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SUMMARY 

 

The central amygdala (CeA) is a key structure at the limbic-motor interface regulating 

stress-responses and emotional learning. Endocannabinoid (eCB) signaling is heavily 

implicated in the regulation of stress-response physiology and emotional learning 

processes; however, the role of eCBs in the modulation of synaptic efficacy in the CeA is 

not well understood. Here we describe the subcellular localization of CB1 cannabinoid 

receptors and eCB synthetic machinery at glutamatergic synapses in the CeA, and find 

that CeA neurons exhibit multiple mechanistically and temporally distinct modes of 

postsynaptic eCB mobilization. These data identify a prominent role for eCBs in the 

modulation of excitatory drive to CeA neurons and provide insight into the mechanisms 

by which eCB signaling could regulate stress-responses and emotional learning processes.  
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HIGHLIGHTS 

 

1) eCB signaling components are expressed at CeA glutamatergic synapses. 

 

 

2) Activation of the CB1 receptor suppresses glutamate release in the CeA. 

 

 

3) CeA neurons express calcium-dependent and receptor-driven eCB signaling.  

 

 

4) CeA muscarinic receptors drive temporally distinct multimodal eCB release. 
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INTRODUCTION 

 

The central amygdala (CeA) plays a key role in emotional learning processes (Ehrlich et 

al., 2009; Pape and Pare, 2010). Perhaps most well-studied is the role the CeA plays in 

unconditioned and conditioned fear generation (Ciocchi et al., 2010; Li et al., 2013; Tye 

et al., 2011), fear extinction and conditioned inhibition (Amano et al., 2010), as well as  

conditioned orienting responses to emotionally salient stimuli (El-Amamy and Holland, 

2007; Groshek et al., 2005). The CeA is a subcortical structure, mainly composed of 

GABAergic neurons, and can be largely divided into a lateral (CeAL) and medial 

(CeAM) subdivision (Cassell et al., 1999). CeAL neurons share significant 

morphological, cytoarchitectural and phenotypic homology to striatal medium-spiny 

neurons (MSNs) whereas CeAM neurons are considered to be pallidal-like in nature 

(Cassell et al., 1999). Thus, in analogy to the striato-pallidal circuitry of the basal ganglia, 

the CeAL-CeAM pathway appears to conform to this fundamental functional motif of 

forebrain organization. Specifically, the CeAL acts as the primary input nucleus of the 

CeA and receives strong glutamatergic drive from cortical (McDonald et al., 1999), 

thalamic (Li and Kirouac, 2008), as well as intra-amygdala and brainstem sources (Dong 

et al., 2010), and projects GABAergic axon terminals to the CeAM (Sun et al., 1994). 

The CeAM, in turn, projects to downstream regions involved in the expression of fear 

and arousal responses to salient stimuli (Davis, 1997). Functional studies have recently 

shown that activation of the CeAL strongly inhibits CeAM output neurons and reduces 

behavioral fear and anxiety responses (Ciocchi et al., 2010; Li et al., 2013; Tye et al., 

2011). Thus, enhanced inhibitory control of CeAM neurons by elevated activity of certain 

CeAL inputs may serve to constrain conditioned fear and anxiety (Amano et al., 2010; 
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Ciocchi et al., 2010). Taken together, these data suggest that understanding the synaptic 

mechanisms regulating excitatory drive to CeAL neurons could provide significant 

insight into the mechanisms regulating the expression of fear and anxiety.  

 Endocannabinoids are a class of bioactive lipids produced by neurons and glia in 

the central nervous system (Kano et al., 2009). 2-arachidonoylglycerol (2-AG) is the 

primary eCB that mediates eCB retrograde synaptic signaling at central synapses 

(Castillo et al., 2012). 2-AG is post-synaptically synthesized via diacylglycerol lipase  

(DAGL) via two primary mechanisms. The first is a calcium-dependent mechanism, 

prototypically elicited by postsynaptic depolarization, which activates L-type calcium 

channels and enhances the conversion of diacylglycerol to 2-AG via DAGL activity 

(Ohno-Shosaku et al., 2005). The second is a Gq-protein-coupled receptor (GqPCR) 

driven pathway mediated via the activation of PLCβ under basal intracellular calcium 

levels ([Ca
2+

]i).  Under these conditions, PLCβ activation increases diacylglycerol and 2-

AG levels, the latter by a DAGL-dependent process. (Hashimotodani et al., 2007). 

Given that PLCβ activity is increased by a rise in [Ca
2+

]i (Hashimotodani et al., 2005), a 

combinatory mechanism also exists whereby depolarization-induced calcium influx can 

facilitate Gq-receptor driven 2-AG release by enhancing PLCβ activity (Hashimotodani et 

al., 2005; Ohno-Shosaku et al., 2012). In contrast to 2-AG, the mechanisms regulating 

synaptic AEA signaling are not well understood, but can involve GqPCR activation 

(Chavez et al., 2010; Grueter et al., 2010; Huang and Woolley, 2012).  

 Despite the prominent role of eCB signaling in the regulation of fear, anxiety and 

stress responses (Hill et al., 2010; Lutz, 2007; Ramikie and Patel, 2011; Riebe et al., 

2012), the role of eCB signaling in the modulation of CeA circuitry has been relatively 



 6 

under-investigated. This may, in part, be due to previous anatomical studies that 

demonstrated very weak CB1 receptor immunoreactivity within the CeA (Kamprath et al., 

2011; Katona et al., 2001), especially relative to the high CB1 receptor levels in the 

basolateral amygdala (BLA). In contrast to earlier studies, we utilized high affinity 

antibodies to demonstrate pre- and postsynaptic localization of CB1 receptors and 

DAGL, respectively, at glutamatergic synapses within the CeAL. Subsequently, we 

elucidated several mechanistically distinct modes of postsynaptic eCB mobilization in 

CeAL neurons, which underlie temporally dissociated forms of eCB-mediated synaptic 

depression of CeAL glutamatergic neurotransmission.  

 

 

RESULTS 

 

Localization of endocannabinoid signaling machinery in the CeAL 

The anatomical localization and functional significance of eCB signaling in the BLA has 

been well studied (Katona et al., 2001; Ramikie and Patel, 2011; Yoshida et al., 2011). In 

contrast, eCB signaling in the CeA has remained largely unexplored. One reason for the 

relative lack of experimental attention stems from early anatomical data in which CB1 

receptor expression remained under detection threshold in the CeA (Katona et al., 2001). 

However, these early studies utilized an anti-CB1 receptor antibody with relatively lower 

affinity, and which primarily recognized CB1 receptors on BLA GABAergic interneurons 

that express very high levels of CB1 receptors.  

