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ABSTRACT

In this paper we introduce a system that first generatestitai
analysis data from a musical score. The results are theslatad
automatically to constraint rules that in turn can be usecbim-
bination with ordinary rules to generate scores that hawvelai
statistical distributions than the original. Statistiaaklysis rules
are formalized using our special rule syntax where our fauils
be in the pattern-matching part of the rules. The pattertehiag
part has two important tasks in our paper: first, it is usectaet
various musical entities from the score, such as melodicpbaic
and voice-leading formations; second, it is used also t@igea
statistical rules which will be used in the re-synthesig¢ paour
system. We first introduce the rule syntax. After this we alsc
a practical case study where we analyze a melodic line. lginal
we generate out of this material statistical rules whichueed to
produce new scores.

1. INTRODUCTION

Constraint-based languages in computer-assisted cotimmosi-
vironments have lately found increased interest. Besides o
constraint-based system, called PWGLConstraints [4], tf&re
are currently several other approaches oriented towardscaiu
search problems such as Situation [7], OMClouds [8] and ttvem
recent system by Anders based on the OZ programming languag
[1]. PWGLConstraints is written in Common Lisp and CLOS
and is currently an integral part of our visual programmimg e
vironment called PWGL [5]. When using our system we define
a search-space and produce systematically potentiaksesoin

it. Typically we are not interested in all possible resuttst con-
strain these with the help of rules describing an acceptsdile-
tion. If the search cannot find an acceptable solution duitieg
search process, then the system will backtrack in the sesgrate.
This scheme thus allows to undo already accepted valuestyd r
to satisfy the rules with a new set of values. The rules havea s
structure where a pattern-matching part (or PM-part) heiadel-
lowed by a Lisp expression (Lisp-code part).

Although PWGLConstraints was originally designed to work
as a tool to generate musical material it can also be usedusicm
analysis purposes. In this case no backtrack search isetvaind
the system simply traverses through score and appliesaiiitaoal
rules to the input score. Analytical rules have a similartayrio
the ones used in search problems. This kind of symmetry wdere
rule can be used either in a generative or analytical coigentie
of the main corner stones of our system.

The PM-part of a rule is critical in understanding how rules
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the PM-part handles boundary cases that guarantees thatand
only run when all necessary information is available dusegrch.
Third, the PM-part allows to separate user code from theahrh
plementation of the system. Thus for instance optimizatian be
done without touching user defined rules.

This paper discusses a case study where a set of analytical
rules are translated automatically to generative rulesr f@uus
will be on statistical rules where we calculate the freqyettis-
tribution of various musical entities found in a score. Tted of
using statistics in computer assisted composition, perdoice re-
search and sound synthesis has been obviously popularfzasiat
long history, ranging from Lejaren Hiller’s [3] and lannieXakis’
[10] pioneering compostional work from mid-50s onwards tren
recent systems such as style simulations of Palestrita-styn-
terpoint [2] and performance research [9]. In this paper vile w
focus on the specific problem how statistical analysis candee
ful in a classical constraint-based context. Statistiolds are an
important complement to our ordinary rule system as thealis
to express more precisely properties such as 'rare’ andrivam

We start by an introduction section explaining the rulecstru
ture in detail. After this we use this knowledge in a pradtazese
study where we analyze a melodic line. The resulting stedist
data is then translated into rules which are used with ordindes
to produce new musical material. The results are then apdlyz
with the original analysis rules to verify how close the istital

Gesults correlate with the original. We discuss also a make a

vanced case study where we utilize the analytical systermuin o
constraint-based environment to generate a 2-part canon.

2. RULE STRUCTURE

In the following we first introduce the general rule syntax of
PWGLConstraints.

A rule consists of three main parts : (1) a PM-part, (2) a Lisp-
code part, and (3) a documentation string. In the PM-parttapa
matching language is used to extract relevant informatiomfa
score. This information is given to a Lisp expression ($&dan
the Lisp-code part) that either returns a truth value or etesca
side-effect. In the latter case the side-effect can tylyida an ex-
pression object that is inserted in a score; or, it can alsanbep-
eration where some analytical information is written fostamce
to a hash-table. The Lisp-code part is found after the PM-gquad
starts with the symbol "?if’.

