Durham E-Theses

$$
\begin{gathered}
\text { The construction and validation of a spatail test, using } \\
\text { diagrammatic material based on projections and } \\
\text { sections of solid objects }
\end{gathered}
$$

Lawes, J. S.

How to cite:

Lawes, J. S. (1960) The construction and validation of a spatail test, using diagrammatic material based on projections and sections of solid objects, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/9634/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Academic Support Office, Durham University, University Office, Old Elvet, Durham DH1 3HP e-mail: e-theses.admin@dur.ac.uk Tel: +4401913346107
http://etheses.dur.ac.uk

The Construction and Validation of a Spatial Test, using Diagrammatic Material Based on Projections and Sections of Solid Objects.

M.Ed. Thesis submitted October 1960
by J.S. Lawes

An important development in mental testing has been the construction of tests for measuring the ability to obtain, and utilise, visual spatial imagery. These spatial tests have proved valuable in predicting subsequent success in such spheres as engineering apprenticeships, technical drawing and woodwork. They have also been employed successfully in. selection for secondary schools.

Allhough a limited number of such tests already existed, it was felt that a new test based on three-dimensional material, and particularly projections and sections of this material, could prove of value.

Two hundred possible test items, of thirteen types, were therefore prepared and "tried-out" on a representative sample of school children. An item analysis of the resulting data provided indices of Facility and Discrimination which were used to select the one hundred most suitable items.

The selected items were then organised into a revised
draft which was inserted into the selection examination for the entire ten-year-old population of a city. This largescale trial, as well as showing that the test and instructions are suitable for the age group, provided information from which tables for converting raw scores to standardised scores were constructed; enabled a second, confirmatory item analysis to be made; showing a significant difference in mean scores for boys and girls, a recognised property of spatial tests; and provided the following figures:

Range:	$1-99$
Mean:	42.1
Standard Deviation:	20.745

$$
\text { Reliability: } \quad 0.9642
$$

In an investigation with 85 boys the test correlated more highly with a recognised spatial test than with a verbal test, and was a better predictor of success in metalwork than was the verbal test.

Extended validation, notably a four year follow-up of the 85 boys, and a factor-analysis are required before it can be certain that the test is truly "spatial" with the uses associated with such tests.

THE CONSTRUCTION AND VALIDATION OF A SPATIAL TEST, USING DIAGRAMMATTC YATERRLAL BASED ON PROJECTIONS AND SECRIONS OF SOLID OBJECTS.

Thesis submitted for the degree of Master of Bducation
by
James Sidney Lawes.

CONTEHTS

Page
Chapter I Background to the Test 1
Chapter II Construction of the Test - Principles and Practice 18
Chapter III The First Try-Out Draft 24
Chapter IV The Preliminary Try-Out 38
Ohapter V Item Analysis of First Try-Out 47
Chapter VI The Revised Draft 73
Chapter VII The Carlisle Sample and Resulting Statistics 85
Chapter VIII Investigation of the Test 102
Chapter IX Retrospect and Prospect 111
Appendix A. Justification of Formula used in Chapter V 119
Appendix B. Instructions for Test Administration 123
Appendix C. Final Fomm of Test 134
B1bliography 147
Acknowledgements 153

CHAPMER 10

BACKGROUND TO THE TESE:

Historical.

Mental testing originated in the latter half of the nineteenth century; when Sir Francis Galton devoted some time to devising tests aimea at classifying men accowing to their natural gifts, and to developing methods of dealing with the seaults. Galton's ${ }^{1}$ intereats ranged widely over many fielas of paychology, anthrepology sociologs, eugenicie and much else, so that although the beginaings of mental measurement date from him and from the contemperaneous work of the American Makeen Cattell; it is the name of Binet which stands high in the history of testing.

Binet, with simon, devised a series of teste aimed at measuring intelligence. These were first published, in Paris, in 1905; revised in 1908 and 1911 and subsequentiy were adapted for use in a number of countritesio This work stimulated the construction of tests of many types by a Whole series of wonkers. The last half century has seen the development of mental testing into one of the major

[^0]branches of psycholegy. Tests have been developed for Individual testing and for the testing of groupas for testing intelligence, achievement, special abilities and many other capacities and characteristics.

Whth such a wealth of tests came the need for better methods of dealing with the reaultep. As the art and science of teating grew so aid the otatistical techniques: In the later fomm of his tests Binet himalif pearted to etatistical methoas pecording perfomance in them in terms of mental age. He eatablished "mowns" for his tests, 1.e. the point on the test geale which the average child of any given chronological age would be expected to peach.

Ali peputable tests are now providec with information of this sort, that is they are gtomapeised. Devoloment of Tactor Analysiso

Apart from techaiques designed to ingrove the usefulness of any payticusar teato there hae been the development of a whole field of mathematics to ald the comparimon of measuremente obtained from a mumer of tests. This: analyes of data thas for its basic tool the coppelation coefficient, a number expressing the degree of nelationship between sets of scopes.

If the scores obtained in one test are in the same relative pesitions and of the same pelative sizes as the
scores obtained by the same individuals in a second test then the correlation between these two sets of dita is perfect and designated numerically it. If the eiecond reoults are exactiry the reverse of the eirst set then the correlation coefficient (r) becomes -1. A comrelation Which is neither perfect nor invensely perfect is repremented by a decimal fraction between 1 and -i. A variety of methods is availabile for the calculation of x ".
C. E. Speaman was one of the firgt to see the value of applying corpelation methods to mental test pesuits and. the development of analytic techniques owes mach to himb He devised many of the mathematical methods and himeelf used them in attempts to explain the structire of the mind. Using techniques guch as his "tetrad difference" method on corpelation coefficientes, Speaman obtained reaults from which he formulated the theory that the correlations can be aceounted for by a postulated gemeral factor of ability ' g '. which operates in the performance of all the teete, and specific factors which are brought inte use onis in particular single teata This Two-Factor theory fipst formulated by spearmon in 1904 and published in detail in 1987. vas in opposition to the theories of Thopnaike and other

1. Spearman, C. (1927). The Abilities of Man.

American psychelogists who also at the beginning of the century: advocated not a common factor plus specticice but an winited neries of specific factors. These two andagonistic views have in time become moaified in the light of fapther woplo

One of the main Iines of investigation in Britain has been in the estaplishment of further faetors which oparate over a serles of tests but are not comon to all tests. That is for maner of varying tests, there is copelation of all in as far af they measume (g) and for some of them there will be further overlap over and abowe that aceoupted for in terms of g to White Spearman preforped to ampibe this to "mpectifie offerlap" and inisisted that its occurence Was pape, it ie now waval to take auch compelation as - videme of "goup factore"
mersence or gemp Factors.
In one of the eariy amalyses Burt (ilen7) published evidence of verbal mumerical and practicel group factors in sehool subjects, in addition to a general factor. Cox J. Wr' in 1928 mowed the presence of a ractor common to .. various mechanital ability testa. \therefore Cos labealea this factop

1. Burt, C. (1917) The Distribution and Relations of家ucatonal Abilltedis
2. Cox, J. Wi (1928). Mechanical Aptitudeo
"m" and states, "The outstanding feature in which the, "m" tests aiffer from the curtomary intelligence? tests; !....". is the spacial (sic) character of the material employed." The presence of 'm was show by spearman's tetrad difference! technique which was also used by Stephenon $(1931)^{1}$. In an investigation of verbal and non-verbal testo which showed for the verbal tests a factor "v" in addition to 'g.' but for the non=verbal tests nothing but ${ }^{\prime} g^{\prime}$.

The existence of ' V ' was corpoborated by Alexander $(1965)^{2}$ with, in adition, a group factor present in pern formance tests but not in verbal tests, This factor was called try and described as a practical factor. A further. group factor X^{\prime}, manning through measures of school attainment pentipied as "persistence or debermination" is also woipllay of note, The factors were obtained by the use of a "multiple factor". technique and conitipmed by "tetrae" malyate. Koussy (i955) in work published

 subibiests.
Tetrad Differences for Verbail Sito-teats pelative to Non-Verbal Sub-bests. J. of Bduc. Peych. XXII.
2. Alexander, T.P. (1935). Intelifigenee, Comerete and Abstract. Byite Jo. Of PBych Monog. supp. XIX.
3. EI Koussy; $A_{0} A_{0} H_{0}(1935)$. The Visual Pereeption of space. Brit. J. of Psych. Monog. Step. XX。
during the same year desdribes a tetrad analysis of 28 tests given to 16% boys between the ages of 11 and 13. Of the 15 'mpotial' tests incuuded 8 were shown to have ioadiags on a factor over and above their " g " content. This: 'he' Pactor' is explained by Koussy as "the ability to obtain and the facility to utilise visual spatiai fmageny."

This brief summany serves to show how the Two-factor theory has come to be modifled by the discovery of group factors. spearman ${ }^{1}$ himself in time came to recognise the usefulness of the group factor idea particularky in so far as it concerns " v " and ' k ' and particulariy favoured the 'Bi-factor' extension of the theory by Holzinger and Swineford.

Meanwille there had been papallel developments in America, affectang the Thomalke theories. In 1928 a pattern of verbal, muber, spatial and speed factors, simiIas to that of Burt, was established by Kelley for batterLes of tests which he gave to three groups of childaren of different age levels. Since $1930 L_{0} I_{4}$ Thurstome has been the leader of Americian factor analysis, both in the development of methods and in the interpretation of pesults.

1. Speaman, Co, \& Wyin Jones, Li. (1950). Human Ability. 2. Kelley, T. I. (1928) Crosspoads in the Mind of Man.

Uaing his "Centreid. technique he has carried out a long series of investigations and extracted what are znownas Multiple Factors, far less in muber than the opecilic factors of Thorndike and of more equal vapiance than the general plus specific factors of Speaman. They do not in fact include a faetor general to all tests. Thurstome's. fipst account in 1938^{1} describes nine factors to which he attaches names, among them being

$\mathrm{S}-\mathrm{Visual}$ or Spatial.	P - Perceptual.
N - Numerical.	$V-V e x b a l$

Subsequent work has confirmed these pactors at dif: ferent age levels and, particularly among chilapen, the factors can be shown to be not entirely Ifeependent but to reveal what Thurstone has called a second-order general factor.

We can thus see that there been some "rapprochement" between the two opposing theories. These theories depend to a considerable extent as the methoas used to obtain the factors and the fact that different methods whow similan factors, albeit under aifferent names, is significant. It matters dittle whether the malysis be of Group

[^1]Factor or of Multhple Factor type if the same factoms stili emerge: Panticularly noticeable is that both Group Factor methods and Nultiple Factor methois show the existence of verbal and spatial factors in particular types of tests.

Spatial Factome:

Attention will now be turnea to the spatial factor. The relationship between it and vapious ppactical factops will be examinea and evidence concenning the appeapance of the spatial fator and its practical uses will be sumanised. That El Koursyls "k" and Thurstone"s "st ape very similar, if not adentical, is gencrally recognimed to
 stones ounc. ototimed a factor which they calis, obviously the same as Eit Kousby"s "k"。" The evicence about the
 is not clear cut but the guggestion of slater $(1940)^{2}$ and Kerip $(1942)^{3}$ it that Spatial and Hechanteal Tests measure -imilar abilitiesg while Price (1940) ${ }^{4}$ and Derapter (1948) ${ }^{5}$

(1940). Some Grove Testiof siphtial Juagment of Pracuicel Ability: Oceup. Pajche. XIV.
3. Kerp, G_{0} (1942). Aptitude Testive for Secondary

4. Price, EeJ.J. (1940). The Nature of the Practical Factor
5. Dempater, J.B.B. (1948). The Selectors Point of Viewt Brit. J. Ed. Pgych. XVIII.
conclude that spatial and perfomance testa measure the same ability; at least in sone cases, Vernon in his hierapehical theory in its aimplest form, proposes a major group Pactor kith covering apatial. performance and mechanical tests for most practical purposes. He suggests
 Cox's m^{\prime} is Iargely composed of ' K^{\prime} alsol"e Watts ano slater (1950) ${ }^{3}$ magest that there ic a range of 'nom-werbal' abilities from those that are exppessions of genemal mental ability, through problems involving spatial pelationships without actual manipulation, up to those that require manipulation of comepetematerials.

Thepe is ample evidence to confirm EI Koubisy's conelusion that a ppatial factor operates in certain types of test mituation Although slater in 1941 ${ }^{\frac{4}{2}}$ and again with Bennett in 1943^{5}, euld find no evidence of a spatial factor when propking with chilaren agea frem $10-13$, pe-analyges

1. Vernon P. Es and Pamy J. Be (1949). Personinel selection in the British Porceis.
2. Vernon, PE (1950). Op. cito

3. Slater, P. (1841). Tests for selecting Secondapy and Technical schoolchilareng Occup. Psych. XV.
4. Slater, P. and Bennett, E. (1843). The Development of spatial Judgent and its Relation to Seme Eaucational Probiéas: Ocewp. Péych: XVII.
of the data by both Adcock (1948) ${ }^{1}$ and manett $(1949)^{2}$ d.0(a) reveal definite 'k' factor. This. remalysis by manett was part of a worik in which he exmined number of ppe-
 Slater's data he confirmed the pesults of Drew $(1947)^{3}$ and showed that they could be interpreted as revealing a 'k" factor at 11. Ematt also reports high 'k' leadings in seventeen of El Koussy's tests as compaped with eight in the oxiginal wopk. El Koussy himself in the report of a lecture to the XII th International Congress of Psychology in 1948^{4} states "the existence of the k-factor from 12 upwards with certain paper-and-pencil teats is repeatedly corroborated."

Macfarlane smith (1948) in work capried out in 1934 with Scottish pupils aged $12 \frac{1}{2}$ to 14 $\frac{1}{2}$ obtained reauits which confirm those of.EI Koussy and provides the fupther information that there is a significant difference between the

1. Adcock, C. (ig48) A RevAnalyais of siateris Spatial
2. Frmett, W.G. (1949) Evisence of a Space Factor at int and Earlier.
3. Drev, L.J. (n947). An Investigation inte the Measupe4. E1 Koussy, $A_{0} A_{0} H_{6}$ (1948).. A Further Mxamination of the E-factor. XII tho Interational Congress of Psyehology.
4. Smith, I. Macfarlane, (1948). Measuring Spatiai Ability in School Pupils. oceup. Psych. XXII.
mean scores obtained by boys and girls. Tht de difference is confirmed thy the same writer in 1954^{1} in an account of a Test which measures the apatial factop at rge 11: and also by Fanct in the work cited above. A significut dex difference is now taken to be an indication that wariculas test is meanuring spatial ability.
\#vidence of the age at which spatial ability can be measutea is equally abundant. Tl Koussicie origimal pesearch was ith bojs aged $11-13$ Macfarlane smithis with
 refers to an age range of $11-13$. Hment's (1949) ${ }^{5}$ womk was specifically बesigned to bhow a space pactor at ilitan reverses Mills: $(1947)^{6}$ conciusion that Moray House space Test 1 fails: to measure the spaee factor at $11+$. Demperier $(194 .)^{7}$ und Peel (1949) ${ }^{8}$ both state that if the abollity can 1. Smith 1. Macifaplare. (1954) , The Development of a Spatial Test. Durham Reseapeh Review 5:

5. Smith, I. Mactampane. (1948). opocit. .
6. Adeock; C_{π} (1948). op. cit.
7. Bramett, W_{F} G, (1949). obecit.
8. Mille, L. F. (1947) An Investigation' irto the Properties

9. Dempatex, Jo Jo Be. (1948). op.cit.
10. Peel, E. A. (1949). Evidence of a Practicml Factor at the Age of Eleven; Brite Jo Za. Peych' XIX.
be measurea at 18 then it is equally evident at eleven． Watts and slatep $(1950)^{2}$ state cautiously that there is some hope that variations in F and ix can me masured as 11 plus．Renshaw（1950）${ }^{3}$ concludes that his spaët tests showad clear evidence of a space factor at 11 and Macferiane mith （1954）${ }^{3}$ has shown that his spatial Test 1 definitely measumes the spatial factep in assaciation with g at age il．

Practical Apol Leations．of Spatial Pestse：

It would therefore seem that in the age pange from 11 to 14 years it is posexible，using appropitate teste mat measures，to obtain some measure of the＂s fector．This is impertant ane purpose behind the constipaction of a spatial test is that it should prove of use in the allocation of children to different broad bypes of education and in addition；or alternatively，enable rame forecat to be made of a chilas potentiaisties in a partieular subject or group of subjects．

Allocation to types of education hap at present ite greatest meaning with regard to the transfer from primary to secondary schools，Figupes quoted by Yates and Pidgeon $(1957)^{4}$ ehow that the majority of Beacation Authorities in 1．Watts，A．F．and Slater，P_{0}（1950）．opecit．
2：Renshaw，T．（1950）．Fiactoriat study of two and Three Dinensional Space Testis．Pho Thesise Ediniburgh 3．Smith，\dot{I} ．保efarlane．（1954）opeciti． 4．Yates，A．and Pidgeon，D．A．（1957）．Admission to Grammar Schoole（No F．E．R．Publication．No．10）．

Sngland and Wales administer election teste for this transfer each year to those children who will "have reached the age of eleven but not the age of twelve" at the end of Augugt or the beginntng of September (actual dates pange from 51st August to and September) Since theoe tests. for adminietrative and other reasons, are given to the childan concemed in Februapy or March, the age at wich the test will actually be taken varies from approximately $10 \frac{1}{2}$ to $11 \frac{1}{2}$ years, with possibly a lower limit in those areas where. \therefore 'under-age' candidates are, permitted. In the investigations: reported by Yates and Pidgeon the subjecta were within thies approximate range, being within the lirats 10.7 to 11 l 5 on 1st. March.