Our detailed examination of CB1 receptor expression within the CeA began with 

in situ hybridization studies that revealed a weak CB1 in situ signal within the CeA, and 

much stronger expression levels in the BLA of wild-type, but not CB1 knockout (KO; 
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CB1
-/-

), mice (Figure 1A-C). The presence of CB1 mRNA in the majority of BLA neurons 

indicates that BLA cells, which project glutamatergic afferents to the CeAL, might also 

express CB1 receptors (Figure 1C). Therefore, we employed a new high affinity anti-CB1 

antibody to probe the localization of CB1 receptors in the CeA (Yoshida et al., 2011). 

Using this antibody, CB1 receptors were clearly detected at high levels in both the CeAL 

and CeAM of wild type, but not CB1
-/-

 mice (Figure 1D-F). Additionally, electron 

microscopic (EM) examination revealed CB1 receptor expression in presynaptic boutons 

forming asymmetric synapses onto dendritic shafts and spines within the CeAL (Figure 

1G1-G2, I).  

Considering that 2-AG is the primary ligand mediating eCB retrograde signaling 

at central synapses, we next examined the expression of the 2-AG synthesizing enzyme, 

DAGL, in the CeA. In situ hybridization confirmed the expression of DAGL in both 

the BLA and CeA (Figure 2A-C). Immunohistochemistry, using an anti-DAGL 

antibody whose specificity in the forebrain has been confirmed in DAGL
-/-

 mice 

(Ludanyi et al., 2011), uncovered a punctate staining pattern throughout the CeAL 

(Figure 2D-E). Double immunofluorescence labeling and confocal microscopy revealed 

DAGL-positive puncta in close apposition to MAP2 labeled dendritic shafts in the 

CeAL (Figure 2F-H), suggestive of DAGL localization in pre- or postsynaptic 

compartments. To differentiate between these two possibilities, we performed 

immunoperoxidase labeling and utilized EM to visualize DAGL at the synaptic level. 

We found that DAGL was indeed localized postsynaptically in dendritic shafts and 

spine heads forming asymmetric synapses in the CeAL (Figure 2I-L). Taken together 
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these data demonstrate the presence of eCB signaling elements at glutamatergic synapses 

in the CeAL.  

CB1 receptors modulate glutamate release onto CeAL neurons 

To determine the functional significance of CB1 receptor expression in the CeAL, we 

conducted whole-cell voltage-clamp electrophysiological recordings in the presence of 

picrotoxin (25-50M) to isolate glutamatergic currents. Consistent with the localization 

of CB1 receptors on excitatory axon terminals in the CeAL, we found activation of CB1 

receptors with the cannabinoid agonist CP55940 (5M) significantly depressed eEPSC 

amplitudes to 52%±4% of baseline in CeAL neurons from wild-type (WT) mice; an 

effect absent in cells from CB1
-/-

 mice (WT 52.47±3.94% vs. CB1
-/- 

114±8%; t(8)=7.18; 

p<0.0001; Figure 3A-B). No significant effect on PPR was observed following 5μM 

CP55940 application to WT or CB1
-/-

 cells (WT normalized PPR 1.06±0.06 vs. CB1
-/-

 

0.89±0.06; t(8)=2, p=0.08; Figure 3C). However, analysis of spontaneous EPSCs 

(sEPSCs) revealed a selective effect of 5μM CP55940 to reduce sEPSCs frequency 

(vehicle 4.35±0.92 Hz vs. CP55940 1.59±0.27 Hz; U=50.00, p=0.008), but not amplitude 

(vehicle 20.99±1.00 pA vs. CP55940 22.80±2.20 pA; U=9, p=0.32; Figure 3D-F), 

strongly suggesting a presynaptic locus of synaptic depression.  

Although the selective effect of CP55940 on frequency, but not amplitude, of 

sEPSCs suggests a presynaptic locus of action, the lack of effect on PPR was surprising. 

Therefore, we evaluated the effects of 2-AG-ether, a metabolically stable analog of the 

eCB 2-AG and putative eCB with agonist activity at the CB1 receptor (Hanus et al., 2001), 

to better elucidate the mechanisms by which eCB signaling, rather than a synthetic 

agonist, modulates glutamate release. Indeed, 2-AG-ether caused robust synaptic 
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depression (baseline 100.3±1.2% vs. 2-AG-ether 49.1±9.5%; t(3)=6.13 p<0.01; Figure 

3G ) that was associated with a significant increase in PPR (t(3)=3.9 p<0.05; Figure 3G 

inset). These data suggest that CB1 receptors function to suppress glutamate release onto 

CeAL neurons.  

Since CB1 receptors in other brain regions robustly modulate GABAergic 

transmission (Castillo et al., 2012; Kano et al., 2009), we tested the effects of CP55940 

(5M) on GABAergic currents in the CeAL recorded in the presence of CNQX (20M) 

and AP-5 (50M). Generally consistent with our previous report (Katona et al., 2001) 

and with the electron microscopic observation that only a few GABAergic terminals were 

CB1-positive in the CeAL (Figure 1G1-G2, H), the effects on GABAergic transmission 

were small (baseline 100.0±0.0% vs. 76.19.3%, t(7)=2.6 p<0.05; Figure 3H). When 

compared to the effects of CP55940 (5M) on glutamatergic transmission (from CeAL 

cells depicted in Fig. 3B), CP55940-induced depression of GABAergic transmission 

showed a significantly greater variance compared to effects on glutamate release (F-test 

to compare variances, p<0.05; Figure 3I). These data suggest that the major role of CB1 

signaling in the CeAL is to broadly regulate glutamatergic transmission, while synapse- 

or cell-type specific effects on GABAergic transmission may also occur to a lesser degree.  

Ca
2+

-driven eCB release in the CeAL 

We next examined whether CeAL glutamatergic synapses express depolarization-induced 

suppression of excitation (DSE), a Ca
2+

-DAGL-dependent form of 2-AG-mediated eCB 

retrograde signaling (Ohno-Shosaku et al., 2012). Two-way ANOVA revealed a 

significant effect of DSE (depolarization) and postsynaptic depolarization duration 

(Figure 3J-L). Post-hoc Sidak’s analysis revealed depolarization of CeAL neurons from   
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-70 mV to 0 mV resulted in a transient depression of eEPSC amplitude that was 

significantly different from corresponding baseline values after 5 (p<0.001) and 10 

seconds (p<0.001) of postsynaptic depolarization. One-way ANOVA followed by 

Dunnett’s post hoc analysis revealed CeAL 10 second DSE was blocked by the CB1 

receptor antagonist, SR141716 (control 77.65±2.06% vs. 5μM SR141716 95.84±4.84%, 

p<0.001; Figure 3M-O) and absent in CB1
-/-

 mice (CB1
-/-

 102.5±3.84%, p<0.0001; Figure 

3O). DSE was also blocked by the DAGL inhibitor THL (10μM THL 91.20±2.13%, 

p<0.05; Figure 3O), and postsynaptic calcium chelation with 40mM BAPTA (BAPTA 

92.07±1.46%, p<0.05; Figure 3O), indicating that Ca
2+

-driven short-term eCB 

mobilization at CeAL glutamatergic synapses is mediated by 2-AG activation of CB1 

receptors. Intracellular loading of BAPTA alone did not affect frequency or amplitude of 

eEPSCs in CeAL neurons (control frequency 4.350.9 Hz vs. BAPTA 4.11.0 Hz, 

p>0.05 by t-test; control amplitude 21.01.0 pA vs. BAPTA 25.12.6, p>0.05 by t-test).  

