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Abstract 

 
Background: It has been hypothesized that helminth infections modify HIV 

susceptibility and disease progression by modifying the human immune system and 

thus might contribute to the high prevalence of HIV-1 in Africa.  

Objective: To study immune system modulation of different helminth infections (A. 

lumbricoides, Trichuris trichiura, Hookworms, S.haematobium and S. mansoni) in 

relation to HIV-1 susceptibility and disease progression.  

Methods: 381 adult volunteers from Mbeya-Tanzania were enrolled into the study. 

Helminth infections were diagnosed using the Kato Katz method. Participants were 

followed up at 3 months and 1 year after helminth treatment. Expression of regulatory 

(CD25, FoxP3, Tregs), memory (CD45RO, CD27) and activation markers (CCR5, 

HLA-DR/CD38) on T cells were studied ex vivo using polychromatic flow cytometry 

in fresh anticoagulated whole blood. HIV- and other pathogen-specific T cell 

responses were quantified in freshly isolated peripheral blood mononuclear cells 

using an Interferon gamma ELISPOT assay after stimulation with a peptide pool of 

HIV peptides or respective studied pathogen antigens. Results were analysed in 

relation to helminth and HIV infection status.  HIV+ subjects on ART were excluded 

from analysis. 

Results: Treg frequencies were increased especially in subjects infected with 

T.trichiura (p=0.008) but were also moderately high in relation to HIV infection 

(p=0.0472). Interestingly, a substantial fraction of Tregs (Median: 50%) expressed the 

HIV co-receptor CCR5, which potentially could support HIV entry into Tregs. 

Quantification of HIV-DNA copies in sorted CD4 T cells then demonstrated a 15 fold 

higher HIV infection rate in memory Tregs as compared to CD25-FoxP3- memory 

CD4 T cells (p=0.0032). All studied helminth species were associated with systemic 

immune modulation but only T.trichiura infection correlated with substantially 

increased expression of HLA-DR on T cells and increased density of CCR5 

expression on memory CD4 T cells (P=0.02). HIV infection also correlated with 

immune activation and high proportion of CCR5/HLA-DR+ CD4 cells independent of 

helminth co-infection. Neither concurrent helminth infections nor their treatment had 

a significant effect on HIV- or other pathogen-specific T cell responses. However, 
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HIV infection alone correlated with depletion of specific T cell responses to 

pathogens such as Mycobacterium tuberculosis and Herpes Viruses, among others. 

 

Conclusions: Helminth, especially T.trichiura infection correlated with increased 

systemic immune activation and might thus potentially contribute to increased 

susceptibility to HIV acquisition. Regulatory CD4 T cells are a frequent target of HIV 

infection in vivo and are preferentially infected compared to CD25-FoxP3- CD4 T 

memory cells. 

 

 
Keywords: HIV-1, Helminths, Pathogen-specific T cell responses, Regulatory T cells 

and T-cell immune activation  
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Abbrevations 

 
HIV- Human Immunodeficiency Virus 

SIV-Simian Immunodeficiency Virus 

MTB- Mycobacterium Tuberculosis 

CMV- Cytomegalovirus 

HSV-1-Human Simplex Virus 

EBV-Epstein Barr virus 

TH1 CD4- T helper 1 CD4 T cells 

TH2 CD4- T helper 2 CD4 T cells 

CTL- Cytotoxic T lymphocyte cells 

TCR-T Cell Receptor 

IFN-γ-Interferon gamma cytokine 

TNFα- Tumour necrosis factor alpha cytokine 

IL-2- Interleukin 2 cytokine 

CD25-alpha chain of IL-2 receptor 

PBMCs- Peripheral Blood Mononuclear Cells 

CFP10- Culture Filtrate Protein 10  

PPD- Purified Protein Derivative (or tuberculin) 

EDTA- Ethylene-diamine-tetraacetic acid 

CPDA- Citrate Phosphate Dextrose Adenine (Anticoagulant) 

FBS- Foetal Bovine Serum 

HEPES- Hydroxyethyl piperazineethanesulfonic acid (Buffer reagent) 

R10 =RPMI/Glutamax medium supplemented with 10% FBS; 10 mM HEPES; 

50Units Penicillin and 50 μg/ml of streptomycin (all Gibco, Invitrogen).  

RT-Room Temperature 
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1. Introduction 

1.1. The Human Immunodeficiency Virus 1 (HIV-1) – General 

Introduction 
 

HIV is a retrovirus belonging to a group of Lentiviruses. HIV eventually, causes 

an infection which can lead to acquired immune deficiency syndrome (AIDS) - a 

disease characterized by the failure of the immune system to control diverse 

opportunistic infections brought on by the progressive loss of CD4 T cells. 

Phylogenetic analysis of HIV sequences suggests that HIV might have been 

transmitted to humans as early as 1930s (Korber et al. 2000) even though it was 

defined as the causative agent of AIDS in 1983 (Barré-Sinoussi et al. 1983). Two 

types of HIV that are recognised as causative agents of AIDS in humans are HIV-1 

and HIV-2. HIV-1 is diverse, virulent and has  a wider distribution accounting for the 

global AIDS pandemic while HIV-2 is concentrated and has remained isolated in 

West Africa and countries with strong ties to such regions (Murphy et al. 2007). 

 

By 2011, over 34 million people worldwide were estimated to be living with 

HIV, 69% of them living in sub-Saharan Africa (UNAIDS 2012). Tanzania is 

amongst sub-Saharan countries with high HIV prevalence (5.8%) whereby 1.6 million 

people, mostly adults between the age of 15-49 years, were estimated to be living 

with HIV by year the 2011 (UNAIDS 2012). Mbeya region is amongst the top three 

regions within the country with the highest burden of HIV infection (THMIS 2011). 

 

HIV RNA genome has 3 structural genes: gag, env and pol that codes for the 

HIV core proteins. The gag gene encodes for the matrix (p17), capsid (p24), 

nucleocapsid (p7) and link (p6) proteins. The pol gene encodes for viral enzymes-

reverse transcriptase, intergrase and protease while env encodes for the viral envelope 

glycoprotein-gp 160 which is cleaved into functional gp 120 and gp 41.In addition, 

the HIV-1 genome also contains genes encoding for the small accessory proteins 

(Nef, Vif, Rev, Tat, Vpu, Vpr) with regulatory functions. Figure 1- 1 shows an 

illustration of the virion structure (Murphy et al. 2007). 
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Figure 1- 1: Structure of the Human Immunodeficiency Virus (HIV) virion (schematic diagram by 

F. Nicoli). 

 

HIV infection requires transmission of body fluids such as blood, semen or 

vaginal secretion from an infected to uninfected person (reviewed in (Murphy et al. 

2007)). Sexual intercourse is the most common route of HIV infection worldwide 

where CD4 T cells but also Macrophages and Dendritic cells at the mucosa sites are 

targeted through receptor dependent mechanisms. HIV entry in the target cells is 

mediated through binding of HIV envelope’s transmembrane glycoprotein gp 140 and 

gp 41 to CD4 receptor (Sattentau et al. 1988) and additional co-receptors (CCR5 or 

CXCR4)- mainly through the expression of CCR5 chemokine receptor (Deng et al. 

1996; Liu et al. 1996). CCR5 expression is common on memory CD4 T cells in 

mucosal lymphoid tissues, the mucosa of the reproductive tract and intestine, the 

lungs and inflamed tissues (Brenchley et al. 2004; Picker et al. 2004; Qin et al. 1998) 

(also reviewed in (Geldmacher & Koup 2012)).  Upon entry, HIV RNA is reverse 

transcribed into double-stranded DNA, which is subsequently integrated into a host 

chromosomal DNA (Figure 1- 2). 

 

After integration of provirus, infected T cells can either establish a latent or a 

productive infection depending on their biological properties.  T cell activation and 
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proliferation facilitate efficient HIV replication in vivo and in vitro (Geldmacher & 

Koup 2012; Zack et al. 1990; Zhang et al. 1999). Furthermore, memory activated 

CD4 T cells supports productive HIV infection in vitro (Schnittman et al. 1990) and 

in vivo (Brenchley et al. 2004). Within the memory CD4 T cells, HIV specific CD4 T 

cells are predominantly infected by HIV (Douek et al. 2002; Demoustier et al. 2002) 

at all stages of HIV infection (Douek et al. 2002).  Preferential infection of HIV-

specific CD4 T cells depletes the pool of these cells and is thought to contribute to 

HIV disease progression.  

 

Co-receptor
(CCR5 or CXCR4)

CD4

Infecting virion

Binding
Fusion
Entry

Uncoating

Reverse transcritption

RNA/DNA

Viral ds DNA

Integration into human genome

mRNA

Protein synthesis 
and assembly

Budding
and maturation

Proviral DNA
Integrase

Reverse 
transcriptase

Cell nucleus

Host cell

 

Figure 1- 2: HIV replication cycle. (1) Binding, fusion and entry of HIV into the host cell which is 

mediated by binding of HIV envelope to CD4 and co-receptor. (2) Reverse transcription of HIV single 

stranded RNA into a double stranded viral DNA. (3)Transport of viral DNA into the nucleus and 

integration of viral DNA in host chromosomal DNA. (4) Proviral gene expression of genomic viral 

RNA.  (5)Virus self-assembly at the cellular membrane and viral budding. (6)Maturation of virion and 

infection of anew cell. (Schematic diagram by F. Nicoli). 
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1.1.1. HIV-specific Immune response 
 

CD8 cytotoxic T cells have been well established as important cells in the virus 

control. In acute HIV infection, detectable CD8 T cell responses in vitro (Borrow et 

al. 1994) and in vivo (Koup et al. 1994) correlate with decline in plasma viremia. An 

inverse association of proportion of CD8 T cell responses and plasma viral load has 

also been demonstrated in individuals with chronic HIV infection (Ogg et al. 1998). 

Further evidence is provided in the Simian Immunodeficiency Virus (SIV)-rhesus 

macaques model whereby depletion of CD8 T cells in the blood of animals with 

chronic SIV infection led to a dramatic increase in plasma SIV load and CD4 T cell 

depletion (Jin et al. 1999; Schmitz et al. 1999). Importantly, the frequency of 

polyfunctional HIV-specific CD8 T cells is associated with slower disease 

progression as observed in HIV non-progressors (Betts et al. 2006). In 1995, it was 

shown that gag specific cytotoxic responses are associated with slow progression to 

AIDS (Rivière et al. 1995) and recently, it has been reported that CD8 T-cell 

recognition of multiple epitopes within specific Gag regions is associated with low 

steady-state viremia in subjects with chronic HIV-1 infection (Geldmacher et al. 

2007; Kiepiela et al. 2007). 

 

Although HIV-specific CD4 T cells are preferential targets for HIV infection 

(Douek et al. 2002), they also play a critical role in the defence against HIV. 

Typically, HIV and other intracellular pathogens are primarily controlled by the 

induction of CD4 T helper 1 (TH1) cells defined by their secretion of IFN-γ, TNFα 

and IL-2 cytokines (Murphy et al. 2007). IFN-γ secreting CD4 T helper 1 cells are 

involved in the classical activation of infected macrophages (Murphy et al. 2007). 

IFN-γ and TNFα are also considered as anti-viral cytokines, as their production by 

cyotoxic T cells (CTLs) upon activation through the encounter with the target cell 

presenting HIV antigens is directly linked to CTLs cytotoxic activity (Jassoy et al. 

1993).  Also, CD4 T cell proliferative activity in response to in vitro stimulation with 

HIV antigen results in IFN-γ production and is associated with a decline in plasma 

viremia in subjects with chronic HIV infection (Rosenberg et al. 1997; Eller et al. 

2012). Of importance, IL-2 secreted by CD4 T helper cells is crucial for maintenance 
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of effective CTL response (Lichterfeld et al. 2004). The depletion of CD4 T cells 

during HIV therefore results in an immune devastation, which leaves infected 

individuals exposed to a wide range of opportunistic infections.  

 

1.2. Helminths of public Health importance- General Introduction 
 

Helminths comprise a group of nematode (round) and trematode (flat) parasitic 

worms which typically cause chronic infections in humans with the most devastation 

observed in developing countries especially within sub-Saharan Africa. The most 

common helminths of public health importance include: Ascaris lubricoides, 

Trichuris trichiura, Hookworm species (Necator americanus or Ancylostoma 

duodenale) and Schistosomes.  Co-existence of humans and parasitic worms  dates 

back to more than 1200BC, based on evidence from early written records and 

calcified egg worms from mummies (reviewed in (Cox 2002)). Human infection with 

these worms is usually through contact with their eggs or larvae (Bethony et al. 2006; 

WHO; CDC). 

 

Infection with A.lumbricoides occurs by ingesting fertilized eggs which hatch 

to larvae after ingestion and penetrate to the intestinal mucosa. They then are carried 

via the portal (liver), then to the lungs where the larvae mature further. Thereafter, the 

larvae penetrate alveolar walls, ascend the bronchial tree to the throat before they are 

swallowed and re-enter the GIT. Upon reaching the small intestine, they develop into 

adult worms and produce eggs which are then passed through stool to the 

environment (Bethony et al. 2006; CDC; WHO).  

 

Infection with T.trichiura is similar to A.lumbricoides, which also involves 

ingestion of developed eggs which hatch in the small intestine (jejunum) and infective 

released larvae then migrate to the colon (cecum) where they develop as adult worm. 

Adult worm burry their heads in the epithelium and female adult worms produce eggs 

which are passed with stool (Bethony et al. 2006; CDC; WHO). 

 

Unlike A.lumbricoides and T.trichiura, Hookworm eggs hatch in the 

environment to release larvae which become infective 5-10 days after. The infective 
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larvae penetrate through the human skin and travels to the heart and lungs through 

vessels. They then penetrate into pulmonary alveoli, ascend the bronchial tree to 

pharynx, and are swallowed to enter the Gastro Intestinal Tract (GIT). When reaching 

the small intestine, larvae mature into adults. Adult worms live in the lumen of the 

small intestine, where they attach to the intestinal wall, feeding on red blood cells 

resulting in host blood loss (anaemia). Female adult worms produce eggs which are 

passed with stool (Bethony et al. 2006; CDC; WHO). 

 

Schistosomes are a group of trematodes that cause schistosomiasis. There are 

three main species of schistosome infecting humans: S.mansoni, S.haematobium and 

S.japonicum. Of the three, only S.mansoni and S.haematobium are found in Africa 

while S.japonicum is geographically localized in the Far East. Schistosome life cycle 

involves 2 hosts, humans and specific snails which act as intermediate host. Eggs 

released in fresh water through faeces or urine hatch and release a stage of larva 

(miracidia) which swim and penetrate specific snail intermediate host. Within the 

intermediate host, miracidia undergo asexual production of sporocysts and production 

of cercariae- which are the infective form to humans. Upon release from the snail, the 

infective cercariae swim, penetrate the skin of the human host, and shed their forked 

tail, becoming another larval form called schistosomulae. Schistosomulae migrate 

through several tissues (including lungs and liver) and stages to their residence in the 

veins where they mature into adult female or male worms.  Adult worms in humans 

reside in the mesenteric venules of the rectum or in venous plexus of urinary bladder. 

For instance, S.mansoni frequently reside in superior mesenteric veins draining the 

large intestine while S.haematobium most often occurs in the venous plexus of 

bladder, but it can also be found in the rectal venules. Adult worms pair in their host 

destination and live for a long time feeding on red blood cells. Female adult worms 

lay and deposit eggs in the blood stream and travel through the veins into the lumen 

of the intestine (S.mansoni) or urinary bladder (S.haematobium) and eggs are finally 

excreted with faeces or urine, respectively. However, a proportion of these eggs are 

trapped in the tissues such as intestine and liver portal system (for S.mansoni) or 

urinary bladder, ureter and other tissues of the pelvic organ (for S.haematobium). The 

egg antigens then induce granuloma formation through chronic inflammation in the 

affected organs, which is the cause of schistosomiasis (CDC; WHO).  
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Infections with helminths are associated with serious morbidity especially in 

children. Morbidity is related to the intensity of helminth infection. People with light 

infections usually have no symptoms. Heavier infections can cause pathologic 

manifestations exerted either directly by helminths or by host immune and 

inflammatory responses triggered by helminth antigens (CDC; WHO).    

 

1.2.1. Helminth-specific Immune response 
 

Chronic infections with helminths are typical since helminths need time in their 

host to complete their development and transmission. Helminths have evolved in time 

and developed strategies to evade host immune reactions to ensure their long survival 

within the host and at the same time in most cases, controlling the amount of 

pathological damage they impart on the host. Unlike HIV, worm infections are 

controlled by the induction of modified CD4 T helper 2 (TH2) responses associated 

with regulatory mechanisms (reviewed in (Maizels & Yazdanbakhsh 2003)). This 

response is characterized by increased levels of IgE and eosinophils and by 

production of IL-4, IL-5, IL-13 by CD4 T helper 2 cells, accompanied by production 

of immune suppressive cytokines such as IL-10 and TGF-β, as demonstrated in 

murine models (Bancroft et al. 1998; McKenzie et al. 1998; Holland et al. 2000; 

Turner et al. 2011) and humans (P. J. Cooper et al., 2000; Jackson et al., 2004; Turner 

et al., 2003). However, in shifting the response towards TH2 (Cooper et al. 2000; 

Turner et al. 2011), helminths may modify TH1 cell responses to chronic infections 

such as HIV and TB and increase susceptibility to such infections (Borkow et al. 

2001; Resende Co et al. 2007).  

 

1.3. Modulation of pathogen-specific T cell responses by HIV-1 and/or 

Helminth (co) infections 
 

Depletion of CD4 T cells during HIV infection usually leads to the failure of the 

immune system to control different opportunistic infections if left untreated. For 

example, latent infection with Mycobacterium Tuberculosis (MTB) is tightly 

controlled predominantly by IFN-γ secreting CD4-TH1 cells specific to MTB 

(Gallegos et al. 2008; Cooper et al. 1993) in healthy individuals; while in HIV 
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positive individuals, MTB-specific CD4 T cells are preferentially lost at an early stage 

of HIV infection (Geldmacher et al. 2010) and individuals are much more likely to 

develop active TB than HIV negative individuals, in regions where both pathogens 

co-circulate (WHO 2013). 

 

 Recently, infections with mostly Strongyloides stercoralis but also with 

T.trichiura and A.lumbricoides have been associated with reduction of IFN-γ and 

elevation of IL-10 cytokine levels in the supernatant after in vitro re-stimulation of 

whole blood of helminth infected individuals with MTB antigen (Resende Co et al. 

2007). Furthermore, reduced efficacy to Bacillus  Calmette-Guѐrin (BCG) anti-

tuberculosis vaccine has been reported in helminth infected mice (Elias et al. 2005) 

and humans, and its restoration after worm treatment (Elias et al. 2001). However, the 

influence of helminth infections on MTB-specific T cells in HIV-worm co-infected 

individuals has not been explored. It has also been shown that certain helminth 

infections can alter HIV and other pathogen-specific T cell responses towards a TH2 

profile (Kamal et al., 2001; McElroy et al., 2005). Helminth infections might induce 

IL-10 expression in HIV-specific CD8 T cells (McElroy et al. 2005) and thus weaken 

anti-viral effector functions. 

 

Cytomegalovirus (CMV), Herpes Simplex Virus (HSV), Toxoplasma gondii, 

Influenza and Epstein Barr virus (EBV) are common pathogens encountered by 

humans with a well controlled immune response (Murphy et al. 2007) but can cause 

AIDS related disease in highly progressed chronic HIV people (Lazenby, 2012; San-

Andres et al, 2003).  The progressive loss of CD4 T cells, particularly of pathogen-

specific TH1 CD4 T cells and impaired functions of pathogen-specific CD8 T cells 

after HIV infection contributes to the failure of the immune system to control these 

opportunistic infections ((Komanduri et al. 1998), also reviewed in (Geldmacher & 

Koup 2012)) . Modulation of such pathogen-specific T cell responses by helminth 

infections has not been fully explored. Influence of S.mansoni on IFN-γ secreting 

CMV-specific T cells and on the expression of degranulation marker on T cells has 

been investigated before on S. mansoni-CMV co-infected individuals; and found no 

effect of S.mansoni infection on such cells (McElroy et al. 2005). To better 

understand the immune modulation by infections with different helminths, it is 
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necessary to also explore their immune modulation of specific T cell responses to 

different pathogens including HIV and MTB. 

 

1.4. Regulatory T cells-General Introduction 
 

Regulatory CD4 T cells (Tregs) have a high expression of CD25 (IL-2Ra) 

(Baecher-Allan et al. 2003; Seddiki et al. 2006; Hori et al. 2003), and co-express the 

transcription factor forkhead box P3 (FoxP3). Hence, both of these markers are 

typically used to identify and characterize Tregs. Tregs are essential for maintenance 

of self tolerance and they can suppress activation, proliferation and effector functions 

of a wide range of immune cells, including CD4 and CD8 T cells (reviewed in 

(Sakaguchi et al. 2008)).  

 

Tregs were first described in 1995 in mice as CD4 T cells that express high 

levels of CD25. The depletion of CD25+ cells from CD4 T cells from mice lymphoid 

tissues led to an auto-immune condition and failure to regulate non-self antigens 

while the presence of such cells maintained self tolerance and down-regulated non-

self antigens (Sakaguchi et al. 1995). Later on, CD4+CD25high Tregs where 

characterised in humans as comprising 1-2% of circulating CD4 T cells and >80% of 

these cells possessing a memory (CD45RO) phenotype (Ng et al. 2001; Baecher-

Allan et al. 2001; Dieckmann et al. 2001). In 2003, FoxP3 was described as a key 

regulator for Treg development (Hori et al. 2003) after having observed ex vivo 

specific expression of this transcription factor in thymic CD4 T cells and periphery 

and tissue CD4+CD25high cells from mice (Fontenot et al. 2003; Hori et al. 2003) 

and later on in humans (Roncador et al. 2005). Expression of Foxp3 by Tregs 

interferes with the binding of transcription factors for T-cell growth cytokine- IL-2 at 

the IL-2 promoter, preventing transcriptional activation of IL-2 gene (Fontenot & 

Rudensky 2005).  

 

Much of Treg activity has been demonstrated in vitro where they have been 

shown to be hyporesponsive to in vitro T-cell receptor (TCR) stimulation as well as 

suppress proliferation and effector functions of CD4+CD25- cells by inhibiting their 

IL-2 and IFN-γ production in in vitro co-cultures of Tregs and CD4+CD25- (Ng et al. 
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2001; Baecher-Allan et al. 2001; Hori et al. 2003; Fontenot et al. 2003). Tregs can be 

driven to expand after in vitro stimulation in the presence of IL-2 and still maintain 

their suppressive activity (Ng et al. 2001). Furthermore, CD4+CD25- cells can be 

induced in vitro to become Tregs (Hori et al. 2003; Roncador et al. 2005). IL-2 

signalling through IL-2 receptor signalling is essential for maintenance of T cell 

homeostasis as demonstrated that mice deficient for IL-2 develop abnormal 

proliferation of lymphocyte and autoimmune manifestations (Sadlack et al. 1993; 

Schorle et al. 1991). Similarly, IL-2 signalling through IL-2 receptor alpha chain, 

CD25 ensures sustenance of sufficient Treg cell population necessary for maintenance 

of Treg homeostasis (Fontenot et al. 2005; Burchill et al. 2007). 

 

1.4.1. Regulatory CD4 T cells during HIV or chronic Helminth 

infections 
 

It is unclear whether the impact of Tregs in the context of HIV infection is 

beneficial or detrimental. FoxP3 expressing T cells tend to accumulate in lymphoid 

tissues of progressive HIV positive individuals (Nilsson et al. 2006; Andersson et al. 

2005). On the other hand, frequency of CD25+FoxP3+CD4 T cells has been seen to 

be elevated in the periphery of individuals with chronic untreated HIV infection while 

the absolute count of these cells decline in the periphery (Angin et al. 2012; Presicce 

et al. 2011) and gut mucosa (Angin et al. 2012), where CD4 T cell depletion by HIV 

mostly occurs (Brenchley et al. 2004). Some scholars have argued that elevation of 

Tregs could either limit HIV replication by lowering HIV associated general immune 

activation (Card et al. 2009; Eggena et al. 2005) while others suggested that Tregs 

fuel HIV replication and disease progression by interfering with the ability of the 

HIV-specific immune cells to control HIV replication (Aandahl et al. 2004).  

 

Circulating CD4+CD25+ Tregs of individuals with chronic HIV infection 

have been shown to suppress production of anti-viral IFN-γ and TNFα cytokines in 

HIV-specific CD8 and CD4 T cells in vitro (Aandahl et al. 2004). Furthermore, 

suppression of HIV Gag-specific cytolytic responses from CD8-CD25+ PBMCs has 

also been demonstrated in vitro (Kinter et al. 2007). Recently, Tregs have been 

reported to beneficially control HIV replication in conventional T cells in vitro 
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(Moreno-Fernandez et al. 2011). On the other hand, increased Tregs accumulation in 

tissues of HIV infected individuals is associated with disease progression (Cao et al. 

2009; Suchard et al. 2010). 

 

As mentioned above, CD4 TH2 responses accompanied by regulatory 

mechanisms control helminth infections. Infection of mice with S.mansoni is 

associated with increased level of CD4+FoxP3+ Tregs and TGF-β production as well 

as regulation of TH2 pathological responses caused by S.mansoni (Turner et al. 2011). 

High frequency of CD4+CD25+ Tregs in relation to S. mansoni (Watanabe et al. 

2007) and Hookworm (Ricci et al. 2011) infections is also observed in humans which 

is reduced by almost 2-fold after treatment with praziquantel (Watanabe et al. 2007). 

 

Although high levels of Tregs have been reported in either HIV or helminth 

infection alone, Tregs in the context of HIV-worm co-infection have not been studied. 

Because worm infections overlap with HIV infection in areas where both infections 

are prevalent, quantity of Tregs in co-infected individuals could have an impact on the 

course of HIV progression. It is thus important to determine the levels of Tregs in co-

infected individuals and the effect of worm treatment in HIV disease progression.  

 

1.4.2. Regulatory CD4 T cells as potential targets for HIV 

replication 
 

 HIV predominantly infects memory CD4 T cells (Schnittman et al. 1990; 

Brenchley et al. 2004; Dai et al. 2009) and its entry and transmission is linked to viral 

CCR5 tropism (Moore et al. 2004; Sattentau et al. 1988; Deng et al. 1996; Liu et al. 

1996). It is also well established that CD4 T cell proliferation efficiently supports 

productive HIV infection in vitro (Chou et al. 1997; Zack et al. 1990). Particularly, 

IL-2 signaling which is required for antigen-specific T cell proliferation and 

differentiation (Chou et al. 1997), supports productive HIV infection and replication 

within CD4 T cells in vitro (Finberg et al. 1991; Ramilo et al. 1993; Chou et al. 1997; 

Goletti et al. 1996; Geldmacher et al. 2010). Moreover, expression of the IL2 receptor 

alpha chain (CD25) defines a CD4 T cell population that efficiently supports 

productive HIV infection in lymphoid tissue explants (Biancotto et al. 2008).  Tregs 
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also express a higher proportion of HIV main coreceptor-CCR5 compared to memory 

CD4 T cells in vivo and their susceptibility to HIV infection has been demonstrated in 

vitro (Oswald-Richter et al. 2004). Furthermore, studies on homeostasis and 

differentiation status of Tregs have shown that > 80% of circulating Tregs in adults 

express the memory marker CD45RO (Booth et al. 2010; Antons et al. 2008) and that 

high frequencies of these memory Tregs (10-20%) are Ki67 positive and thus are 

actively cycling (Booth et al. 2010). Indeed the in vivo doubling time of memory T 

regs is only 8 days and thus 3-fold and 25-fold reduced to memory and naïve CD4 T 

cells, respectively (Vukmanovic-stejic et al. 2006).  

