all ot the noise was concentrated in tmy one octave 

band, a level of 38 db. is still below Glorig's standards vbich range 

from 40 db. for the band 300 - 600 cps through to 67 db. for the band 

4800 - 9600 cps, with a mean of 50.4 db. Hence we can confidently state 
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that the noise level in the test cubicle was well below the levels 

suggested by' Glorig. However, these latter values are too high for 

research work and it is fortunate that the overall noise level is 

"much less" than the values suggested by' Glorig. Another factor 

to be borne in mind is that the subject was wearing an earphone 

on the test ear. This would provide further attenuation of 

extraneous noise. 

Reference to the data of Hawkins and Stevens (1950) on the masking 

of pure tones by white noise indicates that white noise of an overall 

intensity of 38 db. would elevate the threshold at 1000 cps by not 

more than 10 db. However, this value is only given as an indication, 

since we have no information regarding the frequency arid intensity 

spectrums of the noise in the test cubicle. The amount of masking 

is also dependent on the value of the unmasked threshold, that is 

upon the intensity of the stimulus. It is impossible to correct 

threshold measurements, far ambient noise masking because as Glorig 

(1958, page 75) points out "as hearing loss increases, the masking 

effect of the ambient noise decreases." 

The constancy of the ambient noise in the test room is more 

important than the absolute noise level. If the noise level is 

constantly changing then so is its masking effect and consequently 

the recorded threshold value. The noise in the test room was found to 

be reasonably constant. The results in the three fifteen minute 

periods during which the noise level was recorded at one minute 

intervals, are given in table XXX (page 137). It can be seen frcm 

this table that in the three periods 86%, 94% and 73% of the readings 

fell within ~ 2 db. of the mean and 93%, 100% and 93% of the readings 
+ 

fell within - 4 db. of the mean. Hence the ambient noise level was 

maintained at a fairly constant level within the test cubicle. 

Consequently, we can assume that at a constant threshold level, changes 

in threshold resulting from changes in ambient noise masking would 

be very slight. However, as we have just noted, the masking effect 

would vary with changes in the threshold. The higher the threshold, 

the less the masking effect. Since we are dealing with threshold 
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increases the ·amount or error resulting f'rom masking would increase 

as the amotmt of i'TS increased. Subjective:cy, in view or the ~ow 

constant noise levels, the author feels that these errors are only 

very slight. 

An important point about the test cubicle is that further improvemmt 

would probably have resulted in another difficulty. Professor 
1 ' . 

McElwee has pointed out that persons vorking in completely so:ond-proo:f' 

and anechoic rooms are liable to suffer from :f'its or panic wtiich are 

very similar to claustrophobia. The author has also found this to 

be the case. Thorpe and Hinde (1956) have also stated that an intensity 

+ of' 40 - 3 db., on the 'C! weighting or a Daw sound level meter, is 

less than the noise level produced by the respiration, blood-circulation 

and heal"t 'beats or a human subject •. Hence, although psycho-acoustically 

a completely sound-proof room represents the optimum conditions, this 

is not a practical proposition. 

1 Dept. ot Electrical-E:ngineering, University of Canterbory, 

Christchurch. 
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CRAfTER m1 
, / . 

The Bekesy Meth~. 
. . I / . 

The ~on:trol experiment on the Bekesy method showed that the 

Be~sy method of threshold tracing prod~ces aperiodic, cyclical 

variations in the absolute threshold of auditory sensitivity which 

are larger than the similar changes produced by the modified method· 

of limits (see pages 1ll to 130). The differences between· these two 

" " .. methods indicate that the Bekesy method is less reliable, when the 

threshold is traced for long periods at one fixed test fr:equency. 

The subjects and the test conditions were the same in the two 
. ,_ " tests apart from the use of the BekEisy method in one case and the 

modified method of limits in ·the other. Normal intra-subject 

variabillty cannot accoQDt for tbe results since All~~ subj§pto 

vere conSistent in mowing redu~ed variability when the modified 

method of ~ts was used to measure the threshold. It might be 

argued that the difference between the two methods is artificial, 
I , . . . . . . . 

in that the Bekesy methcd allows the ·subject to make more responses 

iD a fifteen minute test period. Inspection of figures 22a to 22f" 

and 23a to 23f reveals that the subjects made 47 responses in tbe 

method of l1m1 ts experiment; but that they mde from 40 to 102 
. I / 

responses, w:l th a mean ot 71:5 responses, in ~ Bekesy method. 

This objection fails, since although it would adequateq explain the 

differences in the amount of oscillation, it would not explain the 

dUferences in the amplitude of oscillation. Figures 23a to 23f are 

canpletely different trom figures 22& to 22f, whereas it the above 

argmnent held, then we would expect them to be both qualitatively 

similar to the earlier parts of the latter figures. 

We must conclude that the greater constancy of the threshold 

obtained using the modified ·method of limits resulte· from the · 

difterEmces between this method and the B~'sy method. We must also . · 

conclude that either the two methods utilize different subjective 

response systems or alternatively tbe tvo methods have ditrerent 

effects an the variability of the same common subjective response 

system. 

A priori, it would appear that the responses a subject makes iJa 
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any threshold determination are dependent upon at .least three factor~. 

These are 1 

( i) The general sensi t1 vi ty of the subject (This will 

include such factors as local fatigue, central fatigue and 

attention) • 

(11) The criterion ot response that the. subject adopts. 

(Does he, for example, judge vhen doubtful, sure or 

certain?) 

(iii) The responses he has already made. 
. / / 

All of tbese factors can be expected· to affect both the Bekesy and 

the modified method of limits method. However, tbe first two 

factors would aver a long testing period atfect both methods equa.l.ly. 

Consequently, w would not expect them to cause any differences 

between the two methods. Hence, it would appear that the decisive 

factor in differentiating the ~thode lies in the responses that the 

subject has already made. 

