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If bilayer graphene is placed in a high perpendicular magnetic field, several quantum Hall plateaus
are observed at low enough temperatures. Of these, the σxy = 4ne2/h sequence (n 6= 0) is explained
by standard Landau quantization, while the other integer plateaus arise due to interactions. The low-
energy excitations in both cases are magnetoexcitons, whose dispersion relation depends on single-
and many-body effects in a complicated manner. Analyzing the magnetoexciton modes in bilayer
graphene, we find that the mixing of different Landau level transitions not only renormalizes them,
but essentially changes their spectra and orbital character at finite wave length. These predictions
can be probed in inelastic light scattering experiments.

PACS numbers: 71.35.Ji, 71.70.Di, 71.70.Gm

I. INTRODUCTION

Bilayer graphene,1 two coupled hexagonal lattices of
carbon atoms in the Bernal stacking2 of graphite, is
a two-dimensional zero-gap semiconductor with chiral
charge carriers with Berry’s phase 2π, having a roughly
parabolic dispersion at low energies about the corners of
the hexagonal first Brillouin zone.3 These facts are testi-
fied by its unusual integer quantum Hall effect4,5 (IQHE),
featuring a double step in the ladder of the Hall conduc-
tance in a strong perpendicular magnetic field B⊥, first
observed by Novoselov et al.

1 This double step, 8e2/h in-
stead of the common 4e2/h for spin and valley degenerate
Landau levels, is due to the degeneracy of the n = 0, 1
Landau orbitals.6–8 The gap at the integer quantum Hall
effect at filling factor ν = ρhc/eB⊥ = ±4,±8 have been
recently measured with great accuracy,9 and the excita-
tions of the IQHE states in the long wavelength limit
have also been observed by infrared absorption10 and
Raman spectrocopy.11 Further broken symmetry states
have been observed12–15 in the central Landau band at
ν = 0,±1,±2 and±3, and by careful tilted-field measure-
ments it has been shown that they arise predominantly
from many-body effects, i.e., from quantum Hall ferro-
magnetism (QHF).16 Quantum Hall states with broken
symmetry have also been found in the n = −2 Landau
level17, and there is also some evidence for a fractional
quantum Hall plateau.

The eightfold degeneracy of the central group of Lan-
dau levels is at best approximate, because the Zeeman
energy is unavoidably present. While the latter is rather
small on the characteristic scale of the interaction en-
ergy, a perpendicular electric field can be applied to bias
the two layers,8,14,18–31 which causes an energy difference
between the two valleys. The competition of the on-site
energy difference between the layers and interactions may
result in interesting physics, especially at ν = 0.14,31–35

If the chemical potential is in the gap between Lan-
dau bands, the low-energy excitations are bound particle-
hole pairs,37–40 called magnetoexcitons .As the net charge

of such an excitation is zero, taking appropriate linear
combinations one obtains eigenstates of the total mo-
mentum. In such states the hole and the particle are
bound by the attractive Coulomb interaction, thus form
a dipole with a separation of qℓ2B at center-of-mass wave-

vector q, where ℓB =
√
~/eB is the magnetic length.

These modes determine the transport gap in the q → ∞
limit. Some of these modes couple to circularly polar-
ized light,41 while others may be observable in Raman
scattering experiments.11,42,43

For monolayer graphene Yang et al.
44 studied the

intra-Landau level excitations of quantum Hall ferromag-
netic states, and Iyengar et al.45 and Lozovik et al.

46 dis-
cussed the inter-Landau level excitations in detail both
for the IQHE and QHF states. Infrared absorption data
by Jiang et al.

47 and Henriksen et al.
48 indicate a contri-

bution from many-body effects to the inter-Landau level
transitions in these states.

In bilayer graphene Henriksenet al.10 have found that
fitting single-body parameters does not fully explain the
observed cyclotron resonance; Deacon et al.

49 and Zouet
al.

50 have found a significant particle-hole asymmetry,
whose origin is still debated.51 The wave-vector depen-
dence of the excitations have not been observed so far.
Theoretically, the intra-Landau level excitations in bi-
layer graphene are well understood. At odd integers in
the central Landau band (ν = ±1,±3) the degeneracy
of the n = 0, 1 Landau orbitals causes fluctuations with
an in-plane electric dipole character, which gives rise to
unusual collective modes.16,52,53 At even integers in the
central Landau band (ν = ±2, 0) orbital degeneracy does
not play a similar role, and the intra-level excitations are
still magnetoexcitons.34,54 To complement these studies,
here we address the issue of the inter-Landau level exci-
tations of bilayer graphene in the quantum Hall regime.

Our paper is organized as follows. In Sec. II we review
the tight-binding model of bilayer graphene, and the ba-
sic facts concerning its Landau levels and orbitals. Our
goal is to systematically explore the range of applicabil-
ity of subsequent simplified models, which neglect several
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parameters of the Slonczewski-Weiss-McClure55 (SWM)
model, or account for them on the level of perturbation
theory. We intend to add a few observations to the excel-
lent studies available in the literature.6–8 In Sec. III we
review the adaptation of the mean-field theory of magne-
toexcitons to the case of bilayer graphene. In Sec. IV we
study the excitations of the IQHE states, and in Sec. V
those of the QHF states. We conclude in Sec. VI, with
an outlook on experimental connections.

II. LANDAU LEVELS AND ORBITALS

Each layer of bilayer graphene consists of two sublat-

tices, denoted A and B in the top layer and Ã and B̃
in the bottom layer. In Bernal stacking2 two sublattices,

Ã and B in our notation, are exactly above/below one
another, while the A sites are above the center of the

hexagons in the bottom layer, and B̃ sites are below the
centers of hexagons in the top layer. See Fig. 1.
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FIG. 1. (Color online) Bilayer graphene in Bernal stacking.
The hopping parameters of the Slonczewski-Weiss-McClure
model,55 conventionally denoted γ0, γ1, γ3 and γ4, are also
indicated.

