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ABSTRACT

In order to develop the 3D auditory display using a head phone
which allow head movement, real time calculation of the head re-
lated transfer function (HRTF) is necessary. In the conventional
studies, the calculations are performed approximately based on the
mathematical model by regarding the head as the sphere shape. Al-
though the boundary element method is also possible to calculate
the transfer function by solving the wave equation from the ac-
curate boundary condition of the head including the shape of the
face and the ears measured by the 3D scanner, it is thought to be
impossible to calculate it in real time because the amount of the
calculation is too big. In this study, we discuss a new calculation
method of the HRTF based on the reciprocity principle which en-
ables significant speed-up of the calculation.

The demonstrations are available at the website:

http://acoust.archi.kyoto-u.ac.jp/HRTF/

1. INTRODUCTION

Generally, human obtains spatial informations through binaural
listening, which is one of the functions of the phonoreception. Par-
ticularly, it is known that human perceives the direction of sound
sources through the interaural sound level differences and time dif-
ferences of the ear input signals [1].

The head-related transfer functions (HRTFs), which are the
transfer functions between the sound source and listener’s ears,
contains such informations that the interaural sound level differ-
ences and time differences of the ear input signals. The spectral
cues caused by these informations is said to be related to the sound
localization. If a source signal and the HRTFs are convolved and
the resulting signal can be precisely produced at both ears, it would
be possible to let the listener perceive the sound source in that di-
rection. In order to measure the HRTFs, we usually use a real
head or a dummy head. However, because we can not measure
the HRTFs in every directions, we have to predict the HRTFs in
unmeasured direction. It is possible to interpolate HRTFs in the
unmeasured direction from those in the measured directions [2].
However, if the HRTFs are needed for the other distance from the
source, a number of measuring HRTFs are needed. Drastic ap-
proximation, such that the head shape is approximated to sphere
or spheroids [3], is also realistic if we may ignore the difference
between the front and the back.

On the other hand, it is possible to solve the wave equation
strictly by using the finite/boundary element method [4, 5]. Al-
though these methods can calculate HRTFs accurately, the calcu-

lation time is extremely long compared with the conventional cal-
culation methods.

In this study, we describes the calculation method of the HRTFs
by using the conventional BEM, the Chief method [6] which min-
imize the error caused at the internal eigen-frequencies and the
reciprocity method which enables speeding up of the calculation.
In the numerical study, these methods are compared and are dis-
cussed. Furthermore, we introduce the server system which calcu-
late the HRTFs based on the BEM.

2. CALCULATING HRTFS BY USING THE BEM

The BEM which calculates the HRTFs is categorized as the ex-
ternal problem of the boundary integral equation. As the bound-
ary condition, the boundary surface is given by the shape of the
dummy head. By solving the integral equation, we obtain the
acoustic pressure at ears when a sound source is located at a posi-
tion considered.

2.1. Calculation of the acoustic pressure on the boundary sur-
face

The BEM is a numerical method which solves the algebra equation
by discretizing the boundary surface of the Kirchhoff Helmholtz
integral equation expressed as follows:

C(s)p(s) = jωρ

N�
k=1

qkG(r′k |s)

+

� �
S

G(r|s)∂p(r)

∂n
−p(r)

∂G(r|s)
∂n

dS

C(s) =

��� 1/2 (s ∈ S)
1 (s ∈ V )
0 (s /∈ V )

, (1)

where
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S : Surface
V : Volume
s : Position within the volume V
r′k : Point source position (k = 1 . . .N)
r : Position on the surface S
p : acoustic pressure
G : the Green function
qk : the volume velocity of the source k
ω : angular frequency
ρ : the air density
n : the normal vector.

In Eq.(1), the normal derivative is given as follows,

∂p(r)

∂n
= −jωρvn(r) = −jωρyn(r),

where vn and yn are the particle velocity and the acoustic admit-
tance in normal, respectively.

The boundary surface S is divided into M elements for dis-
cretization. In this study, we suppose the constant element which
regard the physical parameters such as the acoustic pressure and
the particle velocity are constant within the discretized element.
Then ,if the j-th element is set to Sj and the center of Sj is de-
fined as rj , Eq.(1) can be descretized as

C (s)p(s)

= jωρ
N�

k=1

qkG(r′k|s)−
M�

j=1

jωρvn(rj)

� �
Sj

G(r|s)dS

−
M�

j=1

�� �
Sj

∂G(r|s)
∂n

dS+jωρyn(rj)

� �
Sj

G(r|s)dS

�
p(rj),

(2)

where

vn(rj /∈S′)=0,

yn(rj∈S′)=0.

Here, if the vector r1, r2, r3, · · · , rM which are located on
the surface S is substituted for s in Eq.(2), we can solve them as
simultaneous equations of many unknown pr i(i = 1 · · ·M). As
ri is on the surface S, that is C(s) = 1/2, Eq.(2) can be written
as

1

2
p(ri) = jωρ

N�
k=1

qkG(r′k|ri)−
M�

j=1

jωρvn(rj)Gij

−
M�

j=1

�
Gn

ij +jωρyn(rj)Gij

	
p(rj),

where

Gij =

� �
Sj

G(r|ri)dS,

Gn
ij =

� �
Sj

∂G(r|ri)

∂n
dS.