The· essential ditf~nce -between the two methods is that in the 

modified method of limits the subject is always returned to two 

fixed reference points. These referance points are the extremes 

between which the attenuation is varied b7 the experimenter. It 

has been pointed out (see page 61) that the subjects always responded 

to the tone at ~ upper intensity limit; whereas they never 

responded to the tone at the lower intensity limit. Consequently, it 

cen be assumed that the subject always heard the tone at the upper 

intens:l ty lim1 t and he never heard the tone at the lover intena:i ty 

limit. The fimd reference points were chosen with. this criterion 

in mind. The advantage of providing reference points is that they 

provide the subject with a standard on which to base his responses. 
/ / 

They are not present in the Bekesy method, where the intensity of 

the tone increases or decreases as soon as the subject decides he 

does not, or he does hear the tone. 

The presence or absence of reference points 1D a response system 

is related to re~nt wrk of Pollock (1956) on elementary display 

systems. He suggests that basically there are three procedures that 
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can be used in allowing a subject to make a response to a display 

system. These are: 

(i) The obseryer categorizes the stimuli b7 choosing the 

correct categol?' from memory. 

(11) The observer categorizes the stimuli after a further 

presentation of the catalo~ of category responses. 

(11i) The observer categorizes the st1Jmil.i with the 

catalogue of responses available to him at all times so 

that he oan refer to it as an(} vhen he requires to. 

Pollock suggests that (i) and (ii)· at"e 1dentUioation systems .in which 

the subJect must recognize the stimulus and that (111)· is a discrimination 

s;ystem in which the sub,J ect has to compare the stimulus w1 th a series 

of standat"d stimuli. 
~ , . 

A consideration of the Bekesy and the modified method of limits 

technique~ indicates that the7 are respectiveq similar to Pollock' a 

first aDl second d1spl&7 techniques. Both are identification systems 

insofar as the st:lmul'llS must be heard and recognized. Both methods 

involve categorization, since at ·tifiq instant in time the subject must 
. . / / 

categorize the st::lmulus as being present or absent. In. tbe· Bekesy 

technique, the subject has no reference to tJ1J'3 confirmatory- stimulus on 

which he can base his responses. Consequentl)" it equates with Pollock's 

first displq tecbnique. In the modified method ot limits, the subject 

makes a response and is subsequent17 presented w1 th the fixed 

reference stimuJ.ua. This enables him to check the validity of his 

response. It is essentiall;y similar to Pollock's eecond displa;y 

technique. How'Ver, it does differ in that Pollock allowed his Stlbjects 

to make their decision after presentation of the cam.parison signal. · 

This latter difference probably increases slightly the errors mad~ usiag 

the modified method of limits teclmique. 

Pollock studied the effectiveness of the three procedures'.'in 

audition and found that the first procedure produced more errors than 

the second procedure and the second procedure produced more errors than 

the tbird procedure, unless the ditferences between scale categories 

ware very coarse. He also found that as the •tineness8 of the scale 
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of c~tegor'7 responses was increased so were the diiTerences between 

the three procedures. The greater. effectiveness of the second recognitioJ 
. I 

technique is. similar to the d:Lfterences be Ween the B'kesy and modif1ed 

method of limits teebn1ques. 

The etf~t of the reference poin.ts seems to be closely associated­

with anchoring ot·J"esponse scale etfects. Guildtord (1954, page 312) 

points out ·that the effect of an anchoring stimulus is to shift the 

judgements in a response scale towards the anchoring stimulus. Be 

also points out that the further removed a stimUlus is tram the 

anchoring stimulus the greater the anchoriilg effect. The fixed 

reference poiJ?.t's ·m the modified method of limits method appear to 

form a high and a low intensity anchoring stimuli. The high intensity 

anchor is intensity at vhich the tone is al.wqs responded to and the 

low intensity anchoring stimulus is the intensity at which the tone is 

never responded to. Since these attect the stimuli farthest· awq from 

them, tbs;r resalt in a compression in the scale ot responses with a 

consequent reduction in the variability of responses. When they- are 

introduced together, then their joint atfeet is an· even greater 

compression of the scale of re spouses and the conse_9uent reduction 1n 

the variabilit;r of responses. 
I I 

The greater variations in the threshold produced b;y the BekEisy 

method can also be explained in ten1s of the effects of anchoring 

stimali, However, in this method there are no fbed anchoring stimuli. 

Consequently the stimuli to vhich the subject has just responded became 

the anchors. In this situation the scale of responses for arq pair of 

responses, that is between a response of hearing and not hearing the 

tone or vice-versa;~becomes concentrated between these two responses. 
I I . 

The work of Bekes)T (1947) has shown the range between a hearing and 

not hearing response seems relatively invariant with constant test· 

conditions. These tvo effects &eem to add together. and produce a 

gradual upward ar dovnward movement of the threshold. This is 

illustrated in figure 34 which is a ·theoretical diagram drawn OD tbe · 

assumptions tb.~t 'the subject responds at a pOint midVfV' between ~ 

two previous r~~onJ3es which form the anchoring stim:all, that· the 
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length of the excursions remains constant and that these two 

conditions follow in order. In diagram 34a, the subject gives a not 

hearing response mid-way between the previous hearing and not hearing 

response. Tbis is fo:P.oved by a normal pen-excursion and this in t'OI'Il 

is followed by a response mid-way ·between the previous two responses. 

This continues and results in a gt"aduel elevation of the thr~shold. 

A similar effect occurs in figure 34b, except that in this case the sub­

ject mskes a hearing response mid-way between the previous not hearing 

and hearing responses. This results h a gradual reduction in thB 

threshold. 

The gradual inareases or reduction in the threshold .:re liiDi ted 

b;y two factors. The first ot these factors is the ~eme limits. of 

intensity, above and below these the subject al.V&7& responds or does 

not respond respectively. The anchoring stimUli may widen the range 

between these limits, since the probability of response to a tone will 

be affected even at the e~enes by the anchoring stimulus. However, 

this effect will be limited since at a given intensity, the increase 

in intensity will overcome &JV' effects the anchoring stimulus mq 

have. The second factor limiting the increases or reduction in a 

tone is the changes in the probabUit:y of response to a tone as the 

above limits are reached. The probability ot response increases from 

0 to 100% between the 11mits either in quantal or in a sigmoidal 

:mamer (see Stevens, 1951). 'fhs manner of variation is unimportant. 