These investigations were planned to correlate obtained by pupils in various tests and batteries of teate: used in allocation to secondary schools with their subsequent performanee in the second and third gears of the secondary school courses. One concluston of this research was that a battery eonsisting of: Primary Heads Asseasment weighted 4. plus standardised attainment test in haglich weichted 2, plus a Spatial Test, yielded a higher prediction than any other battery'. The spatial tent included is Spatial Test 1 of the National Foundation meries, designed
by Maefarlane smith and described by him in the work already mentioned, ${ }^{1}$

The comment of Yates and Pidgeon on the appearance of a spatial test in the battery is of particular note: "Such tests are not usually considered as useful predictors of success in grammar sehools. It is possible, however, that the abllities that are measured by this kind of teat are reiated to' subsequent success in some branches of mathematies and solence. It would seein desirable for further research to be undertaken to investigate this point."

The relation between various school subjectis and spatial tests has been the subject of a number of investigations ineluding the foliowing, referped to in order of pubilcation. Alexander (1935) in his monograph concludes that for meehanical drawing the ' x ' factor is most important, followed by ' g ' and then ' F ' and ' v ' in about equal amounts, but that for "shopwork" the order of impertance of the factors is ' X ', ' F ' and ' g '. Blaekwell, A. K. $(1940)^{3}$ in an investigation into mathematical ability obtained a factor ' 0 ' which was of next greatest importance after ' g '. This is an "operation in imagery factor, involving the manipulation of spatial and verbal data," This factor was found

1. Smith, I. Maefaplane. (1954). The Development of a
2. Alexander, W. P. (1935). Op. cit.
3. Blackwell, A. M. (1940). A Comprehensive Investigation into the Factors involved in Mathematical Ability of Boys and Girls. Brit. J. Ed, Peych. X.
to play a relatively lapger part in the mathematieal ability of boye than girieg a pointer that 'k' may at least in part, be involved.

Comelations of Verbal Intelilgence scorem and acores or a battery of sipatial and Mechonicel terit with Fhgineering Drawing and Hagineering Mathematics mana obatned by boy appentice ape reported by Hollidesp Fo (1940) ${ }^{\frac{1}{0}}$. For Higineemitie Arawing the compelation with Spatial/Mechanical tests is almolit ten timeg geater than the Verbal Intelilgence copplationg for mathematics the compelation With the veribal test is about twice that with the spatiai/
 the same writerps show signiplcant coprelations betweeñ. the Fhigineering Drawing and the apatial and mechanical tests, ug to 2 years 7 monthas after the tetets mere admilnistered.

In an Inquitry into tests of techaical aptatude, Shuttleworth (1942) ${ }^{4}$ rouna that the three tasts which correlated

2. Holliday, F. (194in) A Further Investigation fnto the getection of Apprentices for fite Engineering mavetry occupo prych XV:
3. Hiolliday, F (Ig43) The Relathoin between Pgychoiogical Test scopes and subequent prontriency of Appirentices in the Brgineering Industry. Occup. Psych. XVII.
4. Shuttleworth, C. W. (1942). Tests of Technical Aptitude. Occup. Psych. XVI.
most highly with performance patings on the complete course of subjects in a Junior 蜢echaical School were Space Perception, Designa (Feproduction) and Fom Relations-

Holzinger and Swineford (1946) ${ }^{1}$ concluded that "correlations -o.o.0 thalcate that the general factor is a mach. better predictor of geometry than is the orthogonal apace factor. For shop wowk and drawing, the predictive value of these two factors appears to be peversed. ${ }^{n}$ On the other hana both Barakat (1954) and Wrigley (1958) in factorial studies of mathematical abilities provide evidence of a definite connection between geometry and the spatial factor. .

Finally three Investigations of Macfarlane Smith will be quoted, In 1948^{4} he reports significant coprelat ons between spatial scopes and the Art, Practical Geametry. . Fngimeeping Drawing and a Drawing Test coppelations with Handwonk and Algebra were not signiffcanto The 1954^{5} meport

1. Holutinger, x_{0} Jo and smefona Fo (1946) - The Relation of tho Binactors to Achievement in Gemetry and Other sulbectio. J. of Educ. Peycha XxXII.
2. Baxakat, M. Eg (1954) A Factorial Study of Matheratiteal Abiluties Brit. J. of Prycho statosect. IN.
3. Wrigley, Jo (2958) The Factorial Nature of Ability in Elementaxy Mathematice Brití J. Ed. Pbych. XXVIIL
4. Smith, I. Macramilane (1948). opecito
5. Smith, I. Macfarlape. (i954). opecit.
shows that for most technical subjects Spatial Test it (N.F.E.R.) is a more valia measure of ability than is the Kent'Senior Intelligence Test; while in 1959^{1} mapks obtained in school examinations in Fingineering Drawing, metalwork and woedvork are stated to corpelate highly with Spatial test 1 with an interval of three yeara between teat and examinations

Such is the background to the present work which is a report on the construction of a spatial tert suitable for pupils in the age range $10 \frac{1}{2}$ to $11 \frac{1}{2}$ years, the standapdisation of the test on an appopriate population and the coprelation of this test with marks in certain mehool subjects.

1. Smith, I, Macfarlane (1969) gelection for technical Education Joumbal of the Institute of Education of Durham Enitereity: Voi. 10. No. 51.

CHAPMER II.

CONSTRUCTION OF THE THESE-
PRINCTELAS AND PRACMTCE

In the construction of a test of this nature certain principles of test construction should be observea. Thee principles are designed to improve the test in three important attributes, olojectivity, Reliability and Vailaity. obiectivitir. A test is objective (a) if the items are set so that each person elswering a particule item is faced with the same situation ana understands what is expectea of him; (b) if the possibie answers areso designed that there is only one correct answer; and (c) if the checking and acoring of the answers is definite and rigid so that each and every mariser will give the same score; the personal, aubjective opinion of the marker having no influence. Reliability is the degree of accuraey with which a test measures. A test has high reliability if re-test a group of subjects obtains practically the same scores as in the original teating.

Validity, itest is valia only in so far as it measures: that which it purports to measure.

These three characteristics of any test or examination are not separate, independent entities; peliability is greatiy influenced by objectivity and validity is limited
by reliability. All three are greatly improved by careral planing, careful design of items, the try out of these iteme on a population reprecentative of that for which the test is intended, and statistical analysis of the items to select those most buitable for the final fom of the test.

In the preinminary planing the purpose of the teat and the nature of the material should be carefully delimited. In the ppesent wonk the purpose is mplactit in the title words "and Vaildation of a spatial Test"; that is the test is to be spatial, anstrument for mearuping the 'dactor, and is to be valid for the purpose propoece in Ghapter I. the pilecation of pupils to school courses. This means that throughout the design of test items there is present the idea that those items must have the semingiy twofold puppose of testing "the ablility to obtain and utilise visual spatial imageny" and also be of predictive value towande certaln echool eublects, in particular mathematicaly scientific and technical subjects.

As for the nature of the matorial this is stated in definite temms as "diagranmatic materiai based on projections and sections of solid ebjects." Three dimensional material has been chosen for the test since frmett ${ }^{j}$ (1949) has shown that higher k-loadings are obtained in items with thpee1. Ermett, W. G. (1949). Op.cit.
aimenional objects than with two dimensional objects. although the more recent work of Yates and Pidgeon. show that a Spatial Pest based mainly on two-aimensional material complated more highly with their criteria of suceess than did spatial Test brsea on three dimensional material. The work of Renchaw (1950) ${ }^{2}$ aico showed that the space factor is involvea in both two and threeedifensional tests, with a alight indication that it is the two-dinensiomil tests which ape mepe closely linked with the factor.

In theory the number of items prepared should be at least twice the number which will be included in the final form of the test and these items shoule be-varice in type, cover a range of dieficulty and have simple sybtems of: responise and of mamyting. A totai of 200 itams were in. fact prepared with these points in mind and are aeseribed more fuliy in chapter III.

Far more itcmere preparea than will ultimately be pequirea so that a statistical malysis may be camica out to select items which ape of optimum vaiue for the intended. purpose of the test. This andysis, which greatly improves: both Rellability and Validity, is campied ontu on the pesulte obtained from a byyout of the test on a popgitation similam 1. Yates, At and Pigeon; Do Ao (1957). Opocit. 2. Remehaw, T. (1950) - Opecit. .
to that for which the test is designed. This sample should number between 100 and 200 and be fully represertaWive. :The sample chosen in this instonce was frem Gramidr and Secondary modern pupilis in their firgt year at those sichools and contained both boy and girls. Details of the try-out are found in Chapter IV.

Item abaylytif is the precedure by when thoge item are belected which contribute with greatent efficiency to the success of the tess a whole. Itoms which ape anewered correctly \quad all candidates or those mawered corpectly by no candiate contribute mothing to the predic tive value of a test. Therefore for all items a Facility Index; that is the percentage of candidates answering the Ltem correctiy, is calculated ad those with very high or very low facility ape rejected.

It is not enough that items should be within a given range of Facility, it is also necessamy that each item chosen should be capable of discriminating between those who possess the measured ability to a high degree and those who possess it to a lower level. Facility and diserimination are different coacepts; the fact that 50% of testees answer an iteri correctiy does not necessarily mean that they all possessi the ability to be measured to the some degree. Diseriminating power of an item can be defined as the degree
to which suceegs on Eailure in that item by itself indicates sucess or failure in the test as a whole Defined in this Wry the Discrimination Index of an item ean be calculatea. by using total score in the test as the criterion This 1s the method which has been used on the items deseribed, details of the analysis being pperented in Chapter V.

The items selected in this way form the revised draft of the test for standerdisation and validation. This. . revised draft is discussed in Chapter whe whe the standardisation on a complete year gooup of pupils in a city; is: described in Chapter VII together with a mecond item analysis and the caleulation of reliability coerficient

Validation, Within the terms discussed at the beginning of the chapter, involves showing that the test (a) measumes spatial ability (b) has predietive value. These two eriteria of valiaity are not of necessity separate. Pariler the phase "semingiy, twofold purpose" has been used about the test becaure while it is possible that success in the test could compelate highly with mariss in sehool subjects for the sole reason that some test items were designed with the purpose in mind, it seems most lizely from previous reacapches ${ }^{1}$ that guccess in these subjects coes in fact depend, at least in part; on apatial ability, The eriteria could be therefore, not entirely aepapate but overlap to some extent.

1. See Chapter I section on "Practical Applications."

To obtain a measure of the extent to which the test does in fact measure spatial ability a factorial analysis of the test to provide K -loadings of the various sub-tests would be required. This is a time-consuming process and is not included in the present work, but in Chapter VIII correlations between the test and recognised Spatial and Verbal tests are reported together with correlations with the second criterion, success in school subjects.

CHAPTER III.

THE FIRST TRY OUT DRAFP.

For the firet draft of the test two hundrede items were devisea. These items are thirteen types, all of them original desiges although, as will be shown later, some wre inspired dy items in previoushy pubilshed tests, but with constcerable modification to thiee-dimensional matierial. In all items an attempg has been made to present a problem in three dimensions; in the majopity this is. achicved by using oblique views of solid blocks. In some aubeterts these blecks have been shaded to give the impression of solidity, in others simple line drawings are used, there being no evidence available as to which type of diagram achleves the best results.

If the possession of the k-factor indicatee "ability to obtain and facility to utilise visual spatial imagery", then test items should requipe for their solution both the "ability" and the "facility to utilise". The spatial image to be obtained in the items deacribed here, is that of the solid object and the utilisation or manipulation of this image is inciuded in the solving of the problem.

In many cases the types of problem posed deal with projections and sections of the solids and means have had to be devised for presenting such problems without introdu-
cing terms such as "projection" "section" and "profile" which would place a premium on the testee "s knowiedge. It is axiomatic in test construction that instructions should be underetandable by all, that the weakest pupdil should undergtand what he is expected to do even if he hais not the ability to mgke the correct response. Ten of the thirteen sub-tethe in the firgt draft are preceded by detailed instructions and trial items to ensure fuller understanding. These instructions were based on informal trials with chilaren of the appropriate age ronge.

The sub-testg were designed in a number of forms including Multiple iotce, Matching, Equations and True/ False, with a vaplety aleo of methods of remponse. In ail methods of response the overriding consideration haw been that of gimplicity in Multiple Choice the placing of a cross (x) on the chosen answer, in Matching the witing of the appropriate letter under a diagram, for example, In two sub-teste, Fand M, the remponse 1 af a more complicated aature, consisting, in the former, of putting circles round ${ }^{\prime \prime}$ is in a pattern, and in the latter of drawing Innes on a given shapen

In all items, except those of the last sub-test M, the mapking is entirely objective, there being but one correct answer, 211 others being wrong, In sub-test M
this is not and luping the manking of it a list has been comperea of admissible reaponses.

Sone thought wais given to the mechanical aspect of marking. At pirst it was inteneea that all answers should appear at the right hane edge of a page to facilitate the use of a maxiking list, but on second thoughts this was abindoned in favour of having the response placed dipectiy oni or under, the appropriate diagrams. This was done in the interests of the testees aince it simpiried the instructions and also eliminated any error which might occur in transferring mentally the response decteed on frem its position in the problem to the end of the iine.

The 200 items of the first draft were diviece into two tents of 100 item each for the Pifet Thatout, and progented in duplicatece fomm. The composithtipon of the two tests was as followts

Test I consisting of 6 sub-teation

A.	Counting Faces,	20 items.
B.	Plan Viewno	10 items
c.	Pyopines,	30 itherso
D.	Block Buaiding.	10 itemb.
E*	O.vernjutig Patteras	10 itemis.
F。	3-D Networks.	20
	Total	100 items.

0_{0}	Front and stae mievations	10 Itemg.
H.	Foxm Boaple:	10 items.
I.	Thiree sectionso	10. 2 tems.
J.	Nails in Blockso	e20 items.
K.	Corner Recogritiont	10 Items.
L_{6}	Vertical sectionso	20 Items:
M ${ }^{\text {col }}$	Paper Foldinge	20 Itemso

 following exame
A. Counting meree ngge 16

In this teat an oblique viem of a bolld is shom together with plan theme of each type of face found on the solide - The pupill ia required to mank on each plan a number Indicating how many times that particulap face appeaps on the solld, hot forgetting the bae and those feces which are not seen. sconhing is stratghthomapit one point for each face corpectiy nutbered. In ally there ape 8 solide With 20 faces referwed to themp

Phigure is

B. Plan Vterits Bigg R_{6}

Each question shows a solld model formed by placing various shaped blocks together. A oross (X) has to be placed on the one of Pour diagrams which shows the view looking down on the model. There are ten toms in all.

Figure 2\%

The itams in thite sub-teat mefer to four blociks A, B_{B} 0 and Dhom at the top of the pages the blocke are A a cube, B a flat square equal to hals the cube, a double cube and D a double flat square. Fach question shows the front elevation of two or more of these blocks placed to-
gether: An Xhas to be placed on the cornect one of three diagrame showing the profile srom the right hand aide. In all there aro 00 theme the ifust ten ohowing the blocks in the eame positions as illuistrated at the start of the test, the eecond ten whth gome of the blocks turned wound and the thind ten with some of the blocke nsed moxe than once.

A

\qquad

B

Tigure 3

B. Brock Buthaing Figure 4:

Inspined jointigy by the Ethting ghapee of Hacfantane Smith and the Squane completion of Wattos both of whith use twotamonistonai matertal, the items of this subentest conatot of apawinge of a laiget cube ow yectangitar block gitus four malies blocies, mhee of these malin blocke placed together form the large block A cross (X) 18 placed on the one small block not requisedis

In the study of Chemistry is in the understanding of structural fommilaes, There is also about it an element of Pattern Recognition translated Into three dimensions.

A regular pattivn of 25 opgsses is ppesented together With a diagram of a solid block the visible comners of which correspond to a number of the crosses. Circles have to be placed round these crosses. Although in effect calling for the representation of a three-dimensional drawing this type of task does not suffer from the usual aifficuities encountered in markeing drainings since a correct solution is only obtained by circilng the appropisiate eposses. The marking is entirely objective.

Figure 6.
G. Bront and Biderineration.
H. Borm Boang

I. Thrsee Sections.

These three tests all employ Matehing methoas. In
G ten solid blocks have to be matched with palirs of drawings showing front elevation and side view. H is an attempt at a Fown Boawd on paper with shapes representing holes to be filled by given objects. I is another attempt at presenting
the probiem described in E_{y} aboveg with obsects being matchea vith sets of thsee sectuonsi

 explanatony Thetritetions include the tinfomation that hole x is vevtteal and les or to ts tode unfertinedy:

Y Does nail $A-A$ pass across hole X ? YES NO
8 Does nail $B-B$ pass across hole X ? YES NO

Ftumer

A thereedimens onill vantant of Down Recogntition, this test provides threeding draytinge of comene copled from bloek inlustwated at the head of the page The letter of the apmopriate bliock has to be placed under each alagram:

1....
\because

2

3

4.-.-

Pigure 8_{5}

L. Vent cal Section Plgure 9.

This is an attempt at posing straightrownan problems involving sections The position of a vertical section is inaticated on a block and there le a chotce of three (In later jtems, foup) alternatives, on one of which a crose is to be placed.