The PM-part of a rule uses a special pattern-matching syntax
It can contain variables (symbols starting with a '?’), aymous-
variables (plain '?’s), index-variables (symbols conagbf an i’

work as the same scheme is used both in the analytical and genand an index number), and one or two wild cards (denoted by the

erative tasks that will be described later in this articleirtRer-
more the PM-part has important implications for user wnitiéles
and our software development. First, the PM-part is resptins
for extracting in a uniform way musical information that chen
be processed further in the Lisp-code part of the rule. S&con

symbol '*'). These variables can be followed by special keyus
(typically accessors and selectors) that further spebiybehavior
of the PM-part.

A variable extracts single objects. By contrast, an anomsno
variable is never bound to an object, i.e. it only acts as acpl
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Figure 1: Three PM-part examples where possible matches ar
given below the staff in separate rows. In (A) there is onlg on
match, in (B) and (C) there are three matches.

holder’ in the pattern. The wild card matches any continymars
of the score. Finally, an index-variable extracts objeotenf an
absolute position given by the index number. In Figure 1 we gi
some basic pattern-matching examples with their respeebiivd-
ings (we show here only the PM-part of the rule; the Lisp-code
part of the rule is denoted with three dots).

Using this information let us define a simple interval rule
where we check that all melodic intervals belong to a given in
terval list. This rule is run for each melodic note-pair:

(x ?1 ?2 ; (1) PMpart
(?if (menmber (- (Mm?2) (m?1)) ; (2) Lisp-code part
"(-13-5-4-13 -8 -9 8 -11)))
"Interval rule") ; (3) doc string

The PM-part allows the user to specify after the variables sp
cial score accessor keywords. The variables given in thepBiv-
of a rule can now refer to the structural entity the user isregted

3.1. Analysis

For statistical rules we need first some data. An apparertt sta
ing point is to analyze a musical score and use this matetiet |
to generate a score with similar properties. Thus next wé wil
ediscuss a case study that utilizes four rules to analyze aditel
line. Our starting point is the soprano line from a 3-partaran
by Anton Webern (Op. 16. No. 3). This piece stems from the
middle-period songs that have been analyzed much less tilean t
late-period works.
We first extract only the pitch information in MIDI-values

(Figure 2, upper part). Then we apply the following analysiss

to this pitch material. The Lisp-code part of all rules camtie
function 'add-fd-entry’ ('fd’ = frequency distribution) hich accu-
mulates during the analysis process the occurrences ofieey g
criteria. Thus, for instance, the first rule, called "intty will
count for interval occurrences for each melodic note-fdie sec-
ond and third rules, "3-card scs” and "4-card scs”, perfoitolp
class set-theoretical analysis for 3-note and 4-note nefodna-
tions. Finally, the fourth rule, "+-movement”, analyzesdgvn
movement distributions for all 4-note successions.

(x ?1 ?2
(?if (add-fd-entry :int (-
"interval")

(m?2) (m?1))))

(x ?1 22 ?3
(?if (add-fd-entry :3-card-scs
(sc-name (list (m?1) (m?2) (m?23)))))

in, such as note, chord, beat, measure and harmony. A more spe "3-card scs")

cial case, called 'score-sort’, will be dealt with in Sectid. If
no accessor keyword is given then the rule operates withditelo
notes (see for instance the "Interval rule” in the previouksec-
tion).

(x ?1 22 ?3 ?4
(?if (add-fd-entry :4-card-scs
(sc-name (list (m?1) (m?2) (m?3) (m?4)))))
"4-card scs")

The following examples demonstrate how we can use some(* ?1 ?2 ?3 ?4

of the accessor keywords in conjunction with a wild card amal t
variables:

(» 20?22 ...)
(*» ?1 ?2 :chord ..
(* ?1 ?2 :beat ...