Whether the changes are quantal or sigmoidal, the changes mean that 

the nearer the intensity to the intensity belov which the subject never 

responds, the less the probability' of a 11hearing8 response. Similarly, 

the nearer the intensity to the intensity above tihich the subject 

always responds, the less the probability of a 8 not hearing8 response. 

The effect of these factors is seen in figures 34a and 34b. 

In figare 34a the upper limit of responses is reached at point A and tbt! 

lower limit at point B. In figure 34b the lower limit of responses is 

reached at point A and the upper limit at point B. When these points 

are reached, the patf.ern of responses is broken since the subj~ct 

cannot maintain the successive mid-point equal excursion series. 
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He must respond or not respond to the tone 'When the intensity lhiits . 

are reached. However, once .the tBqtience is broken in one directioli 

it comences in the opposite direction. Hence tbe chmages 1D 

threshold become reversed. At point C 1n figure 34a and figure 

34b, there is a further change .in· the direction of the threshold 

changes because of changes in the probabllit,' of response. 

The assumptions of· successive mid-point, equal excursion 

responses will not of course hold in actual practice. However, a 

change in tbrEtshold in one direction will tend to perpetuate 1 ts~f 

for the following reasons : 

{i) The anchoring effect will. tend, depending on the 

direction of travel, to produce a·response at a lower 

or higher intensity than the preVious response ot the 

same nature. 

{11) The anchoring effects will tend to be obviated 

on excursions moving in the direction ot travel by 
. . 

changes in the probability· of response in that 

direction. 

{iii) The El!lchoring effects will tend to be accentuated 

on excursions moving in· the reverse of the direction ot 

travel by changes in . the probabili t:y of responses 1n 

tba.t direction. 

We have already noted that this tendency to perpetuate the threshold 

changes w1ll be overcane baca.tl8e of changes in the probability of 

response or because the limits ot responding or not responding .have 

been reached. However, since the subject mi:f respond ~ w respond 

at any point between the.s& limits, a change in the direction ot the 

thresholCl changes can occur at FJ:1l7 point between them. There is · 

simply a greater probability ot.tham occaring tow$tds tm extremes •. 

The validity of this .suggesi:lon is increased when we consider tbe 

distribution of random numbers. Random numbers show quaUtativel:y 

simiiar aperiodic oscillatory tendencies {see Yule and Kend&l.l, 1950, 

page S76.) to tlioae produced in the Beke"s:y method. If we assume that 

the probabilities of response to the tone are sampled in a random 
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·manner, then this supports the above J:v'pothesis. 

Tbe above explanation also explains the· slight negative 

correlation between the amplitude and the amoent of oscillation. · It 

can be seen that as the s:npUtude of the oscillation increases, tlB 

subject spends more time travelling between successive peaks end 

valleys. Conseqti.ently the numl:er of oscillations in a fixed time 

interval is reduced. Frequency differences in the amplitude of 

oscillation were found not to be significant (see page 119). This 

latter finding suggests that the range be:t'm,ten alwey.s responding and 

always not r~sponding is relatively invariant with frequency. This 

finding is sUpported indirectl;y by work of Beke's;y (1929) l1hich showd 

that· the dift"erence limen for intensity is independent of the test 

frequency. 

The amount of oscillation was foond to be· maximal at 1500 cps 

(see page 115). This does not associate itself with izr.f. other know 

phenomenon in audition. Various studies· have pl-aced mini.Dial threshold 

. at frequencies between 1000 and 5000 cps (see Hirsh, 1952, page 10'1). 

·It might be that minimal tln-eshold occurs at 1500 cps since this 

frequency is seldom tested. Ho-wver, Luscher and Zv.l.slocki (1947) 

claim quite definitely that minimal threshold is at 3000 cps. The 

effect is probably associated with ·the cochlea since Wever· (1949 and 

1950) has shown~ that the limits of linearity of cochlear potentials 

are ·reached at 1"500 cps and that blocking the ovai v.l.ndov produce 

ma:ximal. hearing loss at 1500 cps. How this correlates with the above 

phenomenon is difficult to conceive. It Illq be 't;hat Wever's results 

indicate that the eor i·s most sensitive at 1500 cps and that caretuily 

controlled_laboratory studies ~uld reveal . this. It this is the caee, 

then the groeater sensitivity of the ear would also probably result 

in a greater variability of the results around tbreshold level. , 

Consequentl;y the effect would be explained. Even it this is not the 

oase, Wever's results do indicate that 1500 cps is a transition 

frequency. Something, as yet unknown, occurs in cochlear responses at 

this frequency. In tbis case it seems likely that tbis transition 

process v.Lll accentuate the probability - anchoring effects postulated . 
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above. This highly unsatista;ctory answer seems to be the most 

satisf'actor,y one that can be offered at present. 

The postulated anchoring effects also explain the absence of 

aperiodic, cyclical changes wen the threshold was traced tar shOrt 

periods in the. two control experiments stu.dJittg threshold shifts 

in the absence ot the stimulus tone. In the first of these the 

stimulus tone was replaced by silence. This possibly formed en anch­

oring .stimulus. 1he effect of this. apparently lasted tor the three 

minute post-exposure threshold tracing. Alternatively the·. anchoring 

stimulus might have been the above threshold tone which .vas heard by 

the subject at the camnencement of all tracing sessions. This seems 

mol!e likely since we have already seen that the differences betwen 

the thresholds tor successive periods or tracing ware. slight; and in 
,. / 

the control elq)eriment studying Bekesy tracing w:l. th tvo miDute rest 

periods, the only possible anchor would be the COllllllencement tone. 

