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ABSTRACT 

The Lahanos pyritic sulphide deposit is one of the important copper 

deposits occuring within the submarine volcani~ environment of the 

Eastern Pontus Ore provinceo It is situated 10 miles to the south of 

Espiye, Giresun Vilayetio Petrographic study of the Lahanos rocks, 

despite their heavy alteration, shows that they belong mainly to the calc 

alkaline and tholeiitic basalt ~uites, and in addition, there are some 

high-alumina basaltso The intense igneous activity took place during 

the Mesozoic and the early and middle Tertiary periodso This phase of 

igneous activity culminated in the intrusion of syntectonic granites, 

tonolites and adamellites, and was followed by aplitic and hydrothermal 

phases, in the Pontid Geosyncline 0 The ore mineralisation, associated 

with dacites, is characterised by large quantities of pyrite associated 

with other base metal sulphides such as chalcopyrite, sphalerite, galena 

and other sulphides and sulphosaltso Field, underground and borehole 

evidence shows that the Lahanos ore body displays a zonal arrangement, 

which is similar to the well documented 11 Kuroko 11 type ore deposits in 

Japan 0 The results of detailed chemical and mineralogical study of the 

ore and country rock are given and the temperature of formation is 

estimated0 Comparative details are given for the Murgul and Karadere 

deposits. The evidence supports an epigenetic hydrothermal origin for 

this "strata bound" deposit, but the volcanicity alone is inadequate to 

explain the source of the base metals, which are probably derived from 

the granites. The role of pyroclastic horizons of restricted permeability 

as a control of precipitation is discussed. 



ACKNOWLEDGEMENTS 

'l'he author l'iishes to thank Professor G.M .. Brownp the head 

of Department for making available the apparatus and technical 

assistance necessary for this study~~" and to Professor K.C. Dunham 

for suggesting the area of study. 

ii 

I would like to express my sincere gratitude to Mr. R .. Phillips 

who supervised the research.. He is also to be thanked for his: 

encouragement, criticism and advice throughout the course of this 

study .. 

'l'he help of Dr. C.H .. Emeleus and Dr. D.M. Hirst is gratefUlly 

acknowledged, for reading the sections on the petrology and rock 

chemistry respectively. 

Dr. J.G. Holland kindly made available his computer programme 

for the r4i.duction of the L-ra:y fluorescence data and t~s are 

due to Dr. G. Larwood for identification of the fossils. 

GratefUl thanks are due to Mr .. G. Wilson and the technical 

staff of the departmentv especially Mr. G. Dresser who took great 

care with the photography .. 

Acknowledgment is also made to those many people who gave 

advice and help during the preparation of this thesis. 



MAP._3 

B L II> C 'f. 

GEOLOGICAL MAP OF THE HOPA-MURGUL REGION 
AFTER 

~ -~ ;:r':1~ -~~- ..... . . 
·~ 

Z BARUT, C. KAHRER, L. KLA~ A KRAEFF, H POTTER, H ZANKL 

':~:~~:-·. 

--~ 

~t~[~{~t> 
,:;:~~~~i~}t) (:'""'• ~ 

. . ;: . -: .. -: .. ' 
·Afi~ti · ... -~·:~~-~'' 
··;. (;l~·-:::~, 'o '.-._:",.·.·.· ... 

B!R;KA 

+ 
't-.....__~'·1 

c::::J I 
[_::]l 
[ :-::J J 
[ . .:.:,:::;). 
f:E5 
[ -::1& 
L':L::i:J? 
1!::!3 e 
r.::;:!J 9 

[::::::::::JIO 
t:!Z!)n 
~ll 

c::z:J•J 
t=l" 
li:!J15 

:;:t;:~SHANE 

~-

1.AUuvial Aeistac•ne c:tepo5•ts,2 .Debris & tal"dssiddt muus,l .• Late TertiAry basalts,an:ileiti!S,4 .• Tertiary tonalites,alba 17anodiarltlt, 5.-Albite dacite m. 6_1Utf series(Upper Campanian-Eoceneo?), 7.LirnRtorw-mart !il'ries 
( Upper Carr.,aru.n-EOCMW'?), 8 . ..Hippuritic. lirntstoneo series ( Turonian-t.ow.r ·Campanian), 9.-SpliW series U, 10.-Aibite c&:ill' II, 11.-Dacitic. tuft, 12..AtbiW dacite ~ 13 .Splitic: Mries I 14 .FauLt line, 15 .• Section line 



2 

the River Halys and Batumo Its length is about 300 miles from 

east to west, and its average width is about 30 miles from north 

to south (See Map l)o 

The Lahanos pyritic sulphide deposit occurs to the lfest of 

the middle of1he Eastern Pontus Ore Province, and is located 

between Giresun Province (Giresun Vilayeti) and Trabzon province 

(Trabzon Vilayeti), about 10 miles inland from Espiye on the Black 

Sea Coast (See Map 2)o The area studied in detail covers 27 square 

miles around the Lahanos copper mineo Within the detailed study 

area, there are eight pyritic sulphide deposits which have been 

worked possibly since medieval timeso 

The pyritic base metal sulphide deposits occurring throughout 

the Pontus Ore Province are of small size but ·very widespreado At 

present only two are l'lorking - one of them, in the Eastern Pontus 

" Ore Province, is the Murgul Copper Mine, and the other is Kure 

Copper Mine in the \"lestern Pontus Ore Provinceo In the near 

future the Lahanos Copper Mine will join them as a third Copper-

Zinc producing mineo 

Climate: 

Because of northwesterly winds, the eastern Black sea area 

is always humid and rainyo The rainfall reaches a maximum of 

about one hundred inches a year, particularly in the Rize region, 

whereas the southern slopes of the Pontic Mountains get less rain, 
. 

and further south, towards the semi arid continental climate of 



the Anatolian Plateau, annual rainfall gets smaller and smallera 

The distribution of vegetation very closely follows these 

sudden climatic changesa Most of the pyritic base metal 

sulphide deposits occur l'Ti thin the high rainfall area, on the 

northern slopes of the Pontic Mountains covered by thick forest, 

dense bushes and thick soilo Because of its young and abrupt 

morphology the area shows a very young drainage pattern and 

most of1he rivers and streams follO\t the main tectonic lineso 

Because of these factors, the population is concentrated in 

the narrow coastal stripa The main agricultural products are 

hazelnuts, maize, tobacco and beanso Coastwise navigation is 

well developed in this area, and there is an important fishing 

industry a 
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B o PREVIOUS WQ~ 

Boi Stratigr~8[ 

Stratigraphic studies of the Eastern Pontids by different 

geologists show similar resultso From north to south progressively 

older rocks occur and at the southern edge the base of the Pontid 

volcanic series is unconformable on Palaeozoic metamorphic rockso 

The volcanic series of the Pontids starts with Liassic formations 

of transgressive conglomerate and concretionary limestone as a 

sedimentary facies and a spilitic agglomeratic series, {Schultze 

- Westrum, 196l)o Volcanic activity continued throughout the 

Mesozoic and Tertiary into the Quaternaryo The follotring 

stratigraphic column generalises the stratigraphic uhits over 

the whole Eastern Pontid area {this stratigraphic column has 

been based on the following authorvs ideas :Geoffroy (1960), 
n 

Gettinger (1961), Kraeff (1963 a & b), Pollak (1961), Schultze-

Westrum (196l))o 

llo Sea and river Terraces, 
lOo ·Glacial Moraine, 

9o The Young Basic Series, 
8o The Terti_l"..ry Granitic intrusions, 

. 7o ~artz-B1otite-Feldspar porphyry (=HYpabyssal dacite), 
6o The Upper Basic Series, 
5o The Upper Dacitic Series, 
4o The Lower Dacitic Series, 
3o The Lower Basic Series, 
2o Granitic and Granodioritic Intrusions of the Palaeozoic, 
lo Crystalline Basemento 

lo The basement is believed to be of Palaeozoic or Precambrian? 

age, because of its grade of metamorphism compared to the 
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unmetamorphosed or slightly metamorphosed Mesozoic formations 

and its lack of fossilso Palaeozoic formations with a certain 

degree of metamorphism occur in various parts of1he Pontidso 

The upper part of the crystalline basement also includes fossiliferous 

formations of the Permo-Carboniferous; therefore the Crystalline 

basement is sub· divided into 

a- The metamorphic series, represented by sericitic schists, 

biotite-schists, gneiss, augite-gneiss and ~arzites at the Sirya 

and Ardanuy areas in the valleys of the River Q·oruh and Imerhevi, 

" . " n Artvin (Kraeff., 1963a) o Similar condi tions.a.apply in the Gumuvhane 

area where strongly folded formations have a general 1-JE-Stt strike 

with an average dip of 30°- 40° to the SE or NW (Gettinger, 196l)o 

The average thickness is about 700 to 800 meterso 

b - The Permo-Carboniferous rocks, mainly characterised by 

arkose, sandy schists and quartzites in the lmoJer horizons whilst 

near the top there are quartzitic rocks interstratified with 

acidic lavas, tuffs and limestoneso These fossiliferous Permo-

Carboniferous formations contain Schwagerinae, Spirifer and Corals, 
II n 

west of Bayburt, Gumu~hane (Ketin, 195l)o Their average thickness 

is about 2000 meterso 

Petrographic similarity of these two units a & b suggests 

that they might have been deposited during the same periodo 

Wherever they are exposed, they always overly the much older, 

possibly P~e-Cambrian massif?, whose age has not been confirmed yeto 
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2o Granitic and granodioritic intrusions of the Palaeozoic 

are exposed in the River voruh and Imerhevi valleys (See Map 3o) 

These granodioritic intrusions cut through the crystalline 

basement metamorphic series and the Permo-Carboniferous serieso 

The same intrusions are also well exposed in the Karamustafa Valley, 

" " Southwest of Gumu~hane where the granite is in contact with 

blocks of the Upper Carboniferous quartziteso The overlying 

Liassic conglomerates show pebbles of granite and granodioriteo 

Thus granodioritic intrusion took place between Permian and 

Jurassic and therefore represents the period of Hercynian granitic 

intrusiono Late granodioritic hypabyssal intrusion took place 

at the beginning:· of the Alpine orogenesiso 

3o Various names have been proposed by other authors for the 

Lower Basic Series but this name seems to be the most appropriate 

description of the general nature of the bedso The Lower Basic 

Series ranges in age from the Lower Lias to the Upper Cretaceous, 

a thick sequence of volcanics being interstratified with fossilif-

erous limestone, marl and sandstoneo The units forming the Lower 

Basic Series in the middle Pont ids according to Schul tze-t·!estrum, 

1961 are shown in Tabo lo 

In the eastern parts of the Eastern Pontids, the Lot1er Basic 

Series consists of sodium rich keratophyre spilite with tuffs and 
n 

agglomerates (Kraeff 1963} with a thickness of about 500 meters 

in the Sirya-Ardanu~ region and Murgul area (see Map 3)o 



TABLE 1 

Stratigraphic celumn (afte 

Name Gf the Series 
Quaternary formations 

Young volcanics and its 
sendimentary equivalents 

Upper Basic Series and 
its sedimentary equival­
ents. 

Dacitic Series 

Lower Basic Series and 
its sedimentary members 

Bottom volcanics and its 
sedimentary equivalents 

Crystalline basement 

Sedimentary rock 
Sea & River Terra 

Marly limestone of 
Oligocene and Myoc 

.Andesi tic tuffs 

Nummulitic limestc 
(Eocene) 
Tuffaceous marl-li 
series (Senonian) 

Red Tuffaceous Inc 
limes ton~ 
Red inoceramus lin 

Tuffaceous marl-lj 
series and Hippur:i 
limestone (Upper ( 
Massive limestone: 
Cretaceous-Maim) 

Concretionary limE 
and Transgressive 
Liassic Conglomer1 

Quartzi tic conglo1 
Para-rpcks: Serio: 
-Schists. 
Sericite Quartzit· 

'. ' 

- ' 
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In the Rize ~ayeli region, this series mainly consists of basalts, 

andesites and volcanic agglomerate {Geoffroy, 1960). 

In the Lahanos area, this series is the oldeststratigraphic 

unit, exposed in river valleys and deep stream bottoms and forming 

the basement of the thick volcanic series. It is characterised by 

thick, predominantly green black spilite, basalts, agglomerates and 

interbedded.?Hippuritic limestone and marble or the massive limestone 

of the Lower Cretaceous or Malm? at Mount K~pikaya, in Bayrambey 

area (See Map 47 N9 and Geo. Sec. 1). 

4• The Lower Dacitic Series is one of the most important Series 

within the Eastern Pontus Ore Province, from the point of view of 

the occurrences of pyritic sulphide deposits. The present concept 

concerning the occurrence of these sulphide deposits is that they 

are located either in the Lower Daci tic Series or at the contact 

with the Upper Dacitic Series. The Lower Dacitic Series is 

characterised by porphyritic dacitic lavas which exhibit rounded 

quartz phenoc~sts and idiomorphic feldspar phenocrysts (albite) 

in a felsitic groundmass •. Hithin the Lower Dacitic Series, due 

to hydrothermal alteration and mineralisation, the porphyritic dacites 

can be divised into three sub· divisions e.g. in the Murgul Copper 
II 

mine area Kraeff (1963 b) recognised the followi~ types of 

dacite according to their field occurrence : (i) Fresh Dacite, 

(ii) Partly silicified dacite, (iii) Totally silicified dacite. 
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The sedimentary equivalents of the Lower Dacitic Series have 

been described by Schultze-Westrum (1961} from the Giresun region, 

\there they are mainly red Inoceramus Limestones interbedded ,.,i th 

the da.ci tic serieso · 

The. upper Dacitic Series is also important in relation to the 

occurrence of pyritic sulphide deposi~in the Eastern Pontus Ore 

Provinceo This series can be sub· divided into: 

b - Dacite II 

a- Dacitic tuffs (including interbedded limestone 

and marl beds} o 

a- Dacitic tuffs immediately overlie the Lower Dacitic Serieso 

The pyritic sulphide deposits tend to occur at or near to the 

contact of the porphyritic dacite with tuffso Limestone-marl 

intercalations within the Upper Dacitic Series are well developed 

in the Lahanos copper mine, particularly in boreholes above rich 

sulphide mineralisationo 

b ~ Dacite II is well .developed ~nd described in the l!lurgul 

copper mine area.where Dacite II partly overlies porphyritic dacite 

" of the Lower Dacitic Series and the dacitic tuffs (Kraeff, 1963b) 

(see Map 3). Between porphyritic dacite and dacite II an uncon-
n 

formity has been described by Kra~ff (1963b)o Dacite II usually 

shows a greenish colour, but around the sulphide mineralisation, 

it tends to show red-violet colourso There is no mineralisation 

at 1he contact of porphyritic dacite and dacite II in the I·lurgul 

areao 
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6. The Upper Basic Series. It is possible to see this forma-

tion throughout the Eastern Pontids. In t~e Murgul region the series 

is represented by spilite, soda-keratophyre spilite with pillow-

lava structure, spilitic agglomerate a.nd spilitic tuff. They may 

contain xenoliths of reddish dacite II and reddish limestones. 

In the vayeli 1 Rize region this series consists of basalts 

and basal tic volcanic rocks, together ~~i th a feli tuff intercalations 

(Geoffroy, 1960). The age i·s possibly Lower Eocene. 

The Uppe~ Basic Series consists of agglomerates, tuffs, 

spilit~s and basalts, keratophyre and andesite at Aksu Stream in 

Giresun region (Schul tze-:lestrum, 1961). The corresponding sediments 

are the tuffaceous limestone-marl series (Senonian in age) and 

Nummulitic limestones (Eocen~.in age). 

7• Quartz-Biotite-Feldspar porphyry {=HJ~yssal dacite) has an 

intrusive character as well as extrusive. The equivalent of this 
II 

porphyry is called "Dacite III" in the Murgul area by Kraeff (1963b) 

and the "Lahanos -Tepe Dasi ti '~ or "Intrusive Dacite" in the Lahanos 

area by Poll.ak (1961). 

8. Terti~ry Granitic intrusions occupy roughly the middle of 

the broken anti~·nal axis of the Pontids and they are possibly syn-

orogenic intrusions containing xenoliths of volcanics and other 

rocks. 

In the Eastern part of the Eastern Pontids, the Tertiary 

grani.tic intrusions consist of different intrusions of tonalite, 
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granodiorite and granite. A tonalite is intruded into the Upper 

Basic Series and partly into Limestone-marl series rocks of Upper 

" Cretaceous - Eocene age at Kise and Ba~koy village Murgul area 

(See Map 3). In Kokolet Su Stream, Murgul, another tonalitic, 

granodioritic intrusion is intruded into the Lower Dacitic Series. 

At their contact some unimportant pyrite impregnations are developed 

" (Kraeff, 1963b). 

In the western part of the Eastern Pontids syn-orogenic granitic 

intrusions ?onsisting of augite-monzonite, hornblende-augite diorite, 

granodiorite, quartz.diorite, hypabyssal granodiorite, granodioritic 

porphyry, quartz albitite, aplite and lamprophyre dykes have been 

describeo_ by Schultze-~Jestrum (1961). 

9· The Young Basic Series (Young Basic volcanics and their 

intrusive series) in some parts of the Eastern Pontids, are well 

developed·. In the Eastern part of the Eastern Pont:iids the series 

mainly consists of a series of andesites and a series of basalts, 

particularly in the Murgul-voruh area (See Map 3). Similarly 

andesite and basalts are also 1rrell developed in the Tirebolu 

region, near Israil Copper mine (See Map 2.) 

In the western part of the Eastern Pontids the Young Basic Series 

consists of basaltic agglomerates, tuffs, quartz trachyte, trachy-

andesite, leucitit~ tephrite, olivine leucitite, olivine basalt 

and sediments of marly limestone of Oligocene-Miocene age. Again 

basic dykes and volcanics of similar age are \'lell described by 
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Geoffroy (1960) in the Rize region. 

Partly albitized andesites, basalts and spilite with 

andesitic porphyries, porphyrite and diabases are described by 

" Kraeff (1963a) in the Sirya-Ardanuy area. 

10. Glacial moraines are found on the highest ridges of 

the Pontic Mountains. During the Pleistocene the formation of 

glacial valleys, terraces, moraine and boulder clay took place. 

Relicts of glaciers are still present today in the highest crests 

of the Eastern Pontic Mountains. 

11. Sea and river terraces were also formed during the 

Pleistocene and their relicts are exposed along the narrow coastal 

plain of the Black Sea and big river channels. 
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Boii TECTONIC AND OROGENIC ACTIVITIES 

Before discussing the tectonic features of the Pontic Moun­

tains it will be useful to give a summary of the main tectonic 

units of Turkeyo So far Turkey has been divided into many different 

units by previous workers eogo Arni (1939), Blumental (1946) 9 Egeran 

(1947), Ketin (1961 & 1965) (See Summary Tabo 2), but these involve· 

no major change in the original divisions proposed by Po Arni (1939) 9 

of which the geographic distribution can be easily seen on Map lo 

(i) The Pontids are tectonically equivalent to the Pontic 

Mountains, which occupy the northern coast of Anatolia (Asia Minor) 

along the Black sea coast from Batum in the East to the Bulgarian 

border in the West, inside Turkish territory (See Map 1). 

(ii) The Anatolids mainly occupy the highland of Anatolia 

(See Map l)o 

(iii) The Taurids mainly occupy the Tauros Mountains along 

the Medi terranea.n Sea in the South (See Map 1). 

(iv) The Iranids mainly occupy the southeastern Turkish 

mountains towards Persia (see Map 1). Taurids and Iranids can be 

tectonically combined toge~her. 

{v) Border folds occupy an.>area between Anatolia and the 

Arabian Massif (See Map l)o 

The tectonic divisions of Arni (1939) and Egeran (1947) are 

based on the stratigraphy and magmatic activity in Turkey; 1·1hereas 

Ketin {1959), in his division, considered orogenic movementso In· 

various parts of Turkey, different p~ases of different orogenic 



TABLE 2 

Tectonic Division of' Turkey (after Ketin, 1966) 

P. Arni 1939 

Pontids }North Pontids 
)South Pontids 

Ana to lids 

Taurids 
Iranids 

Border Folds 
(Anatolian-Iranian) 

M. Blumental 1946 

Pontids 
Ana to lids 

Intermediary massif' 
of Central Anatolia 

Taurid.s 
Iranids 

Irakids 
Syrian-Arabian Block 

N. Egeran 194-7 

(Pontids 
(Anatolids 
(Intermediate Zone 

( Ortailides 
(Massif Intermediate 
(Iyilldes 

Taurids 
Egean Jranids 

Onilides 

Border Folds 
(Anatolian-Iranian) 

I. Ketin 1961-1965 

Pontids 

Anatolids 

Taurids 

Border Folds 
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movements are present, but for the purposes of the present study, 

it will be sufficient to describe only those tectonic events 

affecting the Pontids, and in particular the Eastern Fontidso 

The Pont ids extend from the Lm1er Balkan foredeep in the :-rest, 

to the Lower Caucasian foredeep in the East, {See J.Iap 1) o They 

are mainly composed of a series of faulted blocks yielding horst 

and graben structures which have been pointed out by many previous 

l'lOrkers eogo .gankl (1961) in the Har~it Valley, Schultze-~festrum 
II 

(1961) in the Giresun area, and Kraeff {1963b) in the Sirya-Ardanuy 

area etct The Pontids are tectonically divided into two groups by 

Schul tze-:Iestrum (1961): ti'estern and Eastern Fontidso 

The ~·]estern Pontids are separated from the Anatolids by a 

tectonic line t·rhich has been described as "Faphlogonya Tectonic 

line" (Nowak, 1935), which e~ends from the estuary of the River 

Sangoria ~Sakarya) along Bolu-Eskipazar-Devres ~ay tm·Jards Samsun, 

where the tectonic line rejoins the Black Sea {See Map l)o The 

northern limit of the Uestern Pontids is thought to be beneath 

the Black Sea, except in the hinterland of the Eregli-.gonguldak 

coal field,. where the northern limit comes onto the shoreo 

The Eastern Pontids are separated from the Anatolids by 

another tectonic line, which is described as "Kelkit-poruh tectonic 

line" by Oswald {1912), and extends from the East of Samsun along 

the Kelki t and Qoruh valleys tm..ra.rds Batum area, where it turns 

southlfrards and follows the southern limit of the Lm·rer Caucc:-.sian 

foredeep to the south, and forms the southern limit of the "Pambc.r 
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II' 

-Gokpa 3on" (See rlap 1) o The northern limit of the Eastern Pontids 

is beneath the Black Sea, except further east in ''r·leskische Horst" 

l'l'here the northern l:imi t comes on the land and is exposed bettreen 

the Meskische Horst and the Lower Caucasian foredeep (Schultze-

Westrum, 1961) (See Map l)o The possible connection of the broken-

block hoi!st structure of the Eastern Pontids and a. zone of broken-

block horst structure of the Southern Crimea, so far has not been 

fully explained; similarly the possible extension ofthe 1-Testern 

Pontids into the Vardar 3one again has not been clearly provedo 

The Eastern Pontids, due to faulting, tend to show a fault 

and fracture pattern lying in N-S, NW-SE, E-W, and ~~-ffii directionso 

In the Murgul and yoruh area the predominant fracture and fault 

pattern shows a direction of N-S and E-W; whereas in Hopa and the 

Central area fracture and fault patterns run in the direction of 

NW-SE and S\f-NE:~~ These fractures and faults exert an important 

control on the intrusion of younger intrusives and ascendent hydro-

thermal solutions which formed economic Cu-Pb-gn Sulphide deposits 

througho~t the Eastern Pontidso 

To the SW of Trabzon, the seaward sloping of the Pontids in 

some places is caused by a step faultingo The general direction 

of step faulting runs on a line more or less parallel to the 

present Coast line, ioeo to the general direction of the strike 

of the Pontic r~ountainso There are also other fault sets, trhich 

run transverse to those step faul tso In general both the transverse:· 
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and longit~a~nal fault systems facilitated the ascent of the 

intrusive masses; and due to intrusive plutonic masses conditions 

were rendered quite favourable by a system of apical faults 

(Gattinger et al, 1962). 

· During the Quaternary due to epeirogenic movements along 

the Black Sea Coast terraces were formed. Today these terraces 

are about 200 meters above the.present level of the Black Sea. 

Due to uplifting of the Pontids' batholith, regional tilting, 

with a dip of 25-30 degrees nor~hwards, and gravity faulting 

with a dip of up to 70 degrees, occurred. 
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B.III MAGMATIC ACTIVITY 

Magmatic activity in Turkey and its neighbour countries (ioeo 

Syria in SE, Greece in W) has been extensively studied by 

Dubertret (1953), Brunn (1952) and Borchert (1958). They give 

a broad outline of magmatic activity in this part of the world 

and they tend to relate ultrabasic and acidic magmatic activity 

by invoking differentiation and fractionation of the initial 

magma which was basaltic in composition, Borchert (1958). 

The Pontids have more volcanic activity in their geological 

histo~ than other tectonic units of Turkey. The volcanic rocks 

roughly cover 6Q% (compared to sedimenta~ rocks 15%, and intru­

sive rocks 25%) of the Eastern Pontids and their magmatic histo~ 

can be divided into four main cycles: 

IV. The fourth magmatic cycle (mainly basic) 
III. The third magmatic cycle is a repetition of the 

second cycle i.e. (b) Acidic differentiation 
of the initial magma of the third cycle, (a) 
Basic differentiation. 

II. The second magmatic cycle is composed of (b) 
Acidic differentiation of the initial magma 
of the second cycle, (a) Basic differentiation. 

I. The first Post-Palaeozoic magmatic cycle (Hercynian 
grano-diorites). 

I. The first magmatic cycle occurred in the Hercynian belt 

of the Pontids particularly in the area of Sirya-Ardanu9 and 
II 

yielded grano-dioritic intrusions, Kraeff(l963a). 

II. The second magmatic cycle is due to differentiation and 

fractionation of the initial basaltic magma that produced the 

Lower Basic Series (See BI & field geology). Further differentiation 
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and fractionation yielded rocks of acidic composition i.e. the 

Dacitic Series. The furthermost fractionation of acidic magm~ 

caused the silicification of the last products of the acidic 

fractionation. This alteration would be accepted as a late 

hydrothermal phase of the Second magmatic cycle. The second 

magmatic activity took place during the Lias and Senonian. 

III. The third magmatic cycle is also composed of a basic 

fractionation and secondly an acidic fractionation. The first 

basic differentiation and fractionation of the initial magma 

produced the Upper Basic Series. The further differentietion 

and fractionation of the basic magma yielded an acidic magma 

which produced a series of intrusive rocks i.e. quarta-biotite-

feldspar porphyry in the Lahanos area, granites, granodiorites 

and tonolites over the whole Pontids. Finally the third magmatic 

cycle ends up with a late hydrothermal phase. The third magmatic 

cycle can be placed between the Senonian and Post Eocene. The 

Upper Cretaceous and Eocene sediments were formed during the gap 

between basic andmidic differentiation and fractionation of the 

initial magma. 

IV. The fourth magmatic cycle is basic in character and 

lasted between Eocene-Pleistocene. It produced mainly the Young 

basic intrusives and extrusives e.g. Andesitic and basaltic rocks 

" in the East of the Eastern Pontids {Kraeff 1963). 

Borchert's {1958) conclusions on the origin of the minerc.lisation 
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and magmatic activity were as follows: (i) a continuous 

crystallisation and differentiation of initial basaltic magma 
a 

giving continuous fractionation products from ult~basic to 

rhyolite; (ii) later, an intermediate magma forming intrusive 

bodies, subvolcanoes and volcanics in the geosynclinals eogo 

in the case of the Fontids eugeosynclinal 1·1here one could see 

pillow-lavas, mela.phyref spilites, keratophyres, andesites and 

finally dacite forminG submarine lava flous; (iii) thirdly the 

upward movements of more acidic components gave the gaseous 

phase which cause.d auto -hydration (violent propyli tisation) 

in the Pontids; (iv) fourthly, a final gaseous phase which 

formed different exhalative min·e"':'al deposi tso 
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BoiV MINERALISATION 

According to the special edition on copper mineralisation 

of M.T.A. (1966) the occurrences of copper mineralisation in 

Turkey can be broadly classified as follotV"s:-

Ia. Copper mineralisation in crystalline schists e.g. in 

marbles, slates etc., mainly composed of chal·copyri te, bornite, 

covellite and hematite as primary minerals and cuprite, auzurite, 

malachite, native copper as secondary copper minerals. 

Ib. Copper mineralisation near intrusive bodies of mainly 

Palaeozoic age, as pyrometasomatic deposits in limestones, with 

pyrite, sphalerite, argentiferous galena, chalcopyrite and some-

timer- hematite. 

II. Copper mineralisation chiefly associated with or occurring 

in volcanic rocks of various ages, that may be also divided into 

three distinct groups~ -

IIa. Copper deposits that are mainly associated .. t-Tith pillot-T-
II 

lavas, spilitesmd diabases e.g. Kure and Ergani Copper mines 

(See ~iap 1). These deposits are often found in the I.!esozoic 

volcanics. 

IIb. Copper deposits that mainly occur in more acidic 

volcanic rocks, mainly andesite, dacite and rhyolites. 

IIc. Copper mineralisation genetically associated uith 

the late Tertiary granitic intrusions in the volcanic enVironment. 

~-n t"l;i.is t-hesis only groups IIb and II c will be dealt with 
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and subdivided and studied in a larger senseo The ages of the 

host rocks of these groups vary from Mesozoic to Lower Tertiaryo 

The Eastern Pontid area has so far been visited by many 

German geologists, and most of them favour accepting a. sub-

" volcanic exhalative origin (According the Schneiderhohn1 s 

classification) eogo Kieft (1956), Schultze-\festrum (1961) and 

Maucher (1960) etco Some of them however suggested a hydrothermal 

origin e ogo Uijkerslooth (1946), Pollak (1961) and Geoffroy (1960), 

who describes two main phases of metalogenic history: 

(i) Towards the end of emplacement of the dacitic lava 

flows ioeo a sub-volcanic episode which produced autoalteration 

products such as silicification, propylitisation, kaolinisation, 

pyritisation and calcificationo 

(ii) Due to emplacement of the Pontid 1 s batholith 

a - Contact metasomatic mineralisation 

b - Hydrothermal mineralisation 

· Borchert (1958) thought that differentiatio~ and fractionation 

of the initial basaltic magma finally yielded a gaseous phase giving 

different exhalative mineral deposits according to its different 

composition, and made the following suggestionsa-

lo Supposing the .later gaseous phases are rich in Fe 01 2, 

they form hematite deposits if theyfind a chemically suitable 

host rock, if not they produce reddish sediments (Flysche) in 

geosynclinalso 
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2. If the emanations are rich in H
2
s then they form 

exhalative sulphide deposits (mainly copper deposits). Ergani 

" and Kure can be regarded as typical of this group. They are 

always associated with pillow-lavas, spilite and diabase 

porphyries. 

3. Apo-magmatic formationc of radiolarite and manganese 

deposition occur when the source of emanations is deep seated. 
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C. FIELD WORK 

INTRODUCTION 

For the purpose of studying the genesis of the pyritic 

sulphide deposit of the Lahanos Cu-mine, a good deal of geological 

mapping and geochemical sampling was undertaken at surface, under­

ground and from boreholes. Dur~ing the field work a part of 

the ~25,000 scale Geological map, a ~10,000 scale geological, 

1/5,000 detail geological map of the Lahanos copper mine site and 

final~ ~500 scale underground mapping were completed. (See maps, 

4,5, 6 and 7). The area studied in detail covers 70 square kilo­

meters (27 square miles) around the Lahanos copper mine. In addition 

to the Lahanos pyritic sulphide deposit, there are eight more minor 

mineralised localities, within the area studied in detail, which 

lie in a narrow belt, with an average width of three miles perpen­

dicular to the Black Sea Coast. 

A systematic grid sampling programme, in order to show prima~ 

distribution of major and minor elements at surface above the ore 

body, and another systematic sampling of boreholes in order to show 

the primary distribution of major and minor elements at depth towards 

the ore body, were collected (about 167 samples). Underground samples 

were collected to show the distribution of major and minor elements within 

the ore horizon, together with ore samples, from boreholes to show 

the vertical distribution (about 77 samples). 

For comparismn with the Lahanos mineralisation the following 

thirteen different mineral deposits have also been visited, starting 
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CHAPTER A - INTRODUCTION 



Ao. INTRODUCTION 

This particular research is based on a~udy of the mode of 

occurrence and the genesis of pyritic base metal sulphide deposits 

within the submarine volcanic environment at the Lahanos copper 

mine and a comparison with other pyritic base metal sulphide 

deposits occurring in the Eastern Black Sea area. Maps, 1, 2 & 

3 show the· areas of interest, all located in the Eastern Pontic 

( - - >* mountains Dogu Karadeniz Daglari of N.E. Turkey. 

The Pontic mountains start from the estuary of the River 

Sangorius (Sakarya Nehri) and extend eastward along the Black 

Sea Coast to Batum (Russia). They are divided into western and 

eastern major units by the River Halys (Kizil Irmak) (See I·Iap 1). 

In the south they rest on the Anatolian Plateau and, in the north, 

they form the abrupt coastal mountains of the Black Sea. The 

relief of the mountain chain increases eastmrds and near the 

Russian border it reaches almost its maximum. The highest point 

is Mount Ka~kar (Ka~kar Tepeleri), 12917 feet (3,937 m) above 

sea level. The Pontic Mountain chain is geologically kno~m as 

the "Pontids". 

This thesis will deal only with pyritic base metal sulphide 

deposits in the region knm.m as the "Eastern Pontus Ore Province" 
II 

(DoiuKaradeniz Cevher Bolgesi) which includes the area between 

* Names in brackets following place names are Turkish names. 
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from the East near the Russian border (Maps, 1, 2, 3, 4 and 5). 

Murgul Copper Mine, Boryka, Artvin, is the biggest and only 

working mine among these deposits (Maps 1 and 3); 

Pilarcivat Cu-Pb-Zn-Fe-(Mn) deposit, Arde~en, Rize (l.lap 1); 

Latum Cu-z~, (an old mine) vayeli, Rize (Map 1); 

Israi!_!~ovanpinary Copper Mine (an old mine), T~bolu, 

Giresun (Map 2); 

Ka~ar & Karaerik Cu-Zn-Pb deposits (old mines), Espiye, 

Giresun (Map ~'); 

Killik · ... Copper Mine (an old mine), Espiye, Giresun 

(Map 4); 

Kizil Kaya Copper Mine (an old mine), Espiye, Giresun (Map 4); 

Boztepe massive pyrite deposit, Tomruk Mahallesi, Espiye, 

Giresun (Map 4); 

Kepcelik Pb-Zn-Cu deposit, Yagci Mahallesi, Espiye, Giresun 

(Map 4); 

Kapi Kaya Fe-Skarn mineralisation, Bayrambey, Espiye, Giresun, 

(Map 4); 

Catak Fe-skarn mineralisation, Sinanli, Camiyani, Giresun, 

(Map 4); 
" Karadere Cu-Pb-Zn Mine, Kumarli, Unye, Ordu, (Map 1). 

C. I COMMENTS ON MAPS 

The; area shows a very young drainage system, dendritic at the 

middle of ~he mapping area i.e. around the Lahanos Copper Mine, and 
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subdendri ti.c towards the East and ~'lest edges of the field area, 

i.e. towards the river Yaglidere and Gelavera. These young drainage 

patterns follow the main .structural lines i.e. faults and fr~cture 

zones. The whole area without any exception is covered by heavy 

forest, bushes and dense fern. Fecause of its abrupt morphology 

and heavy rainfall there is not much soil on the slopes, and due 

to the hot climate there has bean a lot of surfac~ weathering. 

Cia GEOLOGICAL SUCCESSION 

tli thin the mapping area the rocks are mainly volcanics. The 

following mappable units were recognised:-

7• Late dykes {mainly basic and intermediate) 

6. Tertiary granitic intrusion 

5· Hypabyssal rocks 

~. Upper Volcanics {including the Upper Basic Series) 

3. Lower Volcanics 

2. Massive Limestones 

1. bower Basic Series 

1. The Lower Basic Series that are the oldest rock unit are 

exposed mainly in the deeply eroded river valleys ~n the mapping 

area and form the basement of the thick volcanic series. Various 

names have been proposed by other authors for the Lower Basic 

Series, but this name seems to be the most appropriate description 

of the general nature of these beds, whose age ranges from the 

Lower Jurassic {?Lias) to the Upper Cretaceous {Schultze-Hestrum, 
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1961), a thick sequence of volcanics being interstratified with 

limestoneso This characterised by thick predominantly green-black 

spilites, pilloti lavas, alkali basalts, agglomerates (Plates 1, 

2 and 3) and interbedded Hippurites-bearing thermally metamorphosed 

limestone at Kapikaya (N9) in the Bayrambey area. and marble at 

II II -
Saimbuku in Yaglidere (L4 in Map 4 and geological sections)o 

In the valley of the Yaglidere eogo at Degirmendere by the 

foot bridge (F3), the Lower Basic Series consists of various 

flows of latite and alkali basalts interbedded with thick gre~n 

bedded agglomerate {basic in character) {Plate 3) and spiliteso 

The visible thickness of this series up to the Lower Volcanic 

Series is over 150 meters, although the base is not seen {Plate l)o 

Both here and further north, it is difficult to see any Upper 

Cretaceous limestone interbeddedwith the volcanics, but upstream 

" " towards Saimbuku (Map 4), there are some isolated recrystallised 

limestone lenses in which no fossils have been foundo Recrystallisation 

andjbrmation of skarn mineralisation in these small lenses of lime-

stone is due to emplacement of a Tertiary granitic (tonalite) 

intrusiono These unfossiliferous massive limestone lenses in the 

Lower Basic Series might represent the Malm or Lotter Cretaceous 

Limestone {See Tabo 1) o The general appearance of the Lo1-1er Basic 

Series can be seen in Plate 1 from Yaglidere at Camiyani (Map 4 Bl)o 

2o Massive Limestone as a mappable unit consists. of mainly 

whitish, bluish, gray limestone at the southeast corner of Map 4 in 

the Kapikaya, Topkayaba~i (Mll) and Be.yrambey areas, here again, 
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Pl. 3· General appearance of the agglomerate, in the river Yaglip just 
south of Camiyani. 

Pl. 4• ~pabyssal dacite intrusion into the Lower Volcanic Series 
at Boga~arla (Map 4, D7) .. 
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due to the Tertiary granitic intrusion a skarn mineralisation 

of mainly specularite, magnetite, garnets and calc-silicates has 

been developed. Although no determinable fossils have been found 

in this limestone, the presence of some organic calcite remains 

(biv.al-'Jl.es) suggests that this mappable unit is at least Cretaceous 

or possibly Lower Upper Crateceous in age, having lateral and 

vertical facief? changes into the Lot..rer Basic Series. 

Another limestone interbedded with the Lower ~asic Series is 

" " found at Saimbuku (Map 4, L4) in the upper course of the Yaglidere 

where lenses of limeston~s are completely interbedded within the 

Lower Basic Series. Due to the granitic intrusion these limestones 

are thermally metamorphed to marble and they contain sor.1e skarn 

and metasomatic iron ore mineralisation. 

3· ~~ower Volcanics are the second oldest volcanic rock 

series in the mapping area and overlie the dark green agglomerate, 

and brown or dark green spilite of the Lower Basic series at the 

northern bank of the De~rmendere 9 in the Tilhan lliahallesi (r.tap 4 9 

F3) where an almost complete stratigraphic section can be seen 

towards the Killik Madeni (Section 2). At the· same location it is 

also possible to see the overlying Upper Volcanic Series. Here 

the Lower Volcanic Series is possibly represented either by a 

single composite lava flow containing three different flot-1 units or 

by three different lava flows (owing to weathering and hydrothermal 

alteration, the exact relationship: is difficult to establish). 
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The Lower Volcanic Series around the Lahanos copper mine area 

(especially in the area of lllap 5.} l·li thout any exception, due to 

mineralisation, have suffered intense hydrothermal alteration and 

later heavy weathering, so that one cannot see any fresh rock. As 

a result of hydrothermal alteration it is possible to see hydro-

thermal brecciation particularly in the vicinity of the pyritic 

sulphide deposit e.g. nort~ of the Lahanos Copper mine, betrreen 

" Guzlek Mahalle (Map 4, E6) and B~ tene ];_lahalle (Map 4, E7). The 

common alteration processes are silicification, seriei~sation and 

less commonly, chloritisation. During the field mapping their 

di.stinct alteration products, distinct colours, petrological and 

morphological characters could be used for mapping purposes in spite 

of their heavy alteration, thick vegetation and soil cover. 

In the east of Bi tene lllahalle a series of quartz-andesite 

dykes cut through the Lmver Volcanics. Plates 4 and 5 sh0\'1 an 

intrusive hypab·:rssal dacite intruded into the Lower Volcanics l·Ti th a 
, 

chilled margin against them. 

4· The Upper Volcanics (including the Unper Basic Series) have 

been used as a single mappable unit in order to faciliate ma,ping. 

As far as mineralisation is concerned the Lower Volcanics and Upper 

Volcanics are vitally important and pyritic sulphide mineralisation 

almost all-lays takes place near the contact of these trro units, or 

more often \'li thin the Upper Volcanic Series, but close to the Lm'ler 

Volcanic contact~ The average thickness of the Upper Volcanic Series 



Pl. 5· Hypabyssal dacite intrusion into the Lower Volcanic Series:­
at Bogaztarla location (Map 4, D7) 

Pl. 6.. Columnar jointing, Upper Volcanic Series, Lahanos mine .. 
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changes from 25 to 250 meters (Fig. 1). This series because of 

its younger age occupies the highest ridges and hills. 

The Upper Volcanics are mainly composed of alternations of lava 

flows, pyroclastics and marine sediments. The composition of the 

volcanics gradually changes from bottom to top i.e. dacitic to rhyolitic, 

which might indicate that a continuous differentiation and c~stallisation 

of the initial Magma took place during the Santonian, because in the 

three different levels of the Upper Volcanics and the Upper Basics 

fossils were found for the first time in this particular region. 

However these fossiliferous and layered limestone levels give 

some idea of the general structure, which mainly consists of a series 

of faulted (broken) gentle anticlines and synclines. Figures 2A & B 

show the general direction of faults, fractures and joints occuring 

in the field and their possible maximum stress directions. 

Although some of the rhyolitic and dacitic fine grained 

volcanics show beautiful columnar jointing, sometimes, especially 

in the field, it is difficult to make a distinction between fine 

grained pyroclastics and lava flows without any columnar jointing. 

Plate 6 shows quite well developed columnar jointing in the 

rhyodacitic lavas above the adit 2 at the Lahanos mine. However, 

there is a vertical transition series from dacitic to rhyolitic 

lavas in to pyroclastic rocks mainly tuff and coarse fragmented 

volcanic breccia of rhyoliti9 composition (Plates 6 and 7) and 
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ple 7o Anidic (rhyolitic) coarse fragment volcanic breccias at 
~ " n " ( ) • S111Ukgolu Mahallesi Map 4, A6 1n the Lahanos mine -
Espiye road • 

. ' 
: .. ' ~ . ,., . 

\:_·~ 

Pl. 8. Acidio (rhyolitic) coarse fragment volcanic breccias, cut 
n n n n • (M 6) by hypabyssal dacite, Siiliikgolu Mahalles1 ap 4, A 9 

Lahanos mine - Espiye road. · 
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finally into dacitic-rhyolitic green pyroclastics and ignimbrites. 

For mapping purposes in order to distinguish the Upper Volcanics 

from the Lm-rer Volcanics the follov'ling characters of the Upper 

Volcanics were used: columnar jointing; their distinct alteration 

products i.e. mainly kcdlinisation, carhonatisation just above the 

mineralisation, their distinct red colours due to weathering, 

their stratigraphic position and distinct morphological features. 

In places it is possible to see clear age relations between 

hypabyssal ~te and the Upper Volcanic rocks (Plate 7). One of 

the best places to see thfs ,i's a road cutting of the Lahanos I:Une -

Espiye road south east of the J.[aden Tepe (Kanbak Tepe, I1lap 4, D6). 

At this point intrusive hypabyssal dacite shows a chilled margin 

against the Upper Volcanics. This phenomenon can be follm-red along 

the eastern slope of the Maden Tepe. The same age relationship 

can be seen between coarse fragmental rhyolitic volcanic breccia 
tt II II It 

and hypabyssal dacite in the Sulukgolu Mahellesi (Map 4 and 5, A6) 

(Plates 7 and.5). 

Rocks of the Upper Basic Series around the Lahanos mine are 

characterised by dark green andesitic or basaltic agglomerate and 

spili tes a1.d they were named the "Green Spili tic Series" by Pollak 

(1961). The Upper Basic Series with a common trend of HE-Sl·J overlies 

the Upper Volcanic series, and towards the Killik mine (Map 4, E6) 

increases in thickness. Another well developed area of the Upper 

Basic Series is west of Kasap payiri Mahalle (Map 4, F8) where one 
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gets the impression that these basic rocks laterally and vertically 

p~ass into the Upper Volcanic Series. A fossiliferous horizon 

(i.e. Sample 138) from these basic rocks gave a Santonianage, 

similar to samples 163 and 172. 

5. Hypabyssal rock as a mappable unit is called "Intrusive 

Lahanos Tepe Dasi ti" by Pollak (1961). It is a biotite-quartz-

feldspar po~phyry of dacitic composition and covers large areas 

northwest of the Lahanos copper mine. It shows a SE-mi trend on 

the ridges of the Kalehisar Tepe (Map 4, C6) - Oyrak Tepe (I.lap 4, B5) 

toi-rards the Karaka~ Tepe (Map 4, A5) andforms a h~ge dome shaped 

intrusive body. It is possible to see dykes of the Lahanos Tepe 

Dacite cutting through the whole volcanic series including the Uyper 

Volcanic Series (Plate 8), particularly north of the Karaaga~ dere 

(Map 5, D8) therefore the age of the Hypabyssal rocks is clearly later 

than the Upper Volcanic Series i.e. Later than the Santonian, possibly 

late Upper Cretaceous or Early Tertiary. 

In the field it is easy to recognise and it sometimes sho\·rs 

" " columnar jointing (Plate 9) north of the Oluk Duzu area (Map 47 B 

3 and 4). It shows deep weathering, onion structure and forms 

arenaceous alteration products particularly at Oyrak Tepe (Hap 47 

6. Tertiary Granitic Intrusions can be seen only at the SE 

and SW corner of the Map 4 and the South of Map 2. At the SE corner 

o£ Map 4, a granitic intrusion occurs in the Lower Basic rocks and 



Pl. 9· Columnar jointing, hypabyssal dacite, Olukduz: (Jiap 4, B3) 

Pl. 10. Granite cut by the late dyke (dark in colour) at Tuglacik, 
river Yagli (Map 4v N2) 
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limestones in the east of the Bayrambey Mahalle (Map 4, Kll and Nll). 

11 " At the SW corner of 1·iap 4 in the Saimbuku (Map 4, 14) another small 

quartz-dioritic intrusion is found in the Lower Basic Series. Both 

of these intrusions produce a thermal metasomatism halo around them 

and many small iron ore bodies and skarn mineralisation were formed. 

The age of these granitic intrusions is believed to be Tertiary or 

late Tertiary (Oligocene) during the Alpine orogeny. 

1· Late ~ykes are generally basic in character i.e. tholeiitic 

basalt and andesite. In the Tuglacik area in the Yaglidere (Map 4, 

N2 and Plate 10) a quartz-dioritic intrusion is cu.t by a late 

(dol~ic) basic dyke. In other parts of the field area, particularly 

in the Bitene Mahalle (Map 5, E7), quartz-andesitic dykes cut through 

the volcanic rocks. These late dylces represent the youngest igneous 

activity in the Lcohanos e.rea.. 

C •. ~b SO?(E STRUCTURAL COli.ll~IENTS 

The Lahan~s area appears to have suffered little or no tectonic 

deformation on folding, but \ias mainly affected by block faulting 

(Kraus, 1958}. Gattinger et al., 1961) to give a series of horsts and 

grabens trending along the Eastern Black Sea Coast. The presence of 

pyroclastic horizons and hormal sea sediments in the Lower and Upper 

Volcanic Series gives some idea of the general structure of the 

Lahanos area. The structural study of ~~aps 4 and 5 indicated c. 

broken ant·icline \1Tith e. general trend of s:1-1TE. 

In order to find out the main possible structural trend in the 
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Lahanos area Fig 2A was constructed by using the surface trend of 

faults and fractures and then plotting on to a rose diagram, giving 

an E-W possible maximum stress direction. On the other hand Fig 2B 

was produced from underground data giving tl-ro dominant directions: 

major faults and main fractures displaying again the E-t-1 direction; but 

minor faults, fractures and joints gave distinct direction of NNt'l-SSE. 

In different parts of the field area, different stratigraphic 

columns and sections showed that rocks from the Lower Volcanic Series 

through the Upper Volcanic Series up to the top of the Upper Basic 

Series were possibly formed during the Upper Cretaceous or more 

precisely in the Santonian to Campanian (Fig. 1). The presence of 

Santonian-Campanian fossils throughout the Lower Volcanics and the 

Upper Basics indicates that these series might have been formed 

during the Santonian-Campanian, Upper Cretaceous. The follm·Ting 

paleontological evidence is the first to be described from the 

Lahanos area. Sample 163, gray limestone, representing the bottom 

of 1he Upper Volcanfcs at Degirmindere (Map 4, F3) contains 

Globotruncana Linneiana (a'Orbigny} group, 
Heterohelix Sp., and 
Rotaliform bentic species 

giving a possible *Santonian age. 

*Fossils are determined in the British Museum (Natural History) by 

Dr. D.D. Bayliss •. 
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Sample 138 brown reddish limestone representing the middle 
II II 

of the Volcanic series in the southeast of Uz~~lu Tepe (Map 4, 5, 

E9) contains 

Globotruncana Linneiana (d'Orbigny), 
Globotruncana Linneiana Trica.rinata (Querreau), 
Globotruncana Linneiana Coronata Bolli, 
Globotruncana Cf. renzi Gandolfi, 
Globotruncana Spp. indet, 
Globigerinelloides Sp., 
Hetero helix Sp., 
Hedbergella Spp., and 
?Marsonella Sp. 

This fauna suggested a probably Santonian age. And finally Sample 

172, gray limestone, representing the top of the Upper Volcanics 

south of the Tek~am Tepe, contains (Map 4, L9) 

Globotruncana Linneiana (d'Orbigny) group, 
Hedbergella Sp. 

giving a possible Santonian age. 

On the other hand Schultze-Westrum (1961) suggested that the 

Lower Basic Series has an age range from Liassic up to the Upper 

Cretaceous (no certain stage has been given). The presence of 

limestone lenses within the Lower Basic Series particularly at 

Kapikaya, in the Bayrambey Mahalle (Map 4, N9) has been suggested 

as indicating an Upper Cretaceous age by Schultze-Westrum. During 

the field study samples containing some fossil remains tthich look 

like Hippurites remnants were collected at Kapikaya. Therefore one 

could assume that there t-was a little time gap between the Loti'er 

Basic Series andthe overlying Lower and Upper Volcanic Series, or 

even one might think that the toJ"hole series 1r1ere deposited contempor 
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-aneously in the same eugeosyncline, but they might represent 

different facies? 

