
Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

STATISTICAL RULES IN CONSTRAINT-BASED PROGRAMMING

Mikael Laurson, Mika Kuuskankare, Kimmo Kuitunen

Sibelius Academy
CMT, Finland

laurson@siba.fi, mkuuskan@siba.fi

Örjan Sandred

University of Manitoba
Studio FLAT

orjan@sandred.com

ABSTRACT

In this paper we introduce a system that first generates statistical
analysis data from a musical score. The results are then translated
automatically to constraint rules that in turn can be used incom-
bination with ordinary rules to generate scores that have similar
statistical distributions than the original. Statisticalanalysis rules
are formalized using our special rule syntax where our focuswill
be in the pattern-matching part of the rules. The pattern-matching
part has two important tasks in our paper: first, it is used to extract
various musical entities from the score, such as melodic, harmonic
and voice-leading formations; second, it is used also to generate
statistical rules which will be used in the re-synthesis part of our
system. We first introduce the rule syntax. After this we discuss
a practical case study where we analyze a melodic line. Finally
we generate out of this material statistical rules which areused to
produce new scores.

1. INTRODUCTION

Constraint-based languages in computer-assisted composition en-
vironments have lately found increased interest. Besides our
constraint-based system, called PWGLConstraints [4], [6], there
are currently several other approaches oriented towards musical
search problems such as Situation [7], OMClouds [8] and the more
recent system by Anders based on the OZ programming language
[1]. PWGLConstraints is written in Common Lisp and CLOS
and is currently an integral part of our visual programming en-
vironment called PWGL [5]. When using our system we define
a search-space and produce systematically potential results from
it. Typically we are not interested in all possible results,but con-
strain these with the help of rules describing an acceptablesolu-
tion. If the search cannot find an acceptable solution duringthe
search process, then the system will backtrack in the search-space.
This scheme thus allows to undo already accepted values and retry
to satisfy the rules with a new set of values. The rules have a strict
structure where a pattern-matching part (or PM-part) header is fol-
lowed by a Lisp expression (Lisp-code part).

Although PWGLConstraints was originally designed to work
as a tool to generate musical material it can also be used for music
analysis purposes. In this case no backtrack search is involved and
the system simply traverses through score and applies all analytical
rules to the input score. Analytical rules have a similar syntax to
the ones used in search problems. This kind of symmetry wherea
rule can be used either in a generative or analytical contextis one
of the main corner stones of our system.

The PM-part of a rule is critical in understanding how rules
work as the same scheme is used both in the analytical and gen-
erative tasks that will be described later in this article. Further-
more the PM-part has important implications for user written rules
and our software development. First, the PM-part is responsible
for extracting in a uniform way musical information that canthen
be processed further in the Lisp-code part of the rule. Second,

the PM-part handles boundary cases that guarantees that rules are
only run when all necessary information is available duringsearch.
Third, the PM-part allows to separate user code from the actual im-
plementation of the system. Thus for instance optimizations can be
done without touching user defined rules.

This paper discusses a case study where a set of analytical
rules are translated automatically to generative rules. Our focus
will be on statistical rules where we calculate the frequency dis-
tribution of various musical entities found in a score. The idea of
using statistics in computer assisted composition, performance re-
search and sound synthesis has been obviously popular and ithas a
long history, ranging from Lejaren Hiller’s [3] and Iannis Xenakis’
[10] pioneering compostional work from mid-50s onwards to more
recent systems such as style simulations of Palestrina-style coun-
terpoint [2] and performance research [9]. In this paper we will
focus on the specific problem how statistical analysis can beuse-
ful in a classical constraint-based context. Statistical rules are an
important complement to our ordinary rule system as they allow us
to express more precisely properties such as ’rare’ and ’common’.

We start by an introduction section explaining the rule struc-
ture in detail. After this we use this knowledge in a practical case
study where we analyze a melodic line. The resulting statistical
data is then translated into rules which are used with ordinary rules
to produce new musical material. The results are then analyzed
with the original analysis rules to verify how close the statistical
results correlate with the original. We discuss also a more ad-
vanced case study where we utilize the analytical system in our
constraint-based environment to generate a 2-part canon.

2. RULE STRUCTURE

In the following we first introduce the general rule syntax of
PWGLConstraints.

A rule consists of three main parts : (1) a PM-part, (2) a Lisp-
code part, and (3) a documentation string. In the PM-part a pattern-
matching language is used to extract relevant information from a
score. This information is given to a Lisp expression (situated in
the Lisp-code part) that either returns a truth value or executes a
side-effect. In the latter case the side-effect can typically be an ex-
pression object that is inserted in a score; or, it can also bean op-
eration where some analytical information is written for instance
to a hash-table. The Lisp-code part is found after the PM-part and
starts with the symbol ’?if’.

