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Zusammenfassung

Methoden der statistischen Datenanalyse setzen in der Regel voraus, dass

die vorhandenen Daten präzise und korrekte Beobachtungen der unter-

suchten Größen sind. Häufig können aber bei praktischen Studien die in-

teressierenden Werte nur unvollständig oder unscharf beobachtet werden.

Die vorliegende Arbeit beschäftigt sich mit der Fragestellung, wie Regres-

sionsanalysen bei unscharfen Daten sinnvoll durchgeführt werden können.

Zunächst werden verschiedene Ansätze zum Umgang mit unscharf be-

obachteten Variablen diskutiert, bevor eine neue Likelihood-basierte Me-

thodologie für Regression mit unscharfen Daten eingeführt wird. Als Er-

gebnis der Regressionsanalyse wird bei diesem Ansatz keine einzelne Re-

gressionsfunktion angestrebt, sondern die gesamte Menge aller anhand der

Daten plausiblen Regressionsfunktionen betrachtet, welche als Konfidenz-

bereich für den untersuchten Zusammenhang interpretiert werden kann.

Im darauffolgenden Kapitel wird im Rahmen dieser Methodologie eine Re-

gressionsmethode entwickelt, die sehr allgemein bezüglich der Form der

unscharfen Beobachtungen, der möglichen Verteilungen der Zufallsgrößen

sowie der Form des funktionalen Zusammenhangs zwischen den untersuch-

ten Variablen ist. Zudem werden ein exakter Algorithmus für den Spezial-

fall der linearen Einfachregression mit Intervalldaten entwickelt und einige

statistische Eigenschaften der Methode näher untersucht. Dabei stellt sich

heraus, dass die entwickelte Regressionsmethode sowohl robust im Sinne ei-

nes hohen Bruchpunktes ist, als auch sehr verlässliche Erkenntnisse hervor-

bringt, was sich in einer hohen Überdeckungswahrscheinlichkeit der Ergeb-

nismenge äußert. Darüber hinaus wird in einem weiteren Kapitel ein in der

Literatur vorgeschlagener Alternativansatz ausführlich diskutiert, der auf

Support Vector Regression aufbaut. Dieser wird durch Einbettung in den

methodologischen Rahmen des vorher eingeführten Likelihood-basierten

Ansatzes weiter verallgemeinert. Abschließend werden die behandelten Re-

gressionsmethoden auf zwei praktische Probleme angewandt.
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Abstract

Statistical methods usually require that the analyzed data are correct and

precise observations of the variables of interest. In practice, however, often

only incomplete or uncertain information about the quantities of interest

is available. The question studied in the present thesis is, how a regres-

sion analysis can reasonably be performed when the variables are only

imprecisely observed.

At first, different approaches to analyzing imprecisely observed vari-

ables that were proposed in the Statistics literature are discussed. Then,

a new likelihood-based methodology for regression analysis with impre-

cise data called Likelihood-based Imprecise Regression is introduced. The

corresponding methodological framework is very broad and permits ac-

counting for coarsening errors, in contrast to most alternative approaches

to analyzing imprecise data. The methodology suggests considering as

the result of a regression analysis the entire set of all regression functions

that cannot be excluded in the light of the data, which can be interpreted

as a confidence set. In the subsequent chapter, a very general regression

method is derived from the likelihood-based methodology. This regression

method does not impose restrictive assumptions about the form of the

imprecise observations, about the underlying probability distribution, and

about the shape of the relationship between the variables. Moreover, an

exact algorithm is developed for the special case of simple linear regres-

sion with interval data and selected statistical properties of this regression

method are studied. The proposed regression method turns out to be

robust in terms of a high breakdown point and to provide very reliable

insights in the sense of a set-valued result with a high coverage probabil-

ity. In addition, an alternative approach proposed in the literature based

on Support Vector Regression is studied in detail and generalized by em-

bedding it into the framework of the formerly introduced likelihood-based

methodology. In the end, the discussed regression methods are applied to

two practical questions.
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Chapter 1

Introduction

The present thesis deals with the statistical problem of analyzing the rela-

tionship between two or more real-valued variables when these quantities

are only imprecisely observed.

1.1 Motivation

The term regression refers to the most popular and commonly employed

methods of statistical data analysis. The goal of a regression analysis is to

obtain a quantitative description of the relationship between one or more

explanatory variables and a response variable. For example, regression

methods can be used to analyze the relationship between the income, the

age and further sociodemographic characteristics of an individual and the

overall life satisfaction (Wunder et al., 2013) or to investigate how the num-

ber of earthquakes per day in a seismically active region can be explained

by the amount of preceding rainfall together with the air temperature and

further quantities describing the impact of the earth tide (Svejdar et al.,

2011). There is a large variety of regression methods for many different sit-

uations, which is regularly complemented by new suggestions. Overviews

of numerous established regression methods with many references for inter-

ested readers can be found, for example, in the textbooks Fahrmeir et al.

(2013) and Hastie et al. (2009).
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Like most statistical tools, regression methods are usually based on the

assumption that the analyzed data are precise and correct observations of

the variables of interest. In statistical practice, however, often only in-

complete or uncertain information about the data values is available. For

example, consider the personal income, which is a key variable for many

socioeconomic questions. Data on personal income are usually collected by

surveys, because privacy laws prevent other ways. Faced with the question

about the exact figure of the total or net income received during the last

month or year, a respondent is very likely to give a value that is rounded

to a multiple of hundreds or thousands. Hence, the recorded value often

contains only the information that the exact figure lies in some interval

around the given value. Moreover, as it is a very delicate question, many

respondents are not willing answer at all. For those cases, the data set

contains missing values, providing only the information that the income

figures are numbers in the observation space of this variable. A common

practice to obtain more informative answers is to ask those who refuse to

give a precise value in a second step to indicate in which of the categories of

a partitioned income range their income lies. As revealing a coarse income

category is less informative than revealing the exact value, people are more

likely to give this information. For those answering only this categorized

question, the data provide the information that the income belongs to one

of the intervals that constitute the partition of the income range. In all

these cases, there is uncertainty about the exact data values. In fact, con-

tinuous variables are always observed only with limited precision, because

the recorded number of digits is always finite. Further common examples

of imperfect observations include censored survival times, variables that

are observed on different aggregation levels, or missing values.

In all of these cases, the incomplete or uncertain information about the

precise values of interest can be expressed by subsets of the observation

space. For example, interval-censored and rounded data can be represented

by intervals. Furthermore, if a value is precisely observed the observed

set is a singleton and if a value is missing it is represented by the entire

observation space of the corresponding variable. As the representation by
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subsets allows considering many different forms of uncertainty about data

within the same framework, this representation is adopted in this thesis.

In the following, set-valued observations of real-valued variables are simply

called imprecise data.

It is important to note that the notion imprecise data is sometimes used

with a different meaning, for example, in the context of Fuzzy Statistics.

In this and other frameworks, the quantities of interest are supposed to be

inherently imprecise and therefore modeled as (fuzzy) sets. Consequently,

in this context, the (fuzzy) set-valued data constitute exact observations

of imprecise variables, and in a regression analysis, the relationship be-

tween imprecise quantities is investigated. How to approach this statisti-

cal problem, was studied, for example, in Blanco-Fernández et al. (2011);

Domingues et al. (2010); Ferraro et al. (2010); Lima Neto and de Carvalho

(2008); Coppi et al. (2006); Körner and Näther (1998); Diamond (1990).

By contrast, this thesis is about analyzing the relationship between some

precise variables in the situation in which only set-valued data on these

quantities are available, because this problem appears to be more rele-

vant for statistical practice, given the many different examples mentioned

above. So far, there is no standard methodology for analyzing data that

are imprecise in this sense.

The aim of the present thesis is to find a regression method that pro-

vides reliable insights about the relationship of interest, even if the vari-

ables are only imprecisely observed. Furthermore, the regression method

should be general in the sense that it does not impose restrictive assump-

tions about the form of the imprecise observations, about the underlying

probability distribution, and about the shape of the relationship between

the variables.

1.2 Outline of the thesis

The core of this thesis starts with a review of different approaches to ana-

lyzing imprecise data that were proposed in the literature. Then, in Chap-

ter 3, the formal framework of a new general likelihood-based approach to
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regression with imprecisely observed variables is presented. Chapter 4 is

devoted to a robust regression method derived from this general frame-

work, and in Chapter 5, an alternative regression method for imprecisely

observed responses is studied. Finally, two applications are presented in

Chapter 6, before some general comments and a short outlook in Chapter 7

conclude this thesis.

A certain part of the ideas and results presented in this thesis were al-

ready published in a total of four publications. The following list indicates

what sections of the present thesis are concerned and in which way the

four publications contribute to these sections.

• Chapter 3 is based on Cattaneo and Wiencierz (2012, Sections 2 and

3) and contains many additional remarks and explanations.

• Section 4.1 is based on Wiencierz and Cattaneo (2012, Section 2),

on Cattaneo and Wiencierz (2012, Section 3), and on Cattaneo and

Wiencierz (2011, Sections 2 and 3) and contains many additional

remarks and explanations.

• Section 4.2 is in part taken from Cattaneo and Wiencierz (2011,

Section 4) together with additional exemplifications and remarks.

• Section 4.3 is based on Cattaneo and Wiencierz (2013, Section 3)

and on Wiencierz and Cattaneo (2012, Section 3) and contains many

additional remarks and explanations.

• Section 6.1 is for the most part taken from Cattaneo and Wiencierz

(2013, Section 4).
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Chapter 2

Analyzing imprecise data

In this chapter, different approaches to analyzing imprecise data are dis-

cussed with a focus on regression. As explained in Chapter 1, the term

imprecise data stands for set-valued observations of precise variables, which

covers amongst others actually precise observations and completely miss-

ing values as special cases.

2.1 Approaches aiming at a precise result

A simple ad hoc approach to dealing with imprecise data could be to re-

duce the observed sets each to a single value and to apply a standard

method to the thus obtained precise data set. For example, if we want

to perform a regression analysis and some of the analyzed variables are

observed as intervals representing rounded values, the intervals could be

replaced by their midpoints and a standard regression method could be

applied to the midpoint data set, which yields a single estimated regres-

sion function. However, proceeding in this way in general does not provide

correct estimates, as it was discussed already more than a century ago by

Sheppard (1898) and for the example of linear regression with rounded

data, e.g., by Dempster and Rubin (1983) and Beaton et al. (1976). Nev-

ertheless, by imposing assumptions about the (random) behavior of the

rounding error, the estimates may be corrected for the error in several sit-
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uations. Many correction methods were developed for various statistical

methods and different kinds of measurement errors. An extensive overview

of modern measurement error models is given, for instance, in Carroll et al.

(2006).

In the literature, further approaches explicitly modeling the mechanism

that leads to the imprecise observations were suggested for various special

cases of imprecise data and particular statistical methods. For example, in

the case of completely missing values, the missingness mechanism can be

described by a random quantity indicating whether the value is observed

or not. Using this description of the uncertainty in the data set, Ru-

bin (1976) defined the condition of Missing At Random (MAR), requiring

that the fact that a value is missing must not depend on the unobserved

value itself. Provided the missingness mechanism is uninformative in this

sense, Rubin (1976) showed that valid likelihood-based inferences may be

obtained ignoring the mechanism. Based on this result, many other sug-

gestions to dealing with missing data were made, including sophisticated

imputation methods. For more details on these methods, see, for instance,

Little and Rubin (2002). Another common type of imprecise data con-

stitute censored event or life times. These occur, for example, in data

on incidence times of patients suffering from a certain disease or on the

age at failure of technical devices, for which only lower or upper bounds

(or both) are known, because some patients were sick for a certain time

before the disease was diagnosed or because some devices were replaced

before they failed. Here, the censoring mechanism can be modeled by a

quantity indicating for each observation whether the actual time of interest

was observed or whether a censoring time was observed as upper or lower

bound to the actual time. Different statistical methods for analyzing data

sets containing censored data were proposed, e.g., by Salibian-Barrera and

Yohai (2008); Gómez et al. (2003); Lindsey (1998); Heitjan and Rubin

(1990). Since there are many other practical settings where uncertain or

partial information about some data values is available, Heitjan and Ru-

bin (1991) generalize the MAR concept to other kinds of imprecise data

and deduce a similar ignorability result. As Heitjan and Rubin (1991)
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refer to imprecise observations like rounded values, censored life times, or

general subsets of the observation space as coarse data, the corresponding

condition is called Coarsening At Random (CAR). Generalizing the MAR

condition, CAR requires that the coarsening mechanism is independent of

the underlying precise value. Moreover, Heitjan and Rubin (1991) showed

that likelihood-based inferences can be obtained from coarse data without

explicitly accounting for the coarsening mechanism, if the latter respects

the CAR condition. In practice, however, it is generally impossible to check

whether this condition (or its special case MAR) is fulfilled or not. For

a detailed discussion about the CAR condition, see, for example, Pötter

(2008, Chapter 2).

All approaches to analyzing imprecise data discussed so far follow the

idea that the mechanism leading to the imperfect observations is explic-

itly considered in the probability model underlying the statistical analysis

and assumptions about the (random) behavior of this mechanism ensure

to obtain a precise result. Yet, these assumptions are in some cases very

restrictive and can never be verified in a practical setting. Another draw-

back of these approaches is that usually only one special type of uncertain

information in the data can be considered at a time. As many different

kinds of imprecision in data can be expressed by subsets of the observa-

tion space, a general methodology for the analysis of imprecise data should

directly start with the observed sets.

A different methodology for regression analysis with interval data was

proposed in Utkin and Coolen (2011). The proposed methodology yields

a precise results by adopting either a minimin or a minimax strategy. It

is extensively discussed in Chapter 5.

2.2 Approaches admitting an imprecise result

A simple approach could be not to aim at a precise result but to consider as

the imprecise result of the statistical analysis the whole set of all precise

estimates resulting from precise data sets that are compatible with the

imprecise data. This approach can be generally applied to set-valued data,
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no matter what the source of the imprecision is, and implies no assumption

like CAR. It was proposed, for example, by Ferson et al. (2007); Gioia and

Lauro (2005); Marino and Palumbo (2002). The set-valued result collects

all precise estimates that would be obtained if the data were precisely

observed at locations within the observed sets. However, it is not clear

what inferences can be deduced from the imprecise result of this ad hoc

approach, because it is not based on a statistical model for inference with

imprecise data.

Another approach that allows an imprecise result and that can provide

a foundation for the ad hoc approach is known as Partial Identification.

This approach emerged during the past 25 years mainly in Econometrics

and Biostatistics. Partial Identification is based on the idea that, if the

analyzed variables are only imprecisely observed, only partial knowledge

about the characteristics of interest can be obtained, avoiding strong as-

sumptions about the coarsening mechanism like CAR. Hence, bounds for

the value of a characteristic of interest are derived, in considering all prob-

ability measures with support on the imprecise data as possible probability

distributions of the precise values given the imprecise observations. The

resulting set is called identification or ignorance region for the characteris-

tic and can be reliably estimated from the imprecise data. However, care

has to be taken when evaluating a characteristic as partially identified in

some setting. Without specifying in detail what imprecise data can be

observed, this only means that the quantity of interest is in general not

completely identified, but in some special cases the estimated identifica-

tion region may actually be a singleton, e.g., if the variables are precisely

observed with probability one, or may become a point as more and more

data are observed. A thorough presentation of the main concepts of Partial

Identification together with an overview of applications of this approach

is provided by Manski (2003), while Manski and Tamer (2002) study the

special case of regression with interval data in detail, and Horowitz and

Manski (1995) discuss the distinction of the Partial Identification approach

from Robust Statistics. In a practical analysis, it was initially suggested to

estimate the probability distribution of the imprecise data by their empir-
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ical distribution and to determine the identification region associated with

this probability distribution, which corresponds, in fact, to the result of

the ad hoc approach mentioned above. Once the estimate of the identifi-

cation region is determined, the power of additional assumptions to reduce

the size of the set-valued result can be investigated. Hence, Partial Iden-

tification methods are generally not intended to completely refrain from

further assumptions about the unobserved data like CAR, but to become

aware of their strength when imposing them in a particular analysis. In

recent years, many other statistical methods were developed in the frame-

work of Partial Identification, in particular, methods that allow taking also

the estimation uncertainty into account. Different confidence regions for

real-valued distribution characteristics or for regression parameters were

proposed, for example, by Schollmeyer and Augustin (2013); Beresteanu

et al. (2012); Beresteanu and Molinari (2008); Vansteelandt et al. (2006).

Apart from the Partial Identification approach, likelihood inference

provides a very general and flexible framework for analyzing imprecise

data. It directly allows accounting for the imprecision of the data as well

as for the statistical uncertainty associated with the estimation on the

basis of a finite number of observations. Considering a joint probability

model for the precise variables and the imprecise observables, the impre-

cise data induce a (nonparametric or parametric) likelihood function on

the set of considered probability measures, from which a profile likelihood

function for some characteristic of the probability distribution of the vari-

ables of interest can be derived. Based on this profile likelihood function,

confidence regions for the characteristic can be easily obtained by cut-

ting the graph of the likelihood function at a chosen height determining

the coverage level. This methodology is very general, because it can be

applied to data sets containing at the same time precise and set-valued ob-

servations representing different kinds of data imprecision. Furthermore,

no assumptions like CAR are necessary, however, additional assumptions

about the coarsening mechanism can be considered by choosing a corre-

sponding set of joint probability models of the analyzed situation. As the

likelihood framework is very flexible, we used this inference framework in
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combination with results about likelihood-based decisions from Cattaneo

(2007) to develop a regression methodology for imprecise data in Cattaneo

and Wiencierz (2012). The general methodology for likelihood inference

with imprecise data was also proposed by Zhang (2010, 2009), but not

yet considered in the context of regression analysis. How we employ this

framework to develop a general methodology for regression analysis with

imprecise data, is described in detail in the following chapter.