 

 The highly proliferative nature and high turn over of Tregs and the proposed 

mechanism of constant homeostatic replenishment of this cell subset by peripheral 

memory CD4 T cells and during antigen-specific CD4 T cell responses (Vukmanovic-

Stejic et al. 2008; Vukmanovic-stejic et al. 2006) support the hypothesis that 

CD25+FoxP3+ CD4 T cells constitute a CD4 T cell subset that is highly susceptible 

to productive HIV infection in vivo and contribute to plasma viremia despite their 

relatively low frequencies. 

 

Since helminth immunity is accompanied by the elevation of regulatory 

mechanisms, helminth induced Tregs are potential targets for HIV acquisition. 

Importantly, Treg infection by HIV could contribute to HIV disease progression in 

HIV-helminth co-infection. Hence, there is a need to further study and compare the 

expression of CCR5 on Tregs of HIV and worm (co)infected individuals and their 

susceptibility to HIV infection in vivo. 

 

1.5. T cell activation  

1.5.1. T cell activation and HIV disease progression  
 

Untreated HIV infection leads to Acquired Immunodeficiency Syndrome 

(AIDS); a disease characterized by the failure of the immune system to control 

diverse opportunistic infections brought on by the progressive loss of CD4 T cells. 

People with chronic HIV infection display persistent immune activation (Mahalingam 
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et al. 1995; Sousa et al. 2002; Ascher & Sheppard 1988) which strongly predicts the 

decline of CD4 T cells and hence progression to AIDS ( Brenchley et al., 2004; 

Hazenberg et al., 2003). Different activation markers on/in T cells predict the rate of 

HIV disease progression independent of viral load (Giorgi et al. 1999; Giorgi et al. 

2002; Hazenberg et al. 2000; Hazenberg et al. 2003; Hunt et al. 2003; Liu et al. 1997; 

Sandler et al. 2011; Levacher et al. 1992). Most commonly studied are cell surface 

markers of activation, such as high levels of CD38 expression on CD8 T cells and the 

frequency of CD38+/HLA-DR+ co-expressing CD8 T cells (Giorgi et al. 1999; 

Levacher et al. 1992; Liu et al. 1997). Other activation markers include the HIV co-

receptor CCR5 (Portales et al. 2012) and also a cell cycle marker Ki67 (Sachsenberg 

et al. 1998). Indeed, loss of CD4 T cells in chronic HIV infection is directly linked to 

an increase in proportion of cycling CD4 T cells (Sousa et al. 2002) for replenishment 

of the CD4 T cell pool. This high T cell turnover of CD4 T cells facilitates the 

infection of these cells by providing targets for HIV (Biancotto et al. 2008; Stevenson 

et al. 1990).  

 

 The etiology of systemic immune activation during HIV infection is not clear 

and most likely multi-factorial. Factors potentially contributing to activation include: 

persistent antigen-specific stimulation of T cells specific for HIV and other persistent 

pathogens, such as HHVs (Ascher & Sheppard 1988; Giorgi et al. 1999), translocation 

of microbes and microbial compounds, such as Lipopolysaccharide (LPS), that 

activate PAMP-receptors (Brenchley et al. 2006), chronically elevated levels of Type 

1 Interferons (Bosinger et al. 2009; Jacquelin et al. 2009; Manches & Bhardwaj 2009) 

and probably helminth co-infections.  

 

Indeed, increased systemic activation in CD8 (Kassu et al. 2003) and/or CD4 

T cells (Eggena et al. 2005; Mkhize-Kwitshana et al. 2011) has been observed in HIV 

positive individuals co-infected with helminth and other pathogens. Moreover, 

increased immune activation in HIV-Helminth co-infection correlates with 

progression to AIDS as indicated by increased plasma HIV loads (Mkhize-Kwitshana 

et al. 2011; Eggena et al. 2005) and CD4 T cell decline (Eggena et al. 2005). 

However, the contribution of helminth infections in increasing systemic T cell 

activation during HIV-helminth co-infection is unclear due to a lack of well-

controlled longitudinal studies.  Treatment of helminth infections in co-infected 
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individuals has been shown to be insignificant in reducing systemic T cell activation 

(Kassu et al. 2003). Secor et al. also reported a decline in the density and frequency of 

CCR5 expression on CD4 T (and monocytes) cells after treatment of schistosome 

infection with albendazole but did not differentiate between HIV uninfected and 

infected individuals (Secor et al. 2003), limiting the interpretation of their results.  

 

Furthermore, in HIV infected people, the effect of treatment for helminths on 

improving clinical HIV indicators is controversial. Although a positive influence of 

helminth treatment on CD4 T cells and plasma viral load decline has been reported 

(Kallestrup et al. 2005; Walson et al. 2008), some studies found no association 

(Brown et al. 2004) or a negative relation (Brown et al. 2005). Hence, factors 

associated with immune modulation by helminth (co)infections and the impact of 

treatment need to be investigated further. If anti-helminthic treatment does indeed 

reduce HIV progression, it would be a cost effective alternative to reduce HIV 

progression. 

 

1.5.2. T cell activation and Susceptibility to HIV 
 

In 1995, Bentwich et al. proposed that systemic immune activation associated 

with chronic helminth infection may be the driving force of HIV transmission in 

Africa (Bentwich et al. 1995) as such infections are common in Africa (reviewed in 

(Hotez et al. 2007)). Since then, several studies have linked systemic immune 

activation in African populations to helminth infection (Kalinkovich et al. 1998; 

Kalinkovich et al. 2001; Secor et al. 2003). A series of such studies was conducted in 

Israel with newly arrived Ethiopian migrants who were characterized by a high 

prevalence of helminth infections such as Schistosomes, Hookworm, A.lumbricoides 

or T.trichiura. Compared to Ethiopian migrants that had stayed in Israel for longer 

periods and had received standard anti-helminthic treatment upon arrival, HLA-DR 

expression on CD4 and CD8 T cells and lymphocyte apoptosis, was substantially 

higher in the new arrivals (Kalinkovich et al. 1998). Also, PBMCs of these 

immigrants were highly susceptible to in vitro infection with HIV, which correlated 

with the state of immune activation (Shapira-Nahor et al. 1998). Within a similar 

study population, the same group also reported higher CCR5 and CXCR4 expression 
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levels in Ethiopians, regardless of the length of their residence and thus also after anti-

helminthic treatment (Kalinkovich et al. 2001). Contrary, a more recent study 

observed no changes in the T cell immune activation profile of HIV negative subjects 

between helminth infected with T.trichiura and/or A. lumbricoides and non-helminth 

infected groups except for a 2-fold increased frequency of CCR5 expression on CD4 

T cells in helminth infected subjects (Mkhize-Kwitshana et al. 2011). 

 

Low systemic immune activation is a correlate of protection against HIV 

infection (Card et al. 2009; Koning et al. 2005). This is demonstrated in recent human 

studies  reporting that low immune activation in highly exposed HIV uninfected 

individuals contributes to their resistance to HIV infection (Koning et al. 2005; 

Bégaud et al. 2006). Koning et al. extensively showed that the blood of high risk 

seronegative men from the Amsterdam cohort had lower frequencies of co-expression 

of HLA-DR and CD38 on CD4 T cells, low cycling cells on T cells as defined by the 

expression of Ki67 nuclear antigen and low proportion of memory CD4 T cells 

expressing CCR5 in comparison to men who were seronegative at the time of analysis 

but later on became HIV positive (Koning et al. 2005). Similarly, Begaud et al. 

observed significantly lower expression of HLA-DR and CCR5 on CD4 T cells in 

exposed seronegative heterosexuals from a Central African cohort (Bégaud et al. 

2006), suggesting a role of CD4 T cell immune activation in HIV susceptibility. 

 

While these studies support a link between systemic immune activation and HIV 

susceptibility, lack of well-controlled longitudinal studies that clearly define helminth 

species-specific association markers of immune activation before and after treatment 

prohibits definite conclusion. It is not entirely clear, whether helminths are primarily a 

cause of systemic T cell activation or whether different helminths equally associate 

with it in populations from endemic areas of Africa. The present study therefore 

aimed to investigate the effect of infections with different helminth species and 

helminth eradication on the profile of T-cell immune activation.   
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1.6. Study Objectives 

 This study aimed to provide important insights into the complicated 

immunological interactions between different helminth infections and HIV infection.  

 

The primary scientific objective was to study helminth associated modulation of 

immune system and the impact of deworming by assessing: 

a) the influence of helminth infections on the quantity of IFN-γ producing CD4 

and CD8 T cells specific for other pathogens. 

b) whether helminth infections are associated with increased  frequency and 

absolute numbers of different T cell subsets including regulatory 

(CD25+FoxP3+) CD4 T cells  

c) whether helminth infections are associated with increased markers of T cell 

activation (HLA-DR, CD38) and HIV co-receptor (CCR5) 

 

The secondary scientific objective was to study HIV infection rate of CD25+FoxP3+ 

CD4 T cells in comparison to other T-cells subsets ex vivo. 
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2. Materials and Methods 

2.1. Study volunteers and Blood Processing 
 

381 adult (18-50years) volunteers from 9 geographically distinct areas within 

the Mbeya region in South West Tanzania were enrolled into the 

Worm_HIV_Interaction_Study (WHIS) prospective cohort. Blood, urine and stool 

specimens were collected from each participant at baseline (W0), during the follow up 

at 1-3 months (W1) and one year (W3) after helminth treatment with Albendazole and 

Praziquantel. Stool and urine specimens were used for diagnosis of infections by 5 

different helminth species (T.trichiura, S.mansoni, S.haematobium, A.lumbricoides 

and Hookworm species). Fresh stool specimens were used for Kato-Katz diagnosis of 

geohelminth (T.trichiura, A.lumbricoides, Hookworms) and S. mansoni infections. 

Briefly, two Kato-Katz thick smears (41.7 mg each) were prepared from each fresh 

stool. Kato-Katz slides were microscopically examined for helminth eggs by 

experienced technicians within one hour (for hookworm eggs) and within two days 

(for other helminth eggs) after slide preparation. S.haemotobium infection was  

diagnosed by microscopic examination of a filtered urine sample (20ml) for  S. 

haematobium eggs. Helminth infection was defined as the presence of at least one 

worm egg in the two examined samples. HIV status was determined using HIV 1/2 

STAT-PAK, (Chem-bio Diagnostics Systems) and positive results were confirmed 

using ELISA (Bio-Rad). Discrepancies between HIV 1/2 STAT-PAK and ELISA 

were resolved by Western Blot (MPD HIV Blot 2.2, MP Biomedicals).  HIV positive 

study volunteers on antiretroviral therapy were excluded from analysis unless 

otherwise stated. 40ml of venous blood were drawn from each participant using 

anticoagulant tubes (CPDA, EDTA; BD Vacutainer). Absolute CD4 T cell counts 

were determined at each time point from anti-coagulated whole blood using the BD 

Multitest IMK kit (BD) according to manufacturer Instructions. Complete blood count 

(CBC) was also performed on whole blood of all subjects in order to analyse the 

levels of eosinophils in the study groups at each time point.  Blood samples were 

processed within less than 6 hours of the blood draw at the NIMR-MMRC 

laboratories.   
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Frequencies of CD25+FoxP3+ CD4 T cells and surface CCR5 expression 

as well as frequencies of activation markers (HLA-DR, CD38 and CCR5) on T 

cells were determined on fresh anti-coagulated whole blood at each of the three 

time points. Also, Peripheral Blood Mononuclear Cells (PBMCs) isolated from 

fresh anti-coagulated whole blood at each of the three time points as described 

below. PBMCs were isolated using the Ficoll centrifugation method and Leucosep 

Tubes (Greiner Bio one) according to standard protocols from manufacturer 

(Greiner Bio one). Sufficient amount of PBMCs were used for characterization of 

pathogen-specific T-cell responses targeting HIV, MTB and Cytomegalovirus 

(CMV) among others by using Inteferon-γ (INF-γ) ELISPOT; and the rest of the 

PBMC were cryo-preserved for further analysis. 

 

2.2. Quantification of IFN-γ secreting pathogen-specific T cell responses 

2.2.1. Antigens 
 

In vitro PBMC stimulation was performed with different antigens described 

herein. A pool of 15 HIV frequently recognized peptides representing Gag and Nef 

from isolates of subtype A, C and D (Elephants & Peptides, Germany), which have 

been previously shown to detect IFN-γ secreting HIV-specific T cell responses by 

94% (Geldmacher et al. 2007) was used for PBMC stimulation at a concentration of 

2μg/peptide/ml. Also p24 Gag TL9 peptide (Elephants & Peptides, Germany), which 

is presented by HLA-1 alelles B42 and B81 and frequently recognized by HIV 

infected individuals from Mbeya region (Geldmacher et al. 2007; Geldmacher et al. 

2009) was used to screen HIV positive volunteers for IFN-γ secreting HIV-specific 

CD8 T cells targeting HIV TL9 Gag epitope at the concentration of 2μg/ml (Table 2- 

1 and Table 2- 2). 

 

For detection of MTB-specific T cell responses in relation to HIV and 

helminths, Early Secreted Antigenic Target 6 (ESAT6) and Culture Filtrate Protein 10 

(CFP10) (Lion Bioscience) and Purified Protein Derivative (PPD) tuberculin (Staten 

Serum Institute, Denmark) antigens were used. Also, CMV, Influenza, HSV-1, EBV 
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(all from New England Peptides) and T.gondii (Virion) were used for in vitro cell 

stimulation at different concentrations described in Table 2- 1. 

 

Table 2- 1. Antigens used in the WHIS study 

Pathogen Antigen Nature of Antigen Concentration used 

HIV 

FRP-HIV* Pool of 15mer peptides 
2μg/peptide/ml 

TPQDLNTML (TL9) Single optimal epitope 
2μg/ml 

MTB ESAT6 & CFP10 
Pool of recombinant 

proteins 

20μg/ml 

Mycobacteria Tuberculin (PPD) Purified Protein Derivative 
10μg/ml 

CMV 

CMV Whole inactivated 20μg/ml 

TPRTGGGAM 

(TM10) 
Single optimal epitope 

2μg/ml 

Influenza-A Influenza-A virus Whole inactivated 

20μg/ml 

HSV-1 HSV-1 Whole inactivated 20μg/ml 

EBV EBV Whole inactivated 20μg/ml 

T.gondii T.gondii Whole inactivated 20μg/ml 

*Detailed information of HIV-Frequently Recognised Peptides (HIV-FRP) described in Table 2- 2. 

 

Table 2- 2. Description of HIV-Frequently Recognized Peptides (HIV-FRP) used in the WHIS 

study 

Peptide 

# 

Protein Subtype Sequence Isolate 

7 Gag C GKKHYMLKHIVWASR Du422 

20 Gag C SLYNTVATLYCVHEK Du422 
35 Gag C GQMVHQAISPRTLNA Du422 
36 Gag D QMVHQSLSPRTLNAW 98UG57143 

45 Gag C TPQDLNTMLNTVGGH Du422 

45 Gag A  TPQDLNMMLNIVGGH 90CF402 

50 Gag C MLKDTINEEAAEWDR Du422 
53 Gag C WDRVHPVHAGPIAPG Du422 
73 Gag C PFRDYVDRFFKTLRA Du422 
76 Gag C LRAEQATQEVKNWMT Du422 
83 Gag C TILRALGPGATLEEM Du422 
89 Gag S VGGPSHKARVLAEAM  

18 Nef C PVRPQVPLRPMTYK Du151 

21 Nef C YKAAFDLSFFLKEK Du151 
29 Nef C WVYHTQGYFPDWQN Du151 
33 Nef C PGPGVRYPLTFGWC Du151 
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2.2.2. IFN-γ ELISpot assays 
 

Freshly isolated PBMCs from 171 out of 381 adult volunteers who were 

enrolled into the WHIS cohort were screened for different pathogen-specific T cell 

responses by in vitro overnight stimulation of 200,000 PBMCs/well with different 

antigens described above and in Table 2- 1 and Table 2- 2. Assays were performed as 

previously described elsewhere (Mashishi & Gray 2002) with few modifications. 

Briefly; Polyvinylidene difluoride plates (Millipore) were pre-wetted 4 times with 

200μl of sterile PBS and coated with 50μl anti human-IFN-γ monoclonal antibody 1-

D1k (Mabtech, Sweden) at a concentration of 5μg/ml in PBS overnight at 4°C.  The 

plates were then manually washed 4 times with 200μl sterile PBS followed by 

blocking for a minimum of 30 minutes with R10 medium (Gibco, Invitrogen). 

 

Freshly isolated PBMCs were re-suspended at 4 x 10
6
 cells/ mL with R10 and 

200,000 cells (=50μl) were then added per well. Thereafter, pre-aliquoted peptides 

and proteins were added to the wells. Peptides were added at a concentration of 

2μg/ml while proteins (with the exception of PPD) were added at a final concentration 

of 20μg/ml in 50μl of R10. PPD was used at a final concentration of 10μg/ml in 50μl 

of R10. Then plates were incubated at 37°C in 4.5% CO2 for 20 hours. After 20 

hours, plates were washed 5 times with 200 μl of PBS using an automated plate 

washer (Bio Tek), followed by an incubation with 100μl biotinylated anti-IFN-γ 

monoclonal 7-b6-1 antibody (Mabtech, Sweden) at a concentration of 1μg/ml in 0.5% 

FBS in PBS for 2 hours at room temperature in the dark. After that, 5 automated 

washes with 200 μl of PBS followed by one hour incubation with 100μl streptavidin - 

alkaline phosphatise conjugate (Mabtech, Sweden) at a concentration of 1μg/ml in 

0.5% FBS in PBS were performed. Plates were automatically washed 5 times with 

PBS; finally plates were developed by adding 100μl BCIP/NBT substrate solution 

(Thermo Scientific).  After 10 minutes, the reaction was stopped by rinsing the plates 

three times with de-ionised water. On the following day, the blue colored spots 

formed by IFN-γ -secreting cells were counted with an automated CTL ImmunoSpot 

plate reader (Cellular Technology Limited). 

 

PHA (Sigma) at a concentration of 40μg/ml in R10 served as a positive control 

while wells with only PBMCs or R10 served as negative controls. Responses that 
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were three times the negative control and > 25 SFC/ million PBMC were considered 

as positive.  Assay results were considered invalid/failed and hence excluded if the 

negative control wells had > 50 SFC/ million PBMC or if the positive control wells 

did not have > 1000 SFC/ million PBMC. 

 

2.3. Characterization of CD25+FoxP3+CD4 T cells in fresh whole blood 
 

Fresh anti-coagulated whole blood samples were incubated for 30 minutes using 

the following fluorochrome labelled monoclonal antibodies for cell surface staining 

(mABs); CD3-Pac Blue (BD), CD4 Per-CP Cy5.5 (eBioscience), CD25 PeCy7 

(eBioscience), and CCR5 APC-Cy7 (BD). Red blood cells in samples were then lysed 

by incubating and washing samples twice for 10minutes with 1X cell lysis solution 

(BD).  Cells were thereafter stained intracellularly with FoxP3 Alexa Fluor 647 

(eBioscience) according to manufacturer’s instructions. Briefly, intracellular staining 

with FoxP3 included: further permeabilization and fixation of cells with Fix/Perm 

solution for 40 minutes at 4°C, washing with PermWash buffer and intracellular 

staining with FoxP3 Alexa Fluor 647 (all from eBioscience) for 30 minutes at 4°C. 

Stained cells were then washed using PermWash buffer and finally fixed with 2% 

paraformaldehyde prior to acquisition. Acquisition was performed on FACS CANTO 

II (BD). Compensation was conducted with antibody capture beads (BD) stained 

separately with the individual antibodies used in the test samples. Flow cytometry 

data was analysed using BD FACSDiva software (version 6.1.3). The absolute Treg 

numbers in the peripheral blood was calculated from the total CD4 T cell counts and 

the percentage Tregs. 

 

2.4. Quantification of cell associated HIV gag viral DNA from sorted 

CD45RO+CD25+FoxP3+ and CD45RO+CD25-FoxP3- CD4 T cells 

2.4.1. Cell sorting 
 

Cryopreserved PBMCs were thawed and washed twice in pre-warmed (37°C) 

complete media (RPMI plus 10% heat inactivated Fetal Bovine Serum (GIBCO) that 

was supplemented with Benzonase (5U/ml, Novagen). Surface staining was 
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performed with CD3-Pacific Blue, CD4 Per-CP Cy5.5, CD25 PeCy7 and CD45RO 

PE (BD) for 30 minutes in the dark at RT; intracellular staining was performed with 

FoxP3 Alexa Fluor 647 (eBioscience) and HELIOS FITC (BioLegend) as described 

above. Cell sorts were performed on a FACSAria cell sorter (BD) after gating on 

CD3+CD4+CD45RO+ cells into Treg populations (CD25+FoxP3+HELIOS+ and 

CD25+FoxP3+HELIOS-) and memory populations (CD25-FoxP3-HELIOS+ and 

CD25-FoxP3-HELIOS-) as shown in Figure 3- 15A. Between 293 and 750,000 fixed 

CD4 T cells from each of the four different populations were collected, depending on 

the number of PBMCs available from each individual. Cells were collected in FACS 

buffer consisting of PBS mixed with 0.5% Bovine Serum Albumin (BSA, Sigma), 

2mM EDTA and 0.2% Sodium Azide at pH 7.45. Median of fixed cell count number 

collected for each population were as follows: CD25+FoxP3+HELIOS+ (Median: 

9017 and IQR: 3931-14412); CD25+FoxP3+HELIOS- (Median: 4381 and IQR: 

1579-9799); CD25-FoxP3-HELIOS+ (Median: 2646 and IQR: 1336-5644) and 

CD25-FoxP3-HELIOS- (Median: 185000 and IQR: 79000-315000). Sorted Cells 

were then centrifuged at 13000rpm for 3 minutes and the supernatant removed. Cell 

pellet was stored at −80°C until further analysis. 

 

2.4.2. Quantification of cell associated HIV gag viral DNA 

Quantification of cell associated HIV gag viral DNA was performed as 

previously described (Douek et al. 2002) with minor modifications. Sorted CD4 T cell 

subsets from 22 HIV+ subjects were lysed by adding 30 µl  (0.1 mg/ml) of proteinase 

K (Roche) containing 10mM, pH8 Tris-Cl (Sigma) for 1 h at 56°C followed by 

Proteinase K inactivation step for 10 min at 95°C. Cell lysates were then used to 

quantify cell associated HIV DNA quantified by qPCR as previously described with 

some modifications (Geldmacher et al. 2010). Briefly, Gags primers and probe used 

were as follows: 783gag, forward, 5′-GAGAGAGATGGGTGCGAGAGCGTC-3′ 

(Tm>60), 895gag, reverse, 5′-CTKTCCAGCTCCCTGCTTGCCCA-3′ (Tm>60); 

FAM-labeled probe 844gagPr, 5′-ATTHGBTTAAGGCCAGGGGGA-

ARGAAAMAAT-3′ and had been designed to optimally cover subtypes A and C 

prevalent in Mbeya Region (Geldmacher et al. 2010). To quantify the cell number in 

each reaction mix, copy number of the human prion gene (which is a single copy 
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gene) was also assessed by qPCR. Prion primers and probe sequences were as 

follows: Prion forward: 5´TGC TGG GAA GTG CCA TGA G; Prion reverse: 5´CGG 

TGC ATG TTT TCA CGA TAG; probe 5´FAM-CAT CAT ACA TTT CGG CAG 

TGA CTA TGA GGA CC TAMRA (Hoffmann et al. 2010). 5 µl of lysate was used 

in a total reaction volume of 25 µl containing 0.8 µM Gag primers or 0.4 µM Prion 

primers, 0.4 µM probe (all from ThermoFisher), a 0.2 mM concentration of each 

deoxynucleoside triphosphate (Applied Biosystems), 3.5 mM MgCl2 and 0.65 U 

platinum Taq in the supplied buffer (Invitrogen). Standard curves were generated 

using HIV-1 gag gene (provided by Brenna Hill, Vaccine Research Center, NIH, 

Bethesda) and prion gene (provided by Dieter Hoffmann, Institute of Virology, 

Technische Universität München) encoding plasmids. Real time PCR was performed 

in a Bio-Rad cycler CFX96 (Bio-Rad): 5-min at 95°C, followed by 45 cycles (15 s at 

95°C and 1 min at 60°C). Importantly, to assure comparability of the results, cell-

associated gag DNA from the 4 different memory CD4 T cell subsets, which were 

sorted from the same patient specimen, were quantified simultaneously.  

Cell associated Gag DNA in memory Tregs and CD25-FoxP3- memory CD4 T 

cells independent of Helios Expression was calculated as follows: ∑Gag DNA load 

(Helios+)+(Helios-) divided by ∑sorted cells (Helios+)+(Helios-). 

 

2.5. Characterization of maturation and activation markers on CD4 

and CD8 T cells in fresh whole blood 

Fresh anti-coagulated whole blood samples were incubated for 10 minutes with 

CCR5 PECy7 followed by 30 minutes incubation using the following fluorochrome 

labelled monoclonal antibodies for cell surface staining (mABs); CD3-Pacific Blue 

(BD), CD4 Per-CP Cy5.5 (eBioscience), CD8 V500 or CD8 Amcyan, CD27 APC-

H7, CD45RO APC, HLA-DR FITC and CD38 PE (all from BD). Stained cells were 

finally fixed with 2% paraformaldehyde prior to acquisition. Acquisition was 

performed on FACS CANTO II (BD). Compensation was conducted with antibody 

capture beads (BD) stained separately with the individual antibodies used in the test 

samples. Flow cytometry data was analysed using FlowJo (version 9.5.3; Tree Star 

Inc). Depending on the expression of CD27 and CD45RO markers on CD4 and CD8 
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T cells, T cell subsets were defined as follows: naïve (CD27+CD45RO-), “central-

like” memory (CD27+CD45RO+), “effector-like” memory (CD27-CD45RO+) and 

“terminally differentiated” (CD27-CD45RO-) CD4 and CD8 T cells. In addition, total 

memory CD4 T cells were defined as the sum of central memory, effector memory 

and terminally differentiating CD4 T cells. 

 

2.6. Statistical analysis. 

Data analyses were performed using Prism version 4.0 software (GraphPad, Inc.). 

Comparisons of two groups were performed using the Mann-Whitney test. 

Comparisons of paired groups were performed using the Wilcoxon matched pairs test. 

Comparisons of study groups with respect to their responsiveness towards different 

antigens were performed using Fisher’s exact test. For association analyses, Spearman 

rank correlation test or linear regression analysis was used. Differences were 

considered significant at P values of <0.05. Tests used for statistical analysis are 

described in the figure legends. 
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3. Results 

3.1. Characterization of pathogen-specific T cell responses during 

infection with HIV-1, Helminth or HIV-Helminth co-infection 
 

Helminth infections are controlled by the induction of modified CD4 T helper 2 

(TH2) responses associated with regulatory mechanisms (reviewed in (Maizels & 

Yazdanbakhsh 2003)). However, in shifting the response towards TH2 (Cooper et al. 

2000; Turner et al. 2011), helminths may modify TH1 cell responses to chronic 

infections such as HIV and TB and increase susceptibility and/or progression to such 

infections (Borkow et al. 2001; Resende Co et al. 2007). Modulation of specific T cell 

responses to different pathogens by helminth infections has not been fully explored. 

