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We study resonant all-electric adiabatic spin pumping through a quantum dot with two nearby
levels by using a Fermi liquid approach in the strongly interacting regime, combined with a projective
numerical renormalization group (NRG) theory. Due to spin-orbit coupling, a strong spin pumping
resonance emerges at every charging transition, which allows for the transfer of a spin ∼ ~/2 through
the device in a single pumping cycle. Depending on the precise geometry of the device, controlled
pure spin pumping is also possible.
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Introduction: Spin-orbit (SO) coupling plays a promi-
nent role in many different fields of physics: it is not
only responsible for magnetic anisotropy and thus deter-
mines the orientation and low energy excitation spectra
of magnets and magnetic molecules1, but its presence also
changes the universality class of the localization transi-
tion2, and it is also a crucial component for realizing
topological insulators3–5. The SO coupling plays also a
determining role in mesoscopic physics, in spintronics,
and, most importantly, in spin-based quantum compu-
tation. In the latter context, in particular, it produces
spin relaxation in spin quantum bits6,7 and leads to ge-
ometrical spin relaxation even in the absence of external
magnetic fields8, however, it can also be used to gener-
ate effective magnetic fields and achieve electrical spin
control 9.

It has been first observed in Ref.10 that, in the pres-
ence of SO interaction, one can produce a spin current by
simply cycling adiabatically the parameters of a chaotic
cavity (pumping) without breaking the instantaneous
time reversal symmetry, i.e., without applying an exter-
nal magnetic field. Obviously, realizing such spin pumps
would enable one to reach an important goal of spintron-
ics, and build all electric spin sources. Indeed, guided by
this observation, more controlled setups have been pro-
posed to pump spin currents through quantum wires11

and quantum dots12, however, the effects of interactions
were ignored in all these studies. While this is justified
to a certain extent for the case of a quantum wire11,
it is certainly unjustified for a quantum dot12, where –
precisely in the regime of interest – interactions are nec-
essarily strong12. Studying pumping through strongly
correlated systems is a notoriously hard problem13. For
charge pumping through quantum dots, several expres-
sions have been derived based upon an adiabatic expan-
sion of the Keldysh Green’s functions11,14. The expres-
sions obtained, however, contain terms, which correspond
to local charge oscillations, not related to true pumping.
An alternative, perturbative approach of pumping has

been developed in Ref.15, but this method is restricted
to the regime of weak tunneling and high temperatures,
and cannot be used to reach the most exciting low tem-
perature regime.

Here we revisit the problem studied in Ref.12 and in-
vestigate how the interplay of SO coupling and strong
electronic interactions influences spin pumping through
a quantum dot at very low temperatures. Our method
is very different in spirit from those of Refs.11,14,15: we
start out from the observation that at T = 0 temperature
our quantum dot (similar to many interacting systems of
interest) realizes a local Fermi liquid state. In this state,
quasiparticle scattering at the Fermi energy is elastic,
and can be characterized by a single particle on shell S-
matrix. For very small pumping frequencies and small
temperatures, ω, T → 0, the current through the device
is carried by quasiparticles at or very close to the Fermi
surface, where – to leading order – multiparticle scat-
tering processes can be neglected by simple Fermi liquid
phase space arguments. Then for the dominant elastic
processes, Brouwer’s pumping formula can be applied,
and the leading contribution to the pumped current can
be expressed just in terms of the single particle S-matrix,
evaluated at the Fermi energy.

Computing the latter is still an extremely demanding
task: we do that here in the most interesting narrow
level limit by using a projective approach, whereby we
first project the Hamiltonian to the subspace of Kramers
degenerate levels participating in the pumping cycle, and
then perform numerical renormalization group (NRG)
calculations for this projected Hamiltonian and recon-
struct the S-matrix. The strong Coulomb repulsion
has a dramatic effect: in the vicinity of every charging
transition, a spin pumping resonance (or antiresonance)
emerges. As a consequence of large interaction, these
resonances are well separated in parameter space, and
the total spin pumped through them can reach values of
∼ ~/2 in pumping cycles sketched in Fig. 1.

