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ABSTRACT

The project deals with an investigation to determine experimentally the
axial and bending strains (noermal toe the plane of the mechanism) in the
two connecting rods of the weaving mechanism of a small textile loom.

A complete theoretical, kinematic, force and stress analysis has. been
made on the six-bar chain constituting the mechanism. The peak to peak
strain values have been measured at various different crank speeds. The
nature of the bending strains in a direction normal to the plane of the
mechanism have been further examined by static tests which have been
performed on the mechgnism. Measured dynamic strain data for the
connecting rods is preéented and comparison is made between calculated
and measured values. Experimental results for axial peak to peak and

cyclic strain varlation showed good agreement with the calculated values.,
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Introduction

1 Stages encountered during the development of the Project

The primary objective was to determine both theoretically and exper-

imentally the axial forces and the corresponding stresses in two of the

linkage members of the mechanism. For this purpose pairs of strain gauges

were placed on opposing faces of the rods in a configuration capable of

measuring axial strains as well as bending strains in a direction normal

to the plane of the links. Bending strains in the plane of the linkage

could not be measured because of space limitations and the complex shape

of the connecting rods which prohibited alternative placing of the gauges.

Two different % bridge 120 0 strain-gauge circuits were available to measure

axial and bending strains independently. The bending strains. were expected

to be zero.

However in the course of the measurements it became apparent

that substantial bending stesses were present in these members. To confirm

the dynamic strain measurement results and to determine the nature and cause

of the bending strains a set of static tests was carried out on the mechanism.

The steps taken to achieve these objectives were:

1

2

A detailed examination and description of the machine

A complete theoretical kinematic, force and stress analysis
Preparation of the experimental set-up

Determination of basic material properties for the two connecting rods
Measurement of dynamic strains

Static tests on the mechanism aiming to find out the nature and

cause of bending strains in a direction normal to the plane of

the mechanism

Comparison and discussion of experimental and calculated results.




2 Historical background to the Investigation

Bonas Machine Company Ltd., of Sunderland, England,have started to
manufacture a high-~speed weaving loom that weaves ribbon or tape. The
loom was hoped to operate at 4000 r.p.m, but it was found that some of
the moving parts fractured below this speed. By the increase of speed
stoppages due to component fracture occurred more frequently. At the time
of the initiation of this project the loom ran commercially at just over
2000 r.p.m. The basic problem was the short term fatigue failures of weft
needle arms and the reeds. Thefe were also failures of the connecting
rods and links. Although dynamic stresses in the needle arms and reeds
have been measured experimentally and calculated anélytically in a previous
study ( 24 ), nolinvestigation had been made on the link mechanism driving
the components. To improve_the operating characteristics of the machine, the
designer suggested that the following major points should be considered in
further projects;

a Measuring fhe strain of the combonents under investigation under

various conditions

b Interpreting the results

c Suggesting possible design changes which would increase the

maximum speed of the loom

In order to be able to suggest solid changes in design, the driving
mechanism, weaving components, lubrication system and power transmission
mechanism should be studied in great detail analytically and experimentally
involving fatigue, material, structural, dynamic and economical analyses

with different models.



3 Plane Mechanisms in General, current research and short bibliographical

review

If all points of the curves of motion of all the links of a mechanism
lie in one and on the same plane, the mechanism is called a plane mechanism.
A mechanicsm can simﬁly be defined as a combination of machine elements
arranged to achieve a certain motion. Since it deals with the composition
of members of a machine into an assemblage to perform a task, to produce
a new and unusual result, mechanisms are one of the most fascinating topics
in the field of mechanical englineering. Machine design.is a creative art
involving the possession of careful analytical ability, good judgement and
a broad experience. The basic factors which must be taken into consideration
in general machine design are: utility, safety, cost, strength, rigidity,
deflection, friction, lubrication, wear, heat, noise, flexibility, control
and appearance. A tremendous amount of work has been published on various
aspects of mechanisms especially in the last two decades. The introduction
of computers into design work has accelerated the research a great deal.
Numerous new methods have been developed. Today the techniques for studying
the dynamics of mechanisms can be classified as kineto-static or time
response approaches ( 4 ). Current research topics in the field are
concentrated on:

(a) Optimum mechanism design combining kinematic and dynamic force

conside?ations.

(b) Synthesis of linkage function generators by means of mathematical

methods, models and computers,

(c) Shaking and bearing force optimization.

(d) Experimental and theoretical study of connection forces and

frequency response characteristics.



Dynamic effects in mechanisms become important as operating speeds
increase and as light low power consuming economi;él gesigns are sought.
In the design and experimental examination of éhe strength of mechanism
links the state of stress and strain has to be investigated. Strength
may be checked both theoretically and experimentally, however it is
usually impossible to calculate stresses theoretically. Theoretical
calculations are sometimes too inaccurate because a number of premises
and assumptions have to be made. Most components and members are stressed
three~dimensionally but with the existing methods of measurement only
stresses at the surface can be determined and these do not give an overall
picture of the stress distribution, The most expedient way of studying
strength problems for mechanism links i; to supplement theoretical calculation
by experimental data and coeffiecients,

The efficiency of linkages is greater than that of any gear or cam due
to their small frictional losses and high power.transmitting ability. The
four-bar linkage due to its simplicéity has been used for transmission of
motion in general. Although it is the simplest possible lower-paired
mechanism, since more complex mechanisms have four-bar linkages as elements,
the theory of the four-bar linkage is useful in designing of these mechanisms.
The recent major contribution in this field can be found in ( 1 ), ( 25 )
and ( 4 ). Mechanism dynamics deals with the motion of a mechanism in response
to actuating forces, torques and also the forces and torques produced by a
given mechanism motion. Controlling force and torque levels is an important
concern in avoiding problems of fatigue, vibration and noise. Most of the
present dynamic design procedures start with a mechanism skeleton, distribute
the mass of the members, and add springs or dampers to meet dynamic performance
criteria associated with shaking moment, input torque balancing, and dynamic
time response synthesis (25 ), (10), Elasticity in the links of mechanisms

has a substantial effect on the dynamic behaviour.of the mechanisms. The



introduction of clearances in mechanisms causes a substantial increase in
the connection forces resulting in degradation of life and performance
( 16 ). In mechanisms axial loads are induced in the links by impacts
at bearing surfaces and by operating loads. Impact-induced axial loads are
highly transient in nature ( 16), Kineto-elastodynamic analysis, which is
the kinematic and dynamic study of mechanisms in motion including the
effects Qf'elasticiﬁy and mass distribution has recently been given increased
attention( 25 ). Imam and Sandor divide fhe complete mechanism design
process into the following three steps:
(1) Selection of the type of me chanism
(2) Selection of the design parameters to satisfy kinematic
requirements
(3) Selection of the design parameters to satisf& dynamic and
kineto-elastodynamlic requirements - mass distribution, inertia
and'reaction forces at the joints and bearings, transient
and steady state vibrations, frequency and time response,
elastic -deformation of the components, dynamic stress in the
links, impact, dynamic stability and balancing.
The basic criteria in designing and optimizing the areas of cross

section of mechanism links are ( 4 )

1 - The deviation (elastic deflections) from the ideal performance
(rigid body motion) must be within the prescribed tolerances

2 - The mass of the linkage is to be minimized

3 - The stresses in any of the links are not(E; exceed the endurance
limits |

4 - Various combinations of the criteria such as mass, deformation

and stress are to be minimized
A new method of kineto-elastodynamic design of high-speed mechanisms,

which is general for all planar linkages including multi-loep and multi-degree-

- of-ireedom mechanisms has recently been presented ( 25), Of special interest

‘to this work is (15) which is consideted and:discussed in Chapter-5,
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Chapter 1.

Description of the Machine.

The machine is a small . variable high-speed .. weaving loom designed
to manufacture ribbon or tape. The main body consists of a rigid steel

case enclosing the sump and lubricating mechanism above which is mounted

//,,an—H:shaped mechanism unit box. The whole complex is mounted on a

.'/

nm - shaped,/box section steél platform. The main control box is mounted
on the right side of the body while the opposing face is reserved for the
power transmission, An inspection cover is fitted to the front of the main
body. The important weaving components are mounted externally to the rear
and top of the mechanism unit box. The main body and basic features-are

shown in Fig. (1.1) and Plate (1.1)

1.1 Power Transmission System

Originally an "Elektrim 1410 r.p.m., 1.1 kw, 1.5 HP, 415 V. 2.5 amp"
constant speed electric motor was fitted to the rear of the main body. The

replacement was a 3 phase, 2 HP variable speed (480-4320 output r.p.m.)

electric motor, The motor was mounted en the rear end of the  -shaped

‘platform, complete with an adjustable carriage which enabled belt adjustment

to be carried out. AC current is taken directly Irom the floor by an insulated
cable fed into the switch box. A-"Fenner B 1800 B69'" V-belt was -used to
transmit the power to the intermediate shaft. Fitted to the intermediate
shaft was a 40 tooth pulley driving via a timing belt the 20 tooth pulley
fitted to the main drive shaft. The timing belt-used was "Fenner 240 L 100",
The V-belt also drove the oil-pump shaft end dis;. (Fig. 1.1). A handwheel/
flywheel was attached to the main drive shaft. The intgrmediate V-belt
pulley was manufactured to suit the available belt. All ﬁulleys were fitted

to their respective shafts using ''taper-lock" drive device. The two inter-

mediate pulleys were first screwed together before fitting to the shaft.
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At speeds in excess of 2500 r.p.m. (main drive shaft speed) slip was

detected between ''taper-lock' device and the main drive shaft. Due to

vertical eccentricity in the axes of the motor pulley, intermediate
shaft and main drive shaft excess wear was observed on the v-belt and on

the timing belt,

1.2 Mechanism Unit box.

The left(drive) and ‘right (output) end sections of the mechanism unit
box, with covers removed, are shown in Plates (1.2) and (1.3). Plate (1.4)
shows the right end section complete with connecting rods. In figures (1.25
and (1.3) the mechanism is shown as actual shafts and links and as pin
jointed rods respectively., The main drive shaft goes through 01 causing
the crank arm OlA to rotate with constant angular velocity. The rotary
motion of the crank arm is transmitted to the rigid triangular link 4 via
the coupler (link 3). The crank arm, coupler and rigid link 4 represent
an offset crank-rocker mechanism, The oscillatory motion of link 4 is

transmitted té shaft O, via the connecting rod link 5 and link 6. The

3
connecting rods, rigid link 4 and link 6 are shown in Plate (1.5). The

specification of the links are given in the following table:

-Table 1.1
Experimental
n
i : i Experimental :
Linle Material pxperimental Moment of inerti BHN
" No. - Location of Mass about mgss centr
centres kg - m
- — ; — .
3 Phosphor. 12 mm from A 1 5.84 x 10 ; 117
Bronze alloy
' ' -5
4 Carbon Steel 7.5 mmsfrom 02 4.35 x 10 -
300 from Y2 C
Phosphor : . -6
5 Bronge alloy 1.45 mm from C 7.5 x 10 142
1 -5 .
6 - Carbon steel| 1 mm from Og4 :2.26 x 10 . -
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The main drive shaft, which was manufactured hollow to allow for lubrication,
is shown in Plate (1.6). The diameter varies from point to point. A
detailed crahk-arm end drawing is shown in Fig. (1.4). The rigid triangular
link 4 is attached to shaft O2 by a clamp mechanism and secured with a key,
while link 6 is attached by a similar clamp mechanism but without a key.