This study therefore examined the immune modulation of IFN-γ secreting specific T 

cell responses to HIV, MTB, Influenza, T.gondii and herpes viruses in relation to HIV 

and helminths.   

 

3.1.1. Baseline characteristics of WHIS study participants 
 

To determine the immune modulation of different pathogen-specific T cells, 

IFN-γ secretion in PBMCs of 171 out of 381 adult volunteers from the WHIS 

cohort was examined after in vitro overnight stimulation with different antigens 

described above in Materials and Methods. Baseline characteristics of study 

individuals analysed for different pathogen specific T cell responses are shown in 

Table 3- 1. 
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Table 3- 1. Baseline characteristics of study individuals analysed for pathogen-specific T cell responses (N=171) 

*Values are given in median and (Inter quartile Range-IQR) 

 
HIV negative HIV positive 

 
No 

Worms 
All 

Worms 
T. 

trichiura 
S.haema
tobium 

S. 
mansoni 

A. 
lumbric
oides 

Hookworm 
No 

Worms 
All 

Worms 
T. 

trichiura 
S.haema
tobium 

S. 
mansoni 

A. 
lumbrico

ides 
Hookworm 

Male:Female 7:8 47:62 11:16 2:1 12:16 6:12 16:16 5:10 12:20 2:4 - 0:4 4:2 6:6 

Age (years)* 
31(20.4

-42.3 

31.6 
(22.4-
41.1) 

31.6 
(22.5-
43.6) 

28.1 
(18-
34.9) 

27.1 
(21.4-
33.65) 

32.1 
(22.3-
37.85) 

37.95 
(27.2-
47.95) 

37.3 
(29.3-
45.6) 

35.7 
(29.6-
42.35) 

37.6 
(35.05-
53.3) 

- 
37.4 

(27.95-
44.3) 

31.95 
(26.65-
46.1) 

33.1 (27.6-
40.9) 

Worm Load 
(egg count)*  

108 
(34.5-
303) 

72 (36-
240) 

1 (1-2) 
72 (27-

174) 

1127 
(213-
2806) 

120 (37.5-
285)  

75 (28.5-
238.5) 

42 (15-
84) 

- 
22.5 (18-

126) 

258 
(114-
1170) 

78 (42-243) 

Single:multipl
e worm 

infection 
 

69:40 12:15 1:2 26:2 12:6 17:15 
 

19:13 1:5 - 3:1 5:1 6:6 

CD4 count 
(cells/ul)* 

832.9 
(637-
1082) 

922.3 
(748.2-
1141) 

977.1 
(752.7-
1201) 

1295 
(1146-
1389) 

940.5 
(759.4-
1159) 

945.9 
(836.2-
1108) 

829.7 
(636.9-
939.3) 

400.2 
(290.6-
689.2) 

507.4 
(274.4-
723.1) 

383.4 
(126.7-
1033) 

- 
536.1 

(255.4-
805.3) 

528.8 
(286.1-
604.9) 

601.9 
(431.6-
955.7) 

plasma VL 
(copies/ml)*        

92150 

(11530-
265500) 

86550 

(2815-
317500) 

14890 

(6615-
48250) 

- 

59950 

(9390-
215000) 

166500 

(22345-
405500) 

8882 

(548.5-
112950) 
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3.1.2. Influence of HIV and Helminth infection on HIV-specific T cells 

3.1.2.1. Cross-sectional analysis 
 

 To determine whether different helminth infections alter HIV specific T cell 

responses, we analysed the quantity of IFN-γ secreting T-cells specific for HIV in 

HIV positive individuals with or without helminth co-infection. The frequency of 

responders to HIV antigens and their median of detectable HIV-specific T cells in 

HIV positive subjects with or without helminth co-infection is shown in Table 3- 2. 

  

Table 3- 2. Frequency of HIV positive subjects responding to HIV antigens 

Antigen 

Frequency of responders (%), Median, IQR (SFC/million PBMC) 

All HIV+ study subjects 

(N=48) 
HIV+W- (N=15) HIV+W+ (N=33) 

HIV-

FRP 

 

95.8%, Median: 1785, IQR: 

643.8-4121 

100%, Median: 1148, IQR: 

455-4103 

93.9%, Median: 2550, IQR: 

705-4128 

HIV-

TL9 

27.1%, Median: 290, IQR: 

117.5-3175 

20%, Median: 105, R: 77.5-

222.5 

30.3%, Median: 1311, IQR: 

160-3871 

 

 Almost all (96%, N=48) HIV+ study volunteers responded to a pool of HIV-

FRP antigen as measured by IFN-γ release ELISpot assay (Table 3- 2).  Both HIV 

positive groups with or without helminth co-infection had similar frequencies of 

responders. Next, the magnitude of HIV-specific T cell responses against HIV-FRP 

was determined. No significant differences were observed in the quantity of HIV-FRP 

specific T cell responses between HIV positives with helminth co-infection (Median, 

1943 SFC/10
6
 PBMCs; IQR, 543.8-4121 SFC/10

6
 PBMCs and those without co-

infection (Median, 1148 SFC/10
6
 PBMCs; IQR, 455-4103 SFC/10

6
 PBMCs. 

P=0.5782. data not shown).  Even when co-infected subjects were stratified by the 

helminth species, there was no apparent association of any helminth specie with the 

quantity of HIV-FRP T cell responses. 

 27% of HIV positive subjects responded to HIV-TL9 epitope (Table 3- 2). 

Helminth infections had no association with frequencies of responses to TL9. There 

was no significant increase in the magnitude of detectable T cell responses to TL9 

between HIV-helminth co-infected TL9 responders (Median, 1311 SFC/10
6
 PBMCs; 
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IQR, 160-3871 SFC/10
6
 PBMCs) and responders with HIV infection alone (Median, 

105 SFC/10
6
 PBMCs; Range, 77.5-222.5 SFC/10

6
 PBMCs. P=0.1119. data not 

shown).  

 A linear relationship was observed especially between HIV-TL9-specific T cells 

and total number CD4 T cells (Figure 3- 1A-B). However, no correlation was 

observed between either HIV-TL9- or HIV-FRP-specific T cells and plasma viral 

loads (Figure 3- 1C-D). 
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Figure 3- 1:  Associations between HIV-specific T cell responses and HIV disease progression 

markers in HIV-1 infection. Shown is the linear regression analysis of CD4 T cell counts with either: 

(A) quantity of HIV TL9-specific T cells or (B) quantity of HIV FRP-specific T cells. Linear 

regression analysis between log of plasma viral loads and the quantity of either HIV TL9-specific T 

cells or HIV FRP-specific T cells is shown in (C) and (D) respectively. 

 

3.1.2.2. Effect of worm treatment with praziquantel and albendazole 

on HIV-specific T cells 
 

 To investigate whether worm treatment has any effect on the quantity of IFN-γ 

secreting HIV-specific T cell responses, PBMCs from HIV positive study volunteers 

stimulated in vitro with a pool of HIV-FRP or TL9 at baseline (W0), 3 months (W1) 
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and a year (W3) after treatment were compared. Only volunteers who had no 

detectable worms post infection were analysed. There were no significant changes in 

the quantity of HIV-FRP specific T cells of HIV co-infected individuals 1-3months 

after helminth treatment. However, there was a significant decrease of these cells a 

year after deworming when compared to the baseline (baseline median, 2248 SFU/10
6
 

PBMCs; one year after treatment median, 1674 SFU/10
6
 PBMCs. P=0.0406. Figure 

3- 2A).  

 There was no apparent influence of worm treatment on the quantities of TL9-

specific T cell responses observed in co-infected subjects1-3 months after treatment. 

However, a slight but non-significant decrease of HIV-TL9 specific T cells was 

observed in the study group a year after treatment (baseline median: 2469SFU/10
6
 

PBMCs, IQR: 210-4494 SFU/10
6
 PBMCs; one year after treatment median: 1041 

SFU/10
6
 PBMCs, IQR: 151.3- 3270SFU/10

6
 PBMCs.  P=0.0625. Figure 3- 2B). 

Taken together, these results suggest that helminths have no dramatic influence on 

IFN-γ release HIV-specific CD8 T cell responses.  
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Figure 3- 2: Effect of worm treatment on the quantity of HIV-specific T cells in the peripheral 

blood of HIV-Helminth co-infected volunteers. Comparison of SFC/106 PBMCs responding to a 

pool of HIV-FRP and HIV-TL9 peptides before (W0) and one year (W3) after helminth treatment is 

shown in (A) and (B) respectively. Statistical analysis was performed using Wilcoxon matched pairs 

test for comparison of pairs. 
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3.1.3. Influence of HIV and helminth infections on other pathogen-

specific T cells and effect worm treatment. 
 

  To determine  whether helminth infections reduce the level of pathogen-

specific T cell responses, defined by the capacity to secrete IFN-γ upon overnight in 

vitro restimulation, freshly isolated PBMC from WHIS study participants were 

restimulated with different pathogen-specific antigens at baseline (W0), 

approximately 3 months (W1) and a year (W3) after helminth treatment. Immune 

modulation of pathogen-specific T cell responses by HIV and helminths that were 

examined included specific immune responses against: MTB, CMV, INF-a, HSV, 

EBV and T.gondii. 

3.1.3.1. Mycobacterium tuberculosis (MTB)-specific T cell responses 
 

 For detection of MTB- specific T cell responses, cells from WHIS volunteers 

with no signs of active TB were stimulated with tuberculin (PPD) and a pool of 

ESAT6 and CFP10 antigens. ESAT6 and CFP10 antigens which are more specific in 

detection of MTB-specific responses (Sester et al. 2006; Ulrichs et al. 1998; Lalvani 

et al. 2001; Chapman et al. 2002), are recognized by >50% HIV negative while PPD-a 

non specific Mycobacterium antigen, is recognized by 70% of HIV negative and 

positive individuals from Mbeya-Tanzania (Geldmacher et al. 2008). 

PPD responses, which are typically CD4 T cell responses (Schuetz et al. 2012) 

were detected in 72% (N=171) of all HIV positive and HIV negative study volunteers 

(Table 3- 3). In line with previous findings (Geldmacher et al. 2008), HIV infection 

was associated with the decrease of responders to PPD by 46% (P<0.0001, Fisher’s 

exact test, Table 3- 3). Both HIV positive groups with or without worm co-infection 

were less responsive to PPD in comparison to HIV negative, Worm negative control 

group (P<0.0001 for HIV+W- and P=0.0034 for HIV+W+, Fisher’s exact test) with 

no significant influence of worm infection on these differences (P=0.11, Fisher’s 

exact test, Table 3- 3). Of note, all of HIV positive, S.mansoni co-infected individuals 

responded to PPD (N=4; Median=188.8, IQR=46.25-378.8) and the difference in 

frequency of responders between this group and the HIV control group was 

significant (P=0.009, Fisher’s exact test). However, the number of HIV+S.mansoni+ 

PPD responders was too few for a conclusive comparison. 
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Table 3- 3. Frequency of study subjects responding to Mycobacterium tuberculosis (MTB) 

antigens 

Antigen 

Frequency of responders (%), Median, IQR (SFC/million PBMC) 

All study 

subjects 

(N=171) 

HIV-

(all) 

(N=123) 

HIV+ 

(all) 

(N=48) 

HIV-W- 

(N=15) 

HIV-W+ 

(N=108) 

HIV+W- 

(N=15) 

HIV+W+ 

(N=33) 

PPD 

72.5%, 

Median: 
275, IQR: 
132.5- 630 

85.3%, 

Median: 
287.5, 

IQR: 
145-

697.5 

39.6%, 

Median: 
158.8, 

IQR: 
77.5-

337.5 

93.3%, 

Median: 
275, 

IQR: 
100-760 

84.3%, 

Median: 
306.3, 

IQR: 
145-695 

20%, 

Median: 
235, 

IQR: 
76.2-

2428 

48.5%, 

Median: 
158.8, 

IQR: 
77.5-

302.5 

ESAT6/CFP10 

37.4%, 

Median: 
160, IQR: 
55- 497.5 

39%, 

Median: 
160, 

IQR: 55-

557.5 

33.3%, 

Median: 
163.8, 

IQR: 60-

413.8 

60%, 

Median: 
130, 

IQR: 
57.5-

556.3 

36.1%, 

Median: 
173.8, 

IQR: 
48.7-

626.3 

33.3%, 

Median: 
172.5, 

IQR: 
56.2-

2373 

33.3%, 

Median: 
167.5, 

IQR: 
77.5-500 

 

 When the median magnitude of responses between all HIV positive volunteers 

(Median, 22.5 SFC/10
6
 PBMCs; IQR, 2.5- 118.8 SFC/10

6
 PBMCs) was compared 

with the HIV negative subjects (Median, 260 SFC/10
6
 PBMCs; IQR, 95-630 SFC/10

6
 

PBMCs), chronic HIV infection was associated with a median loss of PPD-specific 

CD4 T cells (P<0.0001, Figure 3- 3A). A similar loss was observed when comparing 

the median magnitude of responses of HIV negative, worm negative control subjects 

with either HIV infected only (Median, 10 SFC/10
6
 PBMCs; IQR, 2.5 - 57.5 SFC/10

6
 

PBMCs; P= 0.0004) or HIV positive, worm co-infected subjects (Median, 25 SFC/10
6
 

PBMCs; IQR, 6.25 -158.8 SFC/10
6
 PBMCs; P= 0.0001) with no apparent influence of 

worm infection (Figure 3- 3B).  

 No median differences in the quantities of PPD-specific CD4 T cell responses 

could be found between HIV-helminth+ subjects (Median, 258.8 SFC/10
6
 PBMCs; 

IQR, 95.0- 583.8 SFC/10
6
 PBMCs) and the control group (Median, 275.0 SFU/10

6
 

PBMCs; IQR, 100.0-760.0 SFU/10
6
 PBMCs. P=0.5965; Figure 3- 3B) even when the 

test group was stratified by the helminth species infected with. No linear correlation 

could be observed between PPD-specific CD4 T cells and total CD4 T cell count 

(Figure 3- 3C) or plasma viral loads (pVL). 
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Figure 3- 3: Chronic HIV-1 infection and not helminth infection is associated with reduction of 

MTB-specific TH1 cell responses in peripheral blood. Shown are the medians of SFC/106 PBMCs 

responding to PPD in study volunteers stratified by HIV (A-B) and helminth infection status (B). A 

linear regression analysis of SFC/106 PBMCs responding to PPD and CD4 T cell counts is shown in 

(C). Statistical analysis was performed using Mann-Whitney test when comparing groups.   

 

 No influence of helminth treatment was observed on quantities of IFN-γ 

secreting, PPD-specific T cells of helminth infected and co-infected individuals ~3 

months and a year post helminth treatment. A moderate increase of PPD-specific T 

cells was observed a year after helminth treatment of individuals infected with 

Hookworm from a median of 287.5 to 337.5 SFU/10
6
 PBMCs (P= 0.0457. Figure 3- 

4A). However, the statistical power of this observation was lost when analysed only 

detectable quantities of PPD-specific T cells (P=0.0894. Figure 3- 4B).  
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Figure 3- 4: Effect of worm treatment on the quantity of MTB-specific T cells in the peripheral 

blood of HIV negative, Hookworm infected volunteers. Comparison of SFC/106 PBMCs responding 

to PPD before (W0) and one year (W3) after helminth treatment for each HIV-Hookworm+ subject is 

shown in (A). Comparison of SFC/106 PBMCs of only PPD responders at W0 and W3 is shown in (B). 

Statistical analysis was performed using Wilcoxon matched pairs test for comparison of pairs. 

 

 Overall, only 37% of the all the study subjects responded to the pool of 

ESAT6/CFP10 antigens (Table 3- 3). Similar percentages of responders were 

observed between HIV+ and HIV- subjects with no differences in the median 

quantities of detectable ESAT6/CFP10-specific T cells. Similarly, no differences in 

the magnitude of detectable responses to ESAT6/CFP10 were found between HIV-

Worm+ and the control subjects even when stratified by their different helminth 

infection status. However, 1.7 fold more HIV negative controls responded to 

ESAT6/CFP-10 than worm infected subjects (Table 3- 3) to a non-significant level 

(P=0.0935, Fisher’s exact test). Helminth treatment was not associated with an 

increase in the quantities of IFN-γ producing ESAT6/CFP10-specific T cells of 

helminth infected and co-infected individuals 1-3 months and a year after treatment. 
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3.1.3.2. Human Herpes virus-specific T-cell responses: CMV, HSV-1 

and EBV 
 

 IFN-γ release by CMV-specific T cells  from WHIS study volunteers were 

detected by stimulating PBMCs in vitro with whole inactivated CMV and a 

CMV_CM10 single optimal epitope (Currier et al. 2002) presented by HLA-I allele 

B7 to CD8 T cells. Whole inactivated CMV is recognized by almost all HIV negative 

and HIV positive individuals in Mbeya-Tanzania (Schuetz et al. 2012) while 

CMV_CM10 peptide is recognized by  about  35% (Geldmacher, unpublished data). 

Similarly, almost all (98%) WHIS study volunteers responded to whole inactivated 

CMV while only 21% responded to CMV_CM10, with median detectable T cell 

response of 340 SFC/10
6
 PBMC (Table 3- 4). 

 

Table 3- 4. Frequency of study subjects responding to CMV, HSV-1 and EBV antigens 

 

 HIV infection was associated with a moderate decrease of the overall magnitude 

of whole inactivated CMV-specific T cell responses in HIV positive volunteers 

(Median, 423.8 SFC/10
6
 PBMCs; IQR, 115- 1431 SFC/10

6
 PBMCs)  when compared 

with the HIV negative subjects (Median, 767.5 SFC/10
6
 PBMCs; IQR, 310- 1978 

SFC/10
6
 PBMCs; P= 0.0419. Figure 3- 5A). There was no association of helminth 

infections on the quantities of IFN-γ secretion by CMV-specific T cells in helminth 

infected subjects with or without HIV co-infection.  Within HIV+ infected volunteers, 

Antigen 

Frequency of responders (%), Median, IQR (SFC/million PBMC) 

All study subjects 

(N=171) 

HIV-(all) 

(N=123) 

HIV+ (all) 

(N=48) 

HIV-W- 

(N=15) 

HIV-W+ 

(N=108) 

HIV+W- 

(N=15) 

HIV+W+ 

(N=33) 

CMV (whole 

inactivated) 

98.2%, Median: 695, 

IQR: 257.5- 1835 

99.2%, 
Median: 

808.8, IQR: 
313.8-2020 

95.8%, 
Median: 

498.8, IQR: 
128.8-1979 

100%, 
Median: 

1018, IQR: 
267.5-1558 

99.1%, 
Median: 

767.5, IQR: 
317.5-2063 

100%, 
Median: 

565, IQR: 
207.5-3975 

93.9%, 
Median: 

437.5, IQR: 
122.5-1333 

CMV_CM10 
21%, Median: 340, 

IQR: 60- 1405 

18.7%, 

Median: 
352.5, IQR: 
47.5-1543 

27.1%, 

Median: 
325, IQR: 
71.2-1761 

26.7%, 

Median: 
1868, IQR: 
873.8-2330 

17.6%, 

Median: 
327.5, IQR: 

47.5-735 

33.3%, 

Median: 
460, IQR: 

123.8-2759 

24.2%, 

Median: 
228.8, IQR: 
71.2-872.5 

HSV-1 

(whole 

inactivated) 

69%, Median: 88.7, 

IQR: 47.5- 172.5 

78%, 

Median: 
100, IQR: 
47.5-185 

45.8%, 

Median: 70, 

IQR: 45-

97.5 

93.3%, 

Median: 85, 

IQR: 45-

125 

75.9%, 

Median: 
101.3, IQR: 
48.7-187.5 

46.7%, 

Median: 
68.7, IQR: 
51.2-146.3 

45.5%, 

Median: 75, 

IQR: 42.5-

85 

EBV (whole 

inactivated) 

93.6%, Median: 2460, 

IQR: 968.8- 3981 

97.6%, 

Median: 
2421, IQR: 
1154-4038 

83.3%, 

Median: 
2505, IQR: 
605-3944 

100%, 

Median: 
2248, IQR: 
1950-3578 

97.2%, 

Median: 
2460, IQR: 
1093-4216 

66.7%, 

Median: 
3590, IQR: 
605-4460 

90.9%, 

Median: 
2493, IQR: 
565-3868 
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a significant linear regression between CMV-specific T cells and total CD4 T cell 

count was observed (Figure 3- 5B). A significant negative association was observed 

between CMV-specific T-cells and pVL (Spearman r= -0.4032, P= 0.0121, data not 

shown). 
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Figure 3- 5: Chronic HIV-1 infection is associated with a moderate decrease of CMV-specific T 

cell responses in peripheral blood. Shown are SFC/106 PBMCs responding to CMV antigen in study 

volunteers stratified by HIV infection status. A linear regression analysis of SFC/106 PBMCs 

responding to CMV and CD4 T cell counts is shown in (B). Statistical analysis was performed using 

Mann-Whitney test when comparing groups. 

  

 No changes in the quantities of IFN-γ producing, CMV-specific T cells could be 

observed in HIV negative worm infected subjects 3 months after worm treatment. 

However, a general significant decrease in CMV specific T cells from a median of 

632.5 to 585.0 SFC/10
6
 PBMCs was observed in this group a year post treatment (P= 

0.0160, Figure 3- 6A). This decline was present even when analysis involved only 

detectable responses (P= 0.0361, Figure 3- 6B). Similarly, no significant changes in 

the quantities of CMV-specific T cells was observed 3 months post helminth 

treatment in HIV and worm co-infected subjects; but a significant decrease from a 
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median of 645.0 to 560.0 SFC/10
6
 PBMCs was observed a year after helminth 

treatment (P= 0.019, Figure 3- 6C). This effect was true even when taking only 

detectable responses into account (P=0.0313, Figure 3- 6D).  
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Figure 3- 6: Effect of worm treatment on the quantity of CMV-specific T cells in the peripheral 

blood of Helminth infected volunteers. Shown is the comparison of SFC/106 PBMCs responding to 

CMV before (W0) and one year (W3) after helminth treatment for each (A) HIV-Worm+ and (C) 

HIV+Worm+ subject. (B) and (D) compares SFC/106 PBMCs of only CMV responders at W0 and W3 

for HIV-Worm+ and HIV+Worm+ subjects respectively. Statistical analysis was performed using 

Wilcoxon matched pairs test for comparison of pairs. 

  

 HIV negative controls responded 1.5 fold more to CMV_CM10 peptide than 

worm infected subjects (Table 3- 4) to a non-significant level (P= 0.4781, Fisher’s 

exact test). Generally, neither HIV nor helminth infections were associated with the 

differences in the frequency and magnitude of responses to CMV_CM10 peptide. 

However, helminth infection was associated with a non-significant decrease in the 

quantities of detectable CMV_CM10-specific T cells when compared HIV-Worm+ 

(Median, 327.5 SFC/10
6
 PBMCs; IQR, 47.5- 735 SFC/10

6
 PBMCs) to HIV negative 

controls (Median, 1868 SFC/10
6
 PBMCs; IQR, 873.8- 2330 SFC/10

6
 PBMCs; P= 
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0.2901; Table 3- 4).  Worm treatment had no influence on the quantities of IFN-γ 

secreting, CM10-specific CD8 T cells on worm infected and co-infected subjects. 

  

 While 78% (N=123) of HIV negative study volunteers responded to HSV-1 

antigen, only about 46% (N=48) of HIV positive subjects had detectable responses 

against HSV-1 (P<0.0001, Fisher’s exact test), showing an association of HIV 

infection with a decrease in frequency of detectable responses to HSV-1 (Table 3- 4).  

When comparing the overall magnitude of HIV+ subjects (Median, 22.5 SFC/10
6
 

PBMCs; IQR, 2.5- 68.75 SFC/10
6
 PBMCs) with that of HIV- subjects (85 SFC/10

6
 

PBMCs; IQR, 32.5-157.5 SFC/10
6
 PBMCs), HIV infection was associated with loss 

of IFN-γ secreting HSV-specific T cells by ~4 fold (P<0.0001. Figure 3- 7A). When 

compared with HIV-Worm- control subjects, a similar significant decline of median 

quantities of HSV-specific T cells was observed on HIV+Worm- subjects (Median, 

40 SFC/10
6
 PBMCs. P= 0.0327) and HIV+Worm+ co-infected individuals (Median, 

20 SFC/10
6
 PBMCs. P= 0.0002) with no significant effect of helminth infection on 

the specific immune response against HSV-1 (Figure 3- 7B). Helminth infections 

were not associated with a significant reduction of quantities of HSV-1-specific T cell 

responses, when comparing HIV negative subjects with or without helminth 

infections (Figure 3- 7B). There was a slight, non-significant linear association 

between HSV-1-specific T cells and total CD4 T cell count (Figure 3- 7C). No such 

association could be found when comparing HSV-1-specific T cells and pVL. 

However, a negative association was found between HSV-1-specific T cells and pVL 

(Spearman r= -0.3487, P= 0.0319, data not shown). Worm treatment had no influence 

on the quantities of IFN-γ secreting, HSV-1-specific T cells on worm infected and co-

infected subjects. 
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Figure 3- 7: Chronic HIV-1 infection and not helminth infection is associated with decreased 

HSV 1-specific T cell responses in peripheral blood. Shown are SFC/106 PBMCs responding to 

HSV-1 antigen in study volunteers stratified by HIV (A-B) and helminth infection status (B). A linear 

regression analysis of SFC/106 PBMCs responding to HSV-1 and absolute CD4 T cell counts is shown 

in (C). Statistical analysis was performed using Mann-Whitney test when comparing groups. 

 

 Over 93% of the HIV negative and HIV positive WHIS study volunteers 

responded to EBV antigen (Table 3- 4). Following a similar trend, HIV infection was 

also associated with a decrease in the frequency of detectable responses to EBV 

(P=0.0019. Fisher’s exact test). However, HIV infection had no significant impact on 

the overall magnitude of EBV-specific T cell responses when compared to HIV 

negative (Median, 2358 SFC/10
6
 PBMCs; IQR, 1063-4003 SFC/10

6
 PBMCs) and 

HIV positive subjects (Median, 2048 SFC/10
6
 PBMCs; IQR, 398.8- 3765 SFC/10

6
 

PBMCs P= 0.0979; data not shown). Similarly, helminth infections were not 

associated with changes in the quantities of EBV-specific T cells. Worm treatment 

had no influence on the quantities of IFN-γ producing EBV-specific T cells of worm 

infected and co-infected subjects. 
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3.1.3.3. Influenza- and Toxoplasma gondii-specific T cell responses 
 

 Influenza and T.gondii are also common pathogens that humans encounter and 

develop a controlled immunity against; but can cause AIDS related diseases in people 

with highly progressive chronic HIV infection (Murphy et al. 2007). Since worms 

have been reported to modulate pathogen-specific TH1 cell responses (Kamal et al. 

2001),  IFN-γ secretion in PBMCs of WHIS volunteers restimulated with respective 

antigens was examined at baseline, ~3 months and a year after worm treatment.  

Table 3- 5 summarizes the frequency of responders to antigens and their median of 

detectable quantity of pathogen-specific T cells in HIV negative and HIV positive 

subjects with or without helminth infections. 