The PM-part of a rule uses a special pattern-matching syntax.
It can contain variables (symbols starting with a ’?’), anonymous-
variables (plain ’?’s), index-variables (symbols consisting of an ’i’
and an index number), and one or two wild cards (denoted by the
symbol ’*’). These variables can be followed by special keywords
(typically accessors and selectors) that further specify the behavior
of the PM-part.

A variable extracts single objects. By contrast, an anonymous-
variable is never bound to an object, i.e. it only acts as a ’place-

ICAD09-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/19896653?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

Figure 1: Three PM-part examples where possible matches are
given below the staff in separate rows. In (A) there is only one
match, in (B) and (C) there are three matches.

holder’ in the pattern. The wild card matches any continuouspart
of the score. Finally, an index-variable extracts objects from an
absolute position given by the index number. In Figure 1 we give
some basic pattern-matching examples with their respective bind-
ings (we show here only the PM-part of the rule; the Lisp-code
part of the rule is denoted with three dots).

Using this information let us define a simple interval rule
where we check that all melodic intervals belong to a given in-
terval list. This rule is run for each melodic note-pair:

(* ?1 ?2 ; (1) PM-part
(?if (member (- (m ?2) (m ?1)) ; (2) Lisp-code part

’(-1 3 -5 -4 -13 -8 -9 8 -11)))
"Interval rule") ; (3) doc string

The PM-part allows the user to specify after the variables spe-
cial score accessor keywords. The variables given in the PM-part
of a rule can now refer to the structural entity the user is interested
in, such as note, chord, beat, measure and harmony. A more spe-
cial case, called ’score-sort’, will be dealt with in Section 4. If
no accessor keyword is given then the rule operates with melodic
notes (see for instance the ”Interval rule” in the previous subsec-
tion).

The following examples demonstrate how we can use some
of the accessor keywords in conjunction with a wild card and two
variables:

(* ?1 ?2 ...) ; 2 adjacent melodic notes
(* ?1 ?2 :chord ...) ; 2 adjacent chords
(* ?1 ?2 :beat ...) ; 2 adjacent beats

The PM-part may also contain selectors which allow to restrict
the scope of the rule. A selector is a keyword/value pair, or it can
also be a Lisp expression that returns a truth value. For instance,
the following the melodic rule is applied only to parts 1 and 3:

(* ?1 ?2 :parts ’(1 3) ...) ; only parts 1 and 3

3. STATISTICAL DISTRIBUTION AND AUTOMATIC
RULES

Until now we have discussed rules that either accept or reject a
candidate. Typically these kind of rules operate in a fairlylocal
context. It can, however, be interesting to have also a more holistic
view and to be able to say something about the commonness of
a property in the musical output. For instance let us consider the
interval rule from the previous section. This rule works only in the
context of two adjacent melodic notes: it does not state anything
about the distribution of the intervals. We have no obvious way of
saying that we would like to have a lot of interval -1, or that interval
6 should be very rare. Another problem is that this rule givesno
guarantee of how the given interval repertoire will be be used. In a
pathological case a result might use only one or two of the allowed
intervals, although the rule contains 9 intervals. One solution to
these problems is to make during search statistics of the partial
solution and compare this result with the desired distribution. The
purpose of the statistical rules is to force the result to approximate
gradually the desired distributions.

3.1. Analysis

For statistical rules we need first some data. An apparent start-
ing point is to analyze a musical score and use this material later
to generate a score with similar properties. Thus next we will
discuss a case study that utilizes four rules to analyze a melodic
line. Our starting point is the soprano line from a 3-part canon
by Anton Webern (Op. 16. No. 3). This piece stems from the
middle-period songs that have been analyzed much less than the
late-period works.

We first extract only the pitch information in MIDI-values
(Figure 2, upper part). Then we apply the following analysisrules
to this pitch material. The Lisp-code part of all rules contain the
function ’add-fd-entry’ (’fd’ = frequency distribution) which accu-
mulates during the analysis process the occurrences of any given
criteria. Thus, for instance, the first rule, called ”interval”, will
count for interval occurrences for each melodic note-pair.The sec-
ond and third rules, ”3-card scs” and ”4-card scs”, perform pitch-
class set-theoretical analysis for 3-note and 4-note melodic forma-
tions. Finally, the fourth rule, ”+-movement”, analyzes up/down
movement distributions for all 4-note successions.