By transposing p(ri) in the third term in the right side of Eq.(3),
we can express simply as the matrix equation.


1

2
IM + Gn + jωρGY

�
P = gA − jωρGV (3)

where

Gn=
�
Gn

ij

 ∈ CM×M

G = [Gij] ∈ CM×M

Y = diag(yn(r1), yn(r2), yn(r3), · · ·, yn(rM )) ∈ CM×M

P = [p(r1), p(r2), p(r3), · · · , p(rM )]T ∈ CM

g =
�
G(r′k |ri)

 ∈ CM×N

A = [A1, A2, A3, · · · , AN ]T ∈ CN

V = [v(r1), v(r2), v(r3), · · · , v(rM )]T ∈ CM

Therefore, if the boundary conditions such as the source am-
plitude, the vibration velocity and the acoustic admittance on the
boundary surface are given and if (IM/2 + Gn + jωρGY) is the
regular matrix, the acoustic pressure P̂ on the surface is given by

P̂ =



1

2
IM + Gn + jωρGY

�−1

(gA − jωρGV) . (4)

2.2. Calculation of the acoustic pressure within the volume

In the same manner of deriving Eq.(eq:discrete1), the acoustic
pressure within the volume V (p(s ∈ V )) can be written as

p(s) = gsA − jωρGsV − (Gns + jωρGsY) P̂ (5)

where

gs =
�
G(r′k|s)

 ∈ CN ,

Gs =

�� �
Sj

G(rj |s)ds

�
∈ CM ,

Gns =

�� �
Sj

∂G(rj |s)
∂n

ds

�
∈ CM .

Therefore, after obtaining the acoustic pressure on the surface S,
that is P̂, by solving Eq.(4), we can obtain the acoustic pressure at
any position within the volume V .

2.3. Reciprocity principle

Suppose a sound fields driven by a sound source A with the volume
velocity v located at ra within the closed surface S, the sound field
is expressed as the non-homogeneous wave equation as follows.

(∇2 + k2)pa(r) = −jωρ0v · δ(r − ra) (6)

In the same manner, if we suppose another sound field driven by
a sound source B with the volume velocity v located at r b within
the closed surface S, the sound field is also expressed as the non-
homogeneous wave equation as follows.

(∇2 + k2)pb(r) = −jωρ0v · δ(r − rb) (7)

By substituting rb for r in Eq.(6) and ra for r in Eq.(7) and com-
paring both, we can easily derive that pb(ra) = pa(rb). The reci-
procity principle in the wave equation can be transformed into the
integral equation as

pa(s) = jωρvG(ra|s)+ G′(r|s), (8)

pb(s) = jωρvG(rb|s)+ G′(r|s), (9)

ICAD02-2



Proceedings of the 2002 International Conference on Auditory Display, Kyoto, Japan, July 2-5, 2002

where

G′(r|s) =

� �
S

G(r|s)∂p(r)

∂n
−p(r)

∂G(r|s)
∂n

dS.

If ra is the sound source position and r b is the ear position, the
HRTF can be obtained by calculating both p a(rb) and pb(ra).
Because pb(ra) is the acoustic pressure at the source position r a

when the sound source is located at the ear position r b, HRTF can
be solved by exchanging the sound source position and the ear po-
sition. This fact makes great merit in the HRTFs calculation. If
we calculate the pressure signal P̂ with the sound source locate at
the ear position rb based on Eq. 4 once, the HRTF at any source
position can be obtained by calculating Eq. 5.

In the calculation of the BEM, the most part of the calculation
is occupied with the first calculation which calculates P̂ by solv-
ing Eq. 4. The second calculation finishes with a instant. However,
because the source point is close to the boundary surface, the ac-
curacy of solving P̂ can reduce. If the problem of the internal
eigen-frequency mentioned below coincide it, further degradation
of the accuracy is expected.

2.4. Cheif method

In solving Eq. (4), if (1/2IM + Gn + jωρGY) is the regular
matrix, the pressure on the boundary surface, that is P̂, have an
unique solution. It can, however, not be regular at all the frequen-
cies. In particular, at the high frequencies, Eq.(4) tends to have
many eigen-frequencies and not to have any unique solution. In
the internal problem of the integral equation, it is physically nat-
ural because of the resonance inside of the closed volume. It is,
however, unnatural to cause the same phenomena outside of the
closed volume. We do not usually observe the resonance outside
of the closed volume. This problem can be solved by changing the
matrix. The Chief method is one of the solution by adding obser-
vation points where the acoustic pressure becomes zero, i.e. inside
the volume in the external problem. In this method, first s /∈ V
are chosen and are substituted for s in Eq.(1). Next, the new equa-
tions are attached to Eq. (4). Because the equations are more than
the number of the variable which is the acoustic pressure on the
surface Sj(j = 1 · · ·M), we must solve by using the least mean
square method. If we choose tildeM points of s /∈ V and define
as �r1,�r2, , · · · , �r

�M , the equation is given as follows:

0 = jωρ

N�
k=1

qkG(r′k|�ri)−
M�

j=1

jωρvn(rj) �Gij

−
M�

j=1

� �Gn
ij +jωρyn(rj) �Gij

�
p(rj),

where

�Gij =

� �
Sj

G(r|�ri)dS,

�Gn
ij =

� �
Sj

∂G(r|�ri)

∂n
dS.