Ca
2+

-assisted-mACh-receptor driven eCB release in the CeAL 

In addition to Ca
2+

-dependent eCB release, Gq-receptor-driven eCB mobilization is a 

common feature of central synapses (Katona and Freund, 2012). For example, in the 

hippocampus, activation of Gq-coupled M1/M3 muscarinic acetylcholine receptors 

(mAChRs) has been shown to mobilize eCB signaling in a calcium-independent manner 

(Kim et al., 2002; Straiker and Mackie, 2007). Importantly, mAChRs are also highly 

expressed in the CeAL (Roozendaal et al., 1997; van der Zee et al., 1997), which is 

innervated by cholinergic projection neurons originating in the basal forebrain (Heckers 

et al., 1994). To determine whether activation of mAChRs drives eCB mobilization in the 

CeAL, we first sought to examine the functional effects of mAChR activation on CeAL 
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glutamatergic transmission. Experimental results from CeAL field potential recordings 

demonstrated that bath application of the mAChR agonist, Oxo-M (1µM), reduced the 

amplitude of fEPSPs to 44.40±3.69% of baseline (baseline 100.90±1.18% vs. maximal 

Oxo-M-induced depression 44.40±3.69%, p<0.0001; Figure 4A), an effect that reversed 

following drug washout (baseline 100.90±1.18% vs. post Oxo-M washout 96.14±7.13%, 

p=0.79; Figure 4A). To test whether this Oxo-M induced depression was mediated by 

mAChR activation we bath applied 1µM atropine, a non-selective mAChR antagonist, 

prior to and during Oxo-M (1µM) application. Atropine application completely blocked 

the effect of 1µM Oxo-M on fEPSPs (baseline 100.3±0.79% vs. atropine+Oxo-M 

96.47±4.38%; p=0.87; Figure 4A). Using whole-cell recordings we found that Oxo-M 

also caused robust depression of eEPSC amplitude that was reduced by the M1-preferring 

antagonist, pirenzepine (1M; p<0.0001) and eliminated by the M3-preferring antagonist 

4-DAMP (500 nM, p<0.0001; Figure. 4B). Oxo-M-induced synaptic depression was 

associated with a large increase in PPR, which was reduced by pirenzepine (p<0.001) and 

blocked by 4-DAMP (p<0.0001; Figure 4C), suggesting Oxo-M induced synaptic 

depression is mediated by M1/3 receptor activation and expressed presynaptically. 

Importantly, neither pirenzepine nor 4-DAMP exerted any effects on glutamatergic 

transmission when applied alone to control CeAL slices (Supplementary Figure 1). 

Additionally, our immunofluorescence confocal microscopy data revealed a moderate 

expression of the M1 receptor subtype throughout the CeAL (Figure 4E1-E2). At high 

magnification, M1 staining appears as tiny puncta closely apposed to, but not overlapping 

with, MAP2-positve dendrites and perikarya. Together, these data demonstrate the 

presence of functional M1/3 mAChRs at glutamatergic synapses in the CeAL.  
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Because M1 mAchRs are primarily somatodendritically located at the 

ultrastructural level just like DAGLα (Figure 2I-L) (Yamasaki et al., 2010), we next 

evaluated the presence of mAChR-driven postsynaptic eCB release at excitatory synapses 

within the CeAL. It has been previously reported that DSE is effectively enhanced by the 

coincidental activation of Gq-coupled receptors, such as M1/M3 receptors, via a 

mechanism involving Ca
2+ 

enhancement of PLCβ activity (Hashimotodani et al., 2005; 

Kim et al., 2002; Narushima et al., 2006). Consistent with the presence of Ca
2+

-assisted-

Gq-receptor driven eCB mobilization, our results revealed that Oxo-M (1µM) pre-

incubation significantly enhanced 10s DSE as compared to DSE similarly performed 

under control ACSF conditions (control DSE 84.83.0% vs. Oxo-M DSE 57.16±2.56% 

t(18)=4.1 p<0.001; Figure 4F and H). DSE under control and Oxo-M conditions were 

both associated with increases in PPR (p<0.05 and p<0.01 respectively by paired t-test; 

Oxo-M DSE PPR is significantly greater than control DSE PPR p<0.05 by unpaired t-

test; Figure 4G).  

We next investigated the mechanisms of Oxo-M mediated enhancement of DSE 

in the CeAL. One-way ANOVA revealed that Oxo-M (1M)-mediated DSE 

enhancement was reduced in both CB1
-/-

 CeAL cells (Oxo-M-WT 57.16±2.56% vs. Oxo-

M-CB1
-/- 

87.03±3.77%, p<0.0001; Figure 4 I and L) and CeAL cells pretreated with 

10µM THL for at least 60 minutes (Oxo-M 57.16±2.56% vs. THL+ Oxo-M 86.08± 

2.73%, p<0.0001; Figure 4I and L). These results suggest that the simultaneous activation 

of mAChRs and postsynaptic depolarization results in the facilitation of 2-AG release at 

excitatory synapses within the CeAL. We next examined the muscarinic subtypes 

involved in the depolarization-induced enhancement of Oxo-M-mediated 2-AG release. 
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Application of the M1- or the M3-preferring antagonists, 1μM pirenzepine or 500nM 4-

DAMP respectively, significantly reduced the 1μM Oxo-M-dependent DSE enhancement 

(Oxo-M 57.16%±2.56% vs. Oxo-M+pirenzepine 73.92±3.92%, p<0.01; Oxo-M 

57.16±2.56% vs. Oxo-M+4-DAMP 75.32±4.75%, p<0.01, Figure 4J-K). Collectively, 

these results suggest that both M1 and M3 receptors play a role in the mAChR-mediated 

enhancement of CeAL DSE. Interestingly, in CB1
-/-

 mice 10 second depolarization in the 

presence of Oxo-M elicited a small residual DSE (baseline 100.00.0% vs. 87.03±3.77% 

p<0.01), suggesting possible CB1 independent residual effects induced by depolarization 

in the presence of Oxo-M.  

Acute mAChR-driven eCB signaling in the CeAL 

To determine whether acute application of Oxo-M can induce eCB release at 

CeAL glutamatergic synapses in the absence of depolarization, we applied Oxo-M for 

~20 minutes and assessed eCB release during this period using pharmacological and 

genetic approaches (Figure 5A). Our results revealed that Oxo-M application dose-

dependently suppressed eEPSC amplitude with maximal depression observed with 1µM 

Oxo-M (baseline 99.77±0.54% vs. Oxo-M 34.61±1.36%, p<0.0001; Figures 5B-D and K). 

