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ABSTRACT 
 

Nestin, a class VI intermediate filament (nanofilament) protein, is 
commonly used as a marker for neural stem/progenitor cells (NSPCs), 
but its role in neurogenesis remains elusive. Nestin is also expressed in 
immature and reactive astrocytes. The up-regulation of intermediate 
filament proteins glial fibrillary acidic protein (GFAP), vimentin and 
nestin is a characteristic feature of reactive astrocytes, accompanied by 
alterations in the expression of many other genes. We found that 
transgenic mice deficient for nestin have increased number of newly 
born hippocampal neurons 6 weeks after BrdU in vivo labeling, 
suggesting increased generation and/or survival of newly born neurons. 
We also showed that in vitro nestin deficient astrocytes provide a more 
pro-neurogenic environment that results in a 2-fold increase in 
neuronal differentiation of NSPCs. 
Astrocytes are highly heterogeneous cells and fulfill a variety of 
important functions in healthy as well as diseased brain. In addition, 
astrocytes can exhibit features characteristic of NSPCs and modulate 
neurogenesis by inhibiting neuronal differentiation of NSPCs through 
Jagged1-mediated Notch signaling. Given the vast array of astrocyte 
functions, classification of astrocyte subpopulations on a molecular 
level is highly desirable. We used single cell quantitative real-time 
PCR to investigate the heterogeneity of astrocytes with respect to their 
Notch signaling competence. Our results show that the Notch signal 
sending but not Notch signal receiving competence of astrocytes 
depends on GFAP and vimentin. Further, we showed that nestin and 
heparin binding EGF-like growth factor (HB-EGF) may serve as 
classifiers of astrocyte subpopulations in vitro.  
Utilizing our newly developed Bioactive3D and standard 2D cell 
culture systems, we showed that HB-EGF alters astrocyte morphology 
towards a more radial glia-like phenotype. HB-EGF affects 
proliferation, differentiation and expression of Notch signal pathway 
related genes and leads to the up-regulation of nestin expression. HB-
EGF in cell culture media results in partial de-differentiation of 
astrocytes and therefore should be used with caution. 

 
Keywords: intermediate filament (nanofilament) proteins, nestin, neural 
stem/progenitor cells, astrocytes, GFAP, vimentin, HB-EGF 
 
ISBN: 978-91-628-9047-6 





 

LIST OF PAPERS  
 

This thesis is based on the following studies, referred to in the text by their 
roman numerals. 

 

I. Lebkuechner I, Andersson D, Möllerström E, Wilhelmsson 
U, Pekna M, Pekny M. (2014) Heterogeneity of Notch 
signaling in astrocytes and the effects of GFAP and vimentin 
deficiency. Manuscript 

 

II. Wilhelmsson U, Lebkuechner I, Yang X, Nagy A, Pekny M. 
(2014) Increased hippocampal neurogenesis in mice 
deficient for intermediate filament (nanofilament) protein 
nestin. Manuscript 

 

III. Puschmann TB, Zanden C*, Lebkuechner I*, Philippot C, de 
Pablo Y, Liu J, Pekny M. (2014) HB-EGF affects astrocyte 
morphology, proliferation, differentiation, and the 
expression of intermediate filament proteins. Journal of 
Neurochemistry, 128(6):878-89 

 

* Authors contributed equally to this work 

 

 

 

  

 
 



 

 



 

CONTENT 
ABBREVIATIONS 
1 INTRODUCTION.......................................................................................... 1                                                                                                           

1.1 Development of the mammalian central nervous system (CNS) .......... 1      
 1.1.1 The major cellular players of the CNS......................................... 1                                            
 1.1.2 Neural stem/progenitor cells in CNS development ...................... 2      
1.2 Adult neurogenesis ................................................................................ 4 
 1.2.1 Neurogenesis in the adult CNS occurs in two distinct regions .... 4 
 1.2.2 Neural stem/progenitor cells in the adult brain ........................... 5 
 1.2.3 The cellular environment of the neurogenic niche ....................... 7 
1.3 Astrocytes .............................................................................................. 8 
 1.3.1 The functions of astrocytes in healthy brain................................. 8 
 1.3.2 Astrocytes in diseased brain - reactive astrocytes ..................... 10 
 1.3.3 Astrocytes are heterogeneous..................................................... 11 
1.4  The intermediate filament (nanofilament) system ............................... 12 
 1.4.1  Intermediate filaments ............................................................... 12 
 1.4.2 Nestin.......................................................................................... 14 
 1.4.3 Glial fibrillary acidic protein (GFAP) ....................................... 14 
 1.4.4 Vimentin...................................................................................... 15 
 1.4.5 Intermediate filament proteins in diseases ................................. 16 
1.5  Signaling pathways .............................................................................. 17 
 1.5.1 Notch signaling pathway ............................................................ 17 
 1.5.2 HB-EGF - a ligand for the EGFR signaling pathway ................ 20 

2 METHODOLOGICAL CONSIDERATIONS .................................................. 22 
2.1 Mouse models - Genetic ablation of intermediate filament proteins 
        (Paper I-III) ......................................................................................... 22                                                                                          
2.2 In vitro - the cell culture systems ........................................................ 23 
 2.2.1 Bioactive3D - a novel in vivo-like 3-dimensional cell culture  
                system - compared to conventional 2D systems (Paper I-III)..... 23 



 

 2.2.2 Neurosphere cultures (Paper II) ................................................ 25 
 2.2.3 The establishment of NSC lines from adult mice (Paper II) ...... 26 
 2.2.4 Astrocyte co-cultures with rat NSCs derived from adult   
         hippocampus (Paper II) .............................................................. 27 
2.3 Quantitative real-time PCR (RT-qPCR) of individual astrocytes (Paper 
  I) ......................................................................................................... 28 
2.4 BrdU labeling of proliferating cells and cell fate determination (Paper II   
 and III)................................................................................................. 30 

3 AIMS OF THE THESIS ............................................................................... 32 
4 RESULTS AND DISCUSSION ..................................................................... 33 
ACKNOWLEDGMENTS .................................................................................. 41 
BIBLIOGRAPHY............................................................................................. 44 
 



 

ABBREVIATIONS 
2D  2-dimensional  

3D 3-dimensional  

ADAM  A disintegrin and metalloprotease 

Aldh1L1 Aldehyde dehydrogenase 1 family, member L1 

Bioactive3D  3-dimensional cell culture system 

BrdU 5-Bromo-2´-Deoxyuridine 

CNS  Central nervous system 

Dcx  Doublecortin 

DNA  Deoxyribonucleic acid 

DPBS  Dulbecco's phosphate-buffered saline 

EdU 5-Ethynyl-2´-Deoxyuridine 

EGF  Epidermal growth factor 

EGFR  Epidermal growth factor receptor (also known as ErbB1) 

ErbB1-4  v-erb-a erythroblastic leukemia viral oncogene homolog 1-4  

 (avian) (EGFR signaling pathway receptors) 

FCS  Fetal calf serum 

GFAP  Glial fibrillary acidic protein 

GFP  Green fluorescent protein 

HB-EGF  Heparin binding epidermal growth factor-like growth  

 factor 

mRNA  Messenger RNA (ribonucleic acid) 

NSC  Neural stem cell 

NSPC  Neural stem/progenitor cell 

NPC  Neural progenitor cell 

RT-qPCR  Quantitative real-time polymerase chain reaction  

SGZ  Subgranular zone of the dentate gyrus 

SVZ  Subventricular zone of the lateral ventricles 



 

 



Isabell Lebkuechner 

1 

1 INTRODUCTION 

1.1 Development of the mammalian central nervous system 
(CNS) 

1.1.1 The major cellular players of the CNS 

The mammalian central nervous system (CNS) consists of three 

parts: the brain, the retina and the spinal cord. Functions of the spinal 

cord are e.g. to conduct sensory information from the peripheral 

nervous system to the brain and to control simple muscle reflexes. The 

brain is responsible for the integration and evaluation of the sensory 

information and coordination of conscious or unconscious responses 

and, in addition, for complex functions such as thinking, memory and 

emotions. 