Similar rock units and stratigraphical columns are also found 

in different parts of the Eastern Pontidso eogo in the Murgul and 

Latum areas(Figo 1) with very little different stratigrephical 

columns are quite similar to the Lahanos stratigraphi~column, 

but with the exception that the Hippuritic limestone series comes 

on top of the Upper Volcanic ilacite and rhyodacite and the Upper Basic 

Series as well (Kleay, 1962) in liurgul areao 



CHAPrER. D PETROGRAPHY OF THE LAH.ANOS .AREA 
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D. I PETROGRAPHY OF THE LAHANOS AREA 

As mentioned in Section C, severe and heavy alteration made 

it difficult to obtain fresh·rocks, furthermore the fine-grained 

character of these rocks also made identification difficult; 

therefore most of the nomenclature is based on chemical analysis 

rather than microscopic studies. For the purpose of chemical 

nomenclature s·treckeisen' s classification (1967) is employed 

(Fig 3 ,4) and fur the purpose of microscopic studies ~·filliams et al, 

(1954), Moorhouse (1959) and Kerr (1959) 1o1ere mainly used. During 

the ~etrographical studies over 200 thin sections were examined. 

Determination of feldspars, particularly plagioclase, are mainly 

based on ttV"inning axis measurements as described by Slemmon' s (1962) 

and an x-ra:y d:ift'ractometer method. The rocks of the t·Thole volcanic 

series have suffered autoalterati9n, hydrothermal alteration and 

\V"eathering; therefore finding representative fresh rocks t·m.s 

difficult particularly in the mineralised area. Most of the fresher 

rocks were collected away from areas of hydrothermel alteration. 

Analys.is of the field evidence on the volcanic rocks suggested the 

follmdng sequence of igneous activity for the Lahanos area (See 

Tab. 3) 

1. Latite-basalts form the bottom of the Lower Volcanic rocks 

outcropping in the Lahanos area. The major minerals are basic 

plagioclase, olivine and pyroxene. Some of these basalts shm·T 

conspicuous plagioclase pheno crysts and lath shaped plagioclase in 



TABLE 3 

Sequence of igneous activity and related volcanic rocks 
with corresponding sediments in the Lahanos region 

IGNEOUS ROCK SERIES 

ll. Granitic intrusions · 

lO. Hypabyssal dacite. 

9. Pyroxene basalt-andesite 

So Quartz-andesite (mainly dyke) 

7. Rhyolitic lavas and pyroclastics 

6. Rhyodaci tic lavas and pyroclastics 

5. Dacitic lavas and pyroclastics 

4. Quartz andesite 

3. Tholeiitic basalt and andesite 

2. Alkali basalt and spilite 

1. Latite-basalt 

C.ORRESPONDING SEDIMENT.AR Y ROCKS 

)Gray limestones 

)Red Limestones 

~ray !Amestone 

lBluish 
) 
) 

grey Limestone 



Alk•li 

Tracft)ftea 

Alk•li 

RPt)<olitea 

10 

Alkali Feldspar 
35 

,. 
' ' ' : 

'd 

Trlldl)'tea l.Gt.ite 

Quartz 

\1 

"-:..~. 

., --{ TPioleilte 

~-· 

-·-Llotite--
Wt.Ofo. 

Plagioclase 

F1G.3.-Distribution of volcanic rocks from the Lahanos area Espiye,Eastern Black Sea,Turkey. 
Analpa al ...,..,,_ - ...a. - an a......,._ al- t,.,.. .- - llt,.....iaan.-7. 



Potash 

Anorthite 

ITE 

lite)·~·., 

,;-,·~ 

w&,l 

wt 0/o 

.,. 

.,. 

, 

\;\ 
''f.\·v· 

-'0 •..-'" ~ .. . .... 
.... 

FIG.4.- Modal classification of silicic volcanic rocks from the Lahanos area Espiye,Eastarn Black SN,Tunev. 
A....,_a a1 ~ _... .-.- an o diagram a1-- - .,,. ac--.-. 



36 

the groundmass. The chemical analysis gave a latite-basalt 

(according to Strekeisen's classification, 1967) whilst micro­

scopic properties sho'ltTed thc:.t this lias an oli,rine-basc.lt (unsat­

urated basalt) with very porphyritic, intergranular texture in 

which it is possi')le to see interstitial texture of coarse grained 

groundmass. Sometime a glomeroporphyritic texture can be observed. 

Plagioclases form large pheno-crysts with an average compo­

sition of bytownite-labradorite (using optical and X-ray methods). 

The composition of the lath shaped plagioclase in the groundmass 

is less basic, possibly labradorite or anQesine in composition. 

The size of the large pheno-crysts changes from sample to semple; 

the larger plagioclase crystals are about a few centimeters by a 

few millimeters. ·They are twinned accordine to either the 

carlsbad or albite twinning laws, and chiefly altered to calcite, 

but sometimes· to kaolinite, when hardly any fresh plagioclase 

remains. 

The pyroxenes are usually augite but they suffered. severe 

alteration a.nd sometimes are represented only by their alteration 

products e.g. chlorite, iron ores and calcite. 

Oli vines o.re similarly only represented by their al terc:.tion~ 

product, iddirig site; no fresh oli v.ine \·:as found. 

Calcite, sericite and kaolinite &fter feldspar; chlorite and 

opaque minerals after pyroxene, and iddingsite after olivine are 

the common secondary minerals of the latite-basalts. The presence 
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of aragonite, opal, chalced~ony and zeolites might be due to 

late stage hydrothermal activity (Williams et al., 1954). 

2. Alkali-basalts and spil_i tes in ass<?ciation can be seen 

in many parts of the area. The major minerals of spilite are: 

sodic plagioclase, mainly albite and oligoclase, deuteric 

chlorite, after ferro-magnesi·an .. minerals, with calcite, .chal­

cedony in filling amygdales and vesiculas and brm-m glass (possibly 

palagonite). The common texture of these rocks is intergranular, 

variolitic texture is also developed with abundant vesicles and 

amygdales. 

Plagioclases are altered to kaolinite and calcite, but most 

of them show the optical properties of oligoclase and albite. 

Some of the calcic plagioclase (e.g. specimen 112) is altered to 

analcime which was determined by using the universal stage and 

verified byX~ray diffractometer analysis. A similar kind of 

alteration was pointed out by Johannsen (1937, Vol. III, pp 254)~ 

Dark coloured glass-like material forms either the entire 

groundmass with numerous vesicles and amygdales which are 

infilled by zeolites, calcite, chlorite, chalcedony and opal, 

or patches of glass within the granular groundmass. Hm·1ever, there 

are two dis:inct colours of volcanic glasses present in these 

spilites i.~. greenish and reddish greenish brown coloured. The 

latter one is probably palagonite. 

As a general character of the Lower Basic Seriez, due to 

alteration products of iron-manganese chlorite and iron oxide, a 



a reddish and greenish appearance is very common. Owing to ttea­

thering, onion structures are t·rell developed, thus some spili tic 

rocks may have a sort of ball or egg-like structure t-rhich is not 

true pillow-lava structure but due to spheroidal alteration. The 

general texture of the spil~tes is sometimes very fine grained, 

_generally porphyritic and very frequently vesicular. The ground­

mass contains acidic plagioclases, altered to calnite end chlorite. 

The phenocrysts of oligoclase-andesine are very much carbonated, 

and ferro-magnesian minerals ere ohiefly altered to chlorite. 

The ~icroscopic characteristics of the alkali-basalts are 

somewhat different from the spilite. They are fine grained dark 

coloured basalts (mainly associated with or usually overlying the 

lati te-basal ts) and commonly shOl·T intersertal or less frequently 

porphyritic texture. The interstices bett-Teen the Plagioclase-

laths (mainly labradorite) are occupied by pyroxene (augite). 

The principal constituents are calcic pla.gioclase, mainly labra­

dorite, and pyroxene (augite) uith subordinate amounts of opaque 

minera.ls·and deuteric chlorite, calcite and other alteration products. 

3· Tholeiitic basalt-andesites overlying the_ latite and alkali­

basalts show somewhat darker grayish black colours and finer grain 

size with some arnygdales and vesicles. Calcic plagioclase with 

pyroxene, :occasionally pigeonite optical determinations, form the major 

ninerals, while chlorite, calcite, ore grains c>.nd tridymi te t-Ti th short 

prismatic grains, form the subsidary minerals. The common textures 

are hyel~phitic and intergranular. Thin plagioclase laths, in the 
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groundmass, sometimes have a suggestion of floti structure. In the 

groundmass there are many vesicles and amygdales infilled by calcite 

and chlorite. Some of these vesicles show quite distinct 'tridymite' 

lining similar to segregated vesicles as described by Smith (1967). 

Due to alteration, calcification of plagioclase, and chloritisation 

of pyroxene are very abundant. 

4• Quartz-andesites form the. top of the Loti'er Basic Series and 

a.re mainly fine grained t-Ti th bluish gray colours, containing tiny 

gTeen speckles. Feldspars form the principal mineral ilhile cru.artz,1 

altered pyroxenes, opaque grains, chlorite, cal~ite and kaolinite 

form the subordinate and deuteric miner~ls. The common texture is 

porphyritic in which the p~enocrysts are mainly feldspars. The 

groundmass is c.omposed of tiny needle-like plagioclases and anhedral 

quartz. Sometimes glomeroporphyritic texture is also pronounced. 

The plagioclases are mainly andesine-oligoclase. Zoning is 

also present and the compositional changes of the zoned plagioclase 

are clearly displayed by the different degree of alteration, and as 

well as their alteration products. Albite, carlsbad and combined 

twins are fairly abundant. However, the presence of fresher albite 

and oligoclase indicates an albitisation which might be due to a 

hydrothermal stage alteration (i.e. soda metasomatism). Most of 

the oligoclase - andesine at the centre of zoned plagioclase is 

replaced by chlorite while some oligoclase-andesine phenocrysts 

are replac.ed along cleavages and around the edges by chlorite. 
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~ess common alteration products of plagioclase are calcite and 

kaolinite. 

The groundmass is mainly made of short small plagioclase laths, 

devitrified glass and xenomorphic quartz. Alteration of the ground­

mass produces devitrification of glass, kaolinisation of feldspar, 

chloritisation and calcification. 

5· Dacitic lavas and pyroclastics include the Lower, and pert 

of the Upper Volcanic leva flows and pyroclastics, thus dacitic 

rocks will be subdivided into 

c- dacitic pyroclastic rocks, 

b - dacitic Upper Volcanic lavas, 

a- dacitic Lower Volcanic lavas. 

a - Dacitic Lmier Volcanic series are represented by porphyritic 

dacite which is fine to medium grained, containing phenocrysts of 

rounded and sometimes corroded quartz, and feldspars which are 

lying in a qu~rtz-rich groundmass containing albite and alteration 

products of chlorite, sedcite and ore grains, mainly pyrite. The 

common plagioclase compositions are oligoclase-andesine or albite­

oligoclase. Da'cites of this subgroup are distinguished from the 

dacite of the Upper Volcanic Series by means of their more abundant 

and distinct alteration products involving intense silicification 

and sericitisation. Depending on the degree of alteration, the 

da.ci tic loto~er Volcanics can be grouped as follol>TS: 

(i) Partly silicified dacite is characterised by idio morphic 

quartz phenocrysts and silicified and sericitised plagioclese crystals 
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in a completely silicified groundmass associated with a small 

amount of sericitisation. 

(ii) Totally silicified dacite is represented by a mozaic of 

xenomorphic quartz crystals which are always bordered by small 

flakes of sericite. 

b - Daci tic Upper Volcanic hwas are somelvhat fresher e.nd 

finer grained than the dacitic Lower Volcanic lavas and have a 

pronounced flow structure. Feldspars and quartz form the major 

minerals of this group of lavas. The groundmass shm·rs good 

trachytic te~ture in a fluidal groundmass of sub-parallel acidic 

plagioclase laths with intergranular glass. The alterati~n 

products are also somewhat different from the Lower Dacitic Series 

and particularly closer to ore bodies chloritisation, kaolinisation 

and· calcification are ubiquitous and very striking in the field. 

Plagioclase phenocrysts are mainly albite and oligoclase in 

composition rri th albite and carlsbad tl;inning. Zoning of plagio­

clase is very rare. The commonest alteration products of plegio­

clase are kaolinisation and very little silicification. Silicified 

plagioc_lase phenocrysts have a salt and pepper appearance. Near 

the ore bodies replacement of plagioclase by carbonate minerals, 

pyrite and occasionally chlorite is quite common. 

Quartz is usually the main constituent of the groundmass uith 

c:.lbite and oligoclase-laths. Deuter:i,c quartz shows xenomorphic 

mosaic texture "~<Then it replEtces -the groundmass and d~.ci tic glass, 

but when it replaces feldspar phenocrysts, it forms very fine grained 
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anhedral aggregates whose appearance is like salt and pepper. 

c - Daci tic pyroclastic rocks with fel·r exceptions c>.re green or 

whitish, grayish green in colour with fine to medium fragments 0.045 

to 0.067mm up to 1.200 to 1.700mm in size. They contain different 

kinds of fragments of glass and crystals. The presence of glass 

shards, (Plate 11), suggests that these may be dacitic ignimbrites, 

since they show flow texture a.nd very few occasional elongated 

glass shards described a.s typical of such rocks by various authors 

(e.g. Adamian 1966, Cook 1966, Maleyev 1966, Petrov 1966, Shirinian 

1966 and Vlodavetz 1966 from Armenia, and Schmincke 1967 from South 

Central l·lashington). 

6. Rocks of rhyodacitic composition: According to their mode 

of occurrence these can be subdivided into two main groups. 

(i) Rhyodacitic pyrclastic rocks are very similar in appearance 

to the dacitic pyroclastics i.e. mainly green or sometimes bro~mish to 

reddish in colour. Two leading t3~es of pyroclastics can be dist­

inctly described, namely lithic and crystal tuffs and ignimbrites 

(these terms are used in the sense proposed by ~Iilliams et al., 1954) •. 

The principal fragments in the crystal tuffs are feldspar and quartz 

£"nd in addition there are lithic tuffs with vesicular fragments of 

rhyodacite or dacite derived from fluidal lava flows. These are 

cemented by a fine-grained felsophyric groundmass containing abundant 

sanidine (with very small 2V) in which zoning is not uncommon. Some 

of these pyroclastics contain fragments of andesine, but the common 

plagioclases are oligoclase and albite with carlsbad and albite twinning. 



Pl. 11. Glass shards from the Upper Volcanic Series, at 9uJcur 
Mahalle (Map 4v B7) 350 x 

Pl. 12. The southern outcrop of the pyritic sulphide ore at Lahanos 
copper-mine• 
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The presence of pyroclastic and flow characters might suggest a 

welded tuff, but the absence of elongated glass shards would seem 

to make it difficult to accept the term welded tuff in this case. 

The principal alteration products of these rocks are chlorite, 

kaolinite, deuteric quartz, seilci te and pyrite. Beca.use of these 

alteration products the predominant colour of the rocks varies 

from green to red in the field. 

(ii) Rhyodacitic lavas also appear with a dominant red or 

reddish colour in the field. They have a distinct porphyritic 

texture with a fine grained felsitic groundmass in which corroded 

and rounded quartz and sanidine and orthoclase with carlsbad twinning 

form the phenocrysts. Alteration of potash feldspars is mainly to 

kaolinite. Owing. to silicification, development of xenomorphic 

deuteric quartz in the groundmass can be present. Oxidation of 

ore grains produces a predominant red staining to the lavas. 

1· Rhyolitic pyroclastics and lavas form the top of the 

acidic volcanics. Because of their severe alteratio~microscopic 

studies of the rhyolitic pyroclastics l"lere limited. They show 

bleached white and gray colours in the field. Some of these pyro­

clastics are fine grained tuffs showing·bedding. 

The microscopic studies of pyroclastics shorred that these are 

mainly very fine grained volcanic ashes, thus they can be classified 

as "vitric ash" or "tuffs". (~Ulliams et al., 1954). 

The lavas of this group show a good porphyritic texture and 

their groundmass exhibits very fine grained felsitic texture enclosing 
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corroded phenocrysts of quartz and altered potash-fe.ldspar.s. 

8. Quartz-andesitic rocks forming lava flo~s, sills and 

dykes occur in the field. These almost invariably have a green 

or greenish colour which might be due to. propyli tisation of these rocks. 

Quartz-andesi tic rocks t'l'ill be dealt lri th under three separate 

subdivisions as follows 

{i) Sills and small intrusive bodies; 

(ii) Dykes; 

(iii) Lavas. 

(i) Sills and small intrusive bodies are fine to almost 

medium grain with a predominant green colour. Plagioclase, quartz 

biotite and amphibole fo;rm the major constituent minerals, trhilst 

chlorite, kaolinite and pyrite form subsiduary secondary minerals. 

The textures of these quartz-andesi tic sills a.nd minor intrusive 

bodies is rather striking; as a whole, it can be called a porphy­

ritic texture, but the appearanceof the groundmass and its inter­

lockine xenomorphic granular texture t'fi th euhedral and subhedral 

crystals of the principal minerals suggests a microgranitic texture, 

in which interlocking xenomorphic quartz crystals enclose tiny 

oligoclase-albite laths. It is sometimes possible to recognise 

xenoliths of the Lower Basic Series which are more easily recognised 

than the xenoliths of the acidic volcanics. 

Determination of the plagioclases of these rocks ttas done by 

using a universal stage method as described by Slemmons (1962) and 

gave an average of 50-61% anorthite corresponding to a range from 
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andesine to labradoriteo Some of the calcic plagioclase and 

amphiboles give an appearance of curnulophyric textureo Zoning and 

twinning of plagioclase are very commono The centres of zoned 

plagioclase are very often altered to kaolinite, chlorite, 

sericiteo 

Amphiboles (usually heavily altered to chlorite) occur as 

euhedral and subhedral grains and sometimes aggregates of hornblendeo 

It is possible to see some relicts of biotite completely altered to 

chloriteo This mineralogical assemblage corresponds to hornblende­

biotite andesiteo 

(ii) Quartz-andesitic dykes show light to dark green colours 

and most of them suffered dense alteration in the fieldo Inte~ 

granular sub-ophitic and hyaloophitic textures are well developedo 

The interstices of plagioclase-laths are infilled with altered 

pyroxene and ·amphibole, devitrified glass and sometimes with xeno­

morphic quartzo In the groundmass there are some vesicles that are 

mainly infilled with flaky chlorite andoome xenomorphic quartz, and 

rarely phenocrysts of calcic plagioclase (possibly labradorite)o 

Abundant spinel group opaque grains are presento Main alteration 

products of these rocks are chlorite, deu~eric qu~tz and kaoliniteo 

(iii) The lavas of this group are fine-grained vesicular r.ocks 

with glomeroporphyritic textureso The groundmass consists of inter­

locking xenomorphic quartzo Amygdales and vesicles are infilled with 

calcite, chlorite and chalcedonyo Devitrification of andesitic glass 

is very abundanto The intense chloritisation of amphiboles, and 
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complete calcification and kaolinisation of feldspars are very common. 

These lavas are similar to the dykes in that they contain plen~y of 

opaque ore grains. 

9· Pyroxene basalt andesites occur as less altered lavas of 

the Upper Basic Series showing beautiful onion structure in the field. 

Under the microscope a t<Tell developed sub-ophi tic texture of· plagio­

clase laths (labradorite) anddinq-pyroxene (augite) can be seen. 

Although chemical analysis of these lavas gave a tholeiitic basalt­

andesite composition, the plotting of these into Kuno's diagram in 

Fig. 5 showed that they are mainly tholeiitic and high alumina basalt 

in composition and are termed pyroxene basaltic-andesites. 

Lath shaped ~lagioclase crystals form almost the entire rock 

with their interstices infilled by pyroxene. Larger zoned plagioclase 

phenocrysts are less abundant. The overal.l composition of the 

plagioclase is labradorite and by totmi te. Zoned plagioclases shot·r 

high 2V with negative optic sign at the centre whereas outer rims 

also show high 2V with positive optic sign; thus the composition of 

zoned plagioclases changes from calcic cores to more sodic maxgins. 

Plagioclases show very little alteration, mainly sericitisation. 

Pyroxenes are almost colourless or pale greenish, very l·reak or 

non pleochroic with high relief compared to plagioclase. The maximum 

extinction angle of longitudinal sections varies from 40 to 45 degrees, 

and twinning with (100) as the twin-plane is fairly common. These 

optical properties indicate diopsidio-~ugite and pigeonite (with a 

small 2V). 
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Accesso~ minerals of amphibole (hornblende), biotite and ore grains 

can be seen with a common alteration to chlorite. 

10. Hypabyssal dacites form fairly large intrusive bodies, but 

rarely show columnar jointing. In place~. extensive weathering pro­

duces large onion structures up to about 60cm. by 75cm. in the field. 

The other abundant weathering product due to complete disintegration 

of the groundmass is arenaceous sand and kaolinisation of feldspar 

and ve~ little weathering of biotite. Unaltered hypabyssal dacites are 

ve~ hard. The rock can be called biotite-quartz-feldspar porph~ 

owing to the ubiquitous presence of these minerals in it. 

The main constituents of these dacitic rocks are feldspar (mainly 

as andesine and orthoclase) and quartz forming leucocrate minerals, while 

biotite and hornblende form the mafic minerals. Subsidua~ amounts of 

alteration products of the principal minerals and accesso~ amounts of 

zircon and apatite from the rest. There is a well developed porphyritic 

texture and the groundmass exhibits a fine grained felsitic texture. 

Biotite forms idiomorphic euhedral crystals and sometimes shows 

corroded edges against the felsitic groundmass. It shows strong 

pleochroism iwht yellow, yellowish brown to brown colours. Biotite 

c~stals show a platy habit and some apatite inclusions and are often 

replaced by feldspar, quartz, calcite and chlorite along the cleavages. 

It is also possible to see bent crystals of biotite. 

Hornblende shows quite distinct pleochroism. Sometimes it is 

possible to see c~stal outlines of pyroxene now completely pseudo­

morphed by hornblende and some opaque, Even hornblendes are later 



altered to a chloritic rim and fine-grained dusty opaques a.nd calcite. 

Quartz forms large rounded and corroded crystals and it is 

always p·resent in the fine-grained felsophyric ground.mass. Corroded 

and embayed quartz phenocrysts are often occupied by the groundmass. 

On the other hand replacement of biotite along the cleavages by quartz 

is quite common. 

Feldspars are represented by potash feldspars and plagioclase. 

The potash feldspars are orthoclase together with a very little 

sanidine with carlsbad twinning. Plagioclases are one of the three 

main phenocrysts of the hypabyssal dacite. Zoning of plagioclase 

is not exceptional and each zone distinctly sh011s different optical 

properties. Among the plagioclases albite and pericline tt·rinning are 

well developed. Determination of plagioclase composition t"ias done 

by :X:-ray diffractometer and optical methods which gave average values 

of 24-33% anorthite that is they are of oligoclase-andesine composition. 

Replacement of plagioclase in the centre of zoned crystals by sericite, 

kaolinite, calcite and sometimes by chlorite are very abundant. 

The groundmass always shows a felsitic texture and is mainly 

composed of quartz and feldspar. It infills cavities and embays 

the phenocrysts of biotite, hornblende, feldspar, quartz, and contains 

some zircon and apatite; but the groundmass is replaced by opaques, 

chlorite, kaolinite and sometimes by calcite. 

11. Granitic intrusions: although away from the detailed map 

area (See Iliap 2 and 4) o:ne cannot leave without mentioning the granites. 

The granitic intrusions in many parts of the Eastern Pontids are 
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surrounded by a zone ofhornfels with a width of about 200 to 1500 

meters, the hornfels are dark fine-grained rocks, mainly feldspa­

thised and pyri tised. The mc:.rginal facies of the granitic latholi th 

varies from tonalite to hornblende-granodiorite in many parts of 

the Eastern Pontids. Near the volcanics the granitic intrusions 

assimilated volcanic rocks, and it is possible to see granitic 

appophyses in volcanics, however more often it is possible to see 

xenoliths of volcanic rocks near the margins of the granitic intrusion. 

Some of the tonali tic intrusions shotv a myrmeki tic intergrowth 

of albite and small quartz crystals. Samples from Yaglidere (see 

Map 4, L3), showed two main types of granitic rocks:- (i) Tonalite 

(quartz-diorite) and (ii) Granite. 

(i) Tonali tes are presumely formed by the c:.ssimilation of 

the Lower Basic Series in a granitic magma. They ahrays form the 

margin of larger granitic intrusions in ~he field. Sometimes it is 

possible to see small isolated intrusive bodies of tonalite. Tonalites 

mainly consist of amphibole, plagioclase with subordinate amounts of 

biotite and quartz. Accessory apc;~.tite and ore grains are present. 

The texture of the tonalite is often hypidiomorphic granular or 

sometimes porphyritic intergranular. 

Amphiboles are mainly hornblende showing green or brotmish 

colours with distinct pleochroism often altered to chlorite. Horn­

blendes occur as hypidiomorphic grains · filling the interstices 

of large plagioclase laths. 



Plagioclase forms allotriomorphic grains mainly of oligoclase­

andesine and albite in composition (confirmed by XRD) with carlsbad 

and albite twinningso 

Quartz also occurs in these. rocks in subordinate amounts and 

infills the interstices of large feldspar grainso 

Chloritisation of amphiboles and biotites, albitisation, 

carbonitisation, sericitisation and kaolinisation of plagioclases 

and orthoclase are well represented in tonaliteso 

(ii) Granite~ are found in the centre of the large acid 

intrusionso The rocks are quite coarse grained, with hypidiomorphic 

granular textureo Large reddish pinkish orthoclase phenocrysts 

give an impression of porphyritic texture in which mafic minerals 

and plagioclase tend to oe in euhedral form, wHile most of the 

orthoclase is subhedral and quartz occupies the irregular inter­

spaces of amphiboles and feldsparso Orthoclase,albite, oligoclase 

and quartz are among the principal minerals while biotite, amphibole 

and a little pyroxene (titano augite) are the subordinate minerals, 

and apatite forms the accessory mineralso Due to late hydrQthermal 

activities, joints and fractures of granite are infilled with mainly 

pyrite containing chalcopyrite and neodigenite etco 

The compositions of plagioclases are albite and oligoclaseo 

Orthoclase encloses plagioclase and contains some inclusions of 

plagioclaseo Albite, cer~bad and pericline twinning can be widely 

seen among the feldspars of which common alterations are sericite 

and kaoliniteo 
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Quartz infills the empty spaces and intergranular spaces of 

feldspars and shows xenomorphic granular texture. 

Biotite is strongly pleochroic with dark brown colour and 

usually alters to chlorite and some opaques. There are some amphiboles 

present beside biotite, greenish in colour and showing the optical 

properties of hornblende. 
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D .II ROCK CHEMISTRY 

As mentioned in the descriptive petrography, because of the 

.fine gra~ularity· of the volcanics and their heavy al tera,tion closer 

to the pyritic sulphide deposits, further definition of rock types has 

had to be. based on chemica.! analysis. During the laboratory l·Tork, 

rock samples from the Lahanos are~ were analysed by XRF methods. 

Sample and standard preparation techniques were car~ied out as 

described by Ineson, 1967. See appendix for operating conditions 

and also calibration graphs Fig. 28 A-D. Mass absorption corrections 

and recompu.ting ii~ 100% were done by the Holland and Brindle (1966) 

Computer programme. In all, 231 rock samples representine surfc:-.ce, 

under~round, boreholes and geochemical grid l'iere analysed for Si02, 

AI
2
o
3

, MgO, Fe20~ (total iron), CaO, Na2o,K
2
o, Ti0

2
, MnO and S. The 

FeO analyses were done by wetchemical methods. 65 rock samples of 

various volcanic rocks from the surface l'Tere analysed for Ba, Sr, 

Rb, Zr, Cu and Zn, whiCI.e: 166 rock samples representinr; the geo­

chemical grid and boreholes were .analysed for Ba, Sr, Rb, Zr, Ga, 

Cr, Mo, Ni, Pb, Zn, Cu, Te, As, Bi, Cd and Ag. Results are given 

in Tables 4, 5, 6 and 27 (a and b). In most cases attempts have 

been made to recalculate the proximate mineralogical composition as 

"norms". C.I.P.\"1. norms werecalculated from the chemical analysis of 

various volcanic rocks previously described petrocgraphically (see 

Tab. 4). In order to name these rocks, analysis of the Lahanos volcanic 

rocks ha.ve been shmvn on die>,gram of the type used by Strekeisen, (1967, 
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TABLE 4 

Chemical analyses of rocks from the Lahanos area 

·Latite-basalt La.tite Alkali basalt Andesite-Tholeiite basalt 
161 169C 169D 110 112 162 164 169E H3 108 111 136 137 146 160 166 Yd.lB 

- - -
.... , .[ . ./: . t. ,;...,., ·Jr. 

!i~6;" : : Lj;}.24: 5"!1."\21 '46'.24 .. 47.10 44.56 44.72 47 .4J_ 47.34 44.68 · 49o24 57.47 48.18 53.00 55.11 49.02 49.75 57.02 
18.09 18.65 18.40 19.89 15.86 17.78 19.24 18.68 13.91 20.98 16.96 16.87 18.00 16.76 19.97 17.45 16.19 

FeO 4.20 2.83 2.61 1.32 3.93 6.30 2.27 4.68 6.66 1.73 2.98 3.71 3.95 1.51 4.07 3-3·2 4.15 
Fe203 8.40 6.67 11.06 11.80 10.24 8.11 9.20 6.81 15.77 9.27 6.16 10.30 3.30 8.79 8.97 5.93 5.57 

r • ... ·.J· ,. • ""'·-'I" 
__ ~g01 ~uu , .. 8•491 1 · 6-•. 06u: _ 9_,;7.0 . ..•... 7 •. 80 ·' - 12;12· • 11;35•' 10.·14\ I 10.00•' 4.00:. - 3'.16 . '6';14 . 6.91 3.15 4.85 8.28 5.84- 3.12 

Cs.O 13.25 8.66 4.39 4.01 7.44 7.93 7.58 7.07 6.34 10.92 3.74 11.60 13.95 8.48 4.16 14.02 8.13 
Na20 1.27 "0.81 3.27 0.99 2.53 1.94 2o45 3.56 5.42 1.18 3.56 0.94 2.63 1.97 2.54 1.57 3.07 
K20 1.58 3.21 1.72 3.66 0.76 Ooll Oo2lt- 0.73 0.12 1.61 0.82 0.10 0.31 o. 79 1.38 0.11 1.00 
Ti02 0.71 1.55 2.13 0.95 1.14 0.95 1.11 0.66 2.79 1.20 1.09 1.10 1.41 1.08 1.09 0.87 0.70 
MnO 0.29 0.07 0.10 0.11 0.29 0.29 0.15 0.18 0.15 0.12 0.25 O.lq. 0.38 0.19 0.17 0.12 0.27 
s 0.47 0.27 0.36 2.37 0.50 0.49 0.18 0.27 0.13 0.60 0.84 0.15 0.65 0.45 0.32 0.13 0.77 

Quartz 0 7.76 0 7.12 0 0 0.88 0 0 9.62 16.51 10.68 8.58 16.88 7 0 7lt- 7.86 15 .lt-lt-
Orthoclase 9o38 19.03 10.19 21.66 4.51 o.65 1.42 4.33 0.71 9-53 4.86 0.59 1.67 4.67 8.19 0.55 5.93 
Albite 6.35 6.87 27.75 8.38 21.50 16.54 20.79 30.29 42.03 10.00 30.22 7.98 22.00 16.70 21.60 8.60 26.10 
Anorthite 39.18 37.90 21.84 19.92 29.89 39.64 37.71 33.02 13.38. . 4.7,..28 .,1.8.61 4).._69 36.42 34.62 20.74 40.58 27.57 

' - o· .. 0 - - - - . -.. • , • ., •• :-~ .. • Jo 

-_ " Nepheline 2-.40 ··. ·-· -b .· ·. ·o . 0 - 0 0 2.27 0 0 0 0 0 0 0 0 
Corundum 0 0 . 3.18 7.01 0 0.05 1.17 0 0 0 3.42 0 0 0 6.76 0 0 
Diopside 20.91 4.05 0 0 5o 59 0 0 1.76 Iq .• 27 5.44 0 12.53 19.79 5.85 0 16.26 10.26 
Hypersthene 0 13.26 13.40 19.45 7.66 23.37 25.32 3.37 0 5.36 15 •. 34 1,1.~7 0 9.38 20.72 0 4.43 

15~10 - 6.15' 
.. 

2."l..O' . ' .. -- Olivine : . 8.09 . •· 0 7o58· · · 0 ' 0 16.26 0 0 0 0 0 0 0 0 
Ms.gnetite 11.09 4.08 1.53 0 8.88 10.82 4.07 9.17 13.43 0.79 4.88 8.78 4.87 1.08 9.59 7.65 7 .41+ 
Hematite 0.32 3.56 9.74 14.99 3.71 0 6.16 0 5.88 8.54 2.47 3.86 0 7.89 1.94 0.64 0 
Ilmenite 1.35 2.95 4.05 1.80 2.17 1.81 2oll 1.26 5.34 2.28 2.07 2.09 3.36 2.05 2.0.'3 1.67 1.33 
Titenite 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Rutile 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Pyrite 0.88 0.50 . 0.67 4.lt-4 . 0.94 Oo92 0.33 0.50 0.24 1.12 1.57 0.28 ' 2.40 0.84 o.6o 0.48 1.41+ 

.·. 
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Cnemical anal~ses of rocks from the Lahanos area 

I 
. 1 

Q u a r t z - A n d e s i t e 
64 65 66 67 106 130 153 159 Yd.l.A P.4 P.3b -
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K20 0.19 0.20 0.26 0.16 0.37 0.39 0.38 0.28 0.04 l . 
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..L, ,--- .... 
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~yrite 8.56 6.81 1.63 12.21 1.44- 0.81+ O.ll-3 Oo26 0.73 0.39 1.05 
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SiO 
A12fi3 
FeO 
Fe203 
Mgo 
Cao 
Na20 
K20 
Ti02 
MnO 
s 

Quartz 
Orthoclase 
Albite 
Anorthite 
Nepheline 
Corundum 
Diopside 
Hypersthene 
Olivine 
Magnetite 
Hematite 
Ilmenite 
Titanite 
Rutile 
Pyrite 

TABLE 4- ( Contd. ) 

Chemical analyses of rocks from the Lahanos area 

D a c i .:t e 
74- 82 87 95 113 122 129 135 ~ 156 169A Yd.Ag.Yd.Bed C4- 04- 07 AOl A03 M.27B M.27C M.28 

la Vol. 
69.59 75.09 75.77 75.68 63.66 57.4-9 65.85 76.51 62.80 76.23 75.58 67.16 71.80 69.99 65.39 66.05 59.44- 64-.97 65.34- 65.03 69.28 
16.4-3 14-.56· 12.70 16.13 18.33 21.4-1 19.55 14-.18 15.34- 13.50 14-.57 15.50 14-.96 16.93 15.50 15.79 19.25 16.21 17.01 17.23 15.87 
1.37 0.51 0.4-5 o.44- 2.51 2.95 3.03 0.34- 2.78 0.39 0.54-. o.83 1.20 1.4-3 3.90 4-.22 1.54- 1.34- 1.59 0.51 0.73 
1.92 1.68 1.62 2.16 3.02 3.67 2.62 0.33 4.16 1.21 1.23 4-.08 2.4-5 0.35 2.07 1.32 7.86 7.23 3.13 4-.86 2.12 
3o95 Ool8 0.62 0.07 3.87 9.87 3.61 0.51 4-o95 lelO 0.54- 1.37 1.52 0.89 2.82 2o4-9 4-o4-5 2.51 3.39 1.4-0 2.98' 
0.59 . 0 3.10 0 2.03 0 1.01 0.09 2.60 2.32 0.67 4-.4-1 1.27 1.77 4-.08 3.4-2 4-.22 4-.86 3.58 3.64- 5.77 
3.92 5.4-7 2.07 3.35 2.68 2.39 2.23 5.17 2.97 2.18 4-.15 2.36 3.4-0 3.98 2.26 2.61 0.22 o.o6 1.85 2.78 o.o3 
1.46 2.06 2.91 1.64- 3.03 lo24- 1.22 2o34- 3.04- 2o60 2.52 3o57 2.4-l 2.64- 3.08 3.26 1.63 1.54- 3.02 3o72 1.82 
o.~ 0.35 0.37 0.50 o.62 o.68 o.64- 0.35 o.84. 0.35 0.14- 0.4-9 o.48 0.53 o.7o o.6o 1.07 0.77 o.4-7 0.4-3 0.30 
0.12 o.o9 o.o5 o.o2 o.o7 0.12 o.o9 o.o1 o.18' o.o3 o.o4- o.o5 o.1o o.o5 €l .• ll o.o8 o.o6 o.o4- 0~18 o.o6 o.53 
0.22 0.05 0.34- o.o8 0.17 0.24- q.14- 0.16 0.39 0.07 0.01 0.19 0.4-0 1.4-0 o.o6 0.10 0.24- 0.4-5 0.4-l 0.32 0.4-5 

33.99 35.12 4-5.04- 4-9.8o 25.90 23.57 39.64- 36.54- 2o.87 4-7.01 39.58 28.4-5 37.86 31.14- 27.59 27.32 36.la 44.~4 5o.35 ~.~5 45.J8 
8.64-12.17 17.20 9.68 17.95 7.34- 7.23 13.83 18.02.15.37 14-.90 2.11 14-.26 15.63 18.20 19.35 9.4-5 8.90 17.88 22.00 10.76 

33.22 46.29 17.52 28.34- 22.74- 20.28 18.93 4-3.76 25.21 18.4-5 35.14- 19.98 28.81 33.75 19.21 22.11 2.01 0.52 15.68 23.54- 0.25. 
2.93 o 15.38 o 10.10 o· 5.02 0.44-12.94-11.51 3.32 21.17 6.30 8.8o 19.59 11.04-20.85 24-.18 17.79 18.07 28.65 

o o· o o a o o o o: o o o o o o o o o o o o 
7.34- .3.33 0.50 8.48 6.97 16.18 12.77 2.98 2.44- 2.88 3.79 0 4-.4-5 4-.31. 1.26 1.73 9.38 5.50 4-.19 2.01 3.36 

o o o o o o o o ·o o o 0.56 o o o o o o o o o 
10.08 Oo~! lo54- 0.17 10.83 26.00 11.57 lo27 12.64- 2.74- lo34- 3.15 3o79 3o4-0 7.04- 6.23 11.10 6.30 8.4-5 3.48 7.4-2 

0 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 
2.56 o. 78 0 0 3.98 4-.85 3.32 0 5.51 0.14- 1.4-3 0.88 1.6i 0 0 2.4-9 0.92 ¢. 70 3.19 0 1.68 

0 1.08 1.85 '2.24- 0 0 0 0.52 0 1.06 0.17 3.38 1.16 0 5.69 2.35 7.20 6.72 0.75 5.01 0.87 
o.79 o.66 o.7o o.94- ·1.18 1.29 1.21 o.6 1.6o o.66 0.26 0.93 0.91 1.02 o.97 1.14- 1.98 1.37 o.89 o.81 o.74-

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .4-5 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0.0 0 0 0 0 0 0 

0.41 o.o9 o.63 o.l4- 0.31 0.4-5 ·0.26 0.29 0.73 o.13 o.o1 0.35 0.75 2.64- o.11 o.2o 0.96 1.68 0.76 0.59 o.84-

~--· . ~-·~ ... --



TABLE 4 (Contd.) 

Chemical analyses of rocks from the Lahanos area 

R h y o d a c i t e R h y o 1 i t e s 

-83 84 85 117 132 138 142 143 A02 M27 81 86 104 105 114 141+ 
. -. . I . ' . . .. ' :.: ~:Si02· ·. ·.:. .. 74.·85 . 7.3 .•. 13 7l...58 . 9l.734; .q3.91 57;.40·. 69.07~· 6.6:.6]· 57•54:- 66.26 ·79·.63 85.50 6ll-o22 78.29 64.72 74.87 

Al203 ])+.12 14.49 15.64 4.78 15.89 13.39 17.~ 18.09 20.48 16.12 lJI-.55 6.77 18.60 1J+.09 20.72 14.48 
FeO 0.43 0.54 0.39 0.73 0.68 0.29 0.85 0.81 1.50 0.46 0.68 0.32 0.34 0.29 1.32 0.4'1-
Fe203 1. 71 1.97 2.28 0.18 0.94 6.23 1.48 2.76 8.19 4.64 0.41 3.14 11.80 0.09 5.32 2.29 
MgO o.6o 0.27 0.05 Ool:-3 3o35 2.65 3.12 3.17 4.99 2.50 0.64 1.38 0.27 0.29 . 2.02 0.42 
Cao 3.10 0.78 0.94 0.82 0 12.68 2.67 1.19 2.85 2.20 0 0.24 0 0 0.10 0.51 
Na20 1.38 2.95 2.31 0.06 1.99 0.50 1.46 2.12 Oo39 2.72 o.o8 0.05 Oo06 0.18 0.47 1.55 
K20 3.09 5.32 6.31 1.26 2.57 3.87 2.55 3.76 2.79 4.42 3.60 1.99 2.63 6.63 3.79 5.06 
Ti02 0.39 Oall-3 0.30 o.o8 0.43 0.57 0.3~ g.!i)·2 1."07 Q .• 3,),~ 9.4.6 0.43 0.73 0.13 0.92 0.25 
MnO 0.05 o.o6 o.o6 0.01 0.03 0.45 0.10 0.08 0.03 o.o6 o.o1 0.02 0.03 0 0.08 0.03 
s 0.24 0.05 0.09 0.31 0.17 1.95 1.11 0.68 0.16 0.17 0.03 0.17 1.40 o.o6 0.54 0.09 

J. ·'. '· J .. ·- ~ . t.., .... "'1 ... _., =-: : 'Quartz u. ="47·.;4J. 1··•35'o'55 <"31.?89 ~;83~;54 ·:47·~~6 17.2::1..= 4:<:>:~48'" 32·~68': 30·.96 25.08· 64c.33 75.07 53.37 51.~ 4J+o32 44.79 
Orthoclase 18.32 31.4-6 37.30 7.45 15.19 22.88 15.08 22o2ll- 16.68 26.14 21.27 11.76 15.53 39.21 22.43 29.92 
Albite 11.68 24.98 19.55 0.50 16.93 4.23 12.36 17.95 3.14 23.03 0.67 0.42 0.50. 1.60 3.98 13.12 
Anorthite 15.43 3.87 4.71 4.07 0 22.87 13.25 5.95 14.18 10.92 0 1.01 0 0 O.ll-9 2.53 

~ : I I : ll II Nepheli-ne "o 1:0 :. 0 ::0 ::0 0: o· o. 0· 0 .. 0 0 0 0 0 0 .. 
Corundum 2.8ll- 2.46 3. 29 1.82 9.82 0 7.23 8.36 11.52 2.86 10.52 4.16 15.64 6.58 15.68 5.52 
Diopside 0 0 0 0 0 14.24 0 0 0 0 0 0 0 0 0 0 
Hypersthene 1.51 0.67 0.14 1.72 8.37 Wollas- 7-77 7.90 12.50 6.25 1.77 3o4-3 0.67 0.87 5.03 l.Ol1-

tonite 
9.08 

Olivine ·o 0 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 
Magnetite 0 0.54- 0.36 0.14 0.56 0 0 0 1.39 0.01 o.J.~ 0 0·· 0.08 0.32 0.53 
Hematite 1.77 1.53 1.98 0 0.48 9.46 2.10 3.25 7.20 4.58 0 3.-43 14.47 0 4.95 1.87 
Ilmenite o. 74- 0.81 0.57 0.15 0.83 1.08 o. 6l .. 1.19 1.98 0.77 0.87 0.71 0.78 0.26 1.74 0.47 
Titanite 0 0 0 0 0 0 0 0 0 0 0 0.12 0 0 0 0 
Rut"'ile 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 
Pyrite O.l1.4 0.09 '0;.16 0.58 0.31 3.65 2.08' 1.27 0.60 0.31 o. 05 0.31 2.62 0.11 1.01 0.16 

,. 
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in Fig. 3) and by O'Connor, (1965, in Fig. 4). In this thesis 

Strekeisen's final chemical classification and estimated distribution 

of' volcanic rocks in the orogenic belts has been used rather tha.n 

O'Conner's classification. 

Plotting of the normative composition of the volcanic rocks from 

the Lahanos area on a Quartz-Alkali feldspar-Plagioclase triangular 

dia~ram showed a sequence of volcanic rocks ranging in composition from 

alkali basalt to rhyodacite and rhyolite. Comparison of this trend 

with Zavaritskii's classification of volca.nic rocks (Gorshkov, 1967) 

suggests a similar trend to the Calc-alkali lavas of the Island arcs 

and to the orogenic belt volcanism described by Uilliams et al. (1954), 

and Turner and Verhoogen (1960), and their close association 'ltiith 

spilite and quartz-keratophyre. Examination of Figs. 3 to 7 suggested 

that the volcanic rocks of the Lahanos area embre.ce the Calc-alkaline 

and tholeiitic series. 

D.IIa Field and Petrographic Evidence of Alteration in the Lahanos 

Volcanic Rocks 

Field occurrences of the Lahru1os volcanic rocks have dominantly 

shown severe alteration and as a result of al tere.tion (i) a bleaching 

in colour i.e. mainly silicifica.tion, kaolinisation, serici tisation; 

(ii) green descolouration i.e. mainly chloritisation, propylitisation, 

and rarely epidotisation and actinolitisation in particularly hydro­

thermally active areas and closer to the late granitic intrusive. 

The latter produced actinolite, tremolite, green ga.rnet and skarn 

minerals particularly in adjacent limestone and Yolcanic rocks e.g. 
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in the Kapikaya-Bayrambey arm (Hap 4,) l'lhere \<Tell developed skarn 

minerals in limestone c.re present. In the vatak and t.he River 

Yagli and Har~it valleys (Map 2), epidotisation and actinolitisation 

of volcanic rocks are well represented ao.jacent to the granitic 

intrusives; (iii) due to ~reathering, oxidation of ore grains and 

other iron rich minerals gave a red sta~ning to some of the Lahanos 

volcanic rocks. The chemical data for the Lahanos volcanic rocks 

are plotted : in terms of Al 2o
3 

- (N~~ + K
2
o); CaO; FeO; FeO (Total 

iron) + MgO ;Ii! MnO on Fig. 8 (A to cy. On Fig. 8A the average alkali, 

calc-alkaline, tholeiitic basalt and andesite field and a8erage dacite, 

dellenite, rhyodacite, alkali and calc-alkali rhyolite field have 

been marked accor~ding to Nockold's (1954) and Manson and Polder­

vaart's (1964) average chemical composition of basalts, andesites, 

dacites, rhyodacites and rhyolites, in addition to the unaltered 

average igneous rock fields. The positions of the common al tera.tion 

products are shown, that is secondary epidote clinozoisite, pumpellyite, 

prehnite, piemontite, actinolite, chlorite, kaolinite, montmorillonite 

and illite (Composition based on Deer, Howie and Zussman, 1962, Vol. 

1, 2 and 3). 

Mineralogical alteration of basaltic rocks: 

Duringthe petrographic studies, examina.tion of the alkali and 

lati te-ba.Ra.l ts showed dominant chlori tisation, carbonatisation and 

formation of opaque grains in the pyroxene; carbonatisation, seri-

citisation, chloritisation in feldspars, while olivine is converted 

into iddingsite or chlorite. Spilitisation (in the sense of Cann's 
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and Vine's (1966) definition), formation of analcime and particularly 

palogonite indicatesaqueeus conditions. In the field alteration 

products of the Lower Basic Serie·s Fe-Mn chlorite and iron oxide 

give a brownish-reddish appearance and onion structure is seen due 

to spheroidical weathering. 

Mineralogical alteration of andesitic rocks: 

Andesites are somewhat similar to basaltic rocks in giving more 

or less similar alteration products- in addition to chloritisation, 

serici tisation, kaolinisation, pyri tisation, there is a.lso albitisation 

of the groundmass and calcic ple.gioclase, dueto soda metasome.tism. 

Mineralogical alteration of the acidic rocks .{i.e. d.acite, rhyodacite 

and rhyolite): 

The common alteration products observed in the field and thin 

section study are silicification, pyritisation, serbitisation, 

carbonatisation albitisation and a little chloritisation of the 

groundmass and of the phenocrysts of feldspars, amphiboles and 

biotite. 

D.IIb The Effects of Alterations in the Chemistry of·the 

Lahanos Volcanic Rocks 

In order to work out and explain the effects of alteration in 

the chemistry of the Lahanos volcanic rocks, a composite triangu.lar 

ACF diagram as mentioned above (Fig.8· (A- G) and other variation 

diagrams will be discussed in the following section; D.IIb is 

subdivided into D.IIbl - common alteration products of the Lahanos 



volcanic rocks, and D.IIb2 - the effects of alteration on the 

variation of major oxides. 

D.IIbl - Common Alteration Products of the Lahanos Volcanic Rocks 

The chemical analyses of average normal basalts, andesites, 

dacite, dellenites, latite, rhyodacite, rhyolite are given together 

with the analyses of the Lahanos volcanic rocks in Table 4• In 

order to determine the probabl~· effects of alteration in the Lahanos 

volcanic rocks Fig. 8 (A- G) has been constructed using Nockold's 

and Manson and Poldervaart's average igneous rock composition, 

together with the probable fields of secondary minerals. 

General al te_:tB:~.ion trend of the Lati te-Basal ts: As seen in Fig. 

8A, the average normal base.l t and andesi tic area, together 'l'rl th 

the Lahanos rocks were plotted. Samples 161 and 169C are in the 

average normal basalt field and representing more or less altered 

latite-basa.lts while sample 169D left the average normal basalt 

field ancl moved towards the chlorite side i.e. the sample 169D 

has mainly suffered from chloritisation rather than other alteration. 

Microscopic study of it predominantly showed ~evere chloritisRtion 

of the pyroxene and to a less extent plagioclase. 

General Alteration 1z.end of the Alkali-Basa.l ts: Plotting of the 

alkali basal t·s in Fig. 8B shmV"ed that none of the alkali-basalts 

ha:;: fallen into the average normal basalt field of Hanson and 

Poldervaart and Nockold, the analyses indicate an approach towards 

the chlorite field of the ACF diagram i.e. chloritisation of the 

alkali-basalts is p~edominant which is similar to the latite-basalts 

of the Lahanos area. 
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General alteration trend of the Thdeiitic Basalt and Andesite: 

Plotting of the tholeiitic andesite and basalt in the ACF diagram 

(Fig. 8C) showed that samples 136, 146 and Yd. l.B have fallen 

into the average normal basa.l t and andesite field of r.tanson and 

Poldervaart and Nockold; while samples 137 and 166 fell towards 

the epidote and Mn-rich piemontite field and samples 111 and 

160 shol'red an alteration trend tm-vards the chlorite field. In 

addition to these two different alterations, hmtever, there is 

also slight alumina enrichment due to leaching out of soluble 

elements and concentration of a.lumina as kaolinite e.g. Sample 

108. Thus, the alteration products of the tholeiitic andesite and 

basalt vary considerably, epidotisation, chlorHisation and 

kaol1nisation are all found. 