10



Chapter 3

Likelihood-based Imprecise

Regression

In this chapter, the methodology for regression with imprecise data de-

veloped in Cattaneo and Wiencierz (2012) is presented in detail. As the

approach is based on likelihood inference and usually yields a set-valued

result, it is called Likelihood-based Imprecise Regression (LIR). The LIR

approach is based on a general methodology for likelihood inference with

imprecise data and is derived within the framework for likelihood-based

decisions developed in Cattaneo (2013, 2007). The regression problem is

thus formalized as a decision problem about which regression function best

describes the relationship of interest in the light of the (possibly) imprecise

observations. In the considered data situation, it is difficult to obtain a

precise evaluation of each of the considered functions without imposing

strong assumptions about the coarsening mechanism. To avoid such re-

strictions and to additionally take the statistical uncertainty into account,

confidence regions for the loss associated with each regression function are

considered, which can reliably be learned from the imprecise data. Thus,

the aim of a LIR analysis is not to obtain a single estimated regression func-

tion at any price, but rather to describe the whole uncertainty involved in

the regression problem with imprecise data.
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3.1 The LIR methodology for precise data

In regression analysis, the relationship between some explanatory variables

X ∈ X ⊆ Rd, with d ∈ N, and a response variable Y ∈ Y ⊆ R is inves-

tigated. Typically, it is supposed that X × Y is the Cartesian product of

d + 1 possibly unbounded intervals. The relationship of interest can be

formalized by a function

f : X → R.

The quantities X and Y are regarded as random variables, the joint ran-

dom object is denoted by V = (X,Y ) with observation space V = X × Y.

Usually a sample of possible realizations V1, . . . , Vn, with n ∈ N, is con-
sidered, from which it shall be inferred which of the functions in a certain

predefined set F best describes the relationship between the variables of

interest, X and Y . As commonly done, we assume that V1, . . . , Vn are inde-

pendent and identically distributed (i.i.d.) according to some probability

measure PV on V.
The task of identifying the function f ∈ F that best describes the

relationship of interest can be formulated as a decision problem with F
being the set of possible decisions, PV the set of probability distributions

for V that are considered as possible models of the analyzed situation, and

L the associated loss function on F × PV . The closer L(f, PV ) is to zero

for some PV ∈ PV , the better the function f describes the relationship

between X and Y , provided that PV is the true model.

Most of the common loss functions in the regression context are ex-

pressed by means of the (absolute) residual, defined for each f ∈ F by

Rf = |Y − f(X)| .

If we consider a sample V1, . . . , Vn, with Vi ∼ PV , for all i ∈ {1, . . . , n},
the corresponding residuals Rf,1, . . . , Rf,n are also i.i.d. random quantities

12



with probability distribution PRf
given by

PRf
(Rf ≤ r) =

∫
V
I{(x′,y′)=v′∈V : |y′−f(x′)|≤r}(v) dPV (v),

for all r ∈ R≥0, where IS denotes the indicator function of a set S, defined
on a suitable space. To avoid notational overload, we write throughout

this thesis PV (Rf ≤ r) = PV (V ∈ {(x′, y′) = v′ ∈ V : |y′ − f(x′)| ≤ r})
instead of PRf

(Rf ≤ r). As loss function, usually, some characteristic

of the residuals’ distribution is considered, for instance, a moment or a

quantile. A famous example is the loss function given by L(f, PV ) =

E(R2
f ), that is, by the second moment of the distribution of the residuals

(under PV ), whose minimization corresponds to the regression method of

Least Squares (LS). The LS solution is given by the regression function

satisfying f(x) = E(Y |x) for all x ∈ X , where E(Y |x) is the conditional

expectation (under PV ) of Y given X = x.

Given the true probability measure PV , the best description of the

relationship between X and Y is the function minimizing L(·, PV ). How-

ever, usually PV is unknown. Many regression methods overcome this

problem by substituting PV with the empirical distribution, after having

obtained the data V1 = v1, . . . , Vn = vn. The empirical distribution de-

noted by P̂V is the discrete distribution over V with probability mass 1/n

at each observed point v1, . . . , vn. In the fully nonparametric case where

PV corresponds to the set of all probability measures on V, the empir-

ical distribution is the maximum likelihood (ML) estimate of PV . As

pointed out in Cattaneo (2007, Section 1.3), the minimization of L(·, P̂V )

leads to the ML estimate of f , if some weak regularity conditions are ful-

filled. Therefore, it is reasonable to proceed in this way if one aims at

a precise evaluation ignoring the involved uncertainties. Yet, we follow a

more general approach to likelihood inference, where we make use of the

information of the entire likelihood function instead of focusing only on

its maximum. Moreover, we define the likelihood function generally as a

function of the probability distribution, which allows considering also non-

parametric models. This general approach to likelihood inference was also
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adopted in Cattaneo (2007) and had formerly been suggested, for example,

by Owen (1988).

Given the observations V1 = v1, . . . , Vn = vn, we define the induced

(normalized) likelihood function likV : PV → [0, 1] by

likV (PV ) =
PV (V1 = v1, . . . , Vn = vn)

supP ′
V ∈PV

P ′
V (V1 = v1, . . . , Vn = vn)

.

If PV is a continuous probability measure, v1, . . . , vn can be replaced by

small intervals around the observed values to ensure that likV (PV ) is well

defined. This is justified because continuous quantities can always be

measured only with finite precision. Alternatively, in case that all PV ∈
PV are continuous, likV (PV ) can be approximated by the ratio of the

corresponding densities, as it is commonly done in Statistics.

Hence, the (normalized) likelihood function is given by the probabilities

with which each PV ∈ PV would have predicted the observations relative to

the probability assigned by the best-predicting probability model. There-

fore, likV provides detailed information about which probability models in

PV are more plausible than others in the light of the available data. For

any β ∈ (0, 1), PV can be reduced to the set

PV,>β = {PV ∈ PV : likV (PV ) > β}

of all probability distributions whose (normalized) likelihood exceeds the

threshold β, i.e., which assign at least a certain probability to the observed

values.

The set PV,>β allows deriving likelihood-based confidence regions for

some characteristic of the probability models considered. Define the char-

acteristic g as a (possibly) set-valued function from PV to a set G ⊆ R,
that is, formally g : PV → 2G\{∅}, where 2S denotes the power set of a

set S. For instance, g can be the function assigning to each probability

measure PV the corresponding value (or interval) g(PV ) of a certain quan-

tile of the distribution of the residuals associated with some f ∈ F . For

each p ∈ (0, 1), this p-quantile can be defined as any value q ∈ R such that
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PV (Rf < q) ≤ p ≤ PV (Rf ≤ q), which is only unique if the correspond-

ing cumulative distribution function is strictly increasing, i.e., if PV is a

continuous probability measure. As the LIR methodology is not restricted

to this case, g is generally defined as a multi-valued mapping, where in

case of the p-quantile g(PV ) = {q ∈ R : PV (Rf < q) ≤ p ≤ PV (Rf ≤ q)}.
Then, for each β ∈ (0, 1), the set

G>β =
⋃

PV ∈PV,>β

g(PV )

defines a likelihood-based confidence region with cutoff point β for the

characteristic g. This set can alternatively be represented as

G>β = {γ ∈ G : likg(γ) > β} ,

where likg : G → [0, 1] is the (normalized) profile likelihood function for

g defined by

likg(γ) = sup
PV ∈PV : γ∈g(PV )

likV (PV )

(see also Cattaneo and Wiencierz, 2012, Lemma 1).

When PV is a family of parametric probability distributions and g

a corresponding parameter, the confidence region G>β corresponds to all

values γ of the characteristic of interest that would not be rejected in a like-

lihood ratio test of the simple hypothesis H0 : g = γ versus the alternative

H1 : g ̸= γ. Under suitable regularity conditions, the likelihood ratio test

statistic −2 log(likg(γ)) has an asymptotic χ2-distribution with one degree

of freedom, as shown by Wilks (1938). For the nonparametric case, where

PV is the set of all probability measures on V and g is some characteristic

of these distributions, Owen (1988) derived the same asymptotic distribu-

tion of this test statistic, provided some regularity conditions are fulfilled.

Hence, the asymptotic confidence level of G>β is directly determined by

β. For any β ∈ (0, 1), the asymptotic level of the likelihood-based confi-

dence region G>β is given by Fχ2
1
(−2 log(β)), where Fχ2

1
is the cumulative
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distribution function of the χ2-distribution with one degree of freedom.

The lower the cutoff point β is chosen, the higher the confidence level of

G>β , for example, the choice of β = 0.15 corresponds to an asymptotic

confidence level of approximately 95%, while β = 0.5 implies a level of

about 76%.

In the context of the regression problem, the characteristic of interest

is the loss associated with each regression function f ∈ F . Hence, as g

we consider the function-specific loss function Lf defined for all f ∈ F by

Lf (PV ) = L(f, PV ). That is, L is also considered to be a possibly multi-

valued mapping here. Given some β ∈ (0, 1), we obtain for each function

f ∈ F a confidence region Cf,>β for the associated loss. In the example

case of the loss function assigning to each pair (f, PV ) the p-quantile of

the residuals’ distribution, we have that Cf,>β is always an interval, but

this is not necessarily true for other loss functions (see Owen, 1988). In

the LIR methodology, we use the confidence region Cf,>β as the decision

criterion for the regression problem. Since the cutoff point is the same

for all f ∈ F in the same LIR analysis, we suppress β in the notation

of the confidence regions in the following. Being a set-valued decision

criterion, the confidence region for the loss induces only a partial order on

F , and therefore, cannot simply be minimized. Yet, it is possible to apply

generalized decision rules or weak decision principles to obtain a (possibly

set-valued) solution. For example, all regression functions that are not

strictly dominated by another function can be considered as the imprecise

result of the regression analysis. A function f strictly dominates another

function f ′ if

sup
PV ∈PV,>β

Lf (PV ) < inf
PV ∈PV,>β

Lf ′(PV ) ⇐⇒ sup Cf < inf Cf ′ .

The obtained set of functions can be interpreted as a confidence set for

the true function describing the relationship between X and Y , thus, its

extent reflects the amount of statistical uncertainty regarded in the analysis

according to the choice of β.
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3.2 The LIR methodology for imprecise data

Now, let us consider the situation in which it is impossible to observe

the variables precisely, instead only partial information about V1, . . . , Vn

is available. The corresponding imprecise data are represented by the

random sets V ∗
1 , . . . , V

∗
n taking values in the set V∗ ⊆ 2V . The set-

valued observations can be arbitrary subsets of V, including as extreme

cases actually precise observations (when V ∗
i = {Vi}) and completely

missing data (when V ∗
i = V). We assume that the joint random ob-

jects (V1, V
∗
1 ), . . . , (Vn, V

∗
n ) are i.i.d. according to some probability mea-

sure P ∈ P, where P is a subset of the set Pε of all probability models

satisfying

P (V ∈ V ∗) ≥ 1− ε, (3.1)

for some ε ∈ [0, 1/2). This is a very general model for the considered data

situation, according to which for each realization of the random variables

of interest, X and Y , there is an unobservable precise version Vi = vi ∈ V
and an observable imprecise version V ∗

i = Ai ∈ V∗. In Figure 3.1, this idea

is illustrated by means of an artificial data example. How the two versions

are related is mainly determined by the model parameter ε corresponding

to the upper bound to the probability of a wrong coarsening. The event

Vi /∈ V ∗
i might occur due to, for example, data processing errors or bad

memory of respondents in a survey. Requiring ε = 0 in (3.1), as other ap-

proaches to the analysis of imprecise observations usually do, corresponds

to assuming that the (imprecise) data were perfectly recorded. However, in

many practical settings, such an assumption is not reasonable, hence, the

general model for the imprecise data of the LIR approach is more flexible

and allows accounting for measurement errors. In the fully nonparametric

setting where P = Pε, Assumption (3.1) does not even exclude informative

coarsening. Stronger assumptions about the coarsening mechanism may

also be included by the choice of an appropriate set P.

On the basis of the model for the (unobserved) precise and (observed)

imprecise data, we can, completely analogously to the case above, derive
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Figure 3.1: Precise (left) and imprecise (right) versions of a two-dimensional
synthetic data set with n = 17. The imprecise data have varying amounts
of imprecision: there is one actually precisely observed data point with V ∗

i =
[1, 1]× [1, 1] = {(1, 1)}, there are two line segments (one of which is unbounded
towards +∞ in the X-dimension), and finally, there are 14 rectangles of different
sizes and shapes (one of which is unbounded towards −∞ in the Y -dimension).

likelihood-based confidence regions for the characteristic of the marginal

distribution of the precise data PV that is regarded as loss function of the

regression problem. Note that the aim of the regression analysis remains

unchanged, that is, we still want to analyze the relationship between the

(precise) quantities X and Y , only the quality of the available data is

different now.

Consider that some imprecise observations V ∗
1 = A1, . . . , V

∗
n = An

were made. The (normalized) likelihood function lik on P induced by

these observations is defined by

lik(P ) =
P (V ∗

1 = A1, . . . , V
∗
n = An)

supP ′∈P P
′(V ∗

1 = A1, . . . , V ∗
n = An)

=

∏n
i=1 PV ∗(V ∗

i = Ai)

supP ′∈P
∏n

i=1 P
′
V ∗(V ∗

i = Ai)
,

(3.2)

where PV ∗ denotes the marginal distribution of the imprecise data asso-

ciated with a probability model P ∈ P. As the value of the likelihood

function for each P is given (up to a multiplicative constant) by the prob-

ability with which this probability model had predicted the data at hand

and since we only observed the imprecise data, the value of lik(P ) only
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depends on the marginal distribution PV ∗ . As in the precise data case, lik

can be used to reduce P to the set

P>β = {P ∈ P : lik(P ) > β}

of all plausible probability models given the data, for some β ∈ (0, 1).

Furthermore, likelihood-based confidence regions G>β for some charac-

teristic g of the probability distributions P ∈ P can be determined analo-

gously to the precise data case, i.e., as G>β = {γ ∈ G : likg(γ) > β}. How-

ever, it is more complicated to derive the (normalized) profile likelihood

function for g here. This is because the characteristics considered as loss

functions in the regression problem are usually characteristics of the dis-

tribution of the (unobservable precise) residuals Rf,i, with i ∈ {1, . . . , n},
and thus, only depend on the marginal distribution PV of the precise data,

while the likelihood function is entirely determined by the marginal dis-

tribution PV ∗ of the imprecise data. Hence, the uncertainty about the

probability distribution PV of the quantities of interest is more complex

here. It is composed of two parts: on the one hand, there is the statistical

uncertainty about the correct distribution PV ∗ of the imprecise data, and

on the other hand, there is the indetermination regarding which marginal

probability distribution PV of the precise data that is compatible with

PV ∗ is the correct one, which is due to the fact that the data are only

imprecisely obtained. In general, the statistical uncertainty decreases as

more data are observed, while the indetermination remains.

To deduce an expression for likg, we denote g(P ) by g′(PV ) for all

P ∈ P and we define an imprecise version g∗ on PV ∗ of the multi-valued

mapping describing the characteristic of interest for all PV ∗ ∈ PV ∗ by

g∗(PV ∗) =
⋃

PV ∈[PV ∗ ]

g′(PV ), (3.3)

where [PV ∗ ] is the set of all probability distributions P ′
V of the precise data

corresponding to models P ′ ∈ P with marginal distribution P ′
V ∗ = PV ∗ for

the imprecise data. If we consider, for instance, the fully nonparametric
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assumption P = Pε with ε = 0, for a fixed PV ∗ , the set [PV ∗ ] is com-

posed of all marginal distributions PV of the precise data satisfying for all

measurable events A ⊆ V

PV (V ∈ A) ≥
∫
V∗

I{A′∈V∗ :A′⊆A}(Ã) dPV ∗(Ã) and

PV (V ∈ A) ≤
∫
V∗

I{A′∈V∗ :A′∩A̸=∅}(Ã) dPV ∗(Ã).

(3.4)

The expressions on the right-hand side of these inequalities are often re-

ferred to as lower and upper probabilities or as belief and plausibility func-

tion, respectively. For a closer look at these concepts, see, for example,

Destercke et al. (2008); Nguyen and Wu (2006); Smets (2005); Dempster

(1968).

As the likelihood function lik only depends on PV ∗ , we furthermore

define by lik∗(PV ∗) = lik(P ) the (normalized) likelihood function lik∗ on

the set PV ∗ of all marginal distributions of the imprecise data associated

with the considered probability measures P ∈ P. This definition permits

expressing G>β as

G>β =
⋃

PV ∗∈PV ∗ : lik∗(PV ∗ )>β

g∗(PV ∗),

and deriving the (normalized) profile likelihood function lik∗g∗ on G asso-

ciated with g∗ as

lik∗g∗(γ) = sup
PV ∗∈PV ∗ : γ∈g∗(PV ∗ )

lik∗(PV ∗). (3.5)

Now, it is straightforward to conclude that for all γ ∈ G

likg(γ) = lik∗g∗(γ) (3.6)

(see also Cattaneo and Wiencierz, 2012, Lemma 2).