We next explored the contribution of CB1 receptor activation to Oxo-M-mediated 

synaptic depression in the CeAL. In the presence of the CB1 receptor antagonist, 

SR141716 (5µM,   60 minute pretreatment), Oxo-M-mediated synaptic depression was 

significantly attenuated at 0.3 M and 1 M Oxo-M concentrations relative to Oxo-

M+vehicle experimental conditions (Figure 5B-D and K). Maximal Oxo-M-mediated 

depression was significantly attenuated in the presence of SR141716 following either 0.3 

μM Oxo-M (Oxo-M 46.24±4.25% vs. Oxo-M+SR141716 59.93±2.81%; t(8)=2.69 
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p<0.05) or 1 M Oxo-M application (Oxo-M 34.61±1.36% vs. Oxo-M+SR141716 

53.11±2.73%; t(17)=5.98; p<0.001; See Figure 5C-D and K).  

We also examined the effects of SR141716 on Oxo-M induced elevation in PPR 

and found that SR141716 pretreatment significantly attenuated the 1M Oxo-M-induced 

increase in PPR (p<0.0001; Figure 5E). Importantly, the residual Oxo-M depression in 

SR141716-treated slices was associated with a residual significant increase in PPR 

(p<0.001; Figure 5E), indicating that the non-CB1 component of Oxo-M induced 

depression is also presynaptic in nature. Given that Oxo-M-induced synaptic depression 

is only partially CB1-dependent, we sought to confirm these findings using CB1
-/-

 mice. 

Oxo-M induced synaptic depression was significantly attenuated in CB1
-/-

 mice (WT 

Oxo-M 37.912.83% vs. CB1
-/-

 Oxo-M 55.945.32% t(12)=3.0 p<0.05; Figure 5F). The 

maximal 1μM Oxo-M-mediated increase in PPR was also significantly attenuated in CB1-

/-
 mice (p<0.001; Figure 5G). Collectively, these data indicate that Gq-receptor driven 

eCB mobilization can be initiated by mAChR activity in the CeAL, which in turn, 

contributes to Oxo-M-mediated synaptic depression of CeAL glutamatergic transmission.  

Acute mAChR-driven eCB release occurs via a Ca
2+

-DAGL-PLA2 independent 

mechanism 

In light of previous studies, the roles of intracellular Ca
2+

 and DAGL in Gq-receptor 

driven eCB release remain uncertain (Edwards et al., 2006; Hashimotodani et al., 2005; 

Kim et al., 2002; Tanimura et al., 2010; Zhang et al., 2011). Therefore, we next examined 

the requirement for Ca
2+

 and DAGL activity in acute mAChR-driven eCB mobilization in 

the CeAL. First, we tested whether Oxo-M mediated eCB release requires increases in 

intracellular Ca
2+ 

concentrations [Ca
2+

]i. Postsynaptic loading of the fast Ca
2+

 chelator, 
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BAPTA (20mM), did not affect 1μM Oxo-M-mediated synaptic depression and the 

maximal Oxo-M induced depression did not differ significantly from those observed 

under control conditions (p>0.05; Figure 5H and K). Similarly, THL pretreatment (10μM, 

≥ 60 minutes pretreatment) did not inhibit 1 M Oxo-M-mediated depression of eEPSC 

amplitude (p>0.05; Figure 5I and K). Lastly, since recent studies have suggested PLA2 

may be required for 2-AG synaptic signaling in the cerebellum (Wang et al., 2012), we 

tested for the involvement of PLA2 in Oxo-M synaptic depression as an alternate 

mechanism by which Oxo-M could release 2-AG. However, the PLA2 inhibitor, 

AACOCF3 (10μM), did not significantly affect Oxo-M-mediated synaptic depression 

(p>0.05; Figure 5J and K). These data suggest that acute mAChR-driven eCB release 

within the CeAL occurs independently of increases in [Ca
2+

]i and does not require DAGL 

or PLA2 activity.  

Prolonged mAChR activation drives Ca
2+

- and DAGL-dependent eCB release  

The lack of calcium and THL sensitivity of Oxo-M-mediated acute synaptic depression 

was somewhat surprising in light of recent studies strongly implicating calcium and 

DAGLα in Gq-receptor driven eCB release (Castillo et al., 2012; Hashimotodani et al., 

2013; Katona and Freund, 2012). To exclude the possibility that the non-CB1-dependent 

component of Oxo-M induced acute depression was potentially confounding our analysis, 

we took an alternate approach aimed at selectively evaluating CB1-dependent synaptic 

effects of Oxo-M.  To do this we pretreated slices with 1μM Oxo-M for ≥  60 minutes 

and subsequently performed whole-cell patch clamp experiments where, after obtaining a 

stable baseline, we bath applied 5μM SR141716 in the continued presence of 1μM Oxo-M 

(see Figure 6A for experimental design). We reasoned that, if prolonged mAChR 
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activation induces tonic eCB release and activation of CB1, which depress glutamatergic 

transmission, then bath application of a CB1 receptor antagonist should progressively 

relieve this tonic eCB inhibition and cause an apparent synaptic potentiation. Thus, this 

experimental design would allow us to isolate eCB-CB1 mediated synaptic effects 

induced by prolonged mAChR activation by Oxo-M. Consistent with this hypothesis, 

SR141716 (5μM) wash-on significantly increased eEPSC amplitude in slices pretreated 

with 1M Oxo-M relative to control no Oxo-M conditions (Figure 6B-D). Maximal 

potentiation induced by SR141716 in the presence of continuous 1μM Oxo-M was 

143.20±6.59% compared to 113.30±4.09% under control conditions (p<0.001; Figure 

6B-D). Interestingly, unlike acute Oxo-M-driven eCB release following brief application, 

continuous mAChR activation appeared to promote eCB mobilization through a THL- 

and a Ca
2+

-dependent mechanism as pretreatment with 10μM THL for ≥ 60 minutes or 

20mM intracellular BAPTA completely abolished SR141716-induced synaptic 

potentiation (p<0.0001 for each; Figure 6C-E). Maximal SR141716-induced 

enhancement after 10μM THL pretreatment (vehicle 113.30±4.09% vs. THL + Oxo-M 

107.60±7.54%, p=0.88; Figure 6C-D) or 20mM BAPTA postsynaptic loading (vehicle 

113.30±4.09% vs. BAPTA+ Oxo-M 99.25±6.10%, p=0.34; Figure 6C-D) was not 

significantly different from SR141716-induced synaptic potentiation under control (no 

Oxo-M) conditions. These data suggest a possible temporal switch from a Ca
2+

- and 

DAGL-insensitive to a Ca
2+

- and DAGL-sensitive mAChR-receptor-driven eCB release 

following prolonged mAChR stimulation.    