 

Table 3- 5. Frequency of study subjects responding to Influenza and T.gondii antigens 

Antigen 

Frequency of responders (%), Median, IQR (SFC/million PBMC) 

All study 

subjects 

(N=171) 

HIV-(all) 

(N=123) 

HIV+ (all) 

(N=48) 

HIV-W- 

(N=15) 

HIV-W+ 

(N=108) 

HIV+W- 

(N=15) 

HIV+W+ 

(N=33) 

Influenza-a 

(whole 
inactivated) 

86%, 

Median: 
257.5, 

IQR: 
132.5- 
467.5 

96.7%, 

Median: 
312.5, IQR: 

166.3-

527.5 

58.3%, 

Median: 
75, IQR: 
55-192.5 

100%, 

Median: 
332.5, 

IQR: 
292.5-

707.5 

96.3%, 

Median: 
307.5, IQR: 

153.8-

517.5 

73.3%, 

Median: 
91.2, IQR: 
58.7-223.8 

51.5%, 

Median: 
70, IQR: 
55-175 

T. gondii 

39.2%, 

Median: 
175, IQR: 
87.5- 405 

39%, 

Median: 

205, IQR: 

95- 405 

73.3%, 

Median: 

105, IQR: 
41.25-

207.5 

46.7%, 

Median: 
172.5, 

IQR: 57.5-

432.5 

38%, 

Median: 
226.3, IQR: 
107.5-405 

33.3%, 

Median: 
127.5, IQR: 

50-641.3 

42.4%, 

Median: 
90, IQR: 

40-217.5 

  

 147 out of 171 (86%) WHIS volunteers responded to Influenza antigen with 

median detectable IFN-γ responses of 257.5 SFC/10
6
 PBMCs (Table 3- 5). Overall 

median quantities for Influenza-specific T cell responses were significantly depressed 

in HIV+ subjects (45.0 SFC/10
6
 PBMCs) compared to HIV negative ones (307.5 

SFC/10
6
 PBMCs. P<0.0001. Figure 3- 8A). Similar significant decline was observed 

with HIV+Worm- (Median=75.0 SFC/10
6
 PBMCs) and HIV+Worm+ subjects 

(Median= 30.0 SFC/10
6
 PBMCs) when each group was compared to HIV-Worm-

controls (P<0.0001 for both groups) with no significant influence of helminth 

infections on the magnitude of Influenza-specific responses (P value= 0.0808. Figure 

3- 8B). Similar magnitude of Influenza responses were observed when compared HIV 

negative subjects with or without helminth infections (Figure 3- 8B). There was a 
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negative association between Influenza-a-specific T cells and pVL (Spearman r=-

0.3527, P=0.0298) suggesting that increased pVL contributes to a decrease in 

Influenza-specific T cell responses (Figure 3- 8C). No linear relationship between 

Influenza-specific T cells and total numbers of CD4 T cells was found (Figure 3- 8D). 
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Figure 3- 8: Chronic HIV-1 infection and not helminth infection is associated with reduction of 

Influenza-a-specific T cell responses in peripheral blood. Shown are SFC/106 PBMCs responding to 

Influenza-a antigen in study volunteers stratified by HIV (A-B) and helminth infection status (B). (C) 

Shows a linear regression analysis of SFC/106 PBMCs responding to Influenza antigen and log of 

plasma viral loads. Linear regression analysis between SFC/106 PBMCs responding to Influenza 

antigen and absolute CD4 T cell counts is shown in (D). Statistical analysis was performed using 

Mann-Whitney test when comparing groups. 

 

 No effect of helminth treatment was observed regarding the quantities of 

influenza-specific T cells of infected and co-infected individuals 3 months and a year 

after treatment. However, within HIV negative T.trichiura infected subjects, a 

significant decrease in influenza-specific T cell response was observed 3 months after 

helminth treatment from a median of 397.5 to 217.5 SFU/10
6
 PBMCs (P= 0.0024. 

Figure 3- 9) even though no helminth association was found on this study group at 

baseline. Of note, the observed decrease in response was not significant when only 
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detectable quantities of influenza-specific T cells were compared (P=0.0979, data not 

shown). 

 

 

Figure 3- 9: Effect of worm treatment on the quantity of Influenza-specific T cells in the 

peripheral blood of HIV negative, T.trichiura infected volunteers. Comparison of SFC/106 PBMCs 

responding to Influenza-a before (W0) and ~3months (W1) after helminth treatment for each HIV-

T.trichiura+ subject is shown. Statistical analysis was performed using Wilcoxon matched pairs test for 

comparison of pairs.  

 

 Only 39% of HIV positive and HIV negative WHIS volunteers responded to T. 

gondii antigen with median response of 175 SFC/10
6
 PBMCs ( 

Table 3- 5). HIV infection was associated with a moderate loss of detectable 

quantities of T.gondii-specific T cells (Median: 205 SFC/10
6
 PBMCs vs 105 SFC/10

6
 

PBMCs for HIV- and HIV+ respectively; P=0.0576; data not shown). Helminth 

infections were not associated with changes in the frequency and magnitude of 

detectable T.gondii-specific T cell responses. Worm treatment had no influence on the 

quantities of IFN-γ positive, T.gondii-specific T cells on worm infected and co-

infected subjects. 

 Taken together, these results suggest that helminth infections have no impact on 

the quantities of IFN-γ secreting pathogen-specific T cells and the frequency of 

responders to different pathogens. However, HIV alone has a great impact on the 

quantity of most IFN-γ releasing pathogen-specific T cell responses and co-infection 
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with no apparent influence of helminth infections. In addition, worm treatment does 

not seem to have any detectable effect on the quantities of pathogen-specific T cells 

of volunteers as measured by IFN-γ release ELISpot assay up to a year after helminth 

treatment. 
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3.2.  Characterization of regulatory T cells during HIV, Helminth 

or HIV-Helminth co-infection 
 

Tregs are essential for maintenance of self tolerance and they can suppress 

activation, proliferation and effector functions of a wide range of immune cells, 

including CD4 and CD8 T cells (reviewed in (Sakaguchi et al. 2008)), that can 

impede clearance of chronic infections such as HIV (Aandahl et al. 2004; Kinter et al. 

2007). This study therefore aimed to investigate whether helminth and HIV infections 

modulate the frequency and numbers of Tregs on volunteers with helminth, HIV or 

HIV-helminth co-infection. Of importance, the ex vivo expression of CCR5 on Tregs 

and their ex vivo cellular HIV infection in comparison to memory CD4 T cells was 

also investigated.  

 

3.2.1. Comparative analysis of CD25+FoxP3+ CD4 regulatory T cell 

numbers and frequencies in relation to chronic infection with 

different helminth species 
 

Helminth infections have often been associated with elevated levels of regulatory 

T cells (Maizels & Yazdanbakhsh 2003) therefore we first determined cross-

sectionally whether different helminths infections are associated with changes in the 

frequency and absolute numbers of CD25+FoxP3+ CD4+ T cells (Tregs) in fresh 

anti-coagulated peripheral blood of HIV negative and positive individuals with 

helminth infections in comparison with helminth negative controls. Next, the effect of 

treating helminth infections on the numbers and proportion of circulating Tregs was 

assessed up to a year after worm treatment in HIV negative and positive volunteers. A 

representative dot plot and gating of CD25+FoxP3+ CD4 T cells is shown in Figure 

3- 10A. 

3.2.1.1.Cross-sectional analysis 

 

In HIV negative subjects, a significant increase in absolute number of Tregs was 

only observed in T.trichiura (Median, 22.5cells/μl; IQR, 14.51- 29.7cells/μl) infected 

individuals when compared with the control group (Median, 15.78cells/μl; IQR, 9.89- 

23.39cells/μl; P= 0.0126; Figure 3- 10B). Also, changes in the frequency of Treg cells 

were only observed within the T.trichiura infected group. Treg frequencies were 
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increased within the HIV negative- T.trichiura infected group (Median, 2.8%; IQR, 

1.8-3.25%) when compared to the HIV-Worm- control group (Median, 1.9%; IQR, 

1.4-2.45%; P=0.0082; Figure 3- 10C).  A slight but non-significant increase in 

frequency of Tregs was also observed in volunteers infected with A.lumbricoides 

(Median, 2.3%; IQR, 1.4-2.9%; P=0.2642; Figure 3- 10C). 

 

 

Figure 3- 10: Absolute numbers and frequency of CD25+ FoxP3+ regulatory T cells in the 

peripheral blood in relation to chronic Helminth infections. Representative dot plots and gating 

strategy for the detection of regulatory T cells through CD25 and FoxP3 expression on CD3+CD4+ T 

cells are shown in (A). The absolute number (B) and frequency (C) of Tregs are shown on the y-axis. 

The worm infection status is indicated on the x-axis stratified into worm negative individuals or those 

infected with TT (Trichuris trichiura), SH (Schistosoma haematobium), SM (Schistosoma mansoni), 

AL (Ascaris lumbricoides) or HW (Hookworm).  Statistical analysis was performed using Mann-

Whitney test for comparing groups. 

 

In HIV positive individuals, the median of absolute Tregs of HIV co-infected 

and single infected individuals were 9.864cells/μl and 10.14 cells/μl respectively with 

no apparent influence of helminth co-infection on the number of Tregs (P=0.9082, 

data not shown). A similar frequency of Tregs was also observed between 
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HIV+Worm- (Median, 2.7%; IQR, 1.35-4.2%) and HIV+Worm+ co-infected 

individuals (Median, 2.35%; IQR, 1.5-4.350%; P=0.8452, data not shown). 

 

3.2.1.2. Effect of treatment with praziquantel and albendazole on 

CD25+FoxP3+ CD4 regulatory T cells in HIV negative and HIV 

positive individuals 
 

Reduction of Treg levels after anti-helminth treatment has been reported in 

individuals infected with S.mansoni (Watanabe et al. 2007). To therefore investigate 

the effect of helminth treatment in changing the absolute Treg numbers and 

frequencies, absolute counts and proportion of Tregs from helminth infected 

individuals were determined and compared before and up to one year after worm 

treatment. Only the individuals that were worm free post treatment were analysed. No 

significant changes were observed within the HIV-Worm+ nor HIV+Worm infected 

group 1-3 months after worm treatment (Table 3- 6).  

 

However, Treg numbers were highly decreased in HIV-W+ subjects a year 

after de-worming from a median of 20.66 cells/μl to 12.22 cells/μl (P<0.0001; table 

XX). HIV-T.trichiura+ subjects showed a decrease in median Treg numbers from 

22.67cells/μl to 13.07cells/μl one year post worm treatment (P<0.0001; Table 3- 6). 

Similarly, HIV-S.mansoni+ and HIV-A.lumbricoides+ subjects demonstrated a 

reduction in median Treg numbers a year post treatment (P=0.0082 and 0.0215 

respectively; Table 3- 6). Lower T reg numbers were also observed in treated HIV-

Hookworm+ subjects (median, 12.87cells/μl than at baseline (median, 19.75; P= 

0.0024; Table 3- 6). A moderate decrease in Treg counts a year after treatment was 

observed with the control subjects who also received anti-helminthic treatment from a 

median of 15.51 cells/μl (IQR: 7.96- 20.91 cells/μl) to 8.923 cells/μl (4.479- 13.73 

cells/μl; P= 0.0266; Table 3- 6). However, the median change of Treg counts a year 

post treatment between helminth infected and control groups were insignificant with 

the exception of HIV-Hookworm+ group (Table 3- 6). 

 

Within HIV positive infected volunteers, only volunteers who were treated for 

Hookworms showed a decrease in median Treg numbers from 14.61cells/μl to 

5.22cells/μl one year post worm treatment (P=0.0004; Table 3- 6). Minor changes in 
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Treg counts were also observed with the control group (P=0.0322; Table 3- 6) after 

treatment, with no substantial differences between this group and helminth infected 

subjects (Table 3- 6). 

 

Table 3- 6. CD25+FoxP3+ regulatory CD4 T cell counts in HIV negative and positive volunteers 

before and after anti helminthic treatment 

 

*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 

test 

**P values in median change with time between helminth infected and non-infected controls using the 

Mann-Whitney test 

 

 

The influence of worm treatment on the frequencies of Tregs was determined 

next by employing the same analysis strategy used with absolute Treg numbers 

comparison. Again, no changes were observed within the HIV-Worm+ nor 

HIV+Worm infected group 1-3 months after worm treatment (Table 3- 7). A general 

decrease was however observed in the frequency of Tregs from 2.3% to 1.4% a year 

after treatment (P<0.0001; Table 3- 7).  HIV-T.trichiura+ subjects had a decrease in 

median Treg frequencies from 2.8% to1.4% a year post worm treatment (P<0.0001; 

Table 3- 7). Lower Treg frequencies were also observed in HIV negative subjects 

treated for S.mansoni, A.lumbricoides and Hookworm infections a year after de-

worming (all P<0.05; Table 3- 7). However, the difference between visits were not 

significant in all helminth infected groups when compared to subjects in the control 

group, who also a showed a moderate decrease in the frequency of Tregs a year after 

treatment from a median of 1.6% (IQR: 1.35-2.15%) to 1% (0.75-1.45%; P=0.003; 

Table 3- 7).  
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Worm treatment had an influence on the frequency of Tregs within 

HIV+Worm+ coinfected individuals (medians, 2.1% at baseline and 1.3% a year after 

treatment; P=0.0012; Table 3- 7). Again, this change was particularly observed with 

HIV+Hookworm+ subjects who had a median decrease of Treg frequency from 2.3% 

to 1.3% a year after worm treatment (P=0.017) with no substantial differences with 

the control group (P=0.876; Table 3- 7). 

 

Table 3- 7. Frequency of CD25+FoxP3+ regulatory CD4 T cells in HIV negative and positive 

volunteers before and after anti helminthic treatment 

 

*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 

test 

**P values in median change with time between helminth infected and non-infected controls using the 

Mann-Whitney test 

 

3.2.2.  Expression of HIV-co receptor, CCR5 on 

CD25+FoxP3+ CD4 regulatory T cells in relation to chronic 

infection with different helminth species 
 

In vitro and in vivo expression of HIV co receptor, CCR5 on Tregs has been 

demonstrated before (Moreno-Fernandez et al. 2009; Dunham et al. 2008; Oswald-

Richter et al. 2004), suggesting  Tregs as potential targets for HIV. In order to 

determine, whether Tregs could be potential substrates for direct HIV infection, in 

vivo expression of HIV co-receptor CCR5 on circulating Tregs of the study subjects 

was analysed. Fresh anti-coagulated whole blood was used to achieve maximum 

sensitivity for CCR5 detection. A large fraction of about 50% of Tregs expressed 

CCR5 regardless of their helminth status, suggesting that Tregs are potential cellular 

targets for HIV infection (Figure 3- 11). 
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Following this observation, immune modulation of CCR5 on Tregs by different 

helminth species was analysed to determine whether helminth infections and co-

infection had any effect on the expression of CCR5 on circulating Tregs, which could 

potentially influence HIV susceptibility or disease progression.  No helminth specie 

was particularly associated with changes in the CCR5 expression on Tregs within 

HIV negative subjects (Figure 3- 11B). There were also no significant differences in 

the frequency of Tregs that expressed CCR5 in people with HIV infection alone 

compared to HIV+Helminth+ co-infected subjects (data not shown). 

 

 

Figure 3- 11: In vivo HIV-co receptor (CCR5) expression on regulatory T cells. Shown in (A) 

is a representative histogram analysis for CCR5 expression on total CD4 T cells (grey) and CD25+ 

Foxp3+ CD4 T cells (black). For maximum staining sensitivity, fresh anticoagulated whole blood 

was used to determine CCR5 expression on CD4 T cells. The frequency of CCR5+Tregs (B) is 

shown on the y-axis. The worm infection status is indicated on the x-axis stratified into worm 

negative individuals or those infected with TT (Trichuris trichiura), SH (Schistosoma 

haematobium), SM (Schistosoma mansoni), AL (Ascaris lumbricoides) or HW (Hookworm).  

Statistical analysis was performed using Mann-Whitney test for comparing groups. 
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3.2.3. Effect of treatment with praziquantel and 

albendazole on the frequency of CCR5 on CD25+FoxP3+ CD4 

regulatory T cells  
 

A slight increase on the frequency of CCR5+Tregs was observed in HIV-

T.trichiura+ subjects 1-3 months after worm treatment (Median, 53.7% at baseline 

and 55.2% post treatment; P= 0.0549; Figure 3- 12A) but even more pronounced a 

year post treatment from a median of 50.5% to 60.1% (P= 0.0005; Figure 3- 12B). Of 

note, changes in the frequency of CCR5+Tregs were higher in individual treated for 

T.trichiura infection compared to control subjects, who showed no differences in the 

frequency of CCR5+Tregs up to a year after treatment (Table 3- 8). 
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Figure 3- 12: Effect of helminth treatment on frequencies of CCR5 expression on regulatory CD4 

T cells in the peripheral blood of T.trichiura infected volunteers. Comparison of frequencies of 

CCR5 expression on regulatory CD4 T before (W0) and up to 3 months (W1) after helminth treatment 

is shown in (A); while comparison of frequencies of CCR5 expression on regulatory CD4 T before 

(W0) and one year (W3) after helminth treatment are shown in (B). Statistical analysis was performed 

using Wilcoxon matched pairs test for comparison of pairs.  

 

In contrast, frequency of CCR5+Tregs of S.mansoni infected volunteers 

decreased from 58.30% to 53.6% 1-3 months after worm treatment (P= 0.0093; Table 

3- 8). This decline was also observed a year after treatment (Median, 58% at baseline 
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and 52.2% a year post treatment; P= 0.0186; Table 3- 8). Also a decrease in frequency 

of CCR5+Tregs from a median of 58.8% to 47% was observed in HIV-

A.lumbricoides+ subjects 1-3 months post treatment (P=0.0235; Table 3- 8); but no 

change was observed a year post treatment in this group. No changes in the 

frequencies of CCR5+Tregs of HIV-Hookworm+ subjects were observed up to 3 

months after worm treatment, but an increase from 50.55% to 57.80% could be seen a 

year after treatment (P=0.0221; Table 3- 8). Compared to worm negative control 

subjects, who showed no effect of worm treatment, the median change in frequency of 

CCR5+Tregs post treatment were very minor and insignificant for S.mansoni, 

A.lumbricoides  and Hookworm infected subjects (Table 3- 8).  

 

There was no observed influence of worm treatment on the frequency of 

CCR5 expressing Tregs on HIV positive co-infected subjects. A slight increase in the 

median frequencies of CCR5+Tregs was however observed with HIV+Hookworm+ 

subjects a year after worm treatment (from 46.4% to 49.4%; Table 3- 8). This change 

differed significantly to the control group (P=0.0394; Table 3- 8).  

 

Table 3- 8. Frequency of CCR5+ regulatory CD4 T cells in HIV negative and positive volunteers 

before and after anti helminthic treatment 

 

*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 

test 

**P values in median change with time between helminth infected and non-infected controls using the 

Mann-Whitney test 
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3.2.4. Characterization of CD25+FoxP3+ CD4 

regulatory T cells in relation to chronic HIV-1 infection 
 

Increase in frequency of circulating CD25+FoxP3+CD4 T cells and decline in 

absolute count of such cells in subjects with chronic untreated HIV infection has been 

reported before (Angin et al. 2012; Presicce et al. 2011).  This study also investigated 

the changes in the frequency and absolute numbers of circulating Tregs in relation to 

chronic HIV-1 infection. 

3.2.4.1. Absolute numbers and frequency of CD25+FoxP3+ CD4 

regulatory T cells  
 

Treg numbers were decreased in HIV+ subjects (Median, 10.00cells/μl; IQR, 

4.826-17.83cells/μl) compared to HIV- subjects (Median, 18.01cells/μl; IQR, 10.76 - 

24.67cells/μl; P<0.0001; Figure 3- 13A). Similarly, HIV infection was associated 

with a significant decrease in absolute Tregs irrespective of helminth infection status 

(Figure 3- 13B). The median of absolute Tregs of HIV co-infected and single infected 

individuals were 9.864cells/μl and 10.14cells/μl respectively compared to HIV 

negative control group which was 15.78cells/μl (P=0.0079 and P=0.0295 

respectively). 

 

Generally, a moderate increase in Treg frequencies was observed in HIV infected 

people (Median, 2.4%; IQR, 1.5-4.2%) when compared to HIV negative ones 

(Median, 2.05%; IQR, 1.45-2.95%; P=0.0472; Figure 3- 13C). No significant increase 

of Treg percentages in the HIV+Worm- (Median, 2.7%; IQR, 1.35-4.2%) individuals 

was detected when compared to the HIV-Worm- subjects (P=0.1612; Figure 3- 13D). 

However, there was a moderate increase of frequency of Treg in the HIV+Worm+ co-

infected individuals (Median, 2.35%; IQR, 1.5-4.350%; P=0.0478). Nonetheless, co-

infection could not be attributed to this observation as no significant differences in the 

percentage levels of Tregs were found between the HIV co-infected and non co-

infected group (Figure 3- 13D). Within HIV+ subjects there was a linear, positive 

association between absolute Treg numbers and CD4 T cell counts (p < 0.0001; r
2
= 

0.2405; Figure 3- 13E), suggesting that the observed depletion of Tregs is closely 

linked to the loss of CD4 T cells.  
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Also, since Tregs have been described to suppress HIV-specific T cell responses 

(Aandahl et al. 2004), an association between Treg numbers and HIV specific CD8 T 

cell responses was analysed. HIV responses were determined in HIV positive subjects 

by IFN-γ ELISpot analyses after stimulation of PBMCs with a pool of frequently 

recognized HIV specific peptides as described in the previous chapter. No association 

between Treg numbers and the magnitude of HIV-FRP-specific CD8 T cell responses 

was found (data not shown). 

 

 

 

Figure 3- 13: Absolute numbers and frequency of CD25+ FoxP3+ regulatory T cells in the 

peripheral blood in relation to chronic HIV-1 infection. Regulatory CD4 T absolute numbers 

were compared between: all HIV+ vs all HIV- irrespective of their helminth infection in (A) and 

HIV-Worm- vs HIV+ stratified by worm status in (B). Frequency of regulatory CD4 T was 

compared between: all HIV+ vs all HIV- irrespective of their helminth infection in (C) and HIV-

Worm- vs HIV+ stratified by worm status in (D).  A linear regression analysis of absolute CD4 

counts and regulatory CD4 T cell counts is shown in (E). Statistical analysis was performed using 

Mann-Whitney test when comparing groups. 

 

3.2.4.2. Expression of HIV-coreceptor, CCR5 on CD25+FoxP3+ CD4 

regulatory T cells 
 

In vivo expression of HIV co-receptor CCR5 on circulating Tregs of the study 

subjects was analysed in relation to HIV-1 infection status as described above. When 
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HIV+ individuals were analysed independent of their helminth infection, a moderate 

decrease in the frequency of CCR5+ Tregs was observed in association with HIV 

infection (median: 49.25% for HIV+ compared to 54.5% for HIV-, p= 0.009, Figure 

3- 14).  

 

 

 

Figure 3- 14: In vivo HIV-co receptor (CCR5) expression on regulatory T cells in relation to 

chronic HIV-1 infection. The frequencies of CCR5+ expressing Tregs are compared between 

HIV negative and HIV positive subjects irrespective of their worm infection status. Statistical 

analysis was performed using Mann-Whitney test. 

 

3.2.4.3. Comparison of ex vivo HIV proviral DNA load in memory 

CD25+FoxP3+ CD4 regulatory T cells and memory CD25-FoxP3- 

CD4 T cells 
 

Because these results demonstrated that high frequencies of CD25+ FoxP3+ 

CD4 Tregs express CCR5, it is plausible that Tregs potentially support CCR5 

mediated viral entry in HIV infected subjects. Furthermore, memory Tregs are highly 

proliferative in vivo in HIV positive subjects (unpublished data from Osei Kuffour et 

al.), which should support productive HIV infection of this specific cell subset in 

vivo. Therefore, we next determined HIV infection rates of memory CD4 T cells and 

memory Tregs ex vivo. Four different subsets of CD45RO+ memory CD4 T cells 

characterized by their Helios, CD25 and FoxP3 expression were sorted (Figure 3- 

15A) from PBMCs of 22 HIV+ subjects and HIV gag DNA within the different sorted 
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subsets was quantified. Helios, a Ikaros transcriptional factor family member, was 

included in this study because it was originally proposed to be a marker that 

distinguished thymic derived from peripheral induced Tregs (Sugimoto et al. 2006; 

Thornton et al. 2010; Getnet et al. 2010). However, this notion has been contested 

more recently (Akimova et al. 2011).  In vitro, Helios expression is up-regulated 

after/during cell division in regulatory and effector T cells (Akimova et al. 2011) and 

recent data suggests that Helios is a key negative regulator of IL2 expression and 

proliferation  in Tregs (Baine et al. 2012). 

 

Similar to HIV negative subjects (Booth et al. 2010), a large majority of 

CD25+FoxP3+ T regs expressed the memory marker CD45R0 in  HIV+ subjects 

(median, 87.30%; IQR, 71.5%-93.7%),  and most of these expressed Helios (median, 

76.30%; IQR, 67.75%-84.75%). In contrast only a minor fraction of CD25-FoxP3- 

memory CD4 T expressed Helios (median, 1.65%; IQR, 1.15%-2.75%). Irrespective 

of their Helios expression, HIV gag DNA copies could detected in >80% of both 

sorted memory CD25+FoxP3+ Treg populations and CD25-FoxP3- memory CD4 T 

cell populations, confirming that Tregs are indeed frequent targets of HIV ex vivo.   

 

Figure 3- 15B shows the HIV gag DNA load detected within memory CD4 T 

cells and memory Tregs. A 15-fold higher median gag DNA load was detected in 

memory Tregs as compared to CD25-FoxP3- memory CD4 T cells (∑Helios
+
Helios-; 

16072 versus 1074 copies/10
6
 cells, p=0.0032). From 16 subjects plasma viral load 

(pVL) data were obtained for determining whether cell associated DNA Gag load 

detected in the two memory CD4 T cell populations contribute to pVL. There was a 

linear correlation between cell associated DNA gag in memory CD25-FoxP3- 

memory CD4 T cells and pVL (p=0.03, r
2
=0.31, Figure 3- 15C). However, no such 

linear correlation could be detected in memory Tregs (p=0.28, r
2
=0.08, data not 

shown). 

 

Figure 3- 15D shows the HIV gag DNA load within memory Tregs CD25-

FoxP3- memory CD4 T cells further delineated by Helios expression. Gag DNA loads 

in FoxP3+CD25+ Helios- memory Tregs (119-fold increased, median: 18407 

copies/10
6
 cells; IQR: 1556- 106067 copies/10

6
 cells; P= 0.0068), FoxP3-CD25- 

Helios+ memory CD4 T cells (104-fold increased, median: 16096 copies/10
6
 cells; 
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IQR: 837.9 – 47903 copies/10
6
 cells, P= 0.0289) and FoxP3+CD25+ Helios+ memory 

Tregs (26-fold increased, median: 4106 copies/10
6
 cells; IQR: 0- 44612 copies/10

6
 

cells; P= 0.0705) were much higher compared to FoxP3-CD25- Helios- memory CD4 

T cells (median: 154.4 copies/10
6
 cells; IQR: 0- 10241 copies/10

6
 cells), which 

constitute the  largest of these memory CD4 T cell populations. 