Hence, as in the precise data case, each possible regression function

f ∈ F is evaluated by a set-valued decision criterion Cf , corresponding
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to a confidence region for some characteristic of the residuals’ distribu-

tion associated with f . The underlying general methodology for likelihood

inference with imprecise data via likelihood-based confidence regions was

also proposed by Zhang (2010, 2009). As with the imprecision of the obser-

vations the confidence regions get larger, the asymptotic confidence level

Fχ2
1
(−2 log(β)) provides the lower bound to the actual asymptotic coverage

probability of Cf here. With β = 0.15, for example, Cf is asymptotically

a conservative 95% confidence set.

To solve the decision problem of the regression analysis, generalized

decision rules or weak decision principles can be applied. Although deci-

sions rules like, for example, the Likelihood-based Region Minimax (LRM)

developed in Cattaneo (2007, Section 1.3) may allow singling out one opti-

mal function on the basis of the confidence regions, we find that a precise

solution is not appropriate in the context of the statistical analysis of im-

precise data. On the contrary, the aim should be to describe the whole

uncertainty about which regression function best describes the relation-

ship of interest in the light of the (possibly) imprecisely observed data.

Therefore, we suggest applying the dominance principle. Thus, we con-

sider all regression functions that are not strictly dominated by another

function as the imprecise result of the regression analysis. The resulting

set of regression functions consists of all functions that are plausible de-

scriptions of the relationship between X and Y , i.e., of all functions that

cannot be excluded by the likelihood inference. As the width of the sets

Cf is determined by the choice of the confidence level through β as well as

by the degree of imprecision of the observations, also the extent of the set

of plausible regression functions reflects not only the amount of statistical

uncertainty according to the choice of β but also the indetermination due

to the fact that the variables are only imprecisely observed.

To summarize, the LIR approach provides a very general framework for

regression analysis with imprecise data. The imprecise data can be any

subsets of the observation space of the variables of interest, including as

special cases actually precise data and completely missing data. The LIR

methodology consists in using likelihood-based confidence regions for some
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characteristic of the residuals’ distribution as set-valued decision criterion

in the regression problem and in applying the dominance principle to these

in order to extract all regression functions that are plausible in the light

of the data. The confidence regions can be derived on the basis of a very

general model connecting the precise data with the (possibly) imprecise

observations. In the framework of LIR, the result of the regression analy-

sis is in general set-valued, even in the special case where the data are in

fact precisely observed. It consists of all descriptions of the relationship of

interest that are not eliminated by the likelihood inference, and thus, the

obtained result can be regarded as a confidence set for the true regression

function. Thus, the idea is to directly obtain a result representing the un-

certainties involved in the regression problem with imprecise data, instead

of a single regression function one cannot be certain about.

However, if it is actually possible to obtain informative confidence re-

gions, of course, depends on the concrete choices of P and Lf . In the

following chapter, a regression method within the LIR framework is pro-

posed, which is based on the fully nonparametric probability assumption

and where a quantile of the distribution of the residuals is considered as

loss function.
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Chapter 4

A robust regression method within

the LIR framework

In this chapter, the mathematical framework of a robust regression method

derived from the general LIR approach is presented in detail. Then, some

features of the robust LIR method are discussed with the help of an il-

lustrative example, before its statistical properties are thoroughly inves-

tigated. Furthermore, the implementation of the robust LIR method is

extensively discussed and its realization as a package for the statistical

software environment R (R Core Team, 2013) is presented.

4.1 The robust LIR method

On the basis of the general LIR methodology described in the previous

chapter, we developed in Cattaneo and Wiencierz (2012, Section 3) a ro-

bust regression method for imprecise data. In the robust LIR method, the

p-quantile, for some p ∈ (0, 1), of the residuals’ distribution is considered

as evaluation Lf of each regression function f ∈ F and the nonparametric

distributional assumption P = Pε, for some ε ∈ [0, 1/2), is adopted.

With this general nonparametric assumption, where the data can be

generated by any distribution satisfying Condition (3.1), it is generally

impossible to obtain informative confidence regions for moments of the
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residuals’ distribution, because in this case the profile likelihood function

is constant, and therefore, for each β ∈ (0, 1), the confidence region is the

entire set of possible values. This is due to the fact that moments are

very sensitive to small contaminations. For example, if we consider for

simplicity the situation in which only precise data are observed and where

the loss Lf is given by the residual’s expectation, it is easy to see that the

profile likelihood function is constant equal one over the entire domain of

Rf . Every value on the domain can be obtained as the expected value

of a mixture distribution between the empirical distribution of the data

and another distribution. As the latter can be an arbitrary distribution

with very large or even infinite expected value, also the expectation of

the mixture distribution may be arbitrarily high because it is given by

the convex combination of the expectations of both involved probability

measures. Furthermore, the mixture distribution can be arbitrarily similar

to the empirical distribution when the weight of the contamination is small

enough, and thus, assign practically the same probability to the observed

data. Therefore, all possible values of the expectation are equally plausible

and the profile likelihood function takes the value one for all of them.

In contrast to moments, quantiles are robust distribution characteris-

tics, which are resistant to small changes in the probability distribution.

For instance, the median being the 1/2-quantile is the robust counterpart

to the expectation being the first moment. Thus, informative confidence

regions for quantiles can also be obtained in the fully nonparametric set-

ting and these likelihood-based confidence regions are generally intervals

(see, e.g., Owen, 2001, Section 3.6). That is why the robust LIR method

combines the general nonparametric probability model with the loss func-

tion assigning to each pair (f, P ) the p-quantile of the distribution under

P of the residuals associated with the function f . In the same way the

minimization of E(R2
f ) is associated with the LS regression method, the

idea of minimizing the p-quantile is the rationale behind the Least Quan-

tile of Squares (LQS, Rousseeuw and Leroy, 1987, Section 3.4) regression

method, which is known to be very robust. Hence, the proposed LIR

method can be regarded as a twofold generalization of LQS regression, on
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the one hand, to imprecise data, and on the other hand, to directly ac-

counting for statistical uncertainty in the result of the regression analysis.

Given the particular choices of P and Lf corresponding to the robust

LIR method, we deduce an explicit formula for the profile likelihood func-

tion for the p-quantile, before we derive a simpler expression that permits

determining directly the confidence regions Cf , which are finally used to

obtain the imprecise result of the regression analysis.

4.1.1 Profile likelihood for the p-quantile of the residuals’ dis-

tribution

For each function f ∈ F , let Qf denote the function-specific loss function

assigning to each probability measure P ∈ P the p-quantile, with p ∈ (0, 1),

of the distribution of Rf under P and let Qf ⊆ R≥0 be the (possibly

unbounded) interval of all possible values of this p-quantile. To derive

the corresponding profile likelihood function likQf
: Qf → [0, 1] induced

by some imprecise observations V ∗
1 = A1, . . . , V

∗
n = An, we consider the

vertical bands around f defined for each q ∈ R≥0 by

Bf,q = {(x, y) ∈ V : |y − f(x)| ≤ q} and

Bf,q = {(x, y) ∈ V : |y − f(x)| < q} .

A graphical illustration of the defined bands is given in Figure 4.1. To

show why these bands provide a good starting point for finding likQf
, we

consider the case p = 1/2. For simplicity, we furthermore assume that the

observations are actually precise, i.e., Ai = {vi} for all i ∈ {1, . . . , n},
where n is an odd number, and ε = 0. Then, for any f ∈ F , the non-

parametric ML estimator of Qf is the median of the empirical distribution

of the observed residuals rf,1, . . . , rf,n, which is given by rf,(n+1/2), where

rf,(i) denotes the i-th smallest residual. Hence, for q = rf,(n+1/2), we know

that likQf
(q) = 1, and moreover, the band Bf,q around f can be character-

ized by the fact that it contains at least n+1/2 data. This characterization

will be also useful later. Furthermore, recall the general definition of the
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p-quantile of the residuals’ distribution, which is any value q ∈ R≥0 such

that PV (Rf < q) ≤ p ≤ PV (Rf ≤ q), where PV is the marginal dis-

tribution of the precise data, which is also the marginal distribution of

the imprecise data in the special case considered here. With the above

definitions of the vertical bands, we can write this defining property as

PV (V ∈ Bf,q) ≤ p ≤ PV (V ∈ Bf,q). Then, in the simple situation we

consider here, determining likQf
(q) for a fixed q ∈ Qf becomes simply

counting the data inside the band Bf,q and those outside, because the

probability measure attaining the highest likelihood value, is always the

discrete probability measure distributing in equal parts probability mass

p among the observations inside Bf,q and probability mass 1 − p among

those outside the band. By a similar reasoning, it is possible to derive the

entire profile likelihood function for Qf , also in the general case of impre-

cise observations. But before we put down a formal expression for likQf
,

we introduce some further definitions.

For each f ∈ F , the corresponding functions kf and kf are defined,

whose values are for all q ∈ R≥0 given by

kf (q) = |{i ∈ {1, . . . , n} : Ai ∩Bf,q ̸= ∅}| and

kf (q) = |{i ∈ {1, . . . , n} : Ai ⊆ Bf,q}| ,

where |S| is the number of elements of a set S. Hence, kf (q) is the num-

ber of imprecise data intersecting the closed band Bf,q of vertical band-

width 2 q around the function f , while kf (q) corresponds to the num-

ber of imprecise data completely included in the open band Bf,q. From

the definition follows that kf and kf are monotonically increasing func-

tions of q, and kf (q) ≤ kf (q) for all q ∈ R≥0. Finally, the function

h : [0, 1]× (0, 1) → (0, 1] is defined with

h(s, t) =


1− t if s = 0,(
t

s

)s (
1− t

1− s

)1−s

if 0 < s < 1,

t if s = 1,
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for all s ∈ [0, 1] and all t ∈ (0, 1). Before restating Theorem 1 of Cattaneo

and Wiencierz (2012), which provides a precise expression for likQf
, we

recapitulate the setting considered in the robust LIR method.

• The aim is to find those of the functions f ∈ F that are plausible

formalizations of the relationship between the variables X and Y .

• The random vector V = (X,Y ) summarizes the (precise) variables

of interest, while V ∗ is the random set representing the imprecise

observation of V .

• We assume that (V, V ∗) ∼ P ∈ P = Pε, where Pε is the set of all

probability measures on V ×V∗ satisfying (3.1), for some ε ∈ [0, 1/2).

• Then, there is a sample of n i.i.d. realizations of these random ob-

jects, with Vi = vi and V ∗
i = Ai for all i ∈ {1, . . . , n}, but only

A1, . . . , An are observed.

• As loss function of the regression problem we consider the p-quantile,

with p ∈ (0, 1), of the residuals’ distribution. That is, for each func-

tion f ∈ F and some P ∈ P, the loss associated with f is given by

the p-quantile Qf of the distribution (under P ) of the (unobservable

precise) residuals Rf,1, . . . , Rf,n.

• According to the general LIR methodology explained in Chapter 3,

likelihood-based confidence regions Cf for Qf can be obtained from

the imprecise data A1, . . . , An and those are used as decision crite-

rion of the regression problem, i.e., to finally identify the set of all

plausible regression functions.

To obtain these confidence regions, the profile likelihood function likQf
has

to be determined, which only depends on the marginal distributions PV ∗

of the imprecise data corresponding to the probability measures P ∈ P.

Theorem 1. For each f ∈ F , the profile likelihood function likQf
for

the p-quantile of the distribution of the residuals Rf,i can be expressed as
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follows, for all q ∈ Qf :

likQf
(q) =



h

(
kf (q)

n
, p− ε

)n

if kf (q) < (p− ε)n,

1 if [kf (q), kf (q)] ∩ [(p− ε)n, (p+ ε)n] ̸= ∅,

h

(
kf (q)

n
, p+ ε

)n

if kf (q) > (p+ ε)n.

Proof. Here, we only give the idea how this expression can be deduced,

the complete and detailed proof can be found in Cattaneo and Wiencierz

(2012, Section 3).

By Equations (3.2), (3.3), (3.5), and (3.6), we know that for each q ∈
Qf the value of likQf

(q) is given by

likQf
(q) = sup

PV ∗∈PV ∗ :

q∈
⋃

PV ∈[PV ∗ ] Qf (PV )

∏n
i=1 PV ∗(V ∗

i = Ai)

supP ′
V ∗∈PV ∗

∏n
i=1 P

′
V ∗(V ∗

i = Ai)
,

that is, by the supremum of the likelihoods lik∗(PV ∗) of all marginal dis-

tributions of the imprecise data such that there is a compatible marginal

distribution PV of the precise data whose p-quantile of the corresponding

distribution of the residuals covers the value q. Therefore, we at first look

for the PV ∗ assigning the highest possible probability to the observations

at hand. This distribution is usually a discrete distribution with probabil-

ity masses larger than zero only at the observed imprecise data. However,

note that all other probability measures in P can be thought of as points

(or line segments) under the curve of likQf
, thus, the confidence regions

Cf based on likQf
cover the p-quantiles corresponding to all P ∈ P with

lik(P ) > β. For a fixed q ∈ Qf , the distribution attaining the highest like-

lihood can be obtained by looking for the allocation of probability mass

on the observations at hand implying the highest possible likelihood, while

respecting the restrictions imposed by the definition of the p-quantile of

the residuals’ distributions and the additional flexibility given by ε.
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For all q ∈ Qf such that [kf (q), kf (q)]∩[(p− ε)n, (p+ ε)n] ̸= ∅, there

is a precise data distribution compatible with the empirical distribution

P̂V ∗ of the imprecise data and covering q in its p-quantile, thus, for these

q we get likQf
(q) = lik∗(P̂V ∗) = 1.

In the case of all q ∈ Qf such that kf (q) < (p − ε)n, the probability

distribution for the imprecise data attaining the highest likelihood value is

the distribution that is as similar to the empirical distribution P̂V ∗ as pos-

sible, given the restrictions imposed by the definition of the p-quantile of

the residuals’ distributions. To obtain this probability measure, the mass

p−ε is equally distributed among the kf (q) imprecise data intersecting the

closed band Bf,q and the remaining probability mass 1− p+ ε is assigned

to the n − kf (q) imprecise data not intersecting Bf,q. Then, computing

the corresponding probability of the observed sample and dividing it by

the highest possible value (1/n)
n
leads to the above expression.

In the case of all q ∈ Qf such that kf (q) > (p+ ε)n, the expression for

likQf
(q) can be derived by analogous reasoning.

These explanations suggest that, if, for some interval [q, q] ⊆ Qf , the

borders of all bands Bf,q with q ∈ [q, q] do not intersect any observation,

then likQf
(q) is the same for all quantile values in this interval. This

intuition can be formalized, leading to a simpler expression for the profile

likelihood function of a p-quantile of the distribution of Rf . Figure 4.1

shows an example of the profile likelihood function on the basis of the

imprecise data set introduced in Section 3.2.

For each function f ∈ F , we consider lower and upper residuals de-

noted by rf,i and rf,i, respectively, which are defined for all imprecise

observations Ai, with i ∈ {1, . . . , n}, by

rf,i = inf
(x,y)∈Ai

|y − f(x)| and rf,i = sup
(x,y)∈Ai

|y − f(x)| .

The intervals [rf,i, rf,i] correspond to the imprecise observations of the

residuals Rf,i, for all i ∈ {1, . . . , n}. When we consider the ordered lower

residuals rf,(1) ≤ . . . ≤ rf,(n) and the ordered upper residuals rf,(1) ≤
. . . ≤ rf,(n) and we define rf,(0) and rf,(0) as infQf and similarly rf,(n+1)
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Figure 4.1: Linear regression function given by f(x) = 2 − x for all x ∈ R
(solid line) with band Bf,q (dashed lines) for q = 1 (left) and corresponding
function likQf for the median with ε = 0 (right). For q = 1, Bf,1 intersects

kf (1) = 14 imprecise data, while Bf,1 contains kf (1) = 6 imprecise data. As
we have [(p− ε)n, (p+ ε)n] = [8.5, 8.5] and [6, 14] ∩ [8.5, 8.5] ̸= ∅, we obtain
likQf (1) = 1 (right, dashed line). If the graph of likQf is cut at 0.5 (right, dotted
line), the coordinates of the intersection points on the q-axis give the endpoints
of the confidence interval Cf for β = 0.5.

and rf,(n+1) as supQf , we obtain rf,(0) ≤ . . . ≤ rf,(n+1) and rf,(0) ≤ . . . ≤
rf,(n+1). Finally, we define the integers i and i as i = max (⌈(p− ε)n⌉ , 0)
and i = min (⌊(p+ ε)n⌋ , n) + 1, respectively, where i ∈ {0, . . . , n} and

i ∈ {1, . . . , n+ 1} with i ≤ i.

These definitions allow us to express the points of discontinuity of the

functions kf and kf (restricted to the set Qf ) as the ordered upper and

lower residuals, respectively. Moreover, it is easy to see that for all q /∈
{rf,(0), . . . , rf,(n+1)} the function kf is given by kf (q) = i if rf,(i) < q <

rf,(i+1) with i ∈ {0, . . . , n + 1}, while for all q /∈ {rf,(0), . . . , rf,(n+1)}
the function kf is given by kf (q) = i if rf,(i) < q < rf,(i+1) with i ∈
{0, . . . , n + 1} (see also Cattaneo and Wiencierz, 2012, Lemma 3). Now,

we can restate Corollary 1 of Cattaneo and Wiencierz (2012), providing

the simpler expression for likQf
.