Pigure 9.

Viewing the material have any significant effect on the scores.

These then are the thirteen types of Atems which comprise the try out draft. Sub-tests H, J and X wepe not preceded by practice tests, it being felt that the instructions given at the head of the test paper were in each case sufficient for all pupils to understand. This belief was borne out by the facility figures obtained from the tyy-outs In all other sub-tests a practice test was worked immediately prior to each test. These practice pages included more detailed instructions than those given on the test proper, sample items, and one or more trial items. The answerp/s to these trial items were given duping the practice period and time was allowed for relevant questions.

It is probable that the instructions given in some of the practice tests suggest to a certain extent the method of approach required to reach the solution. Examples of this are Test I (Vertical sections) in which the instructions are as follows:-

This diagram represents a wooden block which is to be sawn vextically into two parts in the place shown by the dotted lines\%

In this next ditugian the two haives ape motred apant to tho the cut race. Whle cut sate is stiated.

The dut face is the arme ulinge as one of these thave awaninge

B

C

END

\square

END

 as manteat
maghtia trenungece use thtat-

And you see that they form this objects-

That the instructions auggest the method of approach probably in no way affects the value of the test as a measumement of tat. It is mope probable that, since the instructions tend to invoive the use of spatial imagery, the testees will tend to use their spatial ability, pather than other abilities, to answer the ppoblems,

Scife 130 cogles of each of the two halves of this try out draft were duplicated by the author from stencils prepared either directiy by himself or by Gestetner IImited using a photographic process\%

GAPTERT IV.

As stated in an eaplier chapter a preliminamy try-out of the teat items on a sample population provides the figures from which indices of difriculty and of diserimination can be calculated. Other adrantages albo accrue from auch a try-outs the clarity or otherwise of the instructions becomes apparent, some indication of the time requared to answer the items is obtained and any difficuities arising in the manking aystem can be checked.

The try-out of the first araft was cappied out, in July 1958 on a sample drawn from the school poputation in the County Boreugh of Gateshead. In thin axea selection at $11+$ results in allocation of the pupils efither to one of the selective schoole, comppising two Gramay Schools, Boys and Girls, and a milxea Secondaxy Technical Schooly or to one of a number of noneselective secondary sehooino The try-out ample consisted of a repnesentative group of those in their firat year at these various chools, that Is to say it was a omple of pupils who had aat an $11+$ selection examination during the previous year.

The test was administered to a total of 109 pupils in fowr different schools; Boys' Gramar, Girls' Grommar, Law Fell Mixed Senior and shipeote Senior Boys. The actual
numbers from each school ase shown in table D_{o}

SCHOOL	BOYS	GTPUS	TOTALS.
Boy ${ }^{\prime}{ }^{\text {c }}$ Grammes	15	-	
Gin2's Grammar	$\underline{2}$	15	$15)^{30}$
Low Fell Mixed	35	15	48)
Shipeote Boys	4	-	31)
notals.	79	50	109

$$
\text { table } I_{\phi} \text { SAMPLS POPULAMTON - UNSELECTKD. }
$$

The testing was capried out over a period of 10 days In the last few weeks of the sumner tesm and efforts were made to keep the test situation as uniforif as possible in the foum schools. The usual aryangements as to spacing of deske, prevention of copying, anewering of questions etc, were adhered to as far as practicable and all instiructions given by the teat aupervisor, not in every case the author, weme read from a prepared scripts No special attempt was made at motivation except to state that this was a new test and the object was to investigate the teat. This resulted in excelient co-operation and all prapils exhibited a high degree of what might be called "test sophistication", i.e. they were obviousily Ianiliar with paper and pencil tests and the general rules governing their administration.

Pleasure was expregsed at doing tester rather ther descons and requests for mone tests were conmon.

The two tests of 100 items each were adminietered separately if poscibie on consecutive days, ancimay with Test il (sub-tests A-F) Cipsto The teacher in charge. following exactiy the procedure in the instmation seript, Instructed the pupilis when to tum over, when to follom in their own booklets the instructions for the practice test and when to stapt each sub-test. He also read out the answers to the practice best and answered questions relevant to the practice tests. During the womaing of each subutebt no questions were allowed. The mules read to the pupils at the beginning included the initmuction that they shouid omit any iten they were wable to anower and ge straight on to the next and that they fhonid las dom thetr pencils when they reached the end of the subtotesto In this way the lavigilator wac ale to bee when all paila had completed any particulain sub-test.

The question of the time to be allowed for cach subtest was considered tery caperuly Which is essentially one of Power rather than of oquedy it Ls uauily stated that ampe time shoula be allowed. To quote Thornatise (1949) the test chould be given with quite 1. Thomalke, R, (1949) Persomel selection.
ample time limits．so that most individuals will have a chance to try all itemst＂

In theory all pripile should have time to complete all 1tems，but．the situgition oceurs where all except one，or possitoly two，pupile have finished the eub－test ond these one or two are unikely to reach the end within teamonable time；op due to inabllty will completely fail to 鉊mish the test．Obviouiest some limit mist be set to odie with this astuation if onily from the point on vicemphation Other chilaren will begin to lose interest cyed grolionged Walting．But there is a more limportant neasono To mea－ sure spatial ability，items are designed which depend on vieual imagery for thetr golutions Thope calowed with the ablilty are able forovide the anmepionth littine difficuity or heritationg Given very generous the limitis it is poseible that those not so enamed will be gie to aprive the corpect selution by some other meanim guch as counting sides or compers．．In such a case the tert ceases to be an accurate instimont for the measurement of th．

Fop theme peanons the supervisor of each group was． asked to stop pupils workang when 75% had completed the gub－test．A form was provided on which the time of com－ meneement and the time of stopping of each automest was noted．It was found in practice that on those teats which
coula be completed rapiaiy all papils had sinished before a count of pupils lasizg down their pencils could be made. Examples of this were sub-tests E and H.
: The seripts from all the schools concepred were maniked ana checked by the author and hit wife. There being one answer, and one only, to each item, each correct response counts one mank giving a maximuth possible total of $\dot{\text { qu }} 00$ on the thirteen suboteats Duping the marking note was made of the solutions when were to be acceptea and those which were to be rejectea in Test $M_{\%}$ the only sub-事est wich is not entirely objectives Maring alee gave liformation as to the suitability of the inotructions printed in the test. In one or two cabes responses were made in wheh; while the intention of the pupil was clear and therefore the paper was vall, the natume of the responge was not that required. For example, the placing of a tick by a diagram lantead of a eross on it, or ceossing out the weong altorative instead of underlining the corpect one such eases pesilitea in more emphatic instructions being included in the revised draft.

Taking the pupils in the two gramax schoots as being representative of the total population in the first forms of the selective sehools and the pupils from the other tchools as being the waselected portion, the figures in

Table I give the following percentageas-
Selective Schoolst - $\quad 27.58 \%$
Non-Selective Schoolet- $\quad 72,48 \%$
But figures supplied by the Director of Education show that the percentages in the total school population of the age group axe:-

Selective Schools:-	23,55\%
Non-Selective Schoolsi-	76.45%

Since it is essential that a sample shoula approximate as closely as possible to the true population, six seripts fyom the grammar schools were rejected by random selection. To keep the proportion of boys to givis in the grammar schoolsample as close as possible to that actually exdsting in the schools the seripts of 4 boys and 2 girls were rejected. The composition of the sample therefore becomes that shown in Table II.

SCHOOL	BOYS	GIRTS	momats
Boy's Granmar	14.	-	11) 24
Gir2's Granmay		13	13) ${ }^{4}$
Lew Fell Mixed	38	15	
Shipeote Boy ${ }^{\text {² }}$ s	31		
romats	75	28	103

TABLE II. SAMPIE POPULATION - AFTYBR SETEGGION. The proportions of this sample now approximate very closely
to those existing in the true popitation as shopm in Table IIT

	POPULAOTION	SAMPITE
Selective Schools	23.55\%	20,3\%
Non-selective Schools	76.45%	76.78

The ages of the 103 puntils in the ampie on the day the firat half of the teat was administerred were caiculated in years and completed months. These ages yanged from 11 yeame 10 months to 12 yeams 10 montlas with an avepage of 12 yeams 4 monthes

Whe paw sconea obtained by the 103 pupilid sanged from 39 to 207, the posstble total belng 200, These scomes
 Deviation of 30s8is. The distribution of the scomes Within the range is bhow in Table IV and a Frequency Poisp gon appears in Pigure tit These Bhow that the asiotribution is negatively sherved.

TABLE IV. DISTRIBUTION OP RAW SCORESG
This alsemess of the curve can be explained, in pont at least, by two chapacteristics of the sample. Fingto the ample is rather overbalanced in favour of boya second. the average age of the samgle is sane 15-16 months highen than the age of those for whon the test is intentea, As will be seen later, allowance is made for this age dinerence in the selection of items for the final araft.

The basis for the selection of the items is the analysis of the data obtained from the try-out deserthed above The lengthy procedure of ftem analyais demands a chavter to itself; this chapter follows.

GHAPTVER V.

ITXEM ANATYSTS OF RTRSY TRY

The purpose of the analysis was to provide data by which to select those one hundred items which appeared to be most efficient in measuring spatial ability, For the selection two figures are required, an Index of Facility, and an Index of Discrimination.

The Facility of an item is a measure of the ease with which pupils are able to obtain the correct answer. It is usualiy expressed as the percentage of the sample population which succeeds on that item. A high Facility Index therefore indicates an easy item and a low index an item of some difficulty.

The Diserimination Index is a figupe which indicates the degree with which auccess in a given item can be taken as a sign of possession of the ability under investigation. To obtain this figure the results for each itemg in tuwn must be judged in relationship to a standard exiterion. In theory the most appropriate criterion is an external one such as the score obtained on a similar type of test which is of proved value as on instrument for measuring the ability in question. In practice an internal oriterion is more often used, this usually being the total scose obtained on the test under construction.

While the first method gives, as the index, a measure of item validity, the latter indicates the degree of Internal consistency between items. When a test consists of more or less homogeneous items, internal consistency is a good guide to the more desirable items, although it has to be remembered that the consistency may be auc to some factor other than that intended. If however items have' been carefuliy designed at the outset this danger is possibly avoided.

Goodenough, $(1950)^{1}$ writes "the use of total scone as a criterion for evaluating the separate items can best be justified when the test is of a kind that deals chiefly with the knowledge of facts or the possession of specified skills." With a test of the type described in this thesis the use of the internal oxiterion is, therefore, not inappropriate. All the items have been devised ith the purpose of measuring spatial ability, and so a fair degree of interconcelation is expected. For this reason, and in the absence of a suitable extemal eniterion total scome on the experimental draft of two hundred items has been used in the analysis here described.

Methods of calculating the disomimination index ave many and varied but they fall into two contrasting eate-

1. Goodenough, Fo Io (1950). Mental Testinge
gories, called by Vernon (1948) ${ }^{1}$, Grouping Methoas, in which criterion scores are divided into two or more categories, and Distribution Methods, in which eritewion scores are treated as a continuous distribution, In practice the difference between these two methods is that with Grouping Methods the scripts are taken in order of criterion score and the response for each item tabulated, while in Distribution Methods, the criterion scores of those who pass an-item are tabulated and also the scores of those who give other responses; this procedure being repeated Por each item. This means that Distribution Methods entail far more clerical work but that they provide more information particularly about incorrect responses.

Sxperimental data quoted by Vexnon in the work cited show that, in Pact, Grouping Methods involve only about half the time taken by the other methods. Time available being an important limiting factor in the work here reported this conclusion of Vernon's weighed heavily in favour of using a Grouping Method of calculation.

Other considerations involved in coming to this decision were, (a) since the correct responses to the items are fixed objectively by the nature of the items,

1. Vernon, P_{0}. B_{0} (1948) Indices of Item Consisteney and Validity. Brit. J. of Peych Stat. sect. Vol. I_{0}
detailed analysis was not essential, and (b) compection for guessing is easily applied to grouping methods, and It was felt that such corpection might be necessaxy in certain sub-testse

Having decided upon 'total test scowe' as the oriterion and Grouping Methods as being most convenient it was then decided that the first anaiysis should be by the Upper and Lower Thipds method used by Moray House. In this procedure scripts are first divided into three equal groups according to the critepion score, and then for each item the proportion passing that item in the upper third is compared with the proportion passing in the lower third, the Discrimination Index being calculated according to the formulat-

$$
D=\frac{U_{-2}}{\frac{\pi}{3}}
$$

where $\mathbf{U}=$ Number giving compect response in Upper Gyoup I $=$ Nimber giving correet response in Lower Group $\mathrm{N}=$ Total Number of Testees.

Recording the Data,

Whare the number of pupils tested is large this use of only the Upper and Lower Third of the aistribution results in a considerable reduction in the work involved in the tabulation of scores. With numbers in the region
of 300 upwapds it would be permiseible to calculate the Facility Index on the percentage passes in these two thipas only, but with a total of 103 asaes to be considered it is advisable to use all avallable data in the calculation of Item Fecility. Thepefore the responses of all the 103 pupils were recorded on score sheets of the type illustrated in Figure 12 one sheet being used for each one-thind of the pupils,

FIGURE 12. SCORE SHGET SHOWING CORRECT RESPONSES (/) wrong responses (w) omitted itcme (0) and ITEMS NOT ATTENPTES (T)
response, an item attempted but omitted, or an item not attempted, was recorded on the sheet to facilitate the application of a guessing corpection if this proved necessary. The distinction between an omitted item and one not attempted is that given in Thornailke (1949) ${ }^{1}$:"assume that all items up to and including the last one for which an answer was marked were attempted and that the first unanswered item after the last answered one was also attempted. We then assume that stouting with the second item after the last one answered the remaining items were not tried,"

When the score sheets were completed the Total for each ittem in each third of the sample was transforped to record cards ruled as in Figure 13. Fach card beaving the data For ten items.

1. Thorndike, $R_{0} L_{\text {e }}$ (1949). Persomnel selection.

M - Paper Folding.						
THICRDS	$\begin{gathered} \text { UPPERR } \\ 33 \end{gathered}$	${\underset{36}{\text { MIDDLE }}}^{26}$	$\begin{gathered} \text { LOWISR } \\ 34 \end{gathered}$	$\begin{gathered} \text { TOMAL } \\ 103 \end{gathered}$	FAGILIEY	$\begin{aligned} & \text { Drscrnax } \\ & \text { WATIDIf } \end{aligned}$
Item 1	$\begin{aligned} & 35 \% \\ & 26 \% \\ & 38 \% \end{aligned}$	34% $14^{28 / 0}$ 30%	$\begin{aligned} & 30^{5 / 1} \\ & 2^{31 / 1} \\ & 15^{19} 0 \end{aligned}$	$\begin{aligned} & 97 \\ & 42 \\ & 78 \end{aligned}$		

FIGURE T5. RECORD CARD FOR TOTALS IN EACH THIPD. EACH
COLDMN RECORDS CORRECT RESPONSES, WRONG RES
PONSES AND OMITYTED ITHMS IN THE ORDER EW/O.

As Figure 13 shows the number of scripts inciuded in each thivd was not the same. This situation apose because there were four pupils with a total score of 135. This score was the dividing line between the upper and middle thirds and so the four scripts could be included in elther group. It was decided to inciude them in the midale "third" to give proportions of 33 : 36 : 34 and so avoid the inflation of the discrimination index which would result if they were placed in the upper third with proportions of $37: 32: 34$.

Galculation of Bacility Indices.

From the data collected in this way the Facility Index for each item was Pirst calculated. This was done in the first instance by using the raw scores, that is, expressing the total right responses (R), uncomrected for guessing, as a percentage of 103. This was followed by a second series of calculations using seores to which as guessing correction had been applied, where applicable, and expressing the corrected total right responses (RC) as a percentage of $103-N A$, where NA is the number of pupils not attempting the item. In terms of formulae the two methods are
(I) $F=\frac{R}{103} \times 100$.
(II) $P=\frac{\mathrm{Re}}{\mathrm{IOS}=\mathrm{NA}} \quad X 100$

The guessing compection applied is a version of that given in Thornatke (1949) ${ }^{1}$

$$
\operatorname{Re}=R-\frac{V}{n-1}
$$

where $\mathrm{Rc}=$ Compected rights.
R = Rights.
W = Wrongs (and does not inciude amitted or not attempted items.)
$\mathrm{n}=$ number of response alternatives.
I. Thorndike, R. I. (1949). Op. eit.

The two sets of indices found by these calculations ase set out in Tables Va and Vb . Those given by formula (I) will tend, in maltiple choice items at least, to be inflated since no correction has been applied; those found by formuia (II) will not surfer from this defect but will be affected by the denominator being the number which attempted the item and not the complete sample. This assumes that if those pupils not attempting items had in fact attempted 1t, their responses would be in the same proportions as those actualiy recorded. This is probabiy a false assumption since the siow pupils not attempting the later questions are often those who have most aifficulty with the items. However, using two indices in conjunction will give a fair approximation of the true difficulty level. On the first examination of these indices two things are apparent; in sub-test C (Pwofilies) a lavge proportion of the items are of considerable difficulty, hale being of less than 20% facility) and in sub-test J (Nails in Blocics) the average aifference between the Indices found by the two methods is appreciably more than in any other sub-testo This second point is explained by the fact that this is a YES//TO type of test and therefore the "correction-forguessing" formula becomes simply "Rights-mimesmongs" and gives a relatively lower compected total than in any other
56.