The low-energy physics of bilayer graphene can be ad-
equately described by the tight-binding effective theo-
ries that specialize the SWM model55 of graphite to the
case of just two layers. In the vicinity of the valley cen-
ters corresponding to the K (ξ = 1) and K ′ (ξ = −1)
first Brillouin zone corners, this amounts to using the
Hamiltonian6

Ĥξ = ξ




u−∆′

2 v3π −v4π† vπ†

v3π
† −u+∆′

2 vπ −v4π
−v4π vπ† −u−∆′

2 ξγ1
vπ −v4π† ξγ1

u+∆′

2


−∆Z σ̂z, (1)

where π = px+ipy and p = −i~∇−eA, v =
√
3aγ0/2~ ≈

106 m/s is the intra-layer velocity, v3 =
√
3aγ3/2~ is the

trigonal warping parameter, γ1 is the inter-layer hopping
amplitude, and v4 =

√
3aγ4/2~ is a velocity parame-

ter related to interlayer next-nearest neighbor hopping.
∆Z = gµBB⊥ is the Zeeman energy (with g being the
gyromagnetic factor and µB the Bohr magneton). This

Hamiltonian acts in the basis of sublattice Bloch states
[ψA, ψB̃, ψÃ, ψB] in valley K and [ψB̃, ψA, ψB, ψÃ] in val-
ley K ′. Here γ0 = γAB = γÃB̃ is the intra-layer hopping
amplitude, γ1 = γÃB is the interlayer hopping amplitude
between sites above each other in the two layers. Further,
γ3 = γAB̃ and γ4 = γAÃ = γBB̃ are next-nearest neigh-
bor interlayer hopping amplitudes, as shown in Fig. 1. ∆′

is the on-site energy difference between the dimer sites

(Ã, B) and the non-dimer sites (B̃, A). Finally, u is the
potential energy difference between the layers, which may
arise, e.g., because of an applied perpendicular electric
field E⊥.
The Hamiltonian in Eq. (1) is block-diagonal in the

valley index, which is conveniently described as a pseu-
dospin. In the special case u = 0 the system has SU(2)
pseudospin rotation symmetry. In the theoretical limit
∆Z → 0 this is raised to SU(4) symmetry. In this paper
we will treat ∆Z and u as small perturbations in com-
parison to the interaction energy, i.e., we will work in the

∆Z

e2/4πǫℓB
≪ 1, u

e2/4πǫℓB
≪ 1 limit. We set ~ = 1.

For small momenta, p ≪ γ1/4v, the two low-energy

bands of the Hamiltonian Ĥξ that touch each other at
K and K ′ in the case of vanishing magnetic field can be
attributed to a 2× 2 effective Hamiltonian18

Ĥ ′
ξ ≈ − 1

2m

(
0 (π†)2

π2 0

)
+ ξv3

(
0 π
π† 0

)
+

+ ξu

(
1

2

(
1 0
0 −1

)
− v2

γ21

(
π†π 0
0 −ππ†

))
(2)

where m = γ1/2v
2, and Ĥ ′

ξ acts on [ψA, ψB̃] in valley K

and [ψB̃, ψA] in valley K ′. The Landau levels (LL’s) and
Landau orbitals, respectively, of the two-band Hamilto-
nian Ĥ ′

ξ become

E0ξ =
ξu

2
, E1ξ =

ξu

2
− ξ

u~ωc

γ1
, (3)

Enξ = sgn(n)~ωc

√
|n|(|n| − 1)− ξ

u~ωc

2γ1
, (4)

Ψ0 or 1,q =

(
η0 or 1,q

0

)
, Ψnqξ =

(
A

(n)
ξ η|n|q

B
(n)
ξ η|n|−2,q

)
, (5)

A
(n)
ξ =

1

C
(n)
ξ

, B
(n)
ξ = sgn(n)

(
Enξ − ξ u

2 + ξ u|n|~ωc

γ1

C
(n)
ξ

)
.

Here n 6= −1 is an integer, C
(n)
ξ is an appropriate normal-

ization factor, and ηnq are the single-particle states in the
conventional two-dimensional electron gas with quadratic
dispersion in the Landau gauge A = ŷBx,

ηnq(r) =
eiqx−(y/ℓB−qℓB)2/2

√
2π

√
π2nn!ℓB

Hn

(
y

ℓB
− qℓB

)
, (6)

and Hn is a Hermite-polynomial.
The n = 0, 1 orbitals are degenerate in the u → 0

limit, and they have a layer polarization for ξ = ±1.
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At realistic values of ∆Z and u, the n = 0, 1, ξ = ±1,
σ =↑, ↓ states form a quasidegenerate band we will call

the central Landau level octet. Notice that A
(n)
ξ → 1/

√
2

and |B(n)
ξ | → 1/

√
2 for u→ 0.

We would like to determine how neglecting γ3, γ4, and
∆′ changes the single-body orbitals of Ĥξ is Eq. (1),
and how much these differ from the simplified two-band
model Ĥ ′

ξ in Eq. (2). The values of the SWM parameters
for bilayer graphene was estimated by a combination of
infrared response analysis and theoretical techniques by
Zhang et al.