Corollary 1. For each f ∈ F , the profile likelihood function likQf
for the

p-quantile of the distribution of the residuals Rf,i is a piecewise constant

function, which can take at most n+ 2 different values.
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The points of discontinuity of likQf
, including the endpoints of Qf , are

(in ascending order, with possible repetitions)

rf,(0), . . . , rf,(i), rf,(i), . . . , rf,(n+1),

and for all other values of q ∈ Qf ,

likQf
(q) =



h

(
i

n
, p− ε

)n

if rf,(i) < q < rf,(i+1) with i ∈ {0, . . . , i− 1}

(when i ≥ 1),

1 if rf,(i) < q < rf,(i),

h

(
i

n
, p+ ε

)n

if rf,(i) < q < rf,(i+1) and i ∈ {i, . . . , n}

(when i ≤ n).

Proof. The above expression can easily be proved employing the formerly

introduced definitions and Theorem 1. The complete and detailed proof

can be found in Cattaneo and Wiencierz (2012, Section 3).

4.1.2 Likelihood-based confidence regions for the p-quantile of

the residuals’ distribution

Furthermore, the following result can be derived, which was formulated as

Corollary 2 in Cattaneo and Wiencierz (2012). It provides a method to

determine for each cutoff point β ∈ (0, 1) the likelihood-based confidence

regions Cf for the quantiles of the residuals’ distribution used to evaluate

the considered regression functions f ∈ F .

Corollary 2. If ε is sufficiently small and n is sufficiently large so that

(max{p, 1− p}+ ε)
n ≤ β (4.1)
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holds, then the integers

k = max

{
k ∈ {0, . . . , i− 1} : h

(
k

n
, p− ε

)
≤ n

√
β

}
and

k = min

{
k ∈ {i, . . . , n} : h

(
k

n
, p+ ε

)
≤ n

√
β

}
are well-defined and satisfy

0 ≤ k < (p− ε)n ≤ p n ≤ (p+ ε)n < k ≤ n,

and for each f ∈ F , the likelihood-based confidence region with cutoff point

β for the p-quantile of the distribution of the residuals Rf,i is the nonempty

interval

Cf = {q ∈ R≥0 : [kf (q), kf (q)] ∩ (k, k) ̸= ∅} ,

whose lower and upper endpoints are rf,(k+1) and rf,(k), respectively.

Proof. Again, we here explain only the idea how this result can be ob-

tained, the complete and detailed proof can be found in Cattaneo and

Wiencierz (2012, Section 3).

For a given proportion p ∈ (0, 1), a fixed ε ∈ [0, 1/2), and a chosen cutoff

point β ∈ [(max{p, 1−p}+ε)n, 1), we can use the first case of the expression

of likQf
in Theorem 1 to identify k, the maximum number smaller than

(p − ε)n of observations that may intersect the closed band Bf,q when

likQf
(q) ≤ β holds. Then, according to the corresponding expression in

Corollary 1, the index of the lower residual at which the profile-likelihood

function at first exceeds the threshold β is k + 1. Likewise, we use the

third case of the two expressions for likQf
to obtain k, the minimum

number larger than (p+ ε)n of observations that must be included in the

open band Bf,q when likQf
(q) ≤ β holds, and thereby, we obtain also the

index of the upper residual after which the function likQf
jumps down

below the threshold β again, which is k. Thus, rf,(k+1) and rf,(k) are the

lower and upper endpoints of the interval of quantile values q ∈ R≥0 with
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likQf
(q) > β, which is the likelihood-based confidence region Cf for the

p-quantile of the residuals’ distribution.

The thus obtained intervals Cf , for all functions f ∈ F , contain all

values q ∈ R≥0 for which the open band Bf,q contains at most k − 1 im-

precise data, while the closed band Bf,q intersects at least k + 1 data.

The width of the confidence intervals is determined on the one hand by

the statistical uncertainty accounted for, which is reflected by the dif-

ference between k + 1 and k, and on the other hand by the degree of

coarseness of the data, which is represented by the distinction between

containing and intersecting imprecise data. If β is sufficiently close to

one such that k = i − 1 = max (⌈(p− ε)n⌉ , 0) − 1 (when i ≥ 1) and

k = i = min (⌊(p+ ε)n⌋ , n) + 1 (when i ≤ n), the intervals Cf consist

of all q ∈ R≥0 that are ML estimates of the p-quantile of the distribution

of the residuals Rf,i. Even in this case and even if the data are in fact

precisely observed when supposing that ε = 0 in Assumption (3.1), the

confidence regions are usually proper intervals, because quantiles are in

general not unique.

As mentioned already in the previous section, the intervals Cf are

likelihood-based confidence regions whose asymptotic confidence level is

bounded from below by Fχ2
1
(−2 log(β)). Whether the endpoints rf,(k+1)

and rf,(k) are included in the confidence regions or not, depends on the

observations at hand. For example, if all A1, . . . , An are closed intervals,

the confidence intervals Cf are closed, too.

4.1.3 Imprecise result of the robust LIR method

Given the confidence regions as interval-valued evaluations of each consid-

ered regression function, the final result of the regression problem can be

determined. As explained in Chapter 3, the aim of the LIR analysis is

not to obtain one single regression estimate, but to obtain a result that

reflects the whole uncertainty about which of the considered functions best

describes the relationship between the variables of interest. Therefore, the

LIR result consists of all regression functions that are not strictly domi-
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nated by another regression function with respect to their likelihood-based

confidence intervals for some quantile of the residuals’ distribution. Ac-

cording to the definition at the end of Section 3.2, a function f ∈ F is

undominated if inf Cf ≤ inff ′∈F sup Cf ′ . The functions f ∈ F such that

sup Cf = inff ′∈F sup Cf ′ are optimal according to the LRM rule mentioned

in the previous subsection, and therefore, called LRM functions. If there

is a unique LRM function, it is denoted by fLRM . Furthermore, we define

qLRM = inf
f∈F

sup Cf , (4.2)

which corresponds to the upper endpoint of the confidence intervals of the

LRM functions. If there is a unique LRM function and the correspond-

ing confidence interval CfLRM
is right-closed, that is, if qLRM ∈ CfLRM

,

then the function fLRM is characterized by the fact that the closed band

BfLRM ,qLRM
is the thinnest band of the form Bf,q that contains at least

k imprecise data. This characterization can be extended to all LRM func-

tions for which the corresponding confidence intervals are right-closed.

Moreover, if all data are in fact precisely observed, we assume ε = 0

in (3.1), and there is a unique LRM function, then fLRM corresponds to

the LQS regression function for the k/n-quantile.

Finally, provided Condition (4.1) holds, the set U ⊆ F of all undomi-

nated regression functions can be defined as

U = {f ∈ F : inf Cf ≤ qLRM} = {f ∈ F : rf,(k+1) ≤ qLRM}. (4.3)

The whole set U constitutes the result of the robust LIR analysis. The

undominated functions f ∈ U are geometrically characterized by the fact

that the corresponding closed bands Bf,qLRM
of width 2 qLRM intersect

at least k + 1 imprecise data. Furthermore, the set U always contains the

set T of all LQS regression functions for the k/n-quantile obtained from

precise data sets that are compatible with the imprecise data A1, . . . , An.

To explain this, we take a closer look at the set T , which can be defined

as T = {f ∈ F : ∃ v1, . . . , vn with vi ∈ Ai ∀i ∈ {1, . . . , n} and rf,(k) =

inff ′∈F rf ′,(k)}. For each f ∈ T , there is a compatible precise data set
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implying the residuals rf,1, . . . , rf,n with rf,(k) = inff ′∈F rf ′,(k). Obvi-

ously, for all i ∈ {1, . . . , n} we have rf,i ≤ rf,i and rf,i ≤ rf,i, hence,

rf,(k) ≤ rf,(k) ≤ rf,(k). Moreover, by the definitions of k and k we know

that rf,(k+1) ≤ rf,(k). Altogether we obtain that rf,(k+1) ≤ rf,(k) =

inff ′∈F rf ′,(k) ≤ inff ′∈F rf ′,(k), and thus, f ∈ U . Note that the extent

of the set T is only determined by the imprecision of the data. The result

of the robust LIR method is usually larger than this, because the LIR anal-

ysis also accounts for the statistical uncertainty according to the chosen

β (and because the LIR method does not use an interpolation scheme to

obtain precise ML estimates for the quantiles, when these are not unique).

4.2 Illustration of the robust LIR method

In this section, some features of the robust LIR method are studied and

illustrated. For this purpose, we consider again the artificial data set

introduced in Chapter 3, consisting of 17 imprecise observations V ∗
1 =

A1, . . . , V
∗
17 = A17 of two variables (X,Y ) = V with V ∈ V = R2. In

this example, both variables are available as (possibly unbounded) inter-

vals, that is, the imprecise data are of the type V ∗ = [X,X]× [Y , Y ] with

X,X, Y , Y ∈ R ∪ {−∞,+∞}. This kind of imprecise data represents the

most relevant special case for statistical practice. It is sometimes referred

to as interval-censored data, but we call it simply interval data. The non-

parametric probability model underlying the robust LIR method implies

that P (X ≤ X ≤ X and Y ≤ Y ≤ Y ) ≥ 1 − ε, for some ε ∈ [0, 1/2).

As the majority of the data indicate a (decreasing) linear relationship,

we here consider as possible regression functions all functions in the set

F = {fa,b : (a, b) ∈ R2} of linear functions fa,b : R → R, defined by

fa,b(x) = a + b x for all x ∈ X . However, note that the robust LIR

method is not restricted to linear regression, on the contrary, the theo-

retical framework allows considering arbitrary functions to describe the

relationship between the analyzed variables. Furthermore, we here focus

on the regression method with p = 1/2, where the median of the probability

distribution of Rf is minimized.
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With the particular configuration of the robust LIR method and the in-

terval data considered here, given a fixed ε ∈ [0, 1/2) and a chosen β ∈ (0, 1)

that satisfies Condition (4.1), the likelihood-based confidence regions Cf ,
for all f ∈ F , are given by the closed intervals [rf,(k+1), rf,(k)] (see Corol-

lary 2). According to Equation (4.3), the set U of undominated functions

is the set of all functions f satisfying rf,(k+1) ≤ qLRM . As the consid-

ered regression functions in the set F are linear functions indexed by two

parameters (a, b) ∈ R2, the set U can be alternatively represented by the

corresponding subset of the parameter space R2. Hence, we furthermore

define the set

U ′ =
{
(a, b) ∈ R2 : fa,b ∈ U

}
, (4.4)

which contains all parameter combinations associated with the undomi-

nated functions. This set can be described as the union of finitely many

(possibly unbounded) polygons as it is explained in Section 4.3 (see also

Cattaneo and Wiencierz, 2013, Section 3).

For the case of simple linear regression with interval data that is con-

sidered here, the robust LIR method is implemented in the package linLIR

(Wiencierz, 2013) for the statistical software environment R (R Core Team,

2013) and it is presented in detail in Section 4.3. Hence, all results and

graphs in this section are obtained by using the linLIR package. Fig-

ure 4.2 shows the result of the regression analysis of the example data

set for the choice β = 0.5 and under the assumption ε = 0. Most of the

500 undominated regression lines plotted in the left graph are decreasing

functions, but slightly increasing lines are also present, which is confirmed

by the corresponding subset of parameter combinations in the right graph.

Furthermore, we find a unique function f ∈ F such that rf,(k) = qLRM ,

which is indicated by a black line or point. Next, we examine how dif-

ferent choices of β and different assumptions about ε in (3.1) affect the

regression’s result.

Different choices of β ∈ [(1/2 + ε)17, 1), i.e., satisfying Condition (4.1),

imply different confidence levels of the interval estimates Cf . For example,
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Figure 4.2: Draft of the set of undominated regression functions (left, 500
randomly chosen functions) and set of corresponding parameter combinations
(right), for β = 0.5 and ε = 0. The black line or point indicates the LRM
function.

under the assumption ε = 0, a likelihood-based confidence interval with

cutoff point β = 0.5 would be a conservative 76% confidence interval for

the median of the residuals’ distribution. A high confidence level of the

interval estimates of the median of the absolute residuals requires a small

choice of β and vice versa. Thus, the higher β, the lower the confidence

level and consequently the narrower the set of undominated regression

functions. In a practical setting, confidence in and inferential strength

of the result have to be balanced in light of the analyzed question and

the purpose of the analysis in order to choose an appropriate value for β.

In Figure 4.3, different results of LIR analyses with other choices of β are

displayed. For a low cutoff point such as β = 0.15, the regression’s result is

very imprecise, admitting different directions of the relationship between

the analyzed variables. In contrast to that, a high cutoff point such as

β = 0.8 leads to a less imprecise result containing no increasing lines.

In fact, the sets of undominated regression functions for different values

of the cutoff point β are nested. To explain this, we consider β1 > β2 and

the corresponding resulting sets Uβ1
and Uβ2

. For β1 > β2, we have that

k1 ≥ k2 and k1 ≤ k2. The latter implies that qLRM,1 ≤ qLRM,2, which

means that for each f ∈ F we have Bf,qLRM,2
⊇ Bf,qLRM,1

. As for each

f ∈ Uβ1
the closed band Bf,qLRM,1

intersects at least k1+1 imprecise data
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Figure 4.3: Drafts of the sets of undominated regression functions (500 randomly
chosen functions) for ε = 0 and two different choices of β, namely β = 0.15
(left) and β = 0.8 (right), corresponding to the confidence levels 95% and 50%,
respectively.

and k1 ≥ k2, the band Bf,qLRM,2
also intersects at least k2 + 1 imprecise

data, and therefore, f ∈ Uβ2
.

In addition to the choice of the cutoff point of the likelihood, also

ε ∈ [0, 1/2) has to be set a priori. According to (3.1), ε is the upper

bound to the probability that an imprecise observation does not contain the

correct precise value in the (nonparametric) probability model underlying

the presented LIR method. In most approaches to analyzing imprecise

data, ε is assumed to be zero, but there may be situations in which the

analyst has concerns about the correctness of the imprecise data. For

example, in the case of survey data, there are many different sources for

biases that should be accounted for in the analysis of such data, at least

with a small probability. Hence, the consideration of an ε > 0 means

to account for some more uncertainty about the data in addition to the

indetermination issuing from the coarseness of the data.

It follows directly from definitions of k and k in Corollary 2 that in-

creasing ε has the same effect on the width of the confidence intervals

as decreasing β, since in both cases, k decreases and k increases. Thus,

the worse the assumed data quality, the more imprecise the result. If we

choose β = 0.5 in our example and assume ε = 1/10, we obtain the same

result as for β = 0.15 assuming ε = 0, shown in Figure 4.3, because in
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both cases k = 4 and k = 13. However, the interpretation is different.

While in the case of increasing β for a fixed ε the amount of statistical

uncertainty reflected by the result is reduced, in the case of increasing ε

for a fixed β the assumptions of the underlying nonparametric probability

model are weakened.

We showed how different choices of the confidence level and different

assumptions about the correctness of the (imprecise) data are reflected

in the regression’s result. In order to illustrate how varying degrees of

imprecision of the data are represented in the result of a LIR analysis, we

compare the above results with those obtained from an actually precise

data set compatible with the imprecise data of the example data set and

from a compatible data set where only Y is imprecisely observed. Both

data sets are displayed in Figure 4.4, where the left data set is the same

as in Figure 3.1 and the right one is obtained by combining the precise

values for X of this data set with the imprecise values for Y .
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Figure 4.4: Precise data set compatible with the example data (left) and com-
patible data set where only Y is imprecisely observed (right).

For the LIR analyses of these less imprecise data sets, we assume that

ε = 0 and we choose β = 0.15 to obtain a reliable result. The resulting

sets of undominated functions are shown in Figure 4.5. Under the here

adopted assumption that all observations are correct, the analysis of the

actually precise data set leads to the most determined result, admitting

only decreasing lines. In the case where Y is imprecisely observed, the set

of undominated functions admits different directions of the relationship,

39



although the extent of U is visibly smaller than in the case where also X

is observed as intervals, which was displayed in Figure 4.3 (left). If β was

chosen close to one in order to obtain the ML estimate, the extent of the

set U would only reflect the imprecision of the observations. However, even

in the case of the actually precise data set together with the assumption

ε = 0, we obtain in general an imprecise result in the present situation.

That is because, given p = 1/2 and n = 17, for β close to one we have k =

⌈p n⌉−1 = 8 and k = ⌊p n⌋+1 = 9, implying that Cf = [rf,(8+1), rf,(9)] for

all f ∈ F . Furthermore, when the variables are in fact precisely observed,

rf,(i) = rf,(i) = rf,(i) for all i ∈ {1, . . . , n}, and thus, Cf = {rf,(9)} for all

f ∈ F . Hence, U consists of all functions f with rf,(9) = inff ′∈F rf ′,(9) =

qLRM , and in general, there can be more than one function attaining qLRM .
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Figure 4.5: Sets of undominated regression functions (500 randomly chosen func-
tions) for the compatible data sets where X and Y are in fact precisely observed
(left) and where only X is precisely observed (right), for β = 0.15 and ε = 0.

In this section, we investigated the impact of different assumptions

about the data generating process, amounts of statistical uncertainty se-

lected, and degrees of coarseness of the data on the result of the robust

LIR analysis. Both aspects of the uncertainty of a statistical analysis of

imprecise data, statistical uncertainty and indetermination, are crucial and

should be reflected in the result. Within the LIR framework both parts

of the uncertainty are expressed in the same way, that is, they determine

the extent of the generally imprecise result of the LIR analysis. Further

properties of the robust LIR method are investigated in Section 4.4.
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4.3 Implementation of the robust LIR method for lin-

ear regression with interval data

This section deals with the implementation of the robust LIR method. To

determine the set-valued result of the robust LIR analysis, is a demanding

problem. Even in the very particular case in which the robust LIR method

reduces to the standard LQS regression method with quantile k/n, it is a

challenging task, as the objective function of the minimization problem is

neither differentiable nor convex (see, e.g., Watson, 1998). Thus, common

optimization techniques cannot be applied. However, for the LQS regres-

sion method, an exact algorithm was developed (Rousseeuw and Leroy,

1987, Chapter 5), which was further studied and improved, for example,

in Watson (1998); Stromberg (1993); Steele and Steiger (1986).