Acute mAChR activation drives synaptic AEA release  
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 Several recent studies have indicated that Gq-coupled receptors can mobilize 

AEA signaling (Chavez et al., 2010; Grueter et al., 2010). As such, we sought to 

investigate whether the calcium and DAGL independent effects of acute Oxo-M 

application on eCB-mediated synaptic depression might be mediated via AEA, rather 

than 2-AG, signaling. To examine this possibility we determined the effects of inhibiting 

AEA degradation, with the fatty acid amide hydrolase (FAAH) inhibitor PF-3845, on 

Oxo-M mediated acute synaptic depression (see Figure 7A for experimental design). PF-

3845 (5μM) pretreatment partially attenuated Oxo-M mediated synaptic depression at 

both 0.3M (p<0.01) and 1 M Oxo-M concentrations (p<0.01; Figure 7B-D). We also 

tested the effects of the monoacylglycerol lipase (MAGL) inhibitor, JZL-184 (2μM), on 

Oxo-M-induced synaptic depression to further rule out a role for 2-AG in acute Oxo-M-

mediated synaptic depression. Consistent with the lack of BAPTA and THL sensitivity, 

prolonged MAGL blockade did not significantly affect subsequent Oxo-M-mediated 

acute synaptic depression at either 0.3 or 1M Oxo-M concentration (p>0.05 for each; 

Figure 7B-D). Together these data indicate that interfering with AEA, but not 2-AG, 

degradation modifies acute Oxo-M-mediated synaptic depression, however the direction 

of effect was somewhat unexpected. Specifically, if acute Oxo-M application causes 

release of AEA, blocking AEA degradation would be expected to increase Oxo-M 

synaptic depression rather than decrease it. The lack of enhancement was not due to a 

floor effect since both maximal and sub-maximal concentrations of Oxo-M showed 

reduced efficacy in the presence of FAAH, but not MAGL, inhibition.  

 An alternate explanation for our results is that the acute effects of Oxo-M are 

occluded by PF-3845, but not JZL-184. If this were the case PF-3845 would be expected 
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to cause synaptic depression alone, which would then occlude subsequent AEA-mediated 

synaptic depression initiated by acute Oxo-M application. Consistent with this hypothesis, 

PF-3845 produced a CB1-dependent synaptic depression alone (PF-3845+vehicle 

83.31%±5.34% vs. PF-3845+SR141716 102.80%±3.91%, t(14)=2.79; p<0.05; Figure 

7E-F). These data, combined with the lack of occlusion of acute Oxo-M-mediated 

synaptic depression by the MAGL inhibitor JZL-184 described above, strongly implicate 

AEA, rather than 2-AG, as the eCB ligand subserving synaptic depression by acute Oxo-

M application. However, it is possible the lack of occlusion by MAGL inhibition could 

be due to the fact that JZL-184 alone did not produce synaptic depression. To exclude 

this possibility and strengthen the support for an AEA-mediated process, we tested the 

ability of JZL-184 to produce synaptic depression alone. Consistent with our hypothesis, 

JZL-184 produced a CB1 dependent synaptic depression of glutamatergic signaling (JZL-

184+ vehicle 74.29%±4.24% vs. JZL-184+SR141716 96.38%±2.97%, t(9)=4.1; p< 0.01; 

Figure 7G-H). Taken together, these data provide converging evidence that acute Oxo-M 

mediated synaptic depression causes synthesis/release of AEA that acts on CB1 receptors 

to reduce glutamate release, and that prolonged Oxo-M stimulation of mAChRs enhances 

DSE and causes tonic CB1-mediated synaptic depression via release of 2-AG through the 

canonical calcium-DAGL-dependent pathway (Figure 7I-J).  

Lack of Oxo-M-mediated acute or tonic eCB signaling in striatum 

 Thus far, our data indicate that acute Oxo-M activation of mAChRs drives AEA 

release and subsequent depression of glutamatergic signaling via CB1 activation. In 

contrast, prolonged mAChR activity results in 2-AG-mediated tonic CB1 activation and 

enhancement of DSE. Since this is the first demonstration, to the best of our knowledge, 
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of temporally dissociated AEA and 2-AG release by the same stimulus, we wanted to 

examine whether this was a generalizable phenomenon. Therefore, we tested this 

phenomenon in the striatum given the strong morphological, hodological, and 

cytoarchitectural similarities between the striatum and the CeA (McDonald, 1982). Acute 

application of Oxo-M (1M) caused robust presynaptic depression in the striatum, 

however this depression was not affected by SR141716 pretreatment (p>0.05; 

Supplemental Figure 2A-C). Similarly, SR141716 failed to produce synaptic potentiation 

in the presence or absence of continuous prolonged Oxo-M (1M) pre-treatment 

(Supplemental Figure 2D-E). In contrast, prolonged Oxo-M (1M) application was able 

to enhance DSE relative to control ACSF (p<0.01; Supplemental Figure 2F), which was 

blocked by SR141716 (p<0.0001). These data indicate that Oxo-M (1M) is able to 

enhance DSE in the striatum, but that mAChRs do not trigger acute AEA or tonic 2-AG 

release to regulate glutamatergic transmission in this region. Thus, mAchR-driven 

multimodal eCB release is not likely a generalized feature of central synapses, but is 

expressed by CeAL neurons.  

 

DISCUSSION 

The molecular architecture of eCB signaling at CeAL glutamatergic synapses 

Here we report the distribution and subcellular localization of CB1 receptors and the 2-

AG synthetic enzyme, DAGL, in the CeAL. CB1 receptors are localized to presynaptic 

terminals forming asymmetric synapses on postsynaptic dendrites and dendritic spines. In 

contrast, DAGL is expressed within postsynaptic CeAL neurons at the mRNA and 

protein level, with ultrastructural studies demonstrating clear localization within dendritic 
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spine heads and dendritic shafts adjacent to asymmetric synapses. Overall, these data 

support the well-established anatomical substrate for retrograde eCB signaling at central 

synapses (Katona and Freund, 2012). The present findings also extend earlier work in 

which CB1 receptor-immunoreactivity level remained under detection threshold in this 

region (Katona et al., 2001).  However, these earlier studies were conducted with anti-

CB1 receptor antibodies that preferentially labeled CB1 receptors localized on 

GABAergic axon terminals due to the much higher level of CB1 receptor expression on 

GABAergic terminals relative to glutamatergic terminals. Subsequent generation of 

higher affinity antibodies has now allowed for the detection of CB1 receptors on 

glutamatergic axon terminals in several brain regions (Katona et al., 2006; Uchigashima 

et al., 2007). Using these reagents, we can now provide clear anatomical evidence for 

strong CB1 expression on CeAL glutamatergic terminals. It is noteworthy that Kamprath 

and co-workers recently showed sparse CB1 labeling in the CeAM using an antibody that 

recognizes CB1 primarily on GABAergic terminals (Kamprath et al., 2011). In contrast, 

we show high levels of CB1 expression in the CeAM in addition to CeAL, suggesting that 

a significant fraction of CB1 expression in the CeAM, as in the CeAL, is likely found on 

glutamatergic terminals.  