This vas the stimulus heard during the non-tracirig periods am 

consequently it forms the only anchoring stilnulc.s. Whether the 

cOl!lllencement tone or silence are the anchoring st:lmnJ 1,, the important 

point is that they provide fixed ret<trence ffMpml 1 • We have already 

seen in the mo~f'ie d method or llm1 ts such fbed reference or anchoring 

stimuli reduce .the· amount or threshold variations, and their absence 
. . I' I 

increases the amount of threshold variation daring BekBsy tracing. . . . 

Fortunately, the variab1ll ty in tht!eshold measorements reSlll. ting 

.from the use o£ B~k~sy technique does not appear to have greatly 

atf'ected the experiments on rrs. The above control experiments 

utilizing tracing tar short periods shoved that under these conditions, 

only the introduction or an appropriate stimnlus tone produces an 

elevation or the threshold. However, these experiments only dealt 

with the mean threshold which is the threshold that is considered iD 

the TTS experiments. It would appear likely that· the phenomenon ~d 

etf'ect the results obtained on spec1fic threshold readings over '9817 

short periods of time. Readings of this nature are involved 1n the . 

studying of diphasic recovery phenomenon. The control 92perim.ent 1n 

which recovery f'.rom TTS was studied using the modified method of limits 
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(see pages 130 to 133) confirmed the validity or this suggestion. 

Hence, as we have already noted,· we must view the results obtained 

1B the experiments on recovery, iD which thre~olds were measured using· 
'- I . 

the Bekesy method, with some reserve. 

These eXperiments do throw a great deal of suspicion . on the 
~ / . . . . 

reliability of Bekesy recordings :made am: 1Qili periods R: !ilml at a 

tued frequency. The phenOmenon has not been referred to before except 
/ / 

for the brief references by Bekesy (194'7) and Epstein and Schubert (195'1). 

These workers also suggest that the ampli-tude" of the changes is or the 

order of approximately 5 db.. ftd,s resalt agrees fairl7 well with the 

mean amplitude or 6.623 db. obtai.Ded in the author' a· results (see table 

ml, page 117). However, a consideration of the remainder of this 

table indicates that this is only a mean value. The frequency 

variations cover a mean range or amplitudes from 4.51 to '1.66 db. and 

the subject variations eover a mean range of amplitudes from 3.69 to 

10.81 db. Within the table the mean amplitudes range .from 1.21 db., 

tor subject F at 1500 epa to 14.f34 db., for subject A at 1000 cps. 

Consequently, we must conclude that the threshold variations are much 
I I 

larger than suggested by either Bekesy or Epstein and Schubert, who 

did not make a study of apeci!ic~detail of these variations. 

Then obvious implication of these results is that more research 
/ / 

is required on the use of Bekesy audiometry in clinical audiometry. 

Maey or the tests for malingering such as the Stenger. test (see Newby, 

1959, pages 15'7 to 159) utilize tbreshoid.measurements at fiad 
. . I / 

frequencies for fairly long periods. Should the Bekesy tectmique be 

used for these tests, then it VDllld appear that the results 1118\1 be 
. . , / 

seriousl7 impaired by the above phenomenon. The ~feet of the BekeSJ' 

technique on the audiograms obtained with a continuouslY' varying fre­

quency is not lmown. The effect of VB.l"'J'ing freqtiency mq reduce 

the amount of threshold variation. However,. this seems unlikely, ·since· 

the subject vil1 still have no fiied reference or anchoring stimuli and· 

the results of Bek.{sy (op.cit.) and Epstein and Schubert (op.cit.) were 

obtained under thBse conditions. 
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Attenuation rates wiU a;tmost certainly· have rmme etrec~ on .the ' ... · 

amount of threShold variation. Only one attenuation rate vas used in 

this studr and consequently we have no direct inf'ormation available. 

Car so's (1956) ·work showed that attenuation rate did not •ttect the 

mean threshold bllt since he used short test periods, this only confirms 

the results of the c~ntrol e2Periments which ~b.Owed no. Significant 

Variations of t.ln-eshold readings with short test periods. other studies · 

have als~ used much f!aster attenuation rates than was used in the 

present study. It may be that this will reduce the variation of thres­

hold readings. Backlash {see page 43) will tend to carry the subject 

much nearer or even into the rsnge of complete audiabili ty and complete 

inaudiabillty with the faster attenuation rates. Consequently, the 

method under these circmnstances mq equate more closely 'With the 

modified method of limits. However, more research is needed on the 

phenomenon. 

We~ conclude that the B~/sy method, appears to be affected 

by anchoring, just. as the more conventionalllloditied method of limits 

is. The effects within the two techniques are mediated ditterently and 

I' / 
this difference affects the threshold as measured by the Bekesy method 

over long periods. A great deal of farther research is required; bllt 

these initial results would seem to place very stringent restrictions 

on ~ B~tsy method. Should .fUrther research conftm this then it is 

fortunate that antoinatization of the modified method of limits 
/. / . 

technique could be achieved fairly simply. The use of the Bekesy method. 

does not affect the recordings of mean TTS provided the pre-exposure 

and post-expostn"e test periods are of short d~ation. However, it 

does affect the manitestation of phenomena such as. cliphasic recovery 

which are observable in terms of instantanious rather than of mean 

threshold. 
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AJ1DendU. 1. 

feshnieal ""1mH 1 of -the ·Eq~!e:Dseq. 

Chapnel1a Consisted of· an_ au41o-tester at1d two attetuiators. The 

audio-tester was a Mm•coni (T;pe·!f~~F. 894A) eal.i_br•ted from 50 c.p.s. . .,, 

to 2'1 k/c.p.e. and designed tO work to a 600, 15 and 3 ohm,, 'output. 