For the robust LIR method, the implementation task is even more

challenging, because the objective function and the solution are in gen-

eral set-valued. Therefore, we suggested a first implementation based on a

grid search over the space of parameters identifying the considered regres-

sion functions in Cattaneo and Wiencierz (2012) and we applied a random

search to determine the result of the robust LIR analysis in Cattaneo and

Wiencierz (2011). Then, for the special case of simple linear regression with

interval data, we derived an exact algorithm in Cattaneo and Wiencierz

(2013), based on the ideas set out in Wiencierz and Cattaneo (2012). This

algorithm consists of two parts: at first, the smallest upper endpoint qLRM

of all confidence regions for the p-quantile of the residuals’ distribution is

determined, and then, it is used in the second part to identify the set of all

undominated regression functions. The first part of the algorithm general-

izes the initial algorithm for LQS regression and the entire algorithm has

the same computational complexity of O(n3 log n) (see, e.g., Steele and

Steiger, 1986). Moreover, as it was done with the initial LQS algorithm, it

is possible to adapt the algorithm for robust simple linear LIR to multiple

linear regression and also to other kinds of imprecise data than intervals.

In the following subsections, the exact algorithm is deduced in detail and

its realization in the R package linLIR (Wiencierz, 2013) is presented.
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4.3.1 An exact algorithm for simple linear regression

Here, we consider a similar setting as in Section 4.2, where the presumably

linear relationship between two real-valued variables, X and Y , is analyzed

on the basis of imprecise observations, which are of the form of (possibly

unbounded) intervals for each of the variables. To determine the set-

valued result of the robust LIR analysis in this situation, we developed an

exact algorithm by exploiting the geometrical characterizations of the LRM

functions and of the undominated functions. Before we derive the exact

algorithm, we recapitulate the core elements of the robust LIR method in

this special case.

• The relationship between the variables X ∈ X = R and Y ∈ Y = R
is investigated.

• As possible descriptions of the relationship between X and Y we

consider the set F consisting of all linear functions fa,b : X → R,
with fa,b(x) = a+ b x, for all x ∈ X , where (a, b) ∈ R2.

• In the present case, the random set V ∗ representing the imprecise

observation of V = (X,Y ) can take as values only rectangles formed

by closed (possibly unbounded) intervals, i.e., V ∗ = [X,X]× [Y , Y ],

with X,X, Y , Y ∈ R ∪ {−∞,+∞}.

• We assume that (V, V ∗) ∼ P ∈ P = Pε, where Pε is the set of

all probability measures satisfying (3.1), that is, all distributions P ′

with P ′(X ≤ X ≤ X and Y ≤ Y ≤ Y ) ≥ 1−ε, for some ε ∈ [0, 1/2).

• Then, there is a sample of n i.i.d. realizations of the random objects V

and V ∗, with Vi = vi and V
∗
i = [xi, xi]× [yi, yi] for all i ∈ {1, . . . , n},

but only the imprecise realizations [x1, x1] × [y1, y1], . . . , [xn, xn] ×
[yn, yn] are observed.

• As stated in Section 4.1, in the robust LIR method, we consider as

the loss associated with a possible regression function f ∈ F the p-

quantile Qf , with p ∈ (0, 1), of the distribution of the (unobservable

precise) residuals Rf,1, . . . , Rf,n.
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• On the basis of the imprecise data, likelihood-based confidence re-

gions Cf for Qf can be obtained as described in Section 4.1, applying

the general LIR methodology explained in Chapter 3.

• In the present case of interval data, given some choice of β satisfying

Condition (4.1), for each f ∈ F , the confidence region Cf is the

interval [rf,(k+1), rf,(k)], where the integers k and k depend on p, n,

ε, and β (see Corollary 2).

• Finally, according to (4.3), the imprecise result of the robust LIR

analysis is given by the set U = {f ∈ F : rf,(k+1) ≤ qLRM}, where
qLRM = inff∈F rf,(k) by its definition in (4.2).

Hence, to determine the set of all undominated functions, we have to

find the smallest upper endpoint qLRM of all confidence intervals Cf , with
f ∈ F , before all functions f ′ with rf ′,(k+1) ≤ qLRM can be identified.

Part 1: Determining qLRM

According to the explanations in Subsection 4.1.3, the LRM functions are

characterized by the fact that the closed bands Bf,qLRM
around them have

the thinnest bandwidth of all bands Bf ′,q, with f ′ ∈ F and q = rf ′,(k),

that is, containing at least k imprecise data. Thus, in order to obtain

qLRM , we need to find the linear functions minimizing this bandwidth.

For a given slope b ∈ R, the corresponding intercept value a ∈ R such that

rfa,b,(k) becomes minimal can easily be found. Moreover, similar to the

results obtained by Stromberg (1993) and by Steele and Steiger (1986) for

the LQS method, it can be deduced that, for an LRM function f , some

of the k imprecise data included in Bf,qLRM
touch the boundaries of the

closed band in at least two different points. As the boundaries of the bands

are parallel to the central lines, the slopes of the LRM functions are either

zero or determined by the corresponding vertices of two bounded imprecise

observations included in the band. Hence, to identify qLRM , it suffices to

consider as possible LRM functions all functions with slopes given by the

four slopes between the corresponding vertices of each pair of (noniden-

tical) bounded imprecise observations or zero and corresponding optimal
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intercepts. In this way, the general minimization problem is reduced to a

discrete problem with at most 4
(
n
2

)
+ 1 possible solutions.

Of course, the result also depends on the degree of coarseness of the

data. If there are less than k imprecise data that are bounded with respect

to Y , we obtain rf,(k) = +∞ for all f ∈ F . Therefore, in this case

qLRM = +∞ and U = F . If all observations are bounded with respect

to Y , but there are less than k imprecise data that are bounded with

respect to X, the only candidate slope is zero, because in this situation

only bands around a horizontal line can include at least k imprecise data.

More generally, if there are less than k imprecise observations such that

the rectangle [xi, xi]× [yi, yi] is bounded, either the only possible slope is

zero or we obtain qLRM = +∞.

To formalize this, let D ⊆ {1, . . . , n} be the set of indices of those

imprecise observations for which [xi, xi] × [yi, yi] is bounded. If |D| < k,

the set B of all possible slopes of the LRM functions is the singleton {0},
else (i.e., if |D| ≥ k) the set B is given by

B =

{
yi − yj
xi − xj

: (i, j) ∈ D2 and xi > xj and yi > yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ D2 and xi > xj and yi < yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ D2 and xi > xj and yi < yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ D2 and xi > xj and yi > yj

}
∪ {0} .

Furthermore, we define for each b ∈ R and each i ∈ {1, . . . , n} the trans-

formed data [zb,i, zb,i] whose endpoints are given by

zb,i =


yi − b xi if b < 0,

yi if b = 0,

yi − b xi if b > 0,

and zb,i =


yi − b xi if b < 0,

yi if b = 0,

yi − b xi if b > 0.
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As usual, zb,(1), . . . , zb,(n) and zb,(1), . . . , zb,(n) denote the ordered lower

and upper endpoints, respectively. Furthermore, for each b ∈ R and each

j ∈ {1, . . . , n − k + 1}, we denote by zb,[j] the k-th smallest value among

those zb,i for which zb,i ≥ zb,(j). By means of these definitions, the above

explanations can be summarized in the following theorem, which consti-

tutes Theorem 1 of Cattaneo and Wiencierz (2013).

Theorem 2. If there are less than k imprecise observations [xi, xi]×[yi, yi]

such that the interval [yi, yi] is bounded, then

qLRM = +∞,

{f ∈ F : rf,(k) = qLRM} = F .

Otherwise (i.e., when there are at least k imprecise observations [xi, xi]×
[yi, yi] such that the interval [yi, yi] is bounded),

qLRM =
1

2
min

(b,j)∈B×{1,...,n−k+1}
(zb,[j] − zb,(j)),

{f ∈ F : rf,(k) = qLRM} ⊇{
fa′,b′ : (b′, j′) ∈ argmin

(b,j)∈B×{1,...,n−k+1}
(zb,[j] − zb,(j))

and a′ =
1

2
(zb′,(j′) + zb′,[j′])

}
,

where the set on the left-hand side is infinite when the inclusion is strict.

However, the inclusion is certainly an equality when the following con-

dition is satisfied: if there is a pair (i, j) ∈ D2 such that xi = xj and

max{yi, yj} − min{yi, yj} = 2 qLRM , then i ̸= j and the two intervals

[yi, yi] and [yj , yj ] are nested (i.e., either [yi, yi] ⊆ [yj , yj ], or [yj , yj ] ⊆
[yi, yi]).

Proof. The first part of this theorem can easily be proved by the argumen-

tation above, while the proof of the second part requires further arguments,

some of which are briefly sketched here. The complete and detailed proof

can be found in Cattaneo and Wiencierz (2013, Subsection A.1).
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The second part of Theorem 2 regards the situation in which there are

at least k imprecise observations [xi, xi] × [yi, yi] such that the interval

[yi, yi] is bounded. In this case, qLRM < +∞, because rf,(k) < +∞
at least for the constant functions in F . To obtain qLRM , we have to

minimize rfa,b,(k) over all linear functions fa,b ∈ F with (a, b) ∈ R2, which

corresponds to finding the thinnest bands of parallel lines containing at

least k imprecise data. With the above definitions, for a fixed b ∈ R,
finding the thinnest band including k or more imprecise data is equivalent

to identifying the shortest interval containing at least k transformed data

[zb,1, zb,1], . . . , [zb,n, zb,n]. For each b ∈ R, the intervals including at least k

transformed data can be written as [zb,(j), zb,[j]] with j ∈ {1, . . . , n−k+1},
where an interval [c, c] is empty if c > c. Thus, we obtain a general

expression for qLRM like the one in the theorem, but where we have R
instead of B. Moreover, as for each b ∈ R the corresponding intercept

a minimizing the bandwidth of the closed band around the function fa,b

including at least k imprecise data is given by the center of the shortest

of the intervals [zb,(j), zb,[j]] with j ∈ {1, . . . , n − k + 1}, we also get the

analogous expression for the set of the LRM functions.

Finally, some effort is needed to prove that the slopes of all functions

associated with qLRM are indeed elements of B when the condition at the

end of the theorem is satisfied. Following Stromberg (1993), this can be

achieved by formulating part of the optimization problem as a so-called

Chebyshev approximation problem and applying general results about the

solutions of these problems from Cheney (1982, Chapters 1 and 2). The

condition at the end of Theorem 2 provides a sufficient but not necessary

condition for the set of LRM functions to be the finite set given by the

expression on the right side of the equation above. The condition excludes

situations in which the set of LRM functions can be an infinite proper sub-

set of F . However, in principle, it is possible to give the precise expression

for the set of LRM functions also if this condition is not satisfied, which

requires many case distinctions. As our main interest lies in determining

qLRM here, these details about the set of LRM functions are neglected.
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Hence, Theorem 2 constitutes the basis for the first part of the exact

algorithm. It provides a way to determine qLRM as the solution of a

discrete optimization problem and to identify all of them, if there are

finitely many associated LRM functions. At first, the set B is determined,

then, for each b ∈ B, the shortest interval containing k of the transformed

data [zb,1, zb,1], . . . , [zb,n, zb,n] is identified, providing the corresponding

optimal intercept a ∈ R by its center and the associated rfa,b,(k) by half

of its length. Finally, qLRM is obtained as the minimum of these rfa,b,(k)

over all fa,b with b ∈ B and optimal intercept a, and the LRM functions

are given by the functions corresponding to this minimal upper endpoint.

Part 2: Identifying the set U

On the basis of qLRM , the set U of all undominated regression functions is

to be determined. For each f ∈ U , we know that the closed band Bf,qLRM

of width 2 qLRM intersects at least k + 1 imprecise data. The second

part of the algorithm is derived by exploiting this geometrical character-

ization of the undominated functions. For some fixed b ∈ B, to identify

the undominated functions with slope b, we have to find all intercept val-

ues a ∈ R for which the corresponding bands Bfa,b,qLRM
intersect at least

k+ 1 imprecise data. This is equivalent to finding the centers a ∈ R of all

intervals [a − qLRM , a + qLRM ] that intersect at least k + 1 of the trans-

formed imprecise data [zb,1, zb,1], . . . , [zb,n, zb,n]. For each subset of the

transformed data {[zb,i, zb,i] : i ∈ I ⊆ {1, . . . , n}} of size |I| = k + 1, the

interval [a−qLRM , a+qLRM ] intersects all of these k+1 transformed data

if a ∈ [maxi∈I zb,i − qLRM ,mini∈I zb,i + qLRM ]. Thus, for each b ∈ R,
the (possibly empty) set Ab of all intercept values a ∈ R for which the

corresponding bands Bfa,b,qLRM
intersect k + 1 or more imprecise data is

Ab =
⋃

I⊆{1,...,n} : |I|=k+1

[
max
i∈I

zb,i − qLRM ,min
i∈I

zb,i + qLRM

]
.

With this definition, the set of all undominated functions can be formu-

lated as the set of all linear functions with slopes b ∈ R and corresponding
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intercepts a ∈ Ab, that is,

U = {fa,b : b ∈ R and a ∈ Ab} .

Thanks to Theorem 2 of Cattaneo and Wiencierz (2013) restated in the

following, we obtain a simpler expression for the sets Ab for all b ∈ R, and
thus, also for U .

Theorem 3.

U =

{
fa,b : b ∈ R and a ∈

n−k⋃
j=1

[
zb,(k+j) − qLRM , zb,(j) + qLRM

]}
.

Proof. The expression for U can be proved with the above explanations

and by means of the technical result stated as Lemma 1 in Cattaneo and

Wiencierz (2013, Section A). The complete and detailed proof can be found

in Cattaneo and Wiencierz (2013, Subsection A.2).

Theorem 3 makes it possible to determine in a simple way for each

b ∈ R the corresponding set Ab, containing the intercept values of all

undominated functions with slope b. For each b ∈ R, this set is can be

obtained as the union of the n−k intervals [zb,(k+j)−qLRM , zb,(j)+qLRM ].

For most purposes, this would already be sufficient, as it is always possible

to use a fine grid over a suitable range of slope values to obtain an accept-

able approximation of the set U . Yet, the result of Theorem 3 additionally

implies a precise description of the set U ′ ⊆ R2 of parameter values as-

sociated with the undominated functions, namely as the union of finitely

many (possibly unbounded) polygons.

Precise description of U ′

According to (4.4), the set U ′ of parameter combinations corresponding to

the undominated functions is given by U ′ = {(a, b) : b ∈ R and a ∈ Ab}.
For each b ∈ R, the set Ab can be determined as the union of the n−k (pos-

sibly empty or unbounded) intervals [zb,(k+1) − qLRM , zb,(1) + qLRM ], . . . ,

[zb,(n)− qLRM , zb,(n−k)+ qLRM ]. If we consider for each j ∈ {1, . . . , n−k}
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the interval endpoints zb,(k+j) − qLRM and zb,(j) + qLRM as functions of

b ∈ R, we find that these functions are either piecewise linear or con-

stant equal ±∞ (with a possible discontinuity at b = 0). As a polygon

can be defined as a subset of R2 bounded by finitely many line segments

and half-lines (see, e.g., Alexandrov, 2005, Subsection 1.1.1), for each

j ∈ {1, . . . , n−k}, the functions b 7→ zb,(k+j)−qLRM and b 7→ zb,(j)+qLRM

determine a polygon. Hence, U ′ can be represented as the union of these

n − k (possibly unbounded) polygons. However, in general, U ′ is neither

closed nor convex nor connected. An illustration of the complex shape of

U ′ was given in Figure 4.2 (right).

More precisely, when we consider the case in which all imprecise data

are bounded, i.e., when |D| = n, the definitions of zb,i and zb,i imply that,

for all i ∈ {1, . . . , n}, the functions b 7→ zb,i − qLRM and b 7→ zb,i + qLRM

are continuous and piecewise linear, each consisting of two half-lines joined

at b = 0. Therefore, for each j ∈ {1, . . . , n − k}, the functions b 7→
zb,(k+j) − qLRM and b 7→ zb,(j) + qLRM consist of segments of some of the

functions b 7→ zb,i − qLRM and b 7→ zb,i + qLRM , connecting the points at

which the indices of the (k + j)-th smallest zb,i and the j-th smallest zb,i,

respectively, change, that is, where the corresponding functions cross each

other. Hence, the functions b 7→ zb,(k+j) − qLRM and b 7→ zb,(j) + qLRM

are also continuous and piecewise linear for all j ∈ {1, . . . , n− k}. If these
functions moreover intersect on R<0 and on R>0 for all j ∈ {1, . . . , n−k},
the set U ′ is a closed and bounded subset of R2, since it is the union of

the polygons determined by these functions. In case that the functions

b 7→ zb,(k+j) − qLRM and b 7→ zb,(j) + qLRM do not intersect twice on R<0

and on R>0 for some j ∈ {1, . . . , n− k}, the set U ′ is unbounded, but still

closed in R2.