At high crank arm speeds (approaching to 2500 r.p.m.) slip between link 6
and shaft 03 caused stoppages and mechanical damage. Lubwrication was
hydrodynamic in the shaft bearings. Lubricant enters the bearings via
converging channels to support the shafts without shaft to bearing contact.
Hollow head cap screws were used to fit the bearings to the frame. The
shafts were not secured against movement in a direction perpendicular to

the plane of the mechanism. At right angles to the axis of the shaft 02

is the rotation of the needle arms produced by pairs of bevel gears on the

needle arm base and shaft 02.-

Detailed drawings of link 6 and shait O

3 with the comb, are shown in

Fig. (1.5) and (1.6). The horizontal positioning: of the shafts are shown

in Fig. (1.7) The specification of shafts O 0 -and 0 are presented in

1’ 72 3
Table 1.2,
Table 1.2 .
':
i ha ft mass Exp. moment of inertia
sha about masszcentres Function
no. kg . kg_m
-4 . )
| o 1.409 8.72 x 10 Main drive shaft delivers power
1 (with the hand wheel) to the system
l
j T
| v —5 [} Y I}
0, 0.699 9.22 x 10 Carries a pair of partial bevel
(with the bevel gears) gears to rotate the needle arms
l
-4 o
o3 0.805 3.06 x 10 Carries a pair of combs for
(with the combs) weaving
/
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The experimental moment of inertia values presented in Tables 1.1
, and 1.2 are determined by a trifilar suspension. The needle arms and
shaft O3 with the comb and bearings are shown in Plates 1.9 and 1.10.
The masses of links 3, 4, 5 and 6 are: 0,116 kg, 0.116 kg, 0.0283 kg and
0.0749 kg respectively. The mass centres of the links are determined ﬁy
using a knife edge. The top view of the mechanism unit box and shaft O2

are shown in plates 1.7 and 1.8 respectively.
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Chapter 2

Kinematic Analysis of the Mechanism

2.1. Introduction to Kinematic Analysis of the Mechanism

Recently a variety of methods have been developed for dynamic and
kinematic analysis of mechanisms such as methods based on kinematic
constraints, mptorVﬁigébra, matrix methods, quaternion and dual—ﬁumber
methods, relative.motion and incremental equations utilizing numerical
methods, in additidn to the classical methods, Other basic methods are;
Quinn's energy distribution method, Lagrangian method, solutions employing
complex polar notation and complex numbers, kineto-elastodynamic analysis,
Raven's analysis, velocity analysis by instantaneous centres, velocity
analysis by components, velocity and acceleration image method, graphical
and analytical velocity and acceleration analysis and various algebraic
methods. In the following sections a complete kinematic analysis of the
mechanism is presented to speclify the motion of the mechanism and to
determine the kinematic values. It is a;sumed that all the links of the
mechanism move in the same plane and the crank speed is constant.

2.2 Geometry of the Mechanism

From Fig. .1); for _y. 0°—_3%360°

OE = cos( {.) (0.011)
AE = sin (¢ ) (0.011)
AF = AE + 0.005

0,F =0.048 - O.E

A0 = am? .+ (0,
n.o= tan-l (lﬂi-

0F
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. 2
zek = cos 1 0.00128 (AOZ)
. 2
(-0.044) (Aoz)
-1 0.002248 - (AQ )2
cal = cos ) 2
(0.001848
o
¢ = 180 - (zek + cal)
.B = o - 'n
v = 180° - (n+ zek + 750)
-3 0.032 - sin (y) (0.022)
9 = tan
0.042 - cos (y) (0.022)
co, = 0.032 - sin (y) (0.022)
sin (.o )
- 2 o 22 2
van = cos-l (0.029)° + (003) (0.02)
2
(0.029) (003)
X\ T van + A
. 2 - 2
© - éos 1 (0.02) + (003) (0.029)
(0.04) (003)
upa = , - teta

yum = 180° -(x) + upa)
all the angles are in degreés. Relationships between - , y» X ) and upa
depend upon the link lengths. Numerical variatioen of v, 8, X) and upa with
'y are given in (A1l ) and are shown graphically in Figures (2.2), (2.3)
(2.4) and (2.5). Variation of the transmission angles, cal and yum with
'y are shown in Fig. (2.6)
2 ,3 Velocity and Acceleration Analysis - Analytic méthod

Angular positions of links 3,4,5 and 6 are determined relative to the

X axis



25

sat1duiv) T1sd aT3ue jueado ayl iqe vwed af8ue Jo uorilerraesy F'Z "Std

(UOT108ITP OSTMHOOTD 191UNOD UT TBIUOZT.LOY WOIE poins pga
- . .....I.,. .
. . pa—

09¢

2097

.09} 09 . o 0

1sd

/
... .k
5

DWDH




26

(UOTIOAITP BSTMNDOTD ISIUNOD UL TBIUCZTAOY WOII POINSeaul seT3ue) ﬁma@mﬁmcm xcmpo.GCp Aq =18q o18ue y0 uotrzeTIEy £°Z 314

) 09 ¢ 007 i 200 ] 0
) I'sd | | . <
. 01
/ AN
/ N
\. . / +0¢
| | N\
\
,oo.m
.ooq
" Dlaqgy

._s i

EY




27

08¢

(UOT1D8ITP 9SIMYOOTD2 UT TelUOZTIIOY WOII paanseau edn pue
UOT108JITP SSTMMNOOTD JI91UnOD UT TBIUOZTJIOY WOIT paxnsesw o918uz Wuead) 1s@§ o18ue. queao aya yitm edn o[8ue Io uoTleIIEN P°¢ "STJ

2,007

2001

Isd

pdn

0l

0¢

0€

+ 0%




.28

- o & A = — s .H H Ll b b ©

oomm

0.

lsd

1,007

. 001

01

- 0§

Q6

QE.U__.x Y




30

The velocity of A is;

VA = Olﬂ.m2 0 (where © shows angular position)
where 8 = ¢ + 90°
Wy = angular velocity of the crank arm in rad/s

The velocity of B is:
= vV
Vb B £ 9
0
where g = « + 165

The velocity of B with respect of A is

Vaa Vg < ©

where @ = g+ 90o

the directions are assumed for VB and VBA may be incorrect. Subsequent

calculations will indicate whether this is true or not.

The relative velocity equation is;

transforming V_, VA and VBA into complex ‘regtangular notation;

G + d¥p) = Gk, + 3y, + (g, + 375,) (2.1)

L] [
where X, and yA ‘are known

Knowing the directions of VB and VBA;

L .
Yp
B

*B

tan(y + 165°) (2.2)

YEA = tan (g + 90°) (2.3)
iBA

. o '3 °

solving equations (2.1),(2.2) and (2.3) simultaneously, Xpa' Ypa' *B a“d.yB

can be determined.

The angular velocity of links 3 and 4 may be calculated as;

Vv v
(:Ds = BA and 0.)4 = B
AB 0_.B
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from the geometry of the mechanism;

v (in magnitude)

<
1]

B C
= £
Ve = Y%
where
o =y +090°

the velocity of D is;
= VvV &L
) p_ @
where
(o]
6 = 90" - ypa

the velocity of D with respect of C is;

_ v <
Yoe = pc €@

where
o
p= x3) + 90
the relative velocity equation is;

VD. = VC + VDC

transforming into complex rectangular notation;
o .. . .. (. .. )
(xD + JyD) = (xC + ch) + Xpe + 3¥pe

. . . a v
knowing the directions of VD nd DC

12 = tan (90° - upa )
X

D

yDC o
- = tan (x) + 90°)
X

DC

solving equations (2,4),(2.5) and (2,6) simultaneously,

. . [ ] .
X Voo, X and=yD can be determined
DC’ BC D

thus, the angular velocity of links 5 and 6 are;

(2.4)

(2.5)

(2.6)



32

the components of acceleration can be obtained as follows;

where
o
) = w + 90
t
AA = 0, since dz = 0
r 2
AA = OIA. Wy, 0
where
g = -(180° - ¥.)
r , 2
ABA = AB, Wq £ 9
where
8 = -(180° - B)
r 2
AB = OZB' W, £ 8
where
8 = -N180° - (75° + v

from the geometry of the mechanism;

=
l

Acr {in magnitude)

>
0l

Act (in magnitude)

both ABAt and ABt are unknown and are to be determined

The relative acceleration equation is;

AB + AB = AA + AA + ABA + ABA (2.7)

transforming the acceleration components into complex rectangular notation

and substituting into equation (2.7) produces
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(th + ijt) + (xBr + ijr) = (xAr + ijr) + (xBAt + ijAt) + (xBAr + JyBr)
(2.8)

the required slopes of these components are such that;

tan (y + 165°) (2.9)

tan (90° + g) , (2.10)

by equating the real and imaginary parts of equation (2.8) and solving

) [ X} t o e

. . ' t t
simultaneously with equations (2.9) and (2.10) gives Xg yB » Xpa and Ypa

The acceleration of B is;

t r
AB = AB + AB
where
t Tt 't
AB = X + JyB

t r
ABA = ABA + ABA
where
t (Y] [} )
ABA = xBA + JYBA

the angular acceleration of links 3 and 4 are;

Q
11
E o
R
]

V)
E

o

>
os]
O
(o}

similarly, the relative acceleration equation for links 4, 5 and 6 can be

written as

A cAa T AT+ At ia i (2.11)

t



34

where
ADr = D03 wez Lo ; 8= 3600 ~ upa
r 2 . _ o
Ao =1DC g Zg; =180 + X\
r r o
AC = a, .o g =180 + ¥
t t (o]
AC = a.c L 07 0 = v + 90
.2 t FY] t oo r .o r .
Xo and Yo are therefore 'known as well as Xq and Yo - Again by transforming

equation (2.11) into complex rectangular notation;

€ 2e se ae 20 ve

LX) a0

t .t Yr Vory r ’r ek T - t, .t
Xp +dyp )k Gtk dyp ) = O Y ) o+ Ok Gy )+ O+ Gy )
N S ;
e + g (2.12)

the required slopes are;

= tan (90° - upa) (2.13)

and

(14 t
Ype
vt
DC

= tan (x) + 90°) (2.14)

ow [ X4 o” v

. t t t t
from equations ( 2.12.), (2.13) and (2.14), Xy s yD » Fpo and Ype can be

obtained.
t £ g
At -
p =% *t I

the acceleration of D is; °

t r
AD = AD + AD

angular acceleration of links 5 and 6 are;

ot
o = 8pc
5 DC
at
_ %
e = —m
5 o
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Variation of thg angular acceleration of links 3,4,5 and 6 with crank
angle 'y . are shown in Fig. (2.8). Fié. (2.9), Fig. (2.10) and in Fig.
(2.11), Variation of angular velocities of links 3,4,5 and 6 with the
crank angle . are given in Fig. (2.12) for a crank speed of 2500 r.p.m.
Ratio of angular velocity of the individual links to crank arm angular
velocity is shown in Fig. (2.13), for a complete revolution of the crank
arm. All the kinematic values calculated above, are presented in (Al)

for a crank speed of 2500 r.p.m.