The major cellular players within the mammalian CNS are 

neurons and glial cells. The CNS consists of roughly the same number 

of neurons and glial cells, however the neuron-glia ratio depends on 

the CNS region [1]. In addition, the ratio is increased in organisms of 

higher taxonomy as is the morphological complexity of astrocytes [2]. 

Neurons are defined as electrically excitable cells, which convey 

information through electrical action potentials or through chemical-

induced signal transduction via neurotransmitters. Neurons are a highly 

heterogeneous cell class based on their functions and morphology, 

with various subpopulations, such as sensory neurons, interneurons or 

motoneurons. Glial cells are defined as electrically non-excitable cells 

and comprise macroglial cells, such as astrocytes, oligodendrocytes, 

NG-2 glia, and microglia in the CNS. Oligodendrocytes are equivalent 
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to the Schwann cells of the peripheral nervous system and have 

myelinating function isolating neuronal axons. NG-2 glia are 

oligodendrocyte precursor cells and the most recent identified 

subpopulation of glia. Microglia are the immune cells within the CNS. 

Astrocytes are highly multifunctional cells and play important roles in 

extracellular ion homeostasis, recycling of neurotransmitters, 

neurogenesis and also in CNS regeneration. 

 

1.1.2 Neural stem/progenitor cells in CNS development 

The development of the CNS starts during early embryogenesis 

within the one-layered neuroepithelium of the neural plate, which later 

forms the neural tube. Neural stem cells (NSCs) of the neural tube 

(neuroephitelial cells), characterized by unlimited self-renewing 

capability and multi-potency, generate the two major cell classes of the 

CNS, neurons and macroglia (astrocytes, oligodendrocytes and NG-2 

glia), while microglia are generated by mesodermal stem cells. NSCs 

divide symmetrically, generating two daughter NSCs until the onset of 

neurogenesis (embryonic day 9-10 in mice). After the onset of 

neurogenesis, NSCs start to divide asymmetrically to generate one 

NSC and a more differentiated neural progenitor cell (NPC), which is 

restricted in its possible lineage development to neurons. With the 

onset of neurogenesis, the neuroepithelium becomes multilayered and 

most neuroephitelial cells change their molecular properties (e.g. 

down-regulation of tight junctions) and start to show some astrocyte 

features, such as the presence of glutamate transporters, and are named 

radial glia cells, that give either rise directly to neurons or differentiate 
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into neural intermediate progenitor cells (capable to generate neurons 

or macroglial cells) through asymmetric division. In most regions of 

the mouse CNS, the molecular shift from neuroepithelial cells to radial 

glia cells occurs between embryonic day 10 – 12. Most radial glia cells 

are lineage restricted to neurons, astrocytes or oligodendrocytes and 

they serve as a migration scaffold for neurons. The onset of generation 

of the macroglial cells (gliogenesis), astrocytes (astrogenesis) and 

oligodendrocytes (oligodenrocytogenesis), occurs after the onset of 

neurogenesis in CNS development, with the peak of astrogenesis at 

perinatal time points and the peak of oligodendrocytogenesis at 

postnatal time points (Fig. 1; for review see [3]).  

Fig.1 Development of the major cell types within the CNS. During embryogenesis 

neurogenesis starts first, followed by astrogenesis that lasts into perinatal and postnatal time 

points. Oligodendrocytogenesis starts perinatal and lasts into adulthood.  Modified after 

Verkhratsky & Butt, Glial Physiology and Pathophysiology, 2013. 
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1.2 Adult neurogenesis 
 
1.2.1 Neurogenesis in the adult CNS occurs in two distinct regions 

The traditional view of neurogenesis in the CNS was that 

generation of neurons from neuroepithelial cells and/or radial glia cells 

occurs only during embryogenesis and perinatal stages. Studies by J. 

Altman 50 years ago provided the first evidence of postnatal 

neurogenesis in rat hippocampi [4]. Functional integration of newly 

born neurons in adults was first shown in songbirds in 1984 [5] and in 

1992 NSCs were first isolated from adult mammalian brain [6, 7].  

The capacity of the healthy adult mammalian CNS to generate 

and functionally integrate new neurons into existing neuronal networks 

is extremely limited under physiological conditions in comparison to 

the developing CNS. In addition, within the healthy CNS adult 

neurogenesis occurs in two distinct neurogenic niches only, namely the 

subventricular zone (SVZ) of the lateral ventricles and the subgranular 

zone (SGZ) of the hippocampal dentate gyrus (Fig. 2), while 

gliogenesis in the adult brain is not restricted to specific niches. Newly 

born neurons in the SVZ migrate along the rostral migratory stream 

into the olfactory bulb and replace interneurons throughout the 

lifespan. Newly born neurons in the SGZ of the dentate gyrus are 

capable to integrate into existing hippocampal neuronal networks but 

remain within the hippocampus (for review see [8]). The survival and 

functional integration of newly born neurons is affected by 

intracellular factors, such as cell-cycle regulators and transcription 

factors, extracellular factors, such as cell-cell signaling mechanisms, 

released growth factors or hormones (for review see [9]) but also by 
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external stimuli of the environment, such as learning and memory, 

enriched environment, physical activity, stress or diet [10-15]. 

Fig. 2 The neurogenic niches within the adult rodent brain. New-born neurons are either 

generated in the subventricular zone of the lateral ventricles (LV) and migrate along the 

rostral mígratory stream (RMS) to the olfactory bulb (OB), where they replace interneurons, 

or in the subgranular zone of the dentate gyrus within the hippocampus, where they are 

integrated into functional neuronal networks. CB, cerebellum. 

 

1.2.2 Neural stem/progenitor cells in the adult brain  

Adult hippocampal neurogenesis has been implicated in 

mechanisms for learning and memory and disturbed adult neurogenesis 

within the SGZ of the dentate gyrus has been associated with 

depression, neuroinflammation and epilepsy. Adult neurogenesis 

within the SVZ of the lateral ventricles has been implicated in 

olfaction. Identification of the neural stem/progenitor cells (NSPCs), 

that give rise to new neurons in the adult CNS, was one of the main 

research subjects in the past years, however the matter of the origin of 

adult-born neurons is still under debate.  
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Recently two non-mutually exclusive models of the origin of 

adult-born neurons were proposed, suggesting that newly born neurons 

in the hippocampus arise either from radial glia-like cells (also known 

as type I cells or type I progenitors) or from non-radial precursors (also 

known as type II cells) that are defined by their expression of the 

progenitor cell marker Sox2 (Fig. 3A). Both cell types reside within 

the SGZ and are considered to be quiescent, slowly dividing NSCs. 

Radial glia-like cells express the astrocyte marker glial fibrillary acidic 

protein (GFAP) and also the stem/progenitor cell marker nestin. 

However, radial glia-like cells or non-radial precursors do not directly 

generate newly born neurons but divide asymmetrically and produce 

intermediate progenitor cells (also known as type D cells). 

Intermediate progenitor cells generate neuroblasts that are integrated 

into the granular cell layer and mature into granule cells. Radial glia-

like astrocytes within the SGZ also maintain the functional properties 

of normal astrocytes. The different origin of newly born neurons in the 

adult may be an indicator for the existence of several subpopulations of 

adult neural stem cells within the CNS. 

In the SVZ of the lateral ventricles NSCs (also named radial 

glia-like cells, type B cells or SVZ astrocytes) give rise to newly born 

neurons (Fig. 3B). Radial glia-like cells express stem cell specific 

markers, such as nestin and Sox2, but also astrocyte specific markers, 

such as GFAP and the glutamate aspartate transporter (GLAST). 

Radial glia-like cells are suggested to be quiescent, slowly dividing 

NSCs that give rise to type C cells (or transient-amplifying progenitor 

cells) that have a high proliferative capability, function as intermediate 
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progenitor cells in the adult SVZ and generate immature neuroblasts 

(type A cells), which subsequently migrate along the rostral migratory 

stream into to olfactory bulb to replace interneurons (for review see 

[16, 17]). 