ITEM	(I)	(II)	INTM	(I)	(II)	ITYM	(I)	(II)	ITHEM	(I)	(II)
A 1a	73	73	B 6	39	24	C 21	26	16	56	87	83
2 a	94	94	7	68	60	22	42.	24	7	67	52
b	96	96	8	69	62	25	22	9	8	25	7
c	95	95	9	78	76	24	18	10	9	65	50
3 a	91	91	10	54.	48	25	26	8	10	50.	57
b	93	93	C 1	53	31	26	46	43	F1	48	48
c	43	43	2	61	42	27	23	11	2	37	37
a	84	84	3	66	50	28	18	12	3	42	41
4 a	88	88	4	65	49	29	18	3	4	19	19
b	65	65	5	43	21	30	39	47	5	31	31
5 a	94	95	6	50	27	D 1	88	84	6	39	39
b	74	75	7	53	31	2	38	80	7	14	14
6a	76	77	8	22	6	3	28	5	8	50	50
b	82	83	9	44	20	4	52	14	9	44	44
c	59	60	10	28	8	5	57	45	10	28	22

5%

sub-testif The level of difficulty found in sub-test C suggesta that many of these items should be rejected in a revised draft, but this can only be adequately decided by Viewing the Facility Indices in relation to those for Discrimination, therefore the question must rest until the latter indices have been recorded. Disorimination by Unoere and Lorer Mnisds Methody

As stated earpier in this chapter the Diserfmination Indices were first calculated by the Upper and Lower Thirds method, using the formula $D=\frac{\mathrm{V}_{\mathrm{K}}, \mathrm{L}}{\mathrm{L}}$ and the meorsected Figupes on the record cards. This procedure produced a total of 57 items having Discriminations of 645 or higher, a IIguse chosen as the selection point for peasons discussed later.

In an effort to find mose items that might possibly be of fair discriminating power the analysis was repeated, uaing the same method but with the formula beconing $D=\frac{V_{e}-\text { Ie }}{\frac{\pi}{3}}$ When ${U_{c}}_{c}$ and I_{c} are total right responses, in Upper and Lower Thipds, after guessing corvection has been applied, the method of corvection being that already afscussed. These calculations resulted in a total of 68 items which reached the . 45 level of aiserimination.

A complete list of the indices found by these two sets
of calculations can be found in TABLE VIII. A summary table showing the distribution of the items fulfiling the eriterion is given in TABLE VI.

These figures proved to be insufficient to select one hundred items for the revised draft of the test. The totals quoted, 57 and 68, are totals of those items reaching a discrimination criterion, regardless of difficulty. The figures are of value only in so far as they indicate that certain sub-tests, mainly B. E. F. L_{0} and M_{0} are far superior to others in their discrimination as complete sub-tests.

It was therefore decided to analyse the figures on the score sheets by a method which made more use of the available data. This decision was influenced by the discovery that there were items in which all, or many, of those giving the correct answer were in the upper third, but the Discrimination Index was low because the total numbers of these successes were less than 15. Examples are Items 7, 16 and 80 of sub-test F, the figures for these being:Unper Third Middie Third Lower Third Discrimination.

Item 7	11	3	0	0.32
Item 16	11	3	0	0.32
Item 20	6	0	0	0.17

It was felt that where all correct responses were in the

TABLE VI. DISTRIBUTION OF ITEMS WITH DISCRIMIINATION INDICES OF 0.45 OR MORE BY UPPER AND LOWER THIRDS METHOD* COLUNA 1 - CALCULATED ON RAW SCORES. COLUMN 2 - CALCULATED ON CORRECTED SCORES. $\mathrm{N}_{\bullet} \mathrm{A}_{-}=$CORRECTION NOT APPLICABLE.

Upper Third then that iten was discriminating noro aucceanfully than this trpe of inder shoved, and thet biat pas required was on indor minich depended upon the percentage of succeas in the respective thirds rather than upon the totals succeedine.

Discrimination by Plenouan' 3 Product-Moment Nethea.

Such an inder ic that outlined by Elenagan (1039) ${ }^{1}$. This index is obtoined spora a chart chich is based on the Pindings of Kelles (1939) ${ }^{2}$ that upper and lowor crowec containing trenty-seren per cent of the cases ceos ortinum for certain related extimations. From tho cinert can be found values of the peoduct-moment coenticient of cermolation corresponding to given proportions of s?cecss in the upper and lower trenty-seven per cent of the criterion group.

Thornalize $(1949)^{3}$ describes this as "tho most satisfactory item validity index based on the upper and lojer twenty-seven per cent", and prints as an appendis to his

> I. Flanagen, J. C. (1939). Gonersi Considorations in the Selection of Test Iters and a Short Mothod of Estimating the Product-ilonent Coeficient Irom Data at the Tails of the Distribution. J. of Ectuc. Poych. Vol. सxh.
2. Kelley, T. L. (1939). The Selection of Upper and Lomer Croupa for the Validation of Test Itens. J. of Educ. Psych. Vol. 20 KI .
3. Thorndike, R. L. (1949) Op.cit.
book tables based on Flanagan's chart. All that is necessary is to convert scores in the groups to porcentages and then read off the correlation values by entering rows and columns at the appropriate points.

The score sheets used for the Upper and Lower Thirds method were utilised for obtaining tie requisito percentages. On these sheets the names and scores of those \mathfrak{b} and 0 pupils, of the upper and lower thirds respectively, who did not come within the 27 per cent were "blacked out". This left 28 names and scores on each sheet; 27\% oi 103 betiac 27.81. The procedure which then collowed was both simple and economical in time. For each item the number giving the right response in the upper third was counted and converted to a percentage by slide rule, this was then repeated for the lower third and then the product-moment correlation read off from the table. The results of the analysis were highly satisfying, there being 129 items which had coefficients greater than 0.45 , and of these coefficients 102 घere greater than 0.5. The distribution of these coefficients within the sub-tests is shown in TABLR VII and Figure 14, the complete list is given in TABIE VIII. Examination of these flgures confirms the conclusion of the earlier onalysis that sub-tests B, E, F, L and M are nost superior in discriminating power and also add sub-tests A and I to the 1ist.

FIGURE 14. HISTOGRAIIS SHOWING DISTRIBUTION OF DISCRIMIITATION INDICES BY FLAINGGAN'S METHOD.

Before discussion of the procedure employed for selecting items on the basis of these figures, some justification of the criterion levels adopted must be presented.

SUB-TEST.	No. of Items.	NO. OF COBFPICITENTS*	
		$=0 r>0.45$	$=$ or >0.50.
A - Counting Paces	20	16	14
B - Plan Views	10	9	8
C - Profiles	30	12	9
D - Block Building	10	3	1
E - Overlying Patterns	10	9	6
F - 3-D Networks	20	19	18
G - Front and side	10	8	4
H - Form Board	10	0	0
I - Three Sections	10	9	7
J - Nails in Blocks	20	3	1
K - Corner Recognition	10	4	1
I - Vertical Sections	20	17	14
M - Paper Folding	20	20	19
TOTALS		129	102

TABLE VII. DISTRIBUTION OF DISCRIMINATION INDICES OBTAINED BY FLAITAGAN'S PRODUCT-MOMIMTI METHOD.

Justification of Criterion Level.

In the selection of items two methods can be used. Either the items are placed in order according to their

Diserimination Indices and the top one hundred taken to form the revised test regardiess of the point at which the line dividing this hundred from the rest comes, or items can be selected which reach, or exceed, a predetermined level of discrimination. This latter method has been used here, with a discrimination index of 0.45 taken as the criterion level. An attempt will now be made to show why this level was chosen.

Goodenough (1950) ${ }^{1}$ suggests that "some point in the distribution of the 't' statistic will be chosen as the dividing line" and goes on to say that "Most people have found that a value or ' n ' or of ' t ' that reaches the 25 per cent level of confidence is sufficient to justify the inclusion of an item in a test made up of not fewer than 50 equally weighted items."

In "Upper and Lower Third" indices the criterion commonly used by Moray House is 0.45. This can be shown amply to fulpil Goodenough's conditions. The "t" statistic or Critical Ratio of a sample statistic is usually determined by dividing the observed value by the Standard Error of that value. The Standard kror of a U - I index can be calculated by the following forrmula of Johnson, A. P. (1951 ${ }^{\text { }}$)

1. Goodenough, F. L. (1950). Mental Testing.
2. Johnson, A. P. (1951). Notes on a Suggested Index of Item Validity: the U*I. Index. J. of Educ. Pbych. XLII.
S. E. of $U-L$ Index $=\frac{1}{I} \sqrt{R U+R L-\left(\frac{R U^{2}+R I^{2}}{Q}\right)}$
where $R U=$ Rights in Upper Group.
RI $=$ Rights in Lower Group.

$$
f=\text { size of group }\left(\frac{N}{3}\right)
$$

Substituting in this formula the values which would give an index of $0.45 \mathrm{viz} . \mathrm{RU}=30, \mathrm{R}_{\mathrm{L}}=14.5, \mathrm{P}=34.33$ we get:-

$$
\text { S. E. of Index }=0.1016
$$

This figure will give a Critical Ratio of 4.427 which far exceeds the figure required for 25% level of confidence and, in fact, easily satisfies the 1% level of confidence. The tables supplied by Fisher ${ }^{1}$ show that for $N=30$ the Critical Ratio at the 1\% level of confidence is 2.750 , the value for $N=103$ will be lover than this.

Turning now to the Product-Mament Correlation of Flanagan, two formulae will be used to show that here again indices of 0.45 and above satisfy the 1% level of confidence. The first is taken from Chambers' $(1952)^{2}$ who states that for small samples the significance of a product moment coefficient should be assessed by the formula

$$
t=\frac{r \sqrt{N-2}}{\sqrt{1-r^{2}}}
$$

1. Fisher, R. A. (1946). Statistical Methods for Research Workers. 10th edition.
2. Chambers, E. G. (1952). Statistical Calculations for Beginners.
substituting $\mathrm{r}=0.45$ and $\mathrm{N}=103$

$$
t=5.063
$$

which easily satisfies the conditions.
The second formula is taken from Zubin $(1936)^{1}$ who quotes it as being "the usual fommla" and uses it in an example about the selection of teat items that differentiate significantly between two groups. It is:-

Where $P_{1}=$ Proportion succeeding in Upper Group.
$P_{2}=$ Proportion succeeding in Lower Group.
$Q_{1}=$ Proportion failing in Upper Group.
$Q_{2}=$ Proportion failing in Lower Group.
$N_{1}=$ Number in Upper Group.
$\mathrm{N}_{2}=$ Number in Lower Group.
This formula can be shown to be another variation of

$$
\frac{\text { Observed Value }}{\text { S. E. of Observed Value. }}
$$

The full proof is set out in Appendix A.
Substituting in this formula the following data of
item K. 9 which has an index of 0.45.

$$
\begin{array}{lll}
P_{1}=90, & Q_{1}=10 . & N_{1}=28 . \\
P_{2}=54, & Q_{2}=46 . & N_{2}=28 .
\end{array}
$$

1. Zubin, J. (1936). Note on a Graphic Method of Determining the Significance of the Difference between Group Frequencies. J. of Ed.Psych. XXVII.
we get

$$
\text { Critical Ratio }=3.274
$$

which once again more than adequately fulfills the demands of a 1% level of confidence.

On all this evidence it can be concluded that vith the two types of Discrimination Indices here employed a criterion level of 0.0 .5 can safely be used for selecting suitable items.

Selection of Items for Revised Draft:

In a test of the type described in this thesis, where the items are grouped into sub-tests and where the subtests are preceded by practice tests, it is not practical to select items solely on their showing in the lists of Facility and Discrimination Indices. The selection must be on the basis of statistics plus practical considerations. It would, for instance, be highly impracticable to include the one item from Sub-test D which satisfies the momercal requirements for this would entail the printing of practice test and instructions for one solitary item. What has to be looked for are sub-tests winich as a whole satisfy the requirements or from which sufficient items can be extracted to form a sub-test of suitable length.

Apart from the consideration of mintmum size for any given sub-test there is also a practical limit to the number
of sub-tests. A disproportionately large number of subtests will increase the time required for the test with consequent danger of loss of attention and interest. Printing costs also have to be considered, a six sub-test booklet requires 24 pages, which musi be viewed as the upper linit.

With these points in mind, and setting statistical requirements of (a) Discrimination Indices to be equal or greater than 0.45 and (b) Pacility Indices to be between 35\% and 95\%, the data set out in Table VIII was examined. The limits to the Facility Indices were set at 36\% and 95% to allow for the fact that the age range of the sample population was fourteen months higher than that of the population for which the test is ultimately intended.

From the data of Tables VI, VII and VIII and Figure 14, it was concluded that the following sub-tests Fere most suitable for inclusion in the revised draft, with the proViso that those items which failed to reach the required statistical levels should be either completely replaced or revised to bring their Pacility Indices within the required range.

Sub-test A Counting Faces.
B. Plan Views.
E. Orerlying Patterns.
P. 3-D Networks.
I. Three Sections
L. Vertical Sections.
M. Paper Folding.

The manner in which these tests were organised into the revised draft is discussed in the next chapter.
71.

ITEM	DISCRIMINATION		FACILITY		ITEM	DISCRIMINATION			FACILIIY	
NOS.	12	3	I	II	NOS.	1	2	5	I	II
A 1a	0.47	0.64	73	73	C 21	0.52	0.44	0.66	26	16
2 a	0.12	0.51	94	94	22	0.32	0.44	0.39	42	24
b	0.06	0.40	96	96	23	0.32	0.22	0.54	22	9
c	0.09	0.46	95	95	24	0.38	0.23	0.54	18	10
3 a	0.12	0.51	91	91	25	0.15	0.19	0.20	26	8
b	0.15	0.54	93	93	26	-0.19	-0. 19	-0.15	46	43
c	0.32	0.46	43	43	27	0.29	0.25	0.35	23	11
d	0.17	0.32	84	84	28	0.35	0.26	0.54	18	12
4a	0.17	0.40	88	88	29	0.17	0.06	0.27	13	3
b	0.41	0.53	65	65	30	0.09	0.27	0.08	39	47
5 a	0.15	0.54	95	95	D 1	0.12	0.20	0.27	88	84
b	0.38	0.57	74	75	2	0.32	0.34	0.36	38	20
6 a	0.32	0.57	76	77	3	0.12	0.15	0.15	28	5
b	0.12	0.28	82	83	4	0.38	0.42	0.50	32	14
c	0.44	0.54	59	60	5	0.08	-0. 07	-0.03	57	45
7 F	0.44	0.54	51	51	6	0.12	0.04	0.25	23	4
b	0.32	0.51	76	77	7	0.47	0.60	0.64	61	52
c	0.15	0.58	90	91	8	0.09	0.14	0.23	62	56
$8 \mathbf{8}$	0.52	0.61	58	58	9	0.17	0.23	0.22	70	70
b	0.17	0.58	90	91	10	0.23	0.15	0.45	23	9
B1	0.290 .40	0.66	88	84		0.35	0.39	0.48	76	75
2	0.380 .50	0.71	83	78	2	0.47	0.68	0.65	78	68
3	0.060 .08	0.15	32	10	3	0.09	0.15	0.46	93	90
4	0.440 .55	0.61	56	43	4	0.52	0.66	0.61	49	28
5	0.410 .53	0.51	55	44	5	0.52	0.48	0. 59	37	17
6	0.470 .50	0.60	39	24	6	0.20	0.29	0.48	87	83
7	0.550 .72	0.82	68	60	7	0.50	0.78	0.66	67	52
8	0.350 .43	0.48	69	62	8	0.26	0.22	0.31	25	7
9	0.500 .62	0.78	78	76	9	0.47	0.67	0.58	65	50
10	0.760 .85	0.82	54	48	10	0.70	0.79	0.85	50	37
C 1	0.410 .61	0.48	53	31		0.52		0.63	48	48
2	0.380 .50	0.42	61	42	2	0.70		0.79	37	37
3	0.200 .32	0.26	66	50	3	0.61		0.65	41	41

ITHM NOS.	DISCRIMINATION			FACILITY		$\begin{aligned} & \text { ITEM } \\ & \text { NOS. } \end{aligned}$	DISCRIMINATION			FACILITY	
	1	2	3	I	II		1	2	3	I	II
a 1	0.20		0.63	88	89	K	0.15	0.20	0.41	91	88
2	0.55		0.70	64	65		-0.03	-0.03	0.00	94	92
3	0.35		0.71	83	84	3	0.15	0.27	0.40	83	79
4	0.23		0.51	85	86	4	0.17	0.23	0.58	88	84
5	0.15		0.25	80	81	5	0.03	0.05	0.00	95	93
6	0.15		0.44	87	88		0.26	0.35	0.48	84	80
7	0.15		0.35	86	87	7	0.20	0.28	0.29	76	68
8	0.20		0.48	86	87	8	0.23	0.31	0.32	64	52
9	0.29		0.49	80	80	9	0.32	0.42	0.45	75	69
10	0.06		0.40	92	96	10	0,26	0.31	0.48	81	81
H1	0.17		0.19	39	39	I 1	0.12	0.19	0.51	95	93
	0.03		0.08	88	88		0.26	0.41	0.63	84	78
3	0.38		0.42	57	57	3	0.38	0.57	0.44	56	36
4	0.20		0.23	67	67	4	0.61	0.92	0.73	70	55
5	0.23		0.22	50	50	5	0.61	0.92	0.73	59	40
6	0.03		0.33	97	97	6	0.64	0.79	0.70	53	37
7	0.15		0.37	88	88	7	0.55	0.84	0.78	72	58
8	0.12		0.37	84	84	8	0.64	0.83	0.73	52	34
9	0.09		0.23	89	89	9	0.70	0.96	0.84	72	60
10	0.15		0.32	78	78	10	0.29	0.45	0.45	67	52
I 1	0.32		0.49	79	79	11	-0.06	-0. 07	-0. 04	28	27
	0.38		0.70	81	81	12	0.41	0.53	0.44	42	23
3	0.44		0.51	53	53	13	0.09	0.12	0.27	83	77
4	0.20		0.58	92	92	14	0.32	0.44	0.37	63	50
5	0.55		0.82	71	71	15	0.61	0.77	0.71	46	29
6	0.26		0.48	78	78	16	0.38	0.50	0.59	72	63
7	0.17		0.51	92	92	17	0.67	0.84	0.79	51	37
8	0.32		0.57	82	82	18	0.67	0.89	0.87	63	52
9	0.41		0.72	82	82	19	0.61	0.81	0.75	57	45
10	0.23		0.29	69	70	20	0,61	0.81	$0 \cdot 64$	59	48
$\bigcirc 1$	0.12	0.26	0.23	85	71	1	0.09		0.46	94	94
2	0.15	0.29	0.40	85	72	2	0.70		0.77	41	41
3	0.09	0.20	0.28	87	77		0.52		0.78	76	76
4	0.00	0.03	0208	62	24	4	0.50		0.54	50	50
5	0.17	0.35	0.58	92	85	5	0.58		0.67	59	59

CHAPTER VI.