; 2 adjacent nelodic notes
; 2 adjacent chords
; 2 adjacent beats

-)
)

The PM-part may also contain selectors which allow to resstri
the scope of the rule. A selector is a keyword/value pairt oan
also be a Lisp expression that returns a truth value. Foariest,
the following the melodic rule is applied only to parts 1 and 3

(» ?1 ?2 cparts (1 3) ...) ; only parts 1 and 3

3. STATISTICAL DISTRIBUTION AND AUTOMATIC
RULES

Until now we have discussed rules that either accept or trgjec
candidate. Typically these kind of rules operate in a fdiolgal
context. It can, however, be interesting to have also a malistic

(?if (add-fd-entry :+-novenent
(list (signum (- (m?2) (m?1)))
(signum (- (m?3) (m?2)))
(signum (- (m?4) (m?3))))))
"+-movenent ")

For instance, the first interval rule results in the followitis-
tribution (each sublist consists of a interval/count p@imstances
of interval -1, 5 of 3, 5 of -5, etc.):

((-17) (35) (-55) (11 5) (-4 4) (-13 3) (-8 3) (-9 2)
(8 1) (-111) (15 1) (20 1) (14 1) (-6 1) (9 1) (-2 1)
(51) (61))

3.2. Automatic Rule Trandation

Let us next consider how statistical rules will work in a gextige
context. For this we make a simplification of the general cask
assume that we will create an example that has the same number
of notes as the original melodic line has. For instance argéne
interval rule that uses the interval distribution desatibethe pre-

view and to be able to say something about the commonness ofvious subsection would accept a partial solution that hes tlean

a property in the musical output. For instance let us conglue
interval rule from the previous section. This rule worksyainlthe
context of two adjacent melodic notes: it does not statehamyt
about the distribution of the intervals. We have no obvioay wf
saying that we would like to have a lot of interval -1, or thegrval
6 should be very rare. Another problem is that this rule gives
guarantee of how the given interval repertoire will be beduse a
pathological case a result might use only one or two of treet
intervals, although the rule contains 9 intervals. Onetsmiuto
these problems is to make during search statistics of thigapar
solution and compare this result with the desired distidoutThe
purpose of the statistical rules is to force the result taaxmate
gradually the desired distributions.

or equal to 7 times interval -1, less than or equal to 5 timesval

3, etc. In other words the count value determines the high ¢ifn
instances of a given interval. If, say, the interval -1 isfo@ times
or more, then the rule will not accept the partial solutiohisTrule
may be too strict and time consuming and therefore we ada& tol
ance to the rule. The tolerance indicates how much the higit i
can be exceeded without failing. This means that we will géy o
an approximation of the desired distribution, but givingletance
value will speed the calculation considerably.

The automatic translation is quite straightforward duehi t
PM-part of the analysis rule. We simply use the PM-part of the
analysis rule and compare in the Lisp-code part the desinea- (
lyzed) distribution with the actual distribution duringeseh.
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Figure 2: The original melodic line and a result producedday fautomatic rules and two ordinary rules. Upper part:inagmelodic line.

Lower part: generated melodic line.

3.3. Using Distribution Rulesfor Dissimilar Scores

Our example in the previous subsection is somewhat artifisia
we used absolute counts. This means that our example wolks on
if the search problem has exactly the same amount of notasgha
found in the original. If the original and target scoreseilifthen an
extra analysis phase is needed before generating the fitiatisal
rules. After the first distribution analysis of the origimed run the
same analytical rules for the target only to count how mames

a given analytical rule is called for the target score. Usimg
information we can normalize the statistics that are usedhe
final calculation. For instance, if the original score cddstimes
the interval rule, and the target score calls the same raig,88
times, we must multiply the count values by 2 (= 88/ 44).