(* ?1 ?2
(?if (add-fd-entry :int (- (m ?2) (m ?1))))

"interval")

(* ?1 ?2 ?3
(?if (add-fd-entry :3-card-scs

(sc-name (list (m ?1) (m ?2) (m ?3)))))
"3-card scs")

(* ?1 ?2 ?3 ?4
(?if (add-fd-entry :4-card-scs

(sc-name (list (m ?1) (m ?2) (m ?3) (m ?4)))))
"4-card scs")

(* ?1 ?2 ?3 ?4
(?if (add-fd-entry :+-movement

(list (signum (- (m ?2) (m ?1)))
(signum (- (m ?3) (m ?2)))
(signum (- (m ?4) (m ?3))))))

"+-movement")

For instance, the first interval rule results in the following dis-
tribution (each sublist consists of a interval/count pair:7 instances
of interval -1, 5 of 3, 5 of -5, etc.):

((-1 7) (3 5) (-5 5) (11 5) (-4 4) (-13 3) (-8 3) (-9 2)
(8 1) (-11 1) (15 1) (20 1) (14 1) (-6 1) (9 1) (-2 1)
(5 1) (6 1))

3.2. Automatic Rule Translation

Let us next consider how statistical rules will work in a generative
context. For this we make a simplification of the general caseand
assume that we will create an example that has the same number
of notes as the original melodic line has. For instance a generative
interval rule that uses the interval distribution described in the pre-
vious subsection would accept a partial solution that has less than
or equal to 7 times interval -1, less than or equal to 5 times interval
3, etc. In other words the count value determines the high limit of
instances of a given interval. If, say, the interval -1 is found 8 times
or more, then the rule will not accept the partial solution. This rule
may be too strict and time consuming and therefore we add a toler-
ance to the rule. The tolerance indicates how much the high limit
can be exceeded without failing. This means that we will get only
an approximation of the desired distribution, but giving a tolerance
value will speed the calculation considerably.

The automatic translation is quite straightforward due to the
PM-part of the analysis rule. We simply use the PM-part of the
analysis rule and compare in the Lisp-code part the desired (ana-
lyzed) distribution with the actual distribution during search.

ICAD09-2



Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

Figure 2: The original melodic line and a result produced by four automatic rules and two ordinary rules. Upper part: original melodic line.
Lower part: generated melodic line.

3.3. Using Distribution Rules for Dissimilar Scores

Our example in the previous subsection is somewhat artificial as
we used absolute counts. This means that our example works only
if the search problem has exactly the same amount of notes than is
found in the original. If the original and target scores differ, then an
extra analysis phase is needed before generating the final statistical
rules. After the first distribution analysis of the originalwe run the
same analytical rules for the target only to count how many times
a given analytical rule is called for the target score. Usingthis
information we can normalize the statistics that are used for the
final calculation. For instance, if the original score calls44 times
the interval rule, and the target score calls the same rule, say, 88
times, we must multiply the count values by 2 (= 88 / 44).

4. GENERATION

In this section we utilize the four analysis rules describedin the
previous section to generate a melodic line with similar distribu-
tions than the original (see Figure 2, lower part). To make the ex-
ample more interesting we add two ordinary rules. The first one,
called ”ballistic”, works in the context of two consecutivemelodic
intervals: a ballistic movement allows two jumps in the samedi-
rection, but the larger jump has to be below the smaller one. The
second rule, called ”skyline”, first performs a data reduction of
all previous melodic pitches [4]. The reduction preserves only the
highest peek values, or skyline, of the melodic sequence. After
this we check that there are no large jumps between two skyline
values. We also avoid repetitions of values. The net effect is that
the peek values evolve relatively smoothly without repetitions.

To complete our example we give below the interval distri-
bution of the result. As can be seen the original distribution is
preserved within the tolerance which was in our case equal to1:

((-1 6) (11 6) (-4 5) (-5 4) (-9 3) (3 3) (-11 2) (-13 2)
(-2 2) (-8 2) (5 2) (8 2) (9 2) (-6 1) (15 1) (6 1))

The other three statistical rules (see Section 3.1) producesim-
ilar results and stay well within the limits as specified by the orig-
inal distributions and tolerance values.

5. 2-PART CANON GENERATION

In this final section we briefly outline the realization of a 2-part
canon (Figure 3), where the pitch content of the two melodic lines
are based on statistical and ordinary rules. The statistical rules are
similar to those given in Sections 3 and 4. Our starting pointhere
is the 2-part mirror canon (i.e. the subsequent voice imitates the
initial voice in inversion) Op. 16. No. 2 by Anton Webern. This
example is clearly more complex (and realistic) than the previous
one: the search utilizes six statistical rules and 23 ordinary ones.