 Consistent with our anatomical data, we found that activation of CB1 receptors 

reliably reduced eEPSC amplitude, while effects on GABAergic transmission were more 

variable (Katona et al., 2001). Interestingly, the cannabinoid agonist CP55940 reduced 

eEPSC amplitude without clear effect on PPR. In contrast, the metabolically stable 2-AG 

analog, 2-AG-ether, and DSE both cause synaptic depression associated with an increase 

in PPR. Although our data that CP55940 affected the frequency, but not amplitude of 
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sEPSCs, suggest a presynaptic site of action, the lack of effect on PPR was unexpected 

and inconsistent with the effects of DSE and 2-AG-ether. Although previous studies have 

shown presynaptic inhibition of glutamate release in the CeAL in the absence of changes 

in PPR (Delaney et al., 2007), the discrepancy between different CB1 ligands is more 

difficult to explain. One possibility could be related to ligand-directed signaling at the 

CB1 receptor (Hudson et al., 2010), which would imply multiple presynaptic mechanisms 

downstream of receptor activation could result in reduced glutamate transmission. 

Specifically, eCB ligands such as 2-AG, and its stable analog 2-AG-ether, could activate 

signaling cascades downstream of CB1 to reduce glutamate release probability, while 

CP55940 could cause changes in the number of release sites (Delaney et al., 2007). 

Further studies will clearly be required to test this hypothesis.  

Multiple modes of postsynaptic eCB mobilization by CeAL neurons 

Based on our studies demonstrating eCB signaling elements at CeAL excitatory synapses 

and CB1 receptor mediated depression of glutamatergic signaling, we next examined the 

mechanisms regulating postsynaptic eCB release from CeAL neurons. Given substantial 

evidence that 2-AG acts as the primary eCB mediating retrograde synaptic signaling 

(Tanimura et al., 2010), as well as the expression of DAGL at CeAL glutamatergic 

synapses, we next focused on the elucidation of mechanisms regulating 2-AG 

mobilization from CeAL neurons. In line with previous data in the hippocampus (Chiu 

and Castillo, 2007) and cerebellum (Kreitzer and Regehr, 2001), CeAL neurons 

expressed DSE mediated via a calcium-dependent, THL-sensitive, and CB1-dependent 

mechanism. These data are consistent with depolarization-dependent activation of 

calcium channels initiating synthesis and release of 2-AG, which activates CB1 receptors 
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to transiently depress glutamate release. These studies add to a recent demonstration of 

DSE in the CeAM (Kamprath et al., 2011), and tonic eCB release at CeAM GABAergic 

synapses (Roberto et al., 2010). 

 We next examined the mechanisms by which Gq-coupled mAChRs induced eCB 

signaling at CeAL glutamatergic synapses. Our data indicate that acute application of 

Oxo-M causes a robust presynaptic depression that is partially mediated via activation of 

CB1 receptors. These data are consistent with findings in the periaqueductal grey (Lau 

and Vaughan, 2008), where Oxo-M-induced depression of glutamatergic transmission is 

partially eCB-mediated. Mechanistically, this acute CB1-dependent depression does not 

require elevations in intracellular calcium, is THL-insensitive, and does not require PLA2 

activity.  Moreover, inhibition of 2-AG degradation with JZL-184 did not affect Oxo-M-

mediated acute synaptic depression. Taken together, these data appear to exclude 2-AG 

as the eCB ligand mediating the acute CB1-sensitive synaptic depression induced by 

short-term mAChR activation. We next tested the hypothesis that another eCB ligand, 

namely AEA, mediates eCB-mediated synaptic depression induced by acute mAChR 

activation. We found that FAAH inhibition, which caused a CB1-dependent synaptic 

depression alone, partially occluded acute Oxo-M-mediated synaptic depression, 

implicating AEA in this process. Huang and Woolley (2012), who showed that estrogen-

induced depression of GABAergic transmission in the hippocampus was occluded by 

FAAH inhibition, but not MAGL inhibition, reached similar conclusions (Huang and 

Woolley, 2012). Although, clear delineation of the biosynthetic pathways for synaptic 

AEA synthesis and the development of pharmacological tools to probe this system will 
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be required to conclusively assign AEA as the eCB ligand mediating acute Oxo-M driven 

eCB release.   

In contrast to the putative AEA-mediated synaptic depression induced by acute 

mAChR activation, prolonged activation of mAChR increases 2-AG-mediated signaling 

processes. First, after prolonged Oxo-M incubation, DSE is enhanced in an M1/3-

dependent, THL-sensitive, and CB1-dependent manner, consistent with findings in other 

brain regions (Kano et al., 2009). Interestingly, our SR141716 wash-on studies revealed 

strong synaptic potentiation by CB1 blockade in slices incubated with Oxo-M but not 

vehicle. These data suggest tonic eCB release can be induced by prolonged mAChR 

activity. This synaptic potentiation required increases in intracellular calcium and was 

THL-sensitive strongly suggesting that this tonic Oxo-M-induced eCB signal is mediated 

by 2-AG synthesized by the canonical calcium-DAGL-dependent pathway (Kano et al., 

2009). These findings are consistent with recent studies in MAGL knock-out mice which 

suggest that 2-AG can also act as a tonic eCB retrograde messenger (Pan et al., 2011). 

Overall, these data indicate that CeAL neurons can mobilize multiple forms of eCB 

signaling to modulate afferent glutamatergic transmission.  

Temporally dissociated multimodal eCB release from CeAL neurons 

 Previous studies have demonstrated that some cells can produce both AEA and 2-

AG that act as retrograde eCBs signals (Huang and Woolley, 2012; Kim and Alger, 2010; 

Lerner and Kreitzer, 2012; Mathur et al., 2013; Puente et al., 2011). Similarly, several 

studies have demonstrated that activation of Gq-coupled receptors can induce 2-AG and 

also AEA release in several brain regions (Chavez et al., 2010; Grueter et al., 2010; 

Hashimotodani et al., 2013; Lerner and Kreitzer, 2012; Maccarrone et al., 2008). 
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However, to the best of our knowledge, our data are the first to provide experimental 

evidence that AEA and 2-AG can be released by the same cell in response to activation of 

the same Gq-coupled receptor depending only on the duration of Gq-receptor stimulation. 

Specifically, acute mAChR activation causes short-lived AEA-mediated synaptic 

depression, while prolonged mAChR stimulation causes 2-AG-mediated tonic eCB 

depression of glutamatergic transmission. Thus, in CeAL neurons, but not dorsal striatal 

neurons, mAChR stimulation can initiate multimodal eCB signaling depending only on 

the duration of Gq-receptor stimulation.  