When we consider more general data situations, two cases have to be

distinguished. At first, we consider the situation in which there is no

imprecise observation [xi, xi]× [yi, yi] such that the interval [xi, xi] is un-

bounded and [yi, yi] ̸= [−∞,+∞]. In this case, for all i ∈ {1, . . . , n}, the
function b 7→ zb,i − qLRM is either continuous and piecewise linear (when

zb,i > −∞) like in the situation where all data are bounded or it is constant
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equal −∞. Analogously, the function b 7→ zb,i+qLRM is either continuous

and piecewise linear or constant equal +∞. Therefore, also the functions

b 7→ zb,(k+j)− qLRM and b 7→ zb,(j)+ qLRM are each either continuous and

piecewise linear or constant equal ±∞. Hence, the polygons determined

by these functions are not necessarily bounded, and thus, also in this data

situation U ′ is a closed but possibly unbounded subset of R2.

Finally, we consider the situation in which there is an imprecise ob-

servation [xi, xi]× [yi, yi] such that the interval [xi, xi] is unbounded and

[yi, yi] ̸= [−∞,+∞]. Here, at least one of the functions b 7→ zb,i − qLRM

and b 7→ zb,i+qLRM associated with this observation has a discontinuity at

b = 0. Therefore, the functions b 7→ zb,(k+j)−qLRM and b 7→ zb,(j)+qLRM

can be discontinuous at b = 0. By consequence, the resulting set U ′ is not

necessarily closed in this situation. However, if U ′ is not closed in R2,

the two parts U ′ ∩ (R × {0}) and U ′ ∩ (R × R ̸=0) are still closed in their

corresponding subspaces R× {0} and R× R ̸=0, respectively.

When the exact shape of U ′ is to be determined, for example, in order

to visualize the set of undominated parameters, it suffices to consider the

finite set of all slopes at which any two of the 2n functions b 7→ zb,i−qLRM

and b 7→ zb,i + qLRM cross each other together with the slope zero, be-

cause these values constitute all possible locations of the vertices of U ′. In

addition, two values closely above and below zero as well as one very small

and one very large value should be considered to capture the limits. Over

the interval defined by the smallest and the largest of the thus determined

slopes b′, for each j ∈ {1, . . . , n−k}, the functions b 7→ zb,(k+j)−qLRM and

b 7→ zb,(j) + qLRM correspond to the paths connecting the points at these

slope values. Hence, if the set of undominated parameters is bounded, it

can be precisely drawn in a graph by connecting, for each j ∈ {1, . . . , n−k},
the points (b′, zb′,(k+j)−qLRM ) and (b′, zb′,(j)+qLRM ), respectively, located

at those of the relevant slopes where zb′,(k+j) − qLRM ≤ zb′,(j) + qLRM .

Otherwise the exact shape of U ′ can be depicted over a predefined range

of slopes.

To identify the set of all relevant slopes, we at first define the set B̃
of all b ∈ R at which either two functions b 7→ zb,i − qLRM and b 7→
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zb,j − qLRM intersect, for some (i, j) ∈ {1, . . . , n}2 with i ̸= j, or two

functions b 7→ zb,i+ qLRM and b 7→ zb,j + qLRM cross each other, for some

(i, j) ∈ {1, . . . , n}2 with i ̸= j. With the definition +∞/+∞ = 0, this set

can be written as

B̃ =

({
yi − yj
xi − xj

: (i, j) ∈ {1, . . . , n}2 and xi > xj and yi > yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ {1, . . . , n}2 and xi > xj and yi < yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ {1, . . . , n}2 and xi > xj and yi < yj

}
∪
{
yi − yj
xi − xj

: (i, j) ∈ {1, . . . , n}2 and xi > xj and yi > yj

} )
∩ R.

In fact, the set B̃ is very similar to the set B considered in the first part of

the algorithm, which consists of the slopes determined by the vertices of

all bounded data [xi, xi]× [yi, yi] with i ∈ D and zero. Since two functions

b 7→ zb,i − qLRM and b 7→ zb,j − qLRM or two functions b 7→ zb,i + qLRM

and b 7→ zb,j + qLRM intersect when b is the slope determined by the

corresponding vertices of the imprecise data Ai and Aj , we have that

(B̃ ∪ {0}) is a superset of B. Furthermore, we define the set B̌ of all slopes

b ∈ R at which the functions b 7→ zb,i − qLRM and b 7→ zb,j + qLRM cross

each other, for all (i, j) ∈ {1, . . . , n}2. The set B̌ is given by

B̌ =

({
(yi + 2 qLRM )− yj

xi − xj
: (i, j) ∈ {1, . . . , n}2 and

xi > xj and (yi + 2 qLRM ) > yj

}
∪
{
yi − (yj + 2 qLRM )

xi − xj
: (i, j) ∈ {1, . . . , n}2 and

xi > xj and yi < (yj + 2 qLRM )

}
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B= ∪
{
(yi + 2 qLRM )− yj

xi − xj
: (i, j) ∈ {1, . . . , n}2 and

xi > xj and (yi + 2 qLRM ) < yj

}
∪
{
yi − (yj + 2 qLRM )

xi − xj
: (i, j) ∈ {1, . . . , n}2 and

xi > xj and yi > (yj + 2 qLRM )

} )
∩ R.

Then, the union set B̃ ∪ B̌ ∪{0} contains all possible locations b ∈ R of the

vertices of U ′. The set BU ′ of all relevant slopes can thus be written as

BU ′ = B̃ ∪ B̌ ∪
{
0,−η, η,min(B̃ ∪ B̌ ∪ {0})− ω,max(B̃ ∪ B̌ ∪ {0}) + ω

}
,

where η is a small value between zero and min{|b| : b ∈ B̃ ∪ B̌ and b ̸= 0}
and ω is an arbitrary positive number. In examining the points of the

n− k functions b 7→ zb,(k+j) − qLRM and b 7→ zb,(j) + qLRM at all b ∈ BU ′

the exact shape of U ′ can be determined.

The precise description of the set U ′ can furthermore be exploited to

identify a suitable range [b, b] ⊆ R of slope values when the set U shall

be approximated. Considering the values b ∈ BU ′ ordered by their size

and starting from minBU ′ , one can find b as the first b ∈ BU ′ for which

the corresponding set Ab ̸= ∅. Analogously, starting from maxBU ′ and

descending in BU ′ , the upper endpoint b is the first b ∈ BU ′ such that the

corresponding set Ab ̸= ∅. If we have b = minBU ′ or b = maxBU ′ or both,

then, the set of undominated functions is unbounded with respect to b.

Computational complexity

In this section, the first exact algorithm to determine the result of the

robust LIR method in the case of simple linear regression with interval

data was presented. The algorithm is composed of two parts, the first of

which is devoted to finding qLRM , which is needed in the second part for

identifying all undominated functions, either in the form of the set U of all
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undominated linear functions or in representing it by the corresponding

set U ′ of parameter values. Finally, the worst-case time complexity of the

algorithm has to be investigated.

The first part of the algorithm serves to identify qLRM , which is ob-

tained by determining the shortest of the intervals [zb,(j), zb,[j]] with j ∈
{1, . . . , n−k+1} for each b ∈ B. This can be done in time O(n log n). The

set B contains at most 2
(
n
2

)
+1 elements, because each pair of data fulfills

at most two of the four conditions given in the definition of B. Therefore,
the first part of the algorithm has the complexity O(n3 log n).

In the second part of the algorithm, if we want to describe U ′ pre-

cisely, we have to determine zb,(k+j) − qLRM and zb,(j) + qLRM for all

j ∈ {1, . . . , n − k} and all b ∈ BU ′ . For each slope b this can be done in

time O(n log n), because we only need to compute and sort the two lists

zb,1, . . . , zb,n and zb,1, . . . , zb,n. As each pair of data fulfills at most two of

the four possibilities given in their definitions, the sets B̃ and B̌ have each

at most 2
(
n
2

)
elements. Hence, BU ′ consists of at most 4

(
n
2

)
+5 slope values,

and the second part of the algorithm has the complexity O(n3 log n).

As both independent parts of the algorithm have the worst-case time

complexity O(n3 log n), also the computational complexity of the entire

algorithm is O(n3 log n), that is, it is of the same order as the complexity of

the initial algorithm for LQS regression (see, e.g., Steele and Steiger, 1986).

The latter algorithm was further optimized to reach a better computational

efficiency and it was generalized to multiple linear regression. Likewise,

the exact algorithm for robust simple linear LIR with interval data can be

adapted to the case of multiple linear regression, and moreover, to more

general types of imprecise data.

4.3.2 R package linLIR

We implemented the presented algorithm in the statistical software en-

vironment R (R Core Team, 2013). It is part of the package linLIR

(Wiencierz, 2013), designed for the implementation of LIR methods for

the case of linear regression with interval data. The available version of

the linLIR package includes a function to create a particular data object
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for interval-valued observations (idf.create), the function s.linlir to

perform the robust LIR analysis for two variables out of the data object,

as well as associated methods for the generic functions print, summary,

and plot.

Both parts of the exact algorithm are incorporated in the s.linlir

function. In the current version of the linLIR package, the first step of

the s.linlir function consists in finding qLRM and the corresponding

parameter combinations of the LRM functions. Then, the range of slope

values for which there are undominated functions is identified in the way

described at the end of the previous subsection. Finally, U ′ is approxi-

mated by determining the corresponding sets of intercept values over a

fine grid across this range of slope values and retrieving a fixed number of

parameter combinations (a, b) ∈ Ab × {b}. In case that U ′ is unbounded,

the set of undominated functions is approximated only over a coarse grid of

slope values ranging at most from −109 to 109, if unbounded on both sides.

The s.linlir function then returns an object of the class “s.linlir” con-

sisting of a list whose elements include the ranges of slope and intercept

values in U ′, a data frame containing the intercept-slope combinations that

represent the approximation of the set U ′, the bound qLRM , the analyzed

data set, the used LIR settings, k and k, etc. The linLIR package provides

a print method and a summary method for these s.linlir-objects.

Furthermore, there is a plot method associated with the s.linlir

function providing tools to visualize the LIR results. There are three op-

tions: 1) to plot only the LRM regression functions (typ="lrm"), 2) to plot

a draft of the set of undominated functions U (typ="func"), or 3) to plot

the entire set U ′ (typ="para"). When the first option is chosen together

with the option pl.dat=TRUE, the LRM functions are drawn into the data

plot. To visualize the set U of undominated functions, a random selection

of a chosen number of these functions is drawn. The selection of functions

is obtained by randomly choosing parameter combinations (a, b) from the

discrete approximation of U ′. The default option para.typ="polygon" for

the plot of the set of parameter values associated with the undominated

functions is based on the precise description of U ′ as the union of n−k poly-
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gons, which was derived in the previous subsection. As described there,

the plot is obtained in drawing the polygons determined by the functions

b 7→ zb,(k+j) − qLRM and b 7→ zb,(j) + qLRM for each j ∈ {1, . . . , n − k}
using the R function polygon(). To be able to choose a particular section

of the set U ′ to be displayed, the functions are evaluated at many equally

spaced points within a range of slope values that has to be handed over to

the plot function.

The linLIR package provides a ready-to-use first implementation of

the robust LIR method for simple linear regression with interval data.

However, the current version of the s.linlir function is not optimized

for computational speed yet.

4.4 Statistical properties of the robust LIR method

In this section, some properties of the robust LIR method are discussed.

In particular, we deal with the confidence level of the imprecise result of

this regression method and examine its robustness in more detail.

4.4.1 Confidence level of the set of undominated functions

As the imprecise result of the robust LIR method consists of all functions

f ∈ F that are plausible in the light of the imprecise data, it can be

interpreted as a confidence set for the function that best describes the re-

lationship of interest. In Subsection 4.1.3, we furthermore showed that the

result U of a robust LIR analysis always covers the set T of corresponding

standard LQS regression functions resulting from precise data sets that are

compatible with the imprecise data. This is a desirable property, because

it is intuitive to require that the imprecise result should not contradict

the results that would be obtained, if the data were precisely observed

at locations within the observed sets. However, the set T is not based

on a statistical model for inference with imprecise data and its extent nei-

ther reflects statistical uncertainty nor does it account for the possibility of

wrong coarsening. Yet, it seems reasonable to generally require that regres-

sion methods for imprecise data generalizing standard regression methods
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should yield a result that is compatible with the imprecise data in this

sense. Moreover, we showed in Section 4.2 that the sets of undominated

functions for different levels of the confidence regions Cf are nested. The

confidence regions Cf for a certain p-quantile, with p ∈ (0, 1), of the distri-

bution of the residuals associated with the functions f ∈ F constitute the

set-valued decision criteria of the decision problem corresponding to the

robust LIR method. Following the general LIR methodology, these confi-

dence regions are obtained by cutting the graphs of the corresponding nor-

malized profile likelihood functions at a chosen cutoff point β ∈ (0, 1). As

discussed in Chapter 3, the thus obtained confidence regions have asymp-

totically at least a coverage probability of Fχ2
1
(−2 log(β)), where Fχ2

1
is

the cumulative distribution function of the χ2-distribution with one de-

gree of freedom. The lower the cutoff point β, the higher the confidence

level. According to Corollary 1, for each function f ∈ F , the profile like-

lihood function likQf
is a unimodal step function that is monotonically

increasing until the quantile value(s) with maximal likelihood are reached

and monotonically decreasing afterwards. Therefore, the confidence re-

gions Cf for different levels are nested intervals, which implies that also

the corresponding sets of undominated functions are nested. This means

that the confidence level of the set-valued result of the robust LIR method

is related to the coverage probability of the set-valued decision criteria of

the regression problem. However, it cannot be easily derived how these

confidence levels are related to each other.

To gain some insights regarding the coverage probability of the overall

result U , we perform several simulations. For simplicity, we consider the

case of simple linear regression here, and without loss of generality, the

function describing the relationship between X ∈ X ⊆ R and Y ∈ Y ⊆ R
is chosen to be the constant function at zero. As for all functions f ∈ F ,

the confidence regions Cf only get wider as the variables are imprecisely

observed, we focus on the special case of actually precisely observed vari-

ables to estimate the largest lower bound to the coverage probability of

U under two different assumptions about the distribution of the analyzed

random variables, namely a standard normal distribution in the first con-
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sidered scenario and a standard Cauchy distribution in the second. To

generate the data, we furthermore adopt the assumption of a strictly uni-

modal and symmetrical error distribution like in the standard regression

model. If the underlying probability measure PV satisfies this assumption,

the optimal regression function of the robust LIR method coincides with

the optimal regression function of standard LS regression, which is the

function describing the conditional expectation of Y given X = x, for all

x ∈ X . This is because the regression function minimizing a p-quantile of

the residuals’ distribution corresponds to the center of the shortest interval

that covers at least probability p of the conditional distribution of Y given

X. In general, the mode of a univariate distribution can be defined as

the limit for p → 0 of the center of the shortest interval covering at least

probability p. Therefore, the optimal function of the robust LIR method

can be interpreted as describing a generalized mode of the conditional dis-

tribution of Y given X = x, for all x ∈ X . If the conditional distribution

is strictly unimodal and symmetrical, for each p ∈ (0, 1), the generalized

mode is identical with the mode of this probability distribution. As more-

over expected value and mode of the conditional distribution coincide in

this case, both regression methods aim at the same optimal function.

Thanks to this, we can base the simulations on data generated by the

standard regression model Y = 0 + 0X +W , where W is a random error

that is independent of X and identically distributed as X. Since also the

random variable Y has the same distribution, it suffices to simulate pairs

of i.i.d. random variables for X and Y and to test if the (k+1)-th smallest

of the simulated realizations of the response variable is not larger than the

k-th smallest of the residuals corresponding to the LQS line estimated from

the simulated data. Furthermore, we choose p = 1/2 and we consider two

different assumptions about the possibility of wrong observations, namely

ε ∈ {0, 0.1}, in addition to the two distributional scenarios mentioned

above. For each of the resulting four scenarios, we estimate the lower

coverage probability of U for three different values of β ∈ {0.15, 0.5, 0.75},
each on the basis of 10 000 simulation runs. All computations are realized

in the statistical software environment R (R Core Team, 2013).
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β
Asymptotic

n
Estimated coverage

level of Cf probability of U

0.75 0.5519

20 0.3895

100 0.6107

1 000 0.9106

0.50 0.7610

20 0.8284

100 0.9359

1 000 0.9979

0.15 0.9486

20 0.9986

100 0.9995

1 000 1.0000

Table 4.1: Results of the simulations based on normally distributed variables
with expectation zero and variance one, with ε = 0.

First, we investigate the case where there is no doubt about the cor-

rectness of the observations, and therefore, it is assumed that ε = 0. The

corresponding simulation-based estimates of the lower coverage probabil-

ity of U for each distributional scenario are displayed in Tables 4.1 and

4.2, respectively. As expected, we observe that the sharp lower bound to

β
Asymptotic

n
Estimated coverage

level of Cf probability of U

0.75 0.5519
20 0.7205

100 0.9222

1 000 0.9981

0.50 0.7610
20 0.9697

100 0.9967

1 000 1.0000

0.15 0.9486
20 0.9998

100 1.0000

1 000 1.0000

Table 4.2: Results of the simulations based on variables following each a Cauchy
distribution with location parameter zero and scale parameter one, with ε = 0.
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the coverage probability of U increases as β decreases and as more data

are observed. Moreover, most of the estimated coverage probabilities are

close to one, regardless of β and often already for n = 100. Comparing

the two different distributional scenarios, we find that the lower coverage

probability is considerably higher when the variables are generated by a

standard Cauchy distribution. As in this case the data are more dispersed,

more diverse functions can be undominated than in the case of the nor-

mally distributed variables. Therefore, the sets of undominated functions

resulting from the data generated by the standard Cauchy distribution

are less informative, which implies that they have a higher probability of

including the true regression function.