4. GENERATION

In this section we utilize the four analysis rules describethe
previous section to generate a melodic line with similatritia-
tions than the original (see Figure 2, lower part). To maleetk:
ample more interesting we add two ordinary rules. The firgt on
called "ballistic”, works in the context of two consecutieelodic
intervals: a ballistic movement allows two jumps in the saiire
rection, but the larger jump has to be below the smaller ot T
second rule, called "skyline”, first performs a data redarctof
all previous melodic pitches [4]. The reduction preservaly the
highest peek values, or skyline, of the melodic sequenceer Af
this we check that there are no large jumps between two gkylin
values. We also avoid repetitions of values. The net effetitat
the peek values evolve relatively smoothly without repmti.

To complete our example we give below the interval distri-
bution of the result. As can be seen the original distribui®
preserved within the tolerance which was in our case equal to

((-16) (11 6) (-4 5) (-5 4) (-9 3) (3 3) (-11 2) (-13 2)
(-22) (-82) (52) (82) (92) (-61) (151) (6 1))

The other three statistical rules (see Section 3.1) prosdimse
ilar results and stay well within the limits as specified bg trig-
inal distributions and tolerance values.

5. 2-PART CANON GENERATION

In this final section we briefly outline the realization of gart
canon (Figure 3), where the pitch content of the two melddies
are based on statistical and ordinary rules. The statistites are
similar to those given in Sections 3 and 4. Our starting ploare
is the 2-part mirror canon (i.e. the subsequent voice iestahe
initial voice in inversion) Op. 16. No. 2 by Anton Webern. $hi
example is clearly more complex (and realistic) than theiptes
one: the search utilizes six statistical rules and 23 orglinaes.

The ordinary rules consists of a canon rule, general melodic

rules, and more special rules that control musical phrasekdic
contours, forbidden harmonic formations and voice-legdiAll

rules can access the expression markings and the text ofitiie o
nal score, thus making it possible to control, for instarodivid-
ual phrases in a detailed manner. The six statistical ringsin,
consist of four melodic rules that are based on the sameipleésc
as discussed in previous sections.

The two remaining statistical rules are quite special: ey
based on our ordering scheme, called score-sort, how thaesng
proceeds in a polyphonic score during search [4]. The anderi
is accomplished as follows. We read a score from left to right
and sort notes in the order they appear in it. If two or severtds
share the same attack time, they are sorted so that the torges
are placed before the shorter ones. If two or more notes lhave t
same attack time and the same duration, we use the convémion
notes having the highest part number are considered fiestwie
start from bass notes). Thus score-sort is a kind of "intetedlic’
formation where the notes, which are typically distributedveen
several parts, are processed in the order they appear iruarsss
defined by the score-sort algorithm. Our reason in usingkihic
of special score access is motivated by the very sparseréeatu
our example where each new note entry is important from a per-
ceptional point of view. This kind of control that traversesoss
different parts could not be gained using ordinary melodies.

In Figure 3 the end part of the score-sort order structure is
denoted by arrow-head curves (see the last row of the pieea; m
sures 11-13; we omit here the original expression markiogs f
greater clarity). These score-sort analysis rules use cegsaor
keyword scheme (Section 2) and they are based on a pitch-clas
set-theoretical analysis of the original 2-part canongtthey are
similar to the "3-card scs” and "4-card scs” rules found ictB®
3). The 3-card variant is defined as follows:

(* ?1 ?2 ?3 :score-sort
(?if (add-fd-entry :3-card-score-sort-scs
(sc-nane (list (m?1) (m?2) (m?3)))))
"score-sort 3-card scs")

6. CONCLUSIONS

This paper describes an important addition to our constlmsed
system helping the user to capture important musical featur
more precisely than using ordinary rules only. Statisticaés
can be generated automatically from existing repertoitee gys-
tem is evaluated with the help of two case studies. The mesult
can be listenedtoaht t p: / / wwv. si ba. fi/ pwgl / denps/
cmr 09- st at scsp. html .
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Figure 3: A 2-part mirror canon realization based on siatiseind ordinary rules. The rhythmic structure, text angregsion markings
come from the original canon by Anton Webern (Op. 16. No. 2)e Pitch information, in turn, is generated by our constragiver.
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