THE REVYISED DRAFT.

As stated at the end of Chapter V, the selection of items can be approached from two points of view, theoretical grounds and practical considerations. Theoretical grounds are based on the statistics of Facility and Discrimination, and these have already been utilised to find those items which satisfy the criteria of
a) Facility between 35 and 95.
b) Diserimination 45 or greater.

A further theoretical consideration which has important practical consequences is the type of distribution of scores which will be obtained when the test is applied to a population of reasonable size. The distribution of raw-scores in the First Try-Out approximated to a Normal curve. For a test, such as this, intended for selection, a raw-score distribution which approaches the Rectongular is of greater service; since a 'cut-off' can be made at any point. Therefore when considering the items from the point of view of Facility, an even spread over the whole range should be aimed at.

The practical considerations already mentioned are printing costs, dependent on the number of sub-tests included; and length of working-time when the test is administered. It was decided that twenty-four was the maximum
number of pages which could be entertained. Working as the basis that the minimum space necessary for a sub-test preceded by a practice test is 4 pages (2 sheets), this booklet size therefore limits the number of sub-tests to six. Within a sub-test the lowest "economical" number of items was fixed at 10. ("Economical" being used here to indicate the ratio of items to practice testo) The total number of items aimed at was one hundred.

From the figures of Chapter V, the sub-tests selected as possibles on the statistical grounds numbered seven which together contained 110 items:-

A - Counting Faces.	20 items
B - Plan Views.	10 items
F - Overlying Patterns.	10 items
F - 3-D Networks.	20 items
I - Three Sections.	10 items
I - Vertical Sections.	20 items
M - Paper Folding.	20 items

The first stey was therefore to reduce the number of subtests to six and the number of items to one hundred. Inspection of the seven subetests showed that sub-test F is the only one which does not employ three-dimensional diagrams, relies for its response on some knowledge of "equation-form" and is possibly the one test of the seven
which most relies on ' g ' rather than ' k '. This test was therefore ruled out thereby reducing both the number of tests and the number of items to the required levels.

The remaining six tests, hereafter called the 'selected tests', obviously contain some items which fail by wide margins to reach the statistical requirements. The efforts made to improve or replace these items will be detailed, but first a slight digression will be made.

The six selected tests were all, in the Try Out Draft, preceded by practice tests. Is this due to chance or can some reason be found for it? First it must be pointed out that while the unselected group contained all those tests ($\mathrm{H}, \mathrm{J}, \mathrm{K}$) not preceded by practice it also included four tests (C, D, E, G) which had previous practice. That is, tests which had practice were also rejected, some narrowly such as E and some at an early stage of the analysis, e.g. sub-tests C and D. In other words those tests provided with practice items form a series of suitability ranging from the very poor to the good, and some therefore fall in the selected group and the rest in the unselected. Turning to the umpractised tests (H, J and K) it is seen that these items satisfy on Facility but have been rejected on Discrimination. In H and K, particularly, the Facilities
are high and thus the items would fail to discriminate. Possibly these sub-tests would be more useful with a lower age-group. The same corments can be made, to a certain extent, about sub-test J, but here there might be some other factor inherent in the nature of the test or due to the draughtsmansiip of the drawings which would present problems inconsistent with those posed in the other subtests. From this it can be concluded that there are a number of reasons apart from the possession or non-possession of a practice test which affect the selection of the tests. It may be noted here that Bain (1946) ${ }^{1}$, found no significant difference between the scores obtained by a group receiving instruction and the scores of a group receiving no instruction except that which was included within the test material.

Returning now to the re-organisation of the selected tests to form a new draft reference will be made to the figures shown in Table IX. The first step was to revise or replace unsatiafactory items. Starting with Test A, the figures show four iters which do not fall within the critienta limits, Of these, two have Discrimination Indices of 0.40 which, while not fulfilling the statistical requirements set, are not grounds for complete rejection of the 1. Bain, J. T. (1946). The Construction of a Space Test. B.Ed. Thesis. Edinburgh.

Items since the 0.45 Discrimination level has been shown to be more than adequate at the 1% level of confidence and it is usual to accept an index satisfying the 25% level of confidence. Furthermore, this Test, A, is of a type where a number of items are based on one diagram and efforts to improve one item by redrawing may easily have adverse effects on several items. Therefore these two items are retained. For this latter reason the other two items, whose indices fall below requirements, are also retained, Test B contains one item only which fails, on both Facility and Discrimination. This item was therefore re-drawn. The test consists of identifying the plan view of blocks placed together. The unsatisfactory item was the only one which had the blocks placed together so that one was seemingly suspended in the air; it was therefore re-drawn with the blocks placed 'on the ground. (Fig.15)

Original Item

Redrawn Item

$\begin{aligned} & \text { A-Counting } \\ & \text { Faces. } \end{aligned}$		B-Plan Views,		F-3-D		Net- L-Vertical works. Sections.				M-Paper Folding.		
Item	F D	Item	F D	Item	F	D	Item	F	D	Item		D
1a	730.64	1	880.66	11	42	0.39	1	95	0.51	1	94	0.46
2 a	940.51	2	830.71	12	48	0.67	2	84	0.63	2	41	0.77
b	960.40	3	320.15	17	57	0.69	3	56	0.44	3	76	0.78
c	950.46	4	560.61	193	30	0.63	4	70	0.73	4	50	0.54
3 a	910.51	5	550.51	153	33	0.52	5	59	0.73	5	59	0.67
b	$93 \quad 0.54$	6	$39 \quad 0.60$	161	14	0.66	6	53	0.70	6	91	0.54
c	430.46	7	68 0.82	171	17	0.60	7	72	0.78	7	87	0.63
d	840.32		690.48	182	22	0.74	-	52	0.73	8	33	0.79
4a	880.40	9	780.78	19 4	44	0.67	9	72	0.84		48	0.91
	650.53	10	$54 \quad 0.82$	20	6	0.51	10	67	0.45	10	86	0.70
5 a	950.54	-3	$\begin{aligned} & \text { Neter } \\ & \text { wopics. } \end{aligned}$	$-\mathrm{Th}$		$\begin{aligned} & \text { Sec- } \\ & \text { ionse } \end{aligned}$	11	28	0.04	11	66	0.84
b	740.57	1	480.63	17	79	0.49	12	42	0.44	12	50	0.82
6a	760.57	2	370.79	28	81	0.70	13	83	0.27	13	80	0.78
b	820.28	3	410.65	35	53	0.51	14	63	0.37	14	60	0.82
c	$59,0.54$	4	190.71	49	92	0.58	15	46	0.71	15	55	0.87
7 a	510.54	5	$31 \quad 0.59$	57	71	0.82	16	72	0.59	16	60	0.83
,	760.51	6	390.48	67	78	0.48	17	51	0.79	17	80	0.68
c	900.58	7	140.68	79	92	0.51	18	63	0.87	18	44	0.89
8 a	$58 \quad 0.61$	8	$50 \quad 0.74$	8 8	82	0.57	19	57	0.75	19	71	0.65
a	$90 \quad 0.58$	9	$44 \quad 0.59$	98	82	0.72	20	59	0.64	20	79	0.70
		10	220.68	106	69	0.29						

TABLE IX. FACILITY AND DISCRIMINATION INDICES OF SELECTED TESTS.

FACILITY EXPRRESSED AS \% OF 103
DISCRIMINATION BY FLANAGAN'S METHOD.
INDICES FULFILLING CRITERIA PRINTED IN RED.

Test F required much reorganisation. This test supplied items with good discrimination but ten items had low Facility indices. Of these ten, four were retained and placed toward the end of the test while the other six were re-drawn. This redrawing consisted of simplification by reducing the number of corners on the solid shapes and thus the number of circles required in the response (see Fig. 16)

Original Item

Revised Item

FIG. 16. REVISION OF ITEM F.16.
Test I required only slight alteration at one or two points where the 'response' diagrams might be misleading in their proportions, but in Test L one item, No. 11, required complete replacement and No. 13, simplification. The replaced item was again the only one which was not drawn as though lying on a horizontal surface. (Fig. 17)

Original Item

Redrawn Item

Fig. 17. REVISION OF ITEM L. 11.

Finally, in Test M, no alteration was made. After these revisions had been made the six tests were arranged in order of increasing difficulty except that Test A which requires only one page for its 20 items was placed last to form the back page of the booklet. Each test was preceded by a page of instruction and practice items, in substance those used in the Gateshead try-out with slight revisions made in the text where experience in the try-out indicated possible improvements. The revised form of the test thereby became:-
Test 1, Three Sections (formerly I) 10 items
Test 2, Plan Views (formerly B) 10 items
Test 3, Paper Folding (formerly M) 20 items
Test 4, Vertical Sections (formerly L) 20 items
Test 5, 3-D Networks (formerly F) 20 items
Test 6, Counting Faces (formerly A) 20 items

The revised draft was subjected to an investigation to find out how far it conforms to the requirements regarding Rectangular distribution discussed above. For this investigation two distributions were plotted, that of the Facility Indices and that of the scores obtained by the 103 pupils of the First Try Out when the scripts were rescored for the selected tests only. Both these distributions, of course, include the unsatisfactory items of the selected tests, but nevertheless are useful pointers to the ultimate success of the test.

The Facility Indices of the 100 items ranged from 6% to 96% apound a mean of 61.75 with the distribution shown in Figure 18. of the 13 indices not reaching the level of 35% set in Chapter V, eight are of items which were redrawn, four are between 30% and 35% and the items retained, and the remaining index of 22% refers to the last item in Test 5, the most difficult item of the most difficult test. The mean of the Facilities is high since the Try Out Group was of an average age fourteen months higher than the age group for whom the test is intended.

The rescored scripts of the 103 pupils show a distribution (Fig. 19) which approaches the rectangular although skewed negatively. The scores range from 16 to 96 about a mean of 61.81 and with a standard deviation of 20.105.

FIG. 18. DISTRIBUTION OF FACILITIES - SELECTED ITEMS.

FIG. 19. DISTRIBUTION OF SCORES ON SCRIPTS RESCORED POR SELECTED ITEMS ONLY ($\mathrm{N}=103$).

The skewness and the high average can again be accounted for by the age of the Try-Out Group.

As a further confirmation of the development of the test along the right lines the scores obtained by the 11 boys and 13 girls from grammar schools were compared. The means for the two groups:-

Boys 87. 64
Girls 78.92
show a difference of 8.72 which when subjected to the " t " test for small samples as described by Chambers (1952) ${ }^{1}$ can be shown to be significant at the 1% level of confidence. This significant difference is a fair indication that the test is in fact measuring spatial ability.

This revised draft was printed by King's College Printing Section, Newcastle upon Tyne, from plates prepared photographically from the original drawings of the author. A copy of the revised test is bound into the present volume as Appendix C. Since this test was to be administered to a complete age group involving a large number of schools, complete detailed instructions were drawn up in a manual reprinted in Appendix B_{6}. This manual is based on the instructions used in the First Try-Out and includes time limits for each test also based on the experiences obtained with the Gateshead sample.

1. Ghambers, E. G. (1952) Statistical Calculation for Beginners.

CHAPTERR VII.

THE GARLISLE SAMPLE AND RESULTING STATISTICS.

To standardise a test it is necessary to administer it to the whole of the required age-group in any given area. On November 12th, 1958, the test in its revised form was taken by the entire 10 year old age-group of the City of Carlisle as part of the first stage of the selection procedure of that Authority. In all there were 1,045 pupils whose ages were within the range 10 years 1 month to 11 years 2 months, with an average age of 10 years 8 months; the ages calculated in completcd months on the day of the exam1nation. This total was made up of 537 boys and 508 girls .

The scripts of these pupils were all marked and checked by the author and his wife as in the Gateshead TryeOut. The scores obtained range from 1 to 99 about a mean of 42.1 and with a Standard Deviation of 20.745 , The distribution of these scores is showm in Fig. 20, where the distribution for Boys and Girls are shown separately and in Pig. 21, where they are combined. From the performance of the Carlisle pupils a number of statistics and items of information were obtained.

Score-Age Distribution.
For a test to be of practical use it is advisable that the score of any pupil should be expressed by a number which

DISTRIBUTION OF RAW SCORES.
makes due allowance for age, the pupils position being assessed by comparison with a representative sample of children of exactly the same age. This can be done by constructing a Conversion Table from which a child's standardised score can be obtained if his raw score and age is known. The standardised scores from such a table are so arranged that they have a mean of 100 and a standard deviation of 15, and in this respect aresimilar to Intelligence Quotients.

A Conversion Table is constructed by classifying all the scores according to each month of age and then submitting the data to certain statistical procedures. To provide the necessary data the scores of the 1,045 pupils were recorded on Score-Age distribution sheets, classified according to ages in vertical columns and according to scores in horizontal rows. The two distributions, for boys and for girls are shown in Tables Xa and Xb respectively. These data were passed to the National Foundation for Educational Research for the necessary statistical treatment. Difference of Means.

From the entire sample, a measure of the difference in mean scores for boys and for girls was obtained, to confirm the earlier finding that there is for this test, as for other Spatial Tests, a significant difference between

SCORE	10.1	10.2	10.3	10.4	10.5	10.6	10.7 ${ }^{\text {A }}$	$\frac{68}{10.8}$	10.9		10.10.11	11.0	11.1	11.2	TOTALS
95-100									1	1					2
90-94			2						1	1	1		1		6
85-89		1		2	1			1	1					1	7
$80-84$			3		1	2	3		1	1	1	1	4		17
75-79		3	2	1	3	3	1	2	3		1	7	1	2	29
70-74		1	1		1	2	4	2	2	3		1	2	1	20
65-69				6	1	2	1	2	5	1	2		3		23
60-64		2	4	1	1	1	2	3	7	5		6	3		35
$55-59$	1	1	1	2	2	1		4	4	4	1	1	6	2	30
$50-54$		1	5	5		4	3	5	4	6	3	3	4	2	45
45-49		1	5	3	2	9	6	2	3	2	3	8	7	1	52
$40-44$	1	3	6	3	3	6	3	2	2	5	6	5	1	2	48
$35-39$			3	3	3		6	3	4	5	5	1	6		39
$30-34$		3	2	5	4	4	2	3	4	7		10	3		47
25-29		1	3	4	3	3	4	1	2	4	1	2			28
20-24			2	3	2	3	2	4	2		1	3	4		26
15-19		2	3	5	2	4	2	2	2	2	3	3	1		31
10-14		1	5	3	1	2	2	1	3	1	1	3	2	1	26
5-9		1	2	3	2	2	3		1	1		1	2		18
0-4			2	2	1		2					1			8
TOTALS	2	21	51	51	33	48	46	37	52	49	29	56	50	12	537

the performance of the two sexes. are:-

Boys $(N=537)$	Mean $=44.504$	S. $_{*} D_{*}=21,725$
Girls $(N=508)$	Mean $=39,56$	S.D. $=19,335$

Ratio of is obtained which shows that the difference is signiplcant at the 1% level.

Item Analysise

The item analysis carried out on the two hundred itams of the first draft was based on a relatively small sample, 103 pupils, and one whose average age was considerably higher than the range proposed in Chapter One. For these reasons, and to obtain figures for those items which had been radically revised, indices of facility and discrimination were calculated, from the Carlisle scores, for the one hundred items of the Revised Draft. These indices were obtained from a smaller sample drawn from the 1,045 scripts. This smaller sample totalled 185 , a number which was decided upon because this would provide upper and lower 27% groups of 50 scripts and so facilitate the calculation of percentages. To retain the same proportion of Boyst Girls in the sample as existed in the total population 95 scripts of boys and 90 of girls were selected. These scripts were selected by random numbers, using the tables

provided by Iindquist (1940) ${ }^{1}$.
The sample which was extracted closely paralleled the total population as the figures in Table XI and the frequency polygons in Fig. 21 show.