 

 

 

Figure 3- 15: Quantification of Cell associated HIV gag DNA in sorted memory CD4 T cell 

subsets. Gating/sorting strategy used to sort different memory (CD45RO+) CD4 T cell populations 

delineated by Helios, CD25 and FoxP3 expression (A). The number of gag copies/106cells detected in 

CD25
-
/FoxP3

-
 and CD25

+
/FoxP3

+
 memory CD4 T cells from 21 different subjects is shown in (B). A 

linear regression analysis of log number of gag copies/106cells detected in CD25-/FoxP3-   and log 

plasma viral load copies (pVL) is shown in (C). The number of gag copies/106cells detected in these 

memory cell subsets further delineated by Helios expression is shown in (D). Gag DNA within 

different CD4 T cell populations of the same subject was quantified during the same RT-PCR run. The 

statistical analysis was performed using the Wilcoxon-rank-matched pairs test. 
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3.3. Characterization of maturation and activation 

markers on CD4 and CD8 T cells during HIV, Helminth or HIV-

Helminth co-infection 
 

It was proposed 18 years ago that chronic immune activation brought about by 

chronic infections such as helminths may be the driving force of HIV in Africa 

(Bentwich et al. 1995) as such infections are common in Africa.   However, data 

regarding the influence of different helminth (co)infections on systemic immune 

activation is scarce and discrepant. This study therefore aimed to investigate the effect 

of worms and de-worming on the profile of T-cell subsets and T-cell immune 

activation in relation to HIV susceptibility and disease progression. 

 

 

3.3.1. Characterization of CD4 and CD8 T cell subsets relation to 

chronic infection with different helminth species 

3.3.1.1. Cross-sectional 
 

To assess the role of helminth infections on modulating T-cell subsets, 

frequency of expression of maturation markers, CD27 and CD45R0 on CD4 and CD8 

T cells was compared between HIV negative and HIV positive individuals, with or 

without helminth infections to determine the distribution of T cell subsets in relation 

to chronic helminth infection. A representative dot plot and gating of T cell subsets is 

shown in Figure 3- 16. 
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Figure 3- 16:  Frequencies of expression of T-maturation markers on CD4 and CD8 T 

cells. Shown is the gating strategy for the expression maturation markers (CD27+ and 

CD45RO+) on CD4 and CD8 T cells of a representative subject.  

 

In HIV negative volunteers, similar frequencies of naïve (CD27+CD45RO-), 

“central-like” memory (CD27+CD45RO+), “effector-like” memory (CD27-

CD45RO+) and “terminally differentiated” (CD27-CD45RO-) CD4 and CD8 T cells 

were observed between helminth infected and non-helminth infected individuals 

(Table 3- 9). However, a trend towards increased frequency of terminally 

differentiated CD4 T cells was seen in relation to helminth infection (P= 0.0531; 

Table 3- 9); mainly contributed by T.trichiura and S.haematobium infection (Figure 

3- 17A). 
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Table 3- 9. Expression of maturation markers on CD4 and CD8 T cells of HIV negative 

individuals in relation to chronic infection with different helminth species 

 
HIV negative 

 
No helminth All Helminth+ P value 

N (%CD4) 43 181 
 

%CD4+Naive 38.1% (24.6-49.2%) 38.4% (27.8-47.15%) 0.9622 

%CD4+Central Memory 40.2% (32.1-48.3%) 38.1% (31.85-43.45%) 0.2118 

%CD4+Effector Memory 19.7% (12.5-23.2%) 19.5% (14.7-25.25%) 0.5852 

%CD4+Terminally differentiated 1.58% (0.88-2.7%) 2.17% (1.235-4.165%) 0.0531 

%CD4+Total Memory 62.15% (50.81-75.43%) 61.57% (52.75-72.12%) 0.9812 

N (%CD8) 43 180 
 

%CD8+Naive 40.6% (32.8-52.1%) 41.95% (29.75-54.45%) 0.9068 

%CD8+Central Memory 
15.2% (9.45-22.6%) 

15.2% (10.85-21.4%) 0.7763 

%CD8+Effector Memory 9.63% (5.38-13.6%) 8.78% (4.81-14.4%) 0.8456 

%CD8+Terminally differentiated 27.5% (20.9-36.3%) 29.15% (19-38.4%) 0.9622 

 

Infection with T.trichiura was associated with a trend towards a slight 

decreased frequency of central memory CD4 T cells (Median: 37.75%; IQR: 31.1-

41.3%) compared to control individuals (Median: 40.2%; IQR:  32.1-48.3%. P= 

0.0943. Figure 3- 17B). In contrast, a non significant increase in effector memory 

CD4 T cells was observed in T.trichiura infected volunteers (Median: 21.05%; IQR: 

17.85- 29.05%) in comparison to helminth negative volunteers (Median: 19.7; IQR: 

12.5- 23.2%. P= 0.0531. Figure 3- 17C). 

Infection with S.haematobium was also associated with 1.25 less median 

frequencies of central memory CD4 T cells (Median: 32.05%; IQR: 28.75- 36.65%. 

P= 0.0158. Figure 3- 17B) compared to controls. Higher frequency of naïve CD8 T 

cells was observed in S.haematobium infected people (Median: 52.25%; IQR: 41.88-

61.05%) compared to controls (Median: 40.6%; IQR: 32.8-52.1%. P=0.035. Figure 3- 

17D). On the other hand, there was a trend towards a decreased frequency of 

terminally differentiated CD8 T cells (Median: 22%; IQR: 15.3- 29.05%) compared to 

control individuals (Median: 27.5%; IQR: 20.9- 36.3%; P= 0.0989; data not shown). 
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Figure 3- 17: Frequency of T-cell subsets in relation to T.trichiura and S.haematobium infections. 

The frequencies of CD45RO-CD27-(A), CD45RO+CD27+(B), CD45RO+CD27-(C) and 

CD45RO+CD27-(D) on CD4 (A-C) and CD8 (C) T cells is shown between the control and worm 

infected subjects.  Statistical analysis was performed using Mann-Whitney test for comparing groups.  

 

This data collectively shows that changes in the frequency of different T cell 

subsets were mainly associated with T.trichiura and S.haematobium while 

A.lumbricoides, Hookworm and S.mansoni showed no such association.  
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In HIV positive volunteers, similar frequencies of all studied CD4 and CD8 T 

cell subsets could be observed except for a 1.5-fold significant increase in terminally 

differentiated CD8 T cells in helminth infected volunteers in comparison to volunteers 

in the control group (Table 3- 10). 

 

 

Table 3- 10. Expression of maturation markers on CD4 and CD8 T cells of HIV positive 

individuals in relation to chronic infection with different helminth species 

 
HIV positive 

 
No helminth All Helminth+ P value 

N (%CD4) 26 51 
 

%CD4+Naive 35.05% (22.45-49.65%) 35.7% (20.4-51.1%) 0.7753 

%CD4+Central Memory 37% (28.6-46.7%) 35.1% (25.8-41.3%) 0.2839 

%CD4+Effector Memory 19% (12.8-26%) 21.6% (14.2-30.1%) 0.3432 

%CD4+Terminally differentiated 1.925% (0.79-2.98%) 2.29% (0.79-4.38%) 0.6644 

%CD4+Total Memory 65.01% (50.43-77.42%) 64.28% (48.89-79.49%) 0.7671 

N (%CD8) 26 53 
 

%CD8+Naive 24.45% (19.8-32.6%) 20.5% (13.65-32%) 0.1358 

%CD8+Central Memory 22.45% (17.8-37.2%) 20% (14.55-27.75%) 0.0994 

%CD8+Effector Memory 14.8% (8.33-21.4%) 15.8% (10.55-20.75%) 0.8185 

%CD8+Terminally differentiated 26.9% (17.75-40.85%) 40.6% (28.45-49.45%) 0.0068 

 

Co-infection with T.trichiura was associated with a moderate increase in the 

frequency of effector memory CD4 T cells (Median: 26.85%; IQR: 20.85-40.3%) 

compared to the control HIV+ group (Median: 19%; IQR: 12.8-26%. P=0.0423; 

Figure 3- 18A). Similarly, HIV+T.trichiura+ volunteers had a higher frequency of 

terminally differentiated CD8 T cells (Median: 43%; IQR: 38.3-48.15%) than non-

infected HIV+ volunteers (Median: 26.9%; IQR: 17.75-40.85%. P= 0.0091; Figure 3- 

18 B).  

 

In comparison to non-infected HIV+ volunteers, HIV+S.haematobium 

infected individuals also demonstrated an increase in the frequency of terminally 

differentiated CD8 T cells (Median: 44.15%; IQR: 39- 50.6%; P= 0.0153; Figure 3- 

18C).   
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Figure 3- 18: Frequency of T-cell subsets in relation to HIV-1 co-infection with T.trichiura or S. 

haematobium. The frequencies of CD45RO+CD27-(A), CD45RO-CD27-(B-C ), on CD4 (A) and CD8 

(B-C) T cells is shown between the control and HIV+worm co-infected subjects.  Statistical analysis 

was performed using Mann-Whitney test for comparing groups.  

 

 

3.3.1.2. Effect of treatment with praziquantel and albendazole on T 

cell subsets in HIV negative and HIV positive individuals 
 

To investigate the effect of treating helminths on the profiles of CD4 and CD8 

T cell subsets, frequencies of different T cell subsets from helminth infected 

individuals who are either HIV negative or HIV positive were determined and 

compared before and up to one year after worm treatment. Only the individuals with 

no detectable worms post treatment were analysed. For logistic reasons, all study 

groups including controls were de-wormed. Since the effect of treatment on the 

frequency of T cell subsets was also observed with the control subjects in some cases, 

the effect of de-worming on test groups was only considered significant if changes 

observed in the test groups was significantly different compared to the changes 

observed in the control groups. 

 



73 

 

In HIV negative individuals, a minor decrease in naïve (Table 3- 11). Changes 

in the frequency of naïve CD4 T cells were also observed in the control group 3 

months after anti helminthic treatment (Median at baseline: 34.8% (23.15-47.85%) vs 

Median 3 months post treatment: 40.7% (25.6-52.85%), P=0.1039, data not shown). 

This change differed significantly to the one observed in the worm infected group 

(P=0.0118). A slight increase in effector memory CD4 T cells was also observed up 

to 3 months after helminth treatment (Table 3- 11) but this change did not differ 

significantly when compared to the change observed in the control group (P=0.8318), 

which showed no effect of treatment (0.3497). A decrease in the median frequencies 

of central memory CD4 T cells was particularly observed in the worm infected group 

a year after treating for worms (P=0.0047, Table 3- 11). A decrease in the frequency 

of central memory CD4 T cells was also observed within non-infected control 

subjects a year post treatment, from a median of 38.7% to 32.5% (P=0.0004, data not 

shown). Compared to controls, changes observed in the worm infected group 

following treatment were significant (P=0.0101, data not shown). Also an increase in 

terminally differentiated CD4 T cells was seen in HIV negative individuals a year 

post-treatment with no substantial differences between changes observed in this group 

compared to changes observed in the control group (P=0.2118). A slight decline in 

the median frequencies of central memory and terminally differentiated CD8 T cells 

as well as an increased  frequency of effector memory CD8 T cells was also seen in 

HIV negative individuals a year post treatment (Table 3- 11). When compared to non-

helminth infected control subjects who also showed a significant effect of treatment, 

the observed median differences in the frequency of central memory and terminally 

differentiated CD8 T cells were minor but significant (P=0.0327 and 0.0174 

respectively, data not shown). The median differences in the frequency of effector 

memory CD8 T cells which were observed in the worm infected group were 

insignificant when compared to control subjects (P=0.8661, data not shown), which 

showed no effect of treatment. 
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Table 3- 11. Expression of maturation markers on CD4 and CD8 T cells at before and after de-worming on HIV negative individuals 

 %CD4+Naive 
%CD4+Central 
Memory 

%CD4+Effector 
Memory 

%CD4+Terminally 
differentiated 

%CD4+Total 
Memory 

%CD8+Naive 
%CD8+Central 
Memory 

%CD8+Effector 
Memory 

%CD8+Terminally 
differentiated 

HIV- (Na=133) HIV-(Na=132) 

With 

infection 

at baseline 

38.6(27.75-

47.55) 

37.7 (31.75-

43.05) 

18.6 (14.35-

25.85) 
2.42 (1.3-4.315) 

61.45 

(52.41-

72.41) 

40.95 (29.1- 
54.3) 

14.2 (10.3- 
19.95) 

8.825 (5.145- 
15.25) 

30.65 (19.1- 41.3) 

3 months 

after 

treatment 

37.2 (26.65-

45) 

37.5 (32.9-

44.25) 

19.2 (15.1-

28.8) 
2.26 (1.25-4.925) 

62.67 

(54.89-

73.36) 

39.8 (27.8- 
53.55) 

14.55 (10.45- 
21.7) 

9.24 (5.84- 
15.25) 

28.6 (19.25- 44.9) 

P value* 0.0067 0.4407 0.0142 0.8314 0.0079 0.3309 0.4719 0.1818 0.7012 

HIV-(Nb=115) 

With 

infection 
at baseline 

40.2 (29.8- 
48.8) 

37.2 (31.1-
42.6) 

18.4 (14.2-
24.5) 

2.42 (1.23-4.15) 
59.67 
(51.05-70.2) 

44.2 (32.7-
57.6) 

14.5 (10.4-
21.3) 

8.365 (4.78-
13.4) 

28.4 (17.6-40.1) 

1 year 

after 

treatment 

40.9 (31.8-

46.9) 

35.9 (30.6-

41.3) 

20.1 (16.3-

25.9) 
2.94 (1.37-5.95) 

59.84 

(52.97-

68.25) 

45.1 (30.2-

55.4) 

14.1 (9.47-

19.3) 

8.8 (5.24-

12.95) 
28.4 (18.5-37.8) 

P value* 0.5956 0.0047 0.0236 0.0002 0.5472 0.2557 0.0106 0.1161 0.0271* 

*P values between baseline and follow up visits performed using the Wilcoxon-matched pairs test 
a Number of baseline vs 1-3 months after helminth treatment pairs 
b Number of baseline vs a year after helminth treatment pairs 
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Although cross-sectional analysis showed no association of S.mansoni 

infection with changes in proportion of T-cell subsets, frequency of naïve CD4 T cells 

slightly decreased in S.mansoni infected subjects up to 3 months after treatment from 

a median of 41.3% (IQR: 33.6- 48.45%) to 40.5% (IQR: 31.2- 47.15%; P= 0.0161; 

data not shown). The observed median difference in this group was significant when 

compared to the control group (P=0.0123, data not shown). Similar non-significant 

decrease was seen a year after treatment. Also, a small increase in frequency of 

effector memory CD4 T cells was observed in the same group up to 3 months post 

treatment from a median of 18.4% (IQR: 11.85- 23.7 %) to 18% (IQR: 14.95- 25.6 %; 

P= 0.0032; Figure 3- 19A) whereas there was no change observed in the non-helminth 

control group (Median 20.3% to 19.8%, P=0.3497, data not shown). differences in the 

frequency of effector memory CD4 T cells were insignificant between S.mansoni 

infected group and controls (P=0.3314, data not shown). In addition, S.mansoni 

infected volunteers had slightly more frequency of total memory CD4 T cells up to 3 

months after treatment (Median: 59.48%; IQR: 52.82- 68.84%) than at baseline 

(Median: 59.25%; IQR: 51.55- 66.32%; P= 0.0166. Figure 3- 19B). This change was 

significant when compared to the control group (P=0.0250, data not shown). An effect 

of treatment on the proportion of total memory CD4 T cells was also seen a year after 

treatment but to a non-significant level (Figure 3- 19C). 
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Figure 3- 19: Effect of helminth treatment on frequency of T-cell subsets in the 

peripheral blood of S.mansoni infected volunteers. Comparison of percentage 

CD45RO+CD27- on CD4 T cells before (W0) and 1-3 months (W1) after helminth treatment 

are shown in (A). (B) Shows a comparison of percentage CD4+ Total memory at W0 and W1, 

while (C) shows the comparison of percentage CD4+Total memory at W0 and a year after 

helminth treatment (W3). Total memory was defined by the expression of CD27 and CD45RO 

as described in the method chapter. Statistical analysis was performed using Wilcoxon 

matched pairs test for comparison of pairs.  

 

 

Also, cross-sectional analysis showed no association of Hookworm infection 

with changes in proportion of T-cell subsets. However, Hookworm treatment led to a 

non-significant decrease in frequency of naïve CD8 T cells from a median of 47.8% 

(IQR: 32.55- 57.25%) to 41.7% (IQR: 28.55- 54.25%; P= 0.059) especially a year 

post treatment (data not shown). The observed median difference was insignificant 

when compared to the control group. In contrast, Hookworm treatment led to a non-

significant increase in frequency of effector memory CD8 T cells from a median of 

7.655% (IQR: 3.87- 17.80%) to 12.8% (IQR: 5.48- 18.05%; P= 0.0737) up to 3 

months post treatment (data not shown) where as controls decreased from a median of 

10.1% to 8.58% (P=0.211, data not shown). Of note, this treatment-induced change 

was significant when compared to the control group (P= 0.0248, data not shown).  
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In general, helminth treatment had a moderate impact on the frequency of 

different T/cell subsets. Compared to non-helminth controls, the treatment induced 

differences that were observed in different T-cell subsets were very minor. 

 

In HIV positive individuals, no significant changes in the frequencies of CD4 

and CD8 T cell subsets was observed up o 3 months post treatment, except for a 

moderate increase in central memory CD8 T cells (Table 3- 12), which was 

insignificant when compared to the changes observed in the non-helminth controls 

(P=0.1131, data not shown), which showed no effect of treatment. However, a 

significant increase in frequency of terminally differentiated CD4 and CD8 T cells 

was seen a year after treatment (Table 3- 12), but these changes were insignificant 

when compared to control groups (P=0.1255 and 0.1026 respectively), which showed 

no effect of treatment (data not shown). A significant decrease in the frequency of 

naïve CD8 T cells was also observed in this group a year after treating helminth 

infections (Table 3- 12) whereas non-helminth infected control subjects showed a 

decrease from a median of 22.45% to 16.95% (P=0.0161, data not shown). Compared 

to controls, the median differences observed in the worm infected group were 

insignificant (P=0.6018, data not shown).  
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Table 3- 12. Expression of maturation markers on CD4 and CD8 T cells at before and after deworming on HIV positive individuals 

 %CD4+Naive 
%CD4+Central 

Memory 
%CD4+Effector 

Memory 
%CD4+Terminally 

differentiated 
%CD4+Total 

Memory 
%CD8+Naive 

%CD8+Central 
Memory 

%CD8+Effector 
Memory 

%CD8+Terminally 
differentiated 

HIV+(Na=39) 

With 

infection 

at 

baseline 

37.2 (25.7- 
53.4) 

34.9 (26.8- 
39.6) 

19.1 (12.4- 
28.7) 

2.01 (0.79- 4.17) 

62.85 

(46.77- 
74.33) 

23.1 (15.1- 
33.3) 

19.7 (13.5- 
23.9) 

13.9 (8.6- 
20.3) 

40.5 (28.3- 50.1) 

3 months 

after 

treatment 

32.7 (21.2- 
49.8) 

35.7 (30- 
44.1) 

19.8 (13.2- 
30.1) 

2.33 (0.85- 
4.550) 

67.7 

(49.86- 
79.1) 

21.2 (16.4- 
30) 

21.1 (13.9- 
28.5) 

14.8 (10.6- 
20.1) 

38 (28.4- 49.1) 

P value* 0.0964 0.0815 0.1958 0.5325 0.0978 0.2389 0.0382 0.3825 0.4663 

HIV+(Nb=39) 

With 
infection 

at 

baseline 

37.2 (25.7- 
53.4) 

35.2 (25.8- 
42) 

19.2 (11.9- 
25.9) 

2.29 (0.73- 4.17) 

62.85 

(46.77- 
74.33) 

21 (14.5- 
32.3) 

19.5 (13.5- 
23.1) 

14.8 (10.1- 
20.6) 

40.5 (30.6- 50.3) 

1 year 

after 

treatment 

32 (22.9- 
44.6) 

32.7 (24.6- 
41.5) 

22.8 (17.1- 
30.1) 

4.11 (1.81- 11.3) 
67.5 (55.4- 

77.14) 

17.5 (12.5- 
24.5) 

14.1 (12.2- 
20.3) 

15.6 (10.1- 
22.1) 

49.3 (32.4- 55) 

P value* 0.2875 0.4534 0.0205 0.0044 0.3102 0.0077 0.0531 0.2567 0.0091 

*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs test 
a Number of baseline vs 1-3 months after helminth treatment pairs 
b Number of baseline vs a year after helminth treatment pairs 
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The number of HIV+T.trichiura infected group pairs was too small to make a 

comparative analysis of the effect of treatment on T cell subsets.  

 

Treatment of S.haematobium infected volunteers (N=5) seemed to decrease 

frequency of naïve, but increase frequency of terminally differentiated CD4 and CD8 

T cells a year after treatment (P= 0.0625 for all).  Frequency of naïve CD4 T cells 

decreased from a median of 40.3% (IQR: 26.95-51.25%) to 32% (IQR: 20.64-38.95 

%) but where insignificant compared to non-helminth infected controls (P=0.1023, 

data not shown). The decrease in frequency of naïve CD8 T cells was from 20.5% 

(IQR: 18.7-26.9%) to17.4% (IQR: 13.3-20.4%; data not shown) where as controls 

showed a median decrease from 22.45% to 16.95% (P=0.0161, data not shown). 

Compared to controls, the differences in the frequency of naïve CD8 T cells were 

insignificant (0.7919, data not shown) In contrast, frequency of terminally 

differentiated CD4 T cells increased by about 4-fold, from a median of 2.82% (IQR: 

1.89- 8.39%) to 11.2% (IQR: 3.77- 15.45%; Figure 3- 20A). these changes observed 

were minor when compared to the control group (P=0.0512, data not shown) which 

showed no effect of worm treatment. Median frequencies of terminally differentiated 

CD8 T cells were increased from 43.3% (IQR: 39- 48.55%) to 55.1% (IQR: 51.4- 

63.3%; Figure 3- 20B) where as within the control group, the median increase was 

from 23.2% to 27.1% (P=0.7334, data not shown). These treatment induced changes 

which were observed within the worm infected group were significant when 

compared to controls (P=0.0307, data not shown). S.haematobium infected volunteers 

also had slightly higher frequency of total memory CD4 T cells a year post treatment 

(Median: 67.5%; IQR: 61.42- 79.51%) than at baseline (Median: 60.29%; IQR: 

48.94-72.76%; P=0.0625. Figure 3- 20C) which were insignificant when compared to 

controls (P=0.4850, data not shown). A 1.5-fold decline in the frequency of central 

memory CD8 T cells from a median of 21.3% (IQR: 17.35-22.95%) to 13.9% (IQR: 

10.34-16.7%) was observed as well in this group, one year post treatment (Figure 3- 

20D) which were also insignificant when compared to controls. 
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Figure 3- 20:  Effect of helminth treatment on the frequency of T-cell subsets in the peripheral 

blood of HIV+ S.haematobium co-infected volunteers. Shows comparison of percentage 

CD4+CD45RO-CD27- (A), CD8+CD45RO-CD27- (B), CD4+Total memory (C) and 

CD8+CD45RO+CD27+ (D) before (W0) and a year (W3) after helminth treatment. Total memory was 

defined by the expression of CD27 and CD45RO as described in the method chapter 2.5. Statistical 

analysis was performed using Wilcoxon matched pairs test for comparison of pairs.  

 

Although cross-sectional analysis showed no association of Hookworm co-

infection with changes in proportion of T-cell subsets, HIV+Hookworm infected 

volunteers demonstrated a moderate decrease in frequency of naïve CD4 T cells only 

up to 3 months after treatment from a median of 30.8% (IQR: 23.1- 55.45%) to 28.5% 

(IQR: 6.84- 49.45%; P= 0.0479; Figure 3- 21A). However, the statistical power was 

lost a year after treatment (P= 0.7148, data not shown). The observed changes were 

insignificant when compared to the control groups (data not shown). Similarly, a 

significant decrease in the frequency of naïve CD8 T cells from a median of 21.1% 

(IQR: 10.13- 37.75%) to 16.1 % (IQR: 6.79- 22.7%; P= 0.0052) was observed in the 

same group especially a year after treating helminth infections (Figure 3- 21B) which 

was also insignificant when compared to the control group (P=0.4253). Treatment of 

Hookworm infection was associated with increased frequency of terminally 

differentiated CD4 and CD8 T cells a year after treatment. Frequency of terminally 

differentiated CD4 T cells increased by 3-fold, from a median of 1.99% (IQR: 0.475- 
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9.24%) to 6.025% (IQR: 2.12- 16.1%; P= 0.058; Figure 3- 21C). this change was 

insignificant when compared to the control group (P=0.1427, data not shown). 

Median frequencies of terminally differentiated CD8 T cells increased from 31.25% 

(IQR: 24.6- 55%) to 49.65% (IQR: 35.9- 58.95%; P= 0.0245; Figure 3- 21D). this 

treatment induced change was significant when compared to the control group 

(P=0.0448) 
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Figure 3- 21: Effect of helminth treatment on the frequency of T-cell subsets in the peripheral 

blood of HIV+Hookworm co-infected volunteers. Comparison of percentage CD4+CD45RO-CD27+ 

(A), before (W0) and 1-3 months (W1) after helminth treatment is shown in (A). Frequency of 

CD8+CD45RO-CD27+ (B), CD4+CD45RO-CD27- (C) and CD8+CD45RO-CD27- (D) is also shown 

at W0 and and a year (W3) after helminth treatment. Statistical analysis was performed using Wilcoxon 

matched pairs test for comparison of pairs. 

 

 Collectively, this data shows that helminth treatment has a moderate influence 

in the frequency of different T-cell subsets studied in relation to HIV and helminth 

co-infections. Compared to non-helminth controls, the treatment induced differences 

that were observed in different T-cell subsets were very minor. 
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3.3.2. Characterization of CD4 and CD8 T cell subsets in relation to 

chronic HIV-1 infection 
 

HIV infection independent of helminth infection showed a significant effect 

on the frequency of central memory CD4 T cells and frequencies of all studied CD8 T 

cell subsets (Figure 3- 22A-B). A decline in the frequency of naïve CD8 T cells was 

observed within HIV positives with (Median: 20.45%; IQR: 13.65-32%) and without 

(Median: 22.8%; IQR: 19.8-31.65%) helminth infection when compared to the HIV 

negative non-helminth infected group (Median: 40.6%; IQR: 32.8-52.1%; P value for 

both <0.0001), with no apparent influence of helminth infection (P=0.1358; data not 

shown). In contrast, when compared with HIV-Helminth- control group (Median: 

15.2%; IQR: 9.45-22.6%), higher frequency of central memory CD8 T cells were 

observed in HIV+ volunteers without (Median: 22.4%; IQR: 17.8-37.2%; P=0.0032) 

or with (Median: 19.85%; IQR: 14.55-27.4%; P=0.0417) helminth infection with no 

significant influence of helminth infection (P= 0.0994; data not shown).  Similarly, 

HIV+ volunteers with or without helminth co-infection had higher frequencies of 

effector memory CD8 T cells (Median: 15.75% and 14.9% respectively) compared to 

HIV negative controls (Median: 9.63%; P values=0.0009 and 0.0058 respectively) 

with no significant influence of helminth infection (P=0.987; data not shown). 

However, HIV infection alone was not associated with changes in the frequency of 

terminally differentiated CD8 T cells, but helminth co-infection was (Figure 3- 22C). 
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Figure 3- 22: Frequency of T-cell subsets in relation to HIV-1 infection. Median frequency of CD4 

(A) and CD8 (B) T-cell subsets of HIV+ (grey) and HIV- volunteers. N, Naïve (CD45RO-CD27+); 

CM, Central memory like (CD45RO+CD27+); EM, Effector memory like (CD45RO+CD27-) and TD, 

Terminally differentiated (CD45RO-CD27-). (C) Shows the frequency of CD45RO-CD27- on CD8 T 

cells in relation to HIV and Helminth infections. Statistical analysis was performed using Mann-

Whitney test for comparing groups. 