The frequencies are accUl'ate to .:!: 2% .:!: 5 c.p. s. when the_ ins~nt ha8 ·· 

reached thermal equilibrium, and the output distorti1lll' is 1.-~ ¢~ the 
total at 1.5 watts and ~.of the total at 2 watts, when tJle f'r$quencie_s .. 

are between 100 and.,8000 c~p~s. The audio-te:st.&r le its~ -c:ap$ble-,. 

of' 50 db. attenuation. Th9 fir at atteilU&tor ·in the e-ircoi t vas . u&ed tcf.: ( .. . . ' . . '~:·. ~ 

extend this range -and'vas an Advance Loti.heque~ct ·Attenuator· (TJpe 

A 64) having an input and otttp~t impedance ot GOP ohms 'and givbg .7f! 

db. of' attenuation ln 1 db. :steps. The se~d attenuator, WU.i·a 

Marooti:l. Attenuator (i)pe ·33_8 e)·. and vas eonverted_ into a sul;)ject/ 

experimenter controlled atte~tor (see· Appendix II). ·Th!s also has an-.-
~- ,\ . -

input aul output impedance.ot 600 oJ:mls. ---It p~o~des eo db~ of' 

attenuatioD in rao db. steps and 25 db. of c~ntimtousl.7 variable 

attenuation. 

Chtppel 2; Consisted of an oscillator ad two attenuator$, '1'he 

oscillator was a Weill Bridge Osciilator ·c(mstructed f'rom a circuit -

pubUshed b7 WUU.SJ;Ilson (1956). It ~s a trequen07 rage of', 3· cps. to 

330 k/aps iD tiTe docade steps. WUliiJilSOJ& claiu that the. harmonic 

content of' the tone~- is less than 1% at 2 k/c:ps·.,, ~$--.-.~e~:~~· 

linearity is 0.025 db. trom 15 cps to 3.30 kfcps. and that the freque~ct' 
. . .:..;:·-.. ' 

drift over a three hour period is negligible~' The two·. at~tore · . · ··· 

were Advance Low Frequency Attenu&tors (i)pe '.t64, see ·chamlel·l) and 

provided 140 db. of'·?attenuation in 1 db. step.s. 

Miv·ng: fhe outputs from the two chalme1s :were ted through a two- ··. 

pole chaDge-over sw1 tch, so that either cbezinel eould be seleCted as 

neceSSSZ'7· The selected output was. fed into the stsi:ldard earphone,. 

via a Gardner's transfo:rmer (GB. U4'1l) WhiCh h&s an input impedance 

of' 600 obm.a and an output impedance of' 25 obms.. This matched the 

imp8dSnce of' the output ~ either · cha.tll?.9l tc) the imp~danc;S ot ~ 

. ,-. 

'1'' .. · 

:'•: 

standard earphone. The latter ~ manUfactured ·by StandEal"d :fe-lep_hoiles _, ,- ~ 
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·~d .. :cabl.es (TJpe .02GA, ·Head R~ce~ver)~~ ·It 111 .~:Di~~g:·~oU.::>ti}Je:-~t· ···· 

instriillent :'4th a trequ9DC1: ~ ~b~:~ !.!?0 :~~J•. ~o ;~0 '~/.'cps. .It:·;·W:a : "< : · ... 
. .. .' . . . . . . ·.. . , ... __ -: . :- ..•. " 'r .-· ' .. ·._- . : : . '\. -~'·"· ... : .. .. ·' . .,. 

calibrated :at the_Naticmal PhYsical Laboratorf~ .. TeddingtOJJ.,~laee· 
~ • ' • • 0 • • • ' •' ' o I' • ' 

AppendiX .. III) • ..; . •. ':,. 

.- .•· .. -:.1 

· .. 

. ·' 

'~· 

.-. 
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' ·. 

, .. 
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.... 

converaw 9r: ttvcopi AttiGuator'~ .... 
. . . .· ' ' ;" '.' .. _· ~ ~ . 

.. 'l'lle c~sion of the. Marconi attenuata%- -to a subject/~~e~nter · 
controlled attepu&~or was achieved ~: the tollov,tng ww. · · 

. . . . . . . .· 

(i) A:l:2 ·volt gow:rnmen~ _surpl~ "~~1~ D•C· electric 

motor Ot ~?~·· specifications :Wa.s crlimE?cted to a worm­

gear· by me~ .. ot an iilstUated ·f1$:d,~·~iw~ 

(ii) !he. worm-gear cQIUlected ~.:·:a··aeriee. ot oth:er 
.,. . ·. . . .. ' 

gears. to a gear att-~ljed. to the sb8.tt of 'the. eontinuouelf 

variable_ control ot the. attentiator (see pl.&~ Vl, page 

49). 

(iii) sene& activation -ot· the motor reSw.ted iD 
. . ' ' . ._· 

mo~ilt ot the attEniuator. dial.. .·The rate of movement 

could. be .altered by· challging ·the.pesi~dii~ .of t.be ge~s 
' . . 

rer~ea.'to iii (ii). 

(iv) The direction of dri~ ot the m.Otor. was simply . 

controlled b,y connecting the sti~ject aDd-· .the ~·~~ter · 

switches to tWo relays .(l·and :B)'*. It e~~·mtch -~e 

closed Relay. A closed and: Relq B opened. It either evitch 
' . . . . . 

o ' I'~ ~ • + • ' I ' • • • • -:' o ' > 

were open the rever~ occUI'&d. By re~Sing ~ c:urr,ent 
. .J 

tl~ . through ielay A and RelsY,-~, . the motor. reyolved in. . 

one direction when the control SVitc!les ~re closed and 
. - . . . . . . ~ ... ~- . -. . ' ' .. 

· 1D the other direction ~ ·-~e · oon~C,l :~t~s W$te open. 

(v) Micro-switches were·pla~d at the extrem~s·of the . 
' ' -. '· 

attenus.tor dials~ The ·switch·~~ ·thS lower end or· ~e 'd181· 

short-circtd:~d the two rel8ye and stopPed ~· .. :lllotor·~ The 
' ,' ~• , ' ' • ••• o • ' : •' •• I 

. : 
relays 8.nd eonaaquentl:y the. motor ·11lml;ited0 ~ds $1ld ... ·· 

•. • ... ,. '· •.• :.. .. ! . • . . . 

fQrW&Tds~- .This prevented· the atteliuator.:~being.'dri~ri pa~ 

its l.iiQ1 ts. 