2.4 Algebraic Approach
The system is separated into two loops, Fig. (2.14, a and b) Fig. (2.15)
The first loop represents a crank-rocker mechanism, also known as a crank-
lever mechanism, which is a popular type of the well known four-bar linkage
for converting continuous rotary motion to escillation, The second I?PP is a
four-bar chain attached to the rigid link 4 of the first loop at point C.
The two extreme positions of the output lever (link 4) of the first leop are
expected to occur when crank arm (link 2) is in line with the couple:.
i
Proportions of the mechanism satisfy Grashoff's criterion as in the following:
Base link {coupler + (output lever-driving crank)
4.8 <5.3
Base 1link) coupler - (output lever - driving crank)
4.8) 3.1
Let A,B,C and D be lengths of input crank, coupler link, output lever, and

base link of -the first loop, Fig. (2.14a)
dl, 02 = angles showing dead-centre positions of output link
AB=8y "By " m

the unit of angles being in degrees.
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By using complex algebraic notation, the displacement equations can be

expressed as;

(A +B) e = D+Ce (2.15)

iBy 1(Bg = m iog
Ae + Be = D + Ce (2.16)

equating real and imaginary parts of equations (2.15) and (2.16) respectively;

; (A + B) cosg; - c cosy, = D (2.17)
| (A + B) sing, - C sina1 = O (2.18)
(A - B) cesg, - C cosp, = D (2.19)
(A - B) sing, - C siny, = O (2.20)

from equations (2.17) and (2.18);

C s:i.na1 D+ C cosa1

A+B = —= = —= (2.21)
singy cosgy

from equations (2.19) aid (2.20)

: (& sinwz D+ C cosaz
A-B = ——m = e — (2.22)

sinB2 cosB2

from equation (2.21)

singl L.

. —— (2.23)
sin (a; - 8,)

- c

from equation (2.22)

. (2.24)
D sin (g, = By)

equations (2.23) and (2.24) are combined to give;
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sin 31 sin (al - Bl)
- . (2.25)
sin (g, + A8) sin (o) + A@ = By ~ AB)

by expanding equation (2.25) and making the following substitutions;

v =oap + Ax - AB
8 dl
A = AB

P = COS § COS ) — cOS vy
q = sin vy + cos § sin ) - sin § cos )
r = =sin § sin )

p tan2 Byt @ tan gy + r = o (2.26)
where x = tan By
yield the quadratic equation;
2
px +qx+r = 0 (2.27)
where the initial angle of the input crank is;

Bl = arc tan (+ Xx)

(+ x) being the two roots.
There exists only one real root which gives the solution of Bl' The

initial angle of the output lever arm can be calculated from;

a (k + b)
@1 = arctan |7 — (2.28)
bf - ah
where
£ = 'Bl + Ao = AB
a = sin Bl
b =

sin 82
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f = cos 31
h = cos E
k =.sin E

from equations (2.15) to (2.28), the following values have been calculated

" for loop 1;

By S 201°

B, £ 25°

Q

Ve

o = 90

o, = 151°
It is desirable to have the transmission angledeviation as small as possible
throughout the range of operation. The minimum permissible transmission
angle depends on the magnitude of the transmitted forces, joint Iriction

and manufacturing tolerances. The extreme values of the transmission angles

are shown in Fig. (2.14 b). From .the cosine law;

(2 2 3

B + C - QD - A)z
T = arc cos (2.29)
min i 2 BC _J
_ A
B2 +C% -+ A)*
m = arc cos (2.30)
max 2 BC
and
Az + D2 = B2 + Cz
while;
c singy 5 c singy
= S or = S D
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r, + r r, -~r
A =(+—2) ¢ B=(1 2)0
2 2
where;
sin o sin o,
= 1 = 2
y —_ g = —=
sin g, sin B,
s, = sin (al - Bl)
s, = sin (az - 52)

substituting numerical values into equations (2.29) and (2.30)

~, o
Bmin — 62
r~ R o ]
A umax umin = 72

In order to have a smooth motion throughout the whole range of operation,
transmission angle is otf the utmost importance. Freudenstein (1) has

shown that a good choice of transmission angle also coincides with minimum

TN
-

.'/

overtpnes_gﬁ the output lever, although a large transmission angle does

not necessarily guarantee low fluctuation of torques. The force transmission
from the coupler to the output lever is ideally effective when the transmission
angle is nearly 90o or deviates as little as possible from 909. A good
discussion of the equations and procedure applied above are given in ( 1 ).
Dead-centre positions of link 6 and link 4 axe shown in Fig. (2.15). Variation
of the transmission angle, yum, with crank angle psi has been presented in

Fig. (2.6). Oscillating motion exercised by link 4 is transferred to link

6 via the Intermediate link 5.

2.5 Application of Raven's Analysis

As shown in Fig. (2.16) each link is replaced by its position vector.
Two seperate reference. frames have been taken, x-y and'xl-y1 corresponding
to two seperate but dependent loops, loop 1 and loop+2 writing the summétion

law for the first loop, gives
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R. +R, +R, +R, = 0 : (2.31)

1l 2 3 4

Transforming to complex notation,

.

e = 0 t2.3la)

In differentiating eq. (3.31a)

.e . .
J Jo je
. ° 2 ., ° K] ° 4
Jrzeze + Jrg e + ;]r4 e = 0 (2.32)
rl,rz,ra,r4 and 91 are constants.
. [ ] ° [}
Letting 62 = wy > 93 = Wg and-e4 = Wy s gives
JBg Jog Joy
Jrowye + Jrawge + jrywe = 0 (2.32a)

Equation (2.32a) contains the following quantities;

Vo = Tawgr Vg = Tawzs Vg = Tawyo
and is the solution of the equation

Vg = Vat Vg

After a transformation to complex rectangular notation and a seperation of

the real and imaginary terms eq. (2.32a) becomes;
NN cose2 + a0 cose3 + T, cose4 = 0 (2.33a)

0 (2.33b)

T Toup SING, - raws singy - ryw, sing,

The unknown quantities in equations (2.33a) and 2.33b) arewganduh.
Since there are two equations and two unknowns, W and w, can be determined.

By differentiating equation (2.32a), using a uniform angular velocity

of 2, gives

.0 0 0 . 1]
'2r é éjez + jr " eJ 3 + '2r - eJ 3 + jr 5 eJ 4 + 'zr 5 eJ 4 = 0
J ryaBy JTqwg J Tauy6y IT 0y J Ta0,04 =

(2.34)
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.2 .
where j = 1 and g = an
i | ¢ Q 0
) 38, 38, 38, 39, ) 39,
- £ - o - =
AN e + Jrsase rowg © + r,2 e r,m, e 0 (2.34a)

the terms are identified as;

a r 2
a = Towg
a r r 2
BA ~ "393

r 2
8 = Tauy
t- —
gy = T3
at =r
g T 4%
a t = 0
a

corresponding to the acceleration polygon.

using the equation

Je
e = c¢osg + j sin g

equation (2.34a) can be transformed into complex rectangular notation.

Separating the real and imaginary terms gives;

2 . 2
- - 3. - - o - 1 =
r2w2 cose2 r3a3 s1ne3 r3w3 cose3 r4 4 sine4 . r4w4 cose4 0
(2.35a)
-r 2 sing, + r cos - sin + r cos -r 2 sing = 0
ol g * Tg¥g €086 " Trquwg B3 T Tya, ©0S6y T Tuw, 4

(2.35p)



52

the only unknowns in equations (2.35a) and (2.35b) are @3 and %;. The
simultaneous solution of these equations utilising determinants yield
values of a3‘and oy

Writing the summation law for the second loop gives,

Jey Jeg jo3 J0a
r, e + r. e + r.e + r e = 0 (2.36)

1 r 1 and 911 are constant

where r 1 T r
1’ 2’3’4

differentiating equation (2.36) gives

s 1 o 1 ‘ » 1
jog j03 38y
. le 1 . lo 1 . le 1
iry e, e + Jrgigg e + Jr, g, @ = 0 (2.37)
R 91
Letting 92 = uy
v 1
8 = wg
[
1
64 = W
0,1 0. 6,1
1 2 p % p 4
Jrz w,© + Jrg wge + Jr, wge = 0 (2.37a)

equation (2,37a) contains the following quantities;

1

Vc = Ty
1

Voe T T3 ws
1

Vp = T4 wg

v = V. +V
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After a transformation to complex rectangular notation and a seperation of

the real and imaginary terms eq. (2.37a) becomes;

]
o

1 1 1 1 1 1
Ty wyCO8Q, + Tg wgCOSgy + T, hsCOSE, (2.38a)

sin941 0 (2.38b)

1 1 1 1l
- r sine2 - r3 w551n83 =T, wg

2 %4
The unknown quantities in equations (2.38a) and (2.38b) are wg and wg

Solving them simultaneously gives-w5 and wg* Differentiating equation

(2.,37) gives;

1 1 A A 1
Jez 38, ) 30, 384 39,
171 °1 2 1 101 2 .11
jr2 62 e r, 0 9 © + jrg 0 3¢ ra 0 3 © + Jr, 8, ©
Jg 1
4
- 1°1 2
T, 0, © = 0 (2.39)
where
” ] *1 2 2
62 = oy 5] 2 = Wy
o0 1 o °1 2 _ 2
8 = T O3 =
abd [ 4
i 1l . . 1 . 1
%2 _ 1278 jr S8 _ 1.29% 1 84
g oy 2 Wy 3 % 3 Y Ty %
] 1
o, Je gy |
- r4lw62e = 0 (2.40)

af = r 1 2
c T T2 W
a t - r 1l
c = T2
r
a = I‘l 2
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at—r1
Dc ~ ~305
a r - r 1 2
D T T4 Wg
at = r o
D - 4 76

r t r
D D C c A *tin

corresponding to the acceleration polygon using the equation

e’® = Ccos g+ j sin g

equation (2.40) can be transformed into complex rectangular notation.

Seperating the real and imaginary terms gives;

- ld sin 1. r 1 2 cos O 1. r 1 sin © 1. r 1 cos B 1
Tg % 8y 2 Wy 2 3 % 3 3 Y% 3
1 . 1 1 2 1 ,
- T, oy sin g, r,wg €05 6, = O (2.41a)
1 1l 1 2 1 h 1 1l 2 1l
- : 5 o -
r, @, cos g, r, w, sin 92 + ryt ¥y cos gg rs g sin 93
1 1 1 2 1 '
+ I, g COS §, T, wg sin 94 = 0 : (2.41b)

" The only unknowns in equations (2.41la) and (2.41b) are o5 and oge A

simultaneous solution of these equations yield values of . and g

5
2.6 Graphical Approach

The velocity and acceleration polygons have been solved graphically

for a set of different crank positions and are presented in (AZ2).
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2.7 Energy variation of the system

The total kinetic energy of the system at any instant is composed of
the kinetic energy of translation about the mass centres of the links and
the kinetic energy of rotation about the mass centres of the links and
shafts. This can be expressed as. in the following form;

Total kinetic energy = % [1I 2 I A SO I S R S U SR 21
¢ 8Y = 7 Llgyw, + lzwg * Zgowg * “awg T *sW5 T “6We T “03We

2 2 2 2 2
+ % [mZVgz + m3Vg3 + m4Vg4 + m5Vg5 + m6vg6 1 (2.42)
where vgl-;G = linear velocities of the mass centres of the corresponding
links

. 2 2 . .
in equation (2.42) IOluﬁ and mZVgZ are constants (since g = Q). The var-

iation of the kinetic energies due to rotation of shafts O link 4 and

2’ o3’
link 3 with the crank angle as shown in Fig, 2.17. The total kinetic energy

due to translation is negligible in comparison with the kinetic energy due

to rotation. Therefore equation 2.42 can be reduced to;

2 2

+ + 14(”4 + I

2 2 2
+ Igwg + Iggwg 1+ €

Loy 5Ws5

Total kinetic energy £ %[Iswsz

(2.43)

2
where C = % L

variation of the total kinetic energy (excluding C) with the crank angle is

shown in Fig. 2.18
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Chapter 3 Force and Stress Analysis