POPULATION	SAMPLS
537	95
508	90
10 yrs. 8 mith	10 yrs .8 mth.
$1-99$	$2-91$
42.1	42.57
20.745	20.59

TABTE XI. Comparison of Carlisle Population and Analysis Sample.

After the scripts for the sample had been extracted they were arranged in order of total score and the top 50 and bottom 50 taken to form the upper 27% and lower 27% respectively. The upper group consisted of all those scoring 55 or higher and the lower group included all those with scores less than 30. The responses for each item on these one hundred scripts were then entered on score sheets as described in Chapter Five. Again, as in the

1. Lindquist, E. F. (1940). Statistical Analysis in Educational Research.

FIG. 22. DISTRIBUTION OF FACILITIES - REVISED DRAFT.
first analysis, the totals passing in each item in the Upper 27% and in the Lower 27% were recorded on cards and these figures used for the calculations.

The Facility Indices were obtained by adding the total right responses in the Upper group to the total right responses in the Lower group. This gave a figure which can be regarded as a pencentage, since the two groups together contain 100 scripts. The indices so obtained range from 4-77, with a mean of 42.85 and the distribution shown in Pig. 22. These indices are listed in Table XII, together with the Discrimination Indices.

The Discrimination figures were again obtained by Flanagan's Method, where the percentage passing in the Upper 27% and the percentage passing in the Lower a7\% are used to read off from tables an estimated Product Moment Coefficient. The required percentages were calculated papidiy since all that this entailed was the doubling of the figures on the record cards. The resulting coefficients are shown in Table XII and their distribution within each test in Fig. 23. They range from 0.21 to 0.89 , with a mean discrimination of 0.60 .

These new indices, of Pacility and of Discrimination, show no grounds for radical alteration of the test, they confirm the ascending order of difficulty of the sub-tests,

FIG. 23. HISTOGRAMS SHOWING DISTRIBUTION OF DISCRIMINATION INDICES - REVISED DRAFT.

ITEM	F D	ITEM		F	D	ITEM		F	D	ITEM		P	D
Three 1	370.58		26	59	0.76		51	40	0.71		76	40	0.35
Sect-2	470.58		27	62	0.73		52	36	0.61		77	7	0.46
ions. 3	420.37		28	24	0.72		53	64	0.52		78	6	0.30
	780.61		29	35	0.70		54	59	0.44		79	11	0.46
5	470.42		30	66	0.75		55	31	0.50		80	6	0.43
6	570.43		31	E4	0.69		56	61	0.40	Coun-	12	510	0.79
7	580.74		32	37	0.78		57	40	0.50	ting	2 a	71	0.76
	480.56		33	52	0.74		58	46	0.71	Faces	2b	71	0.76
	520.63		34	43	0.70		59	40	0.47		2 c	70	0.77
10	430.59		35	40	0.80		60	39	0.65		3 a	66	0.59
PIan 11	680.78		36	53	0.76	3-D	61	24	0.57		3 b	73	0.69
Views12	640.77		37	58	0.63	Net-	62	34	0.54		3 c		0.43
13	690.60		38	32	0.78	wosks		25	0.58		3 d	530	0.50
14	430.47		39	44	0.64		64	29	0.63		4 a		0.57
15	600.66		40	46	0.75		65	14	0.61		4 b		0.64
16	250.52	Vert-	41	77	0.36		66	33	0.58		5 a		0.74
17	530.69	1cal	42	54	0.25		67	16	0.44		5 b		0.63
18	620.60	Sect-	43	30	0.33		68	17	0.65		6 6		0.60
19	520.56		44	43	0.59		69	11	0.33		6 b		0.57 0.63
- 20	400.63		45	32	0.56		79	15	0.47		6 C	370	0.63 0.53
Paper21	620.79		46	23	0.64		71	15	0.62				
Fold-22	370.88		47	43	0.59		72	33	0.34		7 D	540	0.56
ing 23	500.77		48	31	0.73		73	10	0.53		7 c	640	0.77
24	410.72		49	47	0.58		74	17	0.46		8 a	28	0.70
25	460.89		50	58	0.21		75	8	0.49		8 b	68	0.73

TABLIE XII. REVISID DRATPT. FACIIITY INDICES (i) AND DISCRIMINATION INDICES (D)
with the proviso that Test 6, Counting Faces, is placed last for practical reasons rather than difficulty, and show that Test 5, is more than twice as difficult as any other sub-test. Comparison of the indices obtained for revised and re-drawn items with the indices of the items they have replaced shows that a considerable improvement has resulted (Table XIII).

Original			Item	Revised			Item
No.	F	D	No.	F	D		
B 3	32%	0.15	13	69%	0.60		
I	10	69%	0.29	10	43%		
I	11	38%	0.59				
I	13	83%	0.27	51	40%		

TABLE XIII. To Show Improvement in Revised Items.

This improvement is even pronounced when viewed in the knowledge that the Facility Indices in zeneral are about two thirds of those obtained in the Gateshead Try Out, a drop which can be explained by the bis difference in avenage age of the two groups, a difference of twenty months. There is not in Test 5 (3-D Networks) so definite an inprovement in revised items, even when allowance is made for the fact that the Facility Indices of unchanged Items in this test are, on average, one half of those of
the Gateshead analysis. From the figures (Table XIV) one can conclude no more than that, of the new items, three show improvement and the others are no worse than those they replace.

| Oniginal Item | Revised Item | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. | F | D | No. | F | D |
| F 4 | 19% | 0.71 | 72 | 33% | 0.34 |
| F 5 | 31% | 0.59 | 78 | 6% | 0.30 |
| F 7 | 14% | 0.68 | 76 | 4% | 0.35 |
| F 10 | 22% | 0.58 | 73 | 10% | 0.53 |
| F 16 | 14% | 0.66 | 74 | 17% | 0.46 |
| F 17 | 17% | 0.60 | 75 | 8% | 0.49 |
| F 20 | 6% | 0.51 | 77 | 7% | 0.46 |

TABIE XIV. Comparison of Original and Revised Items of Test 5, 3-D Networks.

Reliability Coefficient.

Reliability is the degree of accuracy with which a test measures what it does measure. A test with one hindred per cent reliability would give exactly the same scores if administered a second time to a given population. It is not always possible to obtain figures for such a retest but there are two other techniques in cormon use for obtaining a reliability coefficient. One is to correlate
scores on a test with the scores obtained, by the same group, on an equivalent test, the second is to correlate the scores obtained on one half of the test with the scores from the other half. This Split-Half method has been used here.

The total score obtained on the odd numbered items was taken to form one half of the test and the score on the even numbers taken as a second, parallel form of the test. The 185 scripts of the item analysis sample were scored on this basis and the resulting scores plotted on the scattergram reproduced in Fig. 24. From the distribution on this scattergram a product moment coefficient of correlation was calculated with a result of
$r=0.9315$
This is, of course, a correlation between two tests each 50 items in length. A longer test would be expected to show a higher correlation. This correlation can be predicted by applying the Spearman-Brown Prophecy Formula:-

$$
\begin{aligned}
R & =\frac{n r}{1+(n-1) E} \\
\text { where } R & =\text { expected coefficient } \\
r & =\text { obtained coefficient } \\
n & =\text { multiple by which test is to be lengthened. }
\end{aligned}
$$

In this case the formula becomes

$$
R=\frac{2 x}{2+r}
$$

ODDS

FIG. 24. SGATTRRGRAM OF SCORES ON TOTAL ODD ITEMS (50)
and gives a coefficient of

$$
R=0.9642
$$

This means that, taking note of the fact that a Split Half coefficient tends to be a little higher than a Re-test coefficient, the reliability is high enough for the test to be of practical use.

CHAPTER VIII

Investigation of the Test

For a test to be truly 'spatial' in character it should possess those characteristics common to recognised spatial tests which have been revealed by the investigations detailed in Chapter I. of these properties the two most important are that the test should be a measure of the K-factor and that it should correlate positively with school subjects of a technical/practical/scientific bias. Investigations along these two lines have been carried out with the present test.

During the summer term of 1960 the following tests, in the order shown, were administered to all the boys in the ist and 2nd forms of the Mathew Arnold Secondary School, Oxford.
(1) Spatial Test 1, N. F. E. R.
(2) Verbal Test (Adv.) 1, R. F. E. R.
(3) "Experimental" Spatial Test

Omitting those absent for one or other test, scores were obtained for 85 boys whose ages ranged from 11.11 to 13.10 about a mean of 12.11. Since the upper age range is beyond the furthest limit of the conversion tables for the new spatial test all scores were expressed as raw scores. Product moment correlation coefficients between each test and the other two tests were calculated and are shown
in Table XV.

	Verbal	NFER Sp. 1	Spatial
Spatial	0.5789	0.7811	-
NFAR Sp. 1	0.4793	-	0.7811
Verbal	-	0.4793	0.5789

Table XV. Inter-Test Correlations, ($N=85$)

These correlations all of which are highly significant, show that the experimental test has more in common with the established spatial test, which is known to have a high K loading, than with the verbal test.

The scores on the three tests were also correlated with school subject marks but before detailed description of these, reference must be made to an earlier, limited Investigation carried out at Gateshead Grammar School in the spring of 1959. The investigation 1s deseribed as ilmited from both a quantitative and a qualitative point of view. The number of boys involved was but 20 and this constituted a 'technical stream' formed, in the main, from those members of forms $3 B$ and $3 C$, age range 13.6 to 14.6 , who had not been "creamed off" for more academic scientiflc or literary/linguistic courses. For this small group school subject marks taken from an internal half-yearly examination were correlated with scores on the experimental
spatial test and on Verbal Test (Adv.) 1. The resulting product moment correlations are shown in Table XVI.

	Woodwork	Eng. Draw.	Mechanics	Engl1sh
Verbal	-0.3054	-0.1177	-0.1411	+0.1254
Spatial	+0.1393	+0.1056	-0.4262	+0.2107

Correlation between Spatial and Verbal, $\mathbf{r}=-0.1742$
Table XVI. Product Moment Coefficients - Grammar School ($\mathrm{N}=20$).

No conclusion can be drawn from these figures but they are reported for comparison with the Secondary Modern results.

The results obtained in the Secondary Modern School were also based on examination marks obtained in the annual internal examinations held by the school. These examinations were marked 'within forms' and therefore marks could not be pooled to obtain estimates for the whole of the 2nd form and the whole of the 1 st fom. Product moment coefficients were therefore calculated within each form and, since the A and B streams followed the same syllabus and took the same examination, although marked separately, the coefficients for 2A and $2 B$, and for 1^{A} and $1 B$, were combined by transforming r to z, pooling the z values and then re-converting. Forms

1. See Tippett, L.H.C. (1948). The Methods of Statistics. Moroney, M.J. (1956). Facts from Figures.

2 A and $2 \mathrm{~B} . \quad \mathrm{N}=29$.

	Metal Wk.	Eng. Draw.	Woodwork	Science	Maths.	English
Verbal	+0.0809	-	-	+0.4203	+0.5027	+0.4930
Spatial	+0.4774	-	-	+0.2676	+0.1240	+0.4643
NF. Sp.1.	+0.5235	-	-	+0.1823	+0.2968	+0.5419

2C. $N=14$.

Verbal	-	-0.1374	+0.3465	+0.4365	+0.6822	-0.0615
Spatial	-	+0.0429	+0.1691	+0.3300	+0.1710	+0.3643
NF. Sp.1.	-	+0.2041	+0.1930	+0.3771	+0.3362	+0.2651

1 A and $1 \mathrm{~B}, \quad \mathrm{~N}=26$.

Verbal	-	-	+0.4682	+0.3216	+0.4317	+0.6748
Spatial	-	-	+0.5132	+0.2973	+0.3070	+0.0310
NF. Sp.1.	-	-	+0.2790	+0.2879	+0.3790	+0.1370

1C. $N=15$.

Verbal	-	-	-0.0463	+0.1290	-0.2396	+0.4113
Spatial	-	-	-0.0759	+0.0864	-0.1736	+0.2333
NF. Sp. 1.	-	-	-0.0457	+0.2395	-0.0883	+0.5685

Table XVII. Product Moment Correlations - Modern School.

2C and 1C followed different syllabuses with different examinations and the correlations for these forms are therefore quoted separately. All these coefficients are set out in Table XVII.

Set out in this way the pattern of correlations between the Spatial Test and the school subjects can be compared to that existing between N. F.E.R. Spatial 1 and the subjects and it can be seen also that, in general, these figures show the Spatial Test correlating positively with performance in school, the two exceptions (I.C. Woodwork and Maths) occurring where Verbal (Adv.)1 and N.F.E.R. Sp. 1. correlations are also negative. However it is probably more instructive to examine the figures by 'Subjects' rather than by 'Forms',

Motalwork

The correlations for this subject were obtained from forms $2 A$ and $2 B$ in the Secondary Modern School.

(a) | | N | Verbal | Spatial | NF. Sp.1. |
| :--- | :--- | :--- | :--- | :--- |
| Sec. Mod. 2 A. B. | 29 | +0.0809 | +0.4774 | +0.5235 |

(b) | Sec. Mod. 2 A | 16 | +0.0851 | +0.5081 | +0.5962 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $"$ | " | 2 B | 13 | +0.0755 | +0.4355 | +0.4163 |

Table XVIII. Metalwork and Test Scores.

The combined correlations shown in Table XVIII (a) were obtained from the correlations for the separate forms $2 A$ and 2B, which are shown in XVIII (b), and the substantial differences between the verbal/metalwork correlations and the spatial/metalwork/correlations suggest that, in this instance, the spatial test is preferable to the verbal test as a predictor of success in metalwork.

Engineering Drawing.

Corvelations from two sources, the 3rd form technical stream of the grammar school and the 2nd form C-stream of the secondary modern school show the same pattern, small negative correlations for metalwork marks and verbal test scores and small positive correlations with the spatial scores but in neither case are the correlations large enough to allow any conclusion to be drawn.

	N	Verbal	Spatial	NF.Sp.1.
Grammar (Tech.)	20	-0.1177	+0.1056	-
Sec. Mod. 2C	14	-0.1374	+0.0429	+0.2041

Table XIX. Engineering Drawing and Test Scores.

Woodwork

From information obtained from four separate samples of pppils no definite pattern energes.

	N	Verbal	Spatial	NF. Sp. 1.
Grammar (Tech.)	20	-0.3054	+0.1393	-
Sec. Mod. 2C	14	+0.3465	+0.1691	+0.1930
" " 1 A. B.	26	+0.4682	+0.5123	+0.2790
" " 1C	15	-0.0463	-0.0759	-0.0457

Table XX. Woodwork and Test Scores.

Mathematics

Here there is a consistent picture with the verbal
test showing greater correlation with mathematics than does either of the two spatial tests. For this secondary modern sample the most probable conclusion is that the verbal test is a better predictor of success in mathematics than is the spatial test.

		N	Verbal	Spatial	NF. Sp. 1.	
Sec.	Mod. 2	A. B.	29	+0.5027	+0.1240	+0.2968
"	"	20	14	+0.6822	+0.1710	+0.3362
"	"	1	A. B.	26	+0.4317	+0.3070
"	"	10	15	-0.2396	-0.1736	-0.0883

Table XXI. Mathematics and Test Scores.

Science

The correlations with science marks, as for mathematics, are higher for the verbal test than for the spatial tests,
although the differences between the verbal/science and spatial/science correlations are not so marked as the corresponding differences for mathematics.

			N	Verbal	Spatial	NF. Sp. 1.
Sec.	Nod. 2	A. B.	29	+0.4203	+0.2676	+0.1823
"	"	2C	14	+0.4365	+0.3300	+0.3771
"	"	1 A. B.	26	+0.3216	+0.2973	+0.2879
"	"	1C	15	+0.1290	+0.0864	+0.2395

Table XXII. Science and Test Scores.

English

English was included in the list of subjects with which the tests were correlated in the expectation that the verbal test would show clear advantages as a predictor of success in this subject. The results in the table show this not to be so.

		N	Verbal	Spatial
	NF. Sp. 1.			
Grammar (Tech.)	20	+0.1254	+0.2107	-
Sec. Mod. 2 A. B.	29	+0.4930	+0.4643	+0.5419
"	"	2C	14	-0.0615
"	"	1 A. B.	26	+0.3643
"	+0.6748	+0.0310	-0.1370	

Table XXIII. English and Test Scores.

One possible explanation of this confused pattern is that the English marks are taken from school examinations, a type of measure which has time and again been shown to be 1. unreliable.

This factor of unreliability in the marks used has, of course, to be borne in mind with each of the subjects here discussed but the correlations reported suggest that both the experimental spatial test and N.F.E.R. Spatial 1 are better measures of the ability involved in Metalwork than is Verbal Test (Adv.) 1, while the verbal test is of greater value than either of the spatial tests as a predictor of success in Mathematics.

1. See for example, Vernon, P.E. and Papiy, J. B. (1949), Personal Selection in the British Forces, and Hartog, P.J. and Rhodes, B.C. (1936), The Marks of Examiners.

GHAPTER IX

Retrospect and Prospect

The aims stated in the title of this work and expanded in Chapters I and II may be summarised as follows.

1. The construction of a test using diagrammatic material based on projections and sections of solid objects.
2. The test so constructed to be standardised for use with pupils in the approximate age range of $10 \frac{1}{2}$ to $11 \frac{1}{2}$ years.
3. The test to be an instrument for measuring spatial ability.
4. The test to be of value in predicting performance in schools.