 

In general, this data shows that HIV infection alone has a significant impact on T-

cell subsets particularly on the CD8 T cell compartment. However, changes in the 

frequency of terminally differentiated CD8 T cells are even higher with helminth co-

infections compared to HIV infection alone, showing an influence of helminth co-

infection on modulating this T-cell compartment.  
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3.3.3. Expression of activation markers on CD4 and CD8 T cells in 

relation to chronic infection with different helminth species 

3.3.3.1. Cross-sectional analysis 
 

To examine whether helminth infections play a role in the modulation of the 

immune activation status, a comparison of the expression of immune activation 

markers on CD4 and CD8 T cells between HIV negative and HIV positive subjects 

with and without helminth infections was done. A representative dot plot and gating 

of activated CD4 and CD8 T cells is shown in Figure 3- 23A. 
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Figure 3- 23:  Frequencies of expression of T-activation markers on CD4 and CD8 T cells. Shown 

in (A) is the gating strategy for the expression activation markers (HLA-DR+ and CD38+) on CD4 and 

CD8 T cells of a representative subject. A linear regression analysis of absolute CD4 counts and 

frequency of total HLA-DR expression on CD4 T cells is shown in (B).  

   

Taken together as a group, helminth infected subjects had only moderately and 

mostly insignificant increased frequencies of HLA-DR
+
 and/or CD38

+
 CD4 and CD8 

T cells when compared to non-infected subjects (Table 3- 13). Nonetheless, in 
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subjects with helminth infection the median proportion of HLA-DR
+
/CD38

+
 CD4 and 

CD8 T cells was significantly elevated from 2.16% versus 2.63% (%CD4, P=0.01) 

and 5.31% versus 7.1% (%CD8, p=0.04). Each of the studied helminth species 

modulated the percentages of HLA-DR and/or CD38 molecules on CD4 and/or CD8 

T cells as described herein. 

 

Within HIV-Helminth+ individuals, there was a linear, negative association 

between frequency of HLA-DR+CD4 expressing T cells and CD4 T cell counts (P= 

0.0116; r
2
= 0.035; Figure 3- 23B), suggesting that the observed elevated CD4 T cell 

activation is closely linked to loss of CD4 T cells.  

 

Table 3- 13. Expression of activation markers on CD4 and CD8 T cells in relation to chronic 

infection with different helminth species on HIV negative individuals 

 
HIV negative 

 
No helminth All Helminth+ P value 

N (%CD4) 43 181 
 

%CD4+HLA-DR-CD38+ 
41% (30-47.9%) 

44.2% (34.2-53.8%) 0.1929 

%CD4+HLA-DR+CD38+ 2.16% (1.55-2.87%) 2.63% (1.895-3.745%) 0.0125 

%CD4+HLA-DR+CD38- 4.47% (3.06-6.24%) 5.12% (3.575-7.13%) 0.1752 

%CD4+ Total HLA-DR+ 7.01% (5.25-8.94%) 7.79% (5.89-11.23%) 0.0741 

%CD4+ Total CD38+ 43.16% (34.21-50.24%) 47.2% (37.74-57.01%) 0.0976 

N (%CD8) 43 180 
 

%CD8+HLA-DR-CD38+ 22.2% (13.8-33.6%) 27.15% (15.45-38.5%) 0.1284 

%CD8+HLA-DR+CD38+ 
5.31% (3.06-9.56%) 

7.095% (4.315-13%) 0.0434 

%CD8+HLA-DR+CD38- 11.5% (7.42-15.6%) 11.55 (6.805-18.75%) 0.8436 

%CD8+ Total HLA-DR+ 18.62% (12.37-24.38%) 21.64% (12.21-31.4%) 0.2813 

%CD8+ Total CD38+ 29.61% (21.97-40.72%) 36.4% (24.52-51.36%) 0.0388 

   

 

Percentages of HLA-DR+CD38- CD4 and CD8 T cells were markedly higher 

in the peripheral blood of T.trichiura infected volunteers (Figure 3- 24A-B). 

Tendency towards an increase in frequency of HLA-DR+CD38+ was also observed 

on CD4 T cells (1.2-fold, 2.5% vs 2.2%, P=0.1076); and even more significantly on 

CD8 T cells of individuals in the same group (1.9-fold, 10.0% vs 5.31%, P=0.0002, 

Figure 3- 24C-D).  When the expression of HLA-DR was assessed independent of 

CD38, higher frequencies of CD4 and CD8 T cells expressing HLA-DR molecule was 
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observed in T.trichiura infected subjects compared to non-helminth infected 

individuals (9.5% vs 7.0%, P=0.0058 and 31.5% vs 18.6%, P<0.0001 respectively. 

Figure 3- 24E-F). A trend towards increased frequency of CD8 T cells expressing 

CD38 was also observed when the expression of CD38 was analysed independent of 

HLA-DR. (P=0.1023; data not shown).  

 

There was a linear, positive association between frequency of HLA-DR+CD4 

expressing T cells and frequency of Tregs (P= 0.0012; r
2
= 0.2763; Figure 3- 24G) in 

HIV-T.trichiura infected subjects, suggesting that the observed elevation of Tregs is a 

function of increased frequency of CD4 T cell activation. A positive correlation was 

also observed between frequency of HLA-DR+CD4 T cells and Tregs count (P= 

0.0649; Spearman r= 0.3154; data not shown), but a non-significant linear relation 

(Figure 3- 24H) within the same group. 
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Figure 3- 24: Frequency of T-cell activation in relation to T.trichiura infection. The frequencies of  

CD4+HLA-DR+CD38-(A), CD8+HLA-DR+CD38- (B ), CD4+HLA-DR+CD38+ (C), CD8+HLA-

DR+CD38+(D), CD4+ Total HLA-DR+ (E) and CD8+ Total HLA-DR+ (F) T cells is shown between 

the control and T. trichiura infected subjects. Linear regression analysis of the frequency of total HLA-

DR expression on CD4 and frequency (G) or numbers (H) of Treg cells is shown.   Statistical analysis 

was performed using Mann-Whitney test for comparing groups. 

 

Infection with S.mansoni seemed to increase the frequency of HLA-DR-

CD38+ on CD4 and CD8 T cells of infected individuals, although not to a significant 

level. Median frequency of HLA-DR-CD38+ on CD4 T cells of HIV negatives with 

S.mansoni infection was 48% (IQR: 34.8- 55.4%) when compared to non-helminth 

infected individuals (Median: 41%; IQR: 30- 47.9%; P= 0.0686; data not shown) 

while that of CD8 T cells was 27.9% (IQR: 16.35- 38.85%) compared to control 

group (Median: 22.2%; IQR: 13.8- 33.6%; P= 0.0901; data not shown). Percentages 

of CD4 and CD8 expressing HLA-DR+CD38+ molecules were moderately higher in 

this group than the controls (P= 0.03 for both; Figure 3- 25A-B). Similarly, higher 

percentages of CD4 and CD8 T cells expressing CD38, independent of HLA-DR were 

also observed within S.mansoni infected group (Figure 3- 25C-D). 
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Figure 3- 25: Frequency of T-cell activation in relation to S.mansoni infection. The frequencies of 

CD4+HLA-DR+CD38+(A), CD8+HLA-DR+CD38+ (B ), CD4+ Total CD38+ (C) and CD8+ Total 

CD38+(D) T cells is shown between the control and S.mansoni infected subjects. Statistical analysis 

was performed using Mann-Whitney test for comparing groups. 

 

Likewise, infection with S.haematobium was associated with a moderate 

increase of frequency of HLA-DR-CD38+ expression but only on CD8 T cells 

(Median: 32.55%; IQR: 21.25- 46.15%) when compared to non-helminth infected 

individuals (Median: 22.2%; IQR: 13.8- 33.6%; P= 0.0416; Figure 3- 26A). A trend 

of higher frequency of CD8+CD38 expressing T cells was also observed when 

analysing the expression of CD38 independent of HLA-DR (Figure 3- 26B). 
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Figure 3- 26: Frequency of T-cell activation in relation to S.haematobium infection. The 

frequencies of HLA-DR-CD38+ (A) and Total CD38+ (D) on CD8T cells is shown between the 

control and S.haematobium infected subjects. Statistical analysis was performed using Mann-Whitney 

test for comparing groups. 

 

Percentages of CD4 and CD8 T cells expressing HLA-DR+CD38+ were 

higher in the peripheral blood of A.lumbricoides infected volunteers compared to 

controls (Figure 3- 27A-B). When compared to non-infected controls, median 

frequencies of HLA-DR
+
CD38

+
 CD4 T cells were significantly elevated in subjects 

infected with A.lumbricoides by 1.5-fold (3.3% vs 2.2%, P=0.0003) while their 

median frequencies of HLA-DR
+
CD38

+
 CD8 T cells were significantly increased 

by1.2-fold (6.52% vs 5.31%, P=0.0413). Increase in frequency of CD4 T cells 

expressing HLA-DR independent of CD38 was also observed in A.lumbricoides 

infected subjects (Median: 8.915%; IQR: 6.47- 12.48%) when compared to non-

infected subjects (Median: 7.01%; IQR: 5.25- 8.94%; P= 0.0165;Figure 3- 27C). 

Percentages of CD8 T cells expressing HLA-DR independent of CD38 seemed to be 

higher as well, but not to a significant level (P=0.1296; data not shown). Also, a trend 

towards increased frequency of CD8 T cells expressing CD38 independent of HLA-

DR was observed in this group (Median: 37.52%; IQR: 25.21- 48.69%) when 
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compared to control subjects (Median: 29.61%; IQR: 21.97- 40.72%; P= 

0.0566;Figure 3- 27D). 
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Figure 3- 27: Frequency of T-cell activation in relation to A.lumbricoides infection. The 

frequencies of CD4+HLA-DR+CD38+(A), CD8+HLA-DR+CD38+ (B ), CD4+ Total HLA-DR+ (C) 

and CD8+ Total CD38+(D) T cells are shown between the control and A.lumbricoides infected 

subjects. Statistical analysis was performed using Mann-Whitney test for comparing groups. 

 

To the contrary, Hookworm infected volunteers had lower median frequencies 

of CD8 T cells expressing HLA-DR+CD38- (Median: 7.545%; IQR: 4.25-12.6%) 

compared to control subjects (Median: 11.5%; IQR: 7.42-15.6%; P=0.0119;Figure 3- 

28A).  Lower median frequencies of CD8 T cells expressing HLA-DR molecule 

independent of CD38 was also observed in HIV-Hookworm+ individuals (Median: 

12.46%; IQR: 8.89-18.2%) than in non-helminth infected individuals (Median: 

18.62%; IQR: 12.37-24.38%; P=0.0283; Figure 3- 28B). This suggests a down-

regulation of the activation parameter HLA-DR on CD8 T cells in relation to 

Hookworm infection. 
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Figure 3- 28: Frequency of T-cell activation in relation to Hookworm infection. The frequencies of 

HLA-DR+CD38- (A) and Total HLA-DR+ (B) on CD8 T cells is shown between the control and 

Hookworm infected subjects. Statistical analysis was performed using Mann-Whitney test for 

comparing groups. 
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In HIV positive volunteers, helminth infections in general had no apparent 

influence on the frequency of expression of immune activation parameters on T cells, 

except for up-regulation of percentages of CD8 T cells expressing HLA-DR+CD38- 

and HLA-DR independent of CD38 (Table 3- 14). 

 

Table 3- 14. Expression of activation markers on CD4 and CD8 T cells at in relation to chronic 

infection with different helminth species on HIV positive individuals 

 
HIV positive 

 
No helminth All Helminth+ P value 

N (%CD4) 26 51 
 

%CD4+HLA-DR-CD38+ 41.15% (30.95-52.85%) 42.9% (33.1-48.7%) 0.6627 

%CD4+HLA-DR+CD38+ 6.945% (2.79-14.65%) 9.81% (4.99-14.7%) 0.1664 

%CD4+HLA-DR+CD38- 7.47% (4.235-11.9%) 8.72% (5.35-15.2%) 0.234 

%CD4+ Total HLA-DR+ 16.8% (7.815-26.88%) 20.43% (10.64-31.56%) 0.1536 

%CD4+ Total CD38+ 49.04% (44.55-66.05%) 51.7% (42.25-63.59%) 0.9871 

N (%CD8) 26 53 
 

%CD8+HLA-DR-CD38+ 21.1% (14-31.25%) 20.2% (13.15-26.35%) 0.5679 

%CD8+HLA-DR+CD38+ 
24.5% (10.33-36.8%) 

28.15% (15-41%) 0.2626 

%CD8+HLA-DR+CD38- 11.7% (6.675-18.95%) 16.1% (9.325-24.85%) 0.03 

%CD8+ Total HLA-DR+ 35.53% (26.83-50.72%) 50.15% (35.05-60.38%) 0.0269 

%CD8+ Total CD38+ 42.8% (30.3-70.55%) 48.17% (32.46-71.5%) 0.5716 

 

However, co-infection with mainly T.trichiura influenced the expression of 

immune parameters HLA-DR and CD38 on both CD4 and CD8 T cells. Frequencies 

of CD4 and CD8 T cells expressing HLA-DR+CD38+ were higher in the peripheral 

blood of T.trichiura co-infected volunteers compared to controls (Figure 3- 29A-B). 

A trend towards an increase in frequency of CD4 T cells expressing HLA-DR+CD38- 

was also observed in this group (Median: 15.45%; IQR: 6.185- 19.3%) compared to 

subjects with HIV infection alone (Median: 7.47%; IQR: 4.235- 11.9%; P=0.0805; 

data not shown). Furthermore, HIV+ T.trichiura+ subjects had a significant increase 

in frequency of CD8 T cells expressing HLA-DR independent of CD38 (Median: 

61.87%; IQR: 47.15-71.6%) when compared to non-infected subjects (Median: 

35.53%; IQR: 26.83-50.72%; P=0.0042;Figure 3- 29C).  Percentages of CD8 T cells 

expressing CD38 independent of HLA-DR seemed to be higher as well, but not to a 

significant level (Figure 3- 29D). Altogether, this suggests that chronic T.trichiura co-

infection in chronically HIV infected people contributes to immune activation of CD4 
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and CD8 T cells which might contribute to providing more CD4 targets for HIV and 

acceleration of HIV disease progression respectively. 
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Figure 3- 29: Frequency of T-cell activation in relation to HIV-1 and T.trichiura co-infection. The 

frequencies of CD4+HLA-DR+CD38+(A), CD8+HLA-DR+CD38+ (B), CD8+ Total HLA-DR+ (C) 

and CD8+ Total CD38+(D) T cells is shown between the HIV+Worm- and HIV+T.trichiura infected 

subjects. Statistical analysis was performed using Mann-Whitney test for comparing groups. 

 

Up-regulation of the frequency of HLA-DR+CD38- expression on CD8 T 

cells was also significantly observed on S.haematobium (N=6; Median: 22.1% 

P=0.0261) and non-significantly on Hookworm infected subjects (N=18; Median: 

19.55%; P=0.0667) compared to HIV+W- subjects (N=25; Median: 11.7%; data not 

shown). 

 

Figure 3- 30A-D shows a linear regression analysis between frequency of 

immune activation markers (HLA-DR and CD38) on T cells and CD4 T cell counts 

within HIV positive, helminth infected individuals. Linear regression analysis showed 

a negative association between frequency of total HLA-DR+CD4+ T cells and CD4 T 

cell counts (P= 0.0017; r
2
= 0.1845; Figure 3- 30A), and that the frequency of total 

CD38+CD8 T cells seems to be linked to a decline in CD4 T cell counts (P= 0.0706; 
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r
2
= 0.064; Figure 3- 30D), suggesting the role of immune activation contributed by 

HIV and Helminth co-infection on HIV disease progression. 
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Figure 3- 30: Relationship between frequency of T-cell activation and CD4 T cell count. Linear 

regression analysis between CD4 T cell counts and %Total HLA-DR (A-B) or % Total CD38 (C-D) on 

CD4 and CD8 T cells is shown in HIV+Worm+ volunteers. 

 

3.3.3.2. Effect of treatment with praziquantel and albendazole on the 

expression of activation markers on CD4 and CD8 T cells in HIV 

negative and HIV positive individuals 
 

Data on the influence of anti-helminthic treatment on immune activation in 

worm infected individuals is still lacking. Treatment of intestinal helminth infections 

has been shown to reduce immune activation in HIV negative but not in HIV infected 

individuals (Kassu et al. 2003). In this study, the effect of treating helminths on the 

profiles of CD4 and CD8 T cells activation status was investigated by assessing the 

frequencies of HLA-DR and/or CD38 expression on T cells from helminth infected 

individuals who are either HIV negative or HIV positive, before and up to one year 

after worm treatment. Only the individuals with no detectable worms post treatment 

were analysed.  
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In general, less frequencies of activated CD4 and CD8 T cells were observed 

in helminth infected HIV negative subjects particularly a year post treatment (Table 

3- 15). However, only very minor changes were observed in HLA-DR and or CD38 

expression on CD4 and CD8 T cells with no substantial differences between helminth 

infected and the control group. For example, treatment with albendazole and 

praziquantel was associated with decreased median frequencies of total HLA-DR 

expression on CD4 (7.78% to 7.03%; P=0.0001) and CD8 T cells (21.6% to 17.16%; 

P<0.0001) a year after treatment, with no significant differences between these 

changes in median frequencies to that of non-infected individuals who also showed a 

moderate significant reduction in the median frequencies of HLA-DR+ T cells a year 

after treatment (Table 3- 15). 
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Table 3- 15. Expression of activation markers on CD4 and CD8 T cells at before and after de-

worming of HIV negative individuals  

 
*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 

test 

**P values in median change with time between helminth infected and non infected controls using the 

Mann-Whitney test 
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Effective treatment of T.trichiura infection in HIV negative individuals was 

associated with decreased frequency of HLA-DR+CD38- expression on both CD4 

and CD8 T cells especially a year after treating for helminths. Percentages of CD4+ 

HLA-DR+CD38- declined from a median of 7% (IQR: 4.195- 9.185%) to 4.84% 

(IQR: 3.595- 7.795%) a year after treatment (P= 0.002; Table 3- 15), while frequency 

of HLA-DR+CD38- CD8 T cells decreased from 19.3% (IQR: 14.55- 24.6%) to 

15.7% (IQR: 7.945- 21.45%; P= 0.0018; Table 3- 15). No decline was observed in the 

helminth negative group (Table 3- 15). Compared to the control group, the treatment 

induced change in the median frequencies of HLA-DR+CD38- CD4 and CD8 T cells 

was insignificant in T.trichiura infected subjects (P=0.5615 and 0.9661 respectively, 

Table 3- 15).  

 

Only very minor changes in HLA-DR expression on CD4 T cells could be 

detected 3 months after helminth treatment with no substantial differences between 

T.trichiura infected and the control group. The difference between visits for this 

group was from a median of 9.56% HLA-DR
+
 CD4 T cells to a median of 7.65% 

(p=0.1353), but this change did not differ significantly to the control group 

(p=0.3671). Median frequencies of HLA-DR
+
 CD8 T cells decreased substantially in 

T.trichiura infected people (33.54% to 26.86%, p=0.0025). Similar decrease in HLA-

DR
+
 CD8 T cell frequencies was observed in the control group (20.71% to 19.43, 

p=0.1334). Compared to the control group, the decrease in HLA-DR expression was 

pronounced, but still insignificant in T.trichiura (p=0.1009) infected subjects. 

Similarly, percentages of total HLA-DR expression on CD4 T cells moderately 

declined from a median of 9.37% (IQR: 6.995- 12.42%) to 7.3% (IQR: 6.43- 10.44%) 

a year after treatment (P= 0.0037; Figure 3- 31A), while that of CD8 T cells 

moderately dropped from 29.3% (IQR: 21.87- 39.3%) to 23.99% (IQR: 13.92- 

29.05%; P= 0.0002; Figure 3- 31B) with no substantial differences between 

T.trichiura infected and the control group (Table 3- 15).  Changes in the frequencies 

of HLA-DR
+
CD38

+
 and total CD38+ T cells were similar to HLA-DR

+
 T cells with 

very minor differences between these changes and that observed in the control group 

(Table 3- 15).  
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Figure 3- 31: Effect of helminth treatment on frequency of T-cell activation in the peripheral 

blood of T.trichiura infected volunteers. Comparison of percentage total HLA-DR+ on CD4 (A) and 

CD8 (B) T cells before (W0) and a year (W3) after helminth treatment is shown. Statistical analysis 

was performed using Wilcoxon matched pairs test for comparison of pairs.  

 

A.lumbricoides infected subjects showed also decrease in the frequency of 

activated T cells following treatment. Particularly, median frequency of total HLA-

DR+ CD8 T cells declined from 24.3% to 18.87% up to 3 months post treatment (P= 

0.0465; Table 3- 15). This decline was also observed a year post helminth treatment 

(P= 0.0138; Table 3- 15). Compared to the control group, the decreased frequency of 

HLA-DR+ CD8 T cells 3 months after anti helminthic treatment was minor and 

insignificant in A.lumbricoides (P=0.0976) infected subjects (Table 3- 15). The 

decreased frequency of HLA-DR+ CD8 T cells a year after helminth treatment was 

also insignificant in A.lumbricoides (P=0.0976) infected subjects when compared to 

control who also showed a decline in the frequency of HLA-DR+ CD8 T cells after 

treatment (P=0.004, Table 3- 15). 

 

For S.mansoni infected volunteers, median frequency of CD8 T cells 

expressing HLA-DR+CD38+ slightly declined from 7.91% (IQR: 4.975- 12.05%) to 

5.59% (IQR: 4.05- 10.5%) up to 3 months post treatment (P= 0.0418; Table 3- 15); 
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but this treatment effect was not observed a year post treatment (P= 0.1993; Table 3- 

15). However, compared to the control group, the decreased HLA-DR+CD38+ CD8 T 

cells was 3 months after anti helminthic treatment was insignificant in S.mansoni 

(p=0.3331) infected subjects (Table 3- 15). A slight but insignificant increase in the 

median frequency of HLA-DR-CD38+ CD8 T cells was observed a year after anti-

helminthic treatment (27.9% to 28.25%, P=0.8259, data not shown). This median 

change was however significant (P=0.0143) compared to the median change observed 

within the control group (24.6% to 19.3%, P=0.0014, data not shown). Similarly, 

frequency of CD4+HLA-DR+CD38- T cells were slightly increased from 4.315% 

(IQR: 3.15- 5.85%) to 4.875% (IQR: 3.745- 7.665%) up to 3 months (but not a year) 

post treatment (P=0.0005; Table 3- 15). Similar median frequencies were observed 

between visits within the non-helminth infected controls (P=0.7681, Table 3- 15). Of 

note, the observed median changes in the frequency of HLA-DR+CD38- CD4 T cells 

within S.mansoni infected group was significant compared to the control group 

(P=0.0033, Table 3- 15). A decline in the frequency of CD8 T cells expressing HLA-

DR+CD38- was observed from a median of 11.15% (IQR: 7.325- 15.2%) to 9.19% 

(IQR: 4.9- 13.9%) a year post treatment (P= 0.0446) with no substantial differences 

between the median changes in S.mansoni and the control group (Table 3- 15). Even 

though increased frequency of CD38 expression on T cells independent of HLA-DR 

was observed in association with S.mansoni infection (Figure 3- 25D), no treatment 

effect was observed on reducing the frequency of these cells up to a year after 

treatment (Table 3- 15). 

 

Effective treatment of S.haematobium was unexpectedly associated with a 

slight decrease in frequency of HLA-DR marker on CD4 and CD8 T cells one year 

after treating for helminths. The frequency of HLA-DR+CD38- CD4 T cells declined 

from 4.94% (IQR: 3.06- 6.14%) to 4.26% (IQR: 1.53- 5.6%; P= 0.0029; Figure 3- 

32A), while that of CD8 T cells was from 10.3% (IQR: 5.69- 18.9%) to 7.55% (IQR: 

3.43- 13%; P= 0.0098; Figure 3- 32B).  The control group showed no changes in 

median frequencies of HLA-DR+CD38+ T cells. Compared to the control group, the 

decrease in HLA-DR+CD38- expression was insignificant in S.haematobium infected 

subjects (Table 3- 15). Decreased frequency of total HLA-DR on both CD4 and CD8 

T cells observed a year after treatment as illustrated on Figure 3- 32C-D; which was 
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also insignificant compared to the median changes in the non-helminth controls 

(Table 3- 15).  
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Figure 3- 32: Effect of helminth treatment on frequency of T-cell activation in the peripheral 

blood of S.haematobium infected volunteers. Comparison of percentage HLA-DR+CD38- (A-B) 

andTotal HLA-DR+ (C-D) on CD4 and CD8 T cells before (W0) and a year (W3) after helminth 

treatment is shown. Statistical analysis was performed using Wilcoxon matched pairs test for 

comparison of pairs.  

 

Even though only down-regulation of frequency expression of either HLA-

DR+CD38- or HLA-DR alone, independent of CD38 on CD8 T cells was observed in 

relation to Hookworm infection (Figure 3- 28A-B), no effect of treatment on increase 

of such cells could be observed up to a year post treatment (Table 3- 15). Instead, 

decreased frequency expression of either HLA-DR-CD38+ or CD38 alone, 

independent of HLA-DR on T cells was seen as a result of treatment in Hookworm 

infected subjects. Percentage of HLA-DR-CD38+ on CD4 T cells declined from a 

median of 43.9% (IQR: 36.15- 53.2%) to 36.7% (IQR: 29- 48.8%) a year after 

treatment (P= 0.0003; data not shown); while that of CD8 T cells dropped from 28% 

(IQR: 20.45- 40.65%) to 19.5% (IQR: 16.3- 32.15%; P= 0.0002; data not shown).  

The frequency of total CD38 expression on CD4 T cells also decreased a year after 
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de-worming from a median of 46.04% (IQR: 38.89- 56.77%) to 38.28% (IQR: 30.65- 

50.41%; P= 0.0001; Table 3- 15). Again, these changes were very minor and 

insignificant compared to median changes observed in the respective control groups 

(Table 3- 15). 

 

 

Positive effect of treatment on the frequency of expression of immune 

activation parameters was also observed in HIV-helminth co-infected volunteers 

(Table 3- 16).  
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Table 3- 16. Expression of activation markers on CD4 and CD8 T cells at before and after 

deworming on HIV positive  individuals 

 
*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 

test 

**P values in median change with time between helminth infected and non-infected controls using the 

Mann-Whitney test 
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 Effective treatment of T.trichiura co-infection was not associated with 

decreased frequency of immune activation markers on T cells (Table 3- 16). Instead, 

treatment of Hookworm co-infection seemed to either increase expression of immune 

activation markers (HLA-DR+CD38-, HLA-DR+CD38+ or total HLA-DR), or 

decrease the frequency of HLA-DR-CD38+ or total CD38 expression particularly on 

CD4 T cells up to either 3 months or a year after treatment (Table 3- 16). The 

percentage of HLA-DR expressing CD4 T cells was increased from a median of 

16.11% (IQR: 9.14- 32.38%) to 26.3% (IQR: 13.07- 47.35%) up to 3 months post 

treatment (P= 0.0266; Figure 3- 33A). Percentage of CD38+ CD4 T cells was 

decreased from a median of 56.66% (IQR: 42.52- 63.55%) to 45.63% (IQR: 27.65- 

60.95%; P= 0.0052; Figure 3- 33B); while that of CD8 T cells was from 48.22% 

(IQR: 32.85- 61.05%) to 28.95% (IQR: 20.31 - 56.2%; P= 0.0494; Figure 3- 33C) a 

year post treatment.  These changes were insignificant compared to median changes 

observed in the respective control groups (Table 3- 16). 
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Figure 3- 33: Effect of helminth treatment on frequency of T-cell activation in the peripheral 

blood of HIV-1 and Hookworm co-infected volunteers. Comparison of percentage Total HLA-DR+ 

on CD4 T cells before (W0) and 1-3 months (W1) after helminth treatment is shown in (A). 