3.1 Kinetostatic Approach

The motion of the mechanism is completely specified and the purpose
is to compute the bearing reactions, shaking forces, shaking moments as
well as the forces.and the torque required to produce the motion. The
size, shapé and material of each link are.knqwn. The inertia forces
are taken as if they acted at a polnt on the links, although they are

"distributed along the links and are not concentrated at one point. In
the following analysis the concern is only with the forces at points
where the links are paired with other links. These forces are treated

as external forces on the links. The shapes of the links are assumed to
be rigid and the pin joints are considered to be frictionless. The
ineftia effects of the individual links, in comparison with the inertia
effects of the shafts through 02 and O3 are reasonably qegligible and
this aspect of the dynamic analysis has been shown in further steps.
However for é detailed dynamic analysis of the system, which is beyohd the
scope of the objective, the distribution of the inertia forces along the
link can be important. In most advanced engineering cases the stresses
due to inertia forces are determined by breaking the link into equal
length sections. The inertia Iorce'for each section is determined from
the mass of thé section and the acceleration of the midpoint of the
section which represents the distribution of the inertia forces along the
link @1 ). in cases where the links are not of uniform cross section
the accuracy of this approximation depends upon the number of sections
that the link is broken into. By increasing the number of sections a

greater accuracy can be achieved.
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A solution to the dynamic force analysis of a four-bar planar
mechanism has recently been presented ( 4 ), as a set of algebraic
equations. The forces along the links 3 and 5 cause pure normal
stresses, and the normal forces cause bending stresses. In thg actual
case the normal stresses vary along the links because of the inertia
férces. The system has a single degree of freedom, the angular pos-

itions of links 3, 4, 5 and 6, given by @, (t) = B, @&, (t) = v + 75°
. 4 Y

3
¢5 (t) = x\ , and ¢6 (t) = 360° - upa, are functions of the angular

positioen ¢2 (t) = ¢., and the length of the links. The link lengths
are denoted by li , 1 =2, 3, 4, 5 and 6, and each of the moving links

has mass m, , i =2, 3, 4, 5, 6 and a moment of inertia I

i with respect

i

to the centre of mass. The locations of the centres of mass of the

members are detined by parameters 1. and ei' The bearing reaction Fij

i

is the force of member i on member j. The D'Alembert couple on link i is;

ix i Tix
and

Diy = = mi aiy

where aix and aiy are the corresponding acceleration components of the

centro of mass of member i. The motion of the mechanism is known and the

inertia loading on the system is defined. T, is the external torque on

2

the input link 2, required to produce the prescribed motion., The dynamic
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equilibrium equations for the five moving links yield the following

system of fifteen linear algebraic equations:

D, + F12x - F23x = 0 i (3.1)
D2y + Froy ” F23y e ¢ (3.2)
Do *Fon “Fgp = 0 i, (3.3)
D3y + F23y - F34y = 0 w...... . (3.4)
Dy * Fage * Fray " Fgsy = O il (3.5)
Dy * Fopy #Fygy “Fggy = O coeeiiiiiin, (3.6)
Do, + Py = Foe = 0 ..., (3.7)
Dy + F45y - F56y e o L .. (3.8)
Do, * Foge ™ Fary = O wvvvenvenonion (3.9)
D. +F_ . ~F = 0 e, (3.10)

6y = 56y = 67Ty

2 2 72
€2 = " In '2
C, = - (I, + mzr: + 101) aé
where
I01 = Moment of inertia of the driving shaft through 01
C; - D, r,sin ¢2 + Dzyrzcos ¢2 + T, + Fyq 1psin ¢2 - F23ylzcos¢é = 0....(3.11)
' (14
C3 = = TP,
03 - D3xr35-in¢3 + D3yr3cos¢3 + F34x135in¢3 - F34ylscos¢3 = 0 coinunnn (3.12)
o
C4 = - I4¢4
€2 =" 1o2%
where
' I02 = Moment of lnertia of the shaft through 02
Cq = ~ g+ m4"2 + 10p) 4,
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[T ' .
c, D4xr4sin (¢4 + 94) + D4_yr4 cos (¢4 + 94)
. . 1
- F34x1451n ¢4 + F34y14 cos ¢4 F4_5x14 sin ¢4
- (3.13
+ F45y14 cos ¢4 = 0O ... i e )
05 = —15¢5
C5 - szr531n ¢5 + D5yr5 cos ¢5 + F56x1551n ¢5
- = (3.14)
F56ylscos ¢5 O . e
Cs = ~1e%
Y
' — -
CG - I03¢6
where
Io3 = Moment of inertia of the shaft through 03
C6 = -(16 + mere + 103) ¢6
" o_ ine _ - g
CG Der631n ¢6 D6yr6cos ¢6 F65x1651n ¢6

(dot denotes differentiation with

respect to time t)

The configuration of the mechanism and the free-body diagrams are

shown in Fig.(3.1-3.2) for ¢2(t) = -

, etc., have been employed

F =

43x —F34x

equations,

The x and y components of the shaking

Fox = Forx * Faax * Forx = Frox
=D, +D, +D, +D, +D
and
Foy = Fory * Fa1y * Fgry = Fray
D2y + D3y + D4y + D5y + D6y

= 500. Relations of the form

in the formulation of these

The shaking force Fs, is the resultant force on the frame.

force are;

(3.16)
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(17°¢)

"Atg




64

The shaking moment Msp about an arbitrary point 'p' on the frame Fig.

is

-F21xe2 sin y, + F21ye2 cos ¢2 - F67xe3 sin Ws

+F67ye3 cos ¢3 Cheette et (3.18)

The effect of gravitational pull on the links has been neglected.

The compressive and/or tensile forces acting on the links can be

determined by resolving the forces acting on the links along themselves.
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3.2 =~ Applicétion of Virtual Work Method to the Mechanism

Energy methods can be used to short-cut the previous kinetostatic
approach. The foilowing solution, utilising the method of virtual work
introduces greatest timesaving to the analysis. The main advantage of the
method is that, it eliminates the link-to-link treatment, and permits
an examination of the whole system at one time. A good discussion of
this method is given in (8), and (9).

For any mechanism composed of n members, the method of virtual work is

written:
T . (h + Fn.Vn + (—mn A "V n)

- = ' (3.19)
+ 1o Gh) o T

which can normally be solved for one quantity. Since the terms are vector
quantities, the solution includes both the magnitude and direction of the
unknown. Its major disadvantage is that since eq 3.19 contains only
: the applied forces and tofquesg it can not be used to solve for internal
§ forces or the reactions between members of the mechanism. Formulation of
f eq. 3.19 utilizes an imaginary small displacement of the mechanism, being
i consistent with the constraints of the mechanism. The work done by the |
virtual displacements is referred to as virtual work and if the system
is in static equilibrium under the éction of the applied forces and
torques then the work done with a virtual displacement is zero.

Application of eq. 3.19 to the mechanism yields.
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-T2 CE + (—mzaz.vz) + (-m3 a3.v3) + (-m4 a4.v4) + (-msas.vs)

| ) . . 2
*lomg 8. ve) + (C1g ap 05) + Loy ) +[-((0, + myr,") 0y 0,7

+ [-((I6 +mg T, ) + 103) g OB1 o J (3.20)

Substituting the appropriate values for 'Y' equation (3.20) is

used to calculate the external torque T In the formulation of equation

o
(3.19) the gravitational effects are neglected. A modified form of this

equation taking account of gravitational effects is given in ( 8)

3.3 The Power equation

The power equation for the system can be written as;

Ty wy = Tawg = T corerrereeneennn (3.21)
where

T2 = external torque applied on input link 2

Te = the torque transmitted by DO3

Tw = power necessary to accelerate or to decelerate the system

w = angular velocity of the shaft to which torque T is referred

Equation (3.21) corresponds to the dynamical relation:
Rate of work done by external forces = Rate of-change of kinetic
energy of the system
or alternatively:
Rate of work done by external forces = Rate of work done by effective
forces

The variation of the-torques transmitted by rigid link 4 and DO., are shown

3
in Fig.(3.3) and in Fig.(3.4 ). The corresponding transmitted power is

shown in Fig (3.5 )
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3.4 Graphical Approach

At any instant the motion of any induvidual link is equivalent to the
rotation of the link as a Whole about a fixed point in space. By determining
instantaneous centres of rotation, (as shown in Figure (3.6 ) graphical
force analysis); i, it is possible to determine the dynamic forces
acting on the mechanism. A detailed analysis of this procedure is presented
in (21), (14), (12), (13) and (3).

Referring to Fig.(3.7¢), O,ab O, and O, cd O, can be treated as two

1 2 2 3

separate but dependent four-bar chains, I1 and 12 are the locations of the

instantaneous centres of rotation. Boeth the linear velocity of the mass
centres and the angular velocity of rotation vary from instant to instant.
The line of action of the force applied to the links does not pass throﬁgh
their mass centres. The individual links are constrained.to move in a
definite way by the adjacent links to which they are connected, and the
resultant of all the forces applied through those connections is equal to
the force required to accelerate the link, the effective force Ri' The

magnitudes of the effective force is replaced by another force equal to

-m, acgi’ displaced from the mass centre a distance hi' This fictitious

force replaces the combined effects of the inertia torque and the inertia
force. ab is a link with pins at A and B, constrained to move along the

paths shown. Since the weight of the links is small in comparison to the

other forces which act on the link, the effect . of gravity is

ignored as previously. The magnitude and lines of action of R3 is

determined. A similar procedure 1s applied to link cd. The force EA which

is applied to the link AB at pin A, by the crank arm OlA will have a
11
component Fal, tangential to the path of A and also a component Fa ,

. 1
perpendicular to the path of A, Fa1 does the useful work on the link,Fa}
constrains the pin. A to follow the given path. This assumption is

similarly valid for the forces acting at b,c and d. By calculating the
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component in the tangential direction, the component in the normal direction
and. the two other components acting on the next pin are found from the

equilibrium conditions of the link, namely, the vector sum of all the forces

" which act on the link being zero, and the algebraic sum of the moments of

the forces about any point in their plane being zero. Compoenents of Fa'

Fb’ Fc and Fd, normal to the paths of a, b, ¢ and d are known. For link
ab, the moments are taken about 12, the point of intersection of the lines
of action of Fb11 and Fall, and for link cd, about Il' the intersection
. . 11 11 . 1l 1
of the lines of action of Fc and Fd . The equations for Fb and Fd
are then
R
1 -F 1((ax) L R (1)
F = a \ j 3 2 e e e eenan (3.22)
b ————
(bmz)
R.(zI) - F_1(cI,)
F 1 5"~ c D Ceaaaaa (3.23)
d A
(dIl)
where
Ry = Mg 843 by = Ig04
_R3
R4 = —m4 ag4 h4 = I4a4
...R4
Rs. = _m5 ag5 h.5 = 15015
_Rs
R = =-m = I
6 6 26 he = Te%
_R6

The moment of inertia values for the shafts are included in the above

1
expressions as appropriately. After the magnitudes of Fall, F 11, F 1 and

b c
Fdll'are obtained by drawing the force polygen. The torque which must be

applied by the crank arm Ola, to the whole system, in erder té overcome

the combined effects ot inertia is given by the product Fal. Ola.
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As in the earlier sections, the crank is assumed to rotate at constant

angular velocity Wy ¢

3.5 Simplified Force Analysis

As mentioned in section 3.1 neglecting the inertia effects of links

3,4,5 and 6, which are relatively small in comparisen with the .

inertia eftects of shafts through O_ and O the force analysis can be

2 3’

simplified to a large extent. From Fig.(3.if),the force applied to link

5 by link 6, F5 , 18 determined by taking moment about 03

T = Fko ......