 What possible mechanisms could underlie this temporally dissociated eCB release 

by CeAL neurons? M1/3 receptor activation has been demonstrated to couple to signal 

transduction pathways important for 2-AG synthesis including PLC and increases in 

intracellular calcium (Mangoura et al., 1995; Sandmann et al., 1991; Schmidt et al., 

1995a). M1/3 receptors also couple to PLD (Mangoura et al., 1995; McKenzie et al., 1992; 

Schmidt et al., 1995b), which could be important for AEA synthesis (Leung et al., 2006). 

Interestingly, in vitro cellular studies show that M1/3 coupling to PLD undergoes rapid 

desensitization within minutes (McKenzie et al., 1992; Schmidt et al., 1995b); in contrast 

M1/3 coupling to PLC does not desensitize in response to prolonged agonist activation, 

and in fact shows a progressive sensitization (Schmidt et al., 1995b). These findings 

provide support for the hypothesis that the mechanistic basis for the temporal “switch” 

from Oxo-M induced AEA release to 2-AG release following prolonged exposure, is 

facilitated by the rapid desensitization of the PLD signaling and sensitization of the PLC 

signaling by Oxo-M. Functionally, this model predicts that upon M1/3 receptor stimulation 

there is a burst of AEA release that dampens afferent glutamatergic drive to CeAL 
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neurons, while prolonged and continuous receptor activation causes a rapid 

desensitization of this pathway and termination of AEA signaling. In contrast, during 

prolonged M1/3 receptor activation, the sensitizing PLC signaling results in tonic 

generation of diacylglycerol, which is hydrolyzed by DAGL to generate 2-AG and 

subsequent tonic and long lasting CB1-mediated suppression of glutamatergic drive to 

CeAL neurons.  

Functional implications of multimodal eCB signaling 

Recent studies have begun to highlight the dissociable roles of AEA and 2-AG signaling 

on multiple levels. For example, in the bed nucleus of the stria terminalis, AEA mediates 

long-term synaptic depression, while 2-AG mediates short-term depression (STD) in the 

form of DSE (Puente et al., 2011). In contrast, in the striatum different forms of 

associative neural activity can elicit both AEA- and 2-AG-mediated long-term depression 

(Lerner and Kreitzer, 2012). More recently, different inhibitory synapses in the striatum 

have been shown to release AEA and 2-AG in a state-dependent manner (Mathur et al., 

2013). Thus, AEA and 2-AG are clearly not “redundant” signaling molecules and have 

distinct duration-, activity-, and synapse-dependent effects. Here we add to this eCB 

ligand diversity by demonstrating temporally-dissociated mobilization of AEA and 2-AG 

signaling in response to Gq-receptor activity. Thus, activity-dependent multimodal eCB 

signaling could exert powerful modulation of synaptic transmission on different time 

scales (LTD vs. STD), at distinct synapses, and in response to different patterns and 

durations of neural stimulation.  Continued investigation of multimodal eCB signaling 

could provide insight into the activity-dependent mechanisms sculpting synaptic efficacy.  
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 Here we show that eCB signaling suppresses afferent glutamatergic transmission 

onto CeAL neurons. Cannabinoid-mediated inhibition of excitatory drive to the CeAL 

could represent a previously unrecognized synaptic mechanism contributing to the well-

known effects of cannabinoids on stress and anxiety-related behaviors (Hill et al., 2010; 

Patel et al., 2009), and on emotional learning processes (Lutz, 2007). Further elucidating 

the cell-type and synapse-specific effects of multimodal eCB signaling in the CeAL could 

provide insight into the cellular and circuit-level mechanisms by which eCBs modulate 

motivational states and emotional learning.  

 

EXPERIMENTAL PROCEDURES 

Anatomical experiments 

In situ hybridization, immunoperoxidase and immuno-electron microscopy experiments 

were conducted as previously described (Peterfi et al., 2012) and detailed in supplemental 

experimental procedures.  

Electrophysiology 

Whole-cell voltage clamp and field potential electrophysiological experiments were 

carried out in 4-5 week old male ICR mice as described previously (Patel et al., 2009; 

Sumislawski et al., 2011) and delineated in the supplemental experimental procedures. 

Briefly, mice were sacrificed by transcardial perfusion with ice-cold high sucrose, low 

Na+ containing ACSF under isoflurane anesthesia and coronal slices prepared using a 

vibratome (Leica Microsystems, Bannockburn, IL). For whole-cell voltage clamp 

electrophysiological experiments, eEPSCs were recorded from CeAL neurons via local 

microstimulation, ~100m from the cell soma.  
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FIGURE LEGENDS 

 

Figure 1. CB1 receptors are present on excitatory terminals in the CeAL.  

(A) In situ hybridization reveals the presence of CB1 mRNA in both the CeA and the 

BLA of wild type mice. (B) The specificity of the riboprobe is confirmed by using CB1
-/-

 

animals. (C) The very high levels of CB1 mRNA observed in a few scattered neurons in 
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the BLA likely correspond to GABAergic interneurons. The vast majority of BLA 

neurons express moderate levels of CB1. In contrast, CB1 expression in the CeA was only 

slightly above detection threshold. (D-E) Immunoperoxidase staining demonstrates the 

presence of the CB1 protein in both the CeA and BLA, which was confirmed in our CB1
-/-

 

samples. (F) Higher magnification light micrograph reveals the dense CB1 labeling in the 

neuropil throughout the CeAL. Asterisks depict CB1-immunonegative cell bodies, 

whereas CB1-immunopositive labeling appears as punctate staining indicating the 

compartmentalized distribution of the protein. (G1-G2) Serial electron micrographs 

illustrate the selective presynaptic accumulation of CB1 in boutons (b+), which form 

mainly asymmetric (flanked by black arrowheads) and sometimes symmetric (white 

arrowheads) synapses with dendrites (d) and spine heads (s). CB1 staining remained 

under detection threshold in a few axon terminals (b-), which highlights quantitative 

differences in CB1 expression between terminal types innervating the CeAL.  (H-I) The 

anatomical nature of the synapse type is illustrated at higher magnification. Note the lack 

or presence of postsynaptic density at symmetric (H) or asymmetric (I) connections, 

respectively. Scale bars: A,B,D,E are 200 µm; C is 50 µm; F is 20 µm; G1,G2, H,I are 100 

nm. 

Figure 2. DAGLα is a postsynaptic enzyme in the CeAL. 