Model. We consider an interacting system with two
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FIG. 1: (Color online) Sketch of the spin pumping cycle.
In the initial configuration one electron is injected into the
dot. Due to the spin orbit interaction the spin up and spin
down parts of the wave function are rotated differently (for
clarity, only the spin up component is shown), and the spin up
and spin down parts move into different electrodes, thereby
resulting in spin pumping.

almost degenerate levels, ε1 and ε2, close to the Fermi
energy, and weakly coupled to external electrodes. In ex-
periments, the average energy ε̄ = (ε1 + ε2)/2 as well as
the energy difference ∆ε = ε1 − ε2 of these levels can be
tuned by gate voltages16. We shall thus consider these as
pumping variables throughout this paper. By disregard-
ing the other occupied or empty levels, we describe our
system by the following Hamiltonian

H =
∑

σ,j={1,2}

εj d
†
jσdjσ +

∑
σ

(
tσd
†
1σ d2σ + h.c.

)
+

U

2
n(n− 1) +

∑
σ,j,r

vrj

(
d†jσψrσ + h.c.

)
, (1)

with d†jσ the creation operator of a spin σ electron at
level j = 1, 2, and n the total number of electrons on
the dot. For simplicity, we have chosen the spin quanti-
zation axis to coincide with the one dictated by the SO
coupling, but otherwise assumed the most general single
particle Hamiltonian allowed by time reversal symmetry.
The parameters tσ = t + iα σ describe spin dependent
hybridization between the two levels with α the effective
strength of the SO interaction. The term∼ Un2 accounts
for electron-electron interaction, while the last term of
Eq. (1) describes the hybridization between the dot levels

and the leads. The field ψ†rσ =
∑

k c
†
k,rσ/(%r)

1/2 creates

a conduction electron in lead r = L/R20, and has been
normalized by the density of states of the corresponding
electrode, %r so that the hopping amplitudes vrj are di-
mensionless. We shall assume that the leads behave as
regular Fermi liquids, and thus the dynamics of the cre-

ation operators c†k,rσ (and those of ψ†rσ) are governed by
free electron Hamiltonians.

The last term of Eq. (1) induces quantum fluctuations
and a finite but asymmetrical broadening of the two lev-
els. In the mixed valence regime discussed here, all en-
ergy scales must be compared to the strength of these
quantum fluctuations, Γ ≡

∑
i Γii ≡ 2π

∑
r=L/R vri

∗ vri ,

which shall be used in what follows as an energy unit.
Formalism: As shown by Brouwer10, for a nonin-

teracting mesoscopic system, for adiabatical parameter
changes, the accumulated charge and spin depend only
on the path followed in parameter space, and can both
be expressed in terms of the scattering matrix Sσσ′

rr . Per-
forming a cycle of area A in the parameter space spanned
by ε1 and ε2, e.g., one accumulates a spin

∆Sr =
~

2π

∫
A

Π(S)
r (ε1, ε2) dε1dε2 (2)

in electrode r, where the spin pumping field is defined as

Π(S)
r (ε1, ε2) = Im Tr

{
(Λr ⊗ σ)

∂S
∂ε2

∂S†

∂ε1

}
, (3)

with Λr a projector selecting scattering channels in elec-
trode r. As explained in the introduction, here we shall
exploit the fact that the ground state of Eq. (1) is a
Fermi liquid17. Therefore quasiparticles scatter elasti-
cally at T ≈ 0, and their scattering can be described
in terms of the single particle (on shell) S-matrix eval-

uated at the Fermi energy, Sσσ
′

rr (ω = 0). Since pre-
cisely these quasiparticles are responsible for adiabatic
pumping, we can continue using (2) at very low tem-
peratures, while replacing the noninteracting S-matrix
in Eq. (3) by its many-body counterpart, S → S(ω = 0).
For our Hamiltonian, the latter can be simply related to
the Fourier transform of the local Greens’s functions18,

Gjσ,j′σ′(t) ≡ −i〈[djσ(t), d†jσ′(0)]〉θ(t),

Sσσ
′

rr′ (ω) = δrr′δσσ′ − 2πi
∑
j,j′

vrj v
r′

j′
∗
Gjσ,j′σ′(ω). (4)