General alteration trend of t4e Quartz- Andesite: (8D) Plotting 

of these rocks showed that none of the quartz-andesitic rocks fell 

into the average normal basalt-andesite field nor into the d<:'.cite­

rhyodaci te-rhyoli te field. Hm·rever, as far as alteration proceeses 

are concerned the quartz-andesitic racks yielded three main ~Iteration 

products whose presence was elso confirmed by the thin section study 

i.e. chloritisation, kaolinisation and illitic alteration e.g. sample 

Yd. loA and P4. 

General alteration trend of the Dacite: Plotting of the Lahanos and 

Murgul dacites gave examples (i.e. Samples Yd. Bed. Vol. 1, A03, 

Yd. Ag. 1A,¥27B and l·i27C) rihich fall into the average normal dacite­

rhyodacite-rhyolite field and about seven close to the field. The 
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Alteration trend of the dacite is towards the chlorite, momtmorillonite 

an~ illite field (Fig. 8E). 

General Alteration trend of the Rhyodacite: Only three of the rhyoda­

cites (i.e. Samples 84, 117 and 142) have fallen into the average 

normal daci te-rhyodaci te-rhyoli te field. Rhyode.ci tes are similar to 

those of the dacite showed three main alteration trends i.e. their 

alteration trend extends towards montmorillonite~, illite-, and 

chlorite- field. Sample 138, because of hea.vy carbonatisation, 

showed an approach towards the C corner of the ACF diagram (Fig. 8F); 

from microscopic study it may be confirmed that the sample suffered 

dense carbonatisation. 

General alteration trend of the Rhyolite: None of the rhyolite plots 

in th~ average acidic rock field; thus, the rhyali t.es hr-.ve suffered 

a great arnoun-t of alteration. Fig. 8G indica~es alteration trends 

towards the chlorite-field, the illite-field and the kaolinite-field. 

The study of the ACF diagram suggests that the volcanic rocks of 

the Lahanos area have commonly suffered intense chloritisation, 

kaolinisation (including other clay minerals i.e. montmorillonite 

and illite) and very little epidotisation. Chloritic alterations are 

more common in the basic rocks because of abundant ferro-magnesian 

minerals, but little or no kaolinisatio14 The alteration trends of the 

acidic rocks showed li -~tle chlori tic alteration, but ver'J· common 

kaolinitic, montmorillonitic and illitic alterations. 
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n.IIb2 - Effects Of Alteration On The Variation of Major Oxides 

In this subheading the chemistry of the volcanic rocks of the 

Lahanos area \'l:i,ll be discussed in detail. To some extent cor.tpe.risons 

.... are made tvi th other volcanic areas of the l·lorld. The chemice.l 

analyses of major and minor elements and their c.r.P;:r o norms in 

the Lahanos volcanic rocks have been eiven in Tabs. 4 and 5· 

Variation of Oxides t•ri th Si02 

Variation of oxides \vi th Si02 provides a simple method for 

illustrating graphically the proportions of the major elements in 

a group of igneous rocks but its use has been criticised by Chayes 

{1962 and 1964) who has emphasised that the silica variation dia-

grru1l is '~of li tt~e use in discriminating bett·teen the effects of 

nearly all the processes thought to be of major importance in the 

differentiation of volcanic rocks". Despite this, such diagrams 

are still in common use. The variations of ox~des with Si02% in 

the rocks of the Lahanos area have been plotted in Figs. 9 and 

10 in tvhich the amount (atomic \·reight per cent) of the given element 

is plotted against the Si0
2
% {Fig. 9) and the Larsenftlnction i.e. 

1/3 Si0
2 

+ K
2
o - (FeO + I!IgO + Cao)% t-rhere FeO represents the total 

iron as oxide {Larsen, 1936). (Fig. 10 and Tab. 3). The variation 

trends of K
2
o, Na

2
o, CaO, Fe

2
o

3 
and MgO against the Larsen function 

have a more linear relationship in spite of various alterations, when 

compared with variation against Sio2%. This is due to the inclusion 

of values for Fe
2
o

3
, CaO, 14gO, Na2o, K20 in the key variable. 
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TABLE 5 

Trace element analysis in rocks from the Lahanos area 

Latite-basalt Lati te . Alkali basalt Andesite-Tholeiite basalt 
, · , "t.:.. : '\ .- .-•.. , ·, ·- .1 ;_. ·, r .· ·- • · : ret· n."}. 1611 .:..-r 169Cr.:..r_l69D ;_:.: 110h ·1:1:2{ 16·2: : - 164. 16-9E' H3' rr-.108 1 ·~ll r .! =1,36 137- :146 160 166 Yd.lB 

Ba (ppm) 57 176 406 158 125 305 92 677 151 320 228 69 150 409 151 99 308 
Sr II 94 77 196 66 124 122 158 573 153 85 183 274 67 296 101 360 189 

·Rb-- II 22 46 - 38 -- 70. llr 1 5 16 z 29 13 2 2 25 19 5 23 .· .- -- ---- 31 ~·~. 319- . - 334 77 -4"9'~ ti'2"' '126- 133 321 l:l2 '1/+2 "48 79 115 75 97 126 Z'!:' II 

Ni II 14 64 70 35 17 19 36 29 21 1 4 nil nil nil 18 52 nil 
Cu · II 93 15 31 59 113 111 373 240 22 61 79 46 22 22 22 152 25 
Zn II 90 111 107 127 88 94 94 85 136 97 nil 91 141 114 94 75 85 
s % 0.29 0.07 0.10 2.37 0.50 0.29 0.15 0.18 0.15 o.6o 0.84 0.15 0.65 0.45 0.17 o. 1,3 0.77 

Q u a r t z - a n d e s i t e 
64 65 66 67 106 130 153 159 Yd.l.A P4 P3B 

Ba (ppm) 89 87 123 128 48 29 60 96 48 87 114 
~..... ,· 1 ... - .... S:-- "1"\.·'\1 251 164- 2'31 -2~24 :1:2'6 . 61 . ~6 255 108 227 63 

Rb II 4 6 5 5 8 8 2 13 7 nil 1 
Zr II 95 79 107 89 146 75 89 217 159 347 53 
Ni II nil 2 2 nil nil nil nil 4- 4 3 12 
c;.! II 51 32 ll-6 65 16 17 20 12 28 43 63 
Zn II 128 130 179 103 96 153 2ll-7 57 l,-86 55 286 
s % 4.56 3.63 0.87 6.l .. 9 0.77 O.l1-5 0.23 0.07 0.39 0.?2 0.56 



TABLE 5 ( C ont do) 

Trace element analysis in rocks from the Lahanos area 

D.A C I T E 

74 82 87 95 113 122 129 135 141 156 169A Y~o Yd.EeQ. C4 04 07 AOl A03 m27B M27C M28 

Ba (ppm) 126 646 160 675 160 68 276 
lA vd. 

157 1033 253 870 516 249 183 720 718 128 98 133 130 29 
Sr II 130 79 310 24 227 39 52 98 188 367 148 . 6 92 200 210 241 174 92 123 238 184 
Rb II 18 26 47 22 ll3 18 17 21 95 35 41 89 50 n.d. n.d. n.d. 28 26 74 66 20 
Zr II 182 "277 274 200 265 206 163 260 211 272 156 170 235 189 173 188 119 90 176 177 221 
Ni II 8 6 3 6 52 23 nil 6 37 7 7 12 6 1 2 2 0.2 0.3 5 2 4 
Cu II 17 10 8 9 36 39 17 21 36 12 18 59 13 66 85 120 94 572 212 22 193 
Zn II 170 67 55 108 97 152 86 35 128 62 42 65 80 87 71 69 191 120 266 49 96 
s % 0.22 0.05 0.34 o.o8 0.17 Oo24 0.14 0.16 0.39 o.o3 0.04 0.19 0.10 1.406 0.,06 0.11 0.24 0.45 0.18 o.o6 Oo53 

Rhyodacite R h y o 1 i t e s 

83 84 85 117 132 138 142 143 A02 162.7 81 86 104 105 114 141+ 

Ba (ppm) 101 177 379 ll05 146 137 367 ·452 131 225 374 . 97 1213 804 688. 373 
Sr II 957 91 100 360 54 347 113 58 179 182 23 39 36 34 293 82 
Rb II 42 43 70 21 50 30 39 33 41+- 82 56 65 29 73 105 67 
Zr II 392 226 189 109 247 118 206 156 131 180 277 66 176 138 254 190 
Ni II 4 9 5 1 4 31. 4 5 nil ll 4 •15 6 8 41 7 
Cu II 6 14 10 110 15 38 16 34 42 25 ll 136 15 19 14 19 
Zn II 54 69 50 52 58 73 97 121 340 85 27 53 89 42 97 51 
s % 0.24 0.05 o.o9 0.31 0.17 1.95 1.11. o.68 0.16 o.o6 0.03 0 .. 17 1.40 o.o6 0.54 0.09 

1. 



FIG._9 
VARIATION DIAGRAM FOR BASALT-ANDESITE-DACITE-RHYOLITE 

AROUND ESPIYE IN THE BLACK SEA REGION. NE TURKEY 
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The following principal features can be deduced from the 

variation diagrams of the Lahanos area volcanic rocks. 

(i) Examination of both variation diagrams sho'!rled that 

there is hardly any gap in Si02 range except for a small gap 

between 51-55% Si02 which might be due to insufficient sample 

collection rather than due to the natural phenomena. Houever, 

Taneda (1962) points out a very fel-T Japanese volcanic rocks show 

similar gap of silicon range about 54 to 55%. 

(ii) There are pronounced concentrations of points in the 

range 43 to 47, 59·50 to 61.00 and 70 to 77% Si02 for the Lahanos 

area volcanic rocks. Again Taneda suggested that there is con­

centration of Japanese volcanic rocks having silica contents bett·reen 

58 and 61%. These figures refleGt the predominance of basalt, 

andesite, dacite, rhyodacite and rhyolite among the rock types 

found in the Lv.hanos area. 

(iii) A certain amount of scattering is possibly due to 

various alterations, - hardly any oxide shows a linear trend; but 

some of them approximate to fairly regular trends. 

In spite of scattering, an attempt has been made to compare 

Fig. 10 to the variation diagrams for volcanic rocks of the Yellow­

stone Volcanic province and plutonic rocks of the L0\11'er Californian 

batholith Turner and Verhoogen (1960, PP• 349, Fig. 52). The varia-

tion of the different oxides against the Larsen's function shot-Is 

a somewhat similar general trend to those found in the L~anos 

volcanic rocks. 



61 

Variation in A1~3 
The alumina contents :hn the Lahanos area reach a maximum of 

20.9o% at about -6 and +5 (Fig.lO) or 49% Si02 (Fig. 9) in the 

basalts which are very similar to the high-alumina basalts described 

by Kuno (1960) from Japan (Fig. 5 and Tab. 6). The general varia-

tion trend of Al2o
3 

shows some resemblance to the Lassen Peak 

(Bovren, 1956, Fig. 25, · pp. 95 and Hilliams, 1932) a.nd Yellot·Jstone 

Volcanic provinces (Turner and Ver~~ogen, 1960). 

Variation in Iron Oxides 

In Fig. 9 the total iron is plotted as Fe
2
o

3 
+ FeO and expressed 

as Fe 2o
3

• The overall picture of the total iron variation decreases 

as Si0
2 

(acidity) increases tvhich is similar in general behaviouR-

to the iron variation trends of Yellowstone Park ~nd Lassen P~ak. 

Scattering in total iron is due mainly to pyritisation. 

Variation in CaO 

The general outline of the lime variation in both Fig. 9 and 

10 suggests a gradual fall from the basic end to the acidic end. 

Scattering of lime is due to secondary carbonatisation and in other 

cases due to infilling of the vesicles by calcite and aragonite. 

One might suggest a broad resemblance to the Yellov1stone province 

but it is somewhat different from the Lassen Peak volcano trend. 

The lime content shows more erratic scattering in the tholeiitic 

alkaline and latite- basalts compared to more acidic members of 

the Lahanos volcanic rocks. 
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TABLE 6 

Tholeiite High Alumina Basalt Alkali Basalt 

108 136 . 166 137 160 161 162 164 169C 112 169D 169E H3 

s:ro2 -- 49.24 48.17 49.75 53.00 49.02 43.24 44. 71. 47.41 51.20 44.55 46.24 47.34 44.68 
Al203 20.98 16.87 17.45 18oOO 19.97 18.09 17.78 19.24 18.65 15.88 18.19 18.67 13.91 
Fe203 8.27 10.29 5.93 3.30 8.97 4.20 8.11 9.20 6.67 10.24 11.05 6.80 6.66 
FeO lo73 3.71 3.32 3.95 4.07 8.40 6.30 2.27 2.83 3.93 2.61 4.68 15.77 
MgO 3.15 6.91 5o84 3ol5 8.28 8.49 11.35 10.13 6.05 12.73 9.70 10.00 4.00 
CaO 10.91 11.59 lh .• 02 13.95 4.16 13.25 7.93 7.58 8.66 7.44 4.39 7.07 6.34 
Na20 1.17 0.93 1.57 2.63 2.53 1.27 1.94 2.45 0.80 2.52 3.27 3.56 5.42 
K20 1.60 0.09 0.11 0.31 1.38 1.58 0.11 0.24 3.21 0.75 1. 71 0.73 0.12 
Ti02 1.19 1.09 0.87 lo4l 1.09 0.71 0.94 1.11 lo55 l.lh 2.13 0.66 2.79 
MnO 0.12 0.13 0.12 0.38 0.17 0.29 0.29 0.15 o.o6 0.29 0.10 0.18 0.15 
s 0.60 0.15 0.13 0.65 0.32 0.47 0.49 0.18 0.27 0.50 0.35 0.27 0.13 

. -. ,:tt • , ~ . ~;,I -·~.· ._ .. Bja, -. "' .... ~ .·. : . . .0,.,0:3~0 .'-0~-.0099 :.0,.0099 .•.. 0.0150·: .0.0150 . : _0.-0057: .. 0 •. 0305 .. 0.0.092:. 0.:01:76 0.0125 0.0406 0.0677 0.0151 •. .., .. ,6' .• ·· 
0.0360 b.0067 0.0101 0.0094 0.0123 0.0158 0.0077 0.0196 Sr o.oo85 0.0274 0.0121.,. 0.0573 0.0153 

Rb 0.0029 0.0002 0.0005 0.0002 0.0019 0.0022 0.0001 o.ooo6 O.OOq.6 0.0013 0.0038 0.0016 0.0002 
Zr 0.0112 O.OOJ.1-8 0.0097 0.0079 0.0075 0.0031 o.oo62 0.0126 0.0319 0.0049 0.0334 0.0133 0.0321 

__ . Cu - 0.0061 _0_.00~.6 0.0152 > 0.092.2 .. 0.0022 . _p.0093 p.Olll. O.P373- p.0015 0.0113 0.0031 0.0239 0.0022 
Ni 0.0001 nil 0.0052 nil 0.0018 0 0 0011.1- 0.0019 0.0036 0.0064 0.0017 0.0070 0.0029 0.0021 
Zn 0.0097 0.0091 0.0075 O. Oll.!-1 0.0094 0.0090 0.0093 0.0096 0.0111 0.0088 0.0107 0.0085 0.0136 

Norm. Qmrtz 9.62 10.68 7.86 8.58 7o74 nil nil 0.88 7.76 nil nil nil nil 
Norm. Olivine nil nil nil nil nil C..09 6.15 nil nil 15~10 7.58 15.26 2. J~.o 
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Variation in mgo 

Although the MgO- variation trend descends in somewhat linear 

fashion with increasing silica, some scattering occurs at the basic 

end of the Lahanos volcanic rocks. Values for a given silica 

percentage are comparable to those of many volcanic suites of the 

Island arc and orogenic belts; though the rocks of the Lahanos 

area have slightly higher I1igO~ Olving to the hydrothermal minerali­

sation and alteration, i.e. formation of dolomite or dolomitic 

gangues and veinlets. 

Variation in Na2Q 

The soda variation trends are somewhat similar in both Fig. 

9 and 10, but in the latter figu.re, the soda variation gave a 

better and smoother trend compared to Fig. 9· The soda content of 

the Lahanos volcanic rocks ranges from 0 to 5.50% Na
2
o. In spite 

of over 5% range the soda variation trend shorled little systematic 

variation throughout from the basalts to the rhyodacites, thpugh 

it tends to be higher in the dacite and rhyodacite range. Hm·rever, 

the soda trend towards the +30 Larsen's funct~on gave distinct 

descendant pattern lvhich suggest some simpari ty to the Yellotrstone 

volcanic province trend in spite of albitisation and soda metasomatism 

of the Lahanos area volcanic rocks due to later hydrothermal activit~es. 

Variation in K2Q 

The variation trend for potash rises steadily from the basic 

end to the acidic end which is completely different in character from 

the soda trend. Plotting of oxides against the Larsen's function gave 
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better and smoother trend compared to the Si0
2
% parameter. The 

accumulation of scattered potash values can be seen particularly 

in the tholeiitic basalts and andesite at basic end, and dacite 

to rhyodacite at the less acidic end (Fig. 10). Towards the 

acidic end the potash values move up tihich is sometihat comparable to 

the potash trend of the Yellowstone volcanic province and the 

Larsen Peck potash trends. 

Both potash and soda (particularly) give slightly higher values 

comparing them to the other similar volcanic provinces especially 

at both the basic and acidic ends, which might be due to soda and 

potash metasomatism owing to the later hydrothermal activities in 

the Lahanos area. 

Fe : Mg : (Na + K) Ratios 

The relative proportions of iron magnesium and alka.lies as 

atomic percentages in volcanic rocks from the Lahanos area are-. plotted 

on a triangular diagram in Fig. 11, shown alongside variation trends 

from the Hakone Volcano (data from Nockolds and Allen, 1958, pp. 

48-50) lavas from the Crater Lake (Nockolds and Allen, 1953, pp.lll), 

Lassen Peak (Nookolds and Allen, 1953, pp. 114) and the Skaergaard 

intru.si on (~·Tager and Deer, 1939). 

~o1ing to intense alteration in the Lahanos volcanic rocks, 

scatterine of results mieht bedle to either enrichment in alkalies 

or consequently impoverishment in iron and magnesium or vica versa. 

The acidic series is rela.ti vely poor in iron, falling almost bettieen 

the Crater Lake and the Hakone Hypersthenic Trends, and some of these 
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acidic rocks are enriched in alkalies and magnesia, so that some 

acidic volcanic rocks fall further down from the Crater Lake Trenda 

Iron enrichment in quartz andesite and some basalts is due to 

mineralisation Lea pyri tisation in generaL The basic members 

of the Lahanos area often lie in between the Hakone Pigeonitic 

Trend and the Larssen Peaka Despite the consideraple scattering 

of . .the Lahanos volcanic rocks, their genere.l distribution pattern 

approximates to the Calc-alkaline Trendo 

K : Na : Ca Ratios 

The relative proportions of potassium, sodium and calcium 

as atomic percentages in the rocks ofthe Lahanos area are plotted 

in Figa 12o The same plots are shown alongside trends from Sto 

Kitts (Tomblin, 1964, Figo29), the r~one Hyperthenic Series, 

Crater Lake and Lassen Peako The Lahanos volcanic rocks shorr 

considerable scatter over the whole area and it is there fore 

very difficult to suggest any kind of trendo Due to alteration 

(i) enrichment in Ca is more pronounced in quartz-andesite 

and to a less ext~nt in basalt, andesite and rhyodacite; (ii) 

an enrichment in Na is very common in quartz-andesite and to 

a less extent in dacite; and finally (iii) an enrichment inK 

is more distinct in rhyolite, rhyodacite and to a less extent in 

the latite-basalt and tholeiite basalt and andesiteo 

Al : Ca : Na Ratios 

Matsumoto (1963, PPo52-54) has plotted the Pigeoni tic, 

Hypersthenic and alkali rock series of Japan on a diagram showing 
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the ratios of aluminum, calcium and sodium. In Fig. 13 the Lahanos 

rocks are plotted on a similar diagram t-rhich also shol'TS the approx-

imate fields occupied by the three series of Matsumoto. The study 

of Fig. 13 shows the close correspondence ofihe basic rocks of the 

Lahanos area with the Japanese Pigeonitic Series, whereas the more 

acidic members of the Lahanos area stay partly in the Alkali Series 

or in the Hypersthenic Series and outside of these three Japanese 

series. As pointed out earlier in the chemical and mineralogical 

alteration sections, the predominant and common alteration product 

of the Lahanos acidic rocks,te. kaolinite, has also once more 

refelcted in this triangular plotting (Fig. 13). 

Total Iron Oxide - Magnesia Ratio and Iron Enrichment - Total 

};Ia.fic Ratios 

1·1hen total iron oxides are plotted against magnesia, and rrhen 

iron enrichment (expressed as FeO + Fe2o
3
/MgO + FeO + Fe2o3

) is 

plotted against total mafic (FeO + Fe2o
3 

+ MgO), Yoder,et al., 

(1964) have shown that the Hawaiian Tholeiite and Alkali Series 

show concentration trends. Figs. 14 ~- 15 show the variation of 

MgO with (FeO + Fe
2
o

3
) and iron enrichment with total mafics for 

the rocks of the Hawaiian Alkali & Tholeiite Series, the Skaergaard 

intrusion andthe Japanese Pigeonitic Serieso The Skaergaard trend 

represents strong iron enrichment at slightly increasing total 

ma.fics until the final stages of fractionation uhere total mafics fall 

with no iron enrichmento The Hawaiian Tholeiitic Trend a.lso shows 

strong iron enrichment at constant mafic but the trend is limited 
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compared to the Skaergaard Trend. Kuno et al., (1951) shovred an 

iron enrichment trend closer to that of the Japanese Pigeonitic Series, 

of which enrichment is in the intermediate stages only. The Hawaiian 

Alkali Series and the Calc-alkali Series of Japan shm; continuous 

iron enrichment with continuously falling total mafics. 

The trend of the Lahanos, despite alterations, is roughtly 

parallel to that of the Hawaiian Alkali Series and the Japanese 

Pigeonitic Series without any gap from the basalt to the rhyolites. 

Alkali-and lati te-basal ts of -the Lahanos area shm; enrichment in iron 

in comparison with the Hawaiian Alkali and the Japanese Pigeonitic 

Series. 

Yoder et al., (1965) have attributed differences in the iron 

enrichment trends of the Hawaiian Alkali and Tholeiitic Series to 

differences in the crystallisation and movement of olivine, plagio­

clase and pyroxene. Another possible cause of the variation trend 

of iron enrichment might be due to crystallis~tion and accumulation 

of magnetite. As it can be seen from Figs. 14 and 15 the Upper 

parts of both the Ha~·raiian Alkali and Tholeiite Series have 

probably been controlled by the separation of olivine. As Osborn 

(1959 and 1962) pointed out, the separation of magnetite t·rould 

only be expected under conditions of high oxygen pressure which 

would result in the.liquid being depleted in iron and enriched in 

Si0
2

, and the Calc-alkali Trend will occur. 
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D.III VARIATION IN MIDNOR ELID1mNTS 

Analyses of eight minor elements from Sixty t~o yolcanic 

rocks of the Lahanos area are shown in Tab. 5· The volcanic rocks 

include basalts, andesites, dacites, rhyodacites and rhyolites. In 

spite of different alteration processes and products in the Lahanos 

volcanic rocks it is possible to mate comparisons with other 

somewhat similar volcanic provinces particularly the Lassen Peak, 

the Crater Lake (Nockolds and Allen, 1953), the Eolynesian Island 

and the Scottish Tertiary province (Turner and Verhoogen, 1960). 

T test analysis of minor elements in the Lahanos volcanic rocks 

did not show any particular significance, i.e. linear relationship 

except for zirconium and zinc, owing to addition of some minor 

elements by mineralisation. 

Minor element analyses \·rere made by an :X-ray !luorescence 

technique (See appendix) .In order to compare the results from the 

Lahanos area \ii th other volcanic provinces, the atomic concentrations 

in ppm are plotted against the modified Larsen's function (Fig.l6). 

Variation in Barium 

The general distribution of barium in the rocks of the Lahanos 

area sho.ws a very erratic distribution pattern from basic to acidic 

end because of addition of barium during the mineralisation. Barite 

forms one of the main gangue minerals associated with mainly sphalerite­

galena rich ore. Therefore closer to the sulphide mineralisation one 

gets higher barium concentration. Barium varies from 57 to 677 ppm 
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in the various basalts, 29 to 128 ppm in the quartz-andesite, 29 

to 1033 ppm in the dacite, 101 to 1105 ppm in the rhyodacite and 

97 to 1213 ppm in the rhyolite of the Lahanos area (Tab 5 and Fig. 

16). However, these figures suggested that at the basic end 

barium values are higher than the intermediate rock field, but 

after the +5 of t Si + K - (Mg + Ca) %, barium values again increase 

with increasing acidity, and between + 7 and + 11 show ve~ erratic 

concentration changes in particular for the enclosing silicate rocks 

of the sulphide deposit. The overall trend of the barium variation 

might suggest that towards the most acidic end there is an increase 

in the barium content, though it is not ve~ clear, i.e. in the 

rhyolite. The barium content gives a generally rising trend which 

approximates to the general trend of volcanic rocks of the orogenic 

belt i.e. the calc-alkaline trend, rather than others. 

Variation in Strontium 

Distribution of strontium contents of the Lahanos area shows 

a'more scattered pattern. Carbonate gangue minerals associated with 

sulphide mineralisation can possibly be responsible for this. A varia­

tion of 67 to 573 ppm in basalts, 61 to 255 ppm in quartz-andesites, 6 to 

367 ppm in dacites, 54 to 957 ppm in rhyodacites and finally 23 to 293 ppm 

in rhyolites (Tab. 5 and Fig. 16). However, strontium contents, similar~ 

to the barium contents, show somewhat higher values in the basic end, 

but as the acidity increases the strontium content slightly decreases 

at about + 11 to + 13 of the index of evolution; then a sudden and 

more distinct fall down towards the rhyolites. Because 
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of the ver;y scattered concentration of strontium it is very 

difficult to suggest any kind of trend except for a broad sense 

of similarity to the general calc-alkaline trend. 

Although Turekian and Kulp (1956, pp.294) state that strontium 

is independant of calcium in basaltic rocks whereas in erahiti~ 

rocks there is a definite relation bett'leen strontium and calcium 

content; Nockolds and Allen (+953) commented on the variable 

behaviour of the strontium variation curve for different provinces 

and attribute the differences to the amount of plagioclase remaining 

from the m~na. If much plagioclase is removed then the strontium 

content will decrease in the residual liquid, whereas if relatively 

little is removed, strontium will tend to increase. The presence 

of high strontium values in t~e less altered basalts of the Lahanos 

area can only be explained by Nockolds' and Allen's theory rather 

than by Turekian's and Kulp 1 s suggestion. 

Variation in Rubidium 

In the Lahanos volcanic rocks rubidium contents show somewhat 

less scatter in comparison to the barium and strontium variation 

diagrams. Rubidium contents vary from 1 to 46 ppm in the basaltic 

rocks, 2 to 13 ppm in the quartz-andesitic rocks, 17 to 113 ppm in 

the dacitic rocks, 21 to 82 ppm in the rhyodacitic rocks and finally 
' 

29 to 105 ppm in the rhyolitic rocks. The general tendancy of the 
I 

rubidium is to increase with increasing acidity, \'lith a very low: 

gradient (Tab. 5 and Fig. 16). The potassium: rubidium ratios 

of the volcanic rocks of the Lahanos area are shmm on Fig. 17 • 
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The igneous rocks from the Lahanos area cover the entire range of 

potassium:rubidium ratios of normal fractionation of the parental 

magma, i.e. there is no gap betlieen the basic and acidic rocks, 

suggesting continuous differentiation products mf the initial magma. 

The international standards of L·l-1 and G-1 l·rere also shown for 

comparison. 

In spite of the effect of potash metasomatism on the rubidium 

content, the.general trend of the Lahanos area suggests some 

similarity to the trend of the Crater Lake and the Lassen Peak 

volcanoes and to a lesser extent to the Scottish Tertiary volcanic 

province, i.e. variation in the rubidium trend is qui»e similar 

to tha-t of the calc-alkaline suite trend. 

Variation_ J..A .. Zi.±:£.cmiY.m 

Zirconium is one of the elements less affected in comparison 

to other lithophile elements by the hydrothermal alteration and 

mineralisation, and its distribution therefore, gave a less 

scattered trend in spite of heavy rock alteration. Zirconium varies 

from 19 to 334 ppm in the basal tic rocks, 53 to 347 ppm in the 

quartz-andesitic rocks, 90 to 277 ppm in the dacitic rocks, 109 

to 392 ppm in the rhyodacitic rocks and finally 66 to 277 ppm in 

the rhyolitic rocks (Tab. 5 and Fig. ~6). The general trend of the 

zirconium shows a slight increase from the basic end to the inter­

mediate rocks but it tends to increas with increasing acidity up to 

the r~yodacite where it reaches its maximum, and further increasing 

acidity yielded a slight decrease in the zirconium contents. 
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Variation in Nickel 

The distribution pattern of nickel in the volcanics of the 

Lahanos area tends to give relatively higher contents in t~e 

basic rocks, particularly in the alkali- and latite-basalts, and intermed­

iate or acidic intermediate rocks such as quartz-andesite and dacite 

(tabv 5 and Figv 16). ~he nickel contents vary 13 to 70 ppm in the 

latite.basalts, 17 to 36 ppm in the alkali basalt, 0 to 52 ppm in 

the tholeiitic basalt and andesite, 0 to 12 ppm in both quartz-

andesite and dacite, 0 to 31 ppm in the rhyodacite and finally 

4 to 15 ppm in the rhyolites of the Lahanos area. Concentrations 

are generally low with a fel'l' :Ni-rich ~ples especially at the 

more basic endv 

Variation in Copper 

:Pistribution of copper shm·rs sometrhat similar to the nickel 

pattern and generally is more· abundant in the basic rocks than in 

the acidic rocksv It occurs in close association rri th pyrite l11hich 

is often visible. The range of values for basaltic rocks varies 

15 to 373 ppm, for quartz-andesite 16 to 65 ppm, for dacitic rocks 

8 to 572 ppm l..rhich is entirely due to late copper mineralisation, 

for rhyodacitic rocks 6 to 110 ppm andfinally for rhyolitic rocks 

11 to 36 ppm (Tab 5 and Fig 16). Except for those of high and 

erratic results, the general trend of the Lahanos area decreases trith 

increasing acidity. 

Variation ln Zinc 

The distribution pattern of zinc compared with copper and nickel 
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is less scattered. Zinc content increases with increasin& acidity 

from the basic end up to the intermediate rocks (e.g. quartz­

andesite and dacite), but further increas~s in the acidity 

corresponds with a decrease in zinc content of the Lahanos area, 

giving a peak at about + 6.5 of the evolution index (Fig. 16). 

Zinc contents range between 90 to 111 ppm in the Latite-basalt 

rocks, 85 to 136 ppm in the alkali basal tic rocks, 75 to 141 ppr.t in 

the tholeiitic andesite and oasalts, 55 to 486 ppm in the ~artz­

andesitic rocks, 39 to 266 ppm in the dacitic rocks, 51 to 340 ppm 

in the rhyodacitic rocks and finallt 27 to 97 ppm in the rhyolitic 

rocks (Tab. 5 and Fig. 16). The distribution of zinc, as with Ba, 

Sr, Cu, Ni, K has been affected by hydrothermal mineralisation in 

the Lahanos area. Some of ·the very high results are possibly due 

to proximity to the pyritic sulphide mineralisation. 

Variati.on in Sulphur 

Sulphur contents of most of the Lahanos area volcanic rocks are 

again very closelyoontrolled by the pyritic sulphide miner~lisation 

either ~ri th visible pyrite grains or tiny pyritic veinlets. Houever, 

the sulphur contents of various volcanic rocks of the Lahanos area 

vary as follows: 0.07 to 0.29% in the latite-basalt rocks, 0.15 to 

0.50% in the alkali basaltic rocks, 0.13 to 1.23% in the tholeiitic 

andesite and basalts, 0.07 to 6.49% in the quartz-andesitic rocks, 

0.03 to 1.4o% in the dacitic rocks, 0.05 to 1.95% in the rhyodacitic 

rocks and finally 0.03 to 1.4o% in the rhyolitic rocks (Tab. 5 and 

Fig. 16). The variation of sulphur content is vaguely followed by 
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zinc, copper, barium, nickel and strontium i.e. all follot·red the 

pyritic sulphide mineralisation. In ether uords correlation t·d th 

the Crater Lake, the Lassen Peruc etc. has little of relevance, 

because of the mineralisation overprinting at Lahanos. 

Stiffima~y OF The Petrochemistry of 

The Volcanic Rocks of the Lahanos area 

The most dominant petrochemical features of the volcanic rocks 

of ihe Lahanos area are outlined as follol'rs: 

1. Chemically, there is a broad similarity with the rocks 

of the Ca~o-alkaline Series and volcanic associations of orogenic 

regions (Figs. 6, 1, 11, 12, 13, 14, 15 and 16)o 

2. The analysed rocks of the Lahanos area are basalts rrith 

43.27 to 51.21% Si02, andesites with 55.11 to 6l.Oo% Si02, dacites 

>-ri th 57 ·49 to 76.51% Si02, ·rhyodacite l'l'i th 66.26% to 73.91% Si02 

and rhyolites with 64.72 to 78.29% Si02 (Some of the high and low 

silica contents of Tab.4 are due to included pyroclastic a~d altered 

rocks. Figures mentioned above represent the average rock ttp~s)o 

Basic and acidic members are almost equally distributed in the 

field around the Lahanos area. Hmiever quartz-andesites and dacites 

predominate over basalts and tholeiite basalt-andesites in the 

mineralisaed area. 

3o Comparison \'lith other l'l'ell-knol'm volcanic provinces sholied that 

the rocks of the Lahanos area are slightly rich in A1 2o
3 

and l·IgO, l'rhile 

potash·, soda, lime and iron contents shot•T no difference relative to 

the world-wide calc-alkaline suites. 
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4o In comparison with the rocks of other Calc-alkaline and 

orogenic belt volcan~c associations the rocks of the Lahanos area 

(particularly samples away from the hydrothermal mineralisation) are 

comparable in barium, strontium, rubidium, Copper, nickel, zirconium 

and zinc .contento However, there is oft~n some enrichment in the 

content of chalcophile and side~ile elements and some impoverish­

ment in lithophile elements due to the effect. of hydrothermal min­

eralisationo 

5a Basalts of the Lahanos area are chemically similar to the 

High-alumina basalts of Kuno (1960) (Figo 5 and Tabo 6)o The basic 

volcanic rocks of the Lahanos area ioeo latite-basalts, alkali­

basalts, tholeiite basalt-andesites and some of the quartz-andesites, 

are comparable to the Japanese alkaline and calc-alkaline and tholeiite 

rocks (Figso 7 and 6) Fig 6 also includes the a-c:iliic members of the 

Lab.anos areao 

Doiiib The Possible Origin of Basalts of the 

Lahanos Area 

It would appear from the work carried out on the rocks of the 

Lahanos area that the principal types of basalt are porphyritic basalt 

chemically close to the average high-alumina basalts of Japan (Tab 6 

and Fig 5)o Some of the basalt-andesites contain a high percentage 

of normative quartz and pyroxene, and their features correspond 

closely to tholeiite (Figo 3}o Occurrence of calc-alkaline together 

tvith alkaline and tholeiitic basalts in the La...ltanos area is very 

similar to the Japanese field occurrences of the alkali, calc-alkali 



75 

and tholeiite basalts i·rhich i·lere described by Kuno (1959). 

According to Kuno (1960, pp.l41-142) high-alumina basalt 

is a primary magma, generated at depths in the mantle intermediate 

between those of tholeiite and alkali basalt formation. Het·Iever 

Yoner and Tilley (1962, PP• 419) regard the high-alumina basalts 

as important members of both tholeiite and alkali olivine basalt 

groups. They concluded that forthemost part a concentration of 

the plagioclase phenocrysts to give l;).~-porphyric rocks rich in 

alumina, followed by resorbtion of the phenocrysts to produce 

an aphyric high-alumina basalt. 

It might be possible that the high-alwnina basalts have been 

yielded by the~ccumulation of plagioclase phenocrysts in a 

tholeiitic magma. Only chemical classification rather than 

descriptive petrography has been used for the classification 

of basalts from the Lahanos area. However the occurrence of 

porphyritic basaltic rocks containing large phenocrysts ofplagio­

clase up to several ten milimeters in size might- support the 

possible explanation given just above. 

D.IIIc The Possible Origin Of T~e Andesite-

Dacite_- Rh.yodaci te .. of the Lahanos Area. 

Even today the~ is still no straight answer to the origin of 

intermediate volcanic rocks. There are many opinions on the origin 

of the intermediate volcanic rocks of the orogens which has often 

been ascribed to a process of fractional crystallisation of basaltic 
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magma, combined with the assimilation of granitic or sialic material. 

Wager and Deer (1939, pp. 323) said that they are "not usually 

produced by fractional crystallisation of basalt, acting alone." Tilley 

(1950, PP• 59) suggests that the intermediate rocks developed from 

"·ba:salti:c magma modified by sialic contamination to set it on its 

course of variation which fractional crystallisation appears most compe­

tent to yield" o Kuno (1959, pp 70-71) concluded that the calc-alkaline 

series of Japan has been developed by fractional crystalisation ofa 

tholeiitic or alkali basalt magma contaminated by granitic material. 

On the other hand, Os born (1959 and 1962) and Roeder and Osborn 

(1966) suggested that the calc-alkaline series may result from 

fractional crystallisation of basaltic magma, in which a high o:xygen 

pressure caused the early separation of magnetite and hence the liquid 

becomes enriched in silica and relatively depleted in iron. 0 1Hara 

(1965) pointed out that contamination of basaltic magma with granitic 

magma, or perhaps partial melting of sedi·mentary material, is import­

ant in the evolution of calc-alkaline rocks, and he also gives emphasis 

on partial fusion of peridotite at depth, under saturated conditions 

in a low pressure regime to given an andesitic liquid. The presence 

of hypabyssal dacite and extruded andesitic lavas would suggest that 

there was a time available for fractional crystallisation during 

the ascent of calc-alkaline suites in the Lahanos area. 

Some large, rounded quartz crystals (xenocrysts) which occur 

in some of the Lahanos quartz-andesite and dacites may perhaps be 
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regarded as an indication of contamination. Kuno (1954) desoribes 

similar quartz crystals from the Omuru-Yama volcanic zone, North 

Izu as xenocrysts. 

Minute crystalline, dusty and glassy inclusions, similar to 

those common in plagioclase of the quartz-andesitic rocks of the 

n 
Lahanos area can be attributedfN)mthe expl~ions of the other 

authors as (e.g. Kuno, 195~to incipient remelting of feldspar 

suspended in a magma tii th which they i'll'er e not in equilibtrium. 

Th~ oscillatory zoning shown by plagioclases in calc-alkaline 

rocks can oe taken as further evidence of non-equilibrium. 

Holmes (1932) describes the mixipg of a granitic magma, which 

formed by partial fusion of the crust to account for the formation 

of andesites and this mechanism \"rould explain the shortage of 

xenoliths in calc-alkaline rocks and·would also clarify the need 

for-assimilation durins the rise of the magma through the crust, 

rather than whether a basaltic magma could assimilate on the way 

up towards themrface of the Earth, a sufficiently large amount 

of granitic material in order to produce high porportions of acidic 

rocks often seen orogenic belts. 

Study of trace elements show that due to the mixing of average 

basaltic magma ·and granitic material in any reasonable proportions 
,. 

would give material much richer in certain elements particularly 

potash, r~bidium, barium, uranium and thorium, than the average 

andesite (Taylor and l·Thite, 1965) ." Comparison of average minor 

elements of the Lahanos area shm..red that they lie vri thin the normal 
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concentration of an average andesite and daciteo The further 

study of strontium isotopic ratios might explain or i·iill thrOi-I 

a light on whether andesite and dacite i·rere formed from mixing 

of two magmas, or noto 

Doiiid Stratigraph.y-I1lodification of Field Observation 

Following Laboratory Uork 

Petrographic and petrological stuclj"es of the Lahanos area 

volcanic rocks showed that the volcanic activity started with 

alkali olivine and latite-basalts passing upwards into the high­

alumina basalt_.,.. tholeiite basalt-andesite (in places)~ quartz­

andesite_. dacite~ rhyodacite~ rhyolite o Similar sequences 

have been described from Japan iri the Honsyu and Izu Islands by 

Kuno (1960)o This association formed probably through the fractional 

.crystallisation of the high-alumina basalt magma contaminated by 

available acidic rocks possibly the Palaeozoic granitic and gran­

odioritic rockso 

The only lithological modificationsarises after petrographic 

and particularly petrochemical studies of dark green agglomerate, 

that overlies the Upper Dacitic,Rhyodacitic Series at the Lahanos 

copper mineo These dark greep agglomerates have been described 

as basic in composition but their chemistry and Col oP o :-r o norms 

showed that they are more acidic in composition and their plotting 

in Figso 3 and 4 gave us dacitic and rhyodacitic composition 

rather than basico 

The presence of high-alumina basalt at Lahanos is now recog-



79 . 

nised for .the first time after detailed laboratory uork, and 

detailed petrographical and petrological study of the volcanic 

rocks has shown their broad similarity to the Calc-alkaline suites. 

of other orogenic belts. 
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E. MINERALISATION OF THE LAHANOS AREA 

E.I LAHANOS 

The first exploration of the Lahanos pyritic sulphide deposit 

started twenty five years ago and was mainly based on the self 

potential method of geophysical survey. The results ~.we~e not 

very useful owing to the lack of any detailed geological map or 

geological knmvledge. of the deposit. The eEtensive alteration 

of the country rocks associated l.,i th the mineralise,tion l·ras a 

further complication. Later, during the period 1957 - 1962, about 

seve~ty boreholes ~1ereput 'down on a grid patt.ern above the miner-

nlisation during exploration work described by Pollak (1961) (See 

Map 8). These early boreholes proved 8.6 million metric tons of pyritic 

sulphide ore, containing 2.3 million metric tons assaying 3~ copper 

and 2.3% zinc, and 0.3 million metric tons assaying 0.5~ co'per and 

3r!l • o. 1:. zJ.nc. Sulphur assays showed 2.6 milion metric tons assaying 

44% sulphur and 6 million metric tons assaying 30% Sulphur. The 

average copper assays vary from Oo5% up to 13% Cu and similarly the 

average zinc assays vary fror.t 0.11~· up to 9.31% Zn (Pollak, 1961). 

In 1966, Etibank, the state owned mining company, began operations 

to bring the deposit into production. 

A 1:500 scale underground map of the ·lvorkings prepared by the 

present author is shown on Map 7• The position of geological 

features is plotted at lvaist height. Becuase of the poor standing 

qualities of the altered rocks, the lvorkings are timbered through 
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-out, which renders mapping difficulto 

Although over 6000 meters of drilling was carried out under 

Rollak1 s supervision, the cores ha.ve not been preserved and so no 

information could be obtained, nor a1~ check of Pollak's conclusionso 

In recent work by Etibank, boreholes A and B have been drilled and 

the l'lri ter \'las able to log and sample the coreso No information 

on the exact location and altitude of the holes was obtainable from 

Etibank, but their position vTas surveyed as accurately as possible 

by tape and compass during the field l'lorko 

The mineralisation in the Lahanos area is ahiays located near 

to what has been mapped as the junction bet•·•een the Lotter a.nd Upper 

Volcanic series. To assess the significance of this observation 

it is necessary to reconsider briefly the basis of the mappingo 

In general, the junction coincides with the strongest topographic 

feature in the area. Beds below are porphyritic dacites, beds 

above non-porphyritic in generalo Beds above are reddened and 

commonly show columnar jointing (See Plate 6), beds below are 

brecciated, silicified and sericitised, but not reddened and do 

not show columnar jointing. At any given point, however, there 

may be some difficulty in decidine the exact position in the verical 

sequence, due to alteration or slightly atypical features of the 

rockso The amount of alteration increases considerably tO\-Tarcis 

the mineralisation and it is therefore increc:.singly difficult to 

map the position of the junction with certaintyo There is therefore 

a tendency at such places to take the junction as the horizon of 
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the mineralisation, so that the above genera.l statements could 

seem to be merely the result of a circular argument. lim-rever, it 

is believed that the dangers of this approach have largely been 

avoided during the field mapping, and by abandoning Pollak's 

concept of a single "Ore dacite" in \'lhich mineralisation occurs. 

In cores from the La.hanoe 'A' and 'B' boreholes, the main horizon 

of mineralisation is entirely within rocks of the Upper Volcanic 

Series. The cores from these boreholes provide the only specimens 

obtained during the present investigation in which the relation­

ship of mineralisation to the host rocks is clearly seen, unaffected 

by surface weathering processes. They will be described in detail 

after the nature of the economic mineralisation itself has been 

described. It is necessary however, to point out that this 

observation is at variance with the relationships shown in Poll~~'s 

sections, where the ore bodies are all shown a~ lying at or below 

the junction of the Upper and Lol'ler Series (Section C). ( Geo.Sec. 3) 

The pyritic sulphide deposit, though fairly large in size, 

sho\'lS very little outcrop in the field. Outcrops can be seen 

only at the mouth of;.'!Ne\'1 Gallery tl-ro (See Plde 12) and a better 

and larg·er one in the northern outcrop of the Lahanos mine l'rhere 

the pyritic ore body gives an almost massive pyrite outcrop about 

50 meters thick (See' Map 6, 43 .. 000 - 30.200). vlhere the La.hanos 

ore body is seen at surface, the only visible sulphide is pyrite. 
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Pl. 13. General view, looking from HE of the Lahanos copper mine, 
Hydrothermally altered Lower Volcanic Series in the stream 
valley. 

Pl. 14. Zoning in ore Zone IV pyrite. 350 x 



A strong sulphurous smell is always noticeable near the outcrop. 

As one folloliS the main pyritic body dm·rmrards in the field Le. 

towa.rds the River Kizil in the footwall series, the main massive 

ore passes into a sulphide stock-work and further down into 

disseminated pyrite (See Plate 13). In the foot-'1-rall series these 

are ahiays associated l·ri th dense silicification, serici tisation and 

brecciation of the host-rock. The greyish white leached rock adjacent 

to the stock-l'lOrk and disseminated mineralisation is often stained 

yellow by films of jarosite (confirmed by ~ray pol-rtler film). 

The general shape of the ore body as established by Pollak's 

boreholes i"s sho1m on :r.7ap 8. From observations on the cores of 

boreholes A and B and of relationships underground in Nel·r Gallery 

2, it seems that there is a doNnward zoning in the ore as follo'I"JS :-

Ore Zone (i) Bornite, chalcopyrite, galena, pyrite with minor 

tennantite, marcasite and gold. 

Ore Zone (ii) Sphalerite, r.;.alen~chalcopyri te, tetraheo.ri te­

tennantite, enargite, pyrite. 

Ore Zone (iii) Massive pyrite subordinate chalcopyrite and 

traces of bornite and telluri ·.~urn minerals. 

(i) and (ii) are dark coloured o:res, (iii) is yellOl'l. 

Underground, a thin green clay layer is seen at the top of 

the ore body, but evidence is insufficient to shm·r whether this is 

a general or only local feature. 

The ttnested sa.ucer" relationship between the or:e zones can be 

appreciated from Figs. 19 and 18. 



FIG 18 ._DISTRIBUTION OF S,Zn,Cu IN THE LAHANOS PYRITIC SULPHIDE DEPOSIT 
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FIG 19.-DISTRIBUTION OF Cu & Zn % IN THE LAHANOS OREBODV 
(After A. Pollak) 
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E.Ib l4ETHODS OF STUDY 

Polished specimens ~rere prepared for initial examination of 

the ore, but because of the limited emount available in 'A' and 

'B' borehole cores, these were prepared as polished thin sections, 

so as to be suitable both for reflected and transmitted light 

examination and for use 1·li th the microprobe. See appendix - for 

notes on the preparation technique. 

From the more abundant underground ore samples, concentrates 

for :)f-ray and chemical analysis 1r1ere prepe.red by a flotation 

te.chnique, described in Appendix. Small amounts of material for 

X-ray examination were removed from the polished specimens using 

a hand held mounted needle, or a dental drill. The powder is 

collected on a glass hair dipped in collodion. ~lith care, grains 

as small as 100 microns diameter can be sampled in this way. 

E.Ic OR~IICROSCOPY 

117 polished specimens and 34 polished thin sections of 

selected ore samples from different parts of the Lahanos pyritic 

sulphide deposit have been examined to determine the mineral 

content and study textural and structural relations. Throughout 

both ore microscopy studies,. e.nd microphotography Leitz Panphot 

and Carl Zeiss Ul traphot II microscopes and their e.ccessories 

have been used. 

The following descriptions are mainly qualitative-quantitative 



results on particular minerals are given in later sections. 

~lhere the identification of a .mineral was uncertain from optical 

properties alone, X..:-ray pol'Jder patterns or study with the 

electron microprobe have been used for confirmation. 
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Eoicl Marginal_Stockt-iork and Disseminated I>iineralisation: This 

is the outermost zone of the mineralisation, within which pyrite 

is the only abundant sulphide mineral, associated with a gangue 

of quartz and minor amounts of sericite, clay minerals and 

carbonateo 

The pyrite shows hypautomorphic granular and aggregate textures 

and its grain size averages about 100 microns, l"l'i th a range from 

less than one micron to over 125 micronso Zoning of the euhedral 

pyrite is quite common (See Plate 14) and it is usually brought 

out by inclusions of gangue mineralso Pyrite preferentially replaces 

feldspars of the host rock in the disseminated mineralisation and 

is often .associated with quartz, sericite and rarely chloriteo 

Replacement of rutile and possibly hematite in the host rock by 

pyrite is also occasionally common.Cataclastic texture in the 

pyrite is sometimes see no In the marginal stock-'t'Tork and disseQ)inated 

mineralisation there is a gradual change in the dominant gangue 

mineral towards Zone III, the quartz gradually giving place to 

dolomite, which may locally replace pyriteo 

Small traces of other sulphides occur as inclusions in pyriteo 

Chalcopyrite, sphalerite, oovellite, galena and possibly pyrrhotite 

occur in this wayo Chalcopyrite and sphalerite also occur alone 

in small patcheso Quartz often replaces phe·nocrysts and the ground­

mass of the ·host rook and forms crosscutting veinletso 

E.Ic2 Oi'e Zone III: This is the outer casing of the massive pyritic 

ore body of the Lahanos mine and it is mainly composed of massive 
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Pl . 15. Colloidal and granular pyrite relationships, ore Zone III 
160 x. 

Pl. 16A. Botryoidal texture in colloidal pyrite, ore Zone III 
875 x. 
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pyrite and locally abundant chalcop ~rite, tennantite and bornite. 