57 They found

γ1
γ0

= 0.133,
γ3
γ0

= 0.1,
∆′

γ0
= 0.006. (7)

These ratios are based on γ0 = 3.0 eV. While somewhat
greater values of γ0 are also available in the literature,58

we use these values for a robustness analysis. For the
particle-hole symmetry breaking term we use

γ4
γ0

= 0.063 (8)

from the recent electron and hole mass measurement by
Zou et al.,50 which is slightly greater than the value in
Ref. 57.
With π =

√
2~

iℓB
a, [a, a†] = 1, the Hamiltonian can be

expressed in terms of these Landau level ladder opera-
tors. Then the eigenstates of Ĥξ can be calculated nu-
merically. Fig. 2 shows the overlap of the Landau orbitals
with the “ideal” limit γ3 = γ4 = ∆′ = 0 as the SWM pa-
rameters γ3, γ4,∆

′ are tuned from zero to their literary
values [Eqs. (7) to (8)] for the central (n = 0, 1) and
the two pairs of nearby (n = ±2,±3) Landau levels. At
small magnetic field B = 0.1 T trigonal warping alone
significantly changes the orbitals from their ideal limit.
Switching on γ4 hardly affects the central levels, but for
n ≥ 2 it changes the electron and hole pairs (+n,−n)
differently, as expected from this electron-hole symmetry
breaking term. Finally, the inclusion of ∆′ hardly affects
the orbitals. These changes, however, are already small
at modest fields (B = 1 T), and are further suppressed
as the experimentally relevant range (B ≈ 10 T) is ap-
proached. Thus neglecting the γ3, γ4,∆

′ SWM param-
eters is justified in the high magnetic field range where
quantum Hall experiments are typically performed.
As the two-band model in Eq. (2) applies for small mo-

menta, and the low-index Landau orbitals have a small
amplitude at high momenta, the two-band model is ex-
pected to be valid for the lowest few Landau levels. The
Landau orbitals of the two-band model have a large over-
lap with those of the four-band model in the “ideal”
limit γ3 = γ4 = ∆′ = 0: 1, 0.9995, 0.9992, 0.9987 for
n = 0, 1,±2,±3, respectively. We conclude that using
the Landau states of two-band model in Eq. (2) instead

of these of the four-band model Ĥξ in the lowest-energy
Landau bands does not introduce further inaccuracy be-
yond the neglect of γ3, γ4 and ∆′. Therefore, we take Ĥ ′

ξ
as our starting point. Further, the difference between the

FIG. 2. (Color online) The overlap of the Landau orbitals
with the “ideal” limit, γ3 = γ4 = ∆′ = 0, as the SWM
parameters γ3, γ4,∆

′ are gradually tuned from zero to their
literary values [Eqs. (7) to (8)] for the lowest-energy Landau
levels. For the effect of γ3 in the two-band model see Ref. 59.

intralayer Coulomb interaction V S(q) = 2πe2/ǫq and the
intralayer one, V D(q) = e−qdV S(q) where d ≈ 0.335 nm
is the distance between the layers, is neglected as a first
approximation.

III. MAGNETOEXCITONS

When the Fermi energy is in a Landau gap (e.g. at
filling factor ν = . . . ,−12,−8,−4, 4, 8, 12, . . . in bilayer
graphene), the integer quantum Hall effect4 occurs in
samples with moderate disorder.1 Quantum Hall states
also occur at other integer filling factors because the
exchange interaction favors symmetry-breaking ground
states called quantum Hall ferromagnets; single-body
terms such as the Zeeman energy play a secondary role.
QHF’s emerge at odd integer fillings in two-component
systems even if the Zeeman energy is tuned to zero.
This observation straightforwardly generalizes for SU(n)
systems.44

Because of the clear separation of the filled and empty
Landau bands in the (mean-field) ground-state, the ex-
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citations of both classes of quantum Hall systems are
described in the same way. The relevant low-energy exci-
tations are magnetoexcitons, which are obtained by pro-
moting an electron from a filled Landau band to an empty
band.37–40 These neutral excitations have a well-defined
center-of-mass momentumQ. They approach widely sep-
arated particle-hole pairs in the Q → ∞ limit. The lat-
ter limit determines the transport gap unless skyrmions
form.56 Magnetoexcitons are created from the ground-
state by operators37–40

Ψ̂†
NN ′(Q) =

√
2πℓ2B
A

∑

p

eipQyℓ
2
B â†NpâN ′p−Qx

, (9)

where N = (n, ξ, σ) (N ′ = (n′, ξ′, σ′)) specifies the Lan-
dau band where the particle (hole) is created and A is
the area of the sample.

Magnetoexcitons carry spin and pseudospin (valley)
quantum numbers, as derived from the particle and hole
Landau bands involved. While the projections Sz, Pz of
the spin and the pseudospin are always good quantum
numbers, their magnitudes S and P are well-defined only
for ground-states that are spin or pseudospin singlets, re-
spectively.

It is common practice37,45 to define the quantity

lz = |n| − |n′|, (10)

and consider it the “angular momentum quantum num-
ber” of the exciton. We emphasize that lz is exactly
conserved by the electron-electron interaction only in the
Q → 0 limit, where it is related to angular momentum.
The emergence of this quantity is best seen in the two-
body problem of the negatively charged electron and the
positively charged hole, as discussed in the Appendix. At
any finite wave vector transitions with different lz may
mix.

In the low magnetoexciton density limit the interaction
between magnetoexcitons is neglected. The mean-field
(Hartree-Fock) Hamiltonian of magnetoexcitons is well
known from the literature,37–40 and so is its adaptation

to spinorial orbitals:34,45

H
(ÑÑ ′)
(NN ′) (Q) =

〈0|ΨÑÑ ′(Q)V̂Ψ†
NN ′(Q)|0〉 − δNÑδN ′Ñ ′〈0|V̂ |0〉 =

= δNÑδN ′Ñ ′ (Enαξσ − En′α′ξ′σ′ +∆(n, n′)) +

+ E
(ÑÑ ′)
(NN ′)(Q) +R

(ÑÑ ′)
(NN ′)(Q), (11)

where N = (n, ξ, σ), etc., and δNN ′ = δσσ′δξξ′δnn′ . The
first term of the r.h.s. is the single-body energy difference
of the N and N ′ states, which includes the wave vector
independent exchange self-energy difference of the two
states. While the exchange self-energy itself is infinite
for any orbital, its difference between two states,

XN ′N =

∫
dq

(2π)2
IN

′N
N ′N (p), (12)