Comparison of percentage CD4+Total CD38+ (B) and CD8+Total CD38+ (C) at W0 and a year (W3) 

after helminth treatment are shown. Statistical analysis was performed using Wilcoxon matched pairs 

test for comparison of pairs. 
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Also, HIV+S.haematobium+ subjects (N=5) seem to down-regulate the 

frequency of immune activation parameters on T cells as illustrated in Figure 3- 34A-

D with no substantial differences between the median changes in this group to the 

control group (Table 3- 16). 
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Figure 3- 34: Effect of helminth treatment on frequency of T-cell activation in the peripheral 

blood of HIV-1 and S.haematobium co-infected volunteers. Changes in the frequency of T-cell 

activation before (W0) and a year (W3) after helminth treatment are shown. (A) CD8+HLA-

DR+CD38+; (B) CD4+Total CD38+ and (C) CD8+Total CD38+.Statistical analysis was performed 

using Wilcoxon matched pairs test for comparison of pairs. 

 

 

3.3.4. Expression of activation markers on CD4 and CD8 T cells in 

relation to chronic HIV-1 infection 

Immune activation drives HIV pathogenesis. Persistent immune activation is 

in fact a strong predictor of decline in CD4 T cells and hence progression to AIDS 

(Hazenberg et al. 2003; Brenchley et al. 2004; Bentwich et al. 1998). As expected, 

HIV infection alone was observed to have a great impact on immune activation, 

measured by the frequency of expression of HLA-DR and CD38 molecules on CD4 
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and CD8 T cells. Higher frequencies of CD4 (Median: 8.8%; IQR: 4.285- 14.3%) and 

CD8 (Median: 25.2%; IQR: 14.25- 40.05%) T cells co-expressing both HLA-DR and 

CD38 markers were observed within HIV positive individuals compared to their 

respective control groups by over 3.5-fold (Median: 2.465%; IQR: 1.835- 3.555% and 

Median: 6.86%; IQR: 3.97- 12.4% respectively; P value for both <0.0001; data not 

shown). This elevation was observed also when CD4 and CD8 T cells expressing 

HLA-DR+CD38+ within HIV positive subjects without or with helminth infections 

were compared with HIV negative, non-infected subjects (P value for both 

<0.0001;data not shown). Similarly, frequency of CD4 T cells expressing HLA-DR 

marker alone was significantly higher in HIV+ subjects (Median: 8.55%; IQR: 5.005- 

13.25%) than in HIV- subjects (Median: 4.91%; IQR: 3.55-7.005%; P<0.0001; data 

not shown) with no apparent influence of helminth infection. On the other hand, the 

increased frequency of HLA-DR+CD38- on CD8 T cells was seen to be a function of 

helminth co-infection more than HIV (Figure 3- 35A-B). HIV infection did not seem 

to have an impact on the expression of CD38 alone on CD4 T cells (P=0.3208; data 

not shown). However, HIV infection independent of helminth infection showed a 

moderate decline in the frequency of HLA-DR-CD38+ CD8 T cells compared to HIV 

negative subjects (P=0.0036; Figure 3- 35C); but this observation lost its statistical 

power when stratified on the basis of helminth infections (Figure 3- 35D). 

Percentages of CD4 and CD8 T cells expressing either HLA-DR or CD38 molecules 

independent of each other were higher with HIV infection (Figure 3- 35E-H).  

Elevation of the frequency of HLA-DR expression on CD8 T cells independent of 

CD38 was also contributed by helminth co-infection (Table 3- 13).  
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Figure 3- 35: Frequency of T-cell activation in relation to HIV-1 infection. The frequencies of 

CD8+HLA-DR+CD38-(A-B), CD8+HLA-DR-CD38+ (C-D ), CD4+ Total HLA-DR+ (E), CD8+ 

Total HLA-DR+ (F), CD4+ Total CD38+ (G) and CD8+ Total CD38+ (H) T cells is shown between 

the HIV- and HIV+ subjects. Statistical analysis was performed using Mann-Whitney test for 

comparing groups. 
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Linear regression analysis showed a close link between the increase in 

frequency of immune activation markers (HLA-DR and CD38) on T cells and the loss 

of CD4 T cell counts within HIV positive subjects irrespective of their helminth 

infection status (Figure 3- 36A-D). When analysis included subjects with HIV only, 

only the frequency of total HLA-DR+CD4 T cells was associated with less CD4 T 

cell counts (P= 0.0033; r
2
= 0.3066; data not shown) within HIV+Helminth- subjects; 

while the frequency of total CD38+CD8 T cells was closely linked to a decline in 

CD4 T cell counts (P= 0.224; r
2
= 0.0146; data not shown).  
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Figure 3- 36: Linear association between frequency of T-cell activation and loss of CD4 T cell 

count. Linear regression analyses between CD4 T cell counts and %Total HLA-DR (A-B) or % Total 

CD38 (C-D) on CD4 and CD8 T cells is shown in HIV infected volunteers. 
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3.3.5. Expression of HIV-coreceptor, CCR5 on total memory CD4 T 

cells in relation to chronic infection with different helminth 

species 

3.3.5.1. Cross-sectional 
 

Chemokine receptor CCR5 is also an important HIV-coreceptor whose lack of 

expression is associated with resistance to HIV acquisition (Deng et al. 1996; Liu et 

al. 1996). In this study, we assessed CCR5 expression intensity and frequency on total 

memory CD4 T cells (defined a sum of central memory, effector memory and 

terminally differentiating CD4 T cells) in relation to chronic helminth infections 

and/or HIV chronic infection. Since the expression of CCR5 is almost absent in naïve 

CD4 T cells (our own observation, data not shown), analysis of CCR5 expression 

intensity on total memory CD4 T cells is expressed as a ratio/difference between 

CCR5 expression intensity on total memory CD4 T cells to that of naïve CD4 T cells. 

In addition, the frequency of CCR5 expression on activated (defined by the 

expression of HLA-DR) total memory CD4 T cells was assessed between the 

different study groups.  Figure 3- 37A-B shows a representative plot for gating total 

memory CD4 T cells and their CCR5 expression. 

 

 



109 

 

HLA-DR

C
C

R
5

C
D

2
7

CD45RO

Naive 

(N)

Total Memory 

(TM)

CCR5  surface expression density

Naive 

(N)

Total Memory 

(TM)

R
e

la
ti

v
e

 c
e

ll
 c

o
u

n
t

A

B

 

Figure 3- 37:  HIV co-receptor expression on Total memory CD4 T cells.  A representative dot plot 

for gating total memory CD4 T cells and their CCR5 expression is shown in (A).  Shown in (B) is a 

histogram overlay for CCR5 density (MFI) expression on total memory CD4 T cells (red) and naïve 

CD4 T cells (blue). 

 

 Ratio of CCR5 median fluorescent intensity (MFI) between total memory and 

naïve CD4 T cells of HIV negative T.trichiura infected volunteers was higher 

(Median: 2.867; IQR: 2.138-3.643) than that of non-helminth infected subjects 

(Median: 2.234; IQR: 1.483-3.111; P=0.0198; Figure 3- 38A).  Also, a higher but 

non-significant value was found in the median differences in CCR5 MFI between 

total memory and naïve CD4 T cells (P=0.0588; Figure 3- 38B). Furthermore, a 

tendency towards increased median frequency of CCR5 expression on activated 

(HLA-DR+) total memory CD4 T cells was observed in the HIV- T.trichiura + group 

(Median: 6.99%; IQR: 4.63-10.8%) compared to the control group (Median: 5.72%; 

IQR: 4.51-7.5%; P=0.0818; Figure 3- 38C). This trend could also be observed for 

A.lumbricoides infected individuals (P=0.0972; Figure 3- 38D). This suggests that 

T.trichiura infection might also be associated with elevation of CCR5 expression on 

the surface of total memory CD4 T cell in the peripheral blood.  
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Figure 3- 38: HIV co-receptor expression on Total memory CD4 T cells in relation to Helminth 

infection.  Median Fluorescent Intensity (MFI) ratio (A) or differences (B) in CCR5 expression 

between surfaces of CD4 T memory and naïve (CD4+ CD45R0- CD27+) cells amongst HIV negative 

subjects infected with T.trichiura. Comparison of CCR5+HLA-DR+ frequencies between HIV- Worm-

and HIV-T.trichiura+ (B) or HIV-A.lumbricoides+ (C) subjects is shown.  

 

Within HIV positive co-infected individuals, Hookworm co-infection showed 

down regulation of expression of CCR5 density on total memory CD4 T cells 

compared to HIV positive non-helminth infected individuals (P=0.0201; Figure 3- 

39A). In contrast, S.haematobium infected people (N=6) had a slight increase in the 

differences in CCR5 MFI values between total memory and naïve CD4 T cells (P= 

0.0455; Figure 3- 39B).  
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Figure 3- 39: HIV co-receptor expression on Total memory CD4 T cells in relation to HIV and 

Helminth co-infection.  Median Fluorescent Intensity (MFI) ratio (A) or differences (B) in CCR5 

expression between surfaces of CD4 T memory and naïve (CD4+ CD45R0- CD27+) cells amongst 

HIV+Worm- and HIV+ infected with different worm species is shown. 

 

3.3.5.2. Effect of treatment with praziquantel and albendazole on the 

expression of CCR5 on total memory CD4 T cells in HIV 

negative and HIV positive individuals 
 

In HIV negative individuals, relative CCR5 MFI value and frequency of 

CCR5 expression declined in helminth infected subjects as a result of effective 

helminth treatment (Table 3- 17).  Most changes were insignificant when compared to 

the median changes between visits in CCR5 expression on non-helminth infected 

individuals. However, the difference in Δ CCR5 MFI between the baseline (330.5) 

and a year after helminth treatment (250.5, P<0.0001, Table 3- 17) in the worm-

infected group was significant compared to that of the control group (P=0.0429, Table 

3- 17). 
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Table 3- 17. Expression of a CCR5 co-receptor on CD4 total memory T cells at before and after 

deworming on HIV negative and HIV positive individuals 

 
*P values between baseline and 1-3 months follow up performed using the Wilcoxon-matched pairs 
test 

**P values in median change with time between helminth infected and non-infected controls using the 

Mann-Whitney test 
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Particularly, T.trichiura infected people had less differences in CCR5 MFI 

value between total memory and naïve CD4 T cells 3 months post treatment (Median: 

290.5; IQR: 209-477) than at baseline (Median: 441; IQR: 347-568; P=0.0371; Figure 

3- 40A), whereas no decline was observed in helminth negatives (Median: 306 to 348, 

p=0.7995). Compared to the control group, the treatment induced change in CCR5 

density on memory CD4 T cells was observed in T.trichiura infected subjects 

(P=0.0565, Table 3- 17). This decline in Δ CCR5 MFI within T.trichiura infected 

subjects was less significant when compared a year post treatment (P=0.1309; Figure 

3- 40B) with no substantial differences between helminth infected and the control 

group (Table 3- 17). Similarly, a significant decrease in frequency of CCR5 

expression on HLA-DR+ total memory CD4 T cells from a median of 7.12% (IQR: 

4.31- 12.6%) to 4.91% (IQR: 3.27- 7.56%) could only be observed up to 3 months 

after treating for helminths infections (P= 0.0049; Figure 3- 40C-D) whereas no 

changes were observed in the control group (P=0.2977, Table 3- 17). These changes 

were observed in the infected group were significant (P=0.0238, Table 3- 17) when 

compared to non-helminth infected controls, suggesting a positive effect of treatment 

on the expression of CCR5. 
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Figure 3- 40: Effect of T.trichiura treatment on HIV co-receptor expression on total memory CD4 

T cells.  Median Fluorescent Intensity (MFI) ratio (A) or differences (B) in CCR5 expression between 

surfaces of CD4 T memory and naïve (CD4+ CD45R0- CD27+) cells are shown before (W0) and after 

(W1=1-3months; W3=a year) treating for T.trichiura. Changes in Total memory CD4+ CCR5+HLA-

DR+ frequencies between HIV- Worm-and HIV-T.trichiura+ at W0 and either at W1 (C) or at W3 (D) 

are shown. Statistical analysis was performed using Wilcoxon matched pairs test for comparison of 

pairs. 

 

Figure 3- 41A-D shows the effect of treating A.lumbricoides on the frequency 

of CCR5 expression on total memory CD4 T cells 3 months and up to a year post 

treatment. A.lumbricoides co-infected volunteers also showed a significant decrease in 

the CCR5 density especially a year post treatment (P= 0.0098; Figure 3- 41B). 

Effective treatment of A.lumbricoides infection was associated with low frequencies 

of CCR5+ total memory CD4 T cells decreasing from a median of 6.51% (IQR: 5.75- 

10.8%) to 4.55% (IQR: 2.79- 8.27%) a year post treatment (P= 0.0137; Figure 3- 

41D). The observed median changes in CCR5 expression on memory CD4 T cells 

were very minor and insignificant when compared to the changes observed in the 

control group (Table 3- 17).  
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Figure 3- 41: Effect of Treating for A.lumbricoides on HIV co-receptor expression on Total 

memory CD4 T cells.  Median Fluorescent Intensity (MFI) differences in CCR5 expression between 

surfaces of CD4 T memory and naïve (CD4+ CD45R0- CD27+) cells are shown before (W0) and 

either 1-3 months (A) or a year (B) after treating for A.lumbricoides. Changes in Total memory CD4+ 

CCR5+HLA-DR+ frequencies between HIV- Worm-and HIV- A.lumbricoides + at W0 and either at 

W1 (C) or at W3 (D) are shown. Statistical analysis was performed using Wilcoxon matched pairs test 

for comparison of pairs. 

 

Surprisingly, effective treatment of Schistosome and hookworm infections 

were also seen to be associated with changes in the relative CCR5 MFI value and 

frequency of CCR5 expression (Table 3- 17) even though such infections did not 

influence the expression of CCR5 when compared with non-infected subjects at 

baseline. Most of these changes were insignificant when compared to the median 

changes between visits in CCR5 expression on non-helminth infected individuals. 

However, the difference in CCR5 MFI ratio between the baseline (2.111) and up to 3 

months after treating for Hookworm (1.601, P=0.0523, Table 3- 17) in the Hookworm 

infected group was significant compared to that of the control group (P=0.0262) 

which showed no such changes in response to treatment (Table 3- 17). 
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In HIV positive, worm co-infected individuals, effective worm treatment had 

an impact particularly on the relative CCR5 MFI expression on memory CD4 T cells 

(Table 3- 17) with no substantial differences between helminth infected and the 

control group. Effective treatment of Hookworm infection in HIV positive subjects 

led to a non-significant, slight increase in the expression of CCR5 MFI ratio on total 

memory CD4 T cells a year post treatment (Median: 1.629; IQR: 1.227- 2.703) 

compared to that at baseline (Median: 1.209; IQR: 1.022- 1.292; P= 0.0781; Table 3- 

17) whereas no changes were observed in the control group (P=0.4609, Table 3- 17). 

The observed median changes between visits in the Hookworm infected subjects was 

significant when compared to that observed in the non-helminth infected group 

(P=0.0401, Table 3- 17). In contrast, HIV+S.haematobium co-infected individuals 

seemed to have less relative CCR5 MFI expression on memory CD4 T cells up to 3 

months post treatment (P= 0.0625; Figure 3- 42). This difference was also significant 

compared to that observed in the control group (P=0.03), which showed no such 

changes in response to treatment (P=0.4845, Table 3- 17). 
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Figure 3- 42: Effect of Helminth treatment on HIV co-receptor expression on Total memory CD4 

T cells of HIV+S.haematobium co-infected volunteers.  Median Fluorescent Intensity (MFI) 

differences in CCR5 expression between surfaces of CD4 T memory and naïve (CD4+ CD45R0- 

CD27+) cells are shown before (W0) and 1-3 months (W1) after treating for S.haematobium. Statistical 

analysis was performed using Wilcoxon matched pairs test for comparison of pairs. 
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3.3.6. Expression of HIV-coreceptor, CCR5 on total memory CD4 T 

cells in relation to chronic HIV-1 infection 
 

When CCR5 expression intensity on total memory CD4 T cells was assessed 

in relation to HIV chronic infection, CCR5 expression density was reduced in HIV 

infected individuals (P<0.002; Figure 3- 43A-B). However, the frequency of CCR5 

expression in immune activated memory CD4 T cells was significantly higher in HIV 

positive individuals (Median: 9.08%; IQR: 5.47- 13.5%) compared to HIV negative 

ones (Median: 5.92%; IQR: 4.495-7.88%; P= 0.0002; Figure 3- 43C). Interestingly, 

frequency of CCR5 expression on total memory CD4 T cells was 31.96% and 26.04% 

in HIV negative and HIV positive individuals respectively. This level of CCR5 

expression by memory T cells is much less than that of Treg cells reported in the 

previous chapter (50% for both HIV negative and positive subjects). 
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Figure 3- 43: HIV co-receptor expression on Total memory CD4 T cells in relation to HIV-1 

infection.  Median Fluorescent Intensity (MFI) differences (A) or ratio (B) in CCR5 expression 

between surfaces of CD4 T memory and naïve (CD4+CD27+CD45R0-) cells between HIV- and HIV+ 

volunteers are shown. Comparison of CCR5+HLA-DR+ frequencies on Total memory CD4 T cells 

between HIV- and HIV+ volunteers is shown in (C).  Statistical analysis was performed using Mann-

Whitney test for comparing groups. 
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4. Discussion 

4.1. Pathogen-specific T cell responses during infection with HIV-

1, Helminth or HIV-Helminth co-infection 
 

Loss of pathogen-specific CD4 T cells and impaired functions of pathogen 

specific CD8 T cells caused by HIV contributes to the failure of the immune system 

to control infections with herpes virus such as CMV (Komanduri et al. 1998). Chronic 

helminth infections may as well induce T cell hyporesponsiveness and impair immune 

responses to other pathogens such as HIV and MTB (Borkow et al. 2001; Wammes et 

al. 2010). However, modulation of specific T cell responses to pathogens by helminth 

infections has not been fully explored. This study therefore examined the immune 

modulation of IFN-γ secreting specific T cell responses to HIV, MTB, Influenza, 

T.gondii and herpes viruses in relation to HIV and helminths.   

 

Although McElroy et al. observed modulation of frequency of HIV-specific 

cytolytic (CD107) CD8 T cell responses by S. mansoni, they found no such 

association when analysing IFN-γ release as a consequence of CD8 T cell responses 

to HIV (McElroy et al. 2005). Similar to their observation, no changes in the 

frequency and magnitude of IFN-γ+HIV-specific CD8 T cell responses in relation to 

any helminth specie were observed in this study. As expected, there was a linear 

relation between HIV-specific T cells and total number of CD4 T cells, confirming 

the importance of functional HIV-specific CD8 T cell responses in controlling the 

disease’s clinical outcomes (Jin et al. 1999; Schmitz et al. 1999; Ogg et al. 1998). A 

decrease in HIV-TL9- and FRP-specific T cells was observed in the study group a 

year after de-worming. This observation is most likely attributed to HIV infection, as 

a decline of HIV-specific CD8 T cells in chronic HIV individuals with time has been 

previously reported (Geldmacher et al. 2007). 

 

MTB co-infections with A.lumbricoides or T.trichiura have recently been reported 

to be associated with reduction of IFN-γ cytokine in the supernatant after in vitro re-

stimulation of whole blood of helminth infected individuals with MTB antigen 

(Resende Co et al. 2007). Also, helminth infected children have lower T cell 

proliferative responses to the BCG vaccine compared to uninfected children 

(Wammes et al. 2010). This study found no association of helminth infections on the 
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magnitude of IFN-γ+PPD-specific CD4 T cell responses in HIV negative and HIV 

positive study subjects with no signs of active TB infection. This suggests that worms 

have no apparent influence on IFN-γ MTB-specific T cell responses in latently 

infected people although it might be different in people with active TB (Resende Co 

et al. 2007). However, effective treatment of Hookworm infection in HIV negative 

volunteers demonstrated a moderate reduction on the quantity of IFN-γ+PPD-specific 

CD4 T cells, especially 3 months post treatment. In line with a previous report 

(Geldmacher et al. 2010), HIV alone had a great impact on the decline of frequency 

and magnitude of IFN-γ  production in PPD-specific CD4 T cells, emphasizing the 

role of HIV in compromising pathogen specific responses. 

 

Also, HIV infection alone was related to a decrease in frequency of detectable 

responses to herpes viruses analysed in this study, with the exception of CMV. The 

quantity of HSV-1-specific T cells declined markedly with HIV infection while HIV 

infection was associated with a moderate decline of CMV- and EBV-specific T cell 

responses with no apparent influence of worms. The observed persistence of CMV-

specific T cells in chronic HIV infection has been demonstrated before (Waldrop et 

al. 1997; Casazza et al. 2009; Geldmacher et al. 2010). De-worming however seemed 

to have an impact on the reduction of CMV-specific T cells in HIV negative and HIV 

positive subjects. 

 

Similarly, HIV infection was associated with a decrease in Influenza-specific T 

cell responses, with an inverse association to plasma viremia. Treatment of 

T.trichiura infection led to a moderate decrease in IFN-γ expressing Influenza a-

specific T cells up to 3 months post treatment. A moderate decline in T.gondii specific 

T cells was also observed in relation to HIV with no apparent influence of worms. 

 

 Taken together, these results suggest that helminth infections have no impact on 

the frequency and the quantities of IFN-γ secreting pathogen-specific T cells. 

However, HIV alone has a great impact on the quality and quantity of most IFN-γ 

releasing pathogen-specific T cell responses and co-infection with helminths does not 

appear to influence these changes. Also, worm treatment does not seem to have any 

profound effect on the quantities of pathogen-specific T cells of volunteers as 

measured by IFN-γ release ELISpot assay up to a year after helminth treatment. 
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4.2. Regulatory T cells during HIV-1, Helminth or HIV-Helminth 

co-infection 
 

Tregs are essential for controlling auto immune responses and inflammation 

induced by chronic infections like HIV (Sakaguchi et al. 2008; Card et al. 2009). 

However, there has been compelling evidence implicating Tregs interference with 

protective immunity against HIV (Aandahl et al. 2004; Kinter et al. 2007).  FoxP3 T 

cells tend to accumulate in lymphoid tissues of HIV infected individuals and their 

increased accumulation is associated with disease progression (Nilsson et al. 2006). In 

this study, a moderate increase in the frequency of circulating CD4+CD25+FoxP3+ 

Tregs in HIV infected individuals by 1.17 fold was observed when compared to the 

HIV negative ones. This finding is in agreement with previous studies that have 

reported varying increase level in the proportion of Tregs in peripheral blood 

(Presicce et al. 2011; Angin et al. 2012). Increase in Treg frequencies negatively 

correlated with CD4 count showing an association between increase in Treg 

frequencies with disease progression.  A reason for an increase in the frequency for 

Tregs in HIV infected people could be due to HIV-1 induced proliferation of Tregs.  

 

Absolute numbers of Tregs however decreased markedly in HIV infected 

individuals  and this loss strongly correlated positively with a loss of total CD4 T 

cells. This suggests that the Treg numbers are lost at the same rate as the total CD4 T 

cells. In addition, about 50% of Tregs of our HIV negative and HIV positive study 

subjects expressed the HIV-co receptor CCR5, which is higher than in total memory 

CD4 T cells as reported in the next chapter. Treg depletion could therefore be due to 

direct infection of Tregs. 

 

Memory Tregs of healthy individuals have a rapid in vivo turnover (Vukmanovic-

stejic et al. 2006) and are actively dividing (Booth et al., 2010). Since in vitro 

productive HIV infection of CD4 T cells is most efficient in cycling CD4 T cells and 

CD4 T cells that express CD25 (Douek et al. 2002; Geldmacher et al. 2010), it is 

likely that a higher frequency of memory Treg cells in HIV positive subjects are 

dividing in vivo, which might potentially provide substrates for HIV infection and 

replication. Indeed, HIV infection is associated with a significant increase in the 

frequency of Ki67+ memory Tregs which correlates with increase in HIV progression 
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demonstrated by the decline of CD4 numbers (unpublished data from Osei Kuffour et 

al.). Taken together, these data strongly suggest that Tregs could potentially serve as 

HIV target.  

 

Oswald-Ritcher et al. developed an in vitro model for Treg infection using TCR 

mediated stimulation well known to induce HIV transcription and showed a high 

susceptibility of Tregs to HIV with a ~3 fold higher HIV infection rate in Tregs than 

other memory CD4 T cells. However, in vitro TCR stimulation may not reflect true 

HIV infection and thus has to be validated in vivo. A few other studies have recently 

demonstrated discrepant results regarding the level of HIV infection in Tregs in vivo.  

While some studies showed a similar infection level between Tregs and other CD4 T 

cell subsets in vivo (Dunham et al. 2008; Chase et al. 2008; Moreno-Fernandez et al. 

2009), Tran et al. observed a higher infection rate in Tregs than non Tregs (Tran et al. 

2008). Since memory CD4 T cells are predominantly infected by HIV (Brenchley et 

al. 2004; Dai et al. 2009), comparison of the level of infection between the Tregs and 

memory CD4 T cells was made in this study. Thus, CD4 T cell populations were 

sorted on the basis of their memory (CD45RO) and Treg marker expression 

(CD25+FoxP3).   

 

Strikingly, HIV-gag DNA loads could be detected in >80% of sorted memory 

Treg populations of the HIV positive study subjects confirming that Tregs are indeed 

frequent targets of HIV.  Interestingly, a 15-fold higher median gag DNA level was 

detected in memory Tregs as compared to CD25-FoxP3- memory CD4 T cells 

demonstrating for the first time to our knowledge, an in vivo preferential infection of 

memory Tregs by HIV.  

 

Furthermore, in this study helios, a member of the Ikaros transcriptional factor 

family which has been proposed as an additional Treg marker due to its preferential 

expression on Tregs (Sugimoto et al. 2006; Thornton et al. 2010; Getnet et al. 2010) 

was included. Here too, co-expression of helios in ~75% of circulating memory Tregs 

was observed. However, helios expression was not restricted to CD25+FoxP3+CD4 T 

cells as we also observed its expression in CD4 T cells. Nonetheless, the majority 

(~98%) of memory CD25-FoxP3-CD4 T cells did not express helios.  
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The role of helios on Tregs is unclear. T. Akimova et al. has recently 

demonstrated a high helios expression on activated cells and importantly, dividing 

CD25+CD4 T cells that were induced to proliferate in vitro co-expressed of both 

Helios and FoxP3 while non dividing Tregs lost the expression of both molecules-

suggesting helios as a marker of recently divided cells and is expressed in vitro after a 

few cycles of proliferation (Akimova et al. 2011). More recent data suggest that helios 

is a key negative regulator of IL-2 expression and proliferation in Tregs (Baine et al. 

2012). This might explain the presence of helios on cells that have already divided 

enough to stop further antigen driven division by silencing IL-2 expression on Tregs. 

In any case, helios expression has no profound effect on Treg infection by HIV. 

Higher gag DNA levels in memory FoxP3+CD25+ were detected in both helios 

positive (26 fold increased) and negative (119 fold increased) as well as FoxP3-

CD25- Helios+ memory CD4 T cells (104 fold increased) compared to FoxP3-CD25- 

Helios- memory CD4 T cells, which constitute the largest of these memory CD4 T 

cell populations. FoxP3-CD25- Helios+ memory CD4 T cells are probably cells that 

have recently divided which might explain their higher observed gag DNA level in 

comparison to FoxP3-CD25- Helios- memory CD4 T cells. 