Closer to ore zone II sphalerite and traces of galena are abundant. 

Pyrite in ore z.one III forms massive pyritic bodies shmting 

hypautomorphic granular texture or in many cases aggregates, and 

in addition colloform texture is colllr.J.only present. Ueak to 

moderate anisotropism with brick red to dark navy blue colours 

can be seen with the highest light intensity. A general discussion 

of this phe~omenon is given later (p ID8). 

~late 15 shows both forms of pyrite. Colloidal pyrite forms 

botryoidal (See Plate 16A) and colloform banding (See Plate 16B) 

texture. In parts of ore zone III pyrite is shattered and recemented 

by gangue and partly by chalcopyrite (See Plate 17) so giving 

cataclastic texture. Zonal texture in pyrite is often brou~ht out 

by many tiny bleb-like inclusions of bornite with neodigenite and 

covellite, chalcopyrite, sphalerite and gangue. The edges of the 

granular pyrite are occasionally rimmed by a second generation 

pyrite which then was followed by later sulphides and gangue 

minerals. Advanced stage replacement of pyrite yielded often 

an atoll texture (See Plate 18) a• 

Marcasite occurs in trace amounts in Ore zone III and is 

usually associated with later mineralisation. Marcasite-quartz 

veins with a little chalcopyrite cut across the early pyrite 

and are often associated vli th carbonate gangue (dolomite). J.iareasi te 

is sometimes converted into pyrite along its edges, except where it 

has been embedded in chalcopyrite. Because of its distinct 



Pl. 18. Atoll texture in pyrite due to repl acing gangue mineral, 
ore Zone III. 160 x 

Pl. 19. Tennantite replaces and infills t he intersti ces of granul ar 
pyrite, ore Zone I II. 350 x 
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pleochroism, sometimes slight~ higher reflectivity than pyrite 

and strong aniso~ropism, marcasite is easily distinguished from the 

pyrite. Marcasite often forms the core of colloidal pyrite. 

Chalcopyrite in places forms the major constituent after pyrite 

and usually infills the interstices of pyrite aggregates. Occasional~, 

closer to ore zone II, chalcopyrite together with tennantite (Plate 19) 

cememts the intergranular spaces of pyrite, but where pyrite is the 

more abundant sulphide the~ chalcopyrite and bornite form inclusions 

in the pyri teo Tennanti.te inclusions in pyrite are not seen. Although 

sphalerite is not a common sulphide in ore zone III, it is occasional~ 

present and often replaced by chalcopyrite. Bor~te and chalcopyrite 

may show a mutual boundary relationship in inclusi0ns in pyrite and 

less commonly in sphalerite. Bornite also commonly shows very fine 

grained ex-solution lamellae of chalcopyrite. 

Often anhedral tennanti te grains contain tiny patches of pink .. 
enargite (cu

3 
As s

4
) and rims of a bluish pink mineral which may be 

seligmannite (Pb Cu As s
3
). Rarely patches of grayish blue anisotropic 

bournopite (Pb Cu Sb s
3

) are also seen. These identifications have 

not been checked by microprobe. 

Sphalerite a~d galena normally occur as tiny replacement patches 

in pyrite or along the individual pyrite boundaries. However, 

some large patches of sphalerite occur ind~pendant from the pyrite 

of ore zone III. Closer to ore zone II the frequency of irre-

gular sphalerite patches gets higher and sometimes sphalerite is 

associated with chalcopyrite. Occasionally shattered sphalerite 



Pl . 20A. Sphalerite, gangue, barite relationships, ore Zone II. 160 x 

Pl. 20B . Sphalerite , gangue, bari te relationships, ore Zone II. 160 x 



Pl. 20C. Sphalerite, gangue , barite relationships, ore Zone II. 160 x 

Pl. 21A. Sphalerite chalcopyrit e relationship, ore Zone II. 160 x 
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was infilled by gangue. 

The main gangue mineral of this zone is dolomite and qu~rtz 

is less abundant. Dololl!i·~e (which is confirmed by ~:::RD) is 

usually later than the sulphides ru1d often shattered pyrite 

and less often chalcopyrite uere cement.ed by ito 

-E~.I~c~3~~0~r.~_Zone II: The yellow ore of zone III passes fairly 

sharply into the speckled dark grey ore of ore zone II, within 

a distance usually less than a metero 

Sphalerite ani' pyrite are the major constituents of this zone 

bu.t important anounts of galena, and chaloopyri te occur together 

with minor amounts of tennantite, enargite and seligmanniteo 

Bornite, marcasite and colloform pyrite appear and become more 

abundant towards the junction with ore zone Io 

Sphalerite, which is later than granular pyrite shm-Js anhedral 

to subhedral grru1ular texture, end has quite distinct internal 

reflection colours of red to yellolol' depending on its iron content o 

Various textu.ral relationships with the barytes ga11..gue are seen -

Plates 20A, 20B, 20Co Sphalerite is usually older than and reple.ced 

by galena, bu.t occasionally sphalerite replaces galena, indicating 

some overlap of deposition. The relationship bet\·reen sphalerite 

and chalcopyrite is less well defined. Each mineral can be seen 

replc-cing the other, although usua.lly chalcopyrite replaces sphalerite. 

This may indicate more than one period of deposition of either or 

both these minerals. (Pla,te 21A, 21B, 21C)o t-lhat seems to be a 

guided replacemen·~ of sphalerite by chalcopyrite and tennanti te ·is 



Pl . 21B. Sphalerite chalcopyrite relationship, ore Zone II. 160 x 

Pl. 21C. Sphalerite chalcopyrite relationship, ore Zone II. 160 x 
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also seen (Plate 22). Sphalerite older than chalcopyrite often 

shows emulsion type. ex-solution blebs of chalcopyrite. Plate 

2.3A from the Kep9elik deposit {See Map 2) which is about 2.5 

kilometers SE of the Lahanos mine, shows this texture. Plate 

2.3B from another part of the same section shows lamellar chalco­

pyrite ex-solution bodies - a form which does not seem to have 

been described by other authors. The emulsion type of ex-solution 

texture is also observed between sphalerite (host) and tennantite. 

Colloform pyrite of later origin than the granular pyrite (plate 

24) is. a striking feature of the Zone II ore (Plate 25, 26). Its 

relationship to other minerals varies, as can be seen in Plates 

27A, 27B. In addition to colloform banded pyrite, P striking 

framboidal pyrite, probably also of colloidal origin (Rust, 19.35 

and Bastin, 1950) occurs in Zone II (Plate 28). In addition to 

separate framboidal spheres, this plate also shows framboidal 

nuclei within an area of coarser pyrite with shrinkage cracks. 

Relationships similar to the "radial bomb type" texture of Rust, 

19.35 are locally seen. Plate 29 shows a unique grain of pyrite 

with a contorted banded texture, reminiscent of graining in wood, 

found in sample 40A from the Lahanos Old Gallery. In the absence of 

further evidence, the significance of this grain is uncertain. 

Galena frequently includes small patches of greenish grey 

tennantite and occasional~ small areas of seligmannite. These have 

not been checked by microprobe because of their small grain size 

(about .3 microns) but the galena has been checked by microprobe for 

the presence of silver. None was detected. 



Pl.22. Guided replacement of sphalerite by chalcopyrite (whitish 
gray} and tennantite (gray), ore Zone II. 160 x 

Pl. 23A. Emulsion type ex-solution blebs of chalcopyrite in sphalerite 
from the Kepyelik mine, Lahanos area. 875 x 



Pl . 23B . Ex- solution l amellae of chal copyrite in sphalerite from 
the Kep9elik mine, Lahanos area . 2200 x 

Pl. 24· Colloidal pyrite-pyri te and sphalerite r el at ionships , ore 
Zone II. 73 x 



Pl . 25 . Shelly colloform texture in pyri te , ore Zone II. 160 x 

Pl. 26. Colloidal pyr ite-sphalerite-galena-tennantite-bari te 
relationshi ps , Ore Zone II. 350 x 



Pl . 27A. Age r el ationships between colloi dal pyrite and galena, 
gangue and tennantite, ore Zone II. 350 x 

Pl . 27B. Age re l ationships between colloidal pyrite and galena, 
gangue , ore Zone II. 350 x 



Pl. 28. Framboidal pyrite-sphalerite relat i onships , ore Zone II. 
875 X 

Pl. 29. Contorted banded texture in colloidal pyrite, ore Zone II. 
160 X 
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In addition to its normal enhedral occurrence, infilling 

spaces and replacing various minerals, chalcopyrite also occasiona]y 

occurs in colloform banding with sphalerite (Plate 30). 

Tennantite: According to certain authors, there is a variation 

of colour from greenish grey to bluish green grey t-ri th composition 

in the tetrahedri te-tennanti te series. However, in the m·i ters' 

experience, the apparent colour of these minerals can vary con-

siderably depending on the colour of adjacent minerals. The colour 

relative to galena and sphalerite is distinctly different from the 

colour relative to pyrite and chalcopyrite. The X-ray pmider 

pattern and quantitative electron microprobe analysis have confirmed 

that the mineral is usually t ennanti te, tii th only a very small 

amount of antimony in solid solution. Tennantite is more abundant 

towards ore zone III. (Plates 19, 31, A and B). Houever a. grain 

of slightly more bluish gray colour associated t·ii th sphalerite t·:as 

also analysed quantitatively by microprobe and found to be tetra-

hedrite (See Section E.Ie2). 

Enargite-"Famatinite" (cu
3

As s
4

- Cu
3 

Sb s
4
). Uaterial having 

optical properties indicative of members of this series occurs in 

grains up to a maximum size of 100 microns and in irregular patches. 

The nomenclature of these minerals has been discussed recently by 

C. L:vy (1966), trrho adopts the nomenclature of H. Strunz (1957) 

Orthorombic isotypes 
) Enargite eu

3
As s

4 
~ Stibioenargite eu

3
sb s

4 

given below: 



Pl. 30 . Colloform banding of chalcopyrite, sphalerite, associ ated 
tennantite and gangue , ore Zone II. 350 x 
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Pl. 31A. Shattered pyrite repl aced by t ennant ite, ore Zone II closer 
to t he ore Zone III. 600 x 



Pl. 31B. Tennanti te-galena-borni te-gangue age relationship, ore 
Zone II closer to the or e Zone I. 875 x 

Pl. 32 . Enargi te phenocryst , ore Zone II. 875 x 
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Tetragonal isotypes 
)Luzonite cu

3
As s

4 
~Stihioluzonite cu

3
Sb s

4 

in which the name famatinite is abandoned. 

Partial phase relatio~ships in this system are given by 

Barton and Skinner in "Geochemistry Of Hydrothermal 0re D.eposi ts" 

(Ed. H.L. Barnes, 1967, p.306). The inversion of low temper&ture 

luzonite to high temperature enargite is given as 320°C. It is 

interesting to note that whilst higher ~temperature polymorphs 

usually have higher symmetry than low temperature forms, the reverse 

seems to be .the case in this system. 

I 
Levy states that the existence in nature of stibioenargite is 

not established, and that the optical properties of the remaining 

three members are sufficiently distinctive to allot·l easy identi-

fication from qualitative observations. His microprobe analysis of 

material from Famatina shows compositions that wou.ld nou be 

described both as luzonite and as stibioiuzonite. It seems therefore, 

that the name "famatini te" may have been used in the past rli th 

an unduly wide meaning and should be avoided until its status is 

more thoroughly examined. 

Reflectivity measurements (Pl04) and microprobe analysis (~97 ) 

shovr that the ·material in the Lahanos Zone II ore is enargi te, the 

high temperature polymorph, t·dth a negligible amount of antimony 

in solid solution (Plate 32 and 49 A- D). Some of the grains, 

because of orientation effects, shoti slightly different colours and 

ani sot ropy. and lvere thought at first possibly to be of different 



composition. However, when checked by microprobe and reflectivity 

measurem~nt they proved to be enargite. 

Enargite is usually asaociated wHh sphalerite, bornite galena 
I 

and to a less extent with pyrite. It defi~{ly replaces pyrite 

(Plate 33) and sphalerite. However it is possible to see in the 

latter inclusions or blebs of enargite. The age relation of enargite 

with bornite is somewhat controversial i.e. in some cases enargite 

is defini }1Y replace·d by bornite, but also in a fer1 cases t.he 

relationship is reversed. Occasionally bornite and neodigenite 

form segmented vein replacement texture in enargite. 

Bornite in ore Zone II ~s present in minor quantity and 
. . 

usually occurs as tiny inclusions particularly in pyrite t·ri th an 

average grain size of about 20 microns. Similar inclusions and 

replacement patches are also common in sphalerite. Some of the 

larger replacement patches of bornite shorr tiny ex-solution lamellae 

of ch~lcopyrite.developed in three directions i.e. along (111) 

planes. Often chalcopyrite and bornite shou mutual boundary 

relationship' in these inclusions. Sometimes when bornite replaces 
"~ 

galena, it sho\iB a reticu.lated replacement texture, which can often 

also be seen ~-rhen bornite is being replaced by neodigeni te and 

covellite. Bornite replaced by covellite often infills the 

interstices of pyrite (See Plate 34A and 34B)• As seen in Plate 

35A bornite forms bleb like inclusions in galena, ~nd in Plate 

35B an irregular intergrowth of bornite replacing galena is 

illustrated. 



Pl. 33. Enargite r epl aces interstices of pyri te , or e Zone II. 350 x 

Pl . 34A. Covell i te- bornite- pyrite r el ation, ore Zone II, closer to t he 
ore Zone I. 875 x 



Pl . 34B· Covellite- bornite- pyrite r el ation, under cross niclols , 
ore Zone II, closer to the ore Zone I. 875 x 

Pl. 35A. Galena-bornite r elation, ore Zone II closer t o the ore Zone 
I. 875 X 
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Covellite is an accessory copper sulphide mineral and tends 

to replace pyrite, galena, sphalerite and bornite rather than 

chalcopyrite, in fact no example of co~ellite replacing chalco­

pyrite has been· seen anywhere in the Lahanos ore. In Plate 

34A and 34B covellite replaces bornite and both infill the inter­

stices of pyrite. Under crossed nichols, covellite is one of the 

easiest minerals to recognise owing to its vivid or~nge red L 

polarisation colours. In Plate 36 covellite with colloidal pyrite shows 

beautiful colloform banding. Sometimes covellite occurs as tiny 

inclusionsin banded colloform pyrite (Plate 16B). 

Neodigenite shows similar occurrences to covellite9 Although 

it is usually an obvious secondar,y mineral, it is sometimes seen 

without any other associated copper mineral, and may therefore 

also be partly of primary formation. 

Marcasite is usually associated with colloidal pyrite Plate 

37A and 37B. Marcasite becomes more abundant closer to ore zone 

I, and is also seen in small quartz veinlets cutting across ore 

zone II. 

Gangue minerals The commonest and characteristic gangue 

of ore zone II is bar,ytes, forming blade like euhedral crystals 

or aggregates, and spherulitic arrangements of bar,ytes blades (Plate 

36). It is quite often possible to see that bar,ytes replaces 

pyrite, colloidalpyrite, sphalerite~ galena, chalcopyrite, but 

in some cases the reverse relationship occurs e.g. in Plate _23, 2.0 

bar,ytes blades were replaced by sphalerite. Other gangue minerals 

are quartz and dolomite in minor quantity. Both dolomite and bar,ytes 



Pl. 35B. Galena- bornite relation, ore Zone II closer to the ore Zone I . 
2200 X 

Pl. 36 . Colloform banding of covellite and pyrite , ore Zone II . 875 x 
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clearly replace quartz. In some occasions dolomite seems to be 

replacing barytes Le. optically continuous barytes blades t·rere 

cut across by dolomite and in addition relicts of barytes occur in 

dolomite. However in sample NG 38 barytes is also replaced by 

deu.teric quartz and possibly jasper. 

~.Ic4 Ore Zone I: This uppermost-zone, not ever~ihere present, 

shows the highest copper values. Bornite, chalcopyrite, pyrite 

and colloidal pyrite are the most abundant sulphide minera.ls, t1hilst 

galena and marcas·ite are minor eonsti tuents. 

:r1o.rnmte is the second most important copper mineral in the 

Lahanos deposit as a tv-hole, but is more abundant than chalcopyrite 

·in Zone I, particularly towards the Upper contact of the pyritic ore 

body, o.ust below the hangillC',·Tall. The bornite of ore zone I 

shows weak to distinct reflection pleochroism and we~~ anistropism 

with tan to reddish purplish brown polarisation colours under 

strong illumination. Its ordinary light colour is also noticeably 

slightlJ;y::ydifferent, from the bornite of the other zones. X-ra:y 

powder photography confirmed its identity as bornite - quantitative 

details are·given later. Bornite replaces galena, pyrite, chalco­

pyrite and tennantite 9 Plates 38, 39, 40, 41, 42. ~is locally 

replaced by small amounts of neodigenite. Native Gold has been 

found for the first time in small amounts in polished sections 

of the Zone I o.re (Plate 43). In every case, it is included in 

berni te., 

Chalcopyrite, the main copper mineral of the Lahanos deposit, 



Pl . 37A. Colloidal pyrite-marcasite r el ationship. 375 x 

Pl. 37B. Colloidal pyrite- marcasit e r el at ionship, under cross nichol s . 
375 X 



Pl. 38. Matching wall texture in between pyrite and bornite , ore 
Zone I. 375 x 

Pl. 39· Chalcopyrite-bornite relation, ore Zone I. 875 x 



Pl. 40. Advance replacement of colloidal pyrite by bornite associated 
with chalcopyrite, ore Zone I. 875 x 

Pl. 41. Bornite and colloidal pyrite relationship , ore Zone I. 375 x 



Pl. 42 . Tennantite- chal copyrite- bor nite r el at ionship, ore Zone I. 
375 X 

Pl. 43 · Occurrence of na.tive gold in borni te , ore Zone I. 2200 x 
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is somewhat less abundant than bornite in Zone Io Its relation­

ships to bornite and pyrite have already been seen in previously 

mentioned plateso Plate 44 shows it replacing pyriteo 

Colloform and massive pyrite are also abundant components 

of ore zone Io Colloform pyrite forms a second generation pyrite 

·and usually surrounds the massive early pyriteo It often displays 

primary botryoidal, colloidal banding and spherulitic texture 

(Plate 45)o Framboidal pyrite spheres, usually thought to be of 

collo{dal origin, occur in isolation (~late 46A, 46B) and various 

intermediate combinations of colloform textures are seen (Plate 

47A, 47B), with a transition to textures that could be regarded 

as a zoned crystalline texture (Plate 48A, 48B)o 

The main gangue mineral of ore zone I is lath shaped barytes, 

often associated with qu~rtz and dolomiteo 



Pl. 44• Matching wall texture between pyrite and chalcopyrite , ore 
Zone I . 375 x 

Pl. 45 · Spherulitio texture of colloidal pyrite , ore Zone I. 375 x 



Pl . 46A. framboidal pyrite sphere , ore Zone I . 2200 x 

Pl. 46B . Framboidal pyrite sphere , ore Zone I. 600 x 



Pl. 47A. Colloidal pyrite- bornit e-chalcopyrite r el at i onship, or e 
Zone I . 875 x 

Pl 47B. Colloidal pyrite-bornite r el at i onship , ore Zone I . 600 x 
• 



Pl. 48A. Zoned-crystalline texture in pyrite associ ated with bornite, 
Ore Zone I. 875 x 

Pl. 48B. Zoned- crystalline texture in pyrite associated with bornite, 
Ore Zone I. 2200 x 
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E.Id QUANTITATIVE PHYSICAL MEASUREMENTS ON LAHANOS ORES 

E.Idl X-ray Diffraction 

X-ray studies of various sulphide minerals were undertaken 

on the Philips high angle XRD (PoW. 1051) or in some cases 

(particularly where only small amounts of material were_available) 

with a 1~.6 mm diameter powder camera. Calculations of accurate 

lattice p~rameters were made from film measurements, since the 

extrapolation procedures are better established than for diff­

raction chart measurements. Filltered copper or cobalt radia­

tion were used as appropriate in each case. A standard Hilger 

and Watts film measuring scale with vernier capable of reading 

to 0.05 mm was used for film measurement and the results corrected 

for film shrinkage. Cell sizes of the cubic minerals were deter­

mined using a computer programme (M. George, 1968) based on the 

Cohen least squares extrapolation method. Results of this pro­

gramme agreed with a check calculation carried out with a hand 

calculator. Details of the various diffraction patterns are 

given in Table 7.1-~ and a comparative table of cell sizes is 

given in Table 8. 

E.Id2 Electron Microprobe Analysis 

The optical properties of opaque minerals are usually insuff­

iciently well known to establish with any certainty the composition 

within a solid solution series. In such cases, following identifi­

cation of the mineral group by optics, qualitative or semiquantitive 



TABLE 7.1 

X-ra~ diffraction data for various sulEhide minerals 
. . 

Sphalerite - NG39 light coloured sphalerite, Lahanos mine, 
Ore Zone II, New Gallery. 

.§L.o = 5.4125 :t 0.,0005 A 0 

29- (Co) d I/Ia. hkl 
(Visual Est.) 

33.271 3.126 lOI 111 

38.588 2.709 5 002 

55.735. 1 ... 915 9II 022 

66.468 1.633 arn 113 

69.873 1.563 3 222 

82.767 1.353 4 004 

92.241 1.241 5 133 

95.386 1.2094 3 024 

108.116 1.1048 7" 224 

ll:S.449 1.0410 4 (:l-15~ 
(333 

138.442 0.9567 4 044-

155.764 0.91484 6 135 

165.074 0.9021 2 (006) 
(244-) 

(: I, II, III indicate the three strongest lines 

in order) 



TABLE 7.2 

X-ray diffraction for various sulphide minerals 

Sphalerite - NG39 dark coloured sphalerite, Lahanos Mine, 
Ore Zone II, New Gallery 

20(C:o) 

33~288 

38.619 

55.755 

66.4.21 

82.483 

92.161 

.95-443 

108.258 

118.350 

138.434 

155.795 

165.366 

a -. o .Ao = .5.4J.l8 + 0.0005 A 1 

d I/Io 
(Visual est.) 

3.125 10l 

2.707 5· 

1.913 9
II 

1.633 8Irr 

1.3568 3 

1.2418 5 

1.2088 3 

1.1038 6 

1.04165 4 

0.9565 4 

0.91478 6 

0.90180 1 

hk1 

111 

002 

022 

113 

004 

133 

024 

224 

~115) 
333) 

044 

135 
(006) 
(244) . 

{I II III indicate the three strongest lines in order) 
' ' 



TABLE 7.3 

X-ray diffraction for various sulphide minerals 

Galena - NGD16 associated with sphalerite, Lahanos mine, 
Ore Zone II 1 New Gallery 

29(Co) d I/Io hkl 

30.302 3.424 9
II 111 

35.160 2.963 lOI 002 

50.554 2.1956 8III 022 

60.065 1.7882 7 113 

63.074 1.7113 5 222 

74.245 1.4832 5 004 

82.192 1.3756 3 133 

84.866 . 1.3266 6 024 

95.359 1.2106 4 224 

103.106 1.1420 3 (115~ 
(333 

117.176 1.0481 2 044-

126.122 1.0033 3 135 

129.371 0.99949 4 (006~ 
(244-

144.715 0.93859 4 026 

162.258 0.90529 1 335 

(I II .III indicate the three strongest lines in order) 
' ' 



TABLE 7.4 

X-ray diffraction for various sulphide minerals · 

Galena - NGD17 associated with sphalerite and chalcopyrite, ~ahanos mine, 

Ore Zone II., New Gallery 

- 0 a = 5.9359 + 0.0005 A 
0 

2Q (C.o) d I/Io hkl 
(Visual est.) 

30.275 3.428 9II (111) 
33.373 3.118 2 Sph (111) 

35.171 2.962 OI ~002~ 1
III 50.559 2.19505 8 022 

55.830 1.9115 3 Sph (022) 
60.051 1 .• 7886 7 (113) 
63.049 1.7118 6 (222~ 
66.561 1.630 2 Sph 113) 
74.165 1.4835 4 (004) 
82.199 1.3606 5 ~~~~ 84.782 1.3267 6 
92.131 1.2421 1 Sph (133) 
95.293 1.2103 6 (224~ 

103.087 1.1422 5 (115 
(333) 

108.158 1.1045 1 Sph (224) 
116.996 1.0491 4 (044-( 

115~ 118.400 1.04135 1 Sph t333 

126.144- 1.0032 5 (135) 

129.460 0.9891 5 ~~~ 
144-.754 0.9385 5 (026) 
155.820 0.91307 1 Sph ~135) 
162.265 9.90528 2 (335 

The impurity is sphalerite 

(I'; II., III indicate the three strongest lines in order) 



T.ABLE 7.5 

X~ray diffraction data for various sulphide minerals 

Chalcopyrite - NGD8 associated with bornite, Laha~os mine, Ore 
Zone 1, New Gallery 

a = 5.2895 + 0.0006, C = 10.423 ; 0.003 A0 

0 . ---·· . 

2Q (Co) d I/Io hkl 
(Visual est.) 

34.286 3.037 lOI (112) 

39.584 2.644 3 (004) (020) 

56.777 1.882 7 (220) 

:·57. 726 1.8538 ~II (024) 

68.1.¥+7 1.5914 8III (132) 

69.297 1.5742 5 (116) (033) 

72.246 1.5184 1 (224) 

85.215 1.322 4 (04-o) 

86.740 1.3035 2 (008} 

95.134 1.2119 2 (332) 

95.959 1.2039 5 (136) (l43) 

112.303 1.0899 6 (21.¥+) 

ll4.152 1.0656 4 (228) 

.123.123 1.01725 3 (152) 

124.073 1.01275 3 (336) 

126.072 1.00355 2 (lololO) 

(I, II., III indicate the three strongest lines in order) 



TABLE 7o6 

x~ray diffraction date for various sulphide 
minerals 

Chalcopyrite - NG 36 associated with bornite, Lahanos mine, Ore 

Zone I, New Galle~ 

a ·= 5.288 + 0.001, C = 10.428 + 0.003 A0 

0 

2Q (Co) d I/Io hkl 
(Visual est.) 

34.260 3.0395 lOI (112) 

39.575 2.644 2 (004) (020) 

57.165 1.871 6 (220) 

57.675 1.85505 9
II (024) 

68.310 1.5942 7
III (132) 

69.150 1.5773 3 (116) (033) 

72.925 1.5062 3 (224) 

86.625 1.3039 . 2 (008) 

95.165 lo2124 3 (332) 

95.925 1.2051 3 (136) (143) 

112.275 1.0772 5 (244) 

113.575 J..069J. 2 (228) 

123.125 1.0172 2 (152) 

( I II III indicate the three strongest lines in order) 
' ' 



TABLE 7. 7 

X-ray diffraction data for various sulphide minerals 

Chalcopyrite - NG39 associated with sphalerite and pyrite, Lahanos 
mine, Ore Zone II, New Gallery 

- - 0 a = 5.2901 + 0.0007, C = 10.421 + 0.002 A 
0 

2Q(Co) d I/Io hkl 
(visual est.) 

34.300 3.036 lOI (112) 

39.600 2.6425 3 (004) (020) 

57.225 1.868 8ni (220) 

57.800 1.852 9
II (024) 

68.450 1.5914 7 (132) 

69.300 1.573 6 (116) (033) 

72.300 1.4996 1 (224) 

85.200 1.3223 5 (040) 

86.825 1.3015 2 (008) 

95.125 1.2118 5 (332) 

95.925 1.2042 6 (136) (143) 

112.350 1.0777 6 (244) 

113.625 1.0688 5 (228) 

123.125 1.0172 4 (152) 

124.075 1.0127 4 (336) 

125.975 1.00395 3 (1.1.10) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.8 

X-ray diffraction data for various sulphide minerals 

Bornite - NGD8 associated with chalcopyrite, Lahanos mine, Ore Zone 

I, New Gallery. 

a
0 

= 10.948 + 0.004, c = 21.912 + o.oo6 A0 

20 (Co.) d I/Io hkl 
(Visual est.) 

25.424 4.068 3 (105) (213) 

31.018 3.348 9II {026) 

31.453 3.303 5 (116) (312) 

32.892 3.162 8In (224) 

34.930 2.983 1 (107) (321) 

37.212 2.805 3 (305) (323) 

38.136 2.740 7 (008) (400) 

39.685 2.637 1 (217) (411) 

42.057 2.494 4 (413) (325) 

49.775 2.127 1 (425) (511) 

50.274 2.1075 2 (336) (1.1.10) 

55.094- 1.9350 lOI (440) (408) 

57.692 1.855 1 (2.1.11) 

65.609 1.65.20 3 (624} (2.2.12) 

69.005 1.5802 1 (44-8) 

71.403 1.5339 1 ((112) (1.1.14) 

76.248 1.4497 3 (3.1.14) (5.3.10) 

81.493 1.3713 2 ( 8oo) ( o.mL6) 

90.890 1.2553 1 (6.2.12) 

96.309 1.2006 1 (844) 

"98.282 1.1826 1 (6.4.12) 

106.374 1.1172 3 (4.4.16) (848) 

(I, II, III, indicate the three strongest lines in order) 



TABLE 7.9 

X-ray diffraction data for various sulphide minerals 

Bornite - NG36 associa~ed with chalcopyrite, Lahanos Mine, Ore 
Zone I, New Galle~ 

a
0 

= 10.938 + 0.003, c = 21 .. 887 + 0.005 

2Q (Co) d I/Io hkl 
(visual est) 

25.414 4.069 4 (105) (213) 

31.487 3.2985 6 (116) (312) 

32.896 3.161 9
II (224) 

34.511 3.018 1 (107) (321) 

37.210 2.805 4 (305) (323) 

38.184 2.737 fii (008) (400) 

39.734 2.634 3 (217) (4J.l) 

4J..383 2.534 6 (4J.3) (325) 

50.354 2.1045 4 (336) (lololO) 

55 .. 127 1.933 lOI (440) (408) 

57.876 1.850 3 (2.1.11) 

65.698 1.650 5 (624) (2.2.12) 

69.022 1.5798 2 (448) 

71.496 1.532 3 (712) (1 .. 1.14) 

74-845 1.4731 2 (705) (723) 

77.868 1.4242 4 (3.1.14) (5.3.10) 

81.742 1.3679 4 (800) (0.0.16) 

90.94J. 1.2547 2 (6.2.12) 

93.740 1.2257 1 (4.0 .. 16) (840) 

96.309 1 .. 2007 2 (844) 

99.558 1.1714 1 (6.4.12) 

116.166 1.0538 3 (2.2.20) (6.6.12) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.10 

X-ray diffraction date for various sulphide minerals 

Pyrite - NGD17 associated with sphalerite, chalcopyrite and galena 
Lahanos mine, ore zone II, New Gallery ' 

2Q (Co) 

30.24-3 
33.293 
34.218 
35.122 
38.627 
43.876 
47-790 
50.514 
55-773 
59-513 
66.486 
69.861 
73.160 
76.484 
82.783 
85.857 
89.052 
91.626 
95.232 
98.402 

101.516 
107.985 
111.289 
114.664 
118.113 
125.536 
129.461 
138.114 
143.083 
148.657 
155-30 
164.354 

- 0 a
0 

= 5.4172 + 0.0005 A 

d 

3.431 
3.125 
3.043 
2.966 
2.7065 
2.396 
2.210 
2.098 
1.913 
1.8035 
1.6326 
1.5632 
1.50205 
1.446 
1.3538 
1.3141 
1.2766 
1.24-74 
1.2109 
1.1816 
1.1548 
1.1057 
1.0835 
1.0626 
1.0429 
1.0060 
0.98902 
0.9577 
0.94295 
0.9290 
0.91563 
0.90287 

I/Io 
(visual est) 

2 
5 
1 
2 

10I 
9II 
8III 
1 
7 
1 

10I 
4 
5 
6 
1 
1 
1 
3 
4 
4 
3 
4 
1 
1 
7 
6 
6 
7 
1 
1 
2 
6 

hkl 

gl 
(111) 
Cpy 
gl 
(200) 
(210) 
(211) 
gl 
(220) 
(300l (221) 
(311 
(222 
(320l (321 
(400 
(410l (322) 

~
411 (330) 
331 
420) 