 
Fig. 3 Schematic illustration of the neurogenic niche in the SGZ of the dentate gyrus (A) 

and the SVZ of the lateral ventricles (B). A) Radial glia-like cells (Type I cells) and non-

radial precursors (Type II cells), located in the granular cell layer of the dentate gyrus, 

generate intermediate progenitor cells. Proliferation of intermediate progenitor cells leads to 

generation of neuroblasts that develop into new granule cells and are finally integrated as 

mature granule cells in the neuronal hippocampal network. B) Radial glia-like cells (B cells) 

in the SVZ generate transient amplifying cells (C cells), which generate immature neuroblasts 

(A cells) that migrate along the rostral migratory stream into the olfactory bulb to replace 

interneurons. 

 

 

1.2.3 The cellular environment of the adult neurogenic niches 

Transplantation studies of NSPCs or neural grafts into various 

regions of the adult CNS showed, that neuronal differentiation of the 

transplanted NSPCs or grafts only occurs in the two adult neurogenic 
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key modulator for neurogenesis in adult CNS. 
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environment of the adult neurogenic niches are astrocytes, endothelial 
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and ependymal cells, microglia, mature neurons and the progeny of 

adult NSCs and/or NPCs. NPCs with dividing capability were shown 

to be located closely to the capillaries of the vasculature, implicating 

that vascular derived signals and molecules regulate proliferation of 

NPCs [22, 23]. Astrocytes that are in cell-cell contact with cells of the 

vascular system and connected through gap junctions, can modify the 

effects of blood-derived molecules and can regulate the disposal of 

endothelial-derived cytokines or growth factors. Moreover, astrocytes 

can control proliferation and differentiation of adult NPCs and affect 

migration, maturation and synapse formation through diffusible or 

membrane-attached factors [24]. Besides astrocytes, microglia are also 

known to actively regulate neurogenesis in the adult CNS through 

phagocytosis of apoptotic newly generated neurons in the adult SGZ 

[25].  

 

1.3 Astrocytes 

1.3.1 The functions of astrocytes in healthy brain  

Astrocytes are the most abundant glial cell type within the CNS 

[26]. They constitute 50% of all glial cells, besides oligodendrocytes, 

NG-2 glia and microglia. Under physiological conditions astrocytes are 

often (and wrongly) referred to as “quiescent” astrocytes, since they 

were believed to provide mainly structural support for the CNS. 

However, over the 30 last years, astrocytes were shown to be highly 

complex and multifunctional cells involved in various cellular 
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processes, mechanisms and cell-cell interactions necessary for a 

normally functioning brain [27, 28]. 

Astrocytes are in direct cell-cell contact with neurons, 

oligodendrocytes, microglia, endothelial cells, pericytes and other 

astrocytes, thereby influencing and modulating the environment in the 

brain. Named “astro-cyte” because of their star-shaped morphology, it 

was later shown that astrocytes exhibit a more “bushy” morphology 

with many fine processes [29-31]. This morphology allows one human 

astrocyte to be in contact with up to two million synaptic terminals [2], 

thereby regulating neuronal activity via for example recycling of 

neurotransmitters, such as glutamate [32]. In addition, astrocytes are 

directly involved in synaptogenesis by affecting synaptic plasticity and 

pruning of new synapses [33-36] and were recently shown to actively 

engulf synapses in the developing as well as adult CNS depending on 

neuronal activity [37]. Homeostatic functions of astrocytes include 

regulation of extracellular H+ (for review see [38, 39]) and K+ 

concentration (for review see [40]) as well as regulation of the H20 

transport (for review see [41]). Astrocytes locally regulate cerebral 

blood flow [42, 43] and their end-feet are in contact with endothelial 

cells, thereby regulating the formation and maintenance of the blood-

brain-barrier [44].  

Astrocytes cannot communicate with each other electrically 

through action potentials like neurons, but they are connected by gap 

junctions into so-called astrocyte syncytia and communicate through 

Ca2+ waves and other molecules [45]. Release of molecules by 

astrocytes (gliotransmission) affects neuronal differentiation, 
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proliferation and morphology (see also 1.2.3 The cellular environment 

of the adult neurogenic niches) and also synaptic strength [46-48]. 

Recently it was shown, that astrocytes affect neurogenesis by actively 

inhibiting neuronal differentiation of NSPCs through Jag-1 mediated 

Notch signaling [49]. 

 

1.3.2 Astrocytes in diseased brain – reactive astrocytes  

Upon CNS injury, neuroinflammation, neurotrauma, such as 

stroke, or neurodegenerative diseases, such as Alzheimer’s disease or 

Parkinson’s disease, astrocytes become reactive [50]. This 

phenomenon is called reactive gliosis and is accompanied by various 

morphological and functional changes of astrocytes [27, 51, 52]. 

Hallmarks of reactive gliosis are hypertrophy of astrocyte processes, 

up-regulation of the cytoskeletal intermediate filament proteins GFAP 

and vimentin and re-expression of nestin. However, the extent of 

astrocyte activation depends on the type and severity of CNS damage 

and changes in morphology, proliferation and alteration of gene 

expression during reactive gliosis is context dependent and differs 

under various pathophysiological conditions [53-55]. Astrocyte 

activation ranges from reversible and time-limited changes in gene 

expression, such as up-regulation of GFAP and re-expression of the 

intermediate filament proteins synemin and nestin [56, 57], to the 

irreversible generation of a glial scar due to proliferation of reactive 

astrocytes near the injury site [52, 58]. A glial scar protects the 

surrounding, healthy tissue from spreading CNS damage [52, 58], but 

also forms a physical barrier for axonal regeneration after the acute 
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stage of injury [59]. However, the (patho-) physiological response of 

the CNS is not restricted to astrocytes becoming reactive, but involves 

a multicellular reaction of all cell types within the CNS [60].  

 

1.3.3 Astrocytes are heterogeneous 

Astrocytes exhibit a high degree of heterogeneity [61, 62] and 

given the highly complex functions of astrocytes in healthy as well as 

diseased CNS, classification of astrocyte subpopulations on a 

molecular level is highly desirable. So far, astrocytes have been 

classified as protoplasmic or fibrous astrocytes, based on their 

morphological structure and their occurrence in gray and white matter, 

respectively [51]. In addition, Bergmann Glia in the cerebellum and 

Müller Glia in the retina have been classified as subpopulations of 

astrocytes based on their morphology, physiological properties, 

expression of specific markers and their response to injury [62, 63]. 

However, it is still a matter of debate, if and how many other astrocyte 

subpopulations exist, which of these exist already in vivo and if some 

of these can be found exclusively in vitro. 

The most common used astrocyte-specific markers are GFAP, 

S100β and glutamine synthetase. The aldehyde dehydrogenase 1 

family, member L1 (Aldh1L1; also known as 10-

formyltetrahydrofolate dehydrogenase) was suggested as an additional 

astrocyte marker, that in healthy brain is present in more astrocytes 

than GFAP [64].  
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1.4 The intermediate filament (nanofilament) system 

1.4.1 Intermediate filaments  

The cytoskeleton of most eukaryotic cells consists of 

microfilaments (actin filaments), microtubules and the intermediate 

filament system. The actin filaments are the thinnest of all cytoskeletal 

components and important for determination of the cell shape as well 

as cell motility, while microtubules are the thickest cytoskeletal 

components and are important for e.g. intracellular transport and cell 

division. In contrast to actin filaments and microtubuli, the expression 

of intermediate filament proteins is highly tissue-specific (Fig. 4) and 

fulfills functions beyond mechanical stability (for review see [65, 66]).  