 

Correlation of HIV replication to pVL has been reported before (Verhofstede et al. 

1994; Wei et al. 1995). In this study, pVL correlated strongly with cell associated gag 

HIV levels in memory CD25-FoxP3- CD4 T cells but not with Tregs. Notably, 

amongst the 4 HIV positive subjects with no detectable pVL, proviral DNA could be 

detected in memory Tregs of 3 of the individuals (and 1 in CD25-FoxP3-CD4 T 

cells). This poses a question of whether proviral DNA in Tregs is only passed on by 

cell division. It should be noted however that in this study, total proviral DNA was 

measured in the T cell subsets studied. Since different forms of proviral HIV DNA 

have different impact on HIV pathogenesis (Koelsch et al. 2008), future studies 

should therefore differentiate different forms of HIV infecting Tregs. 

 

Although high frequency of circulating CD4+CD25+ (FoxP3) Tregs has been 

associated with S.mansoni (Watanabe et al. 2007) and Hookworm (Ricci et al. 2011) 

infections in humans, this study only observed a significant elevation of numbers and 

frequency of Tregs in relation to T.trichiura infection in HIV negative subjects. 

Effective treatment of T.trichiura infection led to a 2-fold and a 1.7-fold decline in 
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frequency and numbers of Treg cells respectively a year post treatment. The median 

changes observed a year after anti helminthic treatment in T.trichiura infected 

subjects were insignificant when compared to the median changes observed in the 

non-helminth infected controls. This shows that de-worming has relatively little effect 

on reducing potential HIV substrates in the blood of helminth infected individuals. 

The relatively minor effect of helminth-treatment in T. trichiura infected volunteers 

on Treg levels, might be explained by the fact that Albendazole/Praziquantel 

treatment might not have completely eradicated T. trichiura infection as it is known 

that albendazole is ineffective for treating Trichuris infection (Keiser & Utzinger 

2008). Effect of treatment on Treg counts and/or frequency was also observed in 

S.mansoni and Hookworm HIV negative treated groups. The frequency of CCR5 

expressing Treg cells was not related to helminth infections, but effective treatment of 

T.trichiura and Hookworm infections was associated with an increase in proportion of 

CCR5+ Tregs.  Helminth co-infection with HIV and de-worming was not associated 

with changes in the Treg population. However, the observed median changes between 

visits in Treg counts, frequency or their CCR5 expression were generally very minor 

and in most cases insignificant in helminth infected when compared to control groups. 

 

  For logistic reasons, all study groups including controls were de-wormed. 

Since the effect of treatment on absolute numbers and frequency of Tregs was also 

observed with the control subjects, there are three possible explanations for the 

observed longitudinal findings. First, it is possible that not all individuals in the 

control group were worm free since kato-katz is not a very sensitive method of worm 

detection (Basuni et al. 2011).  Also, experimental artifacts such as variation of 

staining quality with time or gating of population cannot be excluded.  But it is also 

possible that albendazole and praziquantel act on factors other than worms.  

 

 In conclusion, this study reports a substantial depletion of Tregs associated 

with HIV infection and a high in vivo expression of proportion of HIV coreceptor-

CCR5 on Tregs also during HIV infection. Al together, this data demonstrates Tregs 

as good target for HIV infection ex vivo and indeed this was confirmed by the 

detection of high cell associated viral loads in Tregs. Also an elevation of numbers 

and proportion of Tregs was observed in relation to particularly T.trichiura infection, 
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which was reduced after helminth treatment. Infection of Tregs with HIV could have 

a strong impact on immune regulation and may contribute to HIV disease progression.  

 

 

4.3. T cell activation profile during HIV, Helminth or HIV-

Helminth co-infection 
 

It has been hypothesized that systemic immune activation caused by chronic 

helminth infection contributes to increased HIV transmission risk in Sub-Saharan 

Africa (Bentwich et al. 1995) and therefore to the high HIV prevalence rates in this 

region.  This hypothesis is supported by observations that low systemic T cell 

activation is linked to HIV resistance in highly exposed HIV uninfected individuals 

(Card et al. 2009; Koning et al. 2005; Bégaud et al. 2006) . Furthermore, it is well 

established that T cell activation and proliferation facilitate efficient AIDS virus 

replication in vivo and in vitro (Geldmacher & Koup 2012; Zack et al. 1990; Zhang et 

al. 1999). Previous studies support the concept that helminth infections are associated 

with systemic T cell activation (Kalinkovich et al. 1998; Kalinkovich et al. 2001; 

Secor et al. 2003). However, whether helminths are a primary cause of systemic T cell 

activation in populations from endemic areas of Africa is not entirely clear, because 

these studies did not specifically investigate immune activation before and after 

helminth eradication/treatment, nor did they differentiate between different helminth 

species. To fill this gap, we studied systemic T cell activation and HIV co-receptor 

expression in relation to helminth infection within the large WHIS cohort from 

Mbeya region, Tanzania, before and after albendazole/praziquantel treatment. 

 

This study shows that T.trichiura, but also A.lumbricoides and S.mansoni 

infections are linked to increased frequencies of activated CD4 and/or CD8 T cells 

defined by expression of HLA-DR alone or in combination with CD38. Of note, 

increased T cell activation was quite dramatic for CD8 T cells during T.trichiura 

infection, whereas infection with A.lumbricoides was rather associated with more 

activated CD4 T cells. In contrast, infection with Hookworms was associated with 

substantial decrease in the frequency of HLA-DR
+
 CD8 T cells.  Thus, while these 

results partially agree with previously published data that helminth infections are 

associated with T cell activation (Kalinkovich et al. 2001; Kalinkovich et al. 1998), 
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our results  demonstrate that different helminth species can have opposing 

associations in regard to systemic T cell activation. 

 

The etiology of helminth-associated T cell activation is not known. T.trichiura 

and S.mansoni egg counts correlated positively with the frequency of HLA-

DR
+
/CD38

+
 CD8 and CD4 T cells (data not shown), respectively, suggesting that high 

parasite burdens contribute to systemic T cell activation. Moreover, an elevation of 

Treg cells within T.trichiura infected study volunteers with >50% CCR5 expressing 

Tregs was also observed in this study. Interestingly, a linear positive association was 

seen between the frequency of Tregs and the frequency of activated (HLA-DR+) CD4 

T cells (R
2
=0.2763; P=0.0012; data not shown), suggesting that the increase in Treg 

cells is a function of CD4 T cell activation. Tregs are control immune responses 

induced by chronic pathogens by producing suppressive regulatory cytokines such as 

IL-10 (reviewed in (Belkaid & Tarbell 2009). In line with previous findings (Faulkner 

et al. 2002), this study similarly observed that T.trichiura infection was associated 

with increased plasma levels of pro-inflammatory (IL-1β and IL-17α), anti-helminthic 

(IL-13) and regulatory (IL-10) cytokines (data not shown), which closely correlated 

with each other; showing a mixed cytokine response to infection with T.trichiura. Of 

interest, IL-1β and IL-10 concentrations in our T.trichiura infected volunteers 

positively correlated with the frequency of HLA-DR+ CD4 and/or CD8 T cells, 

linking systemic T cell activation to the pro-inflammatory IL-1β and simultaneously 

to the regulatory IL-10 (data not shown). It is therefore possible that the immune 

response to T.trichiura infection causes immune activation through the induction of 

pro-inflammatory cytokines, but also evoke a systemic regulatory and anti-helminthic 

cytokine response. Our data thus confirm previous reports that T.trichiura infections 

are associated with increased regulatory T cells and cytokines (Faulkner et al. 2002; 

Turner et al. 2008) and provide a possible link between helminth associated systemic 

immune activation, hyporesponsiveness and anergy (Borkow et al. 2000; King et al. 

1996). 

To determine whether helminth-associated systemic immune activation was 

primarily caused by helminth infections, we studied the effect of a single dose of 

Albendazole/Praziquantel treatment on reducing systemic immune activation 3 

months and up to a year after treatment. HLA-DR+ T cell frequencies most 

profoundly dropped in subjects infected with T.trichiura and A.lumbricoides but 
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increased in those infected with Hookworm, which is consistent with this study’s 

cross-sectional observations. Nonetheless, the changes were insignificant when 

directly compared to the helminth negative control subjects, who were also treated. 

The relatively minor effect of helminth-treatment in T.trichiura infected volunteers on 

T cell activation might be explained by the fact that Albendazole/Praziquantel 

treatment might not have completely eradicated T.trichiura infection. Indeed, it is 

well known that albendazole is ineffective for treating T.trichiura infection (Keiser & 

Utzinger 2008). Supporting this argument, 30% (8 of 27) of T.trichiura infected 

subjects had detectable T.trichiura eggs post-treatment as per Kato-Katz test and a 

more sensitive diagnosis probably would have detected more infections. A recent 

study has demonstrated only 10% cure rate using an identical albendazole treatment 

as used during the WHIS study. More effective treatment options (Knopp et al. 2010) 

could help to clarify the effect of T.trichiura eradication on systemic immune 

activation. Based on our data, we cannot completely exclude the possibility that other 

environmental factors associated with A.lumbricoides or T.trichiura also contributed 

to increased systemic T cell activation in WHIS study volunteers.  

 

To our knowledge, only one other longitudinal study has studied the effect of 

worm treatment on reduction of T-cell activation in HIV negative individuals (Kassu 

et al. 2003). Kassu et al. observed no significant changes in the expression of HLA-

DR and CD38 on CD4 T cells in HIV negative subjects six months after helminth 

treatment but a significant decline in frequencies and numbers of HLA-DR+/CD38+ 

CD8 T cells. This study however did not distinguish between helminth and other 

intestinal parasites and was limited by a small sample size. Our study therefore 

provides for the first time extensive evidence on helminth associated systemic T cell 

activation and the impact of Albendazole/Praziquantel treatment. Is it possible that 

these activated T cells are helminth-specific? After Yellow fever (YF) vaccination co-

expression of HLA-DR and CD38 is characteristic for recently activated, proliferating 

(Ki67
+
) YF-specific CD8 T cells during the peak response (Querec et al. 2009) and 

thus this is one possible explanation. However, it is counterintuitive that during 

infection with T.trichiura such large fractions of CD8 T cells participate in the anti-

helminthic immune responses. 
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A moderate increase in CCR5 surface expression on memory CD4 T cells and a 

tendency towards increased frequency of CCR5+HLA-DR+ memory CD4 T cells was 

observed with T.trichiura infection, which was in line with previous reports 

(Kalinkovich et al. 2001; Mkhize-Kwitshana et al. 2011). This observation further 

supports an indirect link between T.trichiura infection and HIV acquisition, because 

viral transmission is linked to viral CCR5 tropism (Moore et al. 2004; Sattentau et al. 

1988; Deng et al. 1996; Liu et al. 1996). Upon entry, HIV replication is efficiently 

facilitated by proliferating and activated CD4 T cells in vitro and in vivo (Geldmacher 

& Koup 2012; Zack et al. 1990; Zhang et al. 1999) and activated HLA-DR+ CD4 T 

cells have been shown to support productive HIV infection in lymphoid tissue 

explants (Biancotto et al. 2008). Collectively, these study results support the 

hypothesis that helminth infections linked to increased levels of activated CD4 T cells 

might facilitate early systemic dissemination of HIV upon viral entry.  

 

Surprisingly, within HIV negative, helminth positive individuals, there was a 

linear, negative association between frequency of HLA-DR expressing CD4 T cells 

and CD4 T cell counts (P= 0.0116; r
2
= 0.035), suggesting an influence of CD4 T cell 

activation on the loss of CD4 T cells. This phenomenon has been observed before 

(Kalinkovich et al. 1998) in healthy people with chronic helminth infections, but the 

mechanism for such T cell depletion by helminths is still unclear. One possible 

explanation might be that helminth induced CD4 T cell activation not only cause CD4 

T cell proliferation but also increases CD4 T cell death rate. 

 

Evidence regarding the influence of HIV co-infection with different helminth 

species on systemic immune activation is scarce and with some discrepancy. Kassu et 

al. observed a significant increase in the frequency of HLA-DR expression, but not 

CD38 on CD8 T cells of HIV positive subjects co-infected with different intestinal 

helminth species (Kassu et al. 2003). In contrast, a more recent study conducted in 

South Africa demonstrated a high level of CD4 and CD8 T cell activation in HIV 

subjects co-infected with A.lubricoides and/or T.trichiura compared to HIV positive, 

helminth negative subjects as indicated by the expression of CD38, HLA-DR and 

CCR5 (Mkhize-Kwitshana et al. 2011). The reason for such discrepant findings in the 

two studies could be in the study design. While both studies were limited by a small 

sample size, Kassu et al. study did not distinguish between helminth and other 
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intestinal parasites whereas, the latter study was also limited in a multi-faceted 

definition of helminth-positivity through stool-results and specific IgE-levels 

(Mkhize-Kwitshana et al. 2011). 

 

This study observed that helminth (mainly T.trichiura and Hookworm) 

infections only associated with an apparent up-regulation of percentages of CD8 T 

cells expressing HLA-DR+CD38- and HLA-DR independent of CD38. HIV co-

infection with T.trichiura was also associated with higher frequencies of CD4 and 

CD8 T cells expressing HLA-DR+CD38+. Linear regression analysis showed a 

negative association between frequency of total HLA-DR+CD4 expressing T cells 

and CD4 T cell counts (P= 0.0017; r
2
= 0.1845); and that frequency of total 

CD38+CD8 T cells is linked to a decline of CD4 T cell counts (P= 0.0706; r
2
= 0.064), 

suggesting a role of immune activation contributed by HIV-Helminth co-infection on 

HIV disease progression. This is in agreement with previous findings which reported 

increased immune activation in HIV co-infection with other pathogens such as (but 

not limited to) helminths correlates with progression to AIDS as indicated by CD4 T 

cell decline (Eggena et al. 2005). Of note, Hookworm co-infection showed down 

regulation of expression of CCR5 density on total memory CD4 T cells compared to 

HIV positive non-helminth infected individuals suggesting an influence of Hookworm 

co-infection on modulation of CCR5 expression which may have an impact on 

prolonging HIV disease progression.  

 

In some cases, treating for helminth infections reduced frequencies of immune 

activated T cells of helminth infected HIV negative and positive subjects 3 months to 

a year post treatment. It should be noted however, that there was a very moderate 

impact of de-worming observed in such a way that the state of immune activation was 

still raised. This suggests that they may be factors other than worms that contribute to 

systemic T cell activation in the study volunteers. In addition, in co-infected 

individual, the impact of HIV infection in driving HIV disease progression through 

modulation of the immune system might be greater than helminth induced T-cell 

activation as reports showing on only minor changes if at all in HIV progression 

markers following anti helminthic treatment exist (Webb et al. 2012; Sangaré et al. 

2011). Therefore, our and previous findings show that deworming might not delay 

ARV treatment substantially in subjects with helminth co-infections (Walson et al. 
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2012). Thus, helminth co-infection should be treated in HIV+ patients, but only ARV 

treatment is a viable and reliable strategy to stop or slow down HIV disease 

progression.  

 

It is well established that persistent immune activation strongly predicts the 

decline of CD4 T cells and hence progression to AIDS ( Brenchley et al., 2004; 

Hazenberg et al., 2003). As expected, HIV infection alone was observed to have a 

great impact on immune activation as measured by the frequency of expression of 

HLA-DR and CD38 molecules on CD4 and CD8 T cells. Median frequencies of 

CCR5+ HLA-DR+ memory CD4 T cells were significantly higher in HIV positive 

than in HIV negative individuals although CCR5 density on the surface of memory 

CD4 T cells was reduced; possibly indicating their HIV co-receptor mediated specific 

depletion. In addition, linear regression analysis showed a relation between increase 

in frequency of immune activation markers on CD4 (HLA-DR) and CD8 (CD38) T 

cells and the loss of CD4 T cell counts within HIV positive subjects irrespective of 

their helminth infection status, emphasizing the role of immune activation on 

progression to AIDS. The etiology of systemic immune activation during HIV 

infection is obscure and most likely multi-factorial. Other factors potentially 

contributing to activation include: persistent antigen-specific stimulation of T cells 

specific for HIV and other persistent pathogens, such as HHVs (Giorgi et al. 1999; 

Ascher & Sheppard 1988), translocation of microbes and microbial compounds, such 

as Lipopolysaccharide (LPS), that activate PAMP-receptors (Brenchley et al. 2006) 

and chronically elevated levels of Type 1 Interferons (Bosinger et al. 2009; Jacquelin 

et al. 2009; Manches & Bhardwaj 2009). 

 

A gradual decline in CD4 T cells is a major characteristic of chronic HIV 

infection.  Depletion of a pool of memory CD4 T cells defined by the expression of 

CD27 and CD45RO is affected the most during the course of HIV infection 

(Hazenberg et al. 2003). Similarly, the depletion of CD4 T cells in HIV (independent 

of helminth) infection was mainly attributed to the decline in the proportion of central 

memory CD4 T cells. The frequency of CD8 T cells is elevated during the course of 

HIV and its elevation is linked to the control of HIV replication (Ogg et al. 1998). In 

line with previous studies (Hazenberg et al. 2003; Roederer et al. 1995; Sousa et al. 



130 

 

2002), an increase in frequencies of CD8 memory T cell subsets and a decline in the 

proportion of naïve CD8 T cells was seen in relation to HIV infection. 

 

It has previously been reported that chronic infections with helminth species 

are associated with high frequency of memory (CD45RO+) and low frequency of 

naïve (CD45RA+) CD4 T cells in the blood of HIV negative people (Kalinkovich et 

al. 1998). In this study, no apparent influence of helminths was associated with 

changes in the proportion of T cell subsets of HIV negative subjects except for a 

significant increase in the frequency of terminally differentiated CD4 T cells, 

particularly, in T.trichiura and S. haematobium infected subjects. There was however 

a non-significant and significant decrease in frequency of central memory CD4 T 

cells for T.trichiura and S. haematobium infection respectively, increased frequency 

of effector memory CD4 T cells in association with T.trichiura infection and 

increased frequency of effector memory CD8 T cells with S. haematobium infection, 

suggesting that infections with such species modify the systemic distribution of T cell 

subsets. Helminth infections are characterized by a polarized CD4 T helper 2 (TH2) 

responses (reviewed in (Maizels & Yazdanbakhsh 2003)). Moreover, the level of 

memory CD4 T cells (defined by their lack of CD27 expression) is increased in 

filarial infection and contains TH2 cells (Yazdanbakhsh et al. 1993; Elson et al. 

1994). These reports may therefore imply that the increased frequency of different 

memory T cell subsets in relation to different helminths that was observed in previous 

(Kalinkovich et al. 1998) and this study are most likely TH2 cells necessary for anti-

helminth immune responses. 

 

Within HIV positive subjects, again, helminths infections were generally not 

associated with changes in the proportion of T cell subsets. However, a significant 

increase in the frequency of terminally differentiating CD8 T cells, associated with 

T.trichiura and S.haematobium infections could be observed. In addition, T.trichiura 

co-infection was also related to a moderate increase in frequency of effector memory 

CD4 T cells. Our findings are to some extent similar to what Kassu et al.(Kassu et al. 

2003) observed previously, although contrary to their observation of an increased 

proportion of memory (CD27+CD45RA-) T cells in association with particularly A. 

lumbricoides, this study found no such association. The difference observed between 

this and the previous study might be in the study design. 
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Only one study to our knowledge has documented on the effect of helminth 

treatment on the frequency of CD4 and CD8 T cell subsets in relation to HIV 

infection (Kassu et al. 2003). They reported a significant increase in the absolute 

numbers of effector (CD45RA+CD27-) CD8 T cells of HIV negative, helminth 

positive volunteers while HIV-helminth co-infected subjects showed increased 

frequency of naïve (CD45RA+CD27+) and memory (CD45RA-CD27+) CD8 T cells 

(Kassu et al. 2003).  But as mentioned above, this study also had several limitations. 

In this study, an increase in percentage effector memory CD4 T cells was observed in 

effectively treated HIV negative subjects a year after treatment, accounted mainly by 

the treatment of S.mansoni and Hookworm. In addition, effective treatment of 

especially Hookworm and A.lumbricoides infections was also associated with 

increased frequency of terminally differentiated CD4 T cells. This was unexpected as 

helminth infection was observed to be associated with increased frequency of 

terminally differentiated CD4 T cells when compared HIV negative chronically 

infected with worms with non-infected subjects. A decline in the frequency of central 

memory CD4 and CD8 T cells and that of terminally differentiated CD8 T cells was 

also seen in relation to mainly treatment of T.trichiura infection.  Contrary to a 

previous report (Kassu et al. 2003), the influence of treatment on the decline in 

proportion of naïve and central memory CD8 T cells was apparent in the blood of 

HIV-helminth co-infected subjects. In addition, increased frequency of effector 

memory and terminally differentiated CD4 T cells was observed a year after treatment 

in subjects with HIV-helminth co-infection. Surprisingly, a further increase in the 

frequency of terminally differentiated CD8 T cells was seen in relation to helminth 

treatment. However, effect of helminth treatment on the profile of T cell subsets was 

relatively little compared to helminth-negative controls. It should also be noted that 

for logistic reasons, all study groups including controls were de-wormed. Since the 

effect of treatment on T-cell subsets (and T-cell activation) was also observed with 

the control subjects, it is impossible to exclude experimental artifacts and other 

reasons mentioned previously as confounding effects for the longitudinal findings 

observed. 

 

In conclusion, not all studied helminth species modulated systemic immune 

system in the same manner. Particularly, T.trichiura, A.lumbricoides and S.mansoni 
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infections correlate with increased expression of T cell activation markers with 

relatively little effect of helminth treatment compared to helminth-negative controls. 

Contrary, Hookworm infection was associated with a decreased frequency of HLA-

DR expressing CD8 T cells. Because systemic T cell activation potentially contributes 

to increased HIV transmission risk (Card et al. 2009; Koning et al. 2005; Bégaud et 

al. 2006), this data support the concept that helminth infections, which are linked to 

systemic Immune activation (and increased CCR5 density on memory CD4 T cells), 

such as T.trichiura infection, could indeed also contribute to increased HIV 

transmission risk.  Since the effect of helminth treatment on T cell activation was very 

minor in such a way that the state of immune activation was still raised it is likely that 

there may be factors other than worms that also contribute to the observed systemic T 

cell activation. Nonetheless, the link between parasite burden and activated T cells 

during S.mansoni and T.trichiura infections still suggest a causal link between 

helminths and systemic immune activation. 
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5. Summary 

 
HIV/ AIDS is the most serious infectious disease to have infected humankind with 

most cases being reported in the Sub Saharan Africa. It has been hypothesized that 

helminth infections modify HIV susceptibility and disease progression by altering the 

human immune system and thus might contribute to the high prevalence of HIV-1 in 

Africa. However, Immunological evidence regarding whether and to what extent 

different helminth infections modify HIV susceptibility and disease progression 

remains controversial and it is only poorly understood, which immune system 

parameters might contribute to such alterations. Helminths might alter the systemic 

immune activation associated with HIV disease progression during the chronic phase 

of HIV infection but they might also change parameters associated with cellular 

susceptibility to HIV infection and replication. It has also been shown that chronic 

helminth infections can induce T cell hyporesponsiveness and impair other pathogen-

specific T cell responses but it is still unclear how such changes influence cellular 

susceptibility to HIV infection. Simultaneously the fraction of CD25
+
 (IL2 receptor 

alpha-chain) CD4+ T cells that contains a large proportion of regulatory T cells can 

be expanded in helminth infected individuals. CD25+ CD4+ regulatory T cells (Treg 

cells) have been shown to express the HIV co-receptor CCR5, thus may also serve as 

a preferential target of HIV infection. However, it is unclear whether such 

mechanisms contribute to susceptibility to HIV acquisition or disease progression in 

helminth and HIV co-infected subjects. 

 

In order to study immune system modulation of different helminth infections in 

relation to HIV-1 susceptibility and disease progression, 381 adult volunteers from 

Mbeya region in Tanzania were enrolled and grouped according to their HIV-1 and 

helminth infection status. Participants were followed up at 3 months and 1 year after 

helminth treatment. Expression of regulatory (CD25, FoxP3, Tregs), memory 

(CD45RO, CD27) and activation markers (CCR5, HLA-DR/CD38) on T cells were 

studied in vivo using polychromatic flow cytometry in fresh anti-coagulated whole 

blood. HIV- and other pathogen-specific T cell responses were quantified in freshly 

isolated peripheral blood mononuclear cells using an Interferon gamma ELISPOT 

assay after stimulation with a peptide pool of 15 HIV frequently recognized Gag and 
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Nef peptides or respective studied pathogen antigens. Results were analysed in 

relation to helminth and HIV infection status.  HIV+ subjects on ART were excluded 

from analysis. 

 

Neither concurrent helminth infections nor their treatment had a significant effect 

on HIV- or other pathogen-specific T cell responses. However, HIV infection alone 

correlated with depletion of specific T cell responses to studied pathogens. HIV alone 

had a great impact on the decline of frequency and magnitude of IFN-γ production in 

PPD-specific CD4 T cells (P≤0.0001). Also, the quantity of HSV-1-specific T cells 

declined markedly with HIV infection (P<0.0001) while HIV infection was associated 

with a moderate decline of CMV- and EBV-specific T cell responses (P= 0.0419 and 

0.0979 respectively) with no apparent influence of worms. Similarly, decrease in 

Influenza- and T.gondii-specific T cell responses in relation to HIV was also observed 

(P<0.0001 and 0.0576 respectively) with no apparent influence of worms. 

 

Treg frequencies were increased especially in subjects infected with T.trichiura 

(p=0.008) but were also moderately high in HIV+ subjects, independent of their 

helminth infection status (p=0.1612 for HIV+Worm- and p=0.0478 for 

HIV+Worm+). In contrast, Treg count declined markedly with HIV infection 

(P<0.0001). Interestingly, a substantial fraction of Tregs (Median: 50%) in the blood 

of HIV negative and HIV positive volunteers expressed the HIV co-receptor CCR5, 

which potentially could support HIV entry into Tregs. Quantification of HIV-DNA 

copies in sorted CD4 T cells then demonstrated a 15 fold higher HIV infection rate in 

memory Tregs as compared to CD25-FoxP3- memory CD4 T cells (p=0.0032). 

 

It is generally accepted that increased systemic immune T cell activation is 

associated with increased susceptibility to HIV acquisition. All studied helminth 

species were associated with systemic immune modulation but only T.trichiura 

infection correlated with substantially increased expression of HLA-DR on CD4 and 

CD8 T cells (both p<0.005); and increased density of CCR5 expression on the surface 

of memory CD4 T cells (P=0.02). A moderate increase in frequency of activation 

marker, CD38 on T cells was associated with S.mansoni infection (P=0.04). 

S.haematobium and A.lumbricoides infections also correlated with slight increased in 

T cell activation. This data shows that the studied helminth species modify HIV 
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susceptibility by increasing the systemic immune activation. On the Contrary, 

Hookworm infection was associated with decline in the frequency of HLA-DR 

expressing CD8 T cells (P=0.0283). Increase T cell activation was observed in 

relation to HIV co-infection with particularly T.trichiura showing the influence of 

T.trichiura infection on accelerating HIV disease progression by elevating T cell 

activation. HIV infection also correlated with immune activation and high proportion 

of CCR5+HLA-DR+ CD4 cells independent of helminth co-infection. Treating for 

helminth had a moderate impact on decreasing T-cell activation status. 
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