(vi) '!he .,.ehaf't ot the eon~inuo~ ~tab!&· cp~trol ot tlle 
attenuator was eoupled, via a fi..~bl.e. a:nve, to ·an elongated 

worm-g~ar. ·Coupled to the ·worm.,gear .. was a .blo~. corit~ · 

. ,·-s 

. '.( 

-.'•. 

,· · ... 

. . ' . . 

·. ·. 

. .. ' 

·'· 



_,. 

. . ·:-· .. ' 

.• -~ I~ • ," 

a pen.-. Hence ~-·mCVE!mSn~s ·of tbe atf:m)uator di~ ~6~ 
' • .... ' ' ' I ·._ ' 

· .. 
reproduced ~- ~~-:p~n. · i. .. __ ·· · · 

. . . . . . . . 

(vii) M~wmente of :fibe pen ~re. rec~rd~d /Qn a etrip Of 

paper. 'fb1s was kept'·mOv.izlg. qy. a fli,.ct1mr choive.:, 

_act~vated by'.: an-\~ec~~- ~~~or~, .at ~:con~~~t·,'~ed ot . 
' '· 

one inch pEh- minute. 

'---.-
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. ·, -· .. ' ., . 
····,.' 

( Vui) ·. The copttnUOo.~i~· ~~1EiblEi. contJ-oi ·: ~~·:· tJ19:·: a~~n,ilator ,_ 
'; .. ;-, '· ' -~· . . . . . . -... . . . '' 

was linear. :O'Ver. most of\ it~.:, ;range: •. Senc'e':~.S :long ~:.:::tJ:i~~ at~nuatar . . . .' . . . . . : . .. . . .' . 

vas ·WrJr~·. on this :t'ange the. Une~ ~tion<~t ·-th~ pen 

w~ ~eCily· related to the. ~ount. :()f. a:f;teplJ~ti~n· . 
• -.. ! ., •••• • . .. 

.. ·.· 

'.:. 

. : .. 

-..... 

•: . 

:' . 



~-~ · ... 

·, 
-~· . ::: ... ' ., ... 

Copy pf ooim-atiqt) .C1Jfwt ~-£Or ste.nd&;d- Eazyliontr 
'. . . ' •· .. '• .·. : :·-: .. 1; >>. ·· ... · .. . ·.: : •", '/' ·, -~ :: ... · . ' t. ~: :' .. 

TEST :CERTIFICAt~· 

4Q26.oA HE11D :RECEivER. 
. . · ... - ' 

·', 

and electric&J.q, tested and is satiSfactory. 
. ... . . -

.. ·s .··. 
20 .• 

.-, 

·., ·:-
•,. 

',, .... 

-~ .:.. 1 · ... 

•'·· 

; •:· 
,; 
': 

.. : . .;: 

··. ,.-·· 

·. ·.-.·. 

.The response.in db. al;IQVe. 1' ·dhae per·,~,' ~.o.::per: Wlt is·'gt~n-·: ·: ':· .. 
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1000 
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:8000. 

'" 
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··Sgreentpg .. 
-•.:-. 
,:.• 

Pro~edure z Af~ ~ subjects. ~d· completed ·their Factice 1:J88$~ona ... _ 

the)" were carefully . screened bT meSIUJ. of tvo tests. ~. eUJ:rdllate Q;y ' . ' ., . . . . . 
· ... ·.· . 

subjects stif'tering t.rom abn~ties of ~~~ or ~,t:ghteiled sus­

ceptibility to TTs.1 · The two tests ~ed t~ tb;is PurPOse were : 

(i) Me~ements of the abaolute·~thresh.old ~ ~aririg. w 

. .... 
'· 

• .. 

·a modified ~d of limits.· 

(11) A. ~ied test tar abnormSl susce_ptibilit7 to TTS 

~P~ from a nrecruitment t.eflt~ deviee~ b7 car,:hart·· {1957). 

fbreshold :measUI"'8lii9nts were takeri at· tl!equenc1,es ot ·Sao,, loOO, 2000, · · · 

~000, 40001 6000 and 8000 cps •. ·fbe subjects. W.e -~·~ monlm-al.ly asiDg :~ 
. . . . • 'l. . • ..• ·:.' .• ~ 

OJll¥ -the first. ch8nnel of the .app•atus. ~hiring. tiles~ me~~ents the.· 

~ditied ·Jtarconi : attenuatQr was ased ·as .an orcii.haz7 continuousq variaJ?~e 

attenuato:r.,· not as ~' stlb.fect/eX,PEiri:Jnenter. contr~ed ·attenuator. The 
. : '. ' r· ' ' '• ·. ' ·:-:. 

· subjects ~e te~dmonaursll::v" on both ears. 

fhe proCedure adopted in these tests was Bs foll~ I 

-··.1 .. -•... 

(i) The subject ente~d tbe test· room ~ ns. shown the· sWitch 

controlling the signal Ugh1; system. They Wzie ~acted to press::. 

·..;~;_; '•'~ s1¢nal.lig4t switch whela they could hear a to~e and to relea~:. 
'· ·' ,.• . 

. i~ ·Wilen they could not hear the ·tone, ~-~· to ·Jteep the·~-
light oft when they could hear the tone and to .. keep· ~ signal 

light on wllan they could not bear _the tone. 

(ii) Before the ~sting began, the intensity o' the· tone was 
. . 

redg,ced to well below the eubjects' threshold. 
' . 

(iU.) When the subject was settleq.in. the .. test roOIJi: the. intep~~:'.: .. 
. . :. '· .;·· . •. 

ot the tone was in~ased in s· ~·.steps tmtil h8 :responde:d .~o it~ .. 

The intensity at. tbi.s point was noted.. · 

(iv) The intenSity of 'the 'tone was d~creased ~ 10 c1b. below 
•'' ·, .. 

the intensity noted in (iii) 'and then increasea in.' l db. 'step~ 

until the $ubJ.eet again ~~sponded to- the to~~·. ~:. lnte~si ~, ··e.t . · 
... . .~· . . . 

this point was -rec~rded. 