Our task is thus reduced to compute Gjσ,j′σ′(ω) very
precisely as a function of external parameters, and then
compute the pumped spin. This, however, turns out
to be a very challenging task since we need to deter-
mine with high precision both the imaginary and the
real parts of Gjσ,j′σ′(ω) at the Fermi energy. Unfortu-
nately, as of to date, none of the available methods can do
that reliably. Restricting ourself to the most interesting
regime of a narrow resonance,

√
t2 + α2 > Γ, however,

we can considerably simplify the problem. For U = 0
the isolated dot has two Kramer’s doublets at energies
E± = ε̄ ±

√
t2 + α2 + ∆ε2/4. Since E+ − E− � Γ, for

occupations, 〈n〉 ≤ 2 we can neglect the higher Kramers
doublet, and project to this level. We thus introduce the
operators

D†σ ≡
∑
j

Φj,σd
†
j,σ , (5)
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with the spinors Φσ parametrized most conveniently
in terms of the angles ϕ ≡ − cot−1(t/α) and ϑ ≡
− cot−1(∆ε/2

√
t2 + α2) and expressed as Φ↑ = Φ∗↑ =

(cos(ϑ/2), e−iϕ sin(ϑ/2)). The projected Hamiltonian is
then just an ordinary Anderson Hamiltonian

Hproj =
∑
σ

E−(θ, ϕ)D†σDσ +
U

2
n(n− 1)

+ ṽ(θ, ϕ)
∑
σ

(
D†σψ̃σ + h.c.

)
,

with the hybridization defined as ṽ2 =
∑
r

∣∣ṽr↑∣∣2, with

ṽr↑ ≡
∑
j Φ∗j,↑v

r
j,↑. Within this approximation, the S-

matrix can then be expressed as

Sσσ
′

rr′ (ω) = δσσ′
{
δr,r′ − 2πi ṽrσ ṽ

r′∗
σ GD(ω)

}
, (6)

with GD(ω) the effective Anderson model’s local retarded
propagator. At T, ω → 0 this S-matrix has two eigenval-
ues for both spin directions: a trivial eigenvalue, s = 1,
and an eigenvalue s = e2iδ, with the phase shift δ re-
lated to the occupation of the level E− by the Friedel
sum rule, 〈D†σDσ〉 = δ/π. The occupation 〈D†σDσ〉 is

a universal function of the ratios Γ̃/U and E−/U , with

Γ̃ = 2πṽ2 denoting the width the level E−, and can be
determined reliably by functional or numerical renormal-
ization group methods as well as by Bethe Ansatz. To-
gether with Eq. (3), Eq. (6) thus provides a complete and
simple description of adiabatic spin pumping through the
device in the limit, t2 + α2 > Γ, and T → 0.

Results: To compute the pumping fields, we employed
the density matrix NRG (DM-NRG) approach19 to com-
pute 〈n〉, and exploited the Friedel sum rule to construct
GD(ω = 0) and the S-matrix as a function of ε1 and ε2
using Eq. (6). To check the validity of our projective ap-
proach, we also performed DM-NRG calculations for the
unprojected Hamiltonian and determined the occupation
〈n〉21. The agreement is very good (see inset of Fig. 2):
the location as well as the shape of the charging steps
are reproduced accurately by the projected Hamiltonian.
We also verified that in the non-interacting limit, U → 0,
our projective theory also reproduces the exact results of
Ref.12.

In Fig. 2, we present the spin pumping field, Eq. (3),
as well as the occupation 〈n〉 as a function of ε̄ and ∆ε.
Two strong resonances appear for ∆ε ≈ 0, precisely in
the vicinity of the mixed valence regimes. The first reso-
nance at ε̄ ≈

√
α2 + t2 corresponds to the n = 0 ↔ 1

transition, and resembles very much to the resonance
found in the non-interacting case12. Encircling this first
resonance corresponds to a cycle sketched in Fig. 1: (1)
first one populates level ε1 by pulling it below the Fermi
level. Then, (2) exchanging ε1 ↔ ε2 one changes the spin
content of the lower level, E−. (3) Finally, one empties
the level by pulling it over the Fermi energy.