Now, we consider the situation in which it is assumed that the obser-

vations may not cover the true values with probability at most 0.1. The

corresponding percentages of simulation runs in which the set of undomi-

nated regression functions covered the true regression function are shown

in Tables 4.3 and 4.4. Again, we observe that the estimated lower cover-

β
Asymptotic

n
Estimated coverage

level of Cf probability of U

0.75 0.5519
20 0.9767

100 1.0000

1 000 1.0000

0.50 0.7610
20 0.9986

100 1.0000

1 000 1.0000

0.15 0.9486
20 1.0000

100 1.0000

1 000 1.0000

Table 4.3: Results of the simulations based on normally distributed variables
with expectation zero and variance one, with ε = 0.1.

age probability of U increases as n increases and as β decreases. Compared

to the situation considered before, the coverage is even higher and there is

no considerable difference between the distributional scenarios anymore.
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β
Asymptotic

n
Estimated coverage

level of Cf probability of U

0.75 0.5519
20 0.9979

100 1.0000

1 000 1.0000

0.50 0.7610
20 0.9998

100 1.0000

1 000 1.0000

0.15 0.9486
20 1.0000

100 1.0000

1 000 1.0000

Table 4.4: Results of the simulations based on variables following each a Cauchy
distribution with location parameter zero and scale parameter one, with ε = 0.1.

The simulations’ results indicate that the confidence level of the set U of

undominated functions is generally rather high, even if the observations are

precise and correct. Therefore, we conclude that the robust LIR method

provides very cautious inferences about the relationship of interest.

4.4.2 Breakdown point

In the present subsection, we discuss the robustness of the LIR method

presented in Section 4.1. According to Huber (1981, page 1), robustness

of a statistical method means, “insensitivity to small deviations from the

assumptions.” The assumptions mainly referred to in this definition of

robustness are different choices of the set of probability measures that are

considered as possible models of the analyzed situation. The main moti-

vation for the development of robust statistical methods was that, in most

practical settings, the assumption of normally distributed random quan-

tities underlying many standard methods is too idealistic and deviations

from this assumption may lead to very unreliable results (see, e.g., Stigler,

2010). As observations that are much different from the majority of the

data, so-called outliers, can be the result of a deviation from the nor-

mality assumption, for example, in the form of a long-tailed distribution
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or of a mixture between a normal distribution and another distribution,

statistical methods were proposed whose result is not much influenced by

such outlying observations. Hence, the goal of a robust regression method

is to describe the relationship between the variables of interest as it is

revealed by the majority of the data. To evaluate how insensitive a regres-

sion method is to outliers, several robustness measures were proposed. We

here focus on the so-called breakdown point for the assessment of the ro-

bustness of the robust LIR method. For more details on robust regression

methods and on general concepts of Robust Statistics, see, for example,

Maronna et al. (2006); Rousseeuw and Leroy (1987); Huber (1981).

In the beginning of Section 4.1, we pointed out that the robust LIR

method generalizes LQS regression in several ways. LQS regression is a

very robust regression method in terms of a high breakdown point. The

breakdown point is a robustness measure for statistical methods indicating

which fraction of outliers in the data a statistical method can support

without yielding a meaningless result (see, e.g., Rousseeuw and Leroy,

1987, Section 1.2). For example, in the particular case of linear regression

with precise data, following Rousseeuw and Leroy (1987, Section 1.2), the

breakdown point can be formally expressed as follows. Let fθ be the

linear function modeling the relationship between X and Y , where fθ is

defined for all xi ∈ X by fθ(xi) = θ0 + θ1 xi,1 + . . . + θd xi,d, with d ∈ N
and (θ0, θ1, . . . , θd)

T = θ ∈ Rd+1. The vector θ̂ ∈ Rd+1 is the estimate

of θ resulting from the investigated regression method on the basis of

a precise data set containing n ∈ N observations that comply with the

distributional assumptions. Furthermore, we denote by Θ̃(m) ⊆ Rd+1 the

set of all possible results of the regression method when m ∈ {0, . . . , n}
observations in the data set are replaced by arbitrary values. Then, the

finite-sample breakdown point of the linear regression estimator θ̂ for any

possible data set of size n can be defined as the number

max

{
m

n
: m ∈ {0, . . . , n} and sup

θ̃∈Θ̃(m)

∥θ̃ − θ̂∥ < +∞
}
. (4.5)

To have a robustness evaluation that is independent of the sample size

61



n, we focus on the asymptotic definition of the breakdown point, which

corresponds to the limit of (4.5) for n→ +∞. For any statistical method,

the highest possible breakdown point is 1/2, because by definition there

cannot be more than 50% outliers in a data set. As shown by Rousseeuw

and Leroy (1987, Section 3.4) for the case of linear regression, the LQS

regression method yields a breakdown point of min{p, 1 − p}, given the

chosen proportion p ∈ (0, 1). This is also true for more general regression

problems, as discussed below. Hence, the highest possible breakdown point

1/2 is achieved by the LQS method for p = 1/2.

Now, to evaluate the robustness of the LIR method presented in Sec-

tion 4.1 in terms of its breakdown point, we first have to discuss the notion

of outlier in the context of regression analysis with imprecise data and the

meaning of breakdown for a regression method that generally yields an

imprecise result. Recall that the robust LIR method is based on the as-

sumption (V, V ∗) ∼ P ∈ Pε, where Pε contains all probability measures

P ′ with P ′(V ∈ V ∗) ≥ 1 − ε, for some ε ∈ [0, 1/2). One could argue that

the nonparametric probability model implies that every kind of distribu-

tion of the data is allowed, and therefore, robustness is not necessary and

even inconsistent with the underlying assumption. Yet, basing the anal-

ysis on a nonparametric assumption essentially means that the possible

probability models are not restricted to, for example, a parametric family

of probability distributions for the precise data together with a (proba-

bilistic) coarsening scheme relating the imprecise data to them. Since we

are concerned with regression analysis, of course, we presume that there

is a relationship between the explanatory variables X and the response

variable Y , which means that we expect the joint distribution of X and Y

to be concentrated around some function f ∈ F . Therefore, it is sensible

to require that the result of the regression method should not be too much

affected by observations that are far away from the majority of the data.

In particular, when analyzing (partially) unbounded imprecise data, the

precise values of interest can be arbitrarily far away from the bounded

observations. Thus, in this situation, robustness is a necessary property

to have a chance to obtain informative results. Finally, we restrict the
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investigation to the type of imprecise data that is the most relevant for

statistical practice, namely interval data, where each imprecise observation

is the Cartesian product of d+ 1 (possibly unbounded) intervals.

By direct generalization of the meaning of outlier given above to the

situation in which the data are only imprecisely observed, we consider each

imprecise observation that allows the corresponding precise value to be far

away from the majority of the (unobserved) precise data as an outlier. If

there is no doubt about the correctness of the imprecise data, an impre-

cise observation that is far away from the majority of the imprecise data

implies that the contained precise value is also far away from the majority

of the precise data, and therefore, it is regarded as an outlier. Moreover,

an imprecise observation that is (partially) unbounded or corresponds to

the entire observation space can allow the precise value to be much differ-

ent from the majority of the precise data. Hence, (partially) unbounded

or completely uninformative imprecise data are also considered as outliers

according to this definition. If we allow the possibility of wrong observa-

tions with probability at most ε > 0 in the probability model underlying

the robust LIR method, asymptotically up to ε 100% of the imprecise data

do not cover the corresponding precise values. As we make no further

assumptions about the coarsening mechanism, the corresponding precise

values can be far away from the majority of the precise data. Therefore,

the robust LIR method inherently accounts for the possibility of ε 100%

of the data to be outliers, without revealing which ones. Hence, in this

situation, the breakdown point measures only the supplementary fraction

of tolerated outliers in addition to ε.

To define the notion of breakdown for a regression method that yields

a set-valued result, we consider again the hypothetical setting in which

the fraction m/n of a given data set of size n is replaced by arbitrary

imprecise data or is already uninformative in a certain sense. We qualify

as breakdown of an imprecise regression method the situation in which the

union set U (m) ⊆ F of all corresponding results is a superset of the set

Ũ ⊆ F of all functions f ∈ F that intersect the observation space, that is,

Ũ = {f ∈ F : Gf ∩ V ≠ ∅}, where Gf = {(x, y) ∈ X × R : y = f(x)}
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denotes the graph of a function f ∈ F . Hence, breakdown means that the

set of undominated functions obtained by analyzing a data set of size n

with m outliers can contain any function that intersects the observation

space, and thus, the result can be completely meaningless. Recall that the

set of undominated functions is composed of all functions f ∈ F whose

associated closed bands Bf,qLRM
of width 2 qLRM intersect at least k + 1

imprecise data. If the response variable is such that Y = R, we have that

Ũ = F , otherwise, Ũ is a proper subset of R.
For the investigation of the finite-sample breakdown point of the ro-

bust LIR method, we consider separately the two parts of the determina-

tion of the LIR result that were distinguished in Section 4.3.1, which are

the determination of qLRM and the identification of the set U of all un-

dominated regression functions on the basis of qLRM . Furthermore, three

cases depending on the observation space Y of the response variable are

distinguished.

At first, the case Y = R is investigated. We consider again hypothetical

data sets V ∗
1 = A1, . . . , V

∗
n = An where a certain number m ∈ {0, . . . , n}

of imprecise data is replaced by arbitrary observations or corresponds to

uninformative interval data and all possible resulting sets of undominated

regression functions. Then, the maximal m such that the union set U (m)

of all possible results is a proper subset of F is identified. The set U (m)

equals F due to the first part of the determination of the LIR result, if

on the basis of the hypothetical data sets, it can happen that qLRM =

+∞, because in this case, the vertical bands Bf,qLRM
around all functions

f ∈ F intersect all data. As qLRM is given by the k-th smallest upper

residual associated with some function f ∈ F , this occurs if there are less

than k imprecise data that are bounded in the Y -dimension or cannot

take arbitrary values, i.e., that are no outliers in the sense defined above.

Therefore, there can be at most n−k outliers. In addition, when k ≤ n−k
and there are n− k imprecise observations that can take arbitrary values,

all k data that determine qLRM can be such outliers. As the outliers can

be located anywhere in V and k + 1 ≤ k, every function f ∈ F can be

undominated for some of the hypothetical data sets, which implies that
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U (k) = F . Therefore, there have to be less than k outliers. Hence, the

number of outliers that can be supported in the first part when Y = R is

min{k−1, n−k}. As to the second part, we investigate what the largest m

is for which the union set of all possible results is not F , provided that there

is no breakdown in the first part. Since the graph of every function f ∈ F
can intersect each arbitrary observation and each completely uninformative

observation, i.e., Ai = V, there must be less than k + 1 such outliers to

prevent breakdown. However, if n−k ≤ k and there are k outliers, some of

the outliers are used to determine the set of undominated functions, which

makes the result somewhat arbitrary. Yet, there is no breakdown in the

above defined sense, because the graphs of the functions in the resulting

sets are each close to at least one of the fixed and bounded observations.

Hence, in the case where Y = R, the maximum number of supported

outliers in the second part is k. Taking the minimum over both parts, the

number of outliers that are tolerated is min{k, n− k}.
Now, consider the situation in which Y is a bounded subset of R. Again,

the investigation is based on a hypothetical data set of size n where m

imprecise data are replaced by arbitrary interval data or correspond to the

entire observation space, i.e., Ai = V, and the aim is to identify the largest

m such that the union set U (m) of all possible results is a proper subset of

the set Ũ of all functions that intersect the observation space V. In the first

part of the determination of the LIR result, if there are at least k outliers,

qLRM can be completely determined by those arbitrary observations. As

furthermore k + 1 ≤ k, every function f ∈ Ũ can be undominated for

some of the hypothetical data sets. Therefore, there cannot be more than

k − 1 outliers. If the number of outliers is larger than n − k, the upper

endpoint of the confidence regions is always determined by an outlier, and

therefore, it can take arbitrary values within a certain range depending on

F and Y. For example, if F contains all constant functions, the highest

possible value for qLRM is 1/2 (maxY −minY), which corresponds to the

cases in which each outlier is either such that [yi, yi] = Y or completely

uninformative. However, there is not necessarily breakdown in the above

defined sense. This can only occur if the number of outliers is at the same
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time at least k + 1, which is excluded by the restrictions for the second

part. Hence, to prevent breakdown in the first part when Y is a bounded

subset of R, there can be at most k−1 outliers. Regarding the second part,

we can repeat the arguments of the previous case for all f ∈ Ũ . Hence,

also in the case where Y is a bounded subset of R, the maximum number

of supported outliers in the second part is k. As k ≤ k− 1, we here obtain

k/n as the maximal fraction of supported outliers.

Finally, for the case where Y is bounded in one direction and un-

bounded in the other direction, the first part is analogous to the first

case, while the second part is the same as in the second case. This leads

again to the maximal number of min{k, n− k} outliers.

Putting the results together over all three cases, the determination of

the LIR result is insensitive to at most min{k, n − k} outliers. Hence,

we obtain as the overall finite-sample breakdown point of the robust LIR

method 1/n min{k, n−k}. As to the asymptotic breakdown point, consider

again the definitions of k and k given in Corollary 2. It is easy to derive

from these definitions that, for n → +∞, we have k/n → (p − ε) and

k/n → (p+ ε). Thus, for a given configuration of p ∈ (0, 1) and ε ∈ [0, 1/2),

the breakdown point of the robust LIR method is given by

lim
n→+∞

min{k, n− k}
n

= min{p, 1− p} − ε.

For the choice of p = 1/2 and if wrong observations are not accounted for

in the probability model, i.e., ε = 0, the robust LIR method yields the

highest possible breakdown point of 1/2. If we consider ε > 0, the robust

LIR method inherently accounts for the possibility that ε 100% of the data

are outliers. Therefore, in this case, the breakdown point measures only

the fraction of outliers that can be supported in addition to ε. That is,

for p = 1/2 and ε > 0, the breakdown point is 1/2 − ε, but altogether

the robust LIR method tolerates 50% outliers, which again is the highest

possible fraction. Hence, the LIR method presented in Section 4.1 is very

robust in the sense that it takes a large fraction of outliers to cause the

regression method to yield a meaningless result.
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Chapter 5

Support Vector Regression with

interval data

This chapter is devoted to a thorough examination of the regression meth-

odology for interval data proposed in Utkin and Coolen (2011). This

regression methodology consists in a modification of standard Support

Vector Regression (SVR), which is a specific class of regularized kernel-

based methods for data analysis. These methods originated in the field

of Machine Learning and were a popular research topic in diverse areas

during the past 20 years. In particular, in the context of Computer Sci-

ence and Engineering, various kernel-based methods were developed (see,

e.g., Schölkopf and Smola, 2002; Suykens et al., 2002; Müller et al., 2001),

which are mainly based on the framework introduced by Vapnik (1998,

1995). In recent years, there is also a growing interest in kernel-based

methods in the field of Statistics (see, e.g., Hable, 2012; Christmann and

Hable, 2012; Christmann et al., 2009; Hofmann et al., 2008). Steinwart

and Christmann (2008) provide a comprehensive overview of regularized

kernel-based methods for the statistical problems of classification and re-

gression in a unified formulation and deduce important results regarding

their statistical properties in mathematical detail.

Standard SVR is based on a fully nonparametric probability model and

permits analyzing many different kinds of relationships, including, for ex-
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ample, linear regression and the estimation of a general smooth regression

function. The corresponding estimators are under suitable regularity con-

ditions consistent and they can be robust if an appropriate loss function is

chosen. A generalization of SVR to imprecise data preserving these charac-

teristics would be a desirable achievement and could provide a competitive

alternative to the robust LIR method presented in Section 4.1, since we

aim at such a universal and ideally robust regression method for imprecise

data. Moreover, the solution of a standard SVR analysis can be efficiently

computed also in the case of a general relationship, which appears to be

very difficult to realize for the robust LIR method.

Whether the regression methodology proposed by Utkin and Coolen

(2011) achieves these goals is investigated in Section 5.2, after a review of

the core elements of the standard SVR framework in the following section.

5.1 Standard SVR

In this section, the standard SVR methodology for precise data is pre-

sented. We present the core elements of the theoretical framework of SVR

by employing the same notions that were used to describe the LIR method-

ology in Chapter 3 and the robust LIR method in Section 4.1. Hence, the

regression problem is formalized as a decision problem with loss function L

assigning to each pair (f, PV ) ∈ F×PV an evaluation of the error resulting

from describing the relationship of interest by f if the quantities of interest

(X,Y ) = V ∈ V, with V = X × Y, are distributed according to PV . For

simplicity, we here assume that X ⊂ Rd, with d ∈ N, is compact and that

Y ⊆ R is closed, although many of the following definitions and statements

apply also to more general cases. As PV , the set of all probability mea-

sures on V is considered. Thus, like the robust LIR method, SVR is based

on a nonparametric probability model. However, in contrast to the robust

LIR method, the loss L(f, PV ) assigned to a possible regression function f

and a distribution PV is not given by a quantile of the distribution of the

associated residual Rf (under PV ), but by the so-called risk functional,

that is, by the corresponding expectation of a function of the residual.
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5.1.1 Theoretical framework of SVR methods

Presupposing measurability, the risk functional can be defined for each

PV ∈ PV as

EPV
: F → R≥0 ∪ {+∞}, with f 7→ EPV

(f) = E(ψ(Rf )), (5.1)

where ψ is a convex mapping from R≥0 to R≥0 satisfying ψ(0) = 0. For

example, if ψ is defined by ψ(r) = r2 for all r ∈ R≥0, the loss associated

with a pair (f, PV ) is given by L(f, PV ) = EPV
(f) = E(R2

f ). Thus, we

obtain the loss function corresponding to LS regression. Another famous

example is the function defined by ψ(r) = max{0, r − ν}, for all r ∈ R≥0

and some ν ≥ 0, which was introduced in Vapnik (1995, Section 6.1) and

represents the so-called ν-insensitive loss. The convexity of the mapping

ψ implies convexity of the risk functional EPV
, that is, the risk functional

satisfies for each ρ ∈ [0, 1]

EPV
(ρ f + (1− ρ) f ′) ≤ ρEPV

(f) + (1− ρ)EPV
(f ′),

for all f, f ′ ∈ F (see also Steinwart and Christmann, 2008, Lemma 2.13).