How far have these aims been accomplished?

The Construction of the Test

The final form of the test, as it appears in Appendix C, shows that a test has in fact been constructed which utilises in all it sub-tests drawings of solid objects; the one subtest of the First Draft which did not conform to this having been eliminated in the analysis following the First Try Out.

That projections and sections are used is not as obvious since these terms have to a large extent been avoided in the instructions but Test 1, Three Sections, and Test 4, Vertical Sections, do employ a straightforward use of the section concept. Test 3, Paper Folding, and Test 5, 3-D Networks, can be regarded as requiring the projection of three dimensional
structures on to plane surfaces, while Test 2, Plan Views, and Test 6, Counting Faces, require the identification of faces other than those presented for direct viewing, these faces being of the same shape as a section or projection taken parallel to the face concerned.

Age-Range and Standardisation

Two trials of the test were carried out during the construction, one using the First Draft with a sample of pupils having an average age of 12 years 4 months and the second using the Revised Draft with a complete age group averaging 10 years 8 months. The mean scores obtained were; for the First Draft re-scored for selected items: 61.81; for the Revised Draft: 42.1. It can therefore be seen that of the two groups, the first has a higher average age and the second a slightly lower average age than that proposed, and also that the mean scores show correspondingly higher and lower levels than that usually set in mental tests. The conclusion can be drawn that the difficulty level is such as would make the test suitable for pupils intermediate in age to the two experimental groups, that is of an age of the order of 11 years. This in fact would have been the age of the Carlisle group if the try out had been inserted into the second part of the battery in February/March rather than in the first part taken in November.

The standardised instructions and the conversion tables based on this sample therefore equip the test for use with pupils nearing the end of their primary school careers, that is at the '11+ examination' age, and the test has in fact been published for this purpose by the National Foundation for Educational Research as Spatial Test 3.

Measure of Spatial Ability

In the absence of a factor analysis the suggestion that the test is 'spatial' in character rests upon two pieces of evidence.

Firstly there is the evidence provided by the difference between the mean scores for boys and girls. At two stages during the development of the test this difference was calculated. In both cases the difference proved to be significant at the 1\% level of confldence.

The second calculation can be particularly relied upon since (a) it is based on the scores obtained with a complete age group, (b) scores obtained on the Moray House Verbal Reasoning Test 59 by the same group show a significant sexdifference in the opposite direction, that is mean score for girls significantly greater than mean score for boys. This difference in favour of girls was also found with N. F.E.R. Verbal Test 8A, although in this case the difference is barely significant at 5% level. The relevant figures are
collected in Table XXIV, where all the figures are based on standardised scores in contrast to Chapter VII where the difference for the spatial test was based on raw scores.

Test	Mean (Boys)	Mean (Girls)	Differ- ence	Crit. Ratio
'Spatial' Test	101.036	97.693	3.343	3.76
MH Verb. Reas. 59	101.814	105.936	-4.122	4.42
NFFR Verbal 8A	102.335	103.873	-1.538	1.97

Table XXIV. Differences in Mean Scores - Carlisle Sample. (Note - a minus sign in column 4 indicates a difference in favour of girls).

These figures would seem to indicate that the difference in favour of the boys in the spatial test is a feature of that test and not due to some property of the sample population, in which case the sex difference can be interpreted as an indication that the test involves spatial ability.

Secondly the inter-test correlations obtained from the results of the Oxford investigation with 85 boys show that the test has more in common with N.F.E.R. Spatial Test 1, than with Verbal Test (Adv.) 1. Spatial Test 1, has, to quote the Manual supplied with it, "a high loading in the spatial factor (k), as well as in the general factor (g)", and for some years has been used for selection and has been
shown to be of some value in this context. ${ }^{\text {. }}$

Predictive Value

Chapter VIII contains details of an investigation carried out in a Secondary Modern School. It must be emphasised that this is the first stage in a much longer investigation in which it is hoped to follow up the performance of the pupils in the various subjects throughout their school careers and eventually to correlate the test scores obtained in the 1 st and 2nd forms with subsequent degree of success in external examinations taken during the last year at school.

Nevertheless, from what has already been done using Internal examination marks as the criterion a few tentative suggestions about the experimental test can be made. When the correlations between the test and subject marks are viewed in isolation it is seen that the majority of these correlations are positive and of these that between the test and metalwork ($2 A, B, N=29$) is significant at the 1% level, that between the test and woodwork ($1: A, B, n=26$) is significant at the same level and that between the test and English (2A, B, $\mathrm{N}=29$) is significant at the 5% level of confidence.

[^2]When compared with the correlations obtained between a verbal test and the subject marks it is found that, with this secondary modern school population at this age range, the Spatial test would seem to be the better predictor of success in Metalwork, while the verbal test is the better predictor of performance in Mathematics.

Future Developments

The work described above is but the early stages in the development of a test. For a test to be of real value the collection of data concerning it must continue for a long time. Further investigation can be along two lines; extended "predictive" trials and factor analysis.

It has already been noted that it is hoped to follow up the careers of the 85 modern school boys and to measure ultimate success by the eriterion of external examinations. Similarly, and on a much wider scale, the entire school population of the age-range tested in Carlisle can be followed up in the variety of schools and courses to which they have been allocated. Both of these investigations require a minimum of four to five years from the initial testing for their completion and in the case of pupils taking examinations of higher levels the period is nearer seven to eight years.

A factor analysis would provide the best evidence of the degree to which the test measures spatial ability and
the possibility also arises, since the test involves threedimensional material, of adding to the information available as to the relationship between two-dimansional and threedimensional test items. There is at present no great agreement on these points. Renshaw's (1950) ${ }^{1}$. investigation showed slight indications that two-dimensional tests were more closely linked with ' K ' than were three-dimensional tests. Macfarlane Smith (1954) ${ }^{2}$. writing of Spatial Test 1 states that his results "do not support the view that tests consisting of drawings of 3-dimensional objects measure a different factor from tests containing two-dimensional figures", while Pichot (1956) ${ }^{3}$. writes, "Il est possible que ce facteur (s) inclue un sous-facteur portant suv les configurations tri-dimensionelles."

This is in the future, for the present it is suggested that the four-fold aim stated above has been accompliched to the following extent.

1. Renshaw, T. (1950). A Factorial Study of Two and Three Dimensional space Tests. Ph.D. Thesis, Edinburgh.
2. Smith, I. Macfarlane, (1954). The Development of a Spatial Test. Durham Research Review 5.
3. Pichot, P. (1956). Les Tests Mentaux.

A test which fits the requirements as to subject-matter has been constructed. This test has been standardised and supplied with instructions and conversion tables and has reached publication stage. The evidence of sex difference In mean scores and of correlation with vecognised tests is reasonable indication that the test involves spatial ability and the limited suggestion is made that the test can be of greater use than a verbal test in predicting performance in metalwork.

Appendix Ao

Justification of Formula Used in Chapter V.

In Chapter V the following fommula was used to find the Critical Ratio oi the Discrimination index:-

where $P_{1}=$ Proportion passing in Upper Group.
$P_{2}=$ Proportion passing in Lower Group.
$Q_{1}=$ Proportion Pailing in Upper Group
$Q_{2}=$ Proportion failing in Lower Group
$\mathrm{H}_{1}=$ Number in Upper Group.
$\mathrm{N}_{2}=$ Furmber in Lower Group.
It was there stated that this fommula is a variation of:-
C.R. $=\frac{\text { Observed Value }}{\text { Standard Error of Observed Value }}$

These two formulae can be shown to be equivalent as follows (1) The Discrimination Indices used are calculated on the percentage passes in the Upper and Lower Groups. Thus the numeratben of the two formulae, $P_{1}-P_{2}$ and "Observed Value", can be taken as equivalent.

It therefore remains to show that the denominator

"Standard Brror of the Observed Value".
(ii) The S.E. of a difference is usually obtained from the formula

$$
S_{0} E_{0} P_{1}-P_{2}=\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}
$$

where $\sigma_{1}=$ S.D. of Upper Group
$\sigma_{2}=$ S.D. of Lower Group
$\mathrm{NH}_{1}=$ Number in Upper Group
$\mathrm{N}_{2}=$ Number in Lower Group
Therefore the problem becomes:-
to prove that

$$
\sqrt{\frac{P_{1} Q_{1}}{N_{1}}+\frac{P_{2} Q_{2}}{N_{2}}}=\sqrt{\frac{\sigma_{1}^{2}}{N_{1}}+\frac{\sigma_{2}^{2}}{N_{2}}}
$$

which in its simplest form becomes
to prove that

$$
\begin{aligned}
& P_{1} Q_{1}=\sigma_{1}^{2} \\
& P_{2} Q_{2}=\sigma_{2}^{2}
\end{aligned}
$$

(iii) Proof

Let number of pupils in Upper Group be x
Let number of passes in Upper Group be y.
then proportion passing $=\frac{Z}{z}$
and proportion falling $=\frac{X-Y}{X}$

$$
\begin{aligned}
\therefore P_{1} Q_{1} & =\frac{y}{x} \times \frac{x-y}{x} \\
& =\frac{y-y^{2}}{x^{2}}
\end{aligned}
$$

Using the arbitrary mean method to calculate the Standard Deviation, the formula is

$$
\sigma=\sqrt{\frac{\sum d^{2}}{N}-\left(\frac{\sum d}{N}\right)^{2}}
$$

where $\mathrm{d}=$ deviation from mean.
But all scores on any one item are either Pass or Fail, scored 1 or 0.

Taking arbitrary mean to be 1 the deviating scores are those which are 0 and therefore each deviation $=1$.

$$
\begin{aligned}
\therefore \sum d & =x-y \\
\text { and } \sum d^{2} & =x-y
\end{aligned}
$$

substituting

$$
\begin{aligned}
\sigma_{1} & =\sqrt{\frac{x-y}{x}-\left(\frac{x-y}{x}\right)^{2}} \\
& =\sqrt{\frac{x-y}{x}-\frac{x^{2}+y^{2}-2 x y}{x^{2}}} \\
& =\sqrt{\frac{x^{2}-x y-x^{2}-y^{2}+2 x y}{x^{2}}} \\
& =\sqrt{\frac{x y-y^{2}}{x^{2}}}
\end{aligned}
$$

therefore $\sigma_{1}^{9}=\frac{2 y-y^{2}}{x^{2}}$
From results (a) and (b)

$$
\begin{aligned}
& P_{1} Q_{1}=\frac{x y-y^{2}}{x^{2}} \\
& \sigma_{4}^{2}=\frac{x y-x^{2}}{x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\because \quad P_{1} Q_{1} & =\sigma_{1}^{2} \\
\text { Similarly } & P_{2} Q_{2}
\end{aligned}=\sigma_{2}^{2}
$$

Thus

$$
\frac{P_{1}-P_{2}}{\sqrt{\frac{P_{1} Q_{1}}{N_{1}}+\frac{P_{2} Q_{2}}{N_{2}}}}=\frac{\text { Observed Value }}{\text { So B. of Observed Value }}
$$

Appendix B.

Instructions for administration of the test (revised draft) as used in the Carlisle try-out and the validation experiments. GTNIERAL DIRECHTONS.

1. It is RSSENTIAL that the procedure here outlined is followed exactiy. No deviations, however slight, from the oral instructions are pemissible. The greatest care must be taken to ensure that the six sub-tests are correctly timed. For this purpose it is necessary to use a watch with a seconds hand. ON NO ACCOUNT must a watch or clock without a seconds hand be used. If a stop watch is used, its accuracy should $\hat{\text { Ifst }}$ be checired by comparing it with an ordinary watch with a seconds hand, as serious exrors in timing sometime occur when stop- watches are used. It is desirable to have a spare watch in case of accidents. 2. The pupils write their answers in PKNCIL. The supervisor should ensure that each child has two sharpened pencils before the test begins. If this is not possible, a supply of spare pencils should be kept at hand in case any pupil should break his pencil during the test. No materials other than pencils should be provided. Pens, rulers, erasers must NOT be used.
2. It $1 s$ desirable that there be two invigilators to each room. One of these, the supervisor, should be res-
ponsible for the timing of the sub-tests. He should stand at the desk, facing the children, reading the instructions as here outlined, and keeping tine with a watch. He should guard against having his attention distracted in any way whatever. The times allowed for each sub-test are short, and it is easy to over-mun the allotted periods inadvertently.

The second invigilator should patrol the room quietly. He should be responsible for the prevention of copying and for ensuring that the children turn over the pages correctly, and that they follow the instructions given at the foot of each page.
4. Since copying is comparatively easy with a test of this type, the supervisor should arrange that the children sit at separate desks, and as far away from one another as possible. While the test is being worked, the second invigilator should see that they write the answers in the correcttplaces and in the correct way. Thus, is he sees that a child is using a wrong MEIHOD of answering, for example, underlining instead of crossing out, he should correct the child by pointing to the words in the instructions at the top of the page. APART FROM THIS, NO ASSIS* TANCE WHATEVER SHOUID BE GIVEN DURING THE ACTUAL WORKING OF THE TEST. An opportunity for asking questions will be given at the end of each Practice Test. The supervisor
should answer these BRIEFLY IF THEY ARB RELISVANT. He should not allow himself to be drawn into a discussion, or to prolong the time taken to administer the teat. 5. There are six sub-tests, each preceded by a practice test. The timing is as follows:-

Test 1	Pages 4 and 5	4 minutes
Test 2	Page 8	$3 \frac{1}{2}$ minutes
Test 3	Pages 12 and 13	$6 \frac{1}{2}$ minutes
Test 4	Pages 16 and 17	5 minutes
Test 5	Pages 20 and 21	16 minutes
Test 6	Page 24	4 minutes

The total working time, including the time required for the practice tests, is approximately one hour. PROGEDURE.

1. The oral instructions should be read from this booklet of instructions, ard NOT from a test booklet. THIS IS MOST IMIORTIANT because the instructions contain answers to the practice tests and these are not given in the test booklets. Also, in a few instances, the oral instructions are slightly more detailed than the printed instructions in the test booklets.
2. Having arranged the desks so that the children are seated as far away from one another as possible, the supervisor should warn the pupils NOT TO OPEN THE BOOKL®TS UNTIL THEY ARE TOLD. Then he should distribute the booklets

WITH THE FRONT PAGE UPPERMOST.
When ready he should say: "Irint your last name in the space after the word 'surname', and your Christian name (or names) in the line belov. Then fill in the other spaces. In the space for date of your birthday, write the day, month and year of your birth. Write very plainly. When you have finished filling in the particulars, lay your pencils down. DO ITOT OPGT OR TURN OVER THE BOOKLETS." 3. When all the pupils have finished, the supervisor says, "Now, everyone attend carefully while I read the rules of the test". He should hold up the test booklet and point to the instructions and say "Do you see where it says 'Read the following carefully'? I shall read these rules to you, and you will follow as I read theme" The supervisor then reads the rules, clearly and without haste.
4. As soon as the rules are read, the supervisor says "The test is in six sections. You will all begin each section at the same time and stop at the same time. At the start of each section, you will be told the number of the test, and the number of the page, so that you can malce sure that you are working at the right page."
"Before you start each section, you will do a Practice Test, to make sure that you understand what is to be done
in the actual test. The Practice Test is not morked, so your score in it will not change your final marke"
"Remember you must not ask any questions during the working of the test. You will be allowed to ask questions at the end of each Practice Test."
5. "Now turn over to page 3. This is Practice Test 1. I shall read the instructions and you follow them. The three drawings at the top of the page represent the end views and the middle section of a solid object. They are in the order end, middle, end as marked. Imagine them placed as in the next diagram and you see that if they were joined up they form the object in the third diagram. Try to imagine the object formed by the next three shapes. Is it A or B or C? Put your answer in the space provided. Do it now." The supervisor pauses for 15 seconds and then says "The answer is 'Of. If you have any questions, ask them now". The supervisor pauses and briefly answers any questions concerning the answers in Eractice Test 1.
"Now turn over to page 4. Make sure you are at page 4 and Test 1. On this page are sets of three drawings showing end, middle, end. In the spaces provided put the letter of the object on page 5 which fits each set of drawings. You will have 4 minutes to do this test. Are you ready? BEGIN." The supervisor writes down the
exact time when he said "Begin" and also what the time will be 4 minutes later. After the test has started he should answer NO QUESTION WHATSOEVER.
6. After 4 minutes, he says "STOP WORKING, PEICILS DOWIT". Pausing, he says "Now turn over to page 7, to Practice Test 2. Follow the instructions as I read them. Below is a model made of blocks placed together, and next to it are four drawings A, B, C and D. One of these drawings shows the view of the model looking down on it from above.

A cross has been placed on diagram C because it shows the view looking down on the model from above\%

In the Trial Questions you have to place a cross on the diagram A, B, C or D which you think shows the model if you were looking down on it from above. Make sure you put the cross ON the diagram. Do these two questions now." The supervisor pauses for 30 seconds and then says "The answer to No. 1 is B, the answer to No. 2 is D_{0} If you have any questions, ask them now". The supervisor pauses, and briefly answers any questions concerning the answers in Practice Test 2.
"Now turn over to page 8. Make sure you are at page 8 and Test 2. There is only one page to this test and you will have $3 \frac{1}{2}$ minutes to do it. Are you ready? BEGIN." The supervisor writes down the exact time when
he said "Begin" and also what the time will be $3 \frac{1}{2}$ minutes later.
7. After $3 \frac{1}{2}$ minutes he says "STOP WORKING, PRNCILS DOWN." Continuing he says "Now turn over to page 11 to Practice Test 3. The diagram at the top on the left is the shape of a plece of paper which when folded forms the model shown in the second diagram. A and B are folded to form the walls and C forms the roof.