(42ll (332 
(422 
(500) (430) 
(510l (43ll (511 (333 
(520 (432 

~52ll 
~~~ (441) 
(530) (433) 
(531) 
(600) (442) 

Impurities are galena and chalcopyrite 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.11 

x-ray diffraction data for various sulphide minerals 

Pyrite - NG18 anisotropic pyrite, Lahanos Mine, Ore Zone III, 
New Gallery. 

a = 5.4183 + 0.0005 A0 

0 

29 (Co) d I/Io hkl 
(visual est.) 

14.300 7 .. 182 1 Kaolinite 
23.100 4 .. 47 1 Kaolinite 
33.250 3 .. 1285 5 (111) 
38.700 2.702 7 (200) 
40.900 2.562 7 Kaolinite? 
43.150 2.434 8III (210) 
47 0 77 5 2.2105 gil (211) 
55.,710 1.,9157 5 (220) 
59.,520 1.,8035 1 (300) (221) 
66.,459 1.,6333 10I (311) 
69.,800 1.,5644 2 (222) 
73.,225 1.,50095 1 (320) 
76.350 1.,4481 5 (321) 
82.,700 1.,3548 1 (400) 
85.,925 1.3133 1 (410) (322) 
88.800 1.,2794 1 (411) (330) 
92 .. 210 1.,2422 2 (331) 
95 .. 326 1.,2108 2 (420) 
9~.426 1.1822 2 (421) 

101.,626 1.,1548 2 (332) 
108.,300 1.,1035 2 (422) 
111.310 1.08335 1 (500) (430) 
118.066 1 .. 04315 6 (511) (333) 
125.576 1.0057 4 (520) (432) 
129.466 0.98905 2 (521) 
138.126 o. 9577 3 (440) 
148.650 0.9290 1 (530) (433) 
155.126 0.91594 1 (531) 
164.206 0.90302 3 (600) (442) 

(I, II, III indicate the three strongest lines) 



TABLE 7 .. 12 

X-ray diffraction data for various sulphide minerals 

Pyrite - 94 massive pyrite, Lahanos mine, Ore Zone III, surface 
sample 

29 (Co) 

33.47a 
3a.92a 
43 .. 62a 
47 0 97a 
55.930 
59.654 
66.7ao 
70.030 
73.2ao 
76.532 
a2.932 
a6.032 
a9.la2 
92.232 
95.342 
9a.494 

101.644 
10a.o94 

111.420 
114.a7o 
11a.246 
125.546 
129.546 
ua.l96 
143 .. o9a 
14a.622 
155 0 37 4 
164.374 

d 

3 .. 10a 
2.6a6 
2.,409 
2.,2015 
1.9oa 
1 .. 7997 
1.6263 
1.,560 
1.499a 
1 .. 4452 
1.35la 
1.312 
1.2751 
1.2411 
1.2099 
l.,laoa 
l.,l53a 
1 .. 1050 
l.oa265 
1.0614 
1.0422 
1.0059 
0.,9aa75 
0.9575 
o.942a 
0.92905 
0.91552 
o .. 9o2a5 

I/Io 
(visual estL 

5 
gil 
a III 
a III 

7 
1 

10I 
5 
6 
6 
1 
1 
1 
4 
5 
5 
4 
5 
2 
1 
7 
6 
6 
7 
1 
1 
1 
6 

hkl 

(111) 
(200) 
(210) 
(211) 
(220) 
(300) (221) 
(311) 
(222) 
(320) 
(321) 
(400) 
(410) (322) 

. (411) (330) 
(331) 
(420) 
(421) 
(332) 
(422) 
(500) (430) 
(510) (431) 
(511) (333) 
(520) (432) 
(521) 
(440) 
(522) (441) 
(530) (433) 
(531) 
(600) (442) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.13 

X-ray diffraction data for various sulphide minerals 

Sphalerite - M2 honey coloured sphalerite, Murgul mine. 

a = 5.4109 + 0.0005 A
0 

0 

2Q (Co) d I/Io hkl 
(visual est.) 

33.323 3.1215 lOI (111) 

38.619 2.707 3 (200) 

55.756 1.913 8III (220) 

66.472 1.6319 9II (311) 

69.819 1.5624 2 (222) 

82.809 1.3524 3 (400) 

92.301 1.2428 5 (331) 

95.318 1.2101 1 (420) 

17 3.129 1.0718 7 (422) 

118.374 1.0415 4 (511) (333) 

138.458 0.95656 3 (440) 

155.919 0.91456 5 (531) 

165.442 0.90172 1 (600) (244) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7 0 14 

X-ray diffraction data for various sulphide minerals 

Sphalerite - M2 dark coloured sphalerite, Murgul mine .. 

29 (Co) 

30 0 256 

33.280 

~4.229 

35 0 103 

38.651 

50.494 

55.791 

60.063 

62.987 

66.585 

69.933 

82.825 

84.749 

92.233 

95.,351 

108.044 

118.412 

138.500 

156 0 040 

165 .. 409 

a = 5.4101 + 0.0005 A
0 

0 

d I/Io 
(visual est) 

3.429 2 

3 .. 125 lOI 

3.042 1 

2 0 9675 2 

2.705 4 

2.098 2 

1.9132 gil 

1.7884 1 

1. 7132 1 

1.6306 8IIi 

1.5619 2 

1.3532 4 

1.3280 1 

1.24195 6 

1.2098 2 

10 10535 7 

1.0413 5 

0.9565 5 

0.91437 7 

0 0 90175 1 

Impurities are gl and cpy 

hkl 

gl 

(111) 

Cpy 

gl 

(200) 

:gl 

(220) 

gl 

gl 

(311) 

(222) 

(400) 

gl 

(331) 

(420) 

(422) 

(511) (333) 

(440) 

(531) 

(600) (244) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.15 

X-ray Diffr~ction data for various sulphide minerals 

G~ena - M2 associated sphalerite and little chalcopyrite, Murgul 
mine. 

• . 0 
a

0 
~ 5.9353 + o •. O<X)SA 

2Q~Go.) d I/Io hkl 
(visual est) 

30.325 3.421 9II (111) 

35.161 2.9625 101 (200) 

50.549 2.0965 8ni (220) 

60.061 1.7884 7 (311) 

62.999 lo 713 5 (222) 

74.235 1.4832 5 (400) 

82.184 1.3619 4 (331) 

84.842 1.3269 6 (420) 

95.139 1.2118 5 (422) 

103.062 1.14245 4 (511) (333) 

117.046 1.0488 3 (41+-0) 

126.094 1.0034 6 (531) 

129.44J. 0.9892 6 ( 600) (44-2) 

l).f4.. 729 0.93855 6 (620) 

162.415 0.9051 1 (533) 

(I, II, III indicate the three strongest lines in order) 



T.ABLE 7.16 

X-ray Diffraction Date for various sulphide minerals 

Chalcopyrite - Ml2 associated with sphalerite, Murgul Mine. 

a = 5.2888 + 0.0022, C = 10.4252 + 0.005 A0 

0 . 

29 (Co.) d I/Io hkl 
(visual est.) 

29.413 . 3.523 lOI (112) 

33.086 3oJ..4.4 3 Sph 

33.861 3.074 3 (004) (020) 

34.436 3.024 2 (112) 

43.182 ' 2.433 2 PY 

47.505 2.222 2 PY 

4.8.705 2.1705 9
II (220) 

49.130 2.153 1 (024) 

56.352 1.8957 3 

57.876 1.850 8III (132) 

58.576 1.8297 7 (116) (033) 

71.246 1.5367 4 (040) 

72.421 1.5153 2 (008) 

78.893 1.4087 6 (332) 

79.568 1.3987 6 (136) (143) 

91.401 1.2498 5 (244) 

92.201 1.2414 2 (228) 

Impurities are pyrite and sphalerite 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.JJ. 

X-ray diffraction data for various .sulphide minerals 

Chalcopyrite - Ml5 associated with sphalerite and pyrite, Murgul 
mine 

- . - 0 a
0 

= 5.2888 : O.Q?l7, C = 10.4J.71 + 0.005 A 

2Q 1(Co) d I/Io hkl 
(visual est.) 

34-315 2.034- 101 (112) 

39.635 2.64-0 3 (004-) (020) 

57.192 1.8702 7 (220) 

57.767 1 .. 853 9
rr (024-) 

66.558 1.6532 1 sph 

68.4-81 1.5907 8rrr (132) 

69.330 1.5737 5 (116) (033) 

72.327 1.5169 2 (224-) 

85.214- 1.3222 4- (04-0) 

86.813 1.3026 2 . (o08) 

95.185 1.2113 3 (332) 

95.960 1.20395 5 (136) (14-3) 

112.358 1.0767 6 241+ 

113.677 1.0685 5 228 

118.212 1.04-24- 1 Sph 

123.157 1.01705 3 (152) 

124-.081 1.01270 3 (336) 

126.054- 1.00362 2 (1.1.10) 

Impurity is sphalerite 

(I, II, III indicate the three strongest lines in order) 



TABLE 7wl8 

~ray diffraction data for various sulphide minerals 

S h • II p alerJ. te - Kd. brownish sphalerite, Karadere mine, Unye 

a
0 

= 5.41~ + 0.0005 A0 

2Q (Cu) d I/Io hkl 
(visual est.) 

28 .. 569 3.1242 lOI (111) 

33.068 2.7087 4 (200) 

47-540 1.9126 9
rL-

(220) 

56.228 1.6359 8ni (311) 

59.033 1.5635 1 (222) 

69.386 1.3532 4 (400) 

76.734 1.2410 7 (331) 

79.109 1.2095 1 (420) 

88.377 1.1050 7 (422) 

95.4J-7 1.04J_2 4 (511) (333) 

107.740 0 .. 95366 5 (440) 

114.689 0.91486 6 (531) 

128.366 0.85564 6 (620) 

137.904 0.82533 3 (533) 

160.914 0.78107 2 (444-) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.19 

X-ray diffraction data for various sulphide minerals 
II 

Sphalerite - Kd. honey coloured sphalerite, Karaders mine, Unye 

ao = 5.4119 + 0.0005 A0 

· 29 (Co) d I/Io hkl 
(Visual est.) 

30.043 3.454 1 gl 

33.318 3.122 wr (111) 

36.152 2.8845 1 gl 

38.642 . 2.7055 3 (200) 

55.788 1.913 gil (220) 

59.613 1.801 1 py 

60.847 1.7675 1 gl 

66.561 1.6312 8ru (311) 

69.926 1.5618 2 (222) 

82.783. 1.3528 4 (400) 

92.113 1.2432 6 (331) 

95.342 1.20985 3 (420) 

108.075 1.10505 "7 (422) 

118.293 1.04196 6 (511) (333) 

138.409 0.9568 5 (440) 

155.780 0.91481 7 (531) 

165.153 0.902015 2 (600) (244) 

Impurities are galena and pyrite 

(I~ II, III indicate the three strongest lines in order) 



TABLE 7.20 

X-ray diffraction data for various sulphide minerals 

Sphalerite - Kd. Greenish translucent sphalerite, Karadere mine, U~e 
- 0 a

0 
= 5.4119 + 0.0?05 A 

2Q (Co) d I/Io hkl 
(visual esto) 

30.050 3-4525 1 gl 

33.248 3.1285 lOI (111) 

38.644 2.706 4 (200) 

55.780 1.91035 9
II (220) 

57.279 1.8675 1 Cpy 

60.326 1.7812 1 gl 

66.496 ·1.6324 8III 
(311) 

69.894 1.5626 2 (222) 

82.858 1.3517 3 (400) 

92.251 1.2409 6 (331) 

95.293 1.21035 2 (420) 

108.158 1.10465 7 (422) 

118.355 l.OU6 5 (511) (333) 

138.459 0.95664 5 (440) 

155-785 0.91480 6 (531) 

165.187 0.901975 2 (600) (244) 

Impurities are galena and Cpy 

(I II III indicate the three strongest lines in order) 
' ' 



TABLE 7.21 

X-ray diffraction date for various sulphide minerals 

Sphale~i~e - Kd. dark ~filQured sphalerit~, Karadere mine, 
nye 

- 0 a = 5.4142 + 0.0005·A 
0 

29 (Cu). d I/Io hkl 
(visual est. ) 

28.563 3.125 lOI (111) 

33.061 2.7094 4 (200) 

47.505 1.9122 9II (220) 

56.402 1.6313 
III 8 (311) 

59.126 1.561 1 (222) 

69.547 1.3505 4 (400) 

76.·644 1.2425 6 (331) 

79.043 1.2104 1 (420) 

88.339 1.10545 7 (422) 

95.359 1.03175 4 (511) (333) 

107.180 0.95718 4 {411-0) 

114.652 0.91505 5 (531) 

117.226 0.90225 1 (600) 

128.246 0.85607 5 (620) 

137.777 0.82567 4 (533) 

141.391 0.81867 3 

160.608 0.78142 2 (444-) 

( I II III indicate the three strongest lines in order) 
' ' 



TABLE 7.22 

X-ray diffraction data for various sulphide ~nerals 

Galena - ·K<t., galena from mixed ore, Karadere Mine, Unye 

- 0 a
0 

= 5.9355 + 0.0005 A 

2Q (Co) d I/Io 
(visual est.) 

hkl 

30.337 3.420 9II (111) 

35.210 2.9604 lOI (200) 

50.579 2.097 8III (220) 

60.140 1.7862 7 (311) 

63.099 1.7106 4 (222) 

74.295 1.4827 4 (400) 

82.342 1.3597 3 (331) 

84.9U 1.3256 6 (420) 

95.359 1.21055 5 (422) 

103.231 1.1U95 4 (511) (?33) 

117.201 1.04795 2 (440) 

126.172 1.0031 5 (531) 

129.471 0.98905 5 (600) (2M-) 

:tM-.790 0.93840 5 (620) 

162.383 0.90773 1 (533) 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.23 

X-ray diffraction data for various sulphide minerals 

" Galena - Kd. galena rich ore, Karadere mine, Unye 

2Q (Co) 

30.350 
35.225 

50.625 

60.175 
63.085 

74.325 
82.300 

84-.850 
9,5.400 

103.275 
117.225 
126.175 

129.500 
144.775 
162.475 

- 0 a = 5.9352 + Oo0005 A 
0 

d I/Io 
(visual est.) 

3.4196 9
II 

2.9575 lOI 

2.0932 8III 

1.7852 7 
1.7109 2 

lo4818 1 

1.3602 2 

1.3268 7 
1.2102 4 

1.14155 3 

1.0479 2 

1.00305 6 

0.98895 6 

0.93842 5 

0.90502 1 

hkl 

(ill) 
(200) 

(220) 
(3n) 

(222) 

(400) 
(331) 
(420) 
(422) 

(511) (333) 
(440) 

(531) 
( 600) ( 244-) 
(620} 

533 

(I, II, III indicate the three strongest lines in order) 



TABLE 7.24 

X•ra~ diffractiGn date for various sulEhide minerals 

. " Chalcopyrite - Kd. in mixed ore, Karadere mine, Unye 
- - 0 a

0 
= 5.2909 + 0.0011, C = 10.423 + 0.003 A 

2~ '(Co) d I/Io hkl 
(visual est.) 

30.,200 3o4355 1 gl 

34.247 3.0405 lOI (112) 

35.921 2.902 1 gl 

37.170 2.8085 1 

39.518 2.648 3 (004) (020) 

55.905 2.0825 2 Sph 

57.129 1.872 7 (220) 

57.703 1.855 9
II (024) 

68.356 1.5932 8III (132) 

69.269 1.5749 7 (116) (033) 

72.207 1.5192 1 (224) 

85.231 1.3219 4 (040) 

86.855 1.3021 2 (008~ 

95.143 1.21265 4 (332) 

95.993 1.20365 5 (136) (14-3) 

112.280 . 1.07718 6 (2.44-) 

113.529 1.0694 3 (228) 

123.121 1.01705 3 (152) 

124.020 1.0130 3 (336) 

125.869 1.00445 1 (1.1.10) 

( I II III indicate the three strongest lines in order) 
' ' 
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Comparative cell-size determination of various sulphide minerals 
· from Eastern Pontus Ore Prpvince 

._. 

SPF..J\LERITE (Sph), ZnS, Z = lt., F f;. 3m·.: 
pure ZnS. Ivanov, .~1964 
L.AHANOS 

ligh~ colour~d sphalerite NG39 
__ ... ___ .:1- .. 1- - _., ----..:l. --1--., --.! .L..- 1\.Tl"' 2.0. 

Associated with cpy. NGD8 

Associated with cpy.NG36 

PYRITE (py), FeS2, Z = 4,P3a 
pure FeS2.. Berry and Mason, 1959 
LAH.ANOS 

Associated vii th Sph, cpy. and gl. NGD17 
Anisotropic pyrite NG18 
Massive pyrite ore 94 

TETRAHEDRITE, Cu12Sb4S13, Z = 2, I 4 3m 
pure Cu12Sb4S13• Berry and Mason, 1959 
INKOY 

associated gl. and sph. H.A.I.A. 

.ao 
. 5.398.5+ 0.0001 

5.4125 + 0.0005 
·. :~ ·-~· ,fo •7948 n~no1:.. oo4 
~c = 21.912 + 0.006 

(a0 = 10.938_+ 0.003 
(c = 21.887 + 0.005 

5-417 

5.4172 + 0.0005 
5o4183 :j: Oo0005 
5.4166 + 0.0005 

10 .. 37 - 10.48 

10.317 + Oo0005 
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microprobe work can be used to fix the composition more accurately. 

In some cases, the optical properties of a very small grain are 

insufficiently measurable for exact diagnosis and here again the 

probe can be used for identification, without the need for a full 

quantitative study. Finally, the optical properties of a mineral 

may differ sufficiently from those of knOlm and expected minerals 

that a quantitative analysis is required for identification. A 

Cambridge Instrument Company 'Geoscan' electron microprobe analyser 

was therefore used for qualitative and quantitative study of certa.in 

minerals in the Lahanos ore. Examples of its use to obtain quali­

tative or semiquantitative results are now fairly common in the 

literature, so although such techniques were used, they will not 

be described here. The methods used for quantitative analysis 

will be described by Greenwood (1969) and details of the operating 

conditions used in the present l·rork are given in Table 9. Correction 

of the raw counter data for background, drift and dead time l·las 

carried out using the Olivetti "Programma 101'' desk computer. 

A computer programme for atomic number, fluorescence and mass 

absorpt~on corrections in silicates based on Long's method and 

written in KDF9 Algol by Padfield and Aucott vras modified by 

inserting the appropriate values for elements in sulphide minerals. 

These were obtained from Philibert, (1963); Reed, (1965); Duncomb 

and Shields, (1966), and Duncomb and Reed, (19671 

Quantitative results obtained are as follows-



TABLE 9 

Operating conditions for electron microprobe analyser 

Ele- Back- Time 
ment kv Crystal 29 - ground E AE Lines Slit Counter ~ 

Pb 15 Q1,1artz 104 .. 29 + 1.00 1.90 2.40 M Out FC 20 

Bi 20 LiF 32.45 + 1.30 7.80 2.10 L Out sc 20 

Au 15 LiF 36.49 + 1.30 5.47 1.80 L Out sc 20 

Te 15 Quartz 58.52 + 1 .. 30 1.75 0.95 L Out sc 20 

Sb 15 Quartz 61.53 + 1.20 0.93 1.00 L Out sc 20 

Ag 15 Quartz 76.49 + 1.30 0 .. 85 2.00 L Out sc 20 

As 15 LiF 33.57 + 1.30 7.10 2.30 K Out sc 20 

Zn 15 LiF 41-37 + 1..30 4 .. 71 2.10 K Out sc 20 

Cu 15 LiF 44 ... 59 + 1.30 3.75 2.50 K Out sc 20 

Ni 15 LiF 48.37 + 1.30 3 .. 20 2.50 K Out sc 20 

Co 15 Quartz 31.20 + 1.30 2.60 1.20 K Out sc 20 

Fe 15· Quartz 33.40 + 2.0 2.73 2.50 K In sc 20 

Cr 15 Quartz 40.30 + 1.30 2.70 0.70 K Out sc 20 

s 15 Quartz 106.44 + 1.30 2.00 2.60 K Out FC 20 
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·Enargi te 

Tables 10. 1-6 give the corrected analysis for six enargite 

specimens from Zone II together t'li th recalculations of the 

corresponding atomic formulae for comparison with the theoretical 

formula eu
3 

As s
4

• In each case the result is regarded as in 

satisfactory agreement with this formula, since the numbers of 

atoms are mainly within 10% of _the theoretical val~e. Qualitative 

:X...ray images for an enargi te are shovm in Plate 32, 49 A-;9: 

Tetrahedrite - Tennantite 

The mineralogy of the sulphosalt minerals has not in the past 

been l..,ell knmvn because of the difficulty of obtaining sufficiently 

pure material for chemical analysis. As a result, many of the 

formulae given for particular species can be regarded only as 

approximations to the true formula. Thus, for tetrahedrite the 

formulae Cu
3 

Sb s
3 

and Cu12 Sb
4 

s
13 

are both quoted. 

As wri~ten, the second of these formulae suggests a slight 

excess of sulphur over 4 (cu
3 

Sb s
3
}, but in fact it is more 

than li~ely that this might result from cation deficiencies. This 

s can be suggested by writing the formula as eu2•77 S~0 • 92 3• 

The structure of tetrahed~ite and principles governing sub-

stitution of one element for another in the structure are insuff-

iciently well known for firm conclusions to be made on the extent 

to which a given analysis represents a possible tetrahedrite 

composition. In the case of analysis by microprobe the results 

are calculated to a total of lOo% , and this would be so even if 



Pl. 49· The elotron image of Plate 32 , ore ;:~one II. 225 x 

.· ' . 
" _. . 

. : : ~; , 
. . . . . :' . 

. . ·: :; . 
• •• • L. 
~ ~ .... . 

Pl. 49A. The X-ray image of Cu in Plate 3~, ore Zone II. 225 x 



Pl. 49B. The X-ray i mage of As in Pl ate 32, ore Zone II. 225 x 

Pl. 49C. The X-ray image of Sb in Plate ~2, ore Zone II. 225 x 



TABLE 10.1 

Enargite No. 49 II, Lahanos, Ore Zone II 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
One Sulphur 4 Sulphur 

s 32.65 32.064 1.0180 1 4 

Se n.d. 

Te nil 127.60 

As 19.07 74.94 0.2545 0.2500 loOOO 

Sb 0.15 121". 75 0._0012 0.0012 0.0048 

Bi nil 208.98 

Cu 47.90 63.54 0.7538 0.7405 2.9624 

Ag nil 107.87 

Au 0.11 196.96 0.0006 o.ooo6 Oo0024 

Fe 0.12 55.84 0.0021 0.0021 Oo0084 

Co nil 58.94 

Ni nil ·58. 71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula = Cu2• 96 As s4 



TABLE 10.,2 

Enargite No.48 I, Lahanos, Ore Zone II 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
One sulphur 4 Sulphur 

s 34.8 32.064 1.0629 1 4 

Se n.d .. 

Te nil 127.60 

As 18.82 74.94 0.2512 0 .. 2363 0.9456 

Sb 0.14 121.75 0.0011 0.0010 0.0040 

Bi 0.21 208.98 0.0010 0.0009 0.0036 

Cu 46.74 63.54 0.7356 0 .. 6921 2.7684 

.Af!, nil 107.87 

·.Au nil 196.96 

Fe nil 55.84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d., 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula = Cu2•77 As0.95 S4 



TABLE 10.3 

Enargite, No. 48 II, Lahanos, Ore Zone II 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
One Sulphur 4 Sulphur 

s 34.86 32.064 1.0872 1 4 

Se n.d. 

Te nil 127.60 

As 18.61 74.94 0.2484 0.2285 0.9140 

Sb nil 121.75 

Bi 0.36. 208.98 0.0016 0.0001 0.0004 

Cu 45.55 63.54 0.7169 0.6594 2.6376 

Ag nil 107.87 

Au 0.62 196.96 0.0031 0.0003 - 0.00:).2 

Fe nil 55.84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula = Cu2.64 As0.91 S4 



TABLE 10.4 

Enargite No.48.IIIA, Lahanos Ore Zone II 

Element Wt.% Atomic wt. Atomic proportions Atoms to Atoms to 
one sulphur four sulphur 

s 34.79 32.064 1.0850 1 4 

Se n.d. 

Te nil 127.60 

As 17.90 74.'94 0.2389 0.2202 0.8808 

Sb nil 121.75 

Bi nil 208.98 

Cu 47.02 63.54 0.7400 0.6820 2.7280 

Ag nil 107.87 

Au 0.29 196.96 0.0015 0.0001 0.0004 

Fe nil 55.84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

.rotomic formula = Cu2• 72 As o.88 S4. 



TABLE 10o5 

Enargite No. 48 IIIB, Lahano s , Ore Zone II 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 4 sulphur 

s 33.99 32.0~ 1.0601 1 4 

Se n.d. 

Te nil 127.60 

As 18.43 74.94 0.2460 0.2321 0.9284 

Sb 0.06 121.75 0.0005 Oo0005 Oo0020 

Bi nil 208.98 

Cu 47.09 63.54 0.7411 Oo6991 2.7964 

Ag nil 107.87 

Au 0.42 196.96 0.00213 0.0020 0.0080 

Fe nil 55o84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula = Cu2.80 As0.92 S4 



(' 

TABLE 10.6 

Enargite No. 43 I, Lahanos, Ore Zone II 

Element Wt .. % Atomic wt. Atomic Proportions Atoms to Atoms to 
one sulphur 4 sulphur 

s 33.07 32.064 1.0314 1 4 

Se n.d. 

Te nil 127.60 

As 17.43 74.94 0.2326 0.2255 0.9024 

Sb 1.67 121.75 0.0137 0.0133 0.0532 

Bi nil 208.98 

Cu 47.83 63.54 0.7528 0.7299 2.9196 

Ag nil 107.87 

Au nil 196.96 

Fe nil 55.84-

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula = Cu2•92 As0.95 S4 
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some one or more elementsJresentfhad not been determined, so that 

the microprobe analyses do not fix the composition with cert?inty. 

Because of these problems it is not at present possible to compare 

a sulphosalt formula as carefully with the theoretical formula 

as is possible, for example, in the case of various silicate 

minerals. 

The analyses given in Tables 11.1 - 11.5 are therefore re-

calculated to a basis of three sulphur atoms and quoted tti thout 

attempting to explain in each case the departure from theoretical 

cu
3 

Sb s
3

• The case of the mineral named "ferroan tennantite" 

(Table 11.3) is, however worth further discussion. Its ordinary 

light colour is a bluish gray, suggestiveof a member of the 

tetrahedrite-tennantite series. However, it is slightly pleochroic 

and shows strong anisotropism 11i th pinkish red brown to yellm·z 

polarisation colours. This would then suggest a member of the 

bournonite-seligrnannite group, but the probe shows that lead is 

not-present. The formula recalculated to three sulphur atoms is 

Cu2•
79 

As0 o
65 

s
3

• For comparison theoretical tennantite is 

Cu2•
77 

As0 •92 s
3 

(assuming Cu12 As
4 

s13) and theoretical enargite 

Cu2•25 As0•
75 

s
3 

(assuming Cu
3 

As s
4
). Thus, this mineral has 

anisotropy similar to enargite and less As than enargite, but the 

colour of tennantite and almost exactly the copper content of 

tennantite. If one could regard iron as a possible substitution for 

arsenic as well as copper, the formula could be written to corres-

pond with a solid solution of composition intermediate between 



T.ABLE ::u. .. 1". 

Zincian tetrahedrite No.49 III, Lahanos, 
Ore Zone II 

Element Wt .. % Atomic Wt. Atomic Proportions Atoms to 3 sulphur 

s 23.23 32.064 0.7244 3 
Se n.d. 

Te nil 127.60 

As 4.21 74.94 0.0562 0.0221 

Sb 21.86 121.75 0.1795 0 .. 7437 

Bi nil 208.98 

Cu 46.91 63.54 0.7383 3.0576 

Ag nil 107.87 

Au 0.02 196.96 0.0001 Oo0003 

Fe o .. o6 55 .. 84 o.oon 0.0045 

Co nil 58.94 

Ni 0.02 58.71 0.0003 0 .. 0012 

Mn n.d. 

Zn 3.69 65.37 0.0564 0 .. 2337 

Pb nil 207.19 



Table 11.2 

Zincian tennantite-tetrahedrite ( 1Zanbergerite') No. 48 IV, 
Lahanos, Ore Zone II 

Element Wt.% Atomic Wt. Atomic Proportion Atoms to 3 sulphur 

s 27.61 32.064 0.8611 3 
Se n.d. 

Te nil 127.60 

As 9 .. 53 74.94 0.1272 Oo4434 

Sb 15.30 121.75 0.1257 0.4380 

Bi 0.84 208.98 0.0040 0.0138 

Cu 39.95 63.54 0.6287 2.1903 

.Ag nil 107.87 

Au nil 196.96 

Fe 0.20 55.84 0.0036 0.0126 

Co nil 58.94 

Ni nil 58.71 

Mn n.cf~ 

Zn 6.58 65.37 0.1007 0.3507 

Pb nil 207.19 

Atomic formula = Cu2•55 (As Sb)0.90 S3 



T.ABLE 11.3 

Ferroan tennantite No. 43 III, Lahanos, Ore Zone II 

Elements Wt.% Atomic Wt. Atomic proportions Atoms to 3 sulphur 

s 30.02 32.064 0.9363 3 

Se n.d. 

Te nil 127.60 

As 15.30 74.94 0.2042 0.6546 

Sb 0.14 121.75 0.0011 0.0036 

Bi nil 208.98 

Cu 45.24 63.54 0.7120 2.2812 

Ag 0.14 107.87 0.0013 0.0042 

Au 0.40 196.96 0.0020 0.0063 

Fe 8.55 55.84- 0.1531 0.4905 

Co nil 58.94 

Ni 0.20 58.71 0.0034 0.0108 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 

Atomic formula= Cu2•79 As0.65 S3 



TABLE 11.4 

Zincian Tetrahedrite H.A.lA, InkBy 

Elements Wt.% Atomic Wt. Atomic Proportions Atoms to 3 sulphur 

s 28.11 32.064 0.8767 3 

Se n.d. 

Te nil 127.60 

As 3.87 74.94 0.0516 0.1766 

Sb 26.98 121.75 0.2216 0.7584 

Bi nil 208.98 

Cu 36.24 63.54 0.5703 1.9517 

Ag 0.03 107.87 0.0003 0.0010 

Au . nil 196.96 

Fe 0.84 55.84 0.0150 0.0513 

Co nil 58.94 

Ni 0.05 58.71 0.0008 0.0027 

Zn 3.89 65.37 0.0595 0.2036 

Mn n.d. 

Pb nil 207.19 . 

Atomic formula = Cu2•21 Sb0.94 S3 



TABLE llo? 

Zincian Tetrahedrite H.A.lB, Ink!5y 

Elements Wt.% Atomic wt. A:t·omic Proportions Atoms to 3 sulphur 

s 26.7 32.064 0.8162 3 

Se n.d. 

Te nil 127.60 

As 6.10 74.94 0.0814 0.2992 

Sb 21.16 121.75 0.1738 0.6387 

Bi nil 208.98 

Cu 38.04 63.54 0.5987 2o2003 

Ag 0.13 107.87 0.0012 0.0044 

Au nil 196.96 

Fe 1.09 55.84 o.o195 Oo0717 

Co :gil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn 7.30 65.37 0.1117 0.4105 

Pb nil 207.19 

Atomic formula= Cu2.68 Sb0.94 S
3 
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enargite and tennantite. Obviously, more ~vork on these minerals 

is required, preferably in cases where more material is available 

than in the present ore. 

The "Zincian tetrahedri te-tennanti te" sho\'lS essentially equal 

amounts of As and Sb. According to Batley and Tornkeieff (1957) 

a similar mineral has been called Zandbergeri~e by Kostov (1957). 

Bismuth-Tellurium-Sulphur minerals 

Within and marginal to the pyrite of ore zones II and III, 

whitish colou.red grains up to ~ mm in size and of similar reflec­

tivity to pyrite may occasionally be seen tPlates 50A, 50B and 50C). 

The grains are strongly anisotropic, with grey white polarisation 

colours at both 45 degree positions and straight extinction. Their 

optical properties suggesttetradymite, Bi 2 Te2 S. Plate 51 shows 

grains of this type, several of which have been analysed quantita­

tively with the microprobe. The results are given in Tables 12.1 

- 12.9 and recalculated in various ways. Plates 51 A-E are 

qualitative pictures of one of the grains. Calculated on the besis 

of one sulphur atom in the formula the amounts of bismuth and 

tellurium approximate to the expected values for tetradymite, 

but nevertheless show differences that nre thought to be significant. 

Recalculation to (S + Te) = 3 and (S + Te) = 4 gives no closer 

approach to any recognised Bi - Te - S mineral. The variation 

between analyses is such that taking an average composition seems 

to be justified. The result of this calculation is sho\'m in Table 

12.6 and can be regarded as indicating tetradymite l·rith 8% solid 



Pl.' 501.. Gene r al view of t etr N:I,ymi te (Bi -Te-S ) miner al in assocl atjon with 
pyrite, chal copyrite and tennantl te. 375 x 

Pl. SOil . Hi ght h:md cor ne r of Pl ate 50 at h.i .3he r magnification. 875 x 



r 

~~lid 
\rile 

, 



Pl. 5\£. The second . roup of (Bi -Te-») mincr cl C~ssoci ation with pyrite and 
chal copyr ite . 70 x 

Pl . 51. The backscat t er ed electr on i mnge of Plate SOA, Lahanos mine. 125 x 



Pl. SlA. !'he backscattered electron i ml'1ge of the !,Tain I!e . 1000 x 

Pl. 51B . The X-ray image of ui in the sample IIe. 1000 X 



Pl. 5 lC. The X- ray i mage of i'e i n the sample IIe . 1000 x 

Pl. 510. Tlk X-ray i mage of As i n the sampl e IIe . 1000 x 



Pl. 51E. rhe X-ray image of Au in t he sample Il 1000 x 

.; , 

• • • • 

• 
~ • , 

; 

Pl. 52. Occurr ences of Te-S-(Bi) mine r al in ore Zone III pyrite, Lahanos . 
815 X 
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solution of hedleyi te Bi2 Te3 Bi
5 

• Ho'i'rever, the status of these 

bismuth-tellurium minerals is in some doubt because of limited 

information. The _aver~ge gold content of this miner~l (0.04%) 

is of some interest. It should be noted that whilst native 

gold has been found in Zone I, the gold cohtent cf the Zones II 

and III ores must come partly from the tetradymite. 

The analyses of tl·Io further grains, of similar appearance 

to the above and occurring in the same polished section are given 

in Tables 12.7 and 12.8. Compared 'i-Ii th the average analysis of Tc:.ble 

12.6 and with each other these show slight but probably significant 

differences in the ratio of sulphur to tellurium. 

Finally, a grain acain optically similar to the rernainine 

grains . c;ave the e..n0.l~•cis shmm in Table 12.9. In this case, the 

amount of sull1hu.r r~!l<'.tiye tG tellurium is again increased, e.nd 

there is a. notable degrease in the amount of bismuth. The formula 

can be represented as 18% Bi 2 s·
3

, 82% Bi 2 Te 2 S again a. variation 

not covered by the exist inc; nom.~nclature. 

IH thin the pyrite of ore zone III, and also to a less ex~lien·~ 

in pyrite of .zones II and IV, occc>.sional small gra.ins (5 to 40 

microns) are seen of a i·lhite mineral simile>.r colour to tetrad.ymite 

but having a reflectivity noticable higher than that of pyrite. 

(Plate 52). The grCJ.ins a.re too smell for reflectivity measurement 

vii t.h ·!he appe.ratus at present available, bu-t the reflectivity is 

estimated to be about 6CJ{o. The minerco.l is pleochroic e.nd ~trongly 

anisotropic, showing blue or bluish yellow polarisation colours 



TABLE 12.,1 

Tetradymite No. Ed, Lahanos 

Element Wt .. % Atomic Wt., Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S + Te) 

SJ 3 .. 80 32.064 0.1185 1 0.922 

Se n.d. 

Te 34.10 127.60 0.2672 2.255 2 .. 078 

As 0.73 74.94 0.0097 0.0818 0 .. 076 

Sb 0.,16 121.75 0.0013 0.011 0 .. 010 

Bi 60 .. 14 208.98 0.2877 2.427 2.237 

Cu o.o8 63.54 0.0012 0.,010 0.009 

Ag nil 107 .. 87 

Au 0.99 196.96 0.0050 0.042 0 .. 039 

Fe nil 55.84 
Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 



TABLE 12.2 

Tetradymite No. Ee, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3(S+Te) 

s 3.60 32.064 0.1122 1 0.898 

Se n.d. 

Te 33.50 127.60 0.2625 2.339 2.102 

As 0.88 74-.94- 0.0117 0.104-3 0.094-

Sb 0.13 121.75 0.0010 0.009 o.oo8 

Bi 60.4-6 208.98 0.2893 2.578 2.316 

Cu o.o8 63.54- 0.0012 o.o11 0.010 

Ag 0.03 107.87 0.0003 0.002 0.002 

Au 1.32 19 p •. 96 0.0067 0.597 0.054-

Fe . nil 55.84-

Co nil 58.94-

Ni nil 58.71 

Mn no do 

Zn nil 65.37 

Pb nil 207.19 



TABLE 12.3 

Tetradymite No.Ef, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S + Te) 

s 3.88 32.064 0.1210 1 0.951 
Se n.d. 

Te 33.27 127.60 0.26p7 2.154 2.049 

As 0.09 74.94 0.0012 0.0099 0.094 
Sb 0 .. 24 121.75 0.,0019 0.016 0.016 

Bi 61 .. 49 208.98 0.2942 2.431 2.312 

Cu 0.24 63.54 0.0038 0 .. 031 0.029 

Ag nil 107.87 
Au 0.,82 196.96 0.0041 0.034 0.032 

Fe nil 55.84 
Co nil 58.94 
Ni nil 58.71 

: Mn· n.d. 

Zn nil 65.37 

Pb nil 207.19 



T.ABLE 12.4-

Tetradymite No. Eg, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S + Te) 

s 3-4-9 32.064- 0.1088 1 0.872 

Se n.d. 

Te 33.87 127.60 0.2654- 2.4-39 2.128 

As 0.19 74-.94- 0.0025 Oo023 0.020 

Sb 0.60 121.75 0.004-9 0.04-5 0.039 

Bi 61.15 208.98 0.2926 2.689 2.34-6 

Cu 0.15 63.54- 0.0023 0.021 0.018 

Ag 0.09 107.87 0.0008 0.007 o.oo6 
Au 0.4-6 196.96 0.0023 0.021 0.018 

Fe nil 55 .. 84-

Co nil ,58.94-

Ni nil ~B.71 

Mn nod. 

Zn nil 65.37 

Pb 'nil 207.19 



TABLE 12.5 

Tetradymi te No. Ei, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S+Te) 

s 4.00 32.064 0.1247 1 0.981 
Se n.d. 0 

Te 32.74 127.~0 0.2566 2.058 2.019 

As 0 .. 48 74.94 0.0064 0.051 0.050 
Sb 0.19 121.75 0.0016 0.013 0.013 
Bi 61.42 208.98 0.2939 2.357 2.312 

Cu 0.71 63.54 0.0112 0.090 0.088 

Ag 0.09 107.87 0.0008 0.006 o.oo6 

Au 0.36 . 196.96 0.0018 0.014 0.010 

Fe 55-84 
Co 58.94 

Ni 58.71 
Mn 

Zn 65.37 

Pb 207.19 



T.ABLE 12.6 

Average of Ed,Ee,Ef,Eg and Ei 

Elements Wt.%; Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S+Te) 

s 3.75 32.064 0.1170 1 0.925 
Se n.d. 

Te 33.50 127.60 0.2625 2.2436 2.075 

As 0.47 74.94 0.0063 0.0538 0.050 

Sb 0.26 121.75 0.0021 0.0179 0.016 

Bi 60.93 208.98 0.2916 2.4923 2.305 

Cu 0.25 63.54 0.0039 0.0333 0.031 

Af5 0.04 107.27 0.0004 0.0034 0.003 

Au 0.79 196.96 0.0040 0.0361 0.033 

Fe nil 55.84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn~' nil 65.37 

Pb nil 207.19 



TABLE 12.7 

Tetradymite, No. Eh Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S+Te) 

s 4.38 32.064 0.1366 1 1.0299 

. Se n.d • 

Te 33.34 127.60 0.2613 1.913 1. 9701 

As 0.40 74.94 0.0053 0.039 0.040 

Sb o.os 121.7 5 0.0006 0.004 o.oos 
Bi 61.33 208.98 0.2935 2.148 2.212 

Cu 0.44 63.54 0.0069 0.050 0.051 

Ag 0.04 107.87 0.0004 0.003 0.003 

Au nil 196.96 

Fe nil 55.84 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Ph nil 2p.7 .19 



TABLE 12.8 

Tetradymite No. Eh, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3(S + Te) 

s 5.50 32.064 0.1715 1 1.232 

Se n.d. 

Te 31.43 127.60 0.2463 1.436 1.768 

As 0.46 74.94 0.0061 0.036 0.044 

Sb 0.18 121.75 0.0015 0.009 o.o11 

Bi 60.53 208.98 0.2896 1.689 2.080 

Cu 1.54 63.54 0.0242 0.141 0.174 

Ag 0.04 107.87 0.0004 0.002 0.002 

Au ;nil 196.96 

Fe 0.32 55.84 0.0057 0.033 o.o41J. 

Co nil 58.94 

Ni nil 58.71 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 



TABLE. 12.9 

Tetradymi te No. Ek, Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to Atoms to 
one sulphur 3 (S+Te) 

s 6.71 32.064 0.2092 1 1.351 
Se n.d. 

Te 32.14 127.60 0.2552 1.2198 1.649 

As 0.30 74.94 0.0040 0.019 0.026 
Sb 0.20 121.75 0.0016 ·0.008 0.011 

Bi. 59.75 208.98 0.2859 1.3666 1.847 

Cu 0.90 63.54 0.0142 0.0678 0.092 

Ag nil 107.87 
Au nil 196.96 

Fe nil 55.84 
Co nil 58.94 
Ni nil 58.74 

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 



TABLE 12.10 

Tellurium- Sulphur mineral OG 37. Lahanos 

Element Wt.% Atomic Wt. Atomic Proportions Atoms to one Sulphur 

s 14.58 32.064- 0.4-54-7 1 
Se n.d. 

Te 67.06 127.60 0.5255 1.1557 

As 0.4-0 74-.94- 0.0053 0.0116 

Sb 0.4-9 121.75 0.004-0 o.oo88 

Bi 16.4-7 208.98 0.0788 0.1733 

Cu 0.77 63.54- 0.0121 0.0266 

Ag nil 107.87 
Au 0.23 196.96 0.0011 0.0024-

Fe nil 55.84-
Co nil 58.94-
Ni nil 58.74-

Mn n.d. 

Zn nil 65.37 

Pb nil 207.19 
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and complete extinctiono These properties suggest tellurObismuth 

but the microprobe analysis shown in Table l2ol0 does not confirm 

thiso The composition is unlike that of ~ny established miner~l 

and the microprobe results are believed to be reliableo The 

re-calculated analysis suggests slightly impure TeSo However, 

in the absence of more abundant ma.terial or the opportunity for 

additional work, it is not possible to consider this furthero 
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Reflectivity: 

The reflectivity apparatus described by Phillips and Nichol 

(1965), Nichol (1962) and Phillips and Bradshow (1966), lV'i th 

later modification of the photomultiplier tube attachment and 

circu.i t constants by Burton (1967) to improve linearity and 

stability, was used to measure the spectral reflectivity of 

various minerals. The continuous interference filter monochomator 

(Veril B-200, J"ena Glassworks, Mainz No B-34716) has the follmv-ing 

characteristics -

Wave length 450 550 650 

Transmission% 37 36 30 

Half height tv-idth (nm) 26 26 34 

Linearity of response of the photomultiplier 1ias checked by the 

method described by Phillips & Bradshotv- (1966) and results are 

given in Tab. 13. No significant departure from linearity t·ras 

detected. The apparatus was left switched on continuously over 

a period of several days lihilst the measurements uere being made 

to ensure greater stability~ I•Iea.surements t·1ere made a.t intervals 

of 20 nm from 440 Il.m up to 6 60 nm. 

When the optical ·s.rstem and the photomultiplier are ready, 

a black box readine is t~~en - this is the correction (C) for 

primary glare due to reflection from the back of the objective. 

Readings were first taken for the standard then for the specimen 

(G' ) and again for the standard. The arithmetic mean of the sp 

·readings for the standard is expressed as (G' st). Then the desired 



TABLE 13 

Linearity of response of the photomultiplier 

Stage Readings 
Q (in degrees) 

90 
85 
80 
75 
70 
65 
60 
55 
50 
4-5 
4-4-
4-3 
42 
4-1 
4-0 
39 
38 
37 
35 
30 
25 
20 
15 
10 
5 
0 

355 

Galvo Readings 
v (in millivolts) 

14-1.0 
119.0 
100.0 
80.0 
59.8 
42.4-
27.3 
15.0 
6.32 
1.32 
0.81 
0.4-3 
0.24-
0.20 
0.31 
0.605 
1.10 
1.66 
3.35 

10.50 
21.20 
35.10 
52.50 
71 .. 10 
92.00 

111.20 
113.20 
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value (R ) for the reflectivity of the specimen is obtained from sp 

the following equation: 

Rsp = 
Rst 

·. 

~G 1 sp- ~~ 
G' st 

Rsp = Gsp 
Rst Gst 

or 

Standards calibrated by N.P.L. were u.sed, namely Bleck glass 

No. 2538.4, Carborundum No. 2538.27, Silicon No. 2538.37 and 

their reflectivity values are given ~n Tab. 14. 

Results obtained for chalcopyrite from the Lahanos mine a.re 

shown ~n Table 15 and Figs. 20 and 20A. None of the measured 

Lahanos specimens showed any detectable anisotropy, so that it 

was not possible to r.elate the measurements to a specific optical 

or crY,stallographic direction. The spread of results seen in 

Fig. 20A may be due to differences inihe quality of polish and 

other errors of me.asurement, since no significant difference in 

cell size was found in the cases where this 'data was available. 

However, there are slight differences. in colour visible under the 

microscope 'between some of these specimens and it is believed that 

the di.fferences in measured reflectivity, particule.rly betr1een 600 

c:md 660 nm, are significant. It may be thc-.t small amounts of certain 

"iil,ace elements can e,ppreciably affect the reflectivity, lti thout 

any correspondi1~ detectable difference in the cell parameters. 

There is insufficient information to check this thoroughly, but 

the results given for NG31, NGD43-46, and K in Table 23 suggest 

that arsenic and silver might act in this way. Chalcopyrite 



T.ABLE 14 

N.P.L. Reflectivity values for Standards 

Wave-length Black glass Carborundum Silicon 
n.m. No. 2538.4 No. 2538.;27 No. 2538.37 

41+0 4.52 21.0 43.1 

460 4.50 20.8 4J..3 

480 4.49 20.6 39.9 
500 4.47 20.5 38.9 

520 _4.46 20.4 38.0 

540 4.44 20.3 37.2 

560 4.43 20.2 36.6 

580 4.42 20.1 36.0 

600 4.41 20.0 35.5 

620 4.40 20.0 35.1 

640 4-39 19.9 34.8 

660 4.38 19.9 34.4 



TABLE 15 

Reflectivity measurements of 
Chalcopyrite 

Sample 
No. - 41±0 nm 460 nm 480 nm 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm 620 nm ~ nm 660 nm 

OG39(1) 26.680 32.033 37.256 40.888 43-5.88 45.709 47.717 49.045 49.187 48.884 48.599 49.910 
NGD4 
(light) 27.634 32.665 37 0 751 41.618 41±.213 46.505 48.109 49.226 49.746 49.535 49.805 50.166 
NGD4 
(dark) 27.634 3}.261 38.468 42.047 41±.177 46.552 48.109 49.138 49.082 49.839 49.166 48.733 
NG3l(l) 24.925 30.508 35.695 39.881 42.614 41±.980 46.943 47.860 48.571 48.046 48.842 49.536 
NG31(2) 24.776 29.940 35.641± 39.881 42.732 45.025 47 ."511 48.027 48.571 48.334 48.842 49.536 
NG;32 18.,309 23.896 29.417 34.341 37-792 40.500 42.709 41+.622 45.196 45.172 45.755 45.866 
NG35 25.035 30.687 35.792 39.894· 42.700 44.859 46. 741± 48'.085 48.746 49.169 49.092 48.160 
NG39 26.534 32.332 37.466 41.468 41±.054 46.176 47-954 49.195 49.351 49.465 49.092 48.160 
NGD 
43-46m 19.973 25.472 31.161 35.984 39.239 41.810 43-769 45-536 46.165 46 .. 043 46.607 46.784 
E 26.221 31.801 37.004 41.232 41±.052 46.385 48.412 49.294 49.517 49.675 49.092 48.160 
K 26.673 32.048 37.215 40.982 43.531 45.742 47.481 48.517 48.602 48.485 48.471 48.160 

Ml 25.2'62 30.608 36.234 40.417 43.063 45-502 47.330 48.319 48.870 48.808 48.720 48.160 
M2 26.390 31.742 37.063 41.062 44.097 46.135 47.767 48.910 49.046 49.140 49.622 48.168 
M3 25.766 31.316 36.466 40.719 43-41±0 45.900 47.767 48.734 49.201 49.140 49.622 48.168 
Ml2 25.922 31.572 36.739 40.762 43-399 45.900 47-588 48.822 49.201 49.140 49.622 48.168 
M24(max) 25.922 31.316 36.577 40.891 43.645 46.323 47.886 48.910 49-513 49-140 49.622 48.168 
M24(min) 26.078 31.486 36.685 40.805 43-358 45-712 47.648 48.734 49.201 48.834 48.977 46.784 

Kd 2c 26.078 31.486 36.631 40.426 43.029 45.288 47.171 47.764 48.267 48.834 48.977 46.784 
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associated with pyrite from Zone III seems to heve a significatly 

lower reflectivity than chalcopyrite from Zones I and II. 

Enargite (cu3 As s4) - Reflectivity measurements on two 

grains from ore Zone II are shown in Tab. 16 and Fig. 21A. The 

values are lmier than those given by Ramdohr (1950, pp. 398 and 

402) and· Orcel (1935), but compare closely with .those given by Levy 

(1966, PP• 109-110) and shown in Fig. 21B for comparison. The 

orientation of the grains is not known and L~~J's values are also 

for randomly oriented grains. The observed bireflection is 

therefore likely to be less than the true maximum for enargite. 

There was an insuffieient number of measurable grains to use the 

method of Phillips and Uare (1967). Le~J~~s curves for luzoni te 

and stiboluzonite are very different in form from those for enargite. 

Thus, the Lahanos material is identified as the higher temperature 

form, enargite, and not low temperature luzonite, and mus~ have 

rJeen formed. at 2. temperature above 320°C (Barton and Skinner, 1967). 

Bornite (cu
5 

Fe s
4

) - Tab. 17. According to Morimoto and 

Kullerud {1961), the form of bornite stable at room temperature is 

a tetragonal polymorph, but m·ling tot\·Tinning~ the apparent symmetry 
\ . 

\ may also be cubic or orthorhombic. In the present study, bornite 

\ ~ined by Jt.-ra,y po1~der diffraction was insuffieiently pure to 

~lloli these detailed aspects of the structure to be examined. In 

'lished section the bornite at Lahanos normally appears isotropic, 

'. using very strong illumination, a weak ani·sotropy can sometimes 

gen, as described for example, in the account of ore Zone I. 



Sample 
No. - 41tQnm 

OG4-8 
(max) 29.236 

OG4-8 
(min) 26.652 

OG4-9 
(max) 26.011 

OG4-9 
(min) 25.681 

TABLE 16 

Spectral reflectivity measurements 
of enargite 

4-60 nm 4-80 nm 500 nm ..2,20 nm Q4.0 nm 560 run 

28.735 ~8.369 ~8.4-25 ~8.331 28e295 27.94-5 

26.694- 26.4-23 26.010 25.41+-9 24-.907 24-.507 

26.093 26.069 26.118 25.979 25.773 25.635 

25.730 25.7~ 25.550 25.124- 25.054- 24-.17.3 

580 nm 600 nm 620 nm 64-0 nm 660 nm 

28.124- 28.110 28.034- 28.111 28.74-3 

24-.182 24-.160 24-.4-82 24-.761 25.715 

25.4-91 25.781 26.159 26.700 27.107 

23.962 24-.64-l 24-.289 24-. 74J. 24-.256 



TABLE 17 

Reflectivity measurements of bornite 

Sample 
No. M-0 _nm 460 nm 480_E!!! 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm 620 nm £0 nm 660 nm 

NGD3 17.448 17.086 17.675 18.647 19.808 20.756 22.085 23.160 24.746 25.893 27.473 27.784 

NGD6 16.703 16.600 17.262 18.482 19.414 20.655 21.402 22.489 23.421 24.167 25.031 26.461 

NG36 18.213 18.714 19.828 21.336 22.516 23.534 24.498 25.401 26.182 27.046 27.450 28.666 

OG48 17.368 17.160 17.423 18.185 18.917 19.889 20.839 21.836 22.853 24.164 24.761 25.715 

A55m(l) 18.023 16.536 15.670 15.653 15.942 16.507 17.476 18.608 20.175 21.692 23.199 23.869 

A55m(2) 17.553 16.367 15.723 15.993 16.675 17.478 18.506 19.834 21.407 22.897 24.454 25.273 
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In measuring the reflectivity, it was not possible to use a suff­

iciently high light intensity to detect this anisotropy and 

consequently the grain were measured as if iso{opic. Although 

the observed reflectivity varies in different grains, as shotm 

in Fig. 22, the form of the curves is similar for most grafns 

with the exception of NGD3. It should of course, be remembered 

that experimental \vork at the Geophysical Laboratory has shoun 

that various bornite solid solutions· can exist. Ho1Y"ever, it has 

not been possi:ble in the time available to check the composition 

of the measured grains by microprobe. 

Tetrahedrite-Tennantite - Table 18, Fig. 23A. The values 

given by Levy (1966) and shown in Fig. 23B indicate a general 

increase in reflectivity with increasing antimony content in this 

series (the cell parameters increase similarly). Results for 

the Lahanos specimens cover a similar range. 

Pyrite (FeS2l- Table 19. Values for different specimens 

from the Lahanos mine are $hown in Tab. 19 and Fig. 24A· They 

tend to give somewhat higher values than Ramdohr's and Creel's 

measurements (Ramdohr 1950, pp. 572) and also higher than pyrite 

and a~sotropic pyri t_e described from the Basal Reef of the 

~li twatersrang System by Saager and f.Iihelik (1967). They are lm·Ter 

than the results of Demirsoy (1968) and Nichol and Fhillips (1965), 

but similar to those of Santok Singh (1965). Two of Santok Sin~h's 

specimens were polished together in the same mount and yet showed 

a marked difference in :r·eflecti vi ty. Thus it seems that there are 
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T.ABLE 18 

Reflectivity measurements of tennantite-tetrahedrite 

Sample 
No. 44-0nm 460 nm 4-80 nm 500 nm 520 Il!!! 54-0 nm 560 nm 580 nm.' 600 nm 620 nm 64-0 nm 660 nm 

OG4-0 28.526 28.4-53 28.953 29.~b. 29.716 29.778 29.610 29.04-3 28.157 27.718 27.066 26.W!-

OG4-7(1) 29.255 28.818 29.04-9 29.4-64- 29.818 29.695 28.910 28.360 27.362 27.025 25.84-5 24-.962 

004-7( 2) 29.085 28.725 28.654- 29.284- 29.621 29.656 29.092 28.635 27.84-2 27.025 26.504- 26.4-21 

004-9(1) 30.299 30.231 30.252 30.360 30.284- 30.033 30.070 29.881 29.870 30.173 29.54-7 28.666 

004-9(2) 29.584- 29.440 29.593 29.781 30.071 30.131 30.011 29.4-51 28.782 28.337 27.360 27.107 

OG51 28.853 28.786 28.733 29.014- 29.165 29.079 28.771 28.002 .27.659 26.968 26.228 25.715 

E 30.193 29.927 30.088 30.467 30.801 31.007 31.124- 30.94-5 30.361 29.911 29.271 28.081 

H.AglA 29.725 29.564- 29.615 29.752 30.189 30.380 30.625 30.54-8 29.983 29.885 28.021 28.74-3 
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TABLE 19 

Reflectivity measurements of pyrite 

Sample 
No. 44-0 nm 460 nm .480 nm 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm· 620 nm 640 nm 660 nm 

NGDlO(l) 42.635 45-336 47.678 48.941 50.42-3 52.035' 53.328 54.318 53.474 54.890 53.474 54.133 .. 

NGD10(2) 41.369 44-.082 46.330 47.284 48.790 ~.1.~.11 52.44-8 53.350 52.796 53.536 52.778 54.133 

NG18 
(min) 41.246 44. 025 46.443 48.158 49.476 50.964 52.374 53.208 53.498 53.527 53.905 53.836 

NG18 
(max) 41.246 44-.108 46.683 48.391 49.742 51.224 52.630 53.496 53.498 53.527 53.905 53.836 

OG94 40.465 43-589 45.793 47.095 48.495 50.181 51.600 52.458 52.288 53.536 52.778 54.133 



54 

52 

50 

...! • 
0::48 

• Maximum r.ttectia'1 
• Minimum 

44 

42 

440 480 520 560 600 640 
A(nm) 

FIG. 24.-Dispersion curves of anisotropic pyrite with a cell size of a=5.4174 A' from Lahancs mine. 



B 

55 --· . ____.. ~·-----· ---· __.,.,..·=-----·---·-· 
·~· ·-:?· 

/ .f'/ 
~50 
0: I /i 

45 ~ 
I 

450 500 

A 
55 

50 

45 

450 500 

• Elba pyrite (nU s.Demii'SII'f(l968l 
• Pyritl! I.Nictlal & R.Philtips(196S) 
• Elba J¥it&(t00) .S.Demirsoy(1968) 

550 600 650 
~(nm) 

550 600 650 

~(nm) 
FIG. 24(A&B)._The spectral reflectivity of pyrites from the Lahanos .mine(A) 



108 

real differences in reflectivity betvreen di"fferent specimens of 

' 
pyrite that cannot be ascribed to differe~·ces in the quality of the 

polish, although a reliable explanation for the differences has 

not yet been found. Anisotropic pyrite has been reported by 

various authros- Stanton (1955 and 1959), Uytenbocaerdt (1951), 

Santok Singh (1965), Saa.ger and ~iihalik (1967) and Gibbons (1967} 

and was also found in polished specimens from the various ore zones at 

Lahanos. f:Ieasurements of the maximum and minimum reflectivity l-lere 

made on NG18, as shown_ in Tab. 19, and the maximum birefleotion 

~ras found to be 0.3%. This is similar to the values four-d by Gray 

(1961) and Hallimo.nci and Bowie (1964). _ However when the seme 

sample (l;rG18) >vas sent a second time for repolishing, there l·Tas 

no sign of anisotropism in the pyrite. This supports the viet-T that 

the observed anisotropism mey be a polishing extefact, although 

·Stanton's (1959) conclusion· is the reverse of this. The cell 

size of NG18 (Tab. 1 .11) i~ slightly larger than those of tt·To other 

pyrite specimens from Lahanos, ·but it is doubtful whether the 

difference is significant. Similarly there is no obvious anomaly 

inthe trace element content of the specimen (Tab 24). Reflectivity 

measurements on the anisotropic pyrite show minimum bireflection 

at the red and blue ends of the spectrum, yet these are the 

observed polarisation colours. From theory, the polerisetion 

colours observed should be those for t·1hich the bireflection is a 

maximum. Further investigation is re~ired before this puzzling 

phe~omenon can be explained~ 



10. 
:J 

Marcasite (Fe s2l The reflectivity values for R max and 

R min on the tto~o grains in specimen NGD9 are given in Tab. 20 and 

Fig. 25. No other 11Tains large enough to measure with the available 

apparatus were found. No published figures for the spectral 

reflectivity of.marcasite have been found for comparison and it 

must be emphasised that the present figures give only partial 

information, since the optical properties of marcasite very appre-

ciably with orientation. 

Sphalerite (ZnS) Table 2J, Fig. 26. As lvould be expected, the 

values obtained for the lotv iron content Lah.anos specimens are 

somewhat smaller than those found by Nichol and Phillips (1965) 

for Trepca, which are shmm on Fig. 26 for comparison. Values given 

by Demirsa.y 6968) for a polished cleavage surface of zincblende 

are given for comparison in Tab. 21. As they lie in the middle of 

the La:hanos range of values, they are not sho\'m on Fig. 26 in the 