1 This was done mmw t-or. ethical re~~~ . :$1~ subj~ct~· could. have 
' . ' . ~ 



(v) The intensity of the tone was inares,sed to 10 db. 

above the intensity noted in (iii) and then decreased in 

1 db. steps until the subject ceased to respond to the 

tone. The intensity at this point was recorded. 

(vi) The threshold was determined by taking the mean of 

the two values obtained in (iv) and (v). 

207. 

Judgements on the suitability of subjects for inclusion in the experiment 

were made by comparing the threshold values determined in the above 

manner with values obtained by Sivian and White {1933) and by assessing 

the general t.requen~-threshold relationship. 

Since the testing was carried out under laboratory conditions, it 

was decided to use laboratory rather than field surveys for comparison 

purposes. It was also decided to use a laboratory study in which 

measurements were made in terms of Minimum Audible Pressure rather than 

in terms of' Minimum Audible Field. The former equates more closely to 

the technique and earphone calibration used in these experiments. The 

choice of Sivian and ~lhite's data was arbitary. Other d,ata, such as 

that of Waetzmann and Keibs (1936) would also have fulfilled the above 

conditions. However, the discrepancies between the available studies 

were not large enough to have seriously affected the acceptance or 

rejection of subjects. The screening criterion was that the subject 

should not g~u.d the threshold values obtained by Sivian and White by 

more than 10 db. at my test frequency. The 10 db. criterion was 

chosen, since Steinberg and Munson (1936) have obtained a standard 

deviation of 3.1 db. tor individual variations in absolute threshold 

measurements. 

The modified "recruitment test" was thought to test abnormal 

susceptibility to TTS. Carhart noted that in cases of end-organ 

deafness "adaptation of' the ear to tones around the threshold occurs 

very quickly." He claimed that subjects tailing to respond to a test 

tone for 60 seconds at 0 or +5 db. re their threshold are suffering 

from recruitment, i.e. pathological end organ damage. Because of' 

possible errors in the threshold measurements used for screening in these 

experiments, it was decided to modify Carhart's criterion. The revised 

criterion is given below. 
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The following procedure vas adopteii in adiij,tni-s~ :tJle testa 
'.. . . : . 

. (i) A tone of a given tre.qwmc7. wa~ ·e.djuSt8d .to 10 .db. 
' ' ' ' I 

below the threshold va.J.ue· detmmin~ f_or. that frequency · 

in the. threshold ··scree~ t.est .outlined above·. 
' 0 w' ·,.. ' '" 

(ii) It the subject tailed :to ~spond to .. the· toiJ~ at 10 

db. ~ threshold value ~~s intensitT ~ ~~ased 1n 

5 db. steps untll he did respond to' it. 

(iii) ~n the subject responded to· the tone then tbe · 

:tone was maintained at th1·s 'iliteilsi t7 ~evel e1 tber tor -

60 seconds or untll the aubj~t · s:topped ~~o~~ng to the 
_,· • ,,, • r • 

I I" . . ~ I 

to the tone was recorded. 
. . 

( iv) Immediat.e1y. the ton. had ~an app]J._~ tor 60 seconc18 
. .. ·~- • " • ' -· • _., f .•• 

or -ci.ateJ,;v .the subject stoppe,d- responding. its intensit)r,.was ra­

ised b;y 5 db. 

(v) The procedure cles~becr~·tui) ·d (~v.) vas. re~ated 
• • ' .- T 

above threshold. 

The test was admini stared at 10001 _4000 and ~00 cps. To t«cili1iate 
~ . . ' 

me~t $1ld. to connteract tm · eftect~ -or,.:i~tfa-subject· thresllold 
' . . ,. ,,·· . . . ' .. - . 

variation,· each tone was tested ~ tbe cmtipietion of the screening, 

tbreshol4 mea.Uements at that £reciu~n07. ·~:The criteria used for 
' • • . . . . L . 

screening purposes were a 

(1) Whether or not the subj,.ept respollded{'·to:.the .tone for oae 

minute at or below rm intenSiv le~l: ~ot 10-' db.O.Jre bi-s .·threShold 

tor tbe particular tone ~ing tested. , , · 

(11) Whe'ther or not the range .. ot ill~Siiies required to 

obta:i.D this a one minute re~onse vas E¢9atar ·~ ·10 diJ. 

~- subject waa required to p~s .,~~ sere._, cri:tel1.o11 ·a.t all three 

test. trequenoies tor-inclusion-~ the:' exp~nts. 

R_e~ts. i ·The results t~ the tir~rt' tes~ f,ll'_e ~w ·in talll.e Ia. 

At the top or tm table is gi~n the re~ts obtain~d tQr 'nt?rmal' 

t.llresho~d '.~asurements obtained' .bi Si:Vian 8,11d.:ilbi te:(l933) using 
. . -~ 

. . 

fie lie .. and tbe e21'er:lmenta:t reslil ts. are taken . 

. ' 

... 



Table Ia 

S:croening threahol.d measurements. ob:tained using a modified method of' limits; f'or each of' the twenty four 

subjects uoed in tho expertments. For comparison purposes data deri v,ed from S"i viom Wld White's ( 1933) study 

are shown. Reaultsl are gi~en to the nearest db. 

Threshold re. 0.0002 dynes/cm2 at each frequency given in cps. 