By expressing the matrix equation, it becomes��Gn + jωρ �GY
�

P = �gA − jωρ �GV, (10)

where

�Gn=
� �Gn

ij

�
∈ C

�M×M ,

�G =
� �Gij

�
∈ C

�M×M ,

�g =
�
G(r′k|�ri)

 ∈ CM×N .

(11)

By attaching Eq.(10) to Eq.(3), it is expressed as

HP = L, (12)

where

H =

� 1
2IM + Gn + jωρGY�Gn + jωρ �GY

�
∈ C(M+�M)×M ,

L =

�
g�g
�
A − jωρ

�
G�G

�
V ∈ C(M+�M). (13)

In this case, as Eq.(12) is the over-determined system, P does not
have any solutions. However, we can obtain P which has the least
error of the equation by solving

P̂ = (HT H)−1HT L. (14)

3. COMPUTER SIMULATION

3.1. Boundary condition of head shape

We prepared triangle elements group which shapes the surface of
the dummy head. First, the 3D coordinate data was measured
by using 3D scanner (Cyberware 3030RGB/I). Next, the triangle
mesh data was calculated by using the triangle mesh generator [7].
Although the measured coordinate data of the dummy head sur-
face include the body of the head torso simulator, we use only the
head part of the data in this study.

It is said that the element size should be less than 1/4 to 1/6
of the wave length to obtain enough accuracy in the calculation
for the BEM. Therefore, we made upper limit of the element size
when the surface is divided into the triangle element. Besides,
because the ear pinna could affect the accuracy of the calculation,
we controlled the upper limitation size near the ear pinna to be
small enough. After determining these condition, the boundary
elements are made as shown in Fig.1.

The number of the triangle element in this model is 5014. The
average size of the element is about 6.8mm. Although the inlet of
the external ear canal is closed in this model, it can be regarded that
it is the same condition as the HRTF measured under the condition
of the external ear canal closed which is said to include the spatial
information [8].

The sound source is locate at an angle of front, right 30 degree
and a distance of 1.4m from the center of the head torso. We cal-
culate the acoustic pressure at the position of left and right ear. In
order to confirm the accuracy of the computation, we calculate the
acoustic pressure inside of the head, too.

3.2. HRTF using the conventional BEM

As the conventional method, we solve Eq.(4) first and Eq.(5) next
to obtain the HRTFs. The frequency range of the calculation is
43-12015Hz at intervals of 43Hz. Fig.2 shows the HRTFs in the
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Figure 1: Computer model

frequency domain and the solid line and the dashed line indicate
the S.P.L. at the right ear and left ear, respectively. The dotted line
is the error level.
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Figure 2: HRTF in the frequency domain by the conventional BEM

As shown in Fig.3, it can be seen that the amplitude of the
right ear is higher than that of the left ear and the wave arrived at
the right ear is earlier than that at the left ear. time is 45 hours
using Xeon 2.5GHz.

3.3. HRTF calculation using the reciprocity principle

Fig.4 shows the HRTFs calculated by the method based on the
reciprocity principle, that is s in Eq.(5) is set as the source position
and r′k in Eq.(4) is set as the ear position. Fig.5 is the HRTFs in
the time domain, respectively.

The computation time for the first calculation is 45 hours and
that for the second calculation is 2 seconds. The difference be-
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Figure 3: HRTF in the time domain by the conventional BEM
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Figure 4: HRTF in the frequency domain by the reciprocity
method

tween the peak and the dip in Fig.4 are less than the conventional
method. The noise reduction can be seen before the peak of the
HRTF waveform in Fig.5.

3.4. HRTF calculation using Chief method

Fig.6 shows the HRTFs calculated by the Chief method, that is
p(s) in Eq.(5) is calculated by substituting the acoustic pressure P̂
on the surface S given by Eq.(14).

The error level in the frequency domain in Fig.6 does not
increases compared with the conventional method illustrated in
Fig.2. The computation time is 116 hours using Xeon 2.5GHz.
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Figure 5: HRTF in the time domain by the reciprocity method
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Figure 6: HRTF in the frequency domain by the Chief method

4. DEVELOPMENT OF REAL TIME HRTF SERVER

We developed the computation server as shown in Fig.8 which cal-
culate the HRTFs quickly. The URL address of it is as follows:

http://acoust.archi.kyoto-u.ac.jp/HRTF/

The computation time is 2 seconds for one position of the
sound source.

At the moment, it can not be said the perfect real time server,
but comparing the computation time in the conventional BEM, that
is 45 hours, it can be said that the revolutionary speed up of the
calculation achieved. We are going to open this server for any
application which will uses HRTF after confirming the copyright
concerning the triangle mesh generator [7].
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Figure 7: HRTF in the time domain by the Chief method
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Figure 8: HRTF server
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