Intracellular localization and function of mitochondria, the 

Golgi and the nucleus as well as intracellular protein targeting depend 

on intact intermediate filaments. In addition, the intermediate filament 

cytoskeleton was shown to have cytoprotective functions in stress and 

injury situations and act as signaling platform controlling various cell 

responses to stress. Over 70 cytoplasmic and nuclear intermediate 

filament proteins are known and their expression is highly dynamic 

and depends on the developmental stage, the cell- and tissue-type as 

well as on the physiological condition (e.g. healthy versus diseased 

cell/tissue). All intermediate filament protein molecules consist of a 

rod, head and tail domain. The α-helical rod domain is highly 

conserved, while the flanking N-terminal head and C-terminal tail 

domains differ both in amino acid sequence and length. Intermediate 

filament proteins usually form polymers by either homo-

polymerization or hetero-polymerization with each other, a process, 
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which is regulated by phosphorylation/dephosphorylation of threonine 

and/or serine residues of the N-terminal head domain (for review see 

[65]).  

Intermediate filament proteins can be divided into 6 different 

classes depending on their amino acid sequence and protein structure. 

Type I intermediate filament proteins comprise acidic keratins, while 

type II comprise basic keratins. The astrocyte intermediate filament 

proteins GFAP and vimentin belong to class III, while the neuronal 

intermediate filament proteins neurofilament-L, -M, -H and "-

internexin belong to class IV. Intermediate filament proteins 

comprising the nuclear envelope (lamin A, B, C) belong to class V. 

Nestin, a stem cell marker and astrocyte intermediate filament protein 

belongs to type VI intermediate filament proteins (Fig. 4). 

 
Fig. 4 Expression and classification of intermediate filament proteins. The expression of 

intermediate filament proteins is tissue-specific and depends on the developmental stage. All 

intermediate filament proteins can be classified into 6 different subclasses. Modified after 

Toivola et al. 2005.  
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1.4.2 Nestin 

Expression of nestin was first described in neuroephitelial cells 

[67, 68] but ranges from NSPCs, immature astrocytes in the 

developing CNS [68, 69] to developing heart, muscle, kidney and testis 

tissue [70-72].  In the adult brain, nestin expression is maintained in 

NSPCs and radial glia [73] and is induced in reactive astrocytes after 

injury, stroke and in neurodegenerative diseases [56, 74]. Nestin 

expression is often used as a marker specific for NSPCs [68, 75, 76], 

however its functional role in neurogenesis remains elusive. 

Nestin was shown to regulate apoptosis and myoblast 

differentiation via interaction with Cdk5 [77-79]. Further, assembly 

and disassembly of nestin with its polymerization partners (nestin 

cannot self-polymerize [56]) is regulated by the Cdc2 kinase. Together 

with cyclin B, Cdc2 comprises the maturation/M-phase promoting 

factor complex, which regulates the transition within the cell-cycle, 

implicating that nestin is important for dividing and migrating cells 

[80-82]. 

 

1.4.3 Glial fibrillary acidic protein (GFAP) 

Expression of GFAP within the CNS occurs in astrocytes [83] 

and radial glia [84-86] and in the peripheral nervous system in non-

myelin forming Schwann cells and enteric glia cells, but is also 

expressed in ependymal cells, kidney, testis, epidermis, osteocytes, 

chondrocytes, pancreatic and liver tissue [87-93]. After injury GFAP 

expression is up-regulated in reactive astrocytes.  



Isabell Lebkuechner 

15 

GFAP, alone or together with vimentin, is implicated to play a 

role in many fundamental cellular processes, such as astrocyte motility 

and migration [94-96], proliferation [97-101], vesicle trafficking [102-

106], modulation of neuronal activity [107, 108], synaptic plasticity 

[109], glutamate transport and synthesis [110-113], neurite outgrowth 

[114-117] and cytoprotective functions after injury [30, 118-121]. 

So far 10 different splice variants of GFAP are known and 

literature about GFAP gene expression usually relates to the most 

abundant splice form GFAPα (for review see [122]). 

GFAP usually polymerizes with vimentin in astrocytes, but 

cannot polymerize with nestin in the absence of vimentin. GFAP 

replaces nestin as a polymerization partner for vimentin after 

maturation of astrocytes [56]. However, in vimentin deficient 

astrocytes it has been shown that GFAP can polymerize into 

abnormally bundled intermediate filaments [56].  

 

1.4.4 Vimentin 

Expression of vimentin occurs in astrocytes, in cells of 

mesenchymal origin, leukocytes, epithelial cells, fibroblasts and 

developing muscle. Functions of vimentin comprise maintaining cell 

shape, compartmentalization and anchoring of organelles such as the 

nucleus and the endoplasmatic reticulum (for reviews see [65, 66, 123, 

124]). Similar to GFAP, vimentin plays important roles in many 

fundamental cellular processes, such as during wound healing [125, 

126], in mechanotransduction of shear stress [127], cyto-protection 

after CNS injury [30], migration and serves as a signaling platform (for 
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review see [123]). In addition, vimentin is implicated to play a role in 

intracellular vesicle trafficking [102-106] and in astrocyte motility 

[95]. 

In astrocytes, Vimentin cannot polymerize into homodimers in 

the absence of GFAP and forms heterodimers with nestin in immature 

astrocytes and with GFAP in mature astrocytes [56].  

 

1.4.5 The role of intermediate filament proteins in diseases 

The pivotal role of intermediate filament proteins in cellular 

functions and tissue integrity becomes obvious in the disease context. 

So far, 98 clinical disorders are associated with (a) mutation(s) of 

intermediate filament protein genes (Human intermediate filament 

database; www.interfil.org; [128]). To name only a few, mutations in 

keratin 14 or keratin 5 (type I & II intermediate filament proteins) 

cause several forms of epidermis bullosa simplex, an inheritable skin 

blistering disorder. Mutations in GFAP (type III intermediate filament 

protein) can cause Alexander’s disease, a progressive neurological 

disorder, which is fatal within about 10 years after disease onset. 

Characteristic features are accumulation of Rosenthal fibers in 

astrocytes and chronic gliosis. Mutations in peripherin (type III 

intermediate filament protein) and neurofilament-L, -M, -H (type IV 

intermediate filament proteins) are associated with the 

neurodegenerative disease amyotrophic lateral sclerosis (also known as 

Lou Gehrig’s disease), a disorder characterized by loss of motoneurons 

in the spinal cord and the CNS. 
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1.5 Signaling pathways 

1.5.1 Notch signaling pathway 

The Notch signaling pathway is throughout species a highly 

conserved and interconnected mechanism. The Notch signaling 

pathway has a fundamental role during tissue and organ development 

by regulating proliferation, differentiation and apoptosis. It was 

recently shown, that Notch signaling promotes the differentiation of 

NPCs into glial cells [129], decreases neuronal differentiation and 

proliferation [130] and that Notch signaling is necessary to maintain 

the pool of existing NSPCs [131-135]. Dysregulation of Notch 

signaling has been linked to several diseases, developmental defects 

and cancers, such as leukemia (for review see [136-139]).  

The Notch signaling machinery of mammals consists of 4 

known receptors (Notch1-4) and two Jagged (Jag) ligands (Jag1, Jag2), 

3 Delta-like (Dll) ligands (Dll1, Dll3, Dll4) and 2 Delta-like 

homologue (Dlk) ligands (Dlk1, Dlk2). The Notch receptor consists of 

an extracellular domain and an intracellular domain. Shortly, activation 

of the Notch signaling pathway occurs via binding of one of the 

ligands to the Notch extracellular domain of one of the receptors (Fig. 

5). The membrane-tethered receptor is enzymatically cleaved by an 

ADAM/TACE metalloprotease releasing the ligand-bound Notch 

extracellular domain, which is subsequently transendocytosed into the 

Notch ligand expressing cell. This transendocytotic step is essential for 

eliciting Notch signaling. A second enzymatic cleavage by the γ- 

secretase complex releases the membrane-tethered Notch intracellular 

domain from the plasma membrane, which is subsequently 
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translocated to the nucleus and affects gene expression of Notch 

regulated down-stream targets, such as the transcriptional regulators 

Hairy and Enhancer of split (HES; HES1 and HES5). The 

transendocytosed Notch extracellular domain undergoes lysosomal 

degradation, while the ligand is either recycled and represented at the 

membrane or also degraded (for review see [136-139]). 