(A-B) In situ hybridization demonstrates the expression of DAGLα mRNA in both the 

BLA and CeA. AS and S depicts experiments performed by antisense or sense riboprobes, 

respectively. (C) Expression of DAGLα mRNA is notably higher in the BLA compared to 

the CeA. (D) However, at the protein level there is less difference between the two 

regions. (E) High magnification of the boxed region in D reveals that granular DAGLα-
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immunoreactivity (labeled by arrows) is present in the neuropil among cell bodies. (F-H) 

Confocal immunofluorescence analysis shows that DAGLα-immunoreactivity (red puncta 

indicated by white arrows) outlines MAP2-positive dendritic profiles (green). (I-L) 

Electron micrographs provide ample evidence for the postsynaptic concentration of 

DAGLα. Immunoreactivity represented by the black diaminobenzidine (DAB) precipitate 

was often present in dendrites (d+) and spine heads (s+), but never in boutons (b). Black 

arrowheads sign the edge of the asymmetric synapses. Scale bars: A-B are 200 µm; C-D 

are 50 µm; E is 20 µm; F is 5µm; G-H are 2.5µm; I-L are 100 nm. 

Figure 3. CB1 receptors modulate glutamate release in the CeAL. 

 (A-C) CP55940 depresses eEPSC amplitude in WT but not CB1
-/-

 mice, but does not 

affect PPR. (D-F) CP55940 reduces sEPSC frequency (E) but not amplitude (F). (G) 2-

AG-ether depresses eEPSC amplitude and increases PPR (inset). (H) CP55940 decreases 

eIPSC amplitude. (I) Comparison of CP55940 effects on eIPSC and eEPSC amplitude. 

(J-L) Effects of postsynaptic depolarization on eEPSC amplitude; DSE in representative 

cell (J-K), and summary data of DSE after 2, 5 or 10 seconds of postsynaptic 

depolarization relative to corresponding baseline (L). (M-N) Effects of SR141716 on 

DSE after 10- second depolarization. (O) Summary data showing effects of SR141716, 

CB1 deletion, THL, and intracellular BAPTA loading on DSE magnitude relative to 

control 10 second DSE. Control group in (O) represents the same data set as 10 second 

depolarization in (L). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Numbers of tested 

cells are indicated in bars for this and subsequent figures. Calibration scale in (A): 200pA, 

25ms.  Calibration bars for sEPSCs (D) at lower magnification (10pA, 100ms) and higher 

magnification (10pA, 20ms). All other scale bars: 10ms, 100pA. 
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Figure 4. mAChRs modulate glutamate release and enhance DSE 

(A) 1 M Oxo-M depresses fEPSP amplitude, which is blocked in the presence of 

atropine. (B) Oxo-M-induced eEPSC depression is blocked by pirenzepine and 4-DAMP. 

(C) Oxo-M increases PPR, which is blocked by pirenzepine and 4-DAMP. (D) 

Representative traces of Oxo-M-induced eEPSC depression under vehicle, pirenzepine 

and 4-DAMP conditions. (E) Distribution of M1 receptor (red) and the dendritic marker 

MAP2 (green) in the CeAL at low magnification; higher magnification shows punctate 

M1 staining in close apposition to MAP2 positive dendritic shafts (arrows in inset) (E1; 

bar 100m, E2; bar 5m, inset 7.5m). (F) 1M Oxo-M enhances DSE induced by 10 

second depolarization. (G) PPR is increased by 10 second depolarization in both control 

and Oxo-M conditions. (H) Representative traces of control and Oxo-M DSE. (I) DSE in 

the presence of OXO-M is attenuated by THL and in CB1
-/-

 mice. (J-K) Effects of 

pirenzepine and 4-DAMP on DSE in the presence of 1M Oxo-M; grey faded line 

represents Oxo-M only DSE condition from (I) for visual comparison purposes. (L) 

Summary data of the effects of THL, CB1 deletion, pirenzepine, and 4-DAMP on 10 

second DSE in the presence of Oxo-M. **p<0.01, ***p<0.001, ****p<0.0001. Scale 

bars: 10ms, 100pA. 

Figure 5. Acute mAChR activity drives Ca
2+

- and DAGL-independent eCB release.  

(A) Diagram of experimental design. (B-D) Oxo-M induced eEPSC depression is 

partially blocked by SR141716 at 0.3 and 1 M Oxo-M conditions. (E) 1 M Oxo-M-

induced increase in PPR is attenuated by SR141716; residual depression in the presence 

of SR141716 is associated with a residual increase in PPR. (F) 1M Oxo-M induced 

eEPSC depression is attenuated in CB1
-/-

 mice. (G) The increase in PPR after Oxo-M 
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application is attenuated in CB1
-/-

 mice. (H-K) Effects of intracellular 20mM BAPTA (H), 

THL (10M) (I), and the PLA2 inhibitor, AACOCF3 (10μM) (J) on 1M Oxo-M-induced 

eEPSC depression. (K) Summary data depicting the effects of SR141716, THL, BAPTA, 

and AACOCF3 on 1M Oxo-M-mediated maximal eEPSC depression. *p<0.05, 

***p<0.001, ****p<0.0001. Scale bars: 10ms, 100pA. 

Figure 6. Persistent mAChR activity drives Ca
2+

- and DAGL-dependent eCB release. 

(A) Diagram of experimental design. (B-C) Representative cells and group data showing 

that in the continuous presence of Oxo-M, SR141716 causes synaptic potentiation 

relative to vehicle-incubated conditions. (C) Co-incubation of THL and Oxo-M prevents 

SR141716-induced synaptic potentiation, as does intracellular BAPTA loading. (D) 

Summary data showing the effects of SR141716 under vehicle, Oxo-M, Oxo-M+THL 

and Oxo-M+BAPTA pre-treatment conditions. (E) Representative traces of summary 

data in (D). ***p<0.001, ****p<0.0001. Scale bars: 10ms, 100pA. 

Figure 7. Acute mAChR receptor activity drives synaptic AEA signaling. (A) 

Experimental design for B-D. (B-D) Oxo-M-induced acute synaptic depression (0.3 M 

and 1 M) is partially occluded by the FAAH inhibitor PF-3845, but not the MAGL 

inhibitor JZL-184; time-course for 1M Oxo-M condition shown in (B). (E-F) Effects of 

PF-3845 on synaptic depression under control or CB1 antagonist pretreatment conditions. 

(G-H) Effects of JZL-184 on synaptic depression under control or CB1 antagonist 

pretreatment conditions. (I) Diagrammatic representation of differences between acute vs. 

prolonged mAChR stimulation with Oxo-M. Acute Oxo-M application induces a short-

lived “burst” of AEA to reduce afferent glutamate release, while prolonged mAChR 

stimulation causes a tonic calcium- and DAGL-dependent 2-AG release. (J) During 
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prolonged mAChR stimulation tonic 2-AG release continues and calcium-assisted 

mAChR-driven 2-AG release is induced by co-incident postsynaptic depolarization (i.e. 

DSE enhancement in the presence of continuous Oxo-M).  *p<0.05, **p<0.01. Scale 

bars: 10ms, 100pA. 

 