interests of clarity. 

Galena (Pbs) Table 22, Fig. 27, gives values for various galena 

specimens from the ore Zone II. For comparison, the values given by 

Demirsoy (1968) for a fresh (100) cleavage face are given. Demirsoy's 

Fig. 40 shm-rs that after polishing, the observed reflectivity drops 

by about 2% which gives values comparable l'ri th those of the Lco.hanos 

specimens. 



TABLE 20 

Reflectivity measurements of marcasite 

· Sa.IJ1.ple 
No. - 44-0 nm 460 nm 480 nm 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm 620 nm &J±.O nm 660 ·nm 

NGD9 
(l)(min) 44-.980 45.983 47.717 48.528 49.543 50.556 51.478 51.629 51.397 ;5Q.971 40.911 50.166 
NGD9(1) 
(max) 45.921 48.112 49.997 5l.li50 51.885 52.860 53-560 54.878 53.250 53.413 52.844 51.600 
NGD(2) 
(min) 45.764 46.409 47.825 48.614 49.297 49.897 50.525 50.224 48.156 49.44-5 49.622 48.733 
NGD9(2) 
(max) 45.450 47.090 48.802 49.642 50.324 51.167 51.716 51.629 51.243 50.971 50.266 50.166 

Kd lb 
(min) 42.014 42.564 43.595 41+.378 45.234 46.291 47.485 47.710 45.915 4~.699 47.688 45.408 
Kd lb 
(max) 46.200 48.127 50.611 51.640 52.346 53.156 53-781 53.783 51.489 53.099 53.488 50.912 

' 
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TABLE 21 

Reflectivity measurements of 
Sphalerite. 

Sample 
No. 4lt0 nm 460 nm 480 nm 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm 620 nm ~ nm 660 nm 

OG39(1~ 17.161 17.061 16.868 16.451 16.186 16.114 16.102 15.983 15.880 15.963 15.466 15.847 
OG39(2 17.740 17.391 17.349 17.236 17.204 17.058 17.094 17.471 16.770 16.949 16.180 16.54-J_ 
OG40(1) 17.622 17.498 17.310 17.129 16.897 16.665 16.479 16.377 16.325 16.239 15.94lt 15.670 
OG40(2) 17.388 17.413 17.225 17.111 16.902 16.725 16.627 16.435 16.260 16.318 16.103 15.670 
OG4l 18.185 18.061 17.759 17.496 17.250 17.076 16.928 16.931 16.662 16.798 16.574 16.541 
NGD16(1) 18.198 17.732 17.454 17.262 17.030 16.885 16.815 16.641 16.334 16.667 15.866 16.024 
NGD16(2) 18.340 18.040 17.740 17.451 17.293 17.068 16.823 16.675 16.498 16.502 15.952 15.134 
NG34(1) 17.894 17.724 17.4lt6 17.278 17.104 16.885 16.575 16.567 16.426 16.529 16.574 16.541 
NG34(2~ 17.489 17.260 17.134 16.937 16.826 16.573 16.565 16.339 16.231 16.389 16.375 16.541 
NG39(1 17.978 17.612 17.471 17.201 17.077 16.858 16.641 16.577 16.367 16.319 16.022 16.024 
NG39(2) 17.967 17.676 17.611 17.255 17.157 16.940 16.784 16.693 16.424 16.536 16.188 16.024 

Ml 17.979 17.866 17.630 17.354 17.212 17.060 16.846 16.697 16.728 16.631 15.952 16.024 
M2 18.394 18.181 17.887 17.653 17.704 17.591 17.386 17.366 17.238 17.297 16.4Jt9 16.024 
M3 18.951 18.505 18.374 18.241 18.400 18.024 17.828 17.670 17.474 17.327 17.l7-9 J:7.119 

Kd 2a 18.323 18.044 17.947 17.779 17.705 17.541 17.381 17.348 17.115 17.4lt8 17.248 16.412 
Kd 2c 18.220 17.861 17.731 17.534 17.363 17.089 16.949 16.832 16.556 16.585 16.816 16.412 
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TABLE 22 

Reflectivity measurements of galena 

SAMPLE 
NO. 440 nm 460 nm 480 nm 500 nm 520 Ilii! 540 nm 560 nm 580 nm 600 nm 620 nm 64-0 nm 660 nm 

OG39 46.809 45.888 44-.271 43.252 42.205 41.823 41.705 41-735 41.163 41.299 41-419 40.908 
0040(1) 46.935 45.636 44-.427 43-396 42.363 41-794 41.533 41.647 41-598 41.406 41.502 40.908 
011}40(2) 46.463 45-318 44-.122 43.126 42-409 42.031 41.777 41.494 41.260 41.204 41.629 41.566 
OG41 46.894 44-.866 43.716 42.921 42.287 41.253 41.059 40.863 40.852 40.597 40.890 39.978 
NGD16 46.821 45.845 44-.384 43.244- 42.408 42.024 41-975 41-797 41.406 41.575 41.069 40.770 
NGD17 · 47.366 45.625 44-.326 43.114 41.861 41.725 41.551 41.312 41-149 41.458 41.075 40.770 
NG34 47.328 45.888 44-.428 43.298 42.548 41.978 41.783 41.578 41-258 41.312 40.974 40.770 

Ml 46.927 45.613 44-.262 43.165 42.297 41.748 41-758 41.222 41.015 41-343 41.414 40.770 
M3 47-495 46.457 47-705 43.676 42.713 42.220 42.084 41.621 41-334 41.620 41-414 40.770 

Kd2a 46.927 45-44-9 44-.360 43.222 42.486 41.913 41.813 41.382 41-475 41.620 41.414 40.770 
Kd2c 46.502 45.216 44-.064 43.008 42.146 41.662 41-541 41.382 41.053 41.343 40.389 40.770 
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E.Ie ~fall-rock Petrograph.y 

Petrographical study of cores from boreholes A and B gave the 

opportunity of examining the wall-rocks of the Lahanos mineralisation 

relatively free from normal surface 'II'Teathering effects. The tti'O 

boreholes showed different lithological units above the mineralisa­

tion, except for just above the main mineralisation; belo'~<T the 

mineralisation both boreholes shot-red similar rock units (See Section 

4 and Map 6). Hence these two boreholes ll'ill be described separately. 

E.Iel Borehole A: Nine samples, representing 18 meters of core, 

were collected and 24 thin sections l'Tere examined. The first 38 

m could not be sampled because of no core recovery. Tne first 5 

samples represent the roof rocks while the rest represent less 

mineralised host-rock within the mineralised horizon. 

0.00 - 38.00m: ..From surface observations and comparison t·Tith 

the fragments of core recovered, this consists of heavily altered_ 

coarse green-gray sometimes bluish dark gray agglomerate and other 

fine grained pyroclastic rocks • 

. 38.00 - 45o00m: Fine to medium grained agglomerate containing 

different ~fragments of lava flows and some altered crystals t·Ti th 

small amounts of altered volcanic glass. Some of the plagioclase, 

in spite of alteration, shmis zoning. Kaolinisation, chlori tise.tion 

and carbonatisation are common alteration processes. Vesicles of 

different flm-1 fragments were mainly infilled by chlori tic material. 

Very much altered dark coloured fragments were thought t0 be altered 

gl~ss-. 
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45.00- 50 •. 00m: Heavily altered fine grained agglomerate or 

medium to ooar'~ grained tuff. Plenty of deuterio quartz and dolo­

mite veinlets cutting across the rook. Relicts of altered glass 

and quartz can be seen in spite of heavy dolomitisation, as seen 

in Sample A03 (2). Sample A03 (3) represents a fine grained vitrio 

pyroclastic rook, and the presence of angalar glass shards would 

suggest an ignimbritio pyroclastic. The entire groundmass is 

completely made of very fine grained dark opaque material. All 

angular glass fragments are devitrified and sometimes altered to 

chlorite. The oo~mon alteration is dolomitisation. 

50.00 - 53.00m: Fine grained agglomerate containing lava and 

volcanic glass fragments with an extensive dolomitisation. 

53.00 - 54.00m: Another horizon of angular fragment;,.Ciilntaining 

pyroclastic rooks(? ignimbrite),whioh are very similar in appearance 

and characters to those offound at 45 - 48 meters. 

54.00.- 55-35m: Very distinct in hand specimen, with a violet 

reddish brown colour and looks like a limestone. X-ray diffractometer 

and optical studies suggested that it is a fine grained dolomitic 

rook containing very small amounts of volcanic glass and other 

volcanic material. Dark brown coloured amorphous oeme~t surrounds 

the individual small grains averaging about ·6o by 80 microns in 

size. Volcanic devitrified glasses·reaoh about 0.5 mm grain size. 

Sample A05 (54 - ,55) represents the average chemical analysis of 

this rook (Table 'Z{A.). 

55·35- 55.50m: This is the rook unit which overlies the 
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Lahanos pyritic sulphide deposit. In hand specimen it is quite 

compact and also quite distinct from the dolomitic horizon and 

appears to be well bedded crystal· tuff. It is entirely made of 

angular quartz ·averaging 200 by 100 microns in size and devitrified 

glass averaging 200 by 250 microns in size. The cementing material 

appears to be the same as in the dolomitic horizon. Dolomitisation 

along the bedding plane is quite well developed. Closer to the 

main ore zone contact intensive dolomitisation of the crystalline 

tuff is seen, in l'lhich only relicts of altered glass are present. 

Dolomitisation is also associated with some ore and gangue minerals 

(e.g. chalcopyrite, bornite, pyrite and barJt~. These epigenetic ·-
minerals are much more abundant closer to the ore contact. In 

spite of well developed bedding of the crystal tuff, the Lahanos 

ore body does not shm•r a flat upper contact (see Plate 53)9 ·on·. the 

contrary it shows, as seen in Plate 53, a quite irregular contact. 

55.50- 64.00m: The Lah~~os massive pyritic sulphide horizon. 

64.00- 10.00m: Very much altered host-rock containing dolomite, 

deuteric quartz, sericit~ and pyrite as alteration products. 

10.00 - 72.00m: A fine grained lava flovr, which is quite similar 

to those found in borehole B, with c:m interlocking groundmass mainly 

consisting of quartz, altered feldspar and some patches of altered 

volcanic glass. Due to mineralisation there are a large number of 

dolomitic veinlets cuttin.:; through the fine grained lava flot-.r·in 

addition to patches of dolomite in the groundmass. 

72.00 - 78.00m: Very much silicified and sericitised t·rall-rock. 



1/ 

' 

) , 1 f It tilt It I t1 I-liiii IIIIIIIIIIIII llllllllllll 
Pl. 53. Ore-Hanging-'lrvall relationship in borehole A. 



113 

There are also small quantities of dolomite present as an alteration 

product. It appears that the entire primary texture and structure 

of the host rock is completely destroyed, but in hand specimen 

some porphyritic texture relicts can be- seen. This altered por­

phyritic lava is very similar to those found belol·J the ore horizon 

in borehole B between 94 and 118 meters. 

E.I~2 Borehole B: During the study of borehole B about 34 thin 

sections were examined. The first 26 of them were collected above 

the mineralisation and the. rest t.rere collect~d belm·r the ore horizon. 

Because of no core recovery from the first 7m no sample was collected. 

0.00 - 7.00m: No core recovery owing to the presence of altered 

pyroclastic rocks somewhat similar to those found in borehole A 

0 to 38 meters. 

1.00 - 77.00m: The study of thin sections, taken lfith the 

chemical analyses, suggest that this i.s a thick compositelava flm·r 

including four different lava floli units. Changes in the chemical 

analysis could however be just a reflection of different alteration 

products. 

Flow unit 1. (7.00 to lO.OOm) I'f:t:is a fine grained porphyritic 

lava flow. Complete alter~tion of phenocrysts to mainly dolomite 

and to a less extent sericite, kaolinite, chlorite and xe~omorphic 

quartz. The ground.mass is composed of rrell rounded felsitic grains 

of mainly quart?. with a little sericite and feldspars and with 

an aver~e grain size of about 35 by 35 microns. 
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Flow Unit 2 (10.00 to 43.00m) This second flow unit is some­

what similar to the first flou unit in hand specimen and even in 

thin section:9; but it has a more angular felsi tic groundmass than 

the firstflow unit. Samples of this flm-r unit l·tere a.lso e.ffected 

by dense alteration of dolomitisation, sericitisation, silicification 

etc. 

Flow uni-t 3 (43.00 to 67 .oom) The microscopic che.ra.cters 

are quite similar·to the first flow unit i.e. its groundmass shm-Js 

well rounded felsi tic texture as described from the first flm·r unit. 

All phenocrysts and volcanic glasses were altered to mainly dolomite 

and to a less extent to kaolinite and sericite. Hm·rever, e.s an 

accessory mineral there are some unaltered long prismatic apatite 

grains occurring in the erou.nd.mass or in some opaque grains. Closer 

to the ore body the number of dolomitic veinlets and intensity of 

dolomi tisation increases and C:.evi trified glass becomes more abunde.nt. 

Flow unit 4 (67.00- 77.00) This is the bottom flmt unit of 

the thick porphyritic composite lava flow, with microscopic charac­

ters very similar to the second flol-1 unit, but the presence of 

coarser interlocking felsitic groundmass and a small number of 

altered phenocrysts makes it quite clearly distinct from the 

flow units 2 and 3· The main alteration products are dolomite 

and, closer to the ore, xenomorphic quartz. However, there is also 

some altered glass and a few accessory apatite grains. 

77.00 - 78.00m: This is another pyroclastic rock which occurs 

just above the Lahanos ore body and its general appearance is quite 
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similar to that described from borehole A at 54 to 55·35 meters. 

From the relect texture, it seems to be a vitric tuff containi~ 

mainly volcanic glass and a very small amount of quartz fragments. 

At present, it is a pyroclastic rock heavily altered Ol·Iing to 

mineralisation. The principal alteration mineral is dolomite 

associated wfth some kaolinisation, sericitisation and a very 

small amount of chloritisation. 

78.00- 84.0Gm: ~he Lahanos massive pyritic sulphide horizon. 

84.00 - 94. OOm: Another fine grained porphyritic la.va flm·r 

horizon. The felsi tic grou.ndmass shovJs interlocking texture re.ther 

than rounded. The presence of a little more abundant altered pheno­

cryst relicts makes it quite easily distinct from the flm·r unit 4 

(i.e. 67 to 77 meters). But this lava flow is very similar to 

those already described in borehole A at 70 to 72 meters. The 

main alteration product is dolomite with a little sericitisation. 

It is possible to see a few larger patches and veinlets of dolomite. 

94.00- 118.00m: Severely sericitised, silicified and pyritised, 

possibly a lava flow. Microscopic studies of these rocks revealed 

some similarity to those previously described from borehole A 

(between 72 -t~o· 78m). Strained xenomorphic deuteric quartz patches 

are quite common. Due to heavy alteration and alteration products, 

closer to the ore body, there are no relicts of the original texture· 

Therefore in such cases, it is very difficult to say whether they 

were lava. or pyroclastic; however the presence of relict 

porphyritic texture, particularly in sample B33 110, very much 
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fa,vours·.the possibility that it is a la.va and less altered inter-

locking. felsi tic groundmass may suggest the.t these are very much 

altered members of' the la.va f'l0\'1' desori bed bett·ieen 84 to 94 meters 

in borehole B i.e. a porphyritic lava horizon with interlocking 

felsitio groundmass occurs just below the Lahanos massive pyritic 

deposit. 

The petrographic studies of both Lahanos boreholes shotred that 

the Lahanos pyritic massive sulphide deposit occurs in bett'leen 

pyroclastic rocks on top and an altered porphyritic lava flOt·r belot'lo 

Examination of the upper oonta,ot of the ore body shot·red an irregular 

boundary against the pyroclastic rooks (Plate 53), indice.ting tha,t 

advancing ore solutions penetrated for some distance into the 

pyroclastic rocks. 

" E.Ie Mineralogy of Alteration Halo 

It is evident that variations in host-rock composition, both 

mineralogical and chemical, are important factors controlling the 

nature of hydrothermal alterations. The acidity of hydrothermal 

fluids or of ore-forming solutions causing reaction with unstable 

wal:b-rooks will induce physical and chemical changes tending tot·rards 

the establishment of equilibrium under the prevailing conditions. 

The alteration products may ra.nge from simple recrystallisation to 

the addition, removal or rearrangement of chemical components. 

Conspicuous and l·Tidespread al tera.tions of the hanging-t-rall and 

foot-wall series in close association "ltli th the pyritic sulphide 
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deposit at Lahanos and particularly at the Karaerik and Karilar 

mines, old mines "'rhich are 8km N of the Lehanos mine, (IIIap 2), 

can very often be seen from some distance away from the deposit. 

A genera.l feature of the alteration is an area of bleaching above 

the main ore, in the hanging-t"lall (Plates 12, 13, 54). 

The outer and most widespread alteration is propylitisation 

of the Upper Volcanic Series. Because it is found over large areas, 

it can not be used as a precise indicator of the location of sulphide 

mineralisation. The second al tera.tion halo of ke>.olinisation and 

serici tisation often associated vri th tiny eu.hedra.l pyrite cr~rstals 

is closer to the ore body and it is this halo that c·an be seen at 

a distance. The innermost halo or the outer cesing of the ore 

. body, particularly in the foot-wall series, is dense silicification 

often with sericitisation and pyritisation. Its appearance and 

mineral assemblage is very similar to those described for "Keiko" 

or siliceous ore from Japan (Kato, 1928; Geological survey of 

Japan, 1960). However, in the hanging-wall series alteration 

products are somewhat different from the foot-1-.rall series. It 

is possible to see locally a well developed thin green kaolinite­

dickite layer associated with pyrite, just above the massive 

sulphide body. A good deal of dolomitisation, associated with 

fluorapatite, of the Upper Volcanic Series closer to the main 

sulphide body has been observed from the borehole cores and their 

presence was confirmed by both XRD and thin section studies. 

Wall-rock alteration and zoning in the alteration products 
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are rrell established at Butte, ltlontana by Sales (1950) and Sales and 

Mayer (1948)a Their experimental studies on wall-rock alteration 

products.- indicated that the critical temperature for the develoP­

ment of sericitisation lies between 340°C and 360°C and the 

acidity is near OaiN HCla 



Pl. 54 The general 

view of 

the 

alter ation 

above t he 

Lahanos 

lhne . 
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E.II mfi~IISTRY 

'he chemistry of the Lahanos ore and adjacent roCks has been 

thoroughly investigated and will now be described in the following 

order -

A. (i) Trace elements in purified individual sulphide 

minerals. 

(ii) Major and trace element distribution in Lahanos New 

Gallery 2o 

B. Major and trace elements in wall-rocks 

(i) Borehole geochemistry 

(ii) Surface geochemistry 

E.II A Trace Elements in Sulphides 

Trace element studies of the Lahanos pyritic sulphide deposit 

have been carried out both on purified individual sulphide minerals 

and on unseparated whole ore samples, using the Philips 1212 Aut~ 

matic XRF spectrograph and a Hilger large quartz emission optical 

spectrographo Following a qualitative XRF examination to see which 

elements were detectable, standards were prepared according to 

methods described by Ahrens and T~lor (1961) (See Appendix for 

operating conditions of both XRF and emission optical spectrograph 

and Figo 28 A-D)~ The optical spectrograph was used only to det-

ermine Co:Ni ratios on purified mineralso Although native gold and 

gold bearing minerals have been found in ·the ore, gold was not 

determined because of the low sensitivity of the XRF methodo 



FIG. 28A.-CALIBRATION GRAPHS FOR XRF SPECTROGRAPHY 
( MAJOR ELEMENTS IN SIUCATES) 
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FIG. 28C.-CALIBRATION GRAPHS FOR XRF SPECTROGRAPHV 
(MAJOR ELEMENTS IN SULPHIDES) 
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E. II .Ai TRACE ELEMENT DISTRIBUTION IN PURIFIED INDIVIDUAL 

SULPHIDE MINERALS 

Results are set out in Tables 23 and ~. 

It must be pointed out that although efforts were made to secure 

purified specimens of the various minerals discussed below, the nature 

of the ores is such that a strictly monomineralic concentrate would 

be almost impossible to achieve. As discussed and illustrated previously, 

most of the minerals contain small inclusions of other minerals that 

may profoundly affect the apparent trace element content. The results 

are nevertheless thought to be of interest in particular cases - as 

for example the results for chromium. 

!Xrl te: 

Arsenic -The presence of arsenic in pyrite has been reported by 

many workers e.g. Fleischer (1955) gave summa~ tables for trace element 

content in pyrite and other sulphide minerals. Although in some cases 

this may be due to the presence of arsenopyrite or other arsenic bearing 

minerals, Neuhaus (1942) and Hoehne (1952) have shown that arsenic is 

present in "pure" pyrite. The first author found that optically homogenous 

pyrite containing about~ and 2.7Q%. As had a larger unit cell (a0 = 

5.4112 A0 ) than truit of pure pyrite (a = 5.411 A0
) and he concluded that 

0 

arsenic was present in True solid solution. In the case of the Lahanos 

pyrite, unit cell sizes va~ from a = 5.416 to a ; 5.418 A
0

, which is 
. 0 0 

also· slightly larger than the value given for pure pyrite by Neuhaus. 

Pyrite from the Lahanos mine gave 487 ppm of As; which ·falls into 

the hydrothermally formed pyrite group described by !:!~rstens (19li-l 

a, b and c). According to Hawley (1952), the arsenic content 



TABLE 23 

Trace element distribution of pyrite, chalcopyrite, sphalerite and galena in 
the Lahanos, Murgul & Karadere mines 

SamEle No. As Sb Bi Q9; Cr Co Ga Mn Mo Ni !15.· Te 

PYRITE NG32 n.d •. 140 n.d. 32 n.d. n.d. 53 n.d. 71 21 19 360 
NG33A n.d~ 133 n.d. 32 n.d. n.d. 56 n.d. 102 22 13 450 
NG37 n.d. 112 n.d. 42 n.d. n.d. 56 n.d. 80 75 13 155 
NG(43-46)m 487 133 96 27 52 n.d. 44 329 125 37 32 348 

CHALCOPYRITE K 47 107 60 37 64 12 15 114 43 8 1 257 
ID(43-46)m nil 122 nil 27 nil 58 29 n.d. 92 21 26 298 
NG31 59 254 nil 17 35 257 11 647 61 9 1 225 
Ml2 33 68 nil 57 64 nil nil 3 28 nil 19 132 
Ml5 nil 117 nil 90 nil nil 5 nil 254 28 32 193 
Ml5 309 145 12 157 36 34 40 15 450 24 44- 183 

SPHALERITE NG39 2388 510 558 2537 42 nil 208 26 773 19 39 175 
NGD16 4920 640 1864 2270 31 44- 270 18 281 11 146 247 
Ml2 893 608 160 2350 26 n.d. 131 11 265 n.d. 89 182 
Kd.P 1180 616 260 3730 nil 95 117 180 37 22 39 175 
Kd.Mix n.d. 640 n.d. 3070 n.d. n.d. 128 n.d. 47 n.d. 44- 175 

. 
BORNITE NGD8 5022 833 1080 42 38 25 35 nil 141 9 438 385 

GALENA Kd 12990 117 3870 104 nil 12 128 nil 47 nil 180 175 



TABLE 24 
Co and Ni analysis of concentrated sulphides from the ·Lahanos, 

Murgul and Karadere mines 

Sulphide Min. Sample Co Ni Co/Ni Av.Co/Ni 
Min. Deposit No. for each mine 

PYRITE Lahanos NGD4 20 19 lo05 
NGlO 12 23 0.52 
naB 66 8 8.25 
NG20 46 9 5oll 
~Gj2 nil 3 nil 
NG34 254 83 3.06 
93 94 9 10.44 
94 111 12 9.25 
102 14-3 5 28.60 8.29 

Kizilkaya 134 34 14 2.43 2.43 
Boztepe 150/3 873 43 20.30 20.30 
Ka.rilar & 
Ka.raerik KR2 157 10 15.70 

KR3 34 5 6.80 11.25 
rtatak Ct 84- 4 21.00 21.00 
Murgul M(210)py 27 3 9.00 

M(lll)py 99 1 99.00 
'X.M~ 23A 71 9 7.89 38.63 

Pillarcivat P 512 5 102.10 102.40 

CHALCO-
PYRITE Lahanos K 12 8 1.50 

NG31 257 9 28.56 
NG(43-46)m 59 21 2.81 10.96 

Murgul Jfi5 34 24 1.4-2 1.4-2 

BORNITE Lahanos NGD8 25 9 2.78 2.78 

SPHALER- 11 4-.00 
ITE Lahanos NGD16 44 

NG34 nil 20 nil 

NG39 nil 19 nil 1.33 

Murgul M2 nil nil nil 

Karadere Kd 95 22 4.32 4-.32 

GALENA Ka.radere Kd" 12 nil 
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of pyrite decreases with increasing temperature of formation. 

Antimon_y and Bismuth = The antimony values of 112 to 140 ppm 

and bismuth 96 ppm are probably due to sulphosalt impuritieso 

Cadmium- The cadmium content of pyrite from the Lahanos mine 

showed a variation of 27 to 42 ppm of Cd. Noddack and NoddaCk (1931) 

reported only one pyrite with about 10 ppm of Cd. The presence of 

cadmium in all pyrite samples of the Lahanos mine could well be 
• I 

due to tiny inclusions of sphalerite. 

Chromium = The chromium concentration was determined in only 

one sample which gave 52 ppm of Cr. Hawley and Nichol (1961) 

mentioned the presence of chromium in all samples from Sudbury 

with a steady range between 10 to 20 ppm. This result from Lahanos 

is therefore rather anomalous 9 but as will be seen, it is repated 

in other ores of this studyo 

Cobalt and Nickel - The cobalt and nickel contents of pyrite· 

and other sulphides have been determined by the emission optical 

spectrograph because of iron Xf2. and Co IC§ interference in the XRJ:i' 

technique (conditions for Co and Ri in optical spectrograph= see 

appendix). Results are tabulated with Co:Ni ratios in Tab. 24o The 

significance of Cobalt content and Co:Ni ratios have been discussed 

by Hawley (1952) and Gavelin and Gabrielson (1947) who suggested 

that a Co:Ni ratio greater than one indicates a hydrothermal origin 

for pyrite. The results in Tallo 24 with one exception all suggest 

on this basis that the Lahanos pyrite is of hydrothermal origino 

It should be noted that Fleischer (1955) has shown that exceptions 
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to this rule can occur. 

Gt1allium - .U though the geochemistry of gallium is mainly 

related to that of aluminium, it is partly chalcophile and occurs 

in sulphides of tetrahedral structure (Goldschmidt, 19~4, pp.329)o 

Thus the 44 to 56 ppm found in the Lahanos pyrite is probably from 

small inclusions of sphaleriteo 

Manganese - The presence of manganese inpyrite is to be 

expected since Haueri te MnS2 is isostructural with pyrite o. The 

only result available for the Lahanos-pyrite gave 329 ppm Mn. 

Gavelin and Gabrielson (1947) found no appreciable differences in 

the manganese con~ent of pyrite from higher or lower temperature 

deposits, but they indicated a slight tendency of doubtfUl sig­

nificance for pyrite associated with sphalerite rich ore to contain 

more manganese than pyrite associated with copper ores. 

Molybdenum - Analysis of Mo in the Lahanos pyrite showed a 

variation from 71 to 125 ppm, compared to six pyrites from North 

America with a range 20 to 42 ppm of Mo (Stanton, 1967). 

Silver- Tab. 23. Pyrite associated with chalcopyrite shows 

higher silver values than the massive pyrit_e. This ma3 well be 

explained by the presence of tetrahedrite - tennantite and other 

sulphosalt minerals'in close association with pyrite and chalcopyrite 

and their inclusion in pyrite. 

Tellurium .... Tellurium contents of the Lhanos-pyrite are given 

in Tabo 23 with a variation from 155 to 450 ppm of Te. As shown 

previously however, small inclusions of various tellurium containing 

minerals do occuro 
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Chalcop:rite: 

Three separated Lahanos chalcopyrites have been analysed 

for As, Sb 11 Bi, Cd, Cr~,Ga, Mn, Mo, N'i, Ag and Te and their 

quantitative values are given in Tables 23 and 24o 

Arsenic - Arsenic contents of o, 47 and 59 ppm were foundo 

These are prob~bly due to the small inclusions of enargi te and 

tennantite detected in the~udy of polished sectioneo 

Antimony - Although the principal sulphosalt minerals present 

at Lahanos Gre arsenic rich, it is interesting to find that the 

trace antimony content of chalcopyrite is in each case hi~her 

than the amount of arsenic, suggesting that the chalcopyrite itself 

may carry a relative concentration of antimony. The amounts are 

much greater than the 20 ppm Sb quoted for a chalcopyrite by 

N'oddack and N'oddack (1931)., 

Bismuth - Bismuth has been found in one sample, which is 

. known from polished section studies to contain tetradymiteo 

N'oddack and N'oddack (1931) found 5 ppm in chalcopyriteo 

Cadmium - The cadmium content of chalcopyrite from the Lahano~ 

mine varies from 17 to 37 ppm. N'oddack and NoddaCk (1931) gave 

180 ppm Cd from an analysed single chalcopyrite. The presence 

of sphalerite inclusions probably accounts for the observed valueso 

Chromium - As mentioned by Hawley and Nichol (1961) the 

chromium content of chalcopyrite is erratic, but where it is present 

or detectable it is almost constant, and they found a relatively 

high chromium content in Sudbury-chalcopyrite l'li th a value of 79 ppm .. 
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~he Lahanos-chalcopyrite showed a similar chromium concentrationo 

Cobalt and Nickel ... Ha•ley and Nichol (1961) suggested a 

range of 55 to 490 ppm Co for hydrothermally deposited chalcO= 

pyrite, therefore the cobalt content of the Lahanos mine falls 

into the hydrothermal range with a variation of 12 to 257 ppm Coo 

The Cc:Ni ratio is higher than one. 

Gallium- ~he gallium content of the Lahanos- chalcopyrite 

is apparently slightly less than chalcopyrite from the Soviet 

Union, for which Borovik et al. (1941) found 0 to 100 ppm. 

Molybdenum - Noddack and Noddack (1931) and YanishevSky (1934) 

found 70 ... 70- 900 ppm of Mo in three chalcopyrites compared with 

43, 61, 92 in the present studyo 

Sphalerite: 

There is general agreement that in addition to Fe, Mn and Cdv 

the elements Gav Co and some others all occur in sphalerite 
I ."• 

substituting for zinco Evrard (1945) stated7"the governing factor 

as to the presence of rare elements in sphalerite is the original 

composition of the parent magma. The variations resulting from 

modifications of temperature and pr~ssure are then superimposed". 

Antimony and Arsenic ... The observed values are almost certainly 

due to inclusions of tennanti te, enargi te and 12trahedri te, all of 

which have been identified as inclusions in sphalerite dur~ng the 

examination of polished specimens. 

Bismuth- Although bismuth minerals have been found in the 

Lahanos ore, they are not normally associated with sphalerite or 
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galena, yet specimen NGD16 contains almost o.2% of bismuth. This 

coYJ,d be produced by only 0.3% of tetradymi te and such ananount 

cannot be excluded as a possible contaminant. 

Cadmium - As mentioned by many other previous investigators 

cadmium is one of the most common trace elements that occur in 

sphaleriteo The observed content of around 2000 ppm is therefore 

not particularly ~nusual. 

Chromium - In common with other Lahanos minerals, sphalerite 

shows an unexpectedly high concentration of chromium. Its signifi= 

cance will be discussed later. 

Cobalt and Nickel - To explain the observed Cobalt and nickel 

content of the sphalerite as resulting from inclusions of pyrite 

would require a much greater contamination by pyrite than is thought 

to be likely. It therefore seems probabl~ that these elements ma1 

resemble iron in ente.;r:-ing the sphalerit·e structure. 4tedahl (1940) 

found no correlation between the cobalt and iron contents in 

sphalerite and Kullerud (1953} found no correlation between cobalt 

content and temperature of formationo 

Gallium - As mentioned previously, gallium tends to enter 

sulphide minerals of tetrahedral structure and this is supported 

by the high gallium content of the sphalerite as compared with the 

other sulphideso 

Manganese= Kullerud (1953), Gabrielson (1945), Launay and 

Urbain (1910} and many other previous investigators agree that the 

manganese content of sphalerite varies with the iron content and 

is highest in samples from high temperature deposits. The iron 
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content of the Lahanos sphalerite deduced from cell size measure­

ments is relatively low (See Fag~o97 ) but even so the manganese 

contents found seem to be surprisingly low. 

Molybdenum - Semi-quantitative analyses of molyb.denum in 

sphalerite given by Fleischer (1955) showed a variation from 10 

to 100 ppmo The value of 773 ppm Mo found for specimen NG39 is 

therefore rather high, and especially higher than for t~e other 

sulphide minerals. No molybdenite has been found in these ores 

and it therefore seems that Mo may preferentiallY enter the 

sphalerite structureo 

Silver- Ofte~(l940) suggested that all sphalerite samples, 

containing more than 50 ppm sil ver9 ·· · '. ·must contain impurities such 

as galena or silver bearing sulphosalts. Because of the presence of 

these minerals at Lahanosv a similar explanation is probabl~o 

Bornite: 

It was not found possible to develop an effective flotation 

method for the separation of bornite. The sample for which results 

are given in Tables 18 and 19 was obtained by hand picking of the 

-48 + 60 mesh crushed ore. The observed trace element content has 

no outstanding feature that demands comment additional to those 

already made for other mineralso 

E. II Aii lASeR AND TRACE ELEMENT DISTRIBUTIQN IN LAHANOS 

NEW GALLERY 2 

Map 7 shows the location of specimens collected from New Gallery 

2. It was not possible with the resources and ifime available to 
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collect truly representative samples of the type used to assess the grade 

of an ore bodyo Howe~er, each of the specimens collected was ~elected. 

as being,as far as possible,representative of the ore body at that 

point. 

To establish whether the ore zones tentatively recognised in 

the field represent real differences in the composition of the ore, 

the above specimens were analysed by XRF to establish their major 

and trace element contentso Because the computer correction pro­

gramme of Holland and Brindle (1966) had not been used for sulphide 

rich materials and no analysed sulphide rich standards were avail­

able, the following methods were used. 

For the nine major silicate rock elements Si, Al, Mg, Fe (total) 

Ca, Na, K, Ti and MnF count rates were compared with a series of 

19 standards (including tn, Gl etc.) ~rmally used in the department 

for si1icate rock analysiso In the case of count rates less than 

the range covered by these standards, a linear variation passing 

through zero on both count rate and concentration axes was essumedl1' 

as shown in the working curves, Figso 28 .AFD. 

For the remaining major elements s, Pb, Zn, Cu, Bathe addition 

method of Ahrens and Taylor, (1961, PP• 158) was used taking as 

base material NGll from zone III, selected as satisfYing the require­

ments for a base material as detailed by Ahrens end Taylor. 

The results obtained (Table 25) are regarded as semi quanti ta­

tive only, for the major elements, but the totals obtained suggest that 

the~lative amounts are certainly signifi~ant. 



TABLE 25 

Major and trace element anal~ses of the NG .2 & OG2 ore samEles includi~ other deEosits 

NGl NG2 NG3 NG4 !G5 NG-6 8~5 NG8 NG-9 NGlO NGll NG12 !G14 NG15 NG16 
Si02 (%) 4539 54:'400 52.142 32.194 61."076 5:253 9.778 77b75 ---a- -0- o.o86 0.028 5.182 4.250 
A1203 II 23.079 12.693 11.185 30.520 7 .. 806 3.399 4.678 9.810 5.347 0.,145 0.,266 1.050 o.633 2.822 23.906 
Fe203( total) II 12.542 12.499 13.865 16.011 11 .. 351 35.946 29.450 19.870 27.332 33.238 36.574 34.032 41.972 35.276 29.641 
MgO II 0.009 0.,018 0.629 0.129 0.,370 0.878 2.126 1.665 0.079 4.645 3.072 1.136 0.371 0.876 o.652 
CaO· II 0 0.027 0.527 o.o6o 0.699 0.791 2.020 2.388 0 4o778 3 .. 059 1.346 0.275 0.730 o.o6o 
Na20 II 0 0.097 0 0 0.329 0 0.978 0.157 0 0.567 0 0 0 0.730 1.654 
K20 n 0 0 0.153 0.017 1.209 ·o.396 0.638 0.181 0 0 0 0 0 0.365" 2.656 
Ti02 II 0.373 0.451 0.179 0.661 o.~o7 0.037 0.128 0.188 0.208 0.072 0.,027 0.,074 0.151 0.255 0.338 
MnO II 0 0 0.002 0 0 0 0.002 o •. oo8 0.001 0.049 0.016 0.01.5 0.,004 0.010 0 
Ba. II 0.150 0-.115 0.095 0.094 Oo128 0.095 0.193 0.930 0.930 0.104 0.092 0.100 0.,093 0.095 0.104 
Sr (ppm) 790 11312 55 298 55 276 10 33 15 13 7 67 0 22 7 
Mn It 155 0 68 82 22 25 27 108 28 466 120 125 30 88 23 
Ga II J..44. 123 5 127 108 114- 76 85 71 71 76 37 42 79 99 
Cr II 38 75 46 108 44. 20 40 61 50 78 55 51 n.d. 41 27 

Co Ill 

Mo ,,, 37 40 45 40 45 4.8 80 131 96 ll5 98 98 57 88 67 
Ni ,,, 46 40 22 22 26 0 7 31 31 35 17 24 6 0 6 
s ; (%) 17.62 17.10 20.59 19.25 15.79 52.10 . 50.38 42.45 48.12 51.25 51.37 47.70 52.725 52.12 34.85 
Pb II 0.525 0.950 0.400 0.475 0.775 0.529 0.512 0.725 0.825 0.988 1.400 0.850 1.150 0.875 0.888 
Zn II . 0.0~13 0.]#5 0.095 0.075 0.200 0.302 0.082 0.14-5 0.150. 0.875 0.868 0.405 0.587 0.125 o.673 
Cu ; II 0.,200 0.275 0.132' 0.350 0.087 0.194 0.082 11.575 9.150 3.025 3.087 13.125 1.925 0.413 0.251 
Te (ppm) 252 262 262 270 247 240 274 430 1075 590 732 410 415 422 262 
As II 0 253 1 5 51 0 8 183 208 44-5 422 393 166 328 J..4.0 
Sb II 112 173 108 100 100 95 117 100 122 133 128 128 133 122 95 
Bi II 0 0 0 0 0 0 0 128 108 240 48 56 n.d. 44- 0 
Cd " 22 17 17 17 22 22- 17 13 22 37 37 ., 22. 27 27 22 
Ag " 0 1 0 0 0 1 1 1" 8 32 13 1} 19 1 8 



TABlE 25 (contd.) 

Major and trace el~ment analyses of the NG2 & OG2 ore samples including other deposits 

NG17 NG18 NG19 NG20 NG21 NG22 NG23 NG24 NG25 NG26 NG27 NG28 NG30 NG31 NG32 - - - - -
SiOfi (%) 27.737 21.066 14.09ts 17.686 6.093 23.841 4J..654 45.097 40.26ts 9.3lts 36.532 33.595 35 .. 359 16.644 0 
Al2 3 II 15.805 10.968 7 • .544 13.014 3.380 3.036 10.052 5.210 2.4ts6 2.449 1.260 5.117 1.984 5.3tsts o.tsl9 
Fe203 (total) ·~ 1t:So949 2l.B21 23.8:U... 20.513 31.7ts5 23.439 16.565 16.782 18.232 35.377 1ts.896 18.673 1B.644 23.955 35.438 
MgO II l.B62 2.072 2.600 3.766 3~058 o.o8o 0.265 0.143 0.063 0.054 0.062 0.125 0.062 1.963 2.756 
CaO II 2.317 2.722 2.ts54 5.120 3.506 0.027 0.002 0 0 0.022 0.007 0 0 3.367 1.-651 
Na20 II 1.059 0.448 0.255 0.017 0 0 0.515 0 0.149 o.o9e 0 0.266 0.500 0 0 
~0 II 2.590 1.791 1.154 1.551 0.494 0.455 1.5ts4 0~899 0.447 0.314 0.1.94 o.82o 0.331 0.770 0 
Ti02 II 0.240 O.lts4 0.127 0.112 Oo034 0.027 0.145 Oo095 0.039 0.033 0.016 o.063 0.038 0.048 0.049 
Mno II o.o:u... 0.034 0.015 o.ou Oo034 o.o005 0.002 0 0 0 0 0 0 0.053 0.021 
Ba II 0.120 0.115 0.103 0.106 0.095 0.106 0.115 0.107 0.100 0.099 0.095 0.103 0.099 0.094 0.,093 
Sr (ppm) 0 16 219 7 0 0 0 0 0 0 0 0 0 0 11 
Ml:l II 218 484 191 557 405 5 0 9 27 27 26 7 10 583 2UO 
Ga II 110 98 31 1 85 83 5 l:U... 5 87 100 5 3 87 60 
Cr II 43 59 20 3l. 298 0 0 38 29 49 32 68 29 105 69 

Co II 

Mo II · .. 8.6 73 50 98 135 127 86 127 175 59 48 117 242 219 92 
Ni II 9 9 6 0 2 10 15 13 10 1· 6 0 9 9 22 
s· (%) 28.40 37.70 45.75 . 35.52 49.8B 48.75 28.40 30.50 37.45 51.45 42.20 40'.50 42.25 43.68 51.75 
Pb II o.6oo 0.600 0.587 1.087 0.587 0.500 0.525 0.587 0.535 0.525 0.500 0.512 0.512 Oo550 0.812 
Zn II 0.160 0.185 o.:u..-5 0.945 0.550 0.075 0.070 0.375 0.070 0.127 0.105 0.065 o.o86 0.255 0.340 
Cu II 0a063 0.163 0.862 0.400 0.262 0.087 0.060 0.150 0.087 0.075 0.062 0.100 0.062 3.037 6.137 
Te (ppm) 240 240 232 262 ·297 274 240 262 291 247 340 270 262 281 430 
As II 19 189 46 117 991 22 0 44 1 15 0 6 65 146 251 
Sb II 91 117 100 95 J.4.0 95 8B 117 95 91 100 101 95 513 128 
Bi II 0 0 0 0 24 0 0 0 0 0 36 0 0 0 12 
Cd II 27 22 27 32 27 22 17 22 103 22 32 32 22 27 22 
Ag II 0 . 1 0 8 7 0 0 0 0 0 0 0 0 1 13 

..... ----~ .... "f ..... ~------- .. ... ~---- .. ~~ -. :.-;'IL.,;:---·----~-. . .... --· -- ·- ----- ·------·-



TABLE 25 (Contd.) 

Major and trace element analyses of the NG2 & OG2 ore samples including other deposits 

NG35 NG36 NG39 ex;. 32 (X;.33 (X;.34 OG35 OG36 0037 OG38 OG39 (X;.40 cx;.41 OG42 0043 

Si02 (%) 10 .. 109 7.370 9.390 48.~51 58.912 80.212 26.135 57.797 0 25.631 1.465 0.002 0 0 4.124 
Al203 II 45.691 22.363 2.309 19.585 ll.241 14.155 1~.208 12.122 22.890 19.480 15.958 5.397 4.~77 0.749 20.106 
Fe203 (total) 11 4.569 12.11.4 12.130 12.678 ll.300 1.437 21.062 5.387 16.792 18.700 9.347 0.258 0.001 43.222 13.610 
JdgO " 0.096 Oo090 0.043 0.009 o.oo8 0.116 0.009 4.~36 0.018 0.024 0.005 Oco002 OcoOOl 0.5611' 0.028 
CaO II 0 0 0 0 0 'Oo017 0 8.914 0.018 0 ' 0 0 0 0.893 0 
Na20 " Oo442 0 0 0.1:62 0.152 0 o.6o6 1.689 0 0 0 0 0 0.273 0 
K20 II 0.038 0.110 0.030 0 0 1.204 0.108 1.383 0 o.ooo6 0.071 0 o· 0 0.097 
Ti02 II 0.442 0.220 0.012 0.495 0.252 0.233 0.670 0~428 0.282 Oo631 0.201 o.o5·2 0.049 Oo014· 0.269 
MnO II 0 0.004 0.004 0 0 0 0.001 0.391 0 0 0 0 0 o.oo8 o.ooo6 
Ba " 16.950 13.550 1.520 0.110 0.198 Oo095 0.128 Oo095 12.075 Oo201 12.400 23.150 24.325 0.098 13.900 
Sr (pJ>m) 3005 1913 183 805 5290 863 1048 1646 1679 144 2433 2850! .. ~' 1528 20 2760 
Mri 0 0 0 17 10 8 25 52~0 35 10 43 0 7 59 37 
Ga II 13 0 112 137 129 73 14J. 215 1434 1501 1 127 151 83 218 
Cr II 26 35 47 15 105 35 71 67 0 42 :33 21· 54 35 23 

#' 

Co " 
Mo " 59 54 184 57 40 39 14-7 34 57 90 67 37 40 135 71 
Ni J!' 52 48 49 65 37 193 108 74 22 24 :o 55 61 17 48 
s (%) 17o52 25.75 41.05 17.08 15.05 1.67 31.06 4.75 42.92 29.13 35.40 19.12 10.87 52.75 28.37 
"Pb " 2.463 2.450 13.300, 0.625 1.262 Oo525 1.012 1.050 0.900 0.785 5.037 29.095 35.095 0.688 6.550 
Zn " 0.561 0.101 14.650 0.087 0.570 0.092 0.120 0.285 3.400 lo900 17.750 21.400 23.375 0.373 9.550 
Cu II 5.438 15.550 5.383 0.162 0.437 0.087 o.663 0.098 Oco350 3.062 1.862 0.562 0.362 Oo238 }.150 
Te (ppm) 193 ''· 132 410 262 262 207 270 220 167 332 232 45 37 360 247 
As II 312 684 2990 24 117 0 184 41 ll1 1501 1631 5241 6707 347 1556 
Sb II 95 163 425 122 133 91 ll7 91 38 825 216 340 287 107 262 
Bi II 96 164 532 .o 0 0 0 0 0 20 176 1055 1392 64 16 
Cd " 0 0 438 27 22 22 17 22 0 32 172 269 162 22 52 
Ag II 0 55 95 0 0 0 0 a 0 0 0 0 8 39 0 

• 



----~ TABLE 25 (Contd.) ..... -

Major and trace element analyses of the NG2 & OG2 ore samples including other deposits 

~ OG45 OG 4.6 CIJ47 OG48 CIJ4-9 CIJ50 OG51 o:;.52 00-53 m54- m55 OG-56 92 

.. ~;!.Q2 _ .... (%J. J> •. l3,2 u rl.-"4-9.4-....• ~.1.14-.. -., .• 0.8.7J5--. .. .,2.226 '71 :8.839 > r16.4-50 ·-22.865 ~--43,..680 --13.24-9 9.4-64- 1~183 6.197 1.]21 
• •• .-·.;;._-

7

_-.... _...~...: : ........... .,. .... _. "A12b3 '~'-'C/ · 11 -- 9.4-ob. 22.4-70 5.4-27 30.678 22.562 39.4-00 32.4-50 18.723 38.952 32.4-01 6.4-4-8 9.071 5.994- 0.374-
Fe203 (total) 11 24-.219 7.86~ 34-.883 3.771 4-.392 19.914 18.812 16.278 8.957 14.131 29.4-85 31.192 27.176 44.56 
Mgo. " o.448 o.029 o.o36 o.o2o o o.o4.6 o .. 04-5 o.o24- o.o19 o.o35 0.031 0.04-8 0.051 0.015 
CaO II J. 77-? 0 p.O?,_ ..... 1 " ,0 ll .0 (\ 0 0 tO 11"\ 0 - 0 0 0 0.132 0 ·- ..., :r ll II 

._,., r f :' v .. Na20 . ,·,· 0 0 0.561 0 0 0 0.198 0 0.828 0 0 0.4-18 0 0 
K20 II 0 0.029 Oo170 0 0 o.oo2 0 0 0 0 0 0.155 0.325 0 
Ti02 II 0.118 0.314- 0.073 0.350 Oo276 1.379 1.595 0.325 1.157 Oo821 0.364- 0.4-66 0.173 0.120 
M:'lO II 0.016 0 0.001 0 0 0.004- 0.003 0 0.001 0.0005 Oo001 0.002 0.0004- 0.001 
Ba II 3.700 13.900 1.875 18.4-00 16.500 0.117 0.101 1.305 0.093 6.550 0.092 4-.325 1.825 0.095 
Sr (ppm) 579 2186 4-90 3275 3175 1228 192 695 199 1657 1.52 54-7 228 0 
Mn II 74-5 74- 0 0 15 65 50 0 30 118 25 0 0 8 
Ga II 56 90 83 69 90 350 253 107 227 116 110 69 94- 77 
Cr :r 39 43 34- 21 26 194- 4-5 60 51 4-1 62 61 194- 39 

Co II 

Mo II 75 67') 4-3 61 258 129 178 102 59 80 40 65 39 53 
Ni II 30 59 7 51 54 51 51 28 48 . 40 0 12 0 0 
s (%) 45.30 27.60 52.05 21.90. 23.70 29.30 28.85 30.60 6.95 26.32 51.35 51.45 50.90 52.75 

. , ... 'tll .... I Pbz' :•A llr. : :.~Al/lJ.J.o087 '·'·'Jo287 >' ·~1.3.1:2 ·.:.16o512 I ii..Oo08i7 ,-,·Oo450 ,..-·Oo87-5- -0.850 ·"--l-11-3- ·1.175 1.625 1.150 0.83'7 0.750 
.a . :· o~·•·J"I 

Zn II 4.000 15o25Q 1.000 J.4 .• 00Q 16.000 0.195 0o382 1.483 0.075 3o350 0.505 0.174 5.975 0.070 
Cu II 7o275 4o237 0.300 2o913 3o537 0.087 0ol0Q 6o375 0.074 1.550 O.l ... 88 0.238 0.262 0.087 
Te (pi=J!!l) 397 189 274 140 215 291 286. 1105 2.32 415 257 207 2Jf-7 232 
As II 2750 15'+5 l...02 1651 2365 199 188 5220 21 1315 402 171 83 38 
Sb II 417 780 112 308 603 112 122 4290 112 370 158 88 95 95 
Bi II 28 44 20 128 220 28 4 52 0 16 2(:)0 44- 0 0 
Cd II l~ 184 13 90 162 17 17 32 27 8 32 8 31 22 
Ag II 32 0 19 0 0 0 0 26 0 0 26 0 1 7 



TABLE 25 (Contd.) 

Major and trace element analyses of the NG2 & OG2 ore samples including other deposits 

~ ~ 102 134 150/3 L .. t51 . 1.KR2 KR3 PLl PM2 PU3 Pl iU ~..:__2 - - -
Si02 (%) 0 0 0.370 30.744 0 18.508 0 3.177 n.d. 70.109 0 n.-li. 52.966 61.684 
.AJ.2Q3 II 0.295 2.513 0.602 8.252 0.029 12.754 2.538 1.689 n.d. 4.069 0.755 rr~d. 1.859 6.612 
Fe203 (total) " 45.388 u.953 44.888 15.046 42.575 11.565 43.870 42.237 n.a.. 18.24J. 3.151 :rl.a. 7.130 11.549 
MgO II 0.016 0.072 0.015 0.037 0.044 0.364 0.013 0.072 n.do 0.959 0 I?:• de 1.974 0.027 
Ca.O " 0 0 0.009 0 0 o.o58 0.044 0 n.d. 0 0 n.d. 3.463_. 7.554 
Na~O " .Q 1.508 0.540 0.769 1.721 0 o.o58 0 n.d. 0 0 ji.do 3.832 0 
K? " 0 0.004 0.031 0.087 0 2.445 0.015 0.202 nid. 0 0 n..a. 0 0 
Tl02 " 0.404 o.o29 O.OCD3 0.025 0 0.211 0.073 0.101 n.d. 0.023 0.003 n.d. 0.255 0.299 
MnO " 0.002 0.001 0 0 o.ooo6 o.oo6 0 0.012 n.d. 0.117 0.040 n..a. 0.166 0.036 
Ba " 0.125 0.120 0.099 0.095 Oo092 0.750 0.100 0.107 o.09B 0.095 0.093 0.093 0.092 0.093 
Sr (ppm) 76 0 0 0 0 5 0. 0 0 0 0 39 38 565 
Mn II 19 0 15 1 26 0 21 5 250 228 245 2210 1148 618 
Ga " 74 89 90 106 71 125 87 89 127 167 130 46 96 130 
Cr II 35 68 41 38 410 39 26 57 33 35 40 47 59 113 

Co rt 34 873 
Mo " 75 3~ 43 G;t 9-3 G9 39 7l 42 ag :39 33 53 57 

·Ni ri 10 2 0 12 35 40 1 1 49 0 54 18 0 "42 
s (%) 52.85 52.84 52.60 42.95 53.00 24.50 52.55 51.70 29.75 0.52 27.99 42.60 12.],5 11 .. 30 
Pb " 0.672 0.525 0.688 1.675 o·.81~ o.6oo 0.500 0.537 3.375 o.58o 26.450 0.512 0.525 0.473 
Zn II 0.102 o.on 0.055 .0.120 o.ol.? 24.975 0.073 0.040 24-350 0.615 23.150 0.185 0.160 ·0.127 
Cu " 0.163 0.260 0.053 0.136 1.075 3.037 0.106 o.o66 0.625 5.375 2.363 4.600 0.5·44 0.050 
Te (ppm) 270 257 215 240 281 167 270 240 45 220 215 220 207 262 - 495 15 0 94 55 37 50 0 438 0 4755 1 0 Q As " 
Sb " 140 95 80 127 95 321 91 100 160 188 302 91 87 100 
Bi " 16 8 0 0 12 0 0 0 240 0 1339 0 0 54 
Cd II 32 22 17 22 27 14-50 22 32 1665 27 1294 22 22 17 
Af!, II 13 13 0 0 7 8 13 1 0 39 204 1 0 0 
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Fig .. 29 shows graphically the results for the major ore 

elements related to the position of each speoim~n in the New Gallery 

and the ore zone boundaries estimated during the field work .. 

. There is a gener~ agreement between the results and tzhat 

would be expected from the descriptions of the mineralogy of the 

various ore zones as previously given .. 

E.II Bi VERTICAL DISTRIBUTION OF ~IAJOR AND TRACE ELEr·iENTS 

As previously mentionedv cores from the large number of 

boreholes at Lahanos have not been preserved, but it was possible 

to obtain partial core samples from the two recent Lahanos boreholes 

A and B. The samples obtained from the ore horizons in the core 

were necessarily limited because of the amount needed for assay 

purposesv but more complete sampling was possible from the unm~DP 

eralised country rook. 

Analysis was carried out as described in E.II Aii for major 

and trace element contents of the ore horizon, whilst the country 

rock results were corrected by the Holland and Brindle (1966) 

procedure.. The results are given in Tables 26 and 27 A and B, and 

Fi~s. 30-36 show the results graphically. Petrographic descriptions 

of the·rooks have been given previously. The principal features 

of interest are as follows = 

·. 1.. Lithophile major elements (Fig:·. 30 A and B). Aluminium 

increases appreciably in amount near the upper margin of t~e ore 

horizon, particularly in borehole Bo This corresponds with the 



:I 
I 

;I 

;I TABLE 26 

Major and trace element analyses of the boreholes A & B ore samples 

A5500 A5550 A5555 A5660 A6050 A~OO A6500 B7800 B7900 B8000 B8100 B8200 B8300 B8350 B8900 B9500 Bll800 

~ - -... , -... " "'-· ;-. ... ;. .. : ... 
Si02 (%) 2.006 0 0 1. 7_70 ~0~_?82 2_2~_057 33.!796 ~7 .• ~ .0.213 __ .6.~31 _._}+:._172 _7.400 4.998 23.356 18.270 8. 718 45.168 

. r. ~-:. 7. ~~20J- .· . :;I! - l"-27.;566. -2~614' ·1;.·847··13.238-1:5.084·16.4.51 21.676 2:316 0".695 0.229 0.368 0.156 1.527 2.910 0.559 3.464 2. 702 
h~3 . 

ll-''/~."1 ' :1· : ;~.., • .... . .... . ,. . ,.., 

.:v i .. H·'J ''..J..J.. 

"7 :"' • ... -.- ....... , . .., 

(total) 11 12.867 7.760 6.590 13.068 21.901 19.944 15.535 20.397 33.065 28.709 31.099 30.536 30.261 18.405 25.634 28.363 11.462 
MgO 
CaO, :1 

Na20 
K20 
Ti02 
MnO 
Ba 
Sr 
Mn 
Ga 
Cr 

II 

; . . ·~. 
II 

II 

II 

II 

II 

(ppm) 
II 

II 

II 

Co 11 

0.619 0.925 1.205 0.041 
.. o .. :"i1"59 -~ · 01i·689 · ·1.; 586 -.. . ... ~ o 

1.849 0 0 0 
0 0 0 0.010 

0.305 0.035 0.023 0.170 
o.o06 0.019 0.029 0.001 

13.450 3.925 2.700 10.025 
274-6 688 556 1255 

97 88 208 104 
46 117 3 77 

259 73 19 84 