∆(N,N ′) =
∑

M filled

(XN ′M −XMN ) , (13)

is finite. (We will define I
N2N

′

2

N1N ′

1

(p) soon.) This is a pecu-

liarity of the two-band model of bilayer graphene, which
is replaced by an appropriate renormalization procedure
for monolayer graphene45, and for the four-band model
of bilayer graphene.34

The next term is the direct dynamical interaction be-
tween the electron and the hole:

E
(ÑÑ ′)
(NN ′)(Q) = −

∫
dq

(2π)2
eiẑ·(q×Q)INÑ

N ′Ñ ′
(q). (14)

This term is diagonal both in spin and pseudospin, ∝
δσ̃σδξ̃ξδσ̃′σ′δξ̃′ξ′ , but not in Landau orbital indices. Fi-

nally, the last term in Eq. (11) is the exchange interaction
between the electron and the hole,

R
(ÑÑ ′)
(NN ′)(Q) =

1

2πℓ2B
ReINN ′

ÑÑ ′
(Q), (15)

which is ∝ δσσ′δξξ′δσ̃σ̃′δξ̃ξ̃′ , thus couples transitions that
conserve the spin σ and the valley ξ of the electron and
the hole individually. Sometimes we will call it the RPA
contribution, as it is related to particle-hole annihilation

and recreation processes. Notice R
(ÑÑ ′)
(NN ′)(Q) vanishes in

the Q→ 0 limit.
We have used the notation

I
N2N

′

2

N1N ′

1

(p) =
2πe2

ǫp

[
A

(n′

2)

ξ′
2

A
(n1)
ξ1

A
(n′

1)

ξ′
1

A
(n2)
ξ2

F ∗
|N2||N ′

2
|(p)F|N1||N ′

1
|(p)+

B
(n′

2)

ξ′
2

B
(n1)
ξ1

B
(n′

1)

ξ′
1

B
(n2)
ξ2

F ∗
|N2|−2,|N ′

2
|−2,(p)F|N1|−2,|N ′

1
|−2(p)

]
+

2πe2

ǫp
e−pd

[
A

(n′

2)

ξ′
2

B
(n1)
ξ1

B
(n′

1)

ξ′
1

A
(n2)
ξ2

F ∗
|N2||N ′

2
|(p)F|N1|−2,|N ′

1
|−2(p) +B

(n′

2)

ξ′
2

A
(n1)
ξ1

A
(n′

1)

ξ′
1

B
(n2)
ξ2

F ∗
|N2|−2,|N ′

2
|−2,(p)F|N1||N ′

1
|(p)

]
,
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FN ′N (q) = δσσ′δξξ′

√
n!

(n′)!

(
(−qy + iqx)ℓB√

2

)n′−n

Ln′−n
n

(
q2ℓ2B
2

)
e−q2ℓ2B/4 if n′ ≥ n, else FNN ′(q) = F ∗

N ′N (−q).

Here N−2 ≡ (n−2, ξσ), |N | = (|n|, ξ, σ), and FN ′N (q) is
related to the Fourier transform of ηnq(r) in Eq. (6), and

Lm
n (z) is an associated Laguerre polynomial. The A

(n)
ξ

and B
(n)
ξ numbers correspond to the spinorial structure

of the single-body states in Eq. (5): A1 = A0 = 1, B1 =

B0 = 0 and A
(n)
ξ = sgn(n)B

(n)
ξ = 1/

√
2 for n ≥ 2. Notice

that

(−1)n+n′+ñ+ñ′

E
(ÑÑ ′)
(NN ′)(Q) = E

(NN ′)

(ÑÑ ′)
(Q) = E

(Ñ ′Ñ)
(N ′N)(Q),

(16)

R
(ÑÑ ′)
(NN ′)(Q) = R

(NN ′)

(ÑÑ ′)
(Q) = (−1)n+n′+ñ+ñ′

R
(Ñ ′Ñ)
(N ′N)(Q),

(17)

which follow from the similar properties of I
N2N

′

2

N1N ′

1

(p).

The q → 0 limit of the magnetoexciton dispersion de-
termines the many-body contribution to the cyclotron
resonance. In the case of the ordinary two-dimensional
electron gas, traditionally implemented in semiconduc-
tor heterostructures and quantum wells, this mush van-
ish by Kohn’s theorem.60 This theorem, however, relies
upon the simple quadratic form of the kinetic energy op-
erator, thus it is not applicable in monolayer and bilayer
graphene. Thus it is possible that the sum of the ex-
change self-energy constant XNN ′ and the diagonal part

of the dynamical interaction E
(NN ′)
(NN ′)(Q) does not vanish

in the Q → 0 limit.

The mean field Hamiltonian matrixH
(ÑÑ ′)
(NN ′) (Q) in gen-

eral mixes transitions among different electron-hole pairs,
restricted only by conservation laws. Landau level mix-
ing effectively screens the interaction. Sometimes the
magnetoexciton spectra are obtained using a screened
model interaction instead of the bare Coulomb, not let-
ting LL transitions mix.51,59 We believe such an approach
is suitable in the q = 0 limit, where an additional quan-
tum number lz also restricts LL mixing, and for intra-LL
modes. At finite wave vector the mean-field theory with
LL mixing removes spurious level crossings in the excita-
tion spectra and provides insight into the orbital struc-
ture of the excitations. Technically, however, the infinite

H
(ÑÑ ′)
(NN ′) (Q) matrix needs to be truncated.