The ordinary rules consists of a canon rule, general melodic
rules, and more special rules that control musical phrases,melodic
contours, forbidden harmonic formations and voice-leading. All

rules can access the expression markings and the text of the origi-
nal score, thus making it possible to control, for instance,individ-
ual phrases in a detailed manner. The six statistical rules,in turn,
consist of four melodic rules that are based on the same principles
as discussed in previous sections.

The two remaining statistical rules are quite special: theyare
based on our ordering scheme, called score-sort, how the engine
proceeds in a polyphonic score during search [4]. The ordering
is accomplished as follows. We read a score from left to right
and sort notes in the order they appear in it. If two or severalnotes
share the same attack time, they are sorted so that the longest notes
are placed before the shorter ones. If two or more notes have the
same attack time and the same duration, we use the conventionthat
notes having the highest part number are considered first (i.e. we
start from bass notes). Thus score-sort is a kind of ’inter-melodic’
formation where the notes, which are typically distributedbetween
several parts, are processed in the order they appear in a sequence
defined by the score-sort algorithm. Our reason in using thiskind
of special score access is motivated by the very sparse texture of
our example where each new note entry is important from a per-
ceptional point of view. This kind of control that traversesacross
different parts could not be gained using ordinary melodic rules.

In Figure 3 the end part of the score-sort order structure is
denoted by arrow-head curves (see the last row of the piece, mea-
sures 11-13; we omit here the original expression markings for
greater clarity). These score-sort analysis rules use our accessor
keyword scheme (Section 2) and they are based on a pitch-class
set-theoretical analysis of the original 2-part canon (thus they are
similar to the ”3-card scs” and ”4-card scs” rules found in Section
3). The 3-card variant is defined as follows:

(* ?1 ?2 ?3 :score-sort
(?if (add-fd-entry :3-card-score-sort-scs

(sc-name (list (m ?1) (m ?2) (m ?3)))))
"score-sort 3-card scs")

6. CONCLUSIONS

This paper describes an important addition to our constraint-based
system helping the user to capture important musical features
more precisely than using ordinary rules only. Statisticalrules
can be generated automatically from existing repertoire. The sys-
tem is evaluated with the help of two case studies. The results
can be listened to at:http://www.siba.fi/pwgl/demos/
cmmr09-statscsp.html.

7. ACKNOWLEDGEMENTS

The work of Mikael Laurson and Mika Kuuskankare has been sup-
ported by the Academy of Finland (SA 105557 and SA 114116).

ICAD09-3



Proceedings of the 15th International Conference on Auditory Display, Copenhagen, Denmark May 18 - 22, 2009

Figure 3: A 2-part mirror canon realization based on statistical and ordinary rules. The rhythmic structure, text and expression markings
come from the original canon by Anton Webern (Op. 16. No. 2). The pitch information, in turn, is generated by our constraint solver.

8. REFERENCES

[1] Torsten Anders.Composing Music by Composing Rules: De-
sign and Usage of a Generic Music Constraint System. PhD
thesis, Queen’s University, Belfast, 2007.

[2] M. Farbood and B. Schoner. Analysis and synthesis of
palestrina-style counterpoint using markov chains. InPro-
ceedings of International Computer Music Conference, Ha-
vana, Cuba, 2001.

[3] L. Hiller and L. Isaacson. Musical composition with a high-
speed digital computer.Journal of the Audio Engineering
Society, 1958.

[4] Mikael Laurson. PATCHWORK: A Visual Programming
Language and some Musical Applications. Studia mu-
sica no.6, doctoral dissertation, Sibelius Academy, Helsinki,
1996.

[5] Mikael Laurson and Mika Kuuskankare. Recent Trends in
PWGL. InInternational Computer Music Conference, pages
258–261, New Orleans, USA, 2006.

[6] Mikael Laurson, Mika Kuuskankare, and Kimmo Kuitunen.
The Visualisation of Computer-assisted Music Analysis In-
formation in PWGL. Journal of New Music Research,
37(1):61–76, 2008.

[7] Camillo Rueda, Magnus Lindberg, Mikael Laurson, Georges
Bloch, and Gerard Assayag. Integrating constraint program-
ming in visual musical composition languages. InECAI 98
Workshop on Constraints for Artistic Applications, Brighton,
1998.

[8] Charlotte Truchet, Gerard Assayag, and Philippe Codognet.
Visual and adaptive constraint programming in music. In
International Computer Music Conference, pages 346–352,
Havana, Cuba, 2001.

[9] Gerhard Widmer and Werner Goebl. Computational models
of expressive music performance: The state of the art.Jour-
nal of New Music Research, 33(3):203–216, 2004.

[10] Iannis Xenakis.Formalized Music: Thought and Mathemat-
ics in Composition. Hillsdale, NY: Pendragon Press, 2001.

ICAD09-4