6 = “Yos% 5°1
where k1 = Moment arm
from equation (3.24)

Fs = 1306
kl
Repeating the same procedure for 02
—I02 oy t F5k2 + F3k3 = 0 .........
1
F5 = F5
1
F3 = —F3'

Torque required to drive the mechanism is then,

= k
Ty = Fa¥,

(3.24)

(3.25)

Although the analysis presented above does not give very accurate

results, it offers a quick and reasonable method to determine the axial

loading range on links 3 and 5.
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3.6 Stress Analysis

The axial stress variation for links 3 and 5 are determined from;

(o) = 5Ax and o = _w.
5AX A1 3AX A2

From Fig. (3.9) and (3.10)

A cross sectional area . - 1link 3 - BB = 10-5 x 14.95 m2

1
A2 = cross sectional area - link 5 - CC = 10_5 X 6.32 m2

The links do not have a uniform cross-sectional area thus axial stress

varies accordingly. Stresses are proportional with the square of the crank
speed. Variation of axial stresses for A1 and A2 are shown in Fig. (3.7{)
for a complete cycle, at a crank speed of 2500 r.p.m.

The peak to peak (maximum to minimum) stress values are referred to
as stress range, and the variation of this range with respect to the square

of the crank-arm angular velocity is given in Fig. (3.8 ). Plane bending

stress values for the same cross-sections of links 3 and 5 can be calculated

from
. '--h-\\ ) 7
MoYos - Fep{ls/2) Yo
o = I = T Cierensareassess... (3.26)
5b cd ~— "¢b > .
where yc5 = distaﬁce from the neutral axial-cross—-section CC
Ic5 = Moment of inertia of the cross-section CC
and
M.y, F,(1./2) y
o, - 222 - 3 5 S e Crrieeeee., (3.2D)
B3 B3
where yb3 = distance from the neutral axis-cross-~séction BB
IB3 = Moment of inertia of the cross-section BB
and F5b = force component acting normal to link S

F3b = force compoenent acting normal to link 3
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The links are treated to be beams of non-uniform cross-section, and
magnitude of stress and deflection is assumed to be directly proportional
to the load.

Resultant stress over a cross-section is then given by:

5 g = .hax cn I ¢ J9-: )
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| LINK 3.connecting rod

" All dimensions are in mm

Fig. 3.9 ° Link 3
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Chapter 4
Instrumentation, Experiments and Experimental Results

4.1 Instrumentation

The strain gauge installation and ancillary equipment is shown in
Figs. (4.1),(4.2), Plate (4.1) and Plate (4.2). Each pair of gauges is
wired in various configurations on the extension box to measure
only axial, . . and - only . bending (z direction) strains. The
oumpup from the extension box 1is fed into the carrier-amplifier where
a(ﬁ%??g is used in conjunction with the balance knobs on the extension Sﬁf'
bex to balance the bridge circuit. The output from the amplifier is fed
through a lead to an ultra-violet recorder where dynamic records are
produced on photo-sensitive paper. To prevent failure due to overloading
resisters and a fuse are connected in the leads to the u.v. recorder., If
a record was not requir ed it was convenient to display the response of the
strain gauges on the oscilloscope to examine the strain pattern.A slotted metal
disc is attached to the drive shaft and an electro-magnetic pick-up unit
is placed close to the disc¢ to produce a variable voltage. This variable
voltage showed one blip for each revelution of the shaft which is recorded
by the u.v. recorder at the same time as the trace from the strain gauges
was recorded, which enabled the speed of the shaft to be determined for
each recording. A variable-speed 2HP electric motor is used to drive. the loom
Plate (4.2). The wires leading from the tag strips on the specimens to the
extension box were partially protected by plastic tubes against fatigue
failure.” In order to prevent damage due to fracture at high operating speeds,
a sheet steel cover is used over the combs. The basic principle ap,.lied in
the design of the dynamic measuring system is that the whole set-up will
faithfully measure the strain no matter how it varies with time. Since
the signal from the strain-guage circuilts is small a carrier amplifier is

engaged, which is capable of recieving signals in the millivolt range and
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of supplying a signal in the volt range. The record is on sensitized paper
which requires no developing. A polaroid land-type camera is fitted to
the oscilloscope to photograph the experiemntal strain pattern. The results
are all taken from records produced by the u.v. recorder. It 1s assumed
that the only resistive elements in the strain-gauge circuit are the gauges

themselves (the presence of leads which affect sensitivity and calibration
. C
are neg%;;dﬁle).

4.2 Elements of the Experimental Set-up.

1. Carrier-Amplifier; A Universal carrier-amplifier, type 581 DNH-Peekel,
is used. Eleven‘gauge factors were available, ranging from 1.75 to 2.25,
with an accuracy of 0.5%. Half and quarter-bridge (120 () circuits are
embloyed. There are six internal calibration values, 30, 100, 300, 1000,
3000 and 10000 micrestrain. Bridge voltage is 5 volts, on the most
sensitive range (3 ns, full-scale deflection) for one active strain-guage.
The output gives 1 volt for full scale of the metre and remains linear

for dynamic measurements even up to 10 volts. The specified accuracy of

the equipment for dynamic measurements is + 0.75% for all ranges. Time

delay is 0.5 ms for 5000 Hz. Linearity of the recorder output is + 0.05%

for 2 volts peak-to-peak output and + 0.1% for 20 volts peak-to-peak

output, provided that the input is balanced for capacity. Drift is approx-
imately 1 y strain/day

2. Ultra-Vidlet Recorder; A '"Southern Instruments'" ultraviolet oscillograph
10-100 series is used for continuous direct recording of input signals.
Signal is fed to a minature tubular galvanometer which reflects a spot-.of
intense ultraviolet light onto the photosensitive record paper. The del-
lection of the galvanometer is a function of the amplitude of the input-
signal current. A choice of eight paper speeds is available. Two of the
input sockets are used. First one for the carrier-amplifier output-signal

and the second one for the &lectromagnetic pick~up unit output-signal. A
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paper speed of 37 mm/s is used for calibration while paper speeds of 111

and 333 m/s are alternatively used dueing actual measurements. Four fixed
time intervals are available, 0.01, 0.1, 1 and 10 seconds, and the specified
accuracy of the printed lines is within + 2%. Paper speed stability is + 3%.
Since, instead of pen-aim, an ultraviolet light beam of zero mass is intro-
duced, direct recording of frequencies up to 10 KHz can be performed. SMI,
Type SMI/N, Ser. No. 1480-2 galvanometer is employed for recording.

3. Extension Box: A "Peekel 4-channel 4 UD" type switch box is used.

There are four input channels, for full-bridge, half-bridge or quarter-
bridge, 120 0 configurations. Each channel has four balancing controls,
three for resistive balancing and one for capacitive balancing of the

bridge circuit. The specified typical error of gswitch contacts is 1 - 2
microstrain. Ranges of resistive and capacitive balancing are + 6000 uSs

and + 1000 pf respectively.

4. Oscilloscope: A cathode ray oscilloscope is employed to display the
rapidly varying strain waveform. Since the output of the strain gauge
circuit is connected to vertical amplifiers, vertical deflection is related
to strain. The internal sweep circuit allows the trace to be driven hori-

zontally at a preselected rate.

4.3 Strain gauges and gauge installations ;
I4
%

Since strain gauges are used to measure varying and repeated strains,

special care is exercised in gauge selection, in gauge bonding and in lead

3

attachment. "Timsley, Telcon" elements type 7/120/EC, of different batch

¢

Tt
numbers, gauge factor = 2.18 Range = 120  + 1%, electrical:strain gauges are
employed. The resistive element is fixed to a transparent plastic base,
and is bonded to the point at which strain is measured. The gauges are

placed on the specimens as shown in Fig. (4.,2). Although it was felt that

helically wound wire gauges and ''Isoelastic” wire gauges offer a superior
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fatigue life, recent research has shown that other standard gauges have as
great or even greater fatigue life ( 6 ). Flat-grid, wire and foil

metal gauges on paper back and bonded with cellulose nitrate cement have
been strain cyeled (+ 1000 uS / in for 1,250,000 cycles without failure
(6)). Epoxy-backed foil metal gauges bonded with epoxy cements are
capable of more than 300,000 cycles at + 1500 uS. However it is generally
agreed that as the magnitude of cyclic strain increases from 1500 WS

the fatigue life is reduced very rapidly ( 6 ). A well established

fact is that the connection of the lead wires is one of the most critical
steps in the installation of a gauge for cyclic strain service.
Cyanoacrylate (Locktite, IS = 12 adhesive) is used to bond the base to

the specimen. However since it is a poor gap filier the surface of

the specimen is filed to obtain a smooth area and is cleaned with carbon
tetracholoride and/or acetone. Dove and Adams ( 6 ) have used cyano-
acrylate to measure dynamic ;trains (rise time 1 millisecond) as high

as 2000 pys. Cyanoa;rylate cement bonds under the action of modest
con;act pressure, and works satisfactorily up to temperatures of 120°C.
Cement cures by chemical polymerization, and obtains its optimum

adhesive strength after about 48 hours. In vibration environments

the weak point of the gauge is the point at which the Ifilament is
connected to the gauge lead. The gauges are checked for correct bonding,
gauge resistance and guage-to-specimen resistance by using a 1ow—v01tqge

type of mega ohm metre. The transverse sensitivity of the gauge is
negligible, and it 1is assumed that, since the specimens have a relatively
high modulus ot elasticity, the straln is uniform, through the cross-
sections at which tﬁe gauges are applied. The minor elfect oif localised
stiffening on the surtace, producing distortion of the strain pattern

is neglected. - The gauge factor is taken to be constant.

since practically it is unchanged even in the plastic region. Unless, thermal

or mechanical shock is expected, cyanoacrylate cement is regarded as superior
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to other gauge bonding materials for dynamic strain measurements. The oil
temperature does not vary in short term operations and is assumed to stay
constant.
The bonded gauges were fir;tprotected with Araldite against oil. How-
ever ordinary Araldite coating is attacked by the oii (Mobil Vactra oil) and
failed to hold the installation. This major installation problem is solved
by using "Micro Measurement Inc. M-Coat G Compound”". In order to be able
to measure the strains accurately, gauge instability and mechanical damage
are minimized. Basic mechani¢al damages were due to vibration, high
operating speed and limited available space. During measurements strain-
gauge installations have been replaced several times because of mechanical
damage and instability. Oilqhact to reduce the gauge-to-surface resistance
or partially to short-circuit sections of the gauge itself. The effect of
oil is to place a resistance path in parallel with the strain gauge, prod-
ucing a change in resistance equivalent to strain. This effect is very
important since the change associated with strain is very small. The
coating material employed is a two-part 100% solids polysulphide modified
epoxy compound, which provides a tough flexible layer, offering good
protection against commercial oils, greases, gasoline, most acids, alkalis
and most solvents. It cures to a firm, tack free_condition in six hours
at 24°C. Full cure in 24 hours again at 24°C. It can be safely used up to
an oil temperature of 82°C. An incomplete protection around leadwires was very
frequent and a common cause of oil penetration into the gauge instailations.'By
introducing practical solutions, and getting familiar with the vital
problems created by hostile environment, the number of installation

failures are reduced, and longer terms of stability and accuracy in readings
are achieved. Coatings are applied to cleaned surfaces, since coatings
extending into unclean  areas will loosen with time. Generally a thick
coating offers a more difficult path for oil penetration than a thin one.