IV. INTEGER QUANTUM HALL STATES

We first consider the states where the chemical poten-
tial is between two orbital Landau bands. This occurs at
filling factor ν = . . . ,−12,−8,−4, 4, 8, 12, . . . in bilayer
graphene. Together with Sz and Pz, the magnitude of
the spin S and of the pseudospin P are quantum num-

bers. (In the ∆Z → 0, u→ 0 limit an SU(4) classification
is also possible.)
With the hole (n′) and the electron (n) Landau or-

bitals fixed, the sixteen possible transitions belong to
four classes: (i) a spin singlet, pseudospin singlet state,
(ii) a spin singlet, pseudospin triplet, (iii) a spin triplet,
pseudospin singlet, (iv) a nine-member multiplet that is
triplet is both spin and valley. The exchange interaction
between the electron and the hole contributes only to

class (i), which consists of the mixture of {Ψ̂†00
nn′}nn′ with

Ψ̂†00
nn′(q) =

1

2

∑

ξ

∑

σ

Ψ̂†
nσξ,n′σξ(q) (18)

In all other excitation modes the RPA term cancels or
is prohibited by quantum numbers. The extent inter-
actions may mix transitions involving different Landau
level pairs depends on the interaction-to-kinetic energy
ratio, parametrized by

β =
e2

4πǫ0ǫrℓB

/
~ωc ∝

1

ǫr
√
B
, (19)

where ǫr is the relative dielectric constant of the environ-
ment. LL mixing is eventually suppressed in the B → ∞
limit just like for the conventional two-dimensional elec-
tron gas. Realistically (10 T ≤ B ≤ 40 T, 1 ≤ ǫr ≤ 4),
1 < β < 8; this is by no means a small perturbation.
For q = 0 the mean-field Hamiltonian mixes magne-

toexcitons with different electron and hole Landau lev-
els at fixed lz, and for q > 0 it also mixes different lz
subspaces. Restricting LL mixing to a fixed lz subspace
might give the impression that LL mixing is a quantita-
tive correction for the long wave length part of the low-
est excitation curves, resulting in increased electron-hole
binding energy.46,62 However, already the lowest excita-
tions in the different lz sectors mix strongly at finite wave
length. As the side panels of Fig. 3 show, the excitations
have a large projection on the lz subspaces different from
their own lz in the q → 0 limit, and are eventually con-
tained in one of those subspaces for large q; this is an
unavoidable consequence of the elimination of crossings
by LL mixing. Thus in the rest of this paper we allow
the mixing of transitions restricted by |lz| ≤ L and a
maximum numberM at each fixed lz. Fig. 3 shows tran-
sitions at ν = 4 with L = 1 and M = 7, while Fig. 4
shows |ν| = 8 and 12. We will use this truncation in the
spectra shown in the rest of this paper.61

The q → 0 limit of the magnetoexcitons are commonly
probed by optical absorption and electronic Raman scat-

tering. The selection rules41,43 ensure that only the Ψ̂†00
nn′

mode and the three other Sz = Pz = 0 modes of the
fifteen-fold degenerate curve are active, lz = ±1 is ab-
sorption and lz = 0 in Raman. Particle-hole conjugation
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FIG. 3. (Color online) The excitations of the integer quantum Hall state at |ν| = 4 and B = 10T . The mixing of Landau
levels is truncated at L = 1 and M = 7. Solid lines show the fifteen-fold degenerate excitations, which include three optically
relevant Sz = Pz = 0 modes. Dashed lines show the spin and pseudospin singlets. Inset: spectra if Landau level mixing is
neglected. Side panels: the weight of the definite lz projections in each curve in bottom-up order. The top row shows the spin
and pseudospin singlets.

relates ν = 4n to ν = −4n (n integer) with the sign of lz
reversed.

V. QUANTUM HALL FERROMAGNETIC

STATES

With an integer filling factor different from ν =
±4,±8,±12, . . . , a Landau band quartet (|ν| > 4) or
octet (|ν| < 4) is partially filled in the single elec-
tron picture. The minimization of the interaction en-
ergy results in gapped states which break either spin
rotation or pseudospin (valley) rotation symmetry, or
both.16,32,34,44,52,53,67 If either the Zeeman energy ∆Z or
the interlayer energy difference u is present, they deter-
mine the sequence how the Landau levels are filled.16 The
most convenient basis in pseudospin space may differ; we
may introduce

ânSσp = cos
θ

2
ân,ξ=1,σp + sin

θ

2
eiφân,ξ=−1,σp, (20)

ânAσp = sin
θ

2
ân,ξ=1,σp − cos

θ

2
eiφân,ξ=−1,σp. (21)

With proper choice of θ and φ, these definitions include
states of definite valley, bonding and antibonding states,
or intervalley phase coherent states. Corresponding mag-
netoexciton operators are defined in an obvious manner.
In particular, if ∆Z > u, the ν = 0 QHF state is

ferromagnetic and the choice of the pseudospin basis is
irrelevant. For ν = ±2, both the n = 0 and n = 1
orbital Landau levels of identical pseudospin are filled,
where φ and θ are determined by electrostatics. For odd
ν, an interlayer phase coherent (0 < θ ≤ π/2) state exists

FIG. 4. (Color online) The excitations of the integer quantum
Hall state at |ν| = 8 and |ν| = 12, at B = 10T .
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for sufficiently small enough u, which yields52 to a layer
polarized state (θ = 0) at ν = −3 and ν = 1, and to a
sequence of states with partial or full orbital coherence53

at ν = −1 and ν = 3.
Beyond Sz and Pz, the P or S are quantum numbers

at half-filling ν = 0. All excitons include transitions be-
tween the non-central levels |n| ≥ 2; the possibility of
transitions from, to, or within the central Landau level
octet depends on the ground state, which also resolves
the transitions through the exchange self-energy differ-
ences.
The excitations are grouped by their optical signature.

Due to the small momenta of optical photons, valley flip-
ping modes are optically inactive. In the q → 0 limit
lz becomes a quantum number, and lz = ±1 applies for
single-photon absorption41, and lz = 0,±2 in electronic
Raman processes43, with the lz = 0 transitions being
dominant. The angular momentum due to the helicity of
the photons is transferred41,43 entirely to the orbital de-
gree of freedom. Optically inactive modes include Gold-
stone modes associated with the broken symmetry (out-
side the scope of our study) and generic dark modes.