1.534 4.513 1.708 0.148 0.056 
lo 7§6 •. 6.286 · --i~-895 ·c •,'- 0 '"o".0'03 
0.588 1.700 2.310 0 0 
0.003 0.124 2.643 0.218 0.020 
0.315 0.256 0.438 0.016 0.017 
0.03 o.oo6 0 0.007 0.012 
0.095 0.099 0.145 0.543 0.210 

97 61 37 44 0 
53 85 35 n,d. 103 
3 129 117 63 0 
0 163 0 199 43 

0.020 0.022 0.063 4.998 3.084 2.125 6.789 0.100 
~ . , . ,· . ~ .:. .,\' 

6.206 4.126 2.750 13.159 0 0 0 0 
0 0 0 o. 0.337 0 0 0.100 
0 0.001 0 0.232 0.402 0.718 0.513 0.469 

Oo004 o.oo8 0.009 0.013 0.;027 0.022 0.045 0.066 
0.009 0.009 0.005 0.233 0.142 0.652 0.11-53 0 
0.095 0.092 0.070 0.090 0.093 0.095 0.099 0.104 

0 0 0 7 0 1 10 0 
95 97 41 2870 1630 821 4878 8 
58 58 0 87 107 89 0 63 
54 53 59 ?13 249 691 1215 42 

Mo 1 ., . :1}', •• . r,150 . , ,, 48 · ··-~61 _ <:75 1.-lll ..... ·81+ ·:J..41 ·· -2-58 - ·· 302 173 244 76 215 160 206 86 57 
Ni II 63 49 52 55 7 3 8 39 55 28 26 16 9 7 4 9 13 
s (%) 32.60 42.75 36.70 41.62 36.37 27.90 18.95 45.40 51.58 50.55 50.45 50.87 11-8.55 45.20 11-8.75 37.12 39.12 
Pb II 5.088 18.876 ~l-o587 5.825 0.525· Oo375 0o563 2.787 3o325 4o037 2.637 1.262 0.650 0.575 0.550 0.425 0.525 
Pn. 1: •. ·-··---~': • ,0.4?3 )-,9.~_~?? J.O .•. Q50 10 •. 7.75 '0.?;37 ·. 0.100 ·: 0,.232 r· o .. -2-.BO .. 2-.600 -· 1-.·575 .. 3-.-602. 0,;1:35 0.952 0.337 0.132 0.11+0 0.073 
Cu 11 2.012 2.587 3.788 2.988 1.138 0.079 0.138 10.562 8.162 8.400 7.313 8.750 0.837 0.725 0.094 0.056 0.055 
Te (ppm) 305 450 760 558 274 305 283 240 352 305 298 311-7 340 317 274 233 252 
As 11 793 2970 4268 1598 36 7 23 806 1371 1283 1085 508 545 197 l.~1- 20 5 
Sb II 0 308 440 630 91 108 100 298 233 198 163 128 11+0 122 95 91 91 
Bi II 124 467 796 164 0 52 0 92 164 124 JAO . 212 68 0 16 0 0 
Cd II 0 681 490 103 22 27 17 22 90 66 90 37 2·7 17 22 22 32 
Ag II 0 13 60 0 0 1 0 60 83 26 26 19 19 0 1 0 0 



'rABLE 27A 

Maj_o:r_ & Trace element <1:,~1.],;y:ses of the borehole A rock sample 

Sample AOl A02 A03 A04 A05 A06 A07 .A08 A09 
_(30_·:-L?l _(1,.2-~hl ~~~-5-J+Sl ~_;5_9.=2?.1 {54-55~ {§9-70) i?0-72~ _(_7_1+-751 .LZ5-78) 

Si02 (%) 51.43 57.h-4 61+.96 52.63 24.22 78o88 47.40 81.95 82.09 
Al203 II 19.25 20.,1 .. 8 16.20 19.65 8.37 11.52 17.21 10.83 ll . .JJ-7 
Fe203 II 9 .1 .. o 9 .. 69 8.57 11.25 9.13 3.10 10.57 1.31 1.59 
MgO II 1.; .11-4 11 .• 98 2.51 5.16 8o83 0.58 6.87 0.95 0.37 
GaO II Ji .21 2.84- ) ... 86 5.80 18.78 0.37 11.92 1.21 0.03 
Nn20 II 0.22 0.38 0.,06 0.20 nil 0.20 1.25 0.08 0.,07 
K20 11 1.63 2.79 1.53 3-53 0.02 2 0 J.ll- 0.69 2.31 2.38 
'l'i02 II 1.07 1.07 0.77 1.30 0.32 0.27 0.91 0.26 0.32 
MnO II O.OG4 0.033 0.045 0.119 0.72 0.005 0.355 0.,025 0.005 
Ba (ppm) 1~8 131 98 247 1531!- 302 2726 285 238 
Sr II 1"//.j. 179 92 176 6011- 31 120 32 62 
Rb II 28 L._}l- 26 69 nil 27 10 27 !1-J. 
Zr II 119 131 90 102 108 112 7~ 98 118 
Ga II 13 13 10 21 7 15 12 6 13 
Cr 11 nil nil nil nil 3 5 nil 3 6 
C02 c r~ ) n.t~. n.cl. n. d .• n. a .• 29.60 n.do n.d. Dodo n.d. 

Co (ppm) n.d. n.d. n.a.o Dodo n.d. n.a.. n.,do Dodo Dodo 
Mo II nil nil 1 3 nil 8 1 2 4 
Ni II 1 nil 1 1 3 1 1 1 nil 

s (%) 0.24 0.16 0.45 0.32 0.70 2.90 2.79 lo03 1.64 
Pb (ppm) 8 19 2 21 66 14 61 nil nil 
Zn 11 191 311-0 120 207 650 1 191 J.._ nil 
Cu 11 94 4?. 572 64 67 J+3 65 49 56 
Te II 30 32 32 36 35 35 29 30 25 
As 11 10 13 9 14 30 13 39 23 11 
Sb II nil nil nil nil nil nil nil nil nil 
Bi II 10 nil 12 nil 30 17 17 11 7 
Cd II 9 13 10 10 7 9 2 9 10 "" 
Ag II nil nil nil nil nil nil nil nil nil 



;) 

~~LE 27B 

Major and Trace element analises of the borehole B rock samEles 

Samnle BOl 07 B0210 B03 13 B04 16 B05 19 B06 22 B07 25 B08 28 ~31 ~].Q 34 Bll 37 Bl2 }4.0 ]ill 43 B14 46 JUS 49 Bl6 52 Bl7 _5_2 

Si02 {%) 75.50 75o79 70.69 76.59 73.40 72.85 75o70 73.76 74.56 71.67 71.87 73.86 67.47 68.89 71.74 65.62 70.28 
Al203 II 15.57 15.72 16.81 14.16 14.10 15.68 14.42 15.62 15.08 14.29 14.49 14.15 15.84 16.07 17.32 19.34 17.80 

............. - .. .a .. .. -- ,_ ·. --::: - "l"r:. ·r 1 -.: ....... ''j "]'e2Q 3 ~. > -.,· II :'"' · >2-· ... so - 7h 99 . ~2 .• 86 -.2.:35 -~-.~2- -:2.85 - ?.49 2.61 2..40 2 .• ]+6 - 2_.43 2.29 2.68 2.39 2.30 3.04 1.33 .. 

MgO II 1.18 1.68 1.66 1.05 1.27 1.38 0.87 1.24 o.89 1.90 1.91 1:29- 2.0·5· 0.78 1.08 1.87 1. 78 - . -

CaO II lo73 1.90 4.67 2.37 4.88 3.07 2.40 1 .• 97 1.84 4.61 3.40 3.04 5.88 4.99 2.98 4.70 4.20 
Na20 II o.oo 0.10 nil 0.08 0.03 0.09 0.09 0.03 o.o6 o.o6 0.16 o.o6 0.12 0.08 0.06 0.11 o.os 

.1"1' - . .... · _-,_:···-- '\ .a l'·J ·~o~- ,._
9 ~ •

11 .2 • 9 3 2 • 82 2.58 .. ·2.84 .J-.27 3.52 3.40 4.08 4.48 4.38 5.05 4.62 5.17 6.06 3.74 4.30 3.67 .. 
Ti02 II · ···a:"3s ~ o:·36 0.40 0.34 o~. 35 .... o~·:35· · · o~ .33 -- o·.-)3 · o·.)5 · o'.33 .... d·.;"35 o.:37 0.40 0.40 0.39 0.44 0.41 
MnO II J.036 0.039 0.069 0.037 0.082 0.046 0.055 o.o66 0.067 0.078 0.097 0.106 0.178 0.181 0.150 0.338 0.204 
Ba (ppm) 419 469 292 413 864 421 385 321 478 279 242 285 210 277 161 262 221 
Sr II 23 68 64 58 102 111 95 152 146 207 262 205 294 243 354 218 411 
Rb II 45 42 35 42 39 42 44 44 38 42 43 39 45 31 32 49 26 
Zr II 198 196 193 184 182 ~04- 192 216 209 209 207 213 227 227 231 205 240 
Ga II 13 12 9 8 12 ])+ 11 15 7 11 8 12 11 17 13 14 18 
Cr II 2 nil nil 2 1 1 1 4 1 1 1 3 1 18 6 nil 11 
C02 (%) n.d. n.d. n.d. n.d. · n.d. no do no do n.d. n.d. n.d. n.d. n.d. n.d. n.d. no do n.d. n.d. 

0 

Co (ppm) n.d. n.d. n.d. no do no do no do no do no do no do n.d. n.d. n.d. n.d. n.d. no do n.d. n.d. 
·~-

... n, 1 ··t '• I r11 1. Moi..L -· ·II •«n:il ,,~ ... 1 ···ml n:il ----1 nil nil nil 1 nil 1 nil nil 2 1 nil nil 
Ni II 1 l 1 1 1 1 nil . 1 1 1 nil 1 1 nil nil nil 1 

s (%) 0.16 0.16 Oo24 0.15 0.25 0~13 0.21 0.25 0.24 0.19 0.19 0.17 0.17 0.12 0~19 0.19 0.20 
.. . ; 1.. ~ .. -··. Pb-- (ppm) -nil 15 11 M- 31 21 4 ~3 nil 6 8 7 nil 3 17 7 7 

Zn II 76 7h- 124 61.._ 75 6ll- "59 . 60 46 -58 87 70 108 68 52 89 49 
Cu II nil 51 42 49 42 48 50 50 55 43 60 49 40 43 36 38 35 
Te II 34 31 ... 36 31 36 32 37 30 32 32 ll.8 35 38 33 33 35 32 
As II 13 17 27 14 32 15 15 11 11 42 25 11 20 33 12 19 8 
Sb II nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 
Bi II nil nil 3 7 nil nil 1 1 3 3 5 3 nil nil 9 6 18 
Cd II 11 11 12 12 9 12 10 11 8 12 12 11+ 11 17 13 10 12 
Ag II nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 

I' 

(,' l. ~ ,.. 



TABLE 27B ( contdo ) 

Major and Trace element ana;brses of' ·the borehole B rock samEles 

Sample Bl8 58 Bl9 61 B20 64 B21 67 B22 70 B23 73 B24 75 B25 77 B26 78 B26 84.B27 87 B28 90 B29 94 B30 99 B31 102 B3~ 1Q2 B33 110 

Si02 (%) 72o34 69.80 65.25 72.11 74.60 70 .. 63 70.12 51.67 52.97 54.65 54.54 49.36 55.94 76.90 70.17 76.30 70.35 
Al203 II 18.36 18.76 19.50 15.35 16.46 17.84 20 .. 58 28.40 13.19 23.74 22.53 23 .. 01 23.93 12.19 19.1$ 13.67 13.47 
Fe203 II· . Oo57 2.47 3o37 3 .. 96 2.85 3.47 1.77 5.11 5.46 10.23 10.59 12.00 9.84 3.74 2.44 2.92 6.35 
MgO II loll 1.44 1.71 1.43 0.87 1.77 1.63 1.97 2.79 3.04 3.63 3.99 2.83 0.25 o.68 0.38 0.29 
CaO II 2.76 3.23 3.98 3.52 2.82 4.78 4.42 7.85 8 .. 07 5-47 6.18 8.68 5.22 0.09 0.13 0.03 nil 
Na20 II Oo09 0.13 o.o6 0.05 o.o1 0.05 .nil nil nil nil nil 0.03 0.02 0.13 0.19 0.16 0.11 

..• 1 

K20 II 3.99 3.36 4.89 2.46 1.18 o.65 0 • .77 1.63 2.07 0.50 0.55 0.73 0.39 2.67 4.38 3.03 2.90 
Ti02 II 0.42 0.42 0.45 0.36 0.43 0.40 · Oo473 1.77 o.6o 1.33 1.22 1.23 1.30 0.36 Oo44 0.29 0.29 
MnO II ;Q.J.52 0oJ.64 0.444 0.344 0.341 Ool37 0,.119 0.728 o.aa 0.304 0.231 0.344 0.183 0.026 o.ooa 0.002 0.002 
Ba (ppm) 284 654 971 1845 302 335 51 2753 397 6§ 53 88 70 256 513 310 471 

' Sr II 498 293 276 257 231 397 356 410 713 165 98 79 154 26 43 21 14 
Rb II 25 28 30 18 12 8 12 26 47 8 10 10 4 26 63 24 22 
Zr II 242 226 212 210 i98 203 226 153 187 89 76 71 79 121 153 102 104 
Ga II 11 12 12 6 1.4 11 8 21 13 21 17 19 17 10 9 11 12 
Cr II 19 1 nil nil nil 6 3 nil 3.2 nil nil nil nil 5 2 8 nil 
C02 (%) n.d. n.d .. n.d. n.d. n.d. n.d. n.a. n.d .. 13.9~ n.d .. n.d. : n.a. n.d. n.d,. n.d. n.d. n.d. 

Co (ppm) n .. d. n .. d. . nodo n.d .. n.d. n.d. no do no do n .. d,. nJd·: n.d .. n,.d,. n.d • n.d. n.d. n.d. no do 
Mo II nil 1 1 nil 1 1 1 1 1 nil nil 1 nil 9 .6 16 15 

•' Ni II 1 1 1 1 nil nil 1 1 1 nil nil 1 i 1 1 1 1 

(%) 
: 

6.22 s 0 .. 16 0.19 0.29 0.37 0.39 0.23 0.1.4 0;,84 0.50 0.70 0.50 0.59 o.}o ~.6e 2.36 3.19 
Pb (ppm) 1 nil nil 11 13 17 5 66 ·33 8 1 4 nil 661 nil . 6 nil 
Zn II 37 69 76 59. 91 89 342 187 121 246 229 221 228 5 4 20 289 
Cu II 67 16. 51 56 46 42 34 355 112 51 41 54 45 62 51 51 132 

•, Te II 34 32 28 32 28 36 38 19 26 38 39 33 3ll- 36 32 36 42 ' .. 
:-J As II 8 19 172 25 21 13 9 . 87 22 63 19 33 15 29 32 ·- 12 21 
,_ Sb II nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil nil 
~~ Bi II 11 16 5 12 23 20 25 3 nil 26 26 24 30 18 3 8 28 
·~ Cd II 8 11 11 4 9 13 12 nil 10 14 12 15 7 8 9 7 7 
.;· 

Ag " nil nil nil nil nil nil nil. nil nil nil nil nil ni_J. nil nil nil nil "!. 

r .. 
' ' ; 

• :r 
" . ~ 
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LAHANOS BOREHOLE A.-Distribution of the lithophile elements SiO:z ,AiaO, ,total iron as FeaO:a 
with depth. Solid syrribols:rock, open symbols:ore. 
One scale unit for SiCh & AbO., = 5.00 °/o .. .. 

Fez(), =2.50°/o 
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LAHANOS BOREHOLE B.-Distribution of the lithophile elements Si02,AI,O, ,total iron as F'eA 
with depth. Solid symbols:roclc, open symbols:ore. 
One scale unit tor SiOJ = 5.00 •1. 

.. Ala(), & Fe.O, = 2.50%. 
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presence of kaolinite-dickite as alteration products, referred to 

elsewhere a 

2a Lithophile minor and trace elements (Figs. 31 A,B; 32 

A,B). Mg, Ca, Tip Mn, Gav Ba, and Sr also show a marked increase 

corresponding with the increase in Al referred to above. Potassium 

shows ·a maximum value in borehole B9 some 30 meters above the ore 

horizona It is not possible to-determine with certainty whether 

this is due to a difference in the original 'roCk chemistry or to 

an upward migration of K following hydrothermal mineralisation. It 

is interesting to note that in borehole A, Ba occurs as a major 

element accompanying the sulphide mineralisation, whilst remaining 

a minor element in B (Figo 33 A, B)o 

3· thalcophile major and trace elements (Fi~·33 A,B; 35, A,B; 

36 A,B). The principal feature of interest is the ·distinct increase 

in trace zinc some 10 meters above the top of the ore horizon. 

4• Siderophile major·and trace elements (Fig. 34 A,B) 

. Molybdenum is regarded by Goldsohmi.dt (1954) as a siderophile 

element and it is convenient to show its distribution on this figure. 

Its maximum in the ore horizonllDf interest and also the fact that 
. . 

the position of the maximum within the ore horizon is different in 

the two boreholes. 

E.II Bii SURFACE GEOCHm•ITSTRY 

During the last three decades, applied geochemical studies have 

.mainly been concerned with secondary dispersion patterns and primary 

geochemical dispersion patterns have received less atte~tion ~Ginzberg0 
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LAHANOS BOREHOLE A.-Distribution of the trace lithophile elements Ba.5r.Cr.Zr.Ga.Rb with depth. 
One scale unit for Ba:100 ppm.(Solid symbols=rock. open symbols:(ftt) 
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Ul ... 
Ill -~ 
. E 
.c 
Q. 

10 

30 

50 

~70 

90 

110 

~ 

. 

.. ~ .... 

.. 
• • .. .. 
~ 

.\ a• _'!.~• :IJI 

"'" ~-

.... 
• 

.. 
• .. 0 

• 
• • 

_ .. :'!J . ,.. ·-~--
·· .. 

... ·•. '•.x :.:· 

~ ~ 
.... •:: .. _:._ 

/ • !'" ______ .. : .. -.. 

• •.· )1:-:.··· .. \ .. .... .. ... 

• 
io 

Zr • • 

• 

... :.: .. 

Scale unit 

• 
.. 

• • 
! 
• .. 

• 
_ .. · .. 

e: .. 
_,. 

... 
,; 

• 
• 

~ :·~\::;;;;;;:;, :~··" ;, :-.~~t""'';~::,. ......... ' " '''' '"""'' ,,. .............. . 
~-····· .. . :·~~> •• -1 0 --o 

•.. ·._ !1"·------~=-=· 
... :.•1) 

~--·•:.. .. . 
,._ ... ·::·:.:.~ ..... i;· ·. .:.... 

~- • .. .. 
k •• ... 

~ •• .. 
p .... • 

FIG.-328 
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LAHANOS. BOREHOLE B.-Distribution of the major elements S,Cu,Pb,Zn with depth in ore horizon. 
One scale unit for S = 2.50 °/o .. .. " Cu:0.50°/o .. .. .. " Pb & Zn:0.25% 
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LAHAHANOS BOREHOLE A.-Distribution of the siderophile elements total iron as Fe2Ch,Mo,Ni 

with depth. Solid symbols:rock, open symbols~ore. 
One scale unit for Fe203 :2.50 °/o 

" " " " Mo & Ni = 10 ppm. 
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LAHANOS BOREHOLE B.-Distribution of the siderophile elements total iron as Fe,O, ,Mo, Ni 
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LAHANOS BlREK>LE A.-Distribution of the trace chalcophile elements As,Sb,Bi,Cd,Te,Ag with depth 
in the ore 
One scale .. .. 

II II 

horizon. 
unit for As:200 ppm 

" " Sb,Bi ,Cd & Te :40 ppm 
" " Ag:5 ppm. 
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L~ANOS BOREKlLE B.-Distribution of the trace chalcophile elements As,Sb,Bi,Ag,Cd,Te with depth 
in the ore horimn. 
One sca1e unit tor As= m ppm 

" II .. II Sb,Bi,Ag,Cd & Te = 20 ppm. 
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lAHANOS BOREHOLE A.-Distribution of the trace chalcophile elements S,ln,Cu,Pb,Bi,As,Cd,Te 
with depth. 

One scale unit 
•• •• •• .. 
•• •• 

for 5:0.20°/o 
•• ln=40 ppm 
•• Cu=20 ppm 
•• Pb.,BV\S.Cd & Te=10 ppm. 
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.1960; Hawkes and Webb, 1962). In an attempt to discover whether 

any detectable geochemical disperson anomaly exists in association 

with the Lhanos mineralisation that might prove to be usefUl in 

prospection, samples were collected on a grid pattern as shown 

on Map 7• Since the object was to look tor a primary disperston 

pattern, the samples collected were all of solid rock •. Geobotanical 

·.work (Pollak, 1962) has already shown that a secondary copper 

anomaly can be detected. 

The msults are shown and contoured on Figs. 37, 38 and 39· 

Although anomalous values appear at certain points for paricular 

elements, the general conclusion to be drawn from thiswork seems 

to be that in this area primary geochemical anomalies are of doubt­

ful value as indicators of the exact location of economic mineral­

isation .. 

In seeking to understand the genesis of the Lahanos mineral­

isation, it was thought to be important to make comparisons with 

other mineralised areas in the Eastern Pontic ore province. The 

nature~of the mineralisation in the more important of these areas 

is described in the following sections before considering the 

conclusions to be dr.awn from the preceeding details of the Lahanos 

ores. 



FIG. 37A.-Distribution of Si~ in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval 5.00'/o. 
Scale is 1:5000. 
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FIG. 378.-Distribution of AbO, in surface values above the mineralization 
--at Lahanos, Espiye. Value.s in per cent Contour interval 3.00%. 
Scale is 1:5000. 
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FIG.370,_Distribution of CaO in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval 0.50%. 
Scale is 1:5000. 



FIG. 37E.-Distribution of N&O in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval 0.50%. 
Scale is 1:5000. 



FIG. 37F ._Distribution of KzO in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval o.so•J •. 
Scale is 1:5 000. 
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FIG.37G._Distribution of TiCh in surface values above thP mineralization 
at Lahanos, Espiye. Values in per cent. Contour. interval 0.20%. 
Scale is 1:5000. 
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Scale is 1:5000. 
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at Lahanos,Espiye. Values in ppm. Contour interval1000 ppm for 
thick lines, 100 ppm for thin lines. 
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\ ". \ . 

5.71 2.07 

.... -· ··-,, 
• '• I 

10.0!' -. 1.54, ' 

/-.'1' .. 
?'J!; r··' 

7.01 ' J.ie 
' , us J.ze 

!( 
1.71 a.za 

u,ot. · 
··~· 

FIG. 38A._Distribution of FeQ.Fe~ in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval 2.00 %. 
Scale is 1:5000. 



1-

o I 
I 

I 

I \ 
I I \ 

I I \ 
/ I \1 

I I \ 

\ ". 
\ 

I I \ 
o I I • \ 5 ·I I 

I I \ 
1 I \<, f'\ o 1 , ;,., 

' I \ 

I· 
11 

I 
I. 
11 

I 
I . 

I o 
I • 

i 

\ I . \ 

\1 ~ : .. :i 1 \ ci 
I\\ ' ! 

\ I \ .._ '\ 
.\J \g 0 ~0 I~·'\· 
z \ I \'·.... '- o 1z \ ci ..... ' \ -- -;.... II \ .. ~ --\.......,_.,... -. 
ci 1 2' \ ·::,.,. o· I . ,zo I 

\ :' '. 
I \ '\...._ 

0 . 

/0. )'.· 
I ) \ ,1\\ ci o 5 i 

/ I \ ,. ........ \ . i' ~ ~ 
/ \ . ; ... ' / ,.""', 

/ 

...-:' 
1 ' 

; A ; ~~---·---Iii--. 

,t--_ _;..-\ I . . . I """>~· \ . "\ 
-u 2 1 1 1 ~ ••. i H·y \ •2 o.,.~ ... o··-..... 0 ,... 

\. i :_./ I "'>/ ....... ,,,, 
. {.. I /. , 

4• 1~
111 'o· 1/ o· ~ i( 2. • 2 

;· I \ 
.. I . I 
0 / .• ~:s. I, . 2 

/ I. 

//~\_./;!· :i 

~/ . 
0 1 2 

ci \ 7 ci 0 0 0 
) 

ci 
\ 

4 0 \ 0 

I 
I 0 ci ci 
I 
\ 

'\ 

./ 
00 

/ 

'\ 

·' 0 ' 

' ! 

0 

0 

FIG.38B.-Distribution of Mo in surface values above the mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 3 ppm. 



... 

ci 

······ .· 

ci 

FIG. 38C.-Distribution of Ni in surface values abOve mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 1 ppm. 



\._ . I 
O.'Nl' 0.1INI.J ·-... ____ .... , 

I 

o.1a 

0.073 

o.6et 

o.1oe 

I 
I I 

I 
I 

I 
I 

I 
I 

o.aio 

11.0,11 cazu 111!11 

---
0 

' ' . 
,ll 

,.·'' 
o.~· o.ilt 

I 
I 

\ 
:'\ . 

o.tlll o.m ..... 
....... -.y 

................ __ ,.., ..... ': 

O.fts 

a.ait •• -
u• om aMI 

o.oit - caa. 

GI;U • 1111!1' 

O.Go -
WI o.Os7 

a.oe. . u.ilo 

GO,II) 0151 

FIG.39A.-Distribution of 5 in surface values above the mineralization 
at Lahanos, Espiye. Values in per cent. Contour interval 1% for 
solid lines, 0.2% for dashed lines. Scale is 1:5000. 



,/ 

I 
I I 

I I 

/ I 
,. ·. ·"··.~·1·. I 

. ·-. - I 

;, 'h '.-. ,, 
I '\· , ....... 

01 ~ '\ \; 
I \ 

·f. r.,. 
/ I 

/. I. 
1ZO I 1ll0 

" I . . I 
,r. . 
-.._!21/ ua 

--1, --

I. 
I 
I 
I 
I 

\ 

\ 
\ \'.__. __ ,~~....._ _ _,IIJO i 

\ .. \:. 
\ ) 
·\ \ ..... \. : 

\ ai7 ....... ·····~ ~ 
\. .. .... · -\ 

. ..... 
.: . 

'\';:·' 
\\..:,;. 

\ 

.. ,., : 
. - ~. ': ...... .. . . ' ........ . . --" 

1111 :~-~as __ _._ ss 

--;, ' ---- . . 1 
/1 •. 114 ·-1;~ 

\I 

/ I. / ......_ __ -. T 
I t4 

/ 
/ 

I 
. I 

. " I " 
\I 
.\ 

/se 
/ 

/ 
~0 

,{- ....... 

I o 
I 
I 
I 
'I 40 

I 

46 

' a 
\ 
\ 

/1 j7 

I 
-aL· 54' 

I· 
/I 

9a 1 16 

. ), 
" \ 1ZO 

I 
I ,·.' 

106 ... 
.I 
\ 

• .. 44 Co u 144 

47 :r9 41 40 6J 

iJ it ,.. Co ., 

,:. ... ;. 45 .0 

FIG.39B.-Distribution of Cu in surface values abovtt the minttralization 
at Lahanos, Espiytt. Valutts in ppm. Contour intttrval 250 ppm for 
thick lint'S, 50 ppm for thin lint'S. 



· ...... ' ... .., \ 

. ' '-.. ~~-. ·. 
\ 

116 

.. 

I 

\ 
\ 
\ 

. FIG.39C.-Distribution of Zn in surface values above the mineralization 
at Lahanos, ~piye. Values in ppm. Contour interval 50 ppm. 



/ ' / 
/ 

/ 
,/ 

ci 

1\ 
I I 

I I 
I I 

I 
I \ 

~ 

0 

z 

200 •• 

o 

0 

/ 

ci 

0 17 

0 

ci 

; 

z 

.., 

ci it~ 

0 1Z z 

7 0 0 

0 0 0 

.; 

0 

./ .,. 
/ 

- 0 

0 

... 

65 

,. 

i 

47 

FIG. 390.-Distribution of Pb in surface values above the mineralization 
·at Lahanos,Espiye. Values in ppm. Contour interval 20 ppm. 



lo ' 
I I \ 

I I \ 
/ I \ 

-.._ .. , 1, __ I \ 

-....o\. . · "~i& .. / i\ ' 
.•.• ~ ... - 7 
, , I . 
, A 

7 \ IJ 
I \ II \ ,, 

0 

0 
\ . ' 
,~; 

\ 

0 

ci \ 
\ 
\ 

ci \ 
I 

0
• I . 

I o 

\ 

r ,' / f /' • ' ' ' 

FIG. 39E._Distribution of Bi in surface values above mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 3 ppm. 



/ 
/ 

/ 

ie; o9 
I 

I 
I z"a ..0 

30 

I I 
I I 

/ \ 
I 
\ 
I 
I 
I 

21 

OL.' ~'"-':....:f!L.--.Jac:o. : 
Ml!ilt 

\ 

'· \a 
' ' 

) iz' 

57, 58 16 

": ..... . . . 
100'--l!.- -t1-

•• 
/ 

j~ 
·\ ............ 

' ..... ~ ...... 
,) , ( i4 ., ___ .,.,..,. 10"' ' •• 

I ........ ___ ' 

\. •• ia 

5& 11 

7 ; is 

; 11 i 

12 ao 6 i 

17 

.• 52. 

,. 

46 

is 

7 

·' ,. ' 
51 

6 

69 

41 

,, 

50 

ao 

FIG.39F._Distribution of As in surface values above mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 25 ppm 
for thin and 200 ppm for· thick lines. 



"/ 
/ 

I I 
I I 

/ \ 

\.... ,' \ 
., • 1 

0
• I 

a· ............. ~···t I 
I I 

0• ·" , \ 

I 

I ,. ,o 
I 
I. 
I o 

o I o 
I 

I 

• / o· 
'~~I 
I 

I 
;· 

/ 0 

0 

0 

\ \' ., ...... ········· 
\ 0 11'\100 _ .... 

\- I •• &. '...... ../ ), .. >, /. .. 
j, , o .. ······~·· 'Xo o................ • ci 
\ \ ............. '\'" ·.' 
\ r· '",, ,.. 

\.... . . -~ 

\ 

0 
\ 

0 \ 
I 

0 I 0 
\ 
I 

o ...._I ...a... __ o- o 

0 1 0 0 )/ 

'\ \ // 

} 0 0 \,j,,.. ~ 

0 

_., 
0 

' ,. 0'\ 0 

...... -- '\ .....____ ' 

0 

' 

0 

0 

0 

ci 

.'\ 
0 ' 

0 

FIG.39G.-Distribution of Sb in surface values above the mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 5 ppm. 



\ 
\ 
\ 
\ 

\ 

\ '· \ ' 
0 .• ,1110 
I .. t: -·· ................ +__..___,.,.. 

...... 

/ 
.· .·· 

.. ······· 
?" 14 _,·-;· ', , ' 

l 

\ 
'II 

,l-- ""• . --··"..,. 
10 -.,_.ill--.,.- I I 

/ i 

•. 

" 

. •• 0 

.I 
18 

1J tJ 

•• I tO fl ... 
/ 

FIG.39H.-Distribution of Cd in surface values above the mineralization 
at Lahanos, Espiye. Values in ppm. Contour interval 3 ppm. 



I I ,. 
I I 

I I 

\..,_ ..... ~-X.J 
I I 

ie 

_f.. I 
¥\ 11 I 
I \ I 

I \ I 
\ I 

~· '~· ~ 
\ I\ 
• I . , 

'I 

-;. 

·"' 14 ,• 

"" / --:, 
It' • 

' ' ' ·' It 

FIG.391.-Distribution of Te in surface values above the mineralization 
at Laf\anos, Espiye. Values in ppm. Contour interval 10 ppm. 



CHA.PrER F MINERALISATION OF MURGUL MINE 



t 

131 

F. Murgul 

Murgul copper mine, Bor9ka, Artvin Vilayeti, NE Turkey (See Maps 1, 

3) is the second biggest working copper mine in Turkey, located 

at a distance of about three kilometers SE of Murgul town. 

During the field study, Murgul mine was twice visited for 

a short period of time to collect ore and host rock samples and to 

see the mode of occUrrence of the copper mineralisation, since its 

general setting is similar to that of the Lahanos occurrence. 

Mining activity has gone on here since medieval times (possibly 

·Genoese). The first systematic exploration of the area was carried out 

in 1898 and eventually in 1900 the "Caucasus Copper Company" 

(A British company) was founded, and produced during the period 

between 1907 and 1914 with an output of 16,000 metric tons of 

blister copper. The first Turkish interest was started by Etibank 

(the state owned mining -company) in 1938 after a break of 24 years. 

Murgul copper mine started regular production in 1951 after the 

establishment of a concentration plant and copper smelter. An 

underground mining system was first employed, but later this method 

was ·abandoned. Today an open-cast mining method is being employed, 

and therefore the production of blister copper has been increased. 

At present 10~ labourers are employed by Etibank, of whom 560 work 

on the mine site, 60 on the aerial ropeway and i6o on plant and 

a_dministration. The concentration plant and smelter employ 254 

workers. Daily ore output is 2000: metric-tons and year~ about 
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600,000metric tons. Daily output of the smelter is 39 metric 

tons of blister copper. The overall grade of ore is 2.08~ Cu, with 

a reserve of 16 million metric tons. Recent exploration activities 

of Etibank has discovered an ore body at Qakmak K~a location 

· in the vicinity of Murgul mine with an ore reserve of 20.8 million 

metric tons assaying 1.08% Cu. 

Sulphide mineralisation is located in between totally silicified 

Lower Daoitic Series (i.e. porphyritic dacite) and the Upper Dacitic 

pyroclastics, but the ore body is mainly in the Lower Dacitic Series 
.. 

(Pollak, 1962; Kraeff, 1963b) and consists of hydrothermally breco-

iated quartz masses containing numerous veins and veinlets with an 

averaging thickness of a few millimeters up to a few tens of 

centimeters ioeo a stock-work. of pyrite and chalcopyrite. Beside 

pyrite and chalcopyrite it is also possible to see•~;some accessory 

sphalerite, galena and sulphosalts mainly of the tetrahedrite-

tennantite group. This recognition of the present ore bpdy as a 

stock-work results from the present author's examination of the 

deposit and has not previously been mentioned by other workers 

in the areao It is probab~.r that more massive ore existed in the 

previously worked parts of the deposit, and that this also showed 

a zone of secondary copper enrichment, since the~e features are 

referred to by previous authors. However, no sign of these features 

is nolf to be found. The existance of abundant gypsum with dis&=-

eminated (?) pyrite and pyrite veinlets, above the ore body has also 

not been"recorded by previous workers. 
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The geologY and general setting of the area is not very 

complicated andthe following stratigraphic column can be deduced 

by compiling the results of previous workers (e.g. Pollak, Kahrer, 

" " Kraeff, ~1&1v_etq.) 

8. ·~lQvial·- Pleistocene deposits and debris, 

7• The Young Basic Series (same as the Lahanos area)v 

6. The Tertiary Granitic Intrusions (All belong to the 

Tatos Batholith)v 

5· Post-Cretaceous dacite III(~ HYpabyssal dacite of the 

Lahanos area), 

4• The Upper Basic Series 

(d) Tuff Series 

(c) Limestone-marl Series 

(b) Hippuritic limestones 

(a) Spilite II 

3· The Upper Dacitic Series (• Upper Volcanio Series of 

Lahanos), 

(b) Albite dacite II 

(a) Dacitic tuffs 

2. The Lower Dacitic Series (• Lower Volcanic Series of 

Lahanos)v 

1. The Lower Basic Series (• same as · · . Lahanos). 

1. The Lower Basic Series which is called 0Spilitic Series I 0 

" by Kraeff (1963b) consists of a series of spilites and soda. keratophyre 
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spilites, with tuffs and agglomerates, in the river Murganihevi and . . 
Soutari (Mapf. 3 _a~d Section 5)~ Some pyritic impregnations have 

been pointed out by Kahrer (1958) within this series. 

2o The Lower Dacitic Series is similar to that af Lahanos 9 

represented by porphyritic dacite (lavas mainly), characterised 

by quartz and albite phenocrysts lying.in a quartz-bearing ground-

mass which may contain laths of albite. Due to mineralisation 

this series i~ ver,y much altered0 the main alteration processes 

being secondary silicification, sericitisation, a little kaolinisation 

and pyri tisationo The Murgul ore body mainly occurs within this 

porphyritic dacite as a replacement body dipping into the side 

of the mountain Karatap (Section 5) .. 

3o The Upper Dacitic Series consists of two different units 

i.e. dacitic tuff and porphyritic dacite II. The dacitio tuffs are 

very similar to the Lahanos dacttic pyroclastios.. They have also 

red as the dominant colour and are fairly thin, overlying the 

Lower Dacitic Ser~es and showibg secondary silicification and 

local oalcification.. Porphyritio dacite II (Albite dacite II) 

directly overlies the dacitic tuffs and the Lower Daoitic Series 

and sulphide body with unoonformity. The albite dacite II is 

oharacterised by ooarse grained texture ani greenish colourv but 

sometimes near the sulphide mineralisation they do show red violet 

colours whioh might be due to disseminated ore minerals.. It is 

also possible to see xenoliths of the Lower Basic Series.. Chemical 

analysis of these rocks suggested a Rhyodacitic composition rather 
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than dacitic, similar to those of the Lahanos area. This fact 

is also supported by the microscopic evidences ioea abundance of 

rounded and corroded phenocrysts of quartz (Samples M27, M27B and 

C, M28 in Taba 4)o 
I 
4o The Upper Basic Series is mainly composed of a series of 

sub·-marine volcanics and sedimentso At the bottom it mainly consists 

of Spilite II containing soda keratophyre spilites, agglomerates, 

tuffs, and sometimes inclusions of the Upper Daoitic Serieso A 

good outcrop of this series can be seen NE of Murgul town (Map 3) • 

. The Hippuritic limestone series (Turonian= Lower Campanian) consists 

of reddish l~ered limestone with beds of massive white limestoneso 

These beds are fossilliferous and contain a micro fauna e.go Globe-

truncana laperenti laperenti and Globotruncana leperenti tricarinata 
.. 

etco (Kraefff 1963b). There is an unconformity present between the 

Hippuritic limestone and its overlying limestone marl serieso A 

good outcrop of the Hippuritic limestones can be seen SE of Murgul 

town (Map 3 and Section 5). The limestone-marl series of Upper 

Campanian-Maestrichtian-~· ?Eocene age consists of limestone., marly 

limestone, marl, sandstone and tuff containing Globotruncana cofo 

Stuarti, Globotruncana c.fo Conioa, Globotruncana c.f. rosetta etco 

and its passage upwards into th~ ~litic Eocene is seen at the 

Kuvarshan copper mine (Xovenko, 1942)o The limestone-marl series 

is overlain by pyroclasticso 

5o The post-Cretaceous dacite III, which is the equivalent of 

the Hypabyssal dacite at Lahanos, contains some important pyrite and 

0 
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" other sulphide mineralisation in the Golbafi and Operlment areas 

near Murgul .. 

6. Tertiary granitic intrusions are mainly made of albite 

tonolite, granodiorite, granite and characterised by euhedral phen~ 

crysts of albite with a little quartz intergrown with albite ~ioular 

" forms. At Bafkoy, NE of Murgul (Map 3) one of these bodies is 

intruded into the limestone-marl series. 

7• The Young Basic Series mainly consists of various andesitic 

and basal tic dykes. 

8.. Alluvial-Pleistocene deposits and debris are exposed SE of 

" Murgul town, on the flank of the l\furgul Suyu Stream (Kla_v, 1962). 

F .. Ia MINERALISATION 

F.Ial Mode of Ocourrences of Ore 

The Murgu.l ore body is mid to be composed of three different ore 

shoots known as (i) 9angara9 (ii) S~sveni and (iii) Satep. At the 

+1150m level the size of vangara and Sosveni ore shoots together is 

450m by 300m with an average thickness of lOOm.. Below this level, 

the copper content of the ore body is lower than Oo8% which is at 

present an unworkable grade. The general appearance and mode of 

occurrence of the Murgul sulphide mineralisation shows broad similarity 

to those of Japanese "OkO" (=Yellow Ore) {Japan, 1960) with main min-

eral assemblages of pyrite and chalcopyrite associated with subordinate 

amounts of tetrahedrite-tennantite, sphalerite and little galena. Ther.e 

seems to be. no development of zoning within the ore bodyo 



137 

F.Ia2 Methods of Stu$1 

Sulphide samples from the Murgt1l mine have been treated in 

the same way as previously described for the Lahanos sampleso 

F.Ia3 Ore Microscopy 

Ten polished specimens were prepar,ed from the 26 ore samples 

selected as being representative of the Murgtll mineralisation. 

P:rite is the earliest and most abundant sulphide mineralo 

It shows little or no corrosion, occasional zonal replacement, and 

forms hypidiomorphic cryst&ls which may be replaced by sphalerite, 

chalcopyrite, galena and gangue minerals, generally along the 

grain boundaries between different pyrite grains. Within the 

copper rich parts of the ore body individual rounded and idiomorphic 

crystals of pyrite show a grain-size variation between 80 by 60 

microns to 500 by 500 microns. The size of pyrite aggregates 

also changes in size from 300 by 250 microns up to 800 by 1300 

microns. There is also colloidal pyrite which is later than granu­

lar pyrite but it too is replaced by sphalerite, chalcopyrite and 

galena. 

Sphalerite occurs in two generations in the Murgul oreo The 

early sphalerite is the second oldest sulphide mineral after pyrite 

and forms local concentrations within the ore body. The second 

generation. sphalerite very clearly r~pla.ces cha.lcopyrit e (Plate 55)• 

The early sphalerite often forms xenomorphic (or allotriomorphic) 

granular texture and its intersertal spaces are often replaced by 

interstitial galena, chalcopyrite and gangueo Chalcopyrite i~ early 



55· The second generation sphaleri te (dark gray) and chalcopyrite 
relationshi p , Murgul mi ne . 160 x 

56 . Chal copyrite lamellae in sphal erite , Murgul mine . 2700 x 
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sphalerite exhibits a very nice emulsion type of ex-solution 

texture which would indicate a temeperature range of formation 

from 350° to 650°C {Buerger, 1934; Borchert, 1934 and Schwartz, 

1931) and chalcopyrite often forms blebs and also blades (lamellae 

on the (111) planes of sphalerite (Plate 56)o There is a tendency 

for these blebs and lamellae to accumulate near the grain margins 

of the sphaleriteo 

Chalcopyrite occurs as the main copper sulphide and forms 

xenomorphic (or allotriomorphic) rounded granular textureo 

Occasionally in small cavities in the host rook alon@· or with other 

sulphide and gangue minerals, it forms euhedral crystalso Chalco-

pyrite replaces early sphalerite, pyrite and tennantite, but is 

mainly replaced by galena, late sphalerite (Plate 55) covellite and 

gangue. Tennantite-tetrahedrite and chalcopyrite often show a 

mutual boundary relationship, but sometimes it is possible to see 

tiny veinlets of chalcopyrite replacing tennantite-tetrahedrite, 

particularly in sphalerite, i.e. tennantite-tetrahedrite is a little 

earlier than chalcopyrite and both showed overlapping growth. 

Chalcopyrite and galena are often associated, isolated patches of 

chalcopyrite commonly occurring i~alena, but s9metimes the reverse 

is seen. In general, galena replaces chalcopyrite, showing the 

same kind of age relationship as the chalcopyrit~ tennantite-tetra-

hedrite association ioeo another overlapping intergrowth texture. 

Chalcopyrite sometimes contains tiny specks of native gold. 
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Galena is the only lead sulphide mineral and forms xenomorphic 

interstitial texture with sphalerite. It often replaces pyrite, 

sphalerite and partly chalcopyrite and tennantite-tetrahedrite 

but is sometimes replaced by chalcopyrite and selectively by 

neodigenite and covellite, forming a ramifYing replacement texture. 

Zonal replacement of pyrite by galena is also present. 

The tennantite- tetrahedrite (CUJ0 (Cu,Fe}2 As4 s13
- ~O 

(~,Fe) 2 Sb4 s13) group of copper arsenic and copper antimony 

sulphosalts are common minor minerals in Murgul mine, where tenn-

antite often predominates over tetrahedrite and both show rounded 

patches and mutual boundary relationships against chalcopyrite, but 

there are some areas where chalcopyrite veinlets cut across tennan-

tite-tetrahedrite. A significant texture of tennanttteor tetr~ 

hedrite is that blebs of tennantite in sphalerite display a similar 

texture to the emulsion ex-solution texture of chalcopyrite in 

sphalerite. 

Neodigenite (4 eu2s Cu S) selectively replaces galena forming 

a rarnif.ying replacement texture, and occasionally replaces tennan-

tite, chalcopyrite, sphalerite and pyrite. Small veinlets of 

neodigenite cut across tennantite and chalcopyrite and sometimes 

.surround chalcopyrite where neodigenite may well be a pseudomorph 

after galena. Tiny fractures in sphalerite are sometimes infilled 

with neodigenite. Finally small rounded inclusions of neodigenite 

occur in pyrite. 
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Covellite (CuS) is present in small quantity and is often 

seen as replacing veinlets in chalcopyrite. An association of 

covellite with neodigenite in chBlcopyrite is also observedo 

Due to extensive opencast mining it is not now possible to 

see the secondary enrichment zone which is alre~ worked outo 

However,there is some recent formation of malachite, a~ite 

h 
and chalcan)iteo Kahrer (1961) describes the following minerals 

from the secondary enrichment zone: bornite, rhombic chalcocitev 

covellite and lamellar chalcopyrite. 

From ore microscopy studies in Murgul mine the following 

paragenetio table can be suggested for sulphide mineralisation: As 

primary ore mineralisation pyrite- sphalerite- tennantite 

(-tetrahedrite} - chalcopyrite - galena- sphalerite - ?;gold-

neodigenite - covellite - and followed by various gangue minerals 

i.e.oai,tes- ankerite- dolomite. In the secondary enrichment zone, 

according to Kahrer0 s (1961) paragenetic table the sequence bornite -

rhombic chalcocite- neodigenite- covellite- laminar chalcopyrite-

azurite -.malachite was foundo 

F.Ia4 X-ray Diffraction 

X-ray studies of sulphides from Murgul mine were carried out 

by methods already described for the Lahanos sulphides (See Eolel). 

Sphalerite (Zn6, F4 3mv ~O • 5o3985 A0 according to Kudenko 

and Stetsenkov 1964): On examination with a binocular microscope 

of a sphalerite concentrate prepared by flotation, two distinct 

varieties were seen, respectively lighter and darker in colour. 
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Small samples of each were hand picked for powder photography. 

For the lighter coloured sphalerite a cell size of 5·4109 :;· ·o.0005 

A
0 

was found, and for the darker one 5·4101 + 0.0005 A0 (Table 7). 

There is thus no significant difference in cell size between the 

two. According to Kuller:.ud'{l953) and Skinner et al. (1959) a 

solid solution of 11 mole per cent FeS is indicated which corresponds 

with a minimum formation temperature of about 200- 360°0, which 

is lower than that found for the Lahanos-sphalerite. 

Galena (PbS, Fm3m, a = 5·94 A0 given by Wasserstein, 1951; 
0 

Swanson and Fuyat, 1953):· Cell-size determination of galena in 

Murgul mine gave a value~-~ =·5·9353 A0 which is slightly different 

from Karadere-galeria, but noticeably smaller than Lahanos-galena 

(Table 7)o 

Chalcopyrite (Cu Fe s2, I 4 2d): In the literature, various 

values are given for the cell size. According to Deer et al. (1962) 

a = 5·25 and C = 10.32 A0 for pure chalcopyrite. Cell-size deter­o 

mination of Murgul-chalcopyrite associated with sphalerite gave a 

cell-size of ,~ = 5.2887 and C = 10.425 A0
, ani a second one from 

0 

chalcopyrite rich ore without sphalerite gave a cell size of a. = 
0 

0 5.2888 and C = 10.4171 A • Both cell-sizes are distinctly higher 

than the values quoted by Deer et al. The difference may be due 

to the trace element content of the Murgul specimens, which is 

given in Tables 23 and 24. 

F.Ia5 Reflectivity 

Measurements on samples from the Murgul deposit were made 
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using methods and standards as previously described for the Lahanou 

deposit. Results given in Tables 15, 21, 22 and Figs. 20,.2o:B, 27A, 

27n, 26 A and B, 26 C are distinguished by the prefix Ma The 

reflectivity values for chalcopyrite, sphalerite and galena in 

yellow ore (i.e. Murgul type) seem to be slightly higher than 

for the same minerals occurring in Black ore (i.e. Lahanos type) 

and black vein type ore (ioeo Karadere type). 

F.Ia6 \tall-Rock Alteration 

Beneath the Murgul ore body, the wall-rocks are extensively 

silicified, with the d~velopment of jasper, and mrici tised. Above 

the ore body about one meter of propylitised volcanic wall-rock 

passes upwards into a maseive and banded gypsum horizon from 2 to 

10 meters in thickness containine veinlets and scattered crystals of 

pyrite, and this in turn grades into altered country rock with clay 

minerals, then unaltered country rock. The association is similar 

to that described at the Uanibuchi mine, Japan by Iwao (1956)o-. 

F.Ia7 OBEMI~~ 

Trace element contents of separated l·lurgul sulphide minerals 

and Oo:Ni ratios in the pyrite have been determined by methods 

previously described for Lahanos and are shown in Tables 23 and 24. 

Bornite, enargite, marcasite and bismuth/tellurium minerals have 

not been detected in any of the Murgul ores studied, but with these 

exceptions, MurgUl mineralogy is similar to that at Lahanos, so that 

comments on the trace element distribution at Lahanos apply equally, 

to the Murgul ore and are therefore not separately discussed here. 
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mt is however, interesting to note that the Mo content of the Murgul 

chalcopyrite is much higher than found in this mineral elsewhereo 

The Co:Ni ratios of Murgul pyrite are much greater than unity and 

the·refore indicate a hydrothermal origino Large euhedral pyrite 

crystals are abundant wi·thin the silicified foot-t1all parts of the 

ore bodyo Two distinct morphologies occur-the.pyritohedron {210) 

and octahedron (lll)o Co/Ni ratios were deter,mined for each type 

and as shown in Table 24v the ratio in Qrystals of octahedral 

habit is an order of magnitude greater than in pyri tohedral crystal so 

The reasons for this difference are not understood at the time of 

collecting the samples, no attention was paid to the distribution 

of morphology, and in many crystals combinations of the two forms 

occur. In some cases, relative development of the two forms is 

such as to produce a crystal which resembles a regular icosahedronv 

with an apparent five fold symetry (Plate 57)o 



57· I cosahedron pyrite crystal from Murgul mine. 

58 . The general field occarrence of the Black vein type 
mi neral isation at I nkoy, Tirebolu. 
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" !:,!I KARADERE AND INKOY {BLACK VEIN TYFE DEPOSITS) 
n n 

Karadere {Pb-Zn-Cu) mine, Kumarli, Ueye, Ordu Vilayeti and Inkoy 

{Pb-Zn-Cu) mine, Tirebolu, Giresun Vilayeti (See Map 1) both 

represent a third type of base metal sulphide deposition within 

the same volcanic environment in the Eastern Pontus Ore Provinceo 

The general chafacteristics of these deposits are that they occurred 

in shear and fault zones forming veins of base metal sulphide, and 

are of smaller size than the Lahanos and Murgul mineso The main 

sulphide minerals are galena, sphalerite and a little chalcopyrite, 

pyrite and lead-copper sulphosaltso 
It 

F.IIa KARADERE (Pb-ZJP.Cu) MINE Kumarli, Unye, Ordu Vilayeti which 

is situated about lo5 km W of Kumarli village in the river Karao 

The lead-zinc-copper deposit is composed of three parallel E=W 

veins some lOOm apart, cutting through sili~ified dacitic tuff, 

passing up into a dark green agglomerate (believed.to be equivalent 

to the Upper Basic Series at Lahanos) which is overlain in turn 

by a sedimentary limestoneo In addition to the main E-W fracture 

system, dipping 50° to the N, a subsidary N-S fracture zone dipping 

W is also developed and contains a weaker mineralisation than the main 

veinso The deposit was first worked by an English Company about 

ninety years ago and recently -..zorked by the "Dedehan" private company o 

No\f Etibank has been exploring this Pb-ZJP.Cu sulphide deposit for its 

copper contento Holfever, copper is a subsiduary sulphide mineral, 

though in this type of mineral deposit, one does get locally enriched 

chalcopyrite wi thpyri te and marcasite. Unless the :le-ad-zinc rich 
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upper part passes dolmwards into a copper rich zone, the main 

potential of the veins seems to be for lead and zinc. Geophysical 

work has recently been carried out by Etibank to endeavour to dis-

cover more about the extent of the mineralisationo 

F.IIal MINERALOGY OF THE ORE 

The general appearance of the Karadere mixed sulphide ore is 

in between the two leading types ioeo Lahanos Black Ore and Murgul 

Yellow Oreo It is not as dark as Lahanos ore nor as light as Murgul 

ore; but the presence of galena and sphalerite makes the Karadere 

deposit . closer in appearance to the Lahanos Black Ore o 

The Karadere mixed sulphides were treated in the same way as 

the Lahanos and Murgul Sulphides for further chemical and X-ray 

studies. 

F.IIa2 Ore ~icroscopy 

Selected ore samples from the galena rich and galena poor 

parts of the main vein have been studied in polished section and 

·show quite different mineral·· assemblages from the Murgul Yellow 

Ore, _but are closely comparable with the Lahanos Black Oreo 

flrhotite (Fe Sl+x) appears to be the earliest sulphide and 

is mainly replaced by marcasite, pyrite, sphalerite and g~eo ,. 
Occasionally pyrrhotite and marcasite show clean cut boundary 

relationships, but marcasite often replaces pyrite. It is possible 

to see relicts of pyrrhotite in pyrite and sphaleriteo Although 

the amount of pyrrhotite is very small (~1%), it is nevertheless 

more abundant·than at Lahanos. 



145 

Marcasite (Fes2): Marcasite-pyrrhotite and pyrite associations 

are quite common in the galena poor ore. Marcasite replaces pyrrhotite 

of which Pelicts are often seen in Marcasite, but marcasite is 

replaced by colloidal pyrite, in association with sphalerite and 

chalcopyrite, in a segmented vein replacement. 

Pyrite (Fes2) is the commonest iron sulphide present in the 

galena rich ore. Two distinct varieties of pyrite occur in the 

Karadere ore which are quite similar to those of Lahanos - and 

Murgul pyrite i.e. massive or granular pyrite and colloidal pyrite. 

The latter is later than granular pyrite and occasionally rims 

around the mar.casite. Granular early pyrite is replaced by sphalerite, 

tennantite and other sulphides. 

Sphalerite (ZnS) is less abundant than galena. It is earlier 

than galena and other copper sulphides, including sulphosalts, but 

it replaces iron sulphides. Chalcopyrite and sphalerite sometimes 

show a mutual boundary relationship, but often emulsion type ex-

solution blebs of chalcopyrite ocour in sphalerite as well. Mutual 

boundary texture is also found between sphalerite and tennantiteo 

Enargite (cu
3 

As s
4

) is present in subordinate amounts in the 

Karadere ore. It clearly replaoes sphalerite and marcasite but is 

replaced by tennantite. 

Tennantite (~0 (cu,Fe) As4 ~13) js_ present in amounts greater 

than enargi te, but still .<: 1~ in the Karadere deposit. It replaces 

all iron sulphides including the colloidal pyrite in which tiny 

veins of tennantite aut across the banding. It is also possible to 



see colloidal pyrite relicts in tennantiteQ Galena and tennantite 

often show replacement texture in which tennantite is often replaced 

by galena, but it is possible to see replacement of g~lena by 

tennantite in the galena rich oreo These two minerals also exhibit 

a ~rmekitic texture~ All these observations would suggest a 

successive mineralisation in which tennantite is a little earlier than 

gallienao Tennanti te and chalcopyrite relationships are somewhat 

similar to those of galena and tennantite i.e. tennantite a little earlier 

than chalcopyrite or both contemporaneous. Tennantite clearly replaces 

sphalerite and enargiteo 

ChalcopYrite (Cu Fe s2) is the common copper iron sulphide in 

the Karadere deposit-and local~ shows enrichment, but in the lead­

zinc ore body it is often present in only subordinate amounts. 

Sphalerite and chalcopyrite often show emulsion ex-solution texture, which 

indicates a temperature range about 650° - 350°C according to 

Schwartz (1931), Buerger (1934) and Borchert (1934). The presence 

of mutual boundary texture between chalcopyrite and sphalerite may 

indicate that after chalcopyrite had completely ex-solved, it 

migrated towards the outside of the sphalerite grainso The second and 

main generation of chalcopyrite is earlier than galena, gangue, covellite and 

neodigeniteo Both galena and associated chalcopyrite often replace 

sphalerite. 

Galena (PbS) and sphalerite are the main sulphide minerals of 

the Karadere ~re deposit, galena being more abundant than sphalerite 

and other sulphides, and it replaces all iron sulphides and sphalerite. 