M-Coat G forms a flexible rubbery coating, and its chemical resistance may
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be further improved by 2 one hour bake at 93° C. The solder joints and

wiring terminals are covered with a thin layer of M-Coat D (an air-drying
solvent thinned acrylic coating) before applying M-Coat G in order to

prevent any electrical leakage under adverse conditions. The prime coat

dries in 15 minutes under normal ambient conditions. In applying M-Coat G

care is taken to avoid air pockets and the coating is extended out as far

as possible on all sides beyond the edges of the M-Coat D layer. Oil, ﬁost
often, enters coated strain-gauge installations along insulated lead wires
producing signals which are unrelat;d to, but hardly distinguishable from strain.
For this reason wires are completely coated as far back from the installation

as practical, which is usually not more than one cm, due to space limitations.

However, most of the time insulated wire does not bond well to the coating.

4.4, Experiments

1. Dynamic Strain Measurements

As shown in Plate (4.3 ), a variable speéd (480-4320 output r.p.m.),
2 HP, 3 phase 50 cycles electric motor is used to run the lqom, replaced
by the original 1.1 Kw, 1410 r.p.m., 1.5 HP, 3 phase 50 cycles motor. A
tachometer is used to check drive shaft speed in addition to the u.v.
recorder. The motor is calibrated against the drive shaft speed by using
the variac speed selector unit. . The bending strains measured are
iﬁ the z direction, perpendicular to the x-y plane of the mechanism. The
strains due to plane bending are not measured, -"(as explained in -
the ‘intmoduction, = see Section 1).
The results of the dynamic strain measurements are given in Table ( 4.2 ),
Measurement periods,usually did not exceed 15 minutes. The drive shaft
speed is gradually increased from approximately 1050 r.p.m to 2550 r.p.m.
The circuit is rebalanced for resistance and capacitance before each run,

and a calibration trace has been recorded. The baslc problems encountered

during dynamic~measurements are:
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a - Gauge installation failures

b = Excess nolse and vibration due to improper contact of bevel
gears at high operating speeds

¢ - Mechanical failure due to slip between link 6 and shaft O

3

d - stretching and bending of the lead wires

2 Static Bending-strain measurement

To examine the natgre of bending strains, a static bending strain test
is performed on the-ﬁeéﬁanism. Fig. (4. 3 ) shows the simple set up. A
0.3 m lever arm is attached.to the drive shaft to apply torques of known
magnitude to the system. The test results are given in table (4.3 ). The
shaft 03 is locked by a clamp mechanism to allow the forces to be trans-
mitted throughout the links. Both axial and bending strains (z direction)
are measured under the same loading conditions.

The variation of axial and bending (z direction) stresses with the app-

! lied torque in each link are shown in Figs. (4.4) and (4.5). Applied torque

is increased up to 74 N.m. Half-bridge (120 (O) circuits are employed during

measurements. The crank angle 'psi' is kept 90° (from the horizental in

counter-clockwise direction).

3 Stress distribution in links 3 and 5

Using the same experimental set-up, strain variation within the links
themselves are measured. Strain-gauges on opposing faces of 1link 5 aredidentified
as gauges m and k. Quarter-bridge (120 () circuit is employed to measure
the combined axial and bending strain on each face separately by feeding the
two lead-wires directly into the carrier amplifier. The procedure is repeated
for -both gauges by reversing the link. During the measurements crank angle
'psi' is kept at 900. A maximum torque of 35.3 N.m is applied to the main

_drive shaft via the lever—arm, The pure axial compressive strain is then
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e

measured by using a half-bridge circuit. Strain gauges on opposing ifaces of
link 3 are identified as gauges c¢ and d, and the above procedure is
similarly applied to determine the strain variation. Results are shown

in Figures (4.6) and (4.7,

4, Tensile Test

Separate tensile tests are performed on links 3 and 5. A "Servomex

Controls Ltd., tensometer, metric type-E" is used in combination with a
"Peekel 4-channel 4 UD" extension- box and a '"Peekel type 581 DNH' Universal
carrier-amplifier. The test machine is provided with a unit which automat-
ically draws a tensile test dlagram representing the relation between the
load and the extension. Two strain gagues are fixed on opposing faces of
the links, connected to the extension box. A half-bridge 120 circuit is
used to measure the tensile strain. A 2500 N capacity load cell is employed.
Motor speed was 600 r.p.m.and the cross—head speed Wwas 9 mm/min, A pair of
specially manufactured chucks are used for each link to grip them between
the moving cross head and the base. The.chucks were Titted with heat treated
steel pins, having diameters as close as practical to the inner end bore
diameters of the links. The chucks were designed to énsure a central applic-
ation of the load. The direction of the paper movement was the_same.as that
of the crosshead. The event ﬁarker switch is used from time to time to
record the actual applied load at certain strain values registered on the
carrier amplifier. The moduli of elasticity and yield point strengfhs are
determined from the experimental data shown in Fig., 4.8 for cross-sections

BB and AA of the links 3 and 5 respectively.
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4.5 Dynamic Strain Measurement Results

Since two active gauges are connected in a.half—bridge circulit for
each set of results, the reading from the bridge is twice that which would
be expected if only one active gauge were ﬁsed. The results are therefore
divided by two to obtain the real strain and stress values shown in Table (4.2)
The variation of the peak to peak stresses (both axial and bending) with
the crank speed for links 3 and 5 are shown in Figures 4.9 to 4,13
Experimental sample strain patterns obtained:are shown in Fig, 4.14, a - f for
various crank speeds. Experimental variation of the cyclic axial stresses

in both links with the crank angle ¢ . are presented in Figures 4.1% and 4.16.
4.6 Speed Fluctuation
Crank arm speed is assumed to remain constant during a measurement.

However the following simplified theoretical calculation based on total

kinetlc energy of the system is made to predict an estimation;

Let
I, = Moment of inertia of the main drive shaft with the flywheel
12 = Moment of inertia.of shaft 02
I3 = Moment of inertia of shaft 03

From Fig. 3.6 (Torque diagram, for the crank speed = 2500 r.p.m.), Let 0

be the angular velocity of the crank arm at the crank angle ¢ = 50 .

Also let Ch and 06 be the angular velocities of shafts O2 and 03 at the

same crank angle. Then 2 (Total Kinetic energy) I1C§ + IZQE + 1392 = constant

or

I +12 — ) +1 - = constant (4:1)
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The variation of 0, are shown in Table 4.1 for various crank angles,(fL>360°

by 10o intervals at an average crank speed of 2500 r.p.m. = 261.798 rad/s.
From table 4.1, coefficient of speed fluctuation is;
Opax ~ Omin 267.43 - 253.95

C = = 0.0515
0, 261.798

speed fluctuation is also measured experimentally by using the u.v recorder
and the speed plck-up unit in combination as explained in 4.1. The
experimental average value of coefficient of speed fluctuation obtained

was 0.082
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Table 4.1
crank angle (b crank angle Cb

psi (degrees) rad/s psi (degrees) rad/s
0 263.95 190 267.43
10 266,68 200 267.41
20 267.43 210 - 267,19
30 266.26 220 266.88
40 263.82 230 266.56
50 260,93 240 266.25
60 258.29 250 265.91
70 256.39 260 265.39
80 255.58 270 264.53
920 255.99 280 263;10
100 257.50 290 260.96
110 - 259.64 300 258.26
120 261.81 310 255,61
130 263.52 320 253.95
140 264.63 330 254.12
150 265.35 340 256,35
160 265.97 350 260.05
170 266.60 360 263.95

180- 267.14
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. Fig. 4.14 'Exﬁerimeﬁtaljstrain patterns
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Record No, - 1
Record 3 1 g ’
gpplied :orque. trace - u:ra n ;ress2
o;ce m detlection o x10% N/m
mm
98 29.4 10 9.7 73.4
196 58.8 20 1 183.5 146.8
215.6 64.7 21 192.7 154 .2
235.2 70.6 22.5 206.4 165.1
254..8 76.4 24 220.2 176.2
274 .4 82.3 26 238.5 190.8
_Record No. - 2
Applied Térque lii:i:d Strain Stress
0 S 2
ro;ce Nm. detflection us. x10°~ N/m
mm
19.6 5.9 7 64.2 51.4
39.2 11.8 15 137.6 _ 110
58.8 17.7 . 22 201.8 161.5
68.6 20.6 26 238.5 190.8
78.4 23.5 29 266 212.8
88.2 26.5 32 293.6 234.9
107.8 32.3 38 348.6 278.9
117.6 35.3 42 385.3 308.2

B gt

BT
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Record No, - 3
Record :

Applied Torque . Strain Stress
Force Nm trace us 5 2
N deflection e © x10% N/m

mm

98 29.4 9 275.2 220.2
117.6 35.3 10 305.8 244 .6
137.2 41.2 12 367 293.6
156.8 47 14 428 .1 342.5
166.6 50 .15 458.7 367
176.4 52.9 18- 550.5 440.4
196 58.8 18.5 565.7 452.6
205.8 61.7 19 581 464.8
215.6 64.7 20 611.6 489.3

“Record No, - 4
Record ' .
Applied Torque trace Strain Stress
: .5
Fo;ge Nm. deflection us. x10 N/m2 .
mm '

49 14.7 3.5 321.1 333.6
147 44.1 13.5 1238.5 1286.8
245 73.5 23 2110 2192 .4
264.6 79.4 25 2293.6 2383
284.2 85.3 27 2477 2573.6
303.8 91.1 29 2660,5 2764.3
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Record No, - 5
; Record
Applied Torque Strain Stress
Force Nm trace us 5 2
N deflection ot x10" N/m
mm
98 29.4 7.5 688 714.9
147 44,1 11.5 1055 1096.2
166.6 50 12.5 1146.8 1191.5
186.2 55.9 16 1467.9 1525.1
205.8 61.7 .18 1651.4 1715.8
“Record No, - 6
Record '
Applied Torque trace Strain Stress
Fo;ce Nm. deflection us. x105 N/m2
mm
49 14.7 3.5 321.1 333.6
147 44.1. 13 1192.6 1239.2
245 73.5 22.5 2064 .2 2144.7
264.6 79.4 24.5 2247.7 2335.4
284 .2 85.2 27 2477 2573.6
303.8 91.1 29 2660.5 2764,3

Sy

[P N——
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) ] . Record g 1 .St
;pplieQ ;orque trace u;ra n 5ress2
o;ce m deflection s x10 N/m

mm
49 14.7 4 366.9 381.3
147 44 .1 13 1192.7 1239.,2..
245 73.5 22 2018.3 2097
264.6 79.4 24 2201.8 2287.7
284 .2 85.2 '25.5 2339.4 2430.,7
303.8 91.1 26.5 2431.2 2526
‘Record No., - 8
: Record
Applied Torque trace Strain ~Stress
5 2
Fo;cg Nm. detlection us. x10” N/m
mm
98 29.4 3 917.4 953.2
147 44,1 3.5 1070.3 1112
166.6 50 4 1223.2 1271
186.2 55.9 4.5 1376.1 1429.8
205.8 61.7 5 1529 1588.7
225.4 67.6 5.5 1682 1747.5
245 73.5 6 1834.8 1906.4

mgmpiin m—g ey
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Record No, =- 9
Record
Applied Torque . . Strain Stress
Force Nm trace us 5_,2
ON deflection ot x10" N/m
mm
19.6 5.9 2 61.1 63.5
39.2 11.7 4 122.3 127
58.8 17.6 8 244.6 254.2
78.4 23.5 12 367 381.3
98 29.4 - 17, 520 540.1
117.6 35.3 22 672.8 699
Record No. - 10
Record
Applied Torque trace Strain Stress
Forcg Nm deflection us. xlO5 N/_m2
N mm
19.6 5.9 6.5 59.6 62
39.2 11.7 22 201.8 209.7
49 14,7 30.5 279.8 290.7
58.8 17.6 41 376.1 390.8