 
Fig. 5 Simplified illustration of receptor/ligand binding of the Notch signaling cascade. 

Ligands undergo constitutive cycles of recycling and representation at the membrane of the 

signal sending cell. The Notch extracellular domain of the receptor of the signal receiving cell 

binds to the ligand of the signal sending cell (trans interaction) and is subsequently cleaved by 

ADAM/TACE (“the 1. scissor”) which releases the Notch extracellular domain  for 

transendocytosis together with the ligand into the signal sending cell. A second cleavage step 

by the !-sectretase complex (“the 2. scissor”) releases the Notch intracellular domain from the 

membrane of the signal receiving cell. The Notch intracellular domain is translocated to the 

nucleus were it regulates transcription of downstream target genes of the Notch signaling 

pathway. Binding of receptor and ligand, presented on the membrane of the same cell is 

indicated as Cis inhibition. 
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Regulation of the Notch signaling activity occurs on several 

levels, but lacks an enzymatic amplification step. This might be one 

reason for the gene dosage sensitivity, due to haploinsufficiency (a 

diploid organism has one functional copy of a gene, while the other is 

inactive) of Notch signal pathway related genes. Positive and/or 

negative transcriptional feedback loops may amplify only small 

differences in ligand expression that in turn affect the signaling 

between two neighboring cells. In addition, Notch signal activity is 

regulated via cis or trans interactions of the ligands and receptors. 

Trans interactions occur between two neighboring cells, one 

being the signal sending cell (ligand expressing cell) while the other 

receives the signal (receptor expressing cell), cis interactions have 

been proposed to be inhibitory and occur when ligand and receptor are 

presented at the same cell. The ratio of cis and trans interactions can 

modulate signaling activity between neighboring cells. Other crucial 

steps of Notch signal activity regulation are ubiquitination, 

glycosylation and phosphorylation of the receptors and ligands, which 

mark ligands or receptors for degradation or endocytosis with 

subsequent intracellular trafficking. In addition, Notch signal activity 

is always interconnected with multiple signaling pathways, such as the 

EGFR signaling pathway, and the integration of multiple signaling 

mechanisms result in cell fate determinations, such as proliferation, 

differentiation or apoptosis [136-138, 140]. Cross-talk between Notch 

signaling pathway and the EGFR signaling pathway is necessary to 

keep the balance between NSC pool and NPC pool [141], since Notch 

signaling controls self-renewal and identity of NSCs [132, 142, 143], 
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while EGFR signaling promotes proliferation and migration of NPCs 

[144]. 

 

1.5.2 HB-EGF- a ligand for the EGFR signaling pathway 

Heparin binding epidermal growth factor-like growth factor 

(HB-EGF) is one of several known ligands of the EGFR signaling 

pathway. Other ligands comprise the epidermal growth factor (EGF), 

transforming growth factor α (TGF-α), amphiregulin, heregulin, 

epiregulin, betacellulin, epigen and neuregulin 1-4. Further, four 

receptors are known: ErbB1 (also known as EGFR) and ErbB2-4. 

Activation of the EGFR signaling pathway leads to a highly complex 

cascade of down-stream signaling and affects proliferation, migration, 

differentiation or apoptosis of neighboring cells (for review see [145]). 

The receptors of the EGFR signaling pathway belong to the 

tyrosine kinase receptor family and are transmembrane receptors. 

ErbB1 and ErbB4 are able to build functional homo- or heterodimers, 

while ErbB2 has no ligand binding capability and is functional only as 

a heterodimer. Similar, ErbB3 is only functional as a heterodimer, 

since the tyrosine kinase activity of ErbB3 is defect. All known ligands 

of the ErbB receptors contain a EGF domain and are extracellularly 

presented as membrane-bound ligands (for review see [145]). In case 

of HB-EGF, the membrane bound proHB-EGF is cleaved (so called 

ectodomain shedding) by matrix metalloproteinases or a disintegrin 

and metalloproteinases (ADAMs) and the soluble HB-EGF is released 

into the extracellular space. Subsequently, soluble HB-EGF binds to 

the ErbB receptors at neighboring cells and activates the EGFR 
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signaling cascade [146]. However, membrane bound proHB-EGF can 

also bind ErbBs and activate EGFR signaling in a juxtacrine fashion 

[147]. HB-EGF is a known ligand for the receptors ErbB1 and ErbB4. 

Activation of the EGFR signaling cascade via HB-EGF binding to 

ErbB1 results also in activation of the Ras-MAPK pathway affecting 

proliferation. Activation of EGFR signaling via HB-EGF binding to 

ErbB4 is associated with regulation of differentiation (for review see 

[145]). 

Sixty percent of HB-EGF deficient mice die shortly after birth 

[148] and the expression pattern of HB-EGF during CNS development 

suggests a role in maturation of neurons and glial cells [149]. In 

addition, HB-EGF in vivo has a neuroprotective function after 

ischemia [150, 151] and was shown to improve functional recovery 

after stroke [152] and wound healing [153, 154]. HB-EGF in vitro 

increases migration of astrocytes in a scratch-wound model when used 

with the co-factor insulin-like growth factor 1 [155] and functions as a 

potent mitogen for fibroblasts, smooth muscle cells and keratinocytes 

[156]. Recently it was reported that HB-EGF induces de-differentiation 

of Müller glia into multipotent progenitor cells in zebra fish retina 

[157]. In addition, HB-EGF was suggested as a replacement for serum 

in primary astrocyte cultures [158]. Taken together, the functional 

complexity of EGFR signaling, the expression of HB-EGF during 

development as well as its possible role in neuroprotection after injury 

make HB-EGF a highly interesting molecule and a possible target for 

treatment strategies in CNS regeneration. 
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2 METHODOLOGICAL 
CONSIDERATIONS 

In this chapter methodological considerations of some state-of-

the-art methods used in the Papers I-III are given. For detailed 

experimental procedures of all used techniques, please refer to the 

Material and Methods parts of the respective paper. 

2.1 Mouse models – genetic ablation of intermediate 
filament proteins in mice (Paper I-III) 

To study the role of intermediate filament proteins GFAP, 

vimentin and nestin we used mice deficient for GFAP and vimentin 

(GFAP-/-Vim-/-, Paper I) or nestin (Nes-/-, Paper II). 

We used Nes-/- mice and their respective wild-type controls on 

a mixed genetic background (C57BL/6(B6)-129/Sv). The Nes-/- mice 

are viable and reproduce normally [159]. CNS organization in Nes-/- 

mice shows no major defects, but nestin seems to be essential for the 

distribution of acetylcholine receptors at neuromuscular junctions 

[159]. In contrast to the Nes-/- mice used here, Park et al. [160] reported 

that Nes-/- mice generated in their lab showed embryonic lethality and 

in vitro experiments decreased self-renewal capability of Nes-/- NSCs 

derived from embryonic CNS. However, for the generation of our 

mice, several ES clones were used to generate several mouse lines 

deficient for nestin in parallel, while the Nes-/- mice of Park et al. were 

generated from only a single ES clone. All Nes-/- mice lines generated 

in the lab of Prof. Andras Nagy showed the same phenotype and in 
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immunocytochemical and Western blot analyses of Nes-/- mice nestin 

protein was not detectable. 

GFAP-/-Vim-/- mice and their respective wild-type controls are 

on a mixed genetic background (C57Bl/6-129Sv-129Ola) and they are 

viable and reproduce normally [161-164]. Since nestin cannot 

polymerize with itself into intermediate filaments [56], GFAP-/-Vim-/- 

astrocytes are completely devoid of intermediate filaments; the mice 

show attenuated reactive gliosis and glial scar formation [162]. 

However, synaptic and axonal regeneration [30, 165, 166], 

transplantation of neural grafts and neural stem cells are improved 

[167, 168], and in addition, basal and posttraumatic hippocampal 

neurogenesis is increased [49, 169].  