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It is possible to see relicts of pyrite in galena. Both chalco-

pyrite and galena displai relicts or patches of one in the other, 

though chalcopyrite is more usually being replaced by galena. 

Covellite (CuS) and Neodigenite (eu
9 

s
5

) These copper sulphide 

minerals are the latest sulphides. They replace other early sulphide 

minerals and are often associated together. 

From the study of polished seotions, the following order of 

formation is suggested for the Karadere minerals =Quartz = pyrrhotite 

- marcasite-pyrite = ? Colloidal pyrite - Sphalerite (chalcopyrite) 

enargite - tennantite - chalcopyrite - galena-gangue - neodigenite 

and covelliteo 

F.IIa3 X-rgy Diffraction 

X-ray studies of different sulphides have been undertaken 

under similar conditions to those of Lahanos=a and Murgul-sulphides. 

Sphalerite: Cell size determinations of sphalerite from the 

Karadere deposit have been oarried out on the basis of differences 

·in colour. Selected different coloured grains (i.e. brown (opaque), 

brownish yellow, honey colovred and green translucent) were examined 

by powder photography and cell sizes calculated. The results from 

these different sphalerites are given in Tab. 7• The smallest cell 

size was obtained from honey coloured semi-translucent sphalerite 
. 0 

with a m 5.4118 + Oo0005 A v followed by translucent green sphalerite 
0 

with a
0 

• 5·4119 + 0.0005 A9, and brownish yellow almost opaque 



148 

sphalerite with a • 5o4123 i 0.0005 A0
, whilst the largest cell 

0 

size was obtained from opaque dark brown sphalerite with a m 5.4141 
0 

+ 0.0005 A 0 ~ The transparency of: sphalerite cl_osely follows the 

cell size variat~on which is a fUnction of substitution by Fe++, 

Cd and Mn (Kudenko and Stetsenko, 1964; Kullerud, 1953; Skinner et 

a1.,·1959 etco)o Using K1illerud's method for sphalerite as a geother-

mometer, for Karadere-sphalerite 1 to .12 mol per cent FeS is obtained 

from Henrique•s chart, which corresponds to a temperature range of 

0 0 c .• 240 to 400 C. With this range of temperature, the Karadere-

sphalerite appears to be formed at a higher temperature than the 

Murgul type yellow ore and Lahanos type blaCk oreo The presence of 

pyrrhotite in association with sphalerite in the Karadere deposit 

would indicate that in the system Zn-Fe-S there was no iron deficiency 

so that the temperature obtained is more reliable than in the case of 

L~anos- and particularly Murgul-sphalerite, where the none existance 

of pyrrhotite in association with sphalerite may indicate an iron 

deficiency, sothat only a minimum temperature of formation is 

indicated. Even after corrections were made, particularly for the 

Cd and Mn content of the sphalerite, according to Kudenko and 

Stetsenko (1964), this did not alter the relative sequences of 

temperature range found by Kullefud9 s method. 

Galena: Cell-size determination of two galenas associated with 

galena rich ore and galena poor ore from the Karadere deposit gave 

a slightly smaller cell-size in the galena rich ore i.e. a
0 

= 5·9352 

+ 0.0005 A0 compared to galena poor mixed ore i.e. a0 • 5·9355 + 
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0.0005 A
0 (see Tab. 7)o Higher cell-sizes were obtained for the 

Lahanos-galena which~·is often associated with sphalerite and 

chalcopyrite. 

Chalcopyrite: The Karadere chalcopyrite cell size is slightly 

larger than that from the other deposits. 

F.IIa4 Reflectivity Measurements On Karadere Sulphides 

Reflectivity measurements of different sulphide ores from the 

Karadere deposit have been carried out by using the technique which 

has already been described in (E.ie3). Results are given in Tables 

1~0~~ In comparison with the Lahanos-type (i.e. Black ore) and 

Murgul-type (i.e. Yellow ore), the Karadere ore (i.e. Black vein 

type ore) gave higher reflectivity values for marcasite, intermediate 

values for sphalerite and lower reflectivity values for chalcopyrite. 

and galena. 

F.IIa5 Chemistry 

Trace element contents of separated Karadere sulphide minerals 

and Co:Ni ratios in the pyrite were determined by methois previously 

described for.Lahanos ores and are shown in Tables 23 and 24 •. 

The cadmium and cobalt contents of the Karadere sphalerite are 

distinctly higher than found at Lahanos and MurgUlb The Karadere 

galena ~s the only one for which trace element contents have been 

determinedv because of the difficulty of separating a sufficient 

quantity of galena from the other ores. 
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n 
F.IIb INKOY (Pb-ZD-Cu) MINE~ This is another vein type deposit 

which is situated 4 km E of Tirebolu at the junction of the Tirebolu 

-Trabzon@and Tirebolu-Harfit roads, on the.west bank of the river 

Harfit estuary, where mineralisation occurs in a fault zone in the 

Upper Volcanic Series (See Map 1 and 2 and Plate 58). The deposit 

is being worked at present by a private Company - no information is 

available about the mining method, and it is worked for lead and 

zinc content rather than copper. The main ore minera.ls are galenav 

sphaleritev chalcopyrite, pyrite and sulphosalts. Ore microscopy 

" studies of the Inkoy deposit suggested the following paragenetic 

sequence: pyrite-sphalerite-galena-tetrahedrite-tennantite group 

{ioeo tetrahedrite-tennantite-seligmanite 2PbS ~2s As2 s3
, occuring 

near the boundaries of tennantite and galena) - chalcopyrite-gangue 

as primary sulphide mineralisationo Covellite occurs as a secondary 

mineral. 

Electron probe analysis showed that although both tetrahedrite 

and tennantite are present, tetrahedrite is the more abundanto 

Quantitative probe results for tetrahedrite are shown in table 

11.6-7 and its cell-size in Table 8; the identity of the seligmannite 

was checked by X-ray diffraction. 

Foiii OTHER DEPOSITS OF THE EASTERN PONTUS ORE PROVINCE 

Within the Eastern Pontus Ore Province there are mineral 

deposits other than those already described, but they usually have 

no economic value, except for certain manganese depositso They 

can be grouped into: 
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1. Syngenetic or syn-sedimenta~ submarine exhalative ore deposits 

including pyrite and manganese. 

2. Contact metasomatic deposits, mainly iron oxides. 

1. Syngenetic or srn-Sedimentary Submarine Exhalative Ore Deposits 

This group of mineral deposts can be divided into la - Pyrite and lb -

Manganese deposits. Both are supposed to have a close genetic relation to 

the submarine volcanic activity that took place during the development of 

the Eastern Pontids. 

la -The pyrite deposts of this group have no economic value, but they 

occur throughout the Eastern Pontids, local~ developed and often associated 

with the common autoalteration products of silicification, propylitisation 

and kaolinisation of the volcanic series. They are usual~ lenticular in 

shape with a thickness from a few centimeters up to several meters, according 

to Geoffroy (1960), who has described good examples of this sub group from 

the Rize and 9ayeli districts. 

lb ~ The manganese ore deposits are of syn-sedimentary volcanic exhalative 

type accerding to Borchert (1958), and they are found principal~ in the area 

" between Rize and Murgul~ According to Kraeff (1963b) they are formed at the 

end of the second of the four magmatic cycle he recognises. The best examples 

of this type of manganese ore deposit has been described by Kraeff (1963b) from 

Peronit, Hopa, Rize (Map 8), where manganese nodules occur in violet coloured 

silicified dacitic tuffs, dipping NW at 30°. Small manganese nodules of 

pyrolusite and polianite with accessory opal-chalcedony (1 - 2 em in diameter) 

are located at the upper part of the tuff. This Peronit manganese deposit 

has similar features to those of the manganiferous sedimenta~ formations 

of the porphyry 
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series associated with volcanism of trachyte-Liparite type 

(including dacite) described by Verentsov {1964) from Russia. There 

are other manganese occurrences associated with spilites of the 

Lower Basic and Upper Basic series in the Hop&-Murgul region and 

~h~s second group will also fall into Varentsov•s second group of 

manganiferous sedimentary-volcanic formations i.e. manganese deposits 

associated with a greenstone series of spilite-keratophyreso 

According to the present author's observations during the 

brief visits to Pilarcivat, Ardefen area and Latum, Qayeli area, 

the sphalerite, galena, chalcopyrite mineralisation found together 

with the manganese ores may well have a separate later origino 

2. Conta~Metasomatic Or Contact Pneumatolitic Deposits: 

The occurrence of this group of deposits has apparently a 

genetic relation to the emplacement of the Pontid Batholith (Tatos 

Batholith). They contain mainly specularite, (hematite), magnetite 

and pyrite with ve~ small specks of chalcopyrite and they are 

characterised by 

(i) Association of skarn minerals and the presence of garnet, · 

epidote and actinolite, 

(ii) chloritisation and calcification of the host rock. 

Representatives of this group of mineral deposits are well 

developed at the contacts of the intrusive bodies and limestones. 

However a similar kind of deposit occurs in volcanic roCks as well 

e.g. at Qatak, Yaglidere, Camiyani, Giresun (See Map 2 and 4 (Grid 
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ref I5)) within the Lower Basic Series. Small lenses of specularite, 

magnetite and epidote occur,which are cut by late pyrite and quartz 

veins. These contact metamorphosed and mineralised volcanicswere 

possibly lime and marl enriched parts of volcanic pyroclastics, or 

they were limestone and marl lenses. 

Ore microscopy studies of the 9atak mineralisation showed that 

lamellae of ear~ier specularite are replaced by magnetite. Magnetite 

replaces along the edges of the specularite lamellae and advanced 

replacement produces pseudomorph lamellae of magnetite after 

specularite. Replacement of iron oxide by later sulphide and quartz 

is also common. Pyrite shows hypidiomorphic granular~gregates and 

contains embedded hematite grains and also sometimes infills inte~ 

sertal spaces of specularite. The Co:Ni ratio of pyrite from the 

9atak deposit given in Table 24 indicates a high temperature origin. 
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Go CONCLUSIONS AND DISCUSSION ON ORIGIN 

OF THE LAHANOS PYRITIC SULPHIDE DEPOSIT 

As previously mentioned (Section BIV), two principal theories 

have been suggested to explain the origin of deposits of the Lahanos 

type in the Eastern Pontus ore province - the syngenetic submarine 

exahalative and epigenetic hydrothermal theorieso The outstanding 

feature of these deposits is that they belong to the class of so­

called "strata bound" sulphide depositso The attraction of the 

syngenetic theories is that they provide a ready explanation for the 

"strata bound" feature, whilst epigenetic theories so far apparently 

do noto Nevertheless, the results of the present study as given in 

preceeding pages seem to provide strong support for an epigenetic 

hydrothermal origin. The main lines of evidence oan be divided as 

follo\ors -

(a) Field observation 

(b) Mioroscopic study of the ores 

(c) Chemistry of the ore 

{a) Field Observations 

In addition to the foot-wall stockwork, veinlets of mineral­

isation can be seen underground penetrating into the hanging-wall .• 

This feature, which was also noticed by Pollak (1961), is unlikely 

to appear in synsedimentary ores, but would be expected in epigenetic 

ore formationo 

In a broad sense, the ore body zoning at Lahanos is somewhat 

similar to a well described and known zoning due to hydrothermal 
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mineralisation and alteration at Butte, Montana by Sales and 

Mayer (1948 and 1949). The distribution of the zones is the 

reverse of what Garlick has described as to be expected in syn-

genetic deposits, using.the Zambian copperbelt as his example 

(in Mendelsohn, 1961). Finally, the alteration halo seen so 

clearly in the field at Lahanos can only be of epigenetic origin. 

From the work of Sales and Mayer (1950), the sericitisation in 

0 these roCks has probably taken place at tempera~ures above 340 Co 

(b) Oremicroscopy 

The occurrence of undoubted ex-solution textures in various 

minerals at Lahanos, Murgul and Karadere is indicativ! of a 

relatively high temperature of formation for the ores. The 

pairs (host mineral named first) sphalerite-chalcopyrite, and 

bornite-chalcopyrite in particular suggest temperatures between 

300 and 650°0, according to Schwartz (1931), Beurger (1934)v 

Borchert (1934), Sugaki and Yamae (1950) and Brett (1964)o 

According to Skinner (1960), the presence of enargite rather 

0 than luzonite indicates a formation temperature above 320 Co 

Such temperatures are only likely to have occurred in 

epigenetic mineralisation. FUrthermore, the evidence of replacement 

of one mineral by another, seen in polished specimen, points to 

an~extended period of mineralisation and high temperatures, 

unlikely to occur in syn-sedimentary mineralisation. 
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(c) Chemistry of the Ore 

Co:Ni ratios determined for pyrite and chalcopyrite at Lahanos, 

Murgul, Karadere etc. all indicate a high temperature of formation 

(See Fleischer (1955), Hawley· and Nichol (1961). 

U~ing sphalerite as a geothermometer, vide Kullerud (1953), 

Henrique (1957), Skinner (1959), Kudenko and Stetsenko (1964), a 

range of minimum temperatures from 200° - 470°C is indicated for 

these deposits. 

On the basis of the foregoing summarised lines of evidence, 

it is possible to conclude that the Lahanos mineralisation is 

epigenetic, that it was deposited from solutions of high initial 

temperature entering a pre-existing rock sequenceo The constituents 

of the various minerals were present in the solution and deposited 

successively, although not regularly, with falling temperature. 

Evidence for the age of the mineralisation is less distinct - it can 

only be said that with the possible exception of some dykes, the 

mineralisation is apparent~ later than all of the rocks in the 

Lahanos mine areo 

Control of the location of the mineralisation seems to have 

been by the presence of a fine grained pyroclastic horizon of 

restricted permeability, below which the ore solutions were at 

least partially ponded back. As a consequence, no primar,y heavy 

metal geochemical anomaly occurs over the Lahanos ore body. The 

highest copper anomaly in the area ( 500 ppm) was found on 

Killik Tepe (See section 2) but boreholes there found no economic 
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mineralisation. The rocks are lavas with no appreciable 

interbedded pyroclastics. Thus, at Killik Tepe the hydrothermal 

solutions were able to pass on upwards without obstruction 

through the well jointed lavas, giving a geochemical anomaly 

but no ore deposition. 

Two major aspects of the above comments require fUrther 

discussion - the exact nature of the hydrothermal solutions and 

the mechanism causing precipitation when the travel of such 

solutions is impeded. 

Although the principal ore minerals in these deposits are 

sulphides, it is most unlikely that they were transported in 

solution as simple sulphides, because of the very limited 

solubilities of the sulphides and because the order of solubilities 

provides no explanation for the observed order of deposition in 

many sulphide deposits. The arguments relative to the problem 

are summarised by Krauskopf (1967, P•499 &t s.eg.) o 

Various authors (Kinkel, 1966; White, 1968; Anderson, 1969) 

in considering the origin of similar deposits have recently suggested 

alternative explanations to overcome this difficulty, whilst 

objections to some of their theories can be summarised by the 

following quotation from Barnes (1967, p.339)-

"The well-known low solubilities of sulphides in many· aqueous 

solutions has led to the suggestion that transport occurs in a sulphur­

deficient chloride solution in whiqh the metals are soluble, followed 

9y deposition caused by either mixing with a separate sulphide rich 



solution or exposure to a host rock containing abundant iron 

s~lphide~ (Lowering, 196l)o Such a thesis is untenable for 

textural reasons because the depositional process would be 

rapid, tending to dump all sulphides together at the interface 

of the two environments. In addition, the sequence of precipi-

tation in such circumstances would be controlled primarily by 

the solubility products and cannot match that commonly observedo 

For these and other reasons, this mechanism of ore transport and 

deposition is inadequate for nearly all hydrothermal deposits." 

Recent experimental work on the nature of hydrosulphide com-

plexes of heavy metal ions has, however, shown that several 

metals c~ be kept in solution at concentrations well above those 

allowed by the solubility product if the solution is near neutral 

and contain abundant H2S (Krauskopf, 1967, p.502). Under these 

conditions the principal sul~hur ion is H~and Barnes (1960) hafshown 

that the_enhaced solubility of zinc in H2s solutions between 25 and 

195° can be accounted for by formation of the ion ZnS (HS)-. Even 

in chloride solutions, if the solution is saturated with H2S and the 

pH is in the neutral region, Hinners and Holland (1963) have shown 

that complexes of the above ·type are formed in preference to 

chloride complexes of the metal. However, the necessary experimental 

results that would allow a detailed thermodynamic consideration of 

the problem, such as that of Helgeson (1964) for lead chloride 

complexes, are not yet available, particularly for temperatures 

above 250°C. Thus Krauskopf {1967) states "This long discussion 
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of magmatic fluids, which has occupied the better part of three 

chapters, has left us without a satisfactory explanation·for the 

origin of ore deposits" and Barnes (1967) ·~any more experimental 

data are needed to begin to understand sphalerite transport at 

40090 and above10 o 

There is nevertheless a sufficient background of experimental 

detail to allow a reasonable quantitative explanation to be 

attemptedo 

First of all, information on the composition of gases from 

volcanic fumaroles and hot springs in volcanic areas shows 

according to Krauskopf (1967) "a remarkable similarity in the kinds 

of substances present and a still more re~kable variation in 

the proportions of these substances10
o Tables 28 and 29 give the 

compositions of gases collected from the basalt volcano Kilauea, 

Hawaii and Showa.-Shinzanv ·a: dacite dome in northern Japano Next 

to water yapour, carbon dioxide is usually the most abundant gas. 

Various sulphur gases and HGl are present and their relative amounts 

vary widelyo Thus, the hydrothermal waters associated with volcanic 

activity contain both chloride and hydrosulphide ions, the two 

principal complexing agen~s suggested as capable of transporting 

heavy metals in solutiono 

Despite this fact, there is characteristically no mention of 

\
11 heavy metal sulphides being deposited from the evaporating hydrothermal 

\ fluids in most recent volcanoes. Sulphur maJ be· so abundant that for 

example the Siretoko = Iosan volc~o in Hokkaido, Japan produced a 
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C02 

co 

H2 

N2 

Ar 

so2 

s2 

so
3 

Cl2 

H 0 2 

TABLE 28 

Analysis of gases from Kilavea. Analyses are given in volume 
percent. All chlorine calculated as Cl2 

J8 Jll Jl3 Jl6 §.2 §2 

47.68 20.93 16.96 18.03 33.48 8.32 

1.46 0.59 0.58 0.56 1.42 0.82 

0.48 0.32 0.96 0.67 1.56 1.82 

2.41 4.13 3.35 3.11 12.88 8.92 

0.14 0.31 0.66 0.08 0.45 0.29 

11.15 11.42 7.91 8.53 29".83 16.80 

0.04 0.25 0.09 0.15 1.79 2.48 

0.42 0.55 2.46 2.53 

0.04 o.oo 0.10 0.08 0.17 1.01 

36.18 61.56 67.52 66.25 17.97 59.97 

(Source Krauskopf, 1967, Tab. 16-1) 



TABLE 29 

Analyses of gases from Showa-Shinzon 

The "active" gases·include all gases other than H2o, air, excess N2 
and the inert gases. The figures for the active gases are in volume 

percent, recomputed to total lOQ%. The last three lines of the 

table give the total of the active gases, excess N2, and H2o also in 

volume percent and totalled to 10q% 

Tem:eerature~ oc 1.2Q 700 £.2 11£. 328 ~ 

* co 2 65.0 61.1 64.3 91.1 89o5 76.4 

* CH 4 0.08 0.14- 0.14 0.14 0.15 0.16 

*NH 
3 

0.06 0.007 0.01 0.10 0.007 0.01 

* H 2 25.·0 24.5 21.3 5.12 6.96 13.6 

* HCl 5.39 8.,61 8.61 1.51 1.48 . 4.66 

*HF 2.76 3-54 3.51 0.88 0.65 0.43 

* H S 2 0.10 0.62 0.53 1.07 1.05 4.27 

* so 2 1.66 1.52 1.60 0.12 0.14 0.50 

Total active gases 0.723 0.592 0.569 0.859 0.94.8 0.258 

N2 0.026 0.019 0.021 0.042 0.052 0.026 

H20 99.25 99.39 99.41 99.10 99.00 99.72 
I 

· *"Active Gases" 

(Source Krauskopf, 1967, Tab. 16-2) 
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sulphur flow nearly a mile in length 1dth thicknesses of more than 

16 feet and widths up to 85 feet. (Watanabe, 1940). other volcanoes 

in Hokkaido have formed sulphur ore bodies as sublimation deposits· 

at active solfataras, and in addition replacement bodies of sulphur 

.and iron sulphide are found (Jenks, ~966). They are related to 

Cenozoic calderas of Krakatao type with andesi tic and daci tic flotls 

and pyroclastics. The only other mineral of importance is opaline 

silica and there is some kaolinisation of the host-rocks. Therefore 

wijilst volcanic fluids contain complexing agents capable of 

transporting heavy metals, and may form sulphur and iron sulphide 

ore bodies, either at surface (sulphur only) or as subsurface, 

l\ 
essentially .concordant replacements in ~ci tic tuff, the volcanic 

environment does not provide the heavy metals, other than iron. 

Suggestions that the source of heavy metals may be by leaching from 

the volcanic rock pile are not supported by these observations. 

It might be argued that 'the Japanese volcanic area is in some 

way different from the Lahanos volcanic area, so that the above 

observations· are not relevant to Lahanos. However, in northern 

Honshu, mineral deposits closely similar to Lahanos are found in 

the "Kuroko" ores of the green tuff region {Fig. 40). Details of 

the kuroko ores are given by Kato, 1928 and 1934; Japanese Geol. 

Surv., 1960; Jenks, 1966; M~ruyama, 1967, but the prinoipal 

features of interest are well sununarised by Jenliis (loc.cif.)o In 

vertical sequence kuroko or black ore (with mainly sphalerite, galena 

and barite, and smaller amounts of pyrite, chalcopyrite, tetrahedrite 



FIG.40. Mcap of Holdrcaldo cand northm Hanallu, allowing loccation til old mcauila 
lallcadtdl, vol,lllllc zonta, principcal 'caldtrcaa, cand nltdtd biKir oil min ... 

I AfTI!R JI!NKS ,ISH I 
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etc.) is underlain by Oko or Yellow ore (pyrite and chalcopyrite) 

th.en Keiko or siliceous ore (quartz, pyrite, ohalcopyri te ... some-

times in stockwork form). Large masses of anhydrite and gypsum are 

found in some of the ore bodies. The ore.bodies are semi concordant 

deposits in daoitio to rhyolitic tuffs of middle Miocene age. The 

sequence is believed to have been largely deposited under marine 

conditions and Late Miocene clastic sediments overlie the volcanic 

sequence. 

A very close similarity with the Lahanos deposit and other 

deposits of the Eastern Pontus ore province exists, even to the 

general tectonic setting and relationship to the Alpine orogenic 

belt, and the common occurrence of greenish propylitio alteration 

in the stratified volcanic rooks. There seems to be no significant 

difference in rook types between the Cenozoic volcanics of Hokkaido, w~ 

ioh do not have kuroko ores, and the Kuroko bearing Miocene volcanics 

l of Honshuo Thus, again, it seems unlikely that the vulcanicity or 

~ the volcanic rooks are the source of the mineralis~tion. One 

difference that may be significant is that the Miocene rooks formed 

below the sea "in irregular marine depressions somewhat sheltered among 

islands and peninsulas chiefly of volcanic origin" (Jenks, 1966, Po464) 

whilst the recent volcanoes discussed above formed on land. 

It is therefore necessary to find some source for the copper, 

lead, and zinc other than the volcanic activity. In Anatolia, 

and particularly to the south of the mapped area at Lahanos, bodies 

of granite are found intruded into the base of the volcanic rocks 
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(See Map 2)o It is a common observation that such granitic bodies 

mq- produce hydrothermal solutions carrying copper, __ lead, zinc, gold, 

bismuth,arsenic and other elements such as are found in the Lahanos 

deposit. Occasional veinlets of sulphide mineralisation are found 

inihe Lower Basic Series in the Lahanos area, far below the level 

of the main ore bodies, and in the granite itself. The occurrence 

in the area of eoonomic vein deposits has been described, of a type 

commonly associated with granitio intrusions. 

- As these hydrothermal solutions moved up into the volcanic 

rocks, they presumably encountered warm volcanic waters oarrying 

co2, HCl, and H2S - complexing ions that would increase the 

solubility of the dissolved metal ions and at the EBJDe time prevent 

their precipitation by a simple cooling process (Barnes, 1967, P•376). 

In the case of _pyrit~experimental work (Barn~s, 1967, Pa365) shows 

that hydrosulphide or chloride complexes do not greatly increase the 

·-solubility, but when ammonium is present with H2s, solubility is 

~ncreased and this increases enormously at temperatures above 250°C •. 

Ammonium is present in volcanic waters (see Table 29), and this 

probably explains the abundance of pyrite in the kuroko ores and the 

pyrite deposits of Cenozoic age in Hokkaido. This is the one case 

where the metal is probably derived by leaching of the volcanic rocks. 

Because of the submarine formation of the Lhanos volcanics 

(the occurrence of pillow lavas, absence of signs of subaerial 

weathered surfaces on the lava~tlows, presence of interbedded lime-

stones), sea water trapped in the rocks will be a fUrther source 



of chloride complexing agents. With upward movement, the solutions 

will cool anc;l. this is normally taken as a sufficient condition to 

produce precipitation from hydrothermal solutions. Experimental 

work shows that in fact this is not so - the solubility of the zinc 

hydrosulphide complex is nearly independant of temperature up to 

200°C (Barnes, 1967, p.354) and the solubility of various compounds 

can in~rease with falling temperature (Helgeson, 1964, p .. 96; Barnes, 

1967, P• 405).. Thus.,;~ where the solutions were able to move upwards 

with relative ease through cooling cracks and joints in the lavas, 

no dep'osi tion took place. It was only when the free upward travel 

was impeded by fine grained pyroclastic beds of restricted permeability 

that a precipitation mechanism could operate. This mechanism has 

been described in detail by Helgeson (1964) for the case of lead 

chloride complexes and involves hydrothermal alteration of the wall­

rock,. a consequent change in composition of the solution and this in turn 

leads to precipitation of sulphides~ Fig. 41 is Helgeson's diagram 

showing that the solubility of galena is sensitive to the Na/H ratios 

in solution at a given temperature, from his calculations of 

equilibria in the system PbS - NaCl - HCl - H2o.. Superimposed 

stabili~ fields for K-feldspar, K-mica and kaolinite are s~own, 

relative to the K/H abscissa, which is positioned relative to the 

Na/H abscissa so as to give Na/K ratios consistent with those common 

in fluid inclusions .. 

Consider a solution represented by A on the diagram travelling 

freely along a vertical fissure. On cooling to C, it alters feldspar 
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in the fissure walls to sericite, loses H in the process and so 

its Na/H ratio moves slightly to the right along curve BDo FUrther 

solution passing this point is in equilibrium with the sericite and 

so passes up the fissure, eventually finding unaltered wall to 

react with at a lower temperature. Th~f!l~ apart from a thin alteration 

skin, most of the solution passes up without any appreciable reaction 

with the wall rock. 

The solution encountering a horizontal layer of pyroclastic 

r~ck has much more opportunity for reaction- the larger surface 

area of the fine grained pyroclastic and the increased time for 

reaction caused by the restri.cted permeability = and must pass 

through the roCk rather than along open channels. As a conaequence 

of the reaction its composition will change along a curve such as 

BP9 towards a region of low solubility for the sulphide, which will 

there fore be precipitated. It is interesting to note that because of 

~he form of the solubility curves for the sulphide, after precipitating 

sulphide with falling temperature, the curve BF mq enter a zone where 

the solubility increases with decreasing temperature. Thus, sulphide 

already precipitated may be re-dissolved, which gives a reason for 

the replacement phenomena so commonly seen in these ores, andjbr 

the successive formation of the same mineral at different .times. 

Helgeson (1964, p.l05) shows that the total B+ added to a wall-roCk 

during hydrothermal alteration is commensurable with 1he amount of 

lead in the vein and that alteration of wall-roCk to a depth of one 

meter can account for a vein of galena more than 12 em wide. The 



process described therefore seems to give a satisfactor,y quantitative 

as well as qualitative explanation of observations. 

Calcite and dolomrte also have increasing solubility with 

decreasing temperature so that simple cooling is again inadequate 

to explain their formation. Boiling of the solution with loss of 

co2 can cause their precipitation, but if the pressure were low 

enough to allow this 11 deposition of these minerals in all rocks at the 

same level would occu:r, and this is not found. Loss of H from the 

solution and its exchange for IC, Na, Ca and Mg in the country rock, 

does also however cause precipitation of these carbonates, so the 

same mechanism is operative as·with the sulphides. Barnes (1967, p.413) 

gives reasons why highly magnesium rich solutions are not necessary 

to form dolomite at temperatures above 250°C and why it m~ be formed 

in preference to calcite in alteration zones caused by hydrothermal 

· fluids in silicate rocks. 

Barite requires no detailed consideration, since its solubility 

decreases with decreasing temperature, but the presence of gypsum 

is less e~sily e;plained. As Barnes (1967 11 P• 419) points out 11 

gypsum should only occur in hydrothermal deposits formed below 57°C 

or·in the zone of secondary alteration. Anhydrite can however be 

formed at temperatures above 400°C due to the reaction 4S02 + 4H20 ~ 

H2s + 3H
2
so

4 
which takes place in hydrothermal fluids during cooling 

.· from 600°C to I00°C. The formation of gypsum would then occur from 

. 0 
the anhydrite at temperat~res below 57 o This explanation for the 

gypsum at Lahanos and Murgul is supported by the observed occurrence 
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of anhydrite and gypsum in some of the Japanese Kuroko oreso 

Thus a mechanism has been described to account for the 

observed mineralogy· and location of the Lahanos deposit and other 

deposits of similar type inoluding the Japanese kuroko oreso Whilst 

submarine pyroclastics are important in providing complexing ions 

and a precipitation mechanism, the ultimate origin of the economic 

metals is mainly in hydrothermal solutions arising from subjacent 

granitic bodieso 
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APPENDIX 



X-ray Fluorescence Technique 

10 major elements analysis of the volcanic rocks have been run on the Philips P.W. 1051 semi-

automatic and P.W. 1212 automatic spectrograph against the four international standards of G-1, W-1, 

S-1, T-1 and plus 28 seconda~ standards supplied by the Geology Department of Durham University. 

The operating conditions are tabulated in the following tables. 

Operating Conditions for 1051 Semi-automatic XRF 
- Major Element Analysis 

Ele- Peak 29 ~ Gene- m.A Crystal Path Colli- Coun- Coun- Time D" . Atten- Ampli- Ch. 
- (S ) J.scnm. t• t d ment rater mat or ter ter . ec ua J.on u e Width 

KY Volt-
a~ 

Si 78.01 Cr 4-0 20 E.D.D.T. Vac Coarse flow 1625 50 no 

r-1 Al 112.65 Cr 32 30 E.D.D.T. Vac Coarse flow 1625 4-0 no 
J: Fe 57-4-1 w 4-0 20 LiF Air Fine flow 1625 20 no 

Mg 106.4-9 Cr 32 30 A. D.P. Vac Coarse flow 1650 80 yes 2 4-.14- 20 volt 

Ca 4-4-.84- Cr 30 20 E.D.D.T. Vac Coarse flow 1625 30 no 

Na 72.73 Cr 4-0 20 Gypsum Vac Coarse flow 1660 100 yes 2 2.80 20 volt 

K 106.60 Cr 34- 20 LiF Vac Coarse flow 1625 30 no 

Ti 55.90 Cr 4-0 20 LiF Vac Coarse flow 1625 4-0 no 

Mn 62.89 w 4-0 20 LiF Air fine flow 1575 30 no 

s 4-4-.. 83 Cr 36 20 E.D.D.T. Vac fine flow 1625 4-0 no 
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Dperating Conditions for 1212 automatic XRF -Major Element Analysis 

Ele- Peak 2Q Tube Gene- Kv iliA C!Zstal Path Colli- Coun- Counts Time 
ment ~ mat or ter (Sec.) -
Si 109.15 Cr. 1575 60 32 LiF. no v~ Coarse flow FC 40 

Al 145.13 Cr. 1575 60 32 LiE "110 ViG Coarse flow FC 40 

Fe 85.72 Cf.t 1575 60 8 LiE 110 air Fine flow F'.r 20 

Mg 79.05 Cr. 1575 50 40 LiF." 110 ViG Coarse flow FC 40 

Ca 45.07 Cr. 1575 6e 8 LiF 110 V+G Coarse flow FC 40 

Na 105.05 'cr. 1575 50 40 LiE 110 V+G Coarse flow FC 40 

K 50.5~ Cr. 1575 '60 8 LiF 110 VTG Coarse flow FC 40 

Ti 36.58 Cr. 1575 60 8 LiF no V+G Coarse flow FC 40 

Mn 62.89 w 1575 70 30 LiF 110 air fine flow F'.r 20 

s 73-50 ce. 1575 50 40 LiE 110 V+G Coarse flow FC 40 
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0 0perating Conditions for Trace Element anabysis in Silicates 

Ele-· Peak 20 ~ Gene- !! ~ Cr;y:stal Path Colli- Coun- Counts Time 
ment rat or mator ter -
Ba 15.60 w 1675 60 32 LiF 110 V+G Coarse s Fr 4-0 

Te 18.26 w 1675 60 32 LiF' 110 V+G Coarse s Fr 4-0 

Sb 19.08 w 1675 60 32 Lif. 110 V+G Coarse s FT 4-0 

Cd 20.95 w 1675 60 32 Lif.' 110 V+G Coarse s Fr 4-0 

Ag 22.68 w 1675 60 32 LiF 110 V+G Co~rse s Fr 100 

Zr 28.31 w 1675 60 32 Lif 110 V+G Coarse s Fr 4-0 

Mo 28.93 w 1675 60 32 LiF 110 V+G Coarse s FT 100 

Sr 35.85 w 1675 60 32 LiF 110 V+G Coarse s Fr 100 

Rb 37.78 w 1675 60 32 LiF 110 V+G Coarse s ·FT 100 

Bi 39.11 w 1675 60 32 Lif· 110 V+G Coarse s FT 100 

Pb 4-0.70 w 1675 60 32 L:iF 110 V+G Coarse s Fr 4-0 

As 4-8.78 w 1675 60 32 Lif 110 V+G Coarse s FT 100 

Ga 56.20 w 1675 60 32 LiF 110 V+G Coarse F+S F'.r 100 

Zn 60.63 w 1675 60 32 LiF 110 V+G Coarse s Fr 4-0 

Cu 65.62 w 1675 60 32 LiF 110 V+G Coarse F+S Fr 4-0 

Ni 71.24- w 1675 60 32 LiF 110 V+G Coarse F+S Fr 100 

Mn 95.20 w 1670 60 32 LiF 110 V+G Coarse F+S Fr 4-0 

Cr 107.12 w· 1670 60 32 LiF 110 V+G Coarse F~ FT 100 
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X~ay Fluorescence Trace and Major Element Analysis in 
Sulphides 

Operating Conditions for trace element analysis in sulphide 

Ele- Peak 2Q Tube Gene- Kv mA C~stal Path Colli- Coun- Counts Time 
ment rat or mator ter ~ -- -
Ba 15.60 w 1675 60 32 I4F 110 V-+G Fine s FT 4-0 
Te 18.26 w 1675 60 32 LiF 110 V-+G Fine s FT 4-0 

Sb 19.08 w 1675 60 32 LiF 110 V-+G Fine s FT 4-0 

Cd 20.95 w 1670 60 32 LiF 110 V-+G Coarse s FT 4-0 

Ag 22.68 w 1675 60 32 LiF 110 V-+G Fine s FT 4-0 

Mo 28.93 W· 1675 60 32 LiF 110 V-+G Fine s FT 100 

Sr 35.85 w 1675 60 32 LiF 110 V-+G Fine s FT 100 

Bi 39.11 w 1675 60 32 LiF 110 Y+G Fine s FT 100 

As 4-8.78 w 1675 60 32 LiF 110 V+G Fine s FT 100 

Ga 56.20 w 1675 60 32 LiF 110 V-+G Fine F+S FT 100 

Cu 65.62 w 1675 60 32 LiF 110 V-+G Coarse F+S FT 4-0 

Ni 71.24- w 1675 60 32 LiF 110 V-+G Fine F+S FT 100 

Mn 95o20 w 1670 60 32 LiF 110 V-+G Coarse F+S FT 4-0 

Cr 107.12 w 1670 60 32 LiF 110 V-+G Coarse F+S FT 100 

Operating Conditions for Major Element analysis in sulphide 

Ele- Peak 20 Tube Gene- !Y mA Crystal ~ Colli- Coun- Counts Time 
~ ment rat or mat or EL_ 

-
Ba 15.60 w 1675 60 32 LiF 110 V-+G Fine s FT 20 

Pb 4-0.70 w 1675 60 32 LiF 110 V+G Fine s FT 20 

Zn 60.63 w 1675 60 32 LiF 110 V-+G Fine s FT 20 

65.62 w 1675 60 32 LiF 110 V+G Fine s FT 20 
Cu 
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Operating Conditions for X-ray Powder Camera (in copper radiation) 

Instrument 

KV&mA 

Radiation 

Filter 

Collimator 

Camera 

Exposure time 

Film 

Philips PW 1051 Generator unit 

40 KV, 20 mA 

Cu Ka., 1.54051 
Ni 

Fine 

Large camera 114.59 mm in diameter 

20 hours 

Ilford industrial G fast or Industrial B. 

Operating Conditions for X-ray Powder Camera (in Cobalt radiation) 

Instrument 

KV&mA 

Radiation 

Filter 

Collimator 

Camera 

Exposure time 

Film 

Norelco generator unit and Philips PW 1051 generator 

34. KV, 11 mA 

Co~1. (1.78892) 
;e<.. 

: Fe' 

Fine 

Large camera with 114.59 mm in diameter 

24 hours using point source, 40-50 hours using line 
source 

Ilford industrial G fast or Industrial B. 
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Minerals Genera- !!.~ Radia- Source Fil- Colli- Expo- Film 
tor tion ter motor sure 

NG39 Sphl PW1051 34• 10 CoKO: Point Fe Fine 24 Industrial G 
NG39 Sph2 PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
M2 Sphl PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
M2 Sph2 PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
Kd Sphl PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
Kd Sph2 PW1051 34 10 CoKO: =Point Fe Fine 24 Industrial G 
Kd Sph3 PW1051 40 16 CuKO: Point Ni Fine 22 Industrial G 
Kd Sph4 PW1051 40 16 CuKO: Line Ni Fine 48 Industrial G 
NG43-46Cpy PW1051 40 16 CuKO: Point Ni Fine 23 Industrial G 
NGD8 Cpy PW1051 40 16 CuKO: Line Ni Fine 48 Industrial G 
NGD17 Cpy PW1051 40 16 CuKO: Point ~"Ni Fine 22 Industrial G 
Ml2 Cpy PW1051 40 16 CuKO: Point Ni Fine 24 Industrial G 
NGD8 Cpy PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
NGD17 py PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NG39 Cpy PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
Ml5 Cpy PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
Kd Cpy PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
Kd gl 1 ~PW1051 34 10 Co ~<a Point Fe Fine 24 Industrial G 
Kd gl 2 PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NGD8 Brn PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NG36 Brn PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NGD16 gl PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NGD17 gl PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
M2 gl PW1051 34 10 CoKO: Point Fe Fine 24 Industrial G 
NG36 Cpy PW1051 34 10 CoKO: Line Fe Fine 48 Industrial G 
NG36 brn -~·PW1051 34 10 CoKO: Point Fe Fine 30 Industrial B 
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OPERATING CONDITIONS FOR THE DETERMINATION OF CO AND NI 
m DIFFERENT SULPHIDES 

Charge ~eparation 

Internal Standard 
Buffer 
Ratio, sample to Inte.rnal 
Standard/Buffer 

. Electrode type 

Anode 

Dimension of Crater 
Cathode 

Optical System 

Quartz prism Wave-length 
range 
Lens system 

Slit 
Camera diaphram 
Plate 
Analytical Gap 

Exposure 

Special Conditions 

Current 
Burn 
Timing 

Photographic 

Developer 
Fixer 
Washing 
Finishing 

Lines 

Analyses 
Iniemal Standard 

Instrument 

Johnson Matthey 'Specpure 1 Amonium chloropall.adinite 
National Carbon Co. -Graphite (SP2) 
3 part sample to 1 part Internal Standard/Buffer 
mixed in a plastic vial using Spex Mixer Mill No. 
8000 • 

National Special spectroscopic products: Graphite 
(Lll38P 120 x 12:Lot No. 36E) 
1/8" x 2.5 mm. 
Johnson Matthey Carbon sheets (Cat. No. Ll205) 
diameter: 5 mm. 

Hilger E 958 focussed on slit 7 step filter using 
7 steps (Log 2 differences) 
Height: 9 mm. Width: 0.8 micron 
14 mm. 
Kodak BlO 
5 mm. 

arc in an atmosphere of Argon·: Oxygen (ratio 8g_~~O) 
- at a flow rate of 4 litres/min - through a modi­
fied stallwood jet. 
6.8 A d.c. short circuit 
8 A d.c. 
Preburn: 15 Sec. Exposure: 50 sec$. 

: Kodak DX-80 
Kodak AM 33+H for 3 min 
25 Minutes 
Plates rinsed in distilled water containing Koiak 
photo-flo solution to ensure drying free from spots. 

Co: )~~53.505. Ni: 3414.765 
Pci:'. : 3481.152 

A Hilger and Watts Auto~tic Large Spectrograph 
E 742 with Quartz Optical System. 
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THE PREPARATION OF POLISHED SECTIONS 

The specimen to be polished is placed in a 37 mm diameter brass 

cylinder 18 mm high, on a glass plate in a vacuum desiccator. After 

evacuation with a water pump, Ceemar resin (No.ER261J is run into the 

mould and allowed to set overnight. After removal from the mould, the 

Ceemar disc is ground down by hand on rotating metal laps using first a 

medium carborundum (Garb. Co. Ltd., grade 3F. RA grit) then fine 

carborundum (800 grit), washing well with water between stages. The 

rear face of the disc is then turned -down on a lathe to parallelism 

with the ground specimen face. 

Various lapping stages follow - first of all the specimen is lapped 

with fast cutting a~umina grade No5/20 for about a minute; then with 

diamond paste abrasive (Hypre~ diamond compound 6-W-42 medium and Y4-W-475 

fine), each for up to 24 hours, and finally for les~han a minute with 

'finish polishing' alumina. 6•i diam. Pellon polishing discs are used on 

a metal base lap and oil or deminer~lised water as lubricant. Specimens 

from the last lap are cleaned in carbon tetrachloride in an ultrasonic 

cleaning bath. Finally for el·ectrongprobe microanalyser study th~ resin 

block is turned down to 8 mm. in height in order to fit the microprobe 

spec~men holder. 
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PREPARATION OF POLISHED THIN SECTIONS 

Following preparation of a polished specimen, as described in the 

previous page, a thin slice is cut from the disc, excess resin is 

removed by a wet diamond grinding wheel and the slice stored in a 

numbered envelope to await further treatmento This consists of 

mounting the slice on a normal 76 mm·microscope slide with Lakeside 

70 resin, as when preparing a normal rock thin section, and carrying 

out the normal grinding processes. When this thin sectioning is com­

pleted a 48 mm glass slide is fixed to the ground surface of the speci­

men with Araldite epoxy resin, then both slides are heated on a hotplate 

and the slide on the polished surface is removed. A 45 degree bevel is 

ground on the back of the slide at the end opposite the numbered end to 

facilitate mounting in the microprobe specimen holdero Remove the excess 

resin from th~ slide with a razor blade, wash the specimen in methylated 

spirit using light friction of the thumb to remove the heat sensitive 

resin from the specimen surface and then leave the section to dry or 

dry with an air jeto 

Polished and polished thin sections for electron microprobe analyser 

study have to be carbon coated in the usual form of vacuum coating 

apparatus. 
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FLOTATION TECHNIQUE 

: A laboratory scale design which consists of a one litre buchner 

separation funnel With porosity 4 is the main cell-tanko The lip was 

extended to facilitate overflow of the flotation concentrat~ into a 

smaller buchner funnel connected with vacuum. Compressed air is intro­

duced through the stem of the flotation funnel. A glass plate and glass 

rod were used for collecting and skimming the froth manual~ into the 

small buchner funnel, to ~ the concentrate. Washing with acetone assisted 

final purification and quick ~ng. The apparatus is illustrated by 

Kine~ ( 1969). 

This method was used to separate and concentrate chalcopyrite, 

bornite, galena, sphalerite, pyrite and gangue minerals from the mixed 

Lahanos oreo The conditions were adjusted to ensure maximum purity of 

the concentrate of each mineral, rather than maximum recovery of the 

mineral from the ore. Arter preliminary breakage of the ore sample with a 

hydraulic jack, further reduction was carried out in a jaw crusher. Taggart 

(1951), PTyor (1965) and Wark (1938) suggest that a suitable size range for 

flotation on the laboratory scale is ~8 +60 mesho Material from the jaw 

crusher treated in various automatic mills crushed very quic~ to a much 

smaller size than this because of the very friable nature of the ore. It 

was therefore, necessary to treat the jaw crusher product in a simple 

percussion mortar and sieve to achieve the desired size range. For each 

flotation 100 grams -48 mesh + 60 mesh ore was used with a pulp dilution 

of 2Q%. After every flotation separation the flotation cell and small 

buchner funnel were cleaned thoroughly with aqua-regia followed by 

washing with water in order to prevent any possibility of contamination 



_~~_., 11 p 

by either concentrate or tailing and middlings of the previous run. 

Every run of concentrate was recycled several times in order to get a 

sufficient amount of pure concentrate for further study of particular 

minerals. 

The methods and flotation reagents used for separation of the 

different ~ulphides and gangue minerals were based on recommendations 

in the books by Pryor, Sutherland, Wark and Taggart with slight modi-

fications where necessary. 

Separation of gangue from sulphides: 0.8 lt water with p.H. 8.5 

was used in the one litre buchner flotation funnel. After introducing 

air gently into the flotation cell, 4.5 mgrs of Potassium ethyl-xapthate 

per 100 grs -48 and +60 mesh ore is ~dded as collector. A few medicine 

drops of Cresol, CH
3 

c
6 

H
4 

OH, as a frothing agent were also added and 

after waiting for even mixing to occur, the dried sample was added. The 

bubble rate was then increased to achieve flotation. The critical points 

throughout the process are: 

(1) T~e rate and density of air bubbles. Cresol alone gives fewer 

and larger bubbles than a mixture of cresol and creosote, but the latter 

frothing agent also caused flotations of gangue, so cresol ala~ was used. 

(2) p.H. of the pulp. If it is less than 8.5, gangue also floats 

with sulphides. This was checked by a Pye p.H. meter, using dilute sodium 

hydroxide or sulphuric acid for adjustmentso 

Sutherland•'·s & Wark' s method combined with Dow's method (Pryor, 1965) 

·is used for chalcopyrite separation from other sulphides and gangue. 25 

mgrs of potassium ethyl-xanthate per litre of pulp as collector, 0.45 grs 



of ZnS04 with 0.15 grs of Na2 so
3 

for sphalerite and 0.30 grs of GaO for 

pyrite per lOOgrs. of ore were used as a depressant. 6 or 8 medicine 

drops of cresol and 2 or 3 medicine drops of creosote were used as 

frothing agent. The acidity ·of the pulp was maintained at 5.5 with 

addition of sufficient dilute H2 so4. 

For sphalerite, 26.7 mgrs of sodium eli-ethyl dithiocarbamate per 

litre of pulp were used as collector, 150 mgrs of GaO depressant for 

pyrite but activator of silicate; similarly 150 mgrs of Na2 so
3 

per 

100 grs of ore as depressant for pyrite, but again activator for silicate; 

4?0 mgrs of Gu so4 (or copper acetate) per 100 grs of ore as activator 

for zinc, iron, cobalt, nickel sulphides; 6.8 mgrs of cresol per 100 grs 

of ore and 2 medicine drops of creosote were used as frothing agent. 

During the flotation test the acidity of the pulp was kept atabout p.H. 

5 but not greater than p.H. 6.2. 
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