A. ν = 0

It is known that two QHF ground states exist,
a spin-polarized one and a valley (layer) polarized
one14,16,31,32,34–36. Their respective range of validity is
determined by the ratio of the Zeeman energy ∆Z to the
energy difference between the valleys, which in turn is
related to the potential difference u. (In fact, layer and
pseudospin can de identified within the central Landau
level octet.) For concreteness, we are discussing the fer-
romagnetic state. Here the magnitude of the pseudospin
P is a good quantum number of the excitations.
With the electron (n) and hole (n′) Landau levels fixed,

the Sz = −1 transitions consist of a pseudospin triplet65

Ψ†
nA↓,n′S↑, Ψ

†
nS↓,n′A↑,

1√
2

(
Ψ†

nS↓,n′S↑ −Ψ†
nA↓,n′A↑

)
, and

a singlet65 1√
2

(
Ψ†

nS↓,S↑ +Ψ†
nA↓,A↑

)
. This group con-

tains the intralevel transitions among the n = 0, 1 Lan-
dau bands; the Goldstone modes associated with the spin
rotational symmetry breaking should be in this subspace.
However, our approach is not appropriate for the descrip-
tion of Goldstone modes even for even filling factors, as
we will discuss below.
The Sz = 1 triplet and singlet of the

reversed component structure, Ψ†
nA↑,n′S↓,

Ψ†
nS↑,n′A↓,

1√
2

(
Ψ†

nS↑,n′S↓ −Ψ†
nA↑,n′A↓

)
, and

1√
2

(
Ψ†

nS↑,n′S↓ +Ψ†
A↑,n′A↓

)
, respectively, contains

inter-LL transitions only.
The Sz = 0 sector consists of (i) two triplets,

Ψ†
nA↑,n′S↑, Ψ†

nS↑,n′A↑,
1√
2

(
Ψ†

nA↑,n′A↑ −Ψ†
nS↑,n′S↑

)
,

and Ψ†
nA↓,n′S↓, Ψ

†
nS↓,n′A↓,

1√
2

(
Ψ†

nS↓,n′S↓ −Ψ†
nA↓,n′A↓

)
,

the RPA terms does not contribute to, and (ii)

two singlets, 1√
2

(
Ψ†

nS↑,n′S↑ +Ψ†
nA↑,n′A↑

)
and

1√
2

(
Ψ†

nS↓,n′S↓ +Ψ†
nA↓,n′A↓

)
, which are mixed by

the RPA term. Careful inspection reveals, how-
ever, that the two pseudospin singlets (ii) always
appear in the mean-field Hamiltonian on equal foot-

ing, e.g., the 1√
2

(
Ψ†

2S↑,1S↑ +Ψ†
2A↑,1A↑

)
transition is

indistinguishable on the mean-field level from the
1√
2

(
Ψ†

1S↓,−2,S↓ +Ψ†
1A↓,−2,A↓

)
transition. This follows

by

E
(2,1)
(2,1) = E

(1,−2)
(1,−2) , (22)

R
(2,1)
(2,1) = R

(1,−2)
(1,−2) = −R(1,−2)

(2,1) = −R(2,1)
(1,−2), (23)

and the following easily provable identity of the exchange
self-energy cost:

∆(n, n′)+Xn′0+Xn′1−Xn,0−Xn,1 = ∆(−n′,−n).
(24)

(For n = 1 or n′ = 1 no sign change is necessary.)
Eq. (24) simply expresses particle-hole symmetry, i.e.,
that the exchange self-energy cost of transitions related
by particle-hole conjugation in a fixed component must
be identical.
The RPA terms are the same in each diagonal and off-

diagonal position among equivalent transitions, thus they
select the even and the odd linear combinations in group

(ii). The even combination, Ψ̂†00
nn′(q) defined in Eq. (18),

gets an RPA enhancement, while the RPA cancels from
the odd combination, making it energetically equivalent
to the Pz = 0 element of the triplets (i). Thus, eventually,
the Sz = 0, Pz = 0 sector contains a three-fold denegerate
curve and a nondegenerate mode.
Each of the four multiplets in the Sz = 0 sector con-

tains a Pz = 0 mode, which is active in electronic Raman
or IR absorption.Here the mixing of Landau levels results
in more widely separated modes. The optically active ex-
citations are shown in Fig. 5 with LL mixing taken into
account. Notice that the lz = 1 and lz = −1 transitions
have an equal weight in all modes, consistent with the
particle-hole symmetry at ν = 0.
In the Sz = −1 sector we find spin waves. Neglect-

ing Landau level mixing, they give rise to a gapless and a
gapped intra-LL modes,34 and a sequence of higher inter-
LL modes; each of these is raised by the Zeeman energy
and split by the valley energy difference in turn. The in-
teraction, however, mixes these excitations, thus a clear-
cut classification into intra-LL and inter-LL is no longer
possible. Level repulsion unavoidably lowers the formerly
gapless modes. This effect yields apparently negative ex-
citation energies at small wavelength. Goldstone’s theo-
rem, however, ensures that a gapless spin-wave mode is
associated with the breaking of the spin rotation sym-
metry. Consequently, the seemingly negative energies of
the lowermost curves with a large intra-LL component
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is an artifact of the combination of Hartree-Fock mean-
field theory and LL mixing. The same anomaly occurs
for monolayer graphene45,46, but it is less apparent when
the particle-hole binding energy is plotted.