Below this are the same shape and a model with part of its sides shaded. Look at the shape. Lines have been drawn on It to show where you would cut to remove the parts shown shadet on the model.

In the trial questions you have to look at the shaded parts on the model and then draw lines on the SHAPE to show where you would cut to remove those parts.

Do these two questions nowe" 铱e supervisor pauses 45 seconds and then says "The correct answers are, in No. 1 you should have drawn a line joining the point marked 2 to the point marked 14, in No. 2 your line should join points 1 and 8. If you have any questions, ask them now." The supervisor pauses and briefly answers any questions concerning the answers in Practice Test 3.
"Now turn over to page 12. Make sure you are at page 12 and Test 3. This test occupies two pages. When you reach the foot of page 12 go on to page 13. You will have
$6 \frac{1}{2}$ minutes to do both pages. Are you ready? BEGIN." The supervisor writes down the exact time when he said "Begin" and also what the time will be $6 \frac{1}{2}$ minutes later. 8. After $6 \frac{1}{2}$ minutes he says "STOP WORKING, PENVCILS DOWN." Continuing he says "Turn over to page 15 to Practice Test 4. The first diagram represents a wooden block which is to be sawn vertically into two parts in the place shown by the dotted lines. In the next diagram the two halves are moved apart to show the cut fact which is shaded. The shape of this cut face is the same as one of the three drawings which are shown next. Drawing B is the correct shape and so a cross has been placed on it. In the Trial Question you are shown another block to be sawn and you have to put a cross on one of the three drawings $A_{2} B$ and C which shows the shape of the cut face. Do it now." The supervisor pauses and then says "The correct answer is C_{0} Ave there any questions?" The supervisor pauses and briefiy answers any questions concerning the answers to Practice Test 4.
"Now turn over to page 16. Make sure you are at page 16 and Test 4. This Test occupies two pages. When you reach the foot of page 16 go on to page 17. You will have 5 minutes for both pages. Make sure you put your crosses on the diagrams. Are you ready? BEGIN." The supervisor notes the time when he said "Begin", and also
what the time will be 5 minutes later.
9. After 5 minutes he says "STOP WORKING, PENCILS DOWN". Continuing he says "Now turn over to page 19 to Practice Test 5. Shape A shows a solid block which has been drawn by joining up the crosses which are at its corners. It could be copied on to Framework B by joining the crosses with circles round them. Look at Shape C, this could be drawn on Framework D by joining the eposses which have circles round them. Now look at the Trial question, at Shape E_{e} You have to put circles round the crosses in Framework F which you would join to make that shape. Do it now." The supervisor pauses 60 seconds and then says "Your circles should be round crosses 3 and 5 in the top line, crosses 1, 3 and 5 in the middie line, and crosses 1 and 3 in the bottam line. Any questions?" The supervisor pauses and briefly answers any questions concerning the answers in Practice Test 5 .
"Now turn over to page 20. Make sure you are at page 20 and Test 5. This test occupies two pages. When you reach the foot of page 20 go on to page 21. You will have 16 minutes for both pages. Are you ready? BEGIN." The supervisor notes the time when he said "Begin" and also what the time will be 16 minutes later.
10. After 8 minutes he says "Remember there are two pages in this test, pages 20 and 21. You have 8 minutes more."

At the end of 16 minutes he says "STOP WORKING, PEAVCILS DOWN." Continuing he says "Turn over to page 23 to Practice Test 6. In this test each question shows a model built from the sides shown next to it. These sides are labelled a, b, c....... etc. No other sides are used but some of the ones shown are used more than once. Put on each of these shapes a figure showing the number of times it has been used to make the model. You must remember to count the sides and base of the model which do not show in the drawing.

Look at the Example. It is made of 4 triangle sides and 1 square base and so these numbers have been marked on the shapes, 4 on ' a ' and 1 on ' b '.

Do the two trial questions now." The supervisor then pauses for 60 seconds and says "The correct answers are No. 1 a - 2, b - 3; No. $2 a-1, b-2, c-2 . \quad$ Are there any questions?" The supervisor pauses and briefly answers any questions concerning the answers in Practice Test 6.
"Now, turn over to Page 24. Make sure you are at Page 24 and Test 6. When you have finished this page do NOT turn back to earlier pages. You will have 4 minutes to do this test. Are you ready? BEGIN." The supervisor notes the time when he said "Begin" and also what the time will be 4 minutes later.
11. After 4 minutes he says, "STOP WORKING, PENCILS DOWN." The test booklets are then collected.

Appendix C.

The Test - Revised Draft.

Note: In adaition to the name of the author the printed form of the test bears the name of his supervisor, Dr. I. Macfarlane Smith.

NEWCASTLE SPATIAL TEST

by

I.Macfarlane Smith M.A.,B.Sc.,Ed.B.,Ph.D. \& J.S.Lawes B.Sc

DO NOT TURN OVER OR OPEN THIS BOOK UNTIL YOU ARE TOLD
FILL IN THE FOLLOWING PARTICULARS:-
SURNAME
CHRISTIAN NAME(S)
NAME OF YOUR SCHOOL
YOUR AGE YEARS MONTHS
DATE OF YOUR BIRTHDAY
TODAY'S DATE

READ THE FOLLOWING CAREFULLY:-

1. Do not open this book until you are told to do so.
2. The test is in sections. You will be told how much time is allowed for each section.
3. When you come to the end of a page, FOLLOW THE INSTRUCTIONS given at the bottom.
4. Each time you are told to stop, STOP WORKING AT ONCE.
5. Work as quickly and as carefully as you can.
6. If, when you try a question you find you cannot do it, DO NOT WASTE TIME BUT GO ON TO THE NEXT.
7. Make any alterations in your answers CLEARLY.
8. ASK NO QUESTIONS AT ALL DURING THE TEST.
9. If you should require another pencil, put up your hand.

Not to be filled in by Scholar

Page	Item Nos.	Score			
4	$1-10$				
8	$11-20$				
12	$21-30$				
13	$31-40$				
16	$41-50$				
17	$51-60$				
20	$61-70$				
21	$71-80$				
24	$81-100$				
Total					
				Years	Months
Age					
Standardised Score					

These three drawings represent the end views and middle section of a solid object, in the order - end, middle, end, as marked.

Imagine them placed like this:-

and you see that they form this object:-

Try to imagine the object formed by these shapes:-

Put your answer here (.....)

TEST 1.

The drawings on this page are in sets of three. Each set shows the end views and middle section of a solid object in the order - end, middle, end. In the spaces provided (....) put the letter of the object on the opposite page which fits each set of drawings.

END MIDDLE END
END MIDDLE END

\begin{tabular}{|c|c|}

\hline \begin{tabular}{l}
(---)

1

\end{tabular} \&

\hline \& $$
(\ldots-1)
$$

\hline $$
\triangle \triangle
$$ \&

\hline \bigcirc \& | (..) |
| :--- |
| 8 |

\hline | 9 |
| :--- |
| (---) | \& | 10 |
| :--- |
| (...) |

\hline
\end{tabular}

These are the objects to match up with the drawings on the opposite page.

DO NOT TURN BACK TO EARLIER PAGES.

Below is a model made of blocks placed together and next to it are 4 drawings. One of these drawings shows the view of the model looking down on it from above.

MODEL

A

B

C

D

A cross (X) has been placed on diagram C because it shows the view looking down on the model from above.

TRIAL QUESTIONS
Place a cross (X) on the diagram (A, B, C or D) which you think shows the model if you were looking down on it from above.

MODEL

 A

A

B

C

D

D

TEST 2.

On each line the left hand drawing shows several blocks placed together.
Put a cross, "X", on the one of the four drawings on the right of the thick black line which shows the view looking down on the blocks.

DO NOT TURN BACK TO EARLIER PAGES.

DO NOT TURN OVER UNTIL YOU ARE TOLD.

On the Shape draw lines to show where you would cut to remove the parts which would be the shaded portions if the paper was folded to form the Model.

SHAPE MODEL

22

23

28

24

29

This diagram is the shape of a piece of paper which when folded forms this model:-

Below are the same Shape and Model with part of the Model shaded. On the Shape lines have been drawn to show where you would cut to remove the parts shown shaded on the Model.

TRIAL QUESTIONS

Draw lines on the Shape to show where you would cut to remove the parts shown shaded on the Model.

MODEL

MODEL

DO NOT TURN BACK TO EARLIER PAGES.
SHAPE
MODEL
SHAPE
MODEL

37

TEST 4.

Each question shows a block of wood. Imagine a cut made where shown by the lines. Place a cross (X) on the one of the three drawings on the right which shows the shape of the cut face.

CARRY STRAIGHT ON TO THE NEXT PAGE.

This diagram represents a wooden block which is to be sawn vertically into two parts in the place shown by the dotted lines.

In this next diagram the two halves are moved apart to show the cut face. This cut face is shaded.

The cut face is the same shape as one of these three drawings.

B is the correct shape and so is marked with a X.

TRIAL QUESTION.

What would be the shape of the cut face if the block shown below is cut where shown? Put a cross (X) on the drawing which shows the correct shape.

DO NOT TURN BACK TO EARLIER PAGES.

CONTINUE AS ON THE LAST PAGE
This time there are four shapes to choose from.

DO NOT TURN OVER UNTIL YOU ARE TOLD.

Shape A shows a solid block which has been drawn by joining up the crosses which are at its corners. It could be copied on to Framework B by joining the crosses with circles round them.

SHAPE A

FRAMEWORK B

In the same way Shape C could be drawn on Framework D by joining the crosses which have circles round them.

SHAPE C

FRAMEWORK D
$\otimes \times \otimes \times x$
$x \otimes \times \otimes$
$x \times \times \times \times$
$\times \otimes \times \times$ $\times \times \otimes \times \otimes$

TRIAL QUESTION.

On Framework F put circles round the crosses which could be joined to make Shape E.

TEST 5.

Each question shows the shape of a solid block and a framework of crosses. On each Framework put circles round the crosses you would join up to make the shape shown.
61
SHAPE

FRAMEWORK
SHAPE

64

69

65

CARRY STRAIGHT ON TO THE NEXT PAGE

SHAPE
FRAMEWORK
SHAPE
FRAMEWORK

x	x	x	x	x
x	x	x	x	x
x	x	x	x	x
x	x	x	x	x

78

DO NOT TURN OVER UNTIL YOU ARE TOLD.

DO NOT TURN BACK TO EARLIER PAGES.

Each question shows a model built from the sides shown next to it. These sides are labelled a, b, c, \ldots etc. NO OTHER SIDES ARE USED but some of the ones shown are used more than once.
Put on each of these shapes a figure showing the number of times it has been used to make the model.
You must remember to count the sides and base of the model which do not show in the drawing.

EXAMPLE.

TRIAL QUESTIONS.

2

a

b

c

Each question shows a model and the shapes of its sides labelled a, b, c,... etc. On each shape put a number showing how many times that side has been used to build the model.

DO NOT TURN BACK TO EARLIER PAGES.

BIBLIOGRAPHY

The following abbreviations are used:-

Brit. J. Ed. Psych.	British Journal of Educational Psyohology.
Brit. J. of Psych.	British Journal of Psychology.
J. of Ed. Psych.	Journal of Educational Psychology,
Occup. Psych.	Occupational Psychology.

DEMPSTER, J. B. B. (1948)	The Selectors Point of View. Brit. J. Ed. Psych. XVIII, Pt. 3.
DREW, L.J. (1947)	An Investigation into the Measuremen of Technical Ability. Occup. Psych. XXI, No. 1.
EL KOUSSY, A.A.M. (1935)	The Visual Perception of Space. Brit. J. of Psych. Monograph Supplement XX.
EL. KOUSSY, A.A.M. (1948)	A Further Examination of the Kfactor. XIIIth International Congress of Psychology.
EMMETT, W.G. (1949)	Evidence of a Space Factor at 11+ and Earlier. Brit. J. of Psych, Statistical Section, Vol. II, Pt. 1.
FISHER, R.A. (1946)	Statistical Methods for Research Workers (10th Edition). Oliver and Boyd, Edinburgh.
HLANAGAN, J.C. (1939)	General Considerations in the Selection of Test Items and a Short Method of Estimating the Product-Moment Coefficient from Data at the Tails of the Distribution. J. of Ed. Psych. XXX,
GALTON, F. (1869)	Hereditary Genius. Macmillan, London.
GALTON, F. (1883)	Inquiries into Human Faculty, Dent, London.
GOODENOUGH, F.L. (1950)	Mental Testing. Staples, London.
HARTOG, P.J. and RHODES, E.C. (1936)	The Marks of Examiners. Macmillan, London.
HOLLIDAY, F. (1940)	An Investigation into the Selection of Apprentices for the Engineering Industry. Occup. Psych. XIV, No. 2.

$\left.\begin{array}{ll}\text { HOLLIDAY, F. (1941) } & \begin{array}{l}\text { A Further Investigation Into the } \\ \text { Selection of Apprentices for the } \\ \text { Fngineering Industry. }\end{array} \\ & \text { Occup. Psych. XV, No. 4. }\end{array}\right\}$

PRICE, E.J.J. (1940)	The Nature of the Practical Factor (F). Brit. J. of Psych. XXX, Pt. 4.
RENSHAW, T. (1950)	A Factorial Study of Two and Three Dimensional Space Tests. Ph.D. Thesis, Edinburgh.
SHUTTLAWORTH, C.W. (1942)	Tests of Technical Aptitude. Occup. Psych. XVI, No. 4.
SLATER, P. (1940)	Some Group Tests of Spatial Judgment or Practical Abilities. Occup. Psych. XIV, No. 1.
SLATER, P. (1941)	Tests for Selecting Secondary and Technical School Children. Occup. Psych. XV, No. 1.
$\begin{aligned} & \text { SLATER, P. and } \\ & \text { BENNETT, E. (1943) } \end{aligned}$	The Development of Spatial Judgment and its Relation to Some Educational Problems. Oceup. Psych. XVII, No. 3.
SMITH,I. MACFARLANE (1948)	Measuring Spatial Ability in School Pupils. Occup. Pbych. XXII, No. 3.
SMITH,I.MACFARLANE (1954)	The Development of a Spatial Test. Durham Research Review 5.
SMITH, I. MACFARLANE (1959)	Selection for Technical Education. Journal of the Institute of Education of Durham University. Vol. 10, No. 51.
SMITH, I, MACFARLANE, (1960)	The Validity of Tests of Spatial Abllity as Predictors of Success on Technical Courses. Brit. J. Ed. Psych. XXX, Pt. 2.
SPEARMAN, C. (1932)	The Abilities of Man. Macmillan, London.
SPEARMAN, C. and WYNN JONES, Ll. (1950)	Human Ability. Macmillan, London.
STEPHIENSON, W. (1931)	Tetrad Differences for Non-Verbal Sub-tests. Tetrad Differences for Verbal Sub-test. Tetrad Differences for Verbal Sub-tests relative to Non-Verbal Sub-teste. J. of Ed. Psych. XXII.

THORFDIKE, R.L. (1949)	Personnel Selection. Wiley, New York.
THURSTONE, L.L. (1938)	Primary Mental Abilities. University of Chicago Press, Chi cago.
TIPPETT, L.H.C. (1948)	The Methods of Statistics. Williams and Norgate, London.
VERNON, P.E. (1948)	Indices of Item Consistency and Validity. Brit. I. of Psych. Statistical Section, Vol. I, Pt. 3.
VERNON, P.E. (1950)	The Structure of Human Abilities. Methuen, London.
VERNON, P.E. and PARRY, J. B. (1949)	Personnel Selection in the British Forces. University of London Press, London.
WATTS, A, F. and SLATER, P. (1950)	The Allocation of Primary School Leavers to Courses of Secondary Education. 1 st Interim Report, N.F.E.R. Nownes, London.
WRIGLEY, J. (1958)	The Factorial Nature of Ability in Elementary Mathematics. Brit. J. Ed. Psych. XXVIII, Pt. 1.
YATES, $A_{\text {, }}$ and PIDGEON, D.A. (1957)	Admission to Grammar Schools. 3rd Interim Report, N. F. E. R., Newnes, London.
ZUBIN, J. (1936)	Note on a Graphic Method of Determining the Significance of the Difference between Group Frequencies. J. of Ed. Bsych. XXVII.

Spatial Test 1
Verbal Test 8A
Verbal Test (Adv.) 1 N. F.E.R.
Verbal Reasoning Test 59 Moray House.

ACKNOWLEDGEMENTS

The author's sincere thanks are due to:-
the administrators, headteachers and staffs of the various schools in which the test has been used,
the Institute of Education of Durham University for a research grant to defray the costs of printing,

Mrs. D.E. Lawes, M.A., for considerable assistance wi th marking and checking,
and most particularly to:-
Dr. I. Macfarlane 8mith for unlimited encouragement and advice throughout the work involved.

[^0]: 1. See, for example. Hereaitany Geniusi。 1869. Inquiries into Himan Faculty. 1883.
[^1]: 1. Thurstone; $L_{0} L_{0}$, (1938). Primany Mental Abilities.
[^2]: 1. Smith, I. Macfarlane, (1960). The Validity of Tests of Spatial Ability as Predictors of success on Technical Courses. Brit. J. Ed. Psych. XXX, Pt. 2.