R



’

Record No. - 11 =
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_ RO Record Strai St
;pplied gorque trace u:ra n 5ress2
o;ce m - deflection o x10" N/m

mm
19.6 5.9 2.5 76.5 61.1
29.4 8.8 3.5 107 '85.6
49 14.7 6 183.5 146.8
68.6 20.6 9 275.2 220.2
78.4 23.5 -10 305.8 244 .6
88.2 26.5 11 336.4 269.1
107.8 32.3 12-5 382.2 305.8
Record No, - 12
. Record )
Applied Torque trace Strain Stress
2
e - deflection - | US° x10° N/m
mm ’
19.6 5.9 3 9.17 7.3
39.2 11.7 . 6.5 19.9 15.9
49 14.7 8.5 26 20.8
58.8 17.6 10 30.6 24.5
78 .4 23.5 13.5 41.3 33
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Record No, - 13
Applied * T Record S
. ngcee Ngrque trace train Sts:ress2
N deflection us. x10" N/m
mm
49 14.7 8.5 259.9 270
68.6 20.6 14 428.1 444 .8
88.2 26.5 19.5 596.3 619.6
107.8 32.3 25 764.5 794 .3
127.4 38.2 -30 917.4 953.1
‘Record No, - 14
Record
Applied Torque trace Strain Stress
Fo;ce Nm. deflection us. xlO5 N/m2
. mm
29.4 46 140.8 " 112.7
35.3 55 168.4 134.7
41.1 64 195.9 156.7
47 72.5 222

177.6

R
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Record No. - 15
Record s 1 St )
;pplied :orque trace u:ra n 5ress2
o;ce m detlection o x10% N/m
mm o
19.6 5.9 9.5 29 23.2
39.2 11.7 20 61.1 48-9
58.8 17.6 29.5 90.2 72.1
78.4 23.5 40 122.3 97.9
88.2 26.5 45.5 139.1 111.3
98 29.4 51 155.9 124.8
117.6 35.3 64 195.7 156.6
Record No. - 16
Record .
Applied Torque trace Strain Stress
S 2
Fo;cg Nm. deflection us. x10” N/m
mm
98. 29.4 24 73.4 58.7
117.6 35.3 31 "848 75.8
137.2 41.2 38 116.2 93
156.8 47 46 140.6 112.5
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Record No, = 17
Record
Applied Torque Strain Stress
Force Nm trace us 5 2
N deflection . 'x10% N/m
mm
19.6 5.9 2 6.1 4.9
39.2 11.7 6 18.3 14.7
58.8 17.6 13.5 41.3 33
78.4 23.5 21.5 65.8 52.6
98 29.4 30 91.7 73.4
117.6 35.3 40 122.3 97.9
Record No. -~ 18
Record .
Applied Torque trace Strain Stress
2
F°;°e Nm. deflection us. x10° N/m
mm
19.6 5.9 2.5 22.9 23.8
39.2 11.7 10.5 96.3 100
58.8 17.6 22 201.8 209.7
68.6 20.6 22 201.8 209.7
78.4 23.5 24.5 224 .8 233.5
98 29.4 31.5 289 300.3

oot s 32 ‘g

e e

e,
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Record No, - 19
A T Record s 1 s
Fpplied . Norque. trace u:ra n ;ress2
O;CG m deflection o x10" N/m
m .

98 29.4 3 275.2 286
147 44 .1 5.5 504.6 524 .3
166.6 50 6 550.5 571.9
186.2 55.8 7 642 .2 667.2
205.8 61.7 -8 733.9 762.6
225.4 67.6 9 825.7 -857.9
245 73.5 9.5 871.5 905.5

Record No. - 20
Record '
Applied Torque trace Strain Stress
Fo;ce Nm. deflection us. xIO5 N/m?
mm
49 14 .7 2 183.5 190.6
6.5 596.3 619.6
_ 10.5 963.3 1000.9
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' Record
Applied Torque Strain Stress
Force Nm trace us 5 2
N deflection ot x10Y N/m
mm
98 29.4 11 336.4 349.5
147 44 .1 18 550'5. 571.9
166;6 50 20 611.6 635.5.
186.2 55.9 23 703.3 730.8
205.8 61.7 26 795.1 826.1
225.4 62.6 29 886.8 921 .4
235.2 70.5 31 948 985
245 73.5 34 . 1039.7 1080.3
Record No. - 22
. Record
Applied Torque trace Strain Stress
) S
Fo;ce Nm. deflection us. x10 N/m2
mm
49 14.7 4.5 137.6 143
68.6 20.6 7 214 222 .4
88.2 26.5 10 305.8 317.7
107.8 32.3 13 397.5 413
205.8 61.7 21.5 657.5 683.1
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Record No. = 23
Aopli - Record s
Fzx;ceed N:rque trace train SEress2
N deflection us. x10° N/m
mm
98 29.4 10.5 96.3 77
117.6 35.3 19 174.3 139.4
.137.2 41 .2 21.5 197.2 157.8
156.8 47 24.5 224.8 179.8
176.4 52.9 28 256.9 205.5
186.2 55.9 29 266 212.8
196 58.8 31 284 .4 227.5
205.8 61.7 34 311.9 249 .5
Record No. - 24
Record
Applied Torque trace Strain Stress
Fo;ce Nm deflection us. x105 N/mz_
mm
19.6 5.9 6 5.5 4.4
39.2 11.7 25 22.9 18.3
58.8 17.6 50 45.9 36.7
78.4 23.5 71 70.6 56.5
08 29.4 115 105.5 84.4

t
L

T e .
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Record No. - 25
A Record g 1 s
Fpplieq ;orque trace u:ra n ;ress2
o;ce S detlection o - x10% N/m
mm

98 29 .4 8 733.9 762
196 58.8 17.5 -1605.5 1668.1
215.6 64.7 20 1834.9 1906.4
264 .6 79 .4 24.5 2247.7 2335.4

Record No. -~ 25
Record
Applied Torque trace Strain Stress
5 2
F°;°e Nm. deflection us. x10° N/m
mm .

98 29.4 10.5 321.1 256.9
117.6 35.3 12 367 293.6
137.2 41.1 14 428.1 342.5
147 44.1 15 458.17 367
156.8 47 16 489.3 391.4
176.4 52.9 16 489.3 391.4
186.2 55.9 17.5 535.1 428.1
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PP

Record No. - 27
Record s 1 s
;pplied :orque. ‘trace u:ra n ;ressz
o;ce m deflection A x10% N/m
mm
98 29.4 9.5 290.5 232.4
117.6 35.3 11 336.4 269.1
127.4 38.2 11.5 351.7 281.3
137.2 41.1 12 367 - 293.6
156.8 47 .13.5 412 .8 330.3
Record No, - 28
Record '
Applied Torque ' trace Strain Stress
n 5 2
Fo;ce Nm. deflection us. x10° N/m" .
mm
98 29.4 17.5 160.5 128.4
196 58.8 34. 311.9 249.5
215.6 64.7 39 357.8 1286.2




145

Chapter 5 - Discussion of Results .

5.1 Determination of Axial working stress for 1ink 5 - A theoretical approach

Load and stress variation in link 5 have been theoretically determined
in chapter 3. Beiore comparing the experimental and theoretical stress
variation in detail, the following analytical analysis is performed on the
link to determine the safe working axial stress line assuming that the machine
is designed for a crank speed of 4000 r.p.m. and the links are perfectly
elastic, homogeneous and isotropic. The suriface roughness and eccentricity
in the bore axes have been neglected. The joints are taken to be ideal
without any play (play in the joints introduces a mechanical error of an
appreciable amount - because of hydrodynamic action of the lubricant the
pin axis will not touch the end bore circle when the mechanism is in motion).
From Fig. (5.1)fb, the minimum cross sectional area for link 5 is approximately
4 x 10—5 m2 (cross-section XX) while the maximum cress sectional area is
approximately 6.32 x 10-5 m2 (cross-section ZZ). The ratio of maximum cross-
sectional area to minimum cross-sectional area being 1.58. The actual
axial laoding diagram for the link is shown in Fig. (5.2a) for a crank speed
of 4000 r.p.m. The stress variation for cross-section XX at the same crank
speed is shown in Fig. (5.2b). The stress waveform is complex and an ideal-
ized model for the stress variation is necessary to determine the fatigue
strength and the safe working stress line. Assuming a sinusoidal model, the

stress variation can be expressed by the following equation:

= e e (5.1)
g = Op + 0. sin T
where o, = mean stress
o, = variable stress
T = time for one complete cycle = 0.0i5 s (4000 r.p.m.)
20, =" stress variation

r
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Fig 5.1

Link 3 and Link 5 (clearances dre extremely

exaggerated)
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* Substituting the numerical values eq. (5.1) yields:

o = -75x 10% 4 478 x 10° sin (4
= + X o oL5 000 r.p.m.)
which is shown in Fig. (5.3)
Stress ratio is determined as:
553 '05
R = %min = - ¥ 102 _1.37
Omax 103 x 105

The factor of safety F.S can now be calculated as:

c ax = P
n F.S
7 ~ i
F.S. = 17.6 x 10 = 3.18
553 x .'LO5
where the yield point strength cy p = 17.6 x 107 is taken from Fig. (4.8)

There are a number of different empirical failure equations defining
the relation between the variable and mean stresses. Three of the most
commonly used relations are employed to calculate the endurance strength Ge
as in the following:

a - Gerber parabolic relation;

e ult
. — 7 2 .
where g it = ultimate tensile strength ¥ 22.4 x 10 N/m" (From Fig. (4.8))
u
C = +4.78 x 107 N/m

e
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b ~ Modifiied Goodman Relation;

X + m = 1
Oe cu11:
o, = *4.62x10° N/m2

¢ - Soderberg relation

(e} g .-
__I‘ .+ m = 1
%e “yp

c = *4.58x 107 N/m2

e

The safe working axial stress line, employing Soderberg's criteria is
shown in Fig. (5.3). The axial stress at a crank speed of 4000 'r.p.m. can
hardly be approximated by Gerber's criteria and is above the approximate
lines of failure by Soderberg and modified Goodman methods, while the
axial stress at a crank speed of 250?6/;.p.m. is slightly under the conser- e
vative safe stress line approximated by Soderberg criteria. A good discussion
of the above procedure can be found in ( 20 ) (26 ) and ( 5 ). It
should be noted that the values calculated are only rough estimates. No
standard basis for obtaining working fatiguelstress relations has been
universally accepted. The fatigue strength is also affected by the clearance
between the pin and hole, the distribution of shear stress around the hole
boundary, lubrication, pin material and pin bending effects, surface conditions,
prior overloads, environmental effects, material and manufacturing effects.
The calculated endurance limit stress, Ge’ is the maximum completely reversing
stress that the link can sustain for an unlimited number of cycles without

fatigue tailure. If the completely reversed stress is higher than Og the
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failure can be expected to take place after some finite number of cycles.
The higher the stress the fewer will be the cycles before failure can be

expected.