B. ν = ±2

The ν = ±2 state breaks the spin and pseudospin ro-
tational symmetries as the ground state fills the n = 0
and n = 1 orbitals of the most favorable spin-pseudospin
component, S ↑. We restrict the discussion to spin and
pseudospin preserving excitations. It is easy to check that
the mean-field Hamiltonian matrix is identical to the one
at ν = 0. For the −n → n transitions (n ≥ 2 integer)
this holds because the occupancy of the central Landau
level octet is irrelevant as

X−n,0 +X−n,1 −Xn,0 −Xn,1 = 0. (25)

The octet of −(n + 1) → n and −n → (n + 1) transi-
tions gives rise to two quartets of equivalent transitions
by Eqs. (22-24). While at ν = 0 the S ↑ and A ↑ tran-
sitions of the former group bundle with the S ↓ and A ↓
transitions of the second group, now the S ↑ transition
of the first group bundle with the A ↑, S ↓ and A ↓ tran-
sitions of the second group. The spectra is still the one
in Fig. 5(a). The orbital projection of the modes differs,
c.f. Fig. 6 for ν = −2. At ν = +2 the sign of lz changes
in all projections, which determines the helicity of the
absorbed and inelastically scattered photons.

C. ν = −3

At ν = −3 the only occupied band is (0, S ↑). The n =
0 orbitals are selected by their small energetic advantage.
The states in Eq. (20) progress from the layer balanced
limit θ = π at u = 0 to the layer polarized state θ = 0;
this limit is achieved about u = uc ≈ 0.001e2/ǫℓB, which
is only 0.082 meV at B = 20 T. For 0 < u < uc there is
interlayer phase coherence.52 Thus magnetoexcitons exist
on both side of uc; the amount electrostatics raises energy
of the pseudospin-flipping modes w.r.t. the pseudospin
conserving modes saturates at u = uc. Both the spin
and the pseudospin symmetries are broken resulting in
a three-fold Goldstone mode.52 Further, Barlas et al.

52

showed that at finite u there is an instability to a stripe
ordered phase with a rather small critical temperature.
Our analysis below applies only below this temperature.
Notice that ν = −3 and ν = 3 are not related by

particle-hole symmetry. This is best understood from
Hund’s rules16: at ν = −3 only one n = 0 orbital band
is occupied, while at ν = 3 only one n = 1 orbital band
is empty. At ν = 3 Côté et al.

53 showed that orbitally
coherent states dominate the phase diagram, whose inter-
LL excitations are beyond the scope of this study.
Because of the degeneracy of n = 0, 1 orbitals, states in

central Landau level octet at odd integer fillings involve

fluctuations with in-plane electric dipole character.16 The
consequent collective modes have been studied in detail
by Barlas et al.52 and Côte et al.53 As we do not han-
dle such dipolar interactions, we have omitted the pre-
dominantly intra-LL lowest curve from the spectra, and
we have checked that the inter-LL excitation modes we
keep contain the 0 → 1 magnetoexcitons with a negli-
gible weight. Reassuringly, we always got a weight less
than 0.1%.
As the n = 0 orbital is filled with S ↑ electrons in the

mean-field ground state, the self-energy cost of S ↑ tran-
sitions is higher than those of the other component with
identical electron and hole Landau orbitals. Also, in the
S ↑ component an intralevel 0 → 1 transition is possible,
which mixes with higher S ↑ transitions. The other three
components, on the other hand, occur symmetrically in
the mean-field Hamiltonian. This follows as in the case
of ν = ±2. One can change basis from the excitons of
type S ↓, A ↑ and A ↓ to

Ψ̂†d1
nn′ =

1√
2

(
Ψ†

nA↑,n′A↑ − Ψ†
nA↓,n′A↓

)
, (26)

Ψ̂†d2
nn′ =

1√
6

(
Ψ†

nA↑,n′A↑ + Ψ†
nA↓,n′A↓ − 2Ψ†

nS↓,n′S↓

)
,

(27)

Ψ̂†r
nn′ =

1√
3

(
Ψ†

nA↑,n′A↑ + Ψ†
nA↓,n′A↓ +Ψ†

nS↓,n′S↓

)
.

(28)

The RPA contribution cancels from Ψ̂†d1
nn′(q) and

Ψ̂†d2
nn′(q), which give rise to doubly degenerate excita-

tions. Ψ̂†r
nn′(q) has an RPA contribution. Its mixture

with the distinguished S ↑ excitations produces singlet
excitations. In higher energy excitations, on the other
hand, the weight of the 0 → 1 transition of the S ↑ com-
ponent becomes extremely small, thus the equivalence
of components will be approximately restored, yielding
threefold quasi-degenerate and nondegenerate curves.
See Fig. 7 for the dispersion of the active excitations.

The small graphs show that the projection to definite lz
subspaces changes abruptly at nonzero wave vector.

D. ν = 1

Just like at |ν| = 3, the states at ν = −1 is not the
particle-hole conjugate of the state ν = 1. We do not
study ν = −1 because of the revelance or orbitally co-
herent states72. At ν = 1 the interlayer coherent and
layer polarized QHF states both have magnetoexcitons.
The S ↓ electrons are distinguished by their higher

self-energy cost and the possibility of an intralevel 0 → 1
transition. The other three components occur symmet-
rically in the mean-field Hamiltonian. The argument is
similar to the case of ν = ±2 and ν = −3; for the two 1 →
2 transitions of spin-↑ electrons and the −2 → 1 transi-

tions of the spin-↓ electrons one uses R
(2,1)
(1,0) = −R(1,−2)

(1,0)
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FIG. 5. (Color online) (a) Excitation spectra of the quantum Hall ferromagnet at ν = 0,±2 at B = 10 T. Only the optically
relevant Sz = Pz = 0 modes are included. (b) The weight of the shown excitations on the definite lz subspaces for ν = 0 in
bottom-up order. For degenerate curves the weight is summed. The quantum numbers of the q → 0 limit are indicated.