2.2 In vitro - the cell culture systems  

2.2.1 Bioactive3D – a novel in vivo-like 3-dimensional cell culture 

system – compared to conventional 2-dimensional culture systems 

(Paper III) 

To study the function of astrocytes in vitro, primary astrocytes 

are commonly cultured in 2-dimensional (2D) systems on coated or 

un-coated plastic or glass surfaces in the presence of a high percentage 

(10%) of fetal calf serum (FCS). Those 2D-cell culture systems 

constitute a highly artificial and stressful environment, where 

astrocytes are forced to grow without the 3-dimensional (3D) support. 

Astrocytes in 2D-cell cultures resemble reactive astrocytes, since they 

exhibit increased proliferation, up-regulate the expression of GFAP 

and vimentin, re-express nestin and alter gene expression, cell 
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morphology and function. Over the last years, several attempts have 

been made, to design 3D cell culture systems that provide a less 

stressful culture environment by giving structural 3D-support to 

preserve the cell morphology and function that allow in vitro studies in 

a more in vivo-like environment. Up to date, available 3D-cell culture 

systems are based on alginate scaffolds, collagen gels or hydrogels 

[170-172] or are comprised of polymer, ceramics or macroporus 

scaffolds [173, 174], all of which exhibit several disadvantages. Gels 

prevent extensions of cell processes and prolong diffusion of released 

molecules. Further, cell type specific coating of gels is impossible. 

Rigid polymer, ceramics or macroporus scaffolds can lead to unwanted 

clustering and compartmentalization of cells [173, 174]. To circumvent 

these problems and to create a more in vivo-like environment for 

cultured astrocytes, we utilized bioactively-coated 3D-nanofiber 

scaffolds and established a novel 3D-cell culture system 

(Bioactive3D). Nanofibers were prepared by electrospinning using a 

biocompatible polyether-based polyurethane resin in a 60:40 mixture 

of tetrahydrofuran and N,N-dimethylformamide and the nanofibres 

were subsequently coated with poly-L-ornithine and laminin [175].  

Astrocytes grown in Bioactive3D maintain their complex in 

vivo-like morphology (Fig. 6) and motility of cell filopodia is 

supported. Further, we demonstrated that astrocytes grown in 

Bioactive3D are less exposed to cell culture stress compared to 

astrocytes, grown in conventional 2D-cell culture systems, which 

results in decreased expression of GFAP, vimentin, synemin and 

nestin, reduced proliferation and altered expression of genes involved 
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in regulation of proliferation, cell shape determination and cell motility 

[176]. The Bioactive3D cell culture system allows us to study the 

function of primary astrocytes in vitro since these astrocytes are less 

reactive and keep some in vivo-like properties. 
 

 

 Fig. 6 Morphological differences of 

astrocytes cultured in 2D and 

Bioactive3D. Primary astrocytes 

cultured in Bioactive3D show in vivo-

like morphology (right) compared to flat 

and polygonal shaped astrocytes 

cultured in conventional 2D cell culture 

systems (left). Puschmann et al. 2013. 

 

2.2.2 Neurosphere cultures (Paper II) 

The possibilities to investigate intrinsic molecular properties of 

NSCs in vivo are limited and often impossible. One in vitro system, to 

study the cell intrinsic mechanisms of NSCs is the neurosphere assay 

that has been commonly used to address cell proliferation, self-renewal 

and differentiation of NSCs into neurons, astrocytes and 

oligodendrocytes. The neurosphere assay is based on the theory that 

NSCs, cultured in presence of growth factors but without FCS, divide 

symmetrically and build non-adherent, free-floating clusters of 

multipotent daughter stem cells that are able to differentiate after 

growth factor removal. However, it was reported, that neurospheres are 

heterogeneous cell clusters consisting of symmetrically, slowly 

dividing NSCs, but also of more restricted progenitor cells, which 

divide rapidly. Further it was shown, that the free-floating 
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neurospheres are able to merge and even exchange cells with each 

other, questioning the pure “stemness” and ”clonality” of the cells 

within one neurosphere (for review see [177]). Therefore caution is 

advised, when using neurosphere forming capacity (the number of 

neurospheres formed) or the size of neurospheres as an indicator of 

how many NSCs may exist in vivo and what their proliferative 

capability is. Further it needs to be considered, that cells that are not 

NSCs can acquire stem cell properties when cultured in the presence of 

growth factors and they can also form neurospheres.  

 

2.2.3 The establishment of NSC lines from adult mice (Paper II) 

To investigate the functional role of nestin in cell intrinsic 

properties of adult NSCs, we established neural stem cell lines of adult 

Nes-/- and the corresponding wild-type control mice in our lab. The 

NSC lines were established from brains (without olfactory bulb and 

cerebellum) of 4-5 week old mice of both genders. At 4-5 weeks of age 

mice have reached maturity and are considered adult animals. The 

established cell lines were cultured for at least 25 passages to verify 

their stemness, proliferative capability and their capability to generate 

neurons and astrocytes. Adult NSC lines generated from male or 

female animals did not show differences in their stemness, 

proliferative capability or their capability to generate neurons and 

astrocytes. However, the NSC lines used in paper II were derived from 

male animals and all experiments were performed with NSCs of 

passage 5-7. Proliferation was assessed using a hemocytometer and 

differentiation capability was assessed by immunocytochemical 
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detection of cell type specific markers (βIII-tubulin for neurons and 

S100β for astrocytes). Directional migration towards a SDF-1α 

gradient was assessed as previously described [178] using a 

chemotaxis chamber. 

 

2.2.4 Astrocyte co-cultures with rat NSCs derived from adult 

hippocampus (Paper II) 

To investigate the effect of the astrocyte (wild-type and Nes-/-) 

environment on neuronal differentiation of NSCs, primary mouse 

astrocytes were co-cultured with NSCs. The NSCs were derived from 

adult rat hippocampus and retrovirally transfected to express green 

fluorescent protein (GFP). The NSC cell line (clone HCN-A94/GFPH) 

was kindly provided by F.H. Gage (Salk Institute, La Jolla, CA, USA). 

For all co-culture experiments NSCs of passage 19-20 were used, a 

passage in which GFP expression was detected in only a fraction of all 

NSCs. Therefore, proliferating NSCs were labeled with 5-bromo-2-

deoxyuridine (BrdU) for 48h before plating them on top of primary 

astrocytes. Total cell number was evaluated by counting BrdU positive 

cells, while differentiation properties of NSCs were addressed with 

antibodies against GFAP for astrocytes and βIII-tubulin for neurons. It 

needs to be considered that BrdU has a low genotoxicity and changes 

the methylation pattern of the DNA, which may influence the 

differentiation of NSCs (see also paragraph 2.4). The reason, why rat 

NSCs were used instead of mouse NSCs was primarily because the rat 

NSC line was available in our laboratory and has been used in similar 

experiments with GFAP-/-Vim-/- astrocytes before [168]. 
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2.3 Quantitative real-time PCR (RT-qPCR) of individual 

astrocytes (Paper I) 

Heterogeneity of cells on the levels of mRNA, proteins, 

metabolites or lipids within an apparently homogenous cell type is 

acknowledged since many years. However, technical limitations in the 

past prevented transcriptomical, proteomical, metabolomical or 

lipidomical analyses on the level of individual cells. Up to date, single 

cell analyses were mainly based on immunocytochemical, 

immunohistochemical or flow-cytometric methods restricting the 

number of analyzed genes, proteins or metabolites per cell to only a 

few, which makes it almost impossible to decipher the complexity of 

biological processes, such as signaling pathways, in detail. The rapid 

pace of technological development within the last few years makes it 

now possible to address heterogeneity on single cell level revealing 

unique molecular signatures of individual cells (for review see [179]). 

One approach to target heterogeneity among astrocytes is by 

means of mRNA expression levels using quantitative real-time PCR 

(RT-qPCR) in individual astrocytes. The amount of mRNA molecules 

per gene can vary between only a few copies to up to 50.000 molecules 

per individual astrocyte [180]. This difference is masked in RT-qPCR 

analyses of astrocyte populations, but on the level of individual cells 

gives us an accurate representation of variations as well as correlations 

of gene expression within astrocytes to classify subpopulations and/or 

reveal a detailed picture of signaling mechanisms (Fig. 7).  
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Fig. 7 Heterogeneity of mRNA expression and correlation. RT-qPCR analyses of cell 

populations cannot distinguish between A) and B) or C) and D).  