5.2 Theoretical and experimental axial stress range variation with the

crank speed in link 5

The variation of the experimental axial stress range for link 5 with
the crank speed and with the square ol the crank speed are presented in
Figures 4.9 and 4.13 respectively. Due to gauge installation and struct-
ural failures (due to slip), cauéing severe mechanical damage; the maximum
crank arm speedlcould not be increased beyond about 2599¢/r.p.m. although
various unseccesful attempts have been made to reach 3000 r.p.m. or more.
The speed fluctuation effect has been neglected (as explained in chapter 4,
+ 0.08 experimental speed fluctuation coefficient has been regarded as
being of no importance). The basic factors introducing error are identified
as ifollows;

1 - Sensitivity and accuracy of the measuring devices employed in the

experimental set-up.

2 - Effect of the hostile enivronment

3 - Eftfect of the additional moment of inertia introduced by the

strain-gauges and thelr leads on the links

4 - Error in experimental determination of the cross-sectional areas

and values of Young's moduli.

5 -~ Personal error in interpreting the data (u.v. Traces).

In geberal the experimental results are in good agreement with the
calculated axial stress range values for link 5. By applying method of
least squares the experimentaliaxial stress range curve is approximated by

the following straight line

y = 38.6 x - 7.7
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where y = experimental axial-stress range -105 N/m2

X

square of the crank speed -104 (rad/s)2
The theoretical variation is in the form;

y = 34.6x

a detailed examination of Fig. 4.9 1is presented in the following table:

Table 5.1
B
approximate approximate Theoretical approximate Experimental
crank speed axial stress - range axial stress range lg:é x100
r.p.m. b3 105 N/m2 X 105 N/m2 A

1100 45 | 45 0
1300 63 55 12.7
1410 73 69 5.5
1600 95 104 9.5
1700 108 106 1.9
1800 120 128 6.7
1970 143 143 o}
2030 154 . 171 11
2110 164 194 18.3
2310 197 216 9.6
2410 216 : 242 12

Average value of lgié x100 = 7.9

The maximum deviation occurs at a crank speed of 2110 r.p.m. (18.3%,
corresponding to a difference of 30 x 105 N/m2 between theoretical and
experimental stress range). The experimental values consistently tend to
be higher than calculated values after 1970 r.p.m. A comparison of theor-

etical and experimental variation of stress in a complete cycle (1 rev = 3600)

for a crank speed of 1534 r.p.m. is shown in Fig. 4.1.6. The close resemblance
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between the waveforms is significant. An approximate shift of 20o is
observed at the two peak tensile stress values, between phe two waveforms.
The sample of the recorded axial stress waveform over one cycle shown in
Fig. 4.16 is in better agreement witﬁ the calculated waveform than the
experimental waveform presented and compared with the calculated waveform
by Alexander and Lawrence( 15), for bending strain variation in the coupler

of a. model four-bar planar mechanism.



f 154
5.3 Calculation of eccentricity from experimental data, for links 5 and 3

a - Link 5

From Fig. 4.4 ~ static bending strain test for link 5, the equation

of the line approximating axial stress variation with the applied torque is:

Axial force

where cax axial stress on the cross section =

i

cross—sectional area

T Torque applied to the crank arm via the lever

]

and the equation of the straight line approximating the bending stress

variation with the applied torque is:

(¢
L - 26.6
T
. M
where op = bending stress = C
I
where 1 = Moment of inertia of the cross section
c = Maximum distance from the neutral axia
M = F .d
ax
where d = eccentricity

The ratio of the bending stress to axial stress is
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where A = cross sectional area

eq. (5.2 ) can be written as

assuming the cross sectional area to be a perfect rectangleg;

I = bh
; 12
where b = base length of the rectangle
‘ h = helght of the rectangle
c=h/2

eq. (5.3) becomes

substituting the appropriate values:

£ 2.8 mm

wim

b - Link 3

Similarly from Fig 4.8 static bending strain test for link 3:

a o
ax =4 and _bP = 8.75
T T
k = O = 2.2
o}
ax
d = Kh = 0.36h =

4,3 mm
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In the above calculations it isassumed that the material follows Hooke's
law and the magnitude of the stress is proportional to the distance from

the neutral axis.

Eccentricity - dynamic case

The variation of axial and bending stresses in links 5 and 3 with
the crank speed were shown in Figures 4..9., 411, 4..12and 4.10. respectively.
The ratio K1fof the experimental bending stress ranges to experimental axial

strain ranges for both links are given in the following table, Table 5.2

a and b,
Table 5.2-a
crank
speed K dynamic
r.p.m. link 5
1080 1.9
1280 2
1420 2.2
1610 2
1800 2.5
2050 2.4
2400 2.4
K dynamic
average
=2.,2
Table 5.2-b
crank speed k dynamic
r.p.m, link 3
1082 7.3
1320 3.3
1440 ) 3.5
1560 3.4 K dynamic.average = 3.9
1800 3.4

2040 2.6
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Average value of K dynamic for link 5 is in good agreement with the K
value for the static case while the average value of K dynamic for link 3

is about 1.77 times of the K value obtained for the static case

5.5 Determination of Axial working stress for link 3 - A theoretical approach

Applying the same assumptions and method shown in section 5.1,, the
working stress is determined for the minimum cross sectional area (cross
section UU, Fig. 5.1) as in the following;

The loading diagram and axial cyclic stress variation are shown in Fig. 5.4

for the cross section at a crank speed of 4000 r.p.m.

-5 2

A = cross sectional area 11 x 10 m
c = 302 x 105 N/m2

max
o . = -88 x 105 N/m2

min
g = 107 x 105 N/m2

m
Gr = 195 x 105 N/m2
261‘ = 390 x 105 N/m2
T = 0.015 s

using eq. (5.1) the actual stress pattern is approximated by the following

sinusoidal model:

G = 107 x 1o5 + 195 x 1o5sin‘ 21t
© 0.015

which is shown in Fig, (56.4)

The stress ratio is:
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From Fig (4.8)

11.4 x 107 N/m2

o
yp

7 2
cUIt =-12.4 x 10 N/m

The factor of safety can be calculated as

o _ oyp
max F.S
F.s ¢ 3.77
Soderberg relation gives an endurance strength of 2.15 x 107 N/mz. Og

calculated by modified Goodman relation is 2,13 x 107 N/m2. The working
stress diagram is shown in Fig. (5.5 ). Axial stress acting on the
cross section is above the Soderberg line. Cross section MM - . (Fig.

5.1) is 92lso represented on the same diagram.

5.6 Theoretical and experimental axial stress range variation with the

crank speed in link 3.

The variation of the experimental axial stress range for link 3 with
the crank speed and with the square of the crank speed are presented in
Figures 4.12 and 4.13 respectively. Crank speed could not be increased
beyond about 2100 r.p.m. (due to gauge installation failures, and drift in
the u.v. traces). By applying the method of least squares the experimental

axial stress range curve is approximated by the straight line
y = 21.8x + 11.4

i 2
where y = experimental axial stress range —105 N/m

4 2
square of the crank speed -10 (rad/s)

H]
1
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the 'theoretical variation is in the form:

y = 21.4x

a detailed examination of Fig. 4.12 is presented in the following table:

Table 5.3
A B ‘B-A 100

approximate Approximate theoretical Approximate experimental A
crank speed axial stress range axial stress range

r.p.m. 105 N/m2 105 N/m2

1100 27 ' 24 11.1

1260 36 57 58.3

1430 47 70 : 49

1550 57 74 30

1790 75 83 10.6

1910 85 ' 94 10.6

2080 100 114 14

2130 105 123 17.1

x100 = 25

average value of lBﬁA
A
which is about 3 times higher than that of link 5. The experiment values

are generally higher than the calculated values. The maximum deviation occurs
at a crank speed of 1260 r.p.m. (58.3%). A comparison of theoretical and

experimental cyclic axial stress variation is shown in Fig. 4.15

5.7 Bending stresses in a direction normal to plane of the mechanism

The variation of peak to peak bending stresses with the crank speed

for links 3 and 5 are shown in Figures 4.0 and 4.11 respectively.
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The bending stress range curves can be approximated by the straight lines:

37x + 150 e, (1ink 3)

y

tl

y 104% = 58 ..., (1ink 5)

where again:

bending axial stress range - 105 N/m

y
x = square of crank speed -10 (rad/s)2
At a crank speed of 4000 r.p.m. the expected bending stress range values
for the links 3 and 5 can be calculated as 800 x 105 N/m2 and 1767 x 105 N/m2
respectively. The expected axial stress ranges at the same crank speed for the
links are 395 x 105 N/m2 (1ink 3) and 670 x 105 N/m2 (1ink 5){(values based
on experimental data). The variable stress values are well above the endur-
ance strength of the links. The combined effect of bending and axial
stresses (method of superposition) at a crank speed of 4000 r.p.m. would

indicate a state of failure.

5.8 Stress distribution in the links

The main objective of the test explained in section 4.4%3 was to determine
whether the bending stresses are due to an initial permanent link deformation,
an offset,ér due to the pins, tolerance and/or clearance effects or other
misalignments which are factors external to the links themselves. A detailed
examination of Figures 4.6 and 4.7 are presented in Tables (5.4 - 7).

Resuits of the tests for both links show that the bending stress (z-direction)
are due to effects which are external to the links. The basic factors intro-
~ducing error to the results are identified as follows:

1 - Effects of deviation in the crank angle (90° + 5°)

2 - Friétion in the bearings

3 - Effects of elasticity of the shafts and links

The possible bending mechanisms are shown in Figures (5.6) and (5.7)
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5.9 General Considerations

During the actual weaving operation the stresses would increase due to
the external resistance introduced by the threads on the combs and needle
arms. The value of this expected increase is unknaﬁn. The hardness and
tensile tests performed on the connecting rods showed that there is a
diiference between material properties of the two links although they were
expected to be the same (phosphor bronze alloy). Mechanical damage (scratches
inside the link bores and flange sides) is detected on both links. The
effect of friction has completely been neglected in the analytical calcul-
ations. Stress waveform pattern is comple# in structure for both links and

is very destructive in nature from & fatigue point of view.
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Chapter 6 - Conclusion

Bending stresses in a direction normal to the plane of the mechanism
are present in both of the links investigated and have a dominating effect.
The axlal cyclic and peak to peak stress varigtion in both links is generally
in good agreement with the calculated values. The bending stresses normal
to the plane of the mechanism are due to misalignment effects which are
external to the connecting rods themselves. The dominating characteristic
of the dynamic bending stresses has been confirmed with static tests
carried out on the mechanism. Even by neglecting the bending stress effects
on the links the present design is found to be unsatisiactory at a crank
speed of 4000 r.p.m. since the axial stress values are above the working
axial stress line approximated by the Soderberg criteria. In the presence
oi bending stresses fatigue failure can be expected to occur at approximately
2000 r.p.m. However if bending stresses are negligible the present de§ign
can be used up to a crank speed of 2500 r.p.m. (See Appendix A3)

To increase tﬁe speed of the mechanism the following general basic
major points are suggested:

1. A detailed deflection tolerance and cleardance analysis to reduce

the bending stresses due to misalignments theoretically to zero

which would automatically increase the crank speed range up to

2500 r.p.m.

2, Fatigue tests on the links to determine the experimental endurance
strength.

3. The stress constraints are determined. Any increase in the critical

cross sections of the connecting rods will decrease the stresses, and
therefore would yield a higher operating speed.
4, It was found that extreme axial stresses in a complete cyle of

input crank roatation occurs at different angles of input crank
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rotation for the two connecting rods. Any slight changes in
link lengths and geometry to decrease the extreme angular
acceleration values for links 4 and 6 will accordingly decrease
the axial stresses on the two connecting rods and change the
cyclic axial stress pattern.

Without changing the configuration of the mechanism, any
sultable material change with a higﬁer endurance and yleld point

limit will accordingly permit an increase in the crank speed.
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