FIG. 6. (Color online) The projection of the excitations at
ν = −2 on the definite lz subspaces. For degenerate curves
the weight is summed. The spectrum at ν = ±2 is identical to
the one in the left panel of Fig. 5, the letters refer to the same
curves. For ν = +2 the sign of the +lz and −lz projections
are interchanged w.r.t. ν = −2.

and Eq. (24). When subsequent lz = ±1 transitions are
included, the −n→ (n+1) transition of A ↓ is equivalent
to the −(n+1) → n transition of S ↑ and A ↑, while the
−n → (n + 1) transition of A ↑ and S ↑ is equivalent
to the −(n + 1) → n transition of A ↓. The convenient
basis change is similar to Eqs. (26) to (28), with S ↑ re-
placed by A ↓. In fact, there is only a slight difference
between the inter-level excitation spectra at ν = −3 and
ν = 1: the exchange self-energy cost of the distinguished
transition (S ↑ at ν = −3 and S ↓ at ν = 1) relative to
the three equivalent ones is Xn′0 −Xn0 at ν = −3 and
Xn′1 −Xn1 at ν = 1. The spectra are shown in Fig. 7.

VI. CONCLUSION

We have calculated the inter-Landau level magnetoex-
citons in the integer quantum Hall states as wells as
the quantum Hall ferromagnets at filling factor ν =
−3,±2, 0, 1 of bilayer graphene. We have found that the
spinorial structure of the orbitals together with the en-
hanced electron-hole exchange interaction effects in this
multicomponent system gives rise to rather complex dis-
persions, which should be observable in inelastic photon
scattering. The mixing of transitions that involve differ-
ent Landau levels is strong in the experimentally acces-
sible range. This mixing smoothens the dispersion rela-
tions via level repulsion, and at finite wavelength causes
a strong mixing of the modes that have distinct angular
momenta in the zero wavevector limit.
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Appendix A: The two-body problem in bilayer

graphene

Let us consider the Hamiltonian

Ĥ2 = − 1

2m

(
0 (π†

1)
2

π2
1 0

)
− 1

2m

(
0 (π†

2)
2

π2
2 0

)
− u(r1 − r2),

(A1)
where πi = pi,x+ipi,y, p1 = −i~∇1−(e/c)A(r1) belongs
to the electron and p2 = −i~∇2 +(e/c)A(r2) belongs to
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FIG. 7. (Color online) (a) Excitation spectrum of the quantum Hall ferromagnet in the ν = −3 and ν = 1 at B = 10 T. Only
the optically relevant Sz = Pz = 0 modes are included. (b) The weight of the shown excitations on the definite lz subspaces in
bottom-up order. For degenerate curves the weight is summed. (c) Spectrum at ν = 1, same parameters.

the hole, and u(r) = e2/ǫr. (We have fixed the valley
of both the electron and the hole. A valley-independent
interaction is assumed because any deviation from this is
small in the ratio of the lattice constant to the magnetic
length.) Introducing center-of-mass and relative coordi-
nates (X,Y ) = r1+r2

2 , (x, y) = r1 − r2 and momenta

(Px, Py) = r1 + r2, (px, py) =
p1+p2

2 , and separating the
center-of-mass motion by the canonical transformation
Û = eiXy, we obtain

Ĥ ′
2 = − 1

m




0 C2
− (C†

+)
2 0

(C†
−)

2 0 0 (C†
+)

2

C2
+ 0 0 C2

−
0 C2

+ (C†
−)

2 0


−u(r−ẑ×P),

(A2)

where the independent harmonic oscillators C± are de-
fined as

C± =
(px − ix2 )± i(py − i y2 )

2
√
2

. (A3)

In complete analogy to the case of the monolayer45, the
eigenstates of the kinetic part of Ĥ ′

2 are

Ψn+,n−
∝




S(n−)φ|n+|,|n−|−2

φ|n+|,|n−|
S(n+)S(n−)φ|n+|−2,|n−|−2

S(n+)φ|n+|−2,|n−|


 , (A4)

in terms of two-dimensional harmonic oscillator eigen-
states,

φnm(r) =
(C†

+)
(n)
ξ√
n!

(C†
−)

m

√
m!

1√
2πℓB

e−r2/4ℓ2B . (A5)

Above S(n) = 0 is if n = 0 or n = 1, else it is sgn(n).
Thus the kinetic energy operator clearly commutes with
the operator

L̂ = C†
+C+ − C†

−C− +




−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2


 ,

which returns lz as an eigenvalue. This operator, how-
ever, commutes with the complete Ĥ ′

2 only in the P → 0
limit. Thus we can regard the electron-hole bound state
as a two-dimensional harmonic oscillator with clockwise
(C+) and anti-clockwise (C−) excitations placed in an ex-
ternal confinement potential. A nonzero center-of-mass
motion breaks the rotational symmetry of this confine-
ment and starts to couple the Ψn+,n−

states.

Here we closely follow Iyengar et al.
45 The two-body

Hamiltonian in Eq. (A1) can be written is terms of center-
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of-mass and relative coordinates and momenta as

Ĥ2 =− m+
x

2m

(
P 2
x

2
+ 2p2x −

(Py − x)2

2
− 2(py −X)2

)

− m−
x

2m
(2Pxpx − 2(py −X)(Py − x))

+
m+

y

2m
(Px(Py − x) + 2px(py −X))

+
m−

y

2m
(Px(py −X) + (py −X)Px+

+px(Py − x) + (Py − x)px)− u(r), (A6)

where m±
x = 1

2 (σx ⊗ 1± 1⊗ σx), and m
±
y = − 1

2 (σy ⊗ 1±
1 ⊗ σy). With the application of the canonical transfor-

mation Û = eiXy, we obtain

Ĥ ′
2 =− m+

x

2m

(
y2

2
+ 2p′x

2 − x2

2
− 2p′y

2
)

− m−
x

2m

(
2yp′x − 2p′yx

)

−
m+

y

2m

(
yx− 4p′xp

′
y

)

−
m−

y

2m

(
−yp′y − p′yy + p′xx+ xp′x

)

− u(r− ẑ×P′). (A7)

Eq. (A2) follows by substituting Eq. (A3) into Eq. (A7).

Notice that Ĥ ′
2 in Eq. (A2) is independent of the trans-

formed center-of-mass coordinates. Thus P′ is conserved;
in original variables this corresponds to P− er×B.
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