The mRNA content of one individual mammalian cell is 

usually about 1pg of mRNA, which corresponds to approximately 

300.000 mRNA molecules of about 10.000 existing genes [181, 182]. 

RT-qPCR is highly sensitive and detection of only one mRNA 

molecule, corresponding to only femtograms of mRNA, within one 

cell is possible; further advantages are the wide dynamic range and 

high reproducibility of RT-qPCR [183-185]. Technical variability of 

RT-qPCR analyses due to minimal mRNA material was shown to be 

minute in comparison to the biological variability occurring in gene 

expression of individual cells [186].  

Genes of interest, also splice variants of the same gene, can be 

specifically selected and pre-amplification of mRNA makes it possible 

to analyze up to 100 genes per individual cell [187].  

The classification of possible subpopulations of heterogeneous 

cell types by RT-qPCR is based on mRNA levels. Differences in 

mRNA levels do not necessarily lead to alterations in protein 

expression, morphological or functional differences. Posttranslational 
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mRNA modifications affect translation of mRNA into proteins; 

further, transcription is a highly dynamic process and half-life for 

specific mRNA molecules is gene-dependent. In addition, protein 

modifications such as phosphorylation, dephosphorylation as well as 

glycosylation alter the functional properties of proteins.  

 

2.4 BrdU labeling of proliferating cells and cell fate 
determination (Paper II and III) 

To detect the small population of dividing neural stem cells in 

the adult mammalian brain, BrdU in vivo labeling is commonly used. 

BrdU is incorporated into the replicating DNA of dividing cells as well 

as during DNA repair mechanisms as a thymidine analogue, followed 

by immunohistochemical detection. Incorporation of BrdU into 

dividing cells in vivo allows to address the existing number of NSPCs 

in the CNS and to follow the survival and cell fate determination of 

neural stem cells in CNS over time. The amount of incorporated BrdU 

during DNA repair mechanisms is much lower compared to the 

amount incorporated during DNA replication and is therefore 

negligible. BrdU is known to be genotoxic, which may result in 

malformations when administered during embryogenic development 

[188], however the toxicity is considered to be very low and it was 

shown that hippocampal neurogenesis was not affected in adult rats by 

multiple BrdU injections [189, 190]. The ideal dosage of BrdU, 

administered intraperitonally and shown to be non-toxic, for the 

detection of all dividing cells lays between 100-300mg/kg [189]. 
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We administered BrdU intraperitonally to label and follow the 

cell fate of newly born cells in the adult brain of Nes-/- mice in vivo at a 

dose of 200mg/kg. Total number of BrdU positive cells was calculated 

to address the existing pool of proliferating NSPCs within different 

regions of the adult brain. For cell fate determination, double labeling 

of BrdU with S100β was used to determine the number of newly 

formed astrocytes, double labeling of BrdU with NeuN was used to 

address newly generated neurons, double labeling of BrdU with GFAP 

was used to address the number of NSCs (corresponding to type 1 cells 

also known as radial glia-like cells) and double labeling of BrdU with 

doublecortin (Dcx) was used to address the number of neuronal 

precursor and immature neurons (corresponding to type 2-3 cells also 

known as non-radial precursors or IPCs) [191]. 

BrdU labeling can also be used for detection of proliferating 

cells in vitro (see paragraph 2.2.3). An alternative possibility to label 

proliferating cells in vitro is by using 5-ethynyl-2`-deoxyuridine (EdU) 

instead of BrdU (Paper III). The mechanism of incorporation into the 

DNA of replicating cells as a thymidine analogue remains the same. 

 



The role of the intermediate filament (nanofilament) protein nestin in neural progenitor cell 
and astrocyte differentiation 

32 

3 AIMS OF THE THESIS 
 

I) To study (i) the heterogeneity of astrocytes on a 

single cell level with a particular focus on the Notch 

signaling pathway, (ii) the effect of the intermediate 

filament (nanofilament) proteins GFAP and 

vimentin on the Notch signaling competence of 

individual astrocytes, and (iii) to identify possible 

astrocyte subpopulations based on mRNA 

expression of individual astrocytes (Paper I). 

II) To investigate the role of the intermediate filament 

protein nestin (i) in neural stem/progenitor cell 

proliferation, differentiation and directional 

migration in vitro, and (ii) in the neurogenesis in the 

two adult neurogenic niches, the dentate gyrus of the 

hippocampus and the subventricular zone of the 

lateral ventricles (Paper II). 

III) To address the effect of heparin binding EGF-like 

growth factor (HB-EGF) on (i) astrocyte 

morphology, (ii) proliferation, (iii) differentiation, 

(iv) expression of intermediate filament proteins and 

(iv) mRNA expression of selected genes in our 

newly developed 3 dimensional cell culture system 

(Bioactive3D) and in conventional 2 dimensional 

cell culture systems (Paper III). 
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4 RESULTS AND DISCUSSION 
Paper I 

Heterogeneity of Notch signaling in astrocytes and the effects of 

GFAP and vimentin deficiency  

Astrocytes are a multifunctional and highly heterogeneous cell 

type and fulfill many roles in healthy and injured CNS. Recently, we 

showed, that astrocytes actively participate in the regulation of 

neurogenesis by inhibiting neuronal differentiation of NSPCs through 

Jag1-mediated Notch signaling and that this regulation is dependent on 

the cytoplasmic intermediate filament proteins GFAP and vimentin 

[49]. Here we show the heterogeneity of astrocytes with regard to their 

Notch signal sending competence on a single cell level.  

We found that most astrocytes are competent to receive Notch 

signals (defined as astrocytes that express the Notch1 receptor), while 

only a minority of astrocytes is competent to send Notch signals 

(defined as astrocytes that express one of the Notch ligands, Jag1 or 

Dlk2) and even fewer astrocytes can send as well as receive Notch 

signals (defined as astrocytes that express one of the Notch ligands, 

Jag1 and Dlk2, and the Notch1 receptor). Only Notch signal sending 

competence seems to depend on GFAP and vimentin since fewer 

GFAP-/-Vim-/- astrocytes have Notch signal sending competence, 

whereas the size of the Notch signal receiving competent population of 

GFAP-/-Vim-/- astrocytes is comparable to wild-type astrocytes. 

Gene expression of Notch signal pathway genes Notch1, Dlk2 

and Sox2 is differentially regulated in GFAP-/-Vim-/- astrocytes, with up 
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to a 1.5-fold increase in Dlk2 mRNA levels in GFAP-/-Vim-/- astrocytes 

compared to wild-type, while fewer GFAP-/-Vim-/- astrocytes express 

Dlk2 in general. Further, Sox2 and Dlk2 mRNA expression is only 

correlated in wild-type astrocytes but is absent in GFAP-/-Vim-/- 

astrocytes. Since Dlk2 was reported as an inhibitory Notch ligand that 

modulates the activity of other Notch ligands, GFAP-/-Vim-/- astrocytes 

may send more inhibitory Notch signals compared to wild-type 

astrocytes, which affect gene expression and correlation of the 

remaining Notch signal pathway related genes. The Notch signal 

pathway lacks an enzymatic amplification step but is sensitive to the 

gene dosage, therefore already small changes in the amount of mRNA 

molecules of Notch pathway genes may affect the signaling outcome 

in GFAP-/-Vim-/- astrocytes. 

To our knowledge, this is the first study to address 

heterogeneity of signaling competence in individual astrocytes and it 

heralds the importance of single cell analyses for a better 

understanding of cell-cell interactions. 

 

Nestin and HB-EGF are possible classifier for astrocyte 

subpopulations  

Astrocytes have complex functions in healthy and diseased 

CNS and are also able to de-differentiate and regain stem cell 

characteristics after injury or neurotrauma. This heterogeneity of 

astrocytes makes classifications of astrocyte subpopulations based on 

expression of specific markers highly desirable since up to date no 
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specific markers are known to classify possible astrocyte 

subpopulations in vivo or in vitro. 