500cpGl 1000cps 2000cps 4000cps 6000cps; 8000cps 

B:Ubject 

Sivian & White (MA1?) 1t 10 5 11 115 ao 
'A. 14. 8 7: 12 ."f3 20: 

Bl 27 15 5 9 9 9 

c· 4 -8 -9 -5 0.· t8 

D -10 -- .-16. -16 -11' 5 8 

E 19 12 3 10 10 19 

F 12 12 -1 3· 9 13 
l'l) 
0 
U) 

• 

:-.r.. ' :. ; ..:.'I 



Table 1 (continued) 

500cpa 1000ops 2000cps~ 4000ops 6000ops 8000cps 

Subje.ct 

G 2.0 8 -5. -.3 5 10: 

H 10 4 4 3 5 15 

J 25: 14 9 10 13; 19 

K -1 -8 -13 -8 -5· 3 

L· -5 -9 -l -12 -3 -2 

M 19 12. 9 6 6 29 
N 16) 14 1_4. 118 20 25 
6 -6 -8 -12: Qi 5 5 
p a 6 7 9 f4 1:7 

Q 25 12 . 12: 111 15 1i7 

R 9 5 .3J 8 13 t8· 
s: 1;5 7 9 8 1'2 211 

T 2.0 13! 12 14. 11' 22 

rn 112 a; 5 5 119• 25 N ..... 
0 ... 

,,·. 

' 



Table 1 (continued) 

500C.PB 1000cps 2000cps·. 

Subjiect 

v 18 13 7 

w 12 5 7 

X -1: -5 -7 

Y! 5 6 3 

Mean 11.33 5.00 2.24 

Standall'd Deviation 9.87 8.63 8.39 

4000cps·. 6000cps 

9 15 

8 19 

-2 5 

9 14 

1'.64 10.08 

8.95 7.40 

8000cps 

19 

27 

11 

24 

16.76 

7.90 

N ..... ..... 
• 
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Tabla I!a 

.Results obtained using Carhart's test :ror abnormal 

susceptibility to TTS :ror each o:r the twenty :rour subjects 

used in the experiments. Results in the body o:r the table 

are the time in seconds :ror which the subject responded to 

the tone. A dash denotes that the test was dis·continued. 

Subject Intensity o:r sound 

A 

Bi 

c 

D 

E 

~- in db. re subjects 
threshold. 

-10 

-5 

0 

+5 

+10 

-10 

-5 

0 

+5 

+10 

-10 

-5 

0 

+5 

+10 

-10 

0 

+5 

+10 

-10 

-5 

0 

1000 

0 

18 

6o 

0 

49 

60 

9 

60 

0 

54 

58 

60 

0 

60 

4000 

0 

0 

45 1 

60 

0 

0 

0 

60 

0 

0 

0 

33 

60 

3 

47 

60 

0 

0 

53 

Frequency 

8000 

0 

7 

s2 
60 

0 

19 

38 

60 

0 

0 

54 

60 

0 

38 

60 

0 

0 

29 
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+5 - 60 6o 
,. 

+10 .... -
'r",-

-10 Q, 0 0 '..:. 
·/· 

' ~ ' 

-5 0 0 18 .· .. ; 

F 0 33 27 60 

+5 60 60 ,'!. 

+10 -
-10 a- 0 0 

-5 41 0 tS 

G 0 60 Q 48 
,, 

+5 - 60 60 .. .. ; 

+10 - - -
-to 0- 0· Q .. 

-5 0 60 Q; 

H Q 32 - at . 

+5 60 - 60 

+1'0 - -
-10 0 o .. 0·· 

'.; 

-5 Q; o. 0 
c· 

J 0 60 47 5 

+5 - . 53 60 • '.1 

+1'0 .. 60 ~ 

-1.0 Q. 0 o·. ' 

-5 0 0. 0 

.•· K 0 18 '47 0 

+5 60 60 18' 

+10 60 

-1.0 0 0- 0 

-5 0 Q, a 
L 0 59 18 52 

+5 60 57' 60 

+.10 - 60 ... 
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-10 0 a 0 

-5 6o 0 0 .. 

M 0 - a 44' 
'" ' 

+5 6o' 60 

+10 - -
-10 0 a. Q\ 

-5 32 0 0 

N 0 60 0 0 

+5 60 52 

+10 - 6'0 

-10 a· 0 a· 

-5 0. 15 0 

0 0 .5 60 0 

+5 60 .... 60 

+10 .... -
-10 Q. 0 0 

-5 0 0 0 

p 0 60 a 0 

-&5 - 15 37 

+10 60 60 

-10 0 0 o· 

-5 0 0 Q: 

Q. 0 28 12: 5 

+5 57 60 49 

+10 60 - 60 

-10 0 a 0. 

-5 0 1'9 0 
•• ·.1 

R 0 0 6o 32 

+5 60 60 

+10 ... -
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-10 o: 0 0 

-5 0 0 0 

s: 0 0 12 0 

+5 35 27 37 

+10 60 60 60 

-10 0 0 0 

-.5 0 22 0 

T 0 54 38 4.6 

+5, 60 60 60 

-tt-1 0 - - -
-5 60 16 .0 

u 0 - 38 47 

+5 60 60 

+1".0 

-10 0 0 0 

-5 0 12 2:9 

v 0 60 51 59, 

+5 60 60 

+10 ... 

-10 o· 0 Q: 

-5 53 0 3 

w 0 60 18 49 

+.-5 60 60. 

+10 .... -
-10 0 0 0 

-5 0 2:9 11' 

x- 0 18 60 30 

+5 60 60 

+10 - - ·- .. 



216. 
' . 

' 

-10 0' 0 0 

-5 0 0 31 

y 0 a· ~. 60 
'" 

+5 60 60 -
+10 - -
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to the nearest db. It can be seen from the table that at the frequencies 

teste~, none of the twenty fo~ subjects exseecied the values obtained 

by Sivian and White by more than 10 db. and that none of them diverged 

greatly in the general frequency-threshold relationship apparent in 

Sivian and White's data. 

The results for the second screening test are presented in­

table lla. It can be seen from the table that, at the frequencies tested, 

none of the twenty .four subjects used in the experiment f'ail,ed to 

respond to the-tone for a full minute at an intensity 10 db. or less 

re their threshold. It can also be seen f'rom the table ·that none of 

the subjects required a rap.ge of intensities of greater than 10 db. 

to obtain a full minute's response to the tone. 

Hence, all the subjects' used in the experiment passed the 

two screening tests and were suitable for inclusion in the experiments 

on TTS. 
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