However, a surprising second antiresonance appears at
ε̄ ≈
√
α2 + t2 −U . This antiresonance is associated with

(a)

(b)

FIG. 2: (Color online) (a) Density plot for the total occupa-

tion number in the [ε̄,∆ε] plane for couplings vL1 = 0.33
√

Γ,

vR1 = 0.37
√

Γ, vL2 = 0.42
√

Γ and vR2 = −0.46
√

Γ. The
Coulomb energy is U = 2 Γ, α = 0.9 Γ and t = 0.2 Γ. Inset:
comparison between the projected NRG and full DM-NRG
results for the total occupation of the dot for ε = ε1 ≡ ε2. (b)

Dimensionless spin field Γ2 Π
(S)
L (ε̄,∆ε) for the same parame-

ters. The dashed black triangle indicates the pumping cycle
used in Fig. 3. Fig. 1 shows the cycle indicated by dotted
black lines. Dash-dotted blue lines denote the mixed valence
regimes, where the total occupation is 〈n〉 = 0.5 (〈n〉 = 1.5).

the transition n = 1 ↔ 2. It emerges solely as a con-
sequence of strong Coulomb interactions, and cannot be
explained within a non-interacting picture. It ”mirrors”
the first resonance, but it carries just the opposite spin.
This can be intuitively understood as follows: The doubly
occupied level is a Kramers singlet and carries no spin.
Therefore, the second electron entering the quantum dot
must carry a spin opposite to the first one.

To characterize the strength of the observed reso-
nances, we computed the total spin pumped through a
cycle, (ε1, ε2) = (0, 0) → (0, 5 Γ) → (5 Γ, 0) → (0, 0) (tri-
angle in Fig. 2). For optimal parameters, the total spin
pumped can reach values of the order of∼ ~/2. The value
of the pumped spin is almost independent of the Coulomb
interaction as long as U is sufficiently large. However,
since the pumping originates from the large amplitude
of the spin flip process during the avoided level crossing
at ε1 ≈ ε2, its strength is relatively sensitive to the spin
independent interlevel hybridization, t, which suppresses
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FIG. 3: Pumped charge and spin per cycle as function of the
hybridization t of the two levels, as computed for the triangle-
shaped cycle in Fig. 2.b. The couplings are fixed to vL1 =
0.33
√

Γ, vR1 = 0.37
√

Γ, vL2 = 0.42
√

Γ and vR2 = −0.46
√

Γ.
〈Sz〉 is measured in units of ~/2 and the pumped charge 〈Q〉
in units of e.

FIG. 4: (Color online) Sketch of the occupation of the dot
and the position of the spin pumping resonances.

the amplitude of these spin flip processes, and gradually
suppresses the pumped spin (see Fig. 3).

Our projective approach can easily be extended to the
regime 〈n〉 ≥ 2 by means of an electron-hole transforma-
tion, which symmetry also allows us to determine the
structure of the pumping fields in the whole parame-
ter region (see Fig. 4): altogether we find two pairs of
spin pumping resonances, two resonances corresponding
to the charging of each Kramers degenerate level.

For generic couplings, vrj , spin pumping is also ac-
companied by charge pumping, which, however, may be
strongly suppressed for special geometries. For a sym-
metrical device, e.g., with vL1 = vR1 and vL2 = −vR2 the
charge field vanishes identically, and one obtains pure
spin pumping, similar to the non-interacting case8.

Conclusions: In the present paper, we used the con-
cepts of Fermi liquid theory to formulate low temper-
ature spin pumping through an interacting many-body
system in terms of the many-body S-matrix. We ap-
plied this formalism for a strongly interacting quantum
dot with two gate-tuned levels, and showed that – due to
the strong interactions – pumping field strong resonances
and anti-resonances appear at every mixed valence tran-
sition, which can be used to pump purely electronically
a spin of the order ∼ ~/cycle in a controlled way.
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