Nestin (Nes) and HB-EGF mRNA expression can be used to 

classify both wild-type and GFAP-/-Vim-/- astrocyte subpopulations. 

Nes and HB-EGF mRNAs are both expressed in immature astrocytes 

[56, 158] and are re-expressed in CNS after injury [74, 150, 151, 192]. 

In addition, nestin serves as a marker for NSCs [193], reactive 

astrocytes and astrocytes in a de-differentiated state [194, 195]. Here 

we showed that in vitro Nes serves as a classifier in wild-type and 

GFAP-/-Vim-/- astrocytes in the same manner, while the function of HB-

EGF as a classifier seems to depend on the expression of GFAP and 

vimentin. NesPOS and HB-EGFPOS subpopulations of both wild-type 

and GFAP-/-Vim-/- astrocytes may resemble either a more immature 

astrocyte subpopulation or they represent reactive astrocytes. Since 

nestin usually polymerizes with vimentin, both theories go in line with 

the finding, that vimentin mRNA levels were decreased in NesNEG and 

HB-EGFNEG subpopulations in wild-type astrocytes. 

We propose Nes and HB-EGF mRNA as a possible classifier 

for astrocyte subpopulations in vitro.  

 

Paper II 

The absence of nestin does not affect proliferation of adult NSPCs in 

vivo and in vitro 

The intermediate filament protein nestin is commonly used as a 

marker of neural stem/progenitor cells (NSPCs) and is expressed in 

NSPCs in the adult subgranular zone (SGZ) of the dentate gyrus in the 
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hippocampus and in the subventricular zone (SVZ) of the lateral 

ventricles [3, 16]. Nestin is also re-expressed when astrocytes become 

reactive [56, 74]. However, the role of nestin in embryonic and adult 

neurogenesis remains elusive. Here we investigated the role of nestin 

in neurogenesis in Nes-/- mice. 

We found that nestin does not affect proliferation of adult 

NSPCs or neuroblasts from the two adult germinal zones in Nes-/- and 

wild-type mice in vivo. Proliferation, differentiation and directional 

migration of NSPCs derived from adult Nes-/- and wild-type brains was 

comparable. Previous reports suggested, that nestin is essential for 

proliferation of neural progenitor cells [196] and required for normal 

zebra fish brain and eye development through control of neural 

progenitor cell apoptosis [197]. However, those findings were based on 

knock down techniques in embryonic stem cells and the same 

mechanisms might not apply to adult NSPCs. Recently, nestin was 

shown to not be essential for the development of the CNS [159], 

suggesting, that the role of nestin during CNS development can be 

compensated by other proteins.  

 

Increased adult neurogenesis in the hippocampal dentate gyrus of 

mice deficient for nestin  

The hippocampus of Nes-/- mice had 48%-58% more neurons 

compared to wild-type mice 6 weeks after BrdU administration, 

whereas we did not see a difference 2 weeks after BrdU 

administration. These data imply that the process of survival of newly 

born neurons is altered at a later stage of neuronal maturation and 
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integration in Nes-/- mice. Survival of newly born neurons is dependent 

on the activity and functional integration into the cellular environment. 

Increasing evidence supports the theory of astrocytes as key 

modulators of the neurogenic niches, since astrocytes can share 

characteristic properties with neural stem cells [198-200] and can also 

create a neurogenesis-supportive milieu [201]. The molecular 

mechanisms by which astrocytes control neurogenesis, neural 

plasticity and regeneration are affected by the expression of the 

intermediate filament proteins GFAP and vimentin. In concordance 

with our recent finding, that GFAP-/-Vim-/- deficient astrocytes provide 

a more pro-neurogenic milieu compared to wild-type astrocytes [49], 

we show here that adult rat NSCs gave rise to a higher percentage of 

neurons in co-cultures with Nes-/- compared to wild-type astrocytes. In 

addition, under differentiation conditions, neuronal differentiation of 

P4.5 Nes-/- neurosphere-derived cells was increased compared to wild-

type. These data suggest that Nes-/- astrocytes provide a more pro-

neurogenic environment than wild-type astrocytes. Moreover, the 

results from co-culture experiments suggest that this pro-neurogenic 

effect depends on cell-cell contact. 

Astrocytes in the unchallenged hippocampus do express no or 

very low levels of nestin, while neural stem cells in the hippocampus 

are nestin positive. Therefore, the pro-survival environment in Nes-/- 

mice may rather be provided by other cells, such as neural stem cells 

than astrocytes. The survival and integration of adult-born neurons 

may depend on several factors, such as excitation through NMDA 

receptors [202], activation of TrkB receptors by brain-derived 
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neurotrophic factor [203, 204], Notch signaling [132] or intracellular 

activation of Cdk5 [205, 206]. The exact role of nestin in this process 

remains to be elucidated. 

As astrocytes control the microenvironment of neurons and in 

particular synaptic function, not least by an active uptake of 

neurotransmitters, it is not surprising that they regulate also the 

survival of newly born neurons and their integration into the existing 

networks. Our results provide support for such a scenario, although the 

mechanisms by which nestin and perhaps other intermediate filament 

proteins and their networks control this process remain elusive. Further 

analysis of the role of nestin in this process may provide important 

clues on how intermediate filament proteins and the intermediate 

filament network affect the ability of astrocytes to control neurogenesis 

and perhaps also other aspects of neuronal function. 

 

Paper III 

HB-EGF affects astrocyte proliferation and alters astrocyte morphology 

towards a radial glia-like phenotype  
Astrocytes are usually cultured in 2D-cell culture systems in 

the presence of a high percentage of FCS. FCS is an essential, but 

highly undefined, component to maintain and expand astrocyte 

cultures and it is known to alter astrocyte properties, such as gene 

expression, proliferation and morphology. Recently, HB-EGF was 

suggested as a replacement for serum in astrocyte cultures [158]. 

Additionally, it was shown, that HB-EGF induces de-differentiation of 

Müller glia into multipotent progenitors in zebra fish retinas [157].  
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Here we utilized the Bioactive3D system [176] to address the 

effect of HB-EGF on astrocyte morphology, proliferation, 

differentiation, expression of intermediate filament proteins and 

mRNA expression of selected genes. 

In the presence of HB-EGF we observed a stronger increase in 

proliferation in Bioactive3D compared to 2D cultured astrocytes, 

which may be due to the lower baseline reactivity of astrocytes in the 

Bioactive3D culture system [176]. Alterations of astrocyte morphology 

induced by HB-EGF lead to a more radial glia-like phenotype. A 

similar de-differentiating phenotype was observed after conditioned 

media to the cell cultures from astrocytes in an in vitro injury model 

[194] and it was also reported that HB-EGF is released after injury in 

vivo [207].   

 

HB-EGF affects astrocyte intermediate filament expression and leads to 

partial astrocyte de-differentiation 
In line with the observed morphological changes towards a 

radial glia-like phenotype, we found that HB-EGF leads to an increase 

in the expression of the intermediate filament protein nestin, a marker 

for reactive astrocytes [192], neural progenitor cells [193] and also de-

differentiating astrocytes [194, 195] in both cell culture systems. Notch 

signaling enhances nestin expression in human gliomas [208] and here 

we show that expression of Notch signal pathway related genes was 

differentially affected in both culture systems. mRNA expression of 

the Notch signal pathway ligand Dll1 was up-regulated in both culture 

systems, while its suppressor Hes1 was down-regulated only in 
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Bioactive3D. This may be an indication of a HB-EGF-induced 

amplified Notch signaling cascade in Bioactive3D compared to 2D 

cultures.  

Taken together, the changes in astrocyte morphology towards a 

radial glia-like phenotype, increased nestin protein expression and the 

differential expression of Notch signal pathway related genes, indicate 

that the addition of HB-EGF leads to a partial de-differentiation of 

astrocytes in vitro. Thus, HB-EGF should be used as a component of 

astrocyte culture media only with caution. 
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