As discussed later, this property amongst others guarantees that there

exists a unique optimal regression function, as long as the true probability

distribution PV is not such that EPV
(f) = +∞ for all f ∈ F .

In the SVR framework, the set F of considered regression functions is

supposed to be a particular kind of Hilbert space, a so-called Reproducing

Kernel Hilbert Space (RKHS). A Hilbert space over R is a normed vector

space over R with a scalar product that is furthermore complete with

respect to the norm induced by the scalar product. For example, the space

R2 with the standard scalar product ⟨·, ·⟩ : R2 → R, with ⟨w,w′⟩ = wTw′

for all w,w′ ∈ R2, is a Hilbert space, because R2 is complete with respect

to the Euclidean norm given by ∥w∥ =
√
⟨w,w⟩ for each w ∈ R2. In

the context of regression analysis, we consider Hilbert spaces of functions

from X to R. We denote by H such a function Hilbert space over X and

by ⟨·, ·⟩H : H → R the associated scalar product. To explain the special
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case of an RKHS, we furthermore need to clarify the notion of a kernel

function and the particular reproducing property characterizing an RKHS.

A kernel function κ is a positive semi-definite function on X ×X , that is,∑n
i=1

∑n
j=1 αi αj κ(xi, xj) ≥ 0, for all α1, . . . , αn ∈ R, x1, . . . , xn ∈ X , and

n ∈ N. If κ is the reproducing kernel function of an RKHS H, for each

x ∈ X we have that κ(·, x) ∈ H and

f(x) = ⟨f, κ(·, x)⟩H,

for all f ∈ H. From this property called reproducing property follows that

κ(x, x′) = ⟨κ(·, x), κ(·, x′)⟩H, for all x, x′ ∈ X . Applying general results

from Functional Analysis, it can be shown that, for a given RKHS, there

exists a unique kernel function satisfying the reproducing property and vice

versa. Hence, there is a one-to-one correspondence between reproducing

kernel function and RKHS. For example, the RKHS of the linear kernel

defined by κ(x, x′) = ⟨x, x′⟩ + 1, for all x, x′ ∈ X , is the Hilbert space of

all (affine) linear functions from X to R. Another common kernel function

is the so-called Gaussian kernel, which is defined for all x, x′ ∈ X by

κ(x, x′) = exp
{
−1/σ2 ∥x− x′∥2

}
, with σ > 0. The associated RKHS is

a very large function space that is dense in the space of all continuous

(real-valued) functions on X . For more details on kernels and RKHSs, see,

for example, Steinwart and Christmann (2008, Chapter 4).

Besides an RKHS considered as F , the decision problem of the regres-

sion analysis in the SVR framework involves as PV the set of all probability

measures on V. Given the true probability distribution of the quantities of

interest, PV , the best description of the relationship between X and Y is

the function minimizing the expected error EPV
(under PV ). Yet, to avoid

too wiggly functions as descriptions of the relationship of interest when

the regression analysis is based on a finite sample of observations, also

a modified decision problem is considered, in which an additive penalty

term for the complexity of the functions f ∈ F is included in the loss

function. In the modified decision problem, instead of EPV
the regularized
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risk functional EPV ,λ is minimized, which is defined for all f ∈ F by

EPV ,λ(f) = EPV
(f) + λ ∥f∥2F ,

where λ > 0 is a fixed parameter regulating the penalization and ∥·∥F is

the norm induced by the scalar product in F . The regularization can be

interpreted as minimizing EPV
under the restriction ∥f∥2F ≤ c, for some

c ∈ R, but instead of choosing the bound c explicitly, we fix the value of

the corresponding Lagrange multiplier λ in the constrained optimization

problem. As the functional f 7→ λ ∥f∥2F is strictly convex by general prop-

erties of norms in Hilbert spaces and EPV
is convex because of ψ, we have

that EPV ,λ is also a strictly convex functional on F . Exploiting the strict

convexity of EPV ,λ, it can be shown that such an optimal function always

exists and is unique, provided that some regularity conditions are fulfilled

(see, e.g., Steinwart and Christmann, 2008, Lemma 5.1 and Theorem 5.2).

Of course, usually, the true distribution PV is unknown, but an i.i.d.

sample of observations V1 = v1, . . . , Vn = vn is available. In contrast to

the robust LIR method where the inference is based on all probability

measures that are plausible in the light of the data, in the SVR methodol-

ogy, PV is estimated by the empirical distribution P̂V of the observations,

before the best regression function fP̂V ,λ for this probability distribution

is identified by minimizing EP̂V ,λ, for some λ > 0. Hence, SVR uses only

the information associated with the maximum of the likelihood function

likV induced by the observations on the set of considered probability dis-

tributions. Like in the general case before, there always exists a unique

minimizer of the regularized risk for P̂V . Moreover, the so-called Represen-

ter Theorem states that the unique function fP̂V ,λ can be represented as

the linear combination of the corresponding functions κ(·, x1), . . . , κ(·, xn),
that is, there exist weights α1, . . . , αn ∈ R such that

fP̂V ,λ(x) =

n∑
j=1

αj κ(x, xj), (5.2)

for all x ∈ X (see, e.g., Steinwart and Christmann, 2008, Theorem 5.5).
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Equation (5.2) is sometimes called support vector expansion of fP̂V ,λ

and the optimal function fP̂V ,λ is often referred to as a Support Vector

Machine (SVM). This term has historical reasons, because Vapnik (1998,

1995) proposed to use functions for ψ that have the property that some

of the resulting α1, . . . , αn are zero. The vectors xj for which αj ̸= 0 are

called support vectors, whence the notion SVM. One example for such a

representing function ψ is the function associated with the ν-insensitive

loss mentioned before. Nevertheless, in general, SVMs are not sparse in

this sense (see, e.g., Steinwart and Christmann, 2008, Section 11.1).

If F is a large RKHS of arbitrary smooth regression functions, for

example, if F is the RKHS corresponding to the Gaussian kernel, it can

be shown that under suitable regularity conditions fP̂V ,λ is risk consistent.

That is, provided that the conditions are fulfilled, for n → +∞, we have

that EPV
(fP̂V ,λ(n)) → inff∈F EPV

(f) in probability, where (λ(n))n∈N is a

sequence of penalty parameters with λ(n) → 0 (not too fast) and PV ∈ PV

is the unknown distribution underlying the observations V1 = v1, . . . , Vn =

vn (see, e.g., Steinwart and Christmann, 2008, Theorem 9.1). If less general

regression functions are considered, often, other consistency results can be

derived. For example, if a linear kernel function is considered together

with ψ(r) = r2, for all r ∈ R≥0, SVR is equivalent to penalized linear

LS regression, which is also called Ridge regression (see, e.g., Hoerl and

Kennard, 1970). This special case of SVR is discussed in detail in the next

subsection. To this configuration of SVR the theorem about risk consis-

tency does not apply, but consistency statements can be derived in some

different ways, as shown in the following. Moreover, if the loss function is

chosen to be such that ψ is Lipschitz continuous, i.e., ∃ ς > 0 such that

|ψ(r)− ψ(r′)| ≤ ς |r − r′|, for all r, r′ ∈ R≥0, the SVR estimator is robust

in a certain sense (see, e.g., Steinwart and Christmann, 2008, Section 10.4).

For example, the representing function of the ν-insensitive loss is Lipschitz

continuous, but the one of LS regression is not, thus, the corresponding

SVR method is not robust, while SVR with the ν-insensitive loss is.

Finally, the determination of the optimal regression function for a given

data set V1 = v1, . . . , Vn = vn and a fixed λ > 0 is straightforward. Thanks
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to the Representer Theorem expressed in (5.2), we know that fP̂V ,λ is an el-

ement of the set Fn ⊂ F , with Fn =
{∑n

j=1 αj κ(·, xj) : α1, . . . , αn ∈ R
}
.

For all functions fα ∈ Fn, with α = (α1, . . . , αn)
T ∈ Rn, the squared norm

is given by ∥fα∥2F =
∑n

i=1

∑n
j=1 αi αj κ(xi, xj). Hence, the regularized

risk associated with P̂V can be written for each fα ∈ Fn as

EP̂V ,λ(fα) =

1

n

n∑
i=1

ψ
(∣∣yi −∑n

j=1 αj κ(xi, xj)
∣∣)+ λ

n∑
i=1

n∑
j=1

αi αj κ(xi, xj). (5.3)

As EP̂V ,λ is convex, the SVM fP̂V ,λ can be obtained by solving a convex

optimization problem over α ∈ Rn, for which there are numerous efficient

algorithms (see, e.g., Reinhardt et al., 2013). For the selection of an appro-

priate regularization parameter λ > 0 and of other hyper-parameters like

the parameter σ of the Gaussian kernel, different strategies can be applied,

for instance, cross-validation (see, e.g., Steinwart and Christmann, 2008,

Section 11.3).

5.1.2 Ridge regression as a special case of SVR

Ridge regression was introduced in Hoerl and Kennard (1970) as a regu-

larization of standard linear LS regression for the situation in which some

of the explanatory variables in X are strongly correlated. In standard lin-

ear regression, we suppose that the relationship between the variables of

interest, X and Y , can be described by a linear function fθ defined for all

xi ∈ X by fθ(xi) = θ0 + θ1 xi,1 + . . . + θd xi,d, with unknown coefficients

θ ∈ Rd+1. Furthermore, it is usually assumed that for each possible real-

ization x of X the deviation of Y from fθ(x) can be described by means

of an uncorrelated random quantity with expectation zero and finite vari-

ance τ2 < +∞. That is, fθ models the conditional expectation of Y given

X = x, from which Y deviates with the same variance τ2 for all x ∈ X .

This constitutes a strong assumption about the probability distribution

PV of the analyzed variables, and consequently, the set PV of probability

measures that are considered as possible models of the data situation is
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much smaller in standard linear regression than in SVR and in the robust

LIR method.

The loss function of the decision problem corresponding to LS regres-

sion is given by the expectation E(R2
f ) of the squared residual. If PV is

known, the best description of the linear relationship of interest is the func-

tion fθ. As already mentioned in Section 3.1, this is due to the fact that

the function f minimizing the expectation of the squared residual (under

PV ) is the one that fulfills f(x) = E(Y |x) for all x ∈ X and according to

the model assumptions fθ(x) = E(Y |x) for all x ∈ X . Recall that E(R2
f )

corresponds to the risk functional EPV
defined in (5.1), where ψ is defined

by ψ(r) = r2 for all r ∈ R≥0. To estimate the LS regression function on

the basis of a data set V1 = v1, . . . , Vn = vn, the risk EP̂V
with respect

to the empirical distribution P̂V is minimized. Let D denote the design

matrix of the linear regression model, that is, D is an n× (d+ 1) matrix

that comprises as rows the observed vectors of the explanatory variables,

x1, . . . , xn, each supplemented by the value one in the first column to model

the intercept θ0, and let y = (y1, . . . , yn). The best regression function is

the linear function fθ̂LS
associated with the vector θ̂LS that minimizes the

expression 1/n (y−Dθ)T(y−Dθ), which corresponds to EP̂V
(fθ). Equiva-

lently, the residual sum of squares, given by nEP̂V
(fθ), can be considered

as the criterion to be minimized. The corresponding minimization problem

can be solved analytically and the unique minimizer is given by

θ̂LS = (DTD)−1DTy.

Thus, θ̂LS is the LS estimator of the vector of regression coefficients and

fθ̂LS
is the corresponding LS regression function.

It can easily be seen that, under the assumptions of the standard lin-

ear regression model, θ̂LS is unbiased, that is, E(θ̂LS) = θ, and has the

variance matrix τ2 (DTD)−1. According to the Gauss-Markov Theorem,

the variances of the components of θ̂LS are the smallest among all possi-

ble unbiased estimators that are linear functions of y. Hence, θ̂LS is the

best linear unbiased estimator for θ (see, e.g., Casella and Berger, 2002,
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Section 11.3). Moreover, the LS estimator of the regression coefficients is

consistent. Roughly speaking, a consistent estimator θ̂ for a parameter

(vector) θ is a function of the sample variables V1, . . . , Vn that converges

to θ as the sample size n ∈ N increases. This property can be expressed

by different mathematical definitions, considering different types of con-

vergence for random variables. A possible definition of consistency is the

definition based on convergence in probability, which is usually called weak

consistency. The sequence of estimators (θ̂(n))n∈N, where θ̂
(n) is the esti-

mator θ̂ for a sample of size n, is said to converge to θ in probability if for

each δ > 0, limn→+∞ PV (∥θ̂(n) − θ∥ > δ) = 0. The estimator θ̂ is weakly

consistent, if it converges to θ in probability. Another definition of con-

sistency involves convergence in terms of the Mean Squared Error (MSE)

of the estimator. The MSE of an estimator θ̂ for an unknown parameter

θ ∈ Rd+1 is defined by

MSE(θ̂) =

d+1∑
l=1

E((θ̂l − θl)
2) =

d+1∑
l=1

(E(θ̂l − θl))
2 + E((θ̂l − E(θ̂l))2),

where (E(θ̂l − θl))
2 is the squared bias of the l-th component of θ̂ and

E((θ̂l − E(θ̂l))2) is its variance. With respect to the MSE, the sequence

of estimators (θ̂(n))n∈N converges to θ if its MSE converges to zero, that

is, if limn→+∞MSE(θ̂(n)) = 0. Hence, the estimator θ̂ is in this sense

consistent, if its MSE converges to zero. This notion of consistency states

a stronger property than weak consistency, because convergence in terms

of the MSE implies convergence in probability (see, e.g., Schervish, 1995,

Section 7.1). Hence, to investigate the consistency of the LS estimator,

we consider the asymptotic behavior of its MSE. As θ̂LS is unbiased, we

have that MSE(θ̂LS) =
∑d+1

l=1 E((θ̂LS,l − E(θ̂LS,l))
2) = τ2 tr((DTD)−1),

where tr(M) denotes the trace of a square matrix M . Under the rather

uncritical assumption that the sequence of matrices ((D(n)TD(n))−1)n∈N

converges to the (d+1)× (d+1) zero matrix as n increases, where D(n) is

the design matrix of the linear regression model for a sample of size n, we

obtain that MSE(θ̂
(n)
LS ) → 0 as n → +∞ (see, e.g., Fahrmeir et al., 2013,
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Section 3.2). Hence, the LS estimator is consistent for θ with respect to

the MSE, which implies its weak consistency.

For a given data set, the expression for θ̂LS is only well-defined if the

matrix DTD is invertible, which requires that the columns of D have to be

linearly independent. In the presence of multicollinearity, that is, if two or

more explanatory variables in X are strongly correlated, DTD is usually

still invertible but the inverse matrix (DTD)−1 can have large diagonal

elements, due to the fact that the determinant of DTD is relatively small

when some of its columns are strongly correlated. Hence, in this situation,

the LS estimators θ̂LS,l of the regression coefficients θl, with l ∈ {0, . . . , d},
can have very large variances. This means that the obtained estimates of

the LS regression can differ a lot from the true coefficients of interest.

Therefore, Hoerl and Kennard (1970) proposed to add a small number

λ > 0 on the diagonal of DTD alleviating the multicollinearity, in order

to reduce the variance of the regression estimator in this situation. The

resulting Ridge estimator, for a fixed λ > 0, is given by

θ̂R,λ = (DTD + λ Id+1)
−1DTy,

where Id+1 is the (d+1)-dimensional identity matrix. Since for each fixed

λ > 0, we have E(θ̂R,λ) = (DTD+λ Id+1)
−1DTDθ, the Ridge estimator is

biased. However, θ̂R,λ is a consistent estimator for the vector of regression

coefficients in the standard linear regression model. To see this, assume

again that ((D(n)TD(n))−1)n∈N converges to the zero matrix, which im-

plies that the diagonal elements of the matrix D(n)TD(n), given by n2 and

by
∑n

i=1 x
2
i,l for all l ∈ {1, . . . , d}, increase as n gets larger. Therefore, the

effect of the regularization parameter λ added to each of these diagonal

elements vanishes in the limit and θ̂R,λ behaves asymptotically like the

LS estimator. Thus, for the sequence (θ̂
(n)
R,λ)n∈N associated with a fixed

λ > 0, we have that MSE(θ̂
(n)
R,λ) → 0 as n→ +∞. In a practical analysis,

however, to fix the regularization parameter at an appropriate value is a

crucial problem. Hoerl and Kennard (1970, Theorem 4.3) showed that

there always exists a λ > 0 such that the MSE of the Ridge estimator is
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smaller than the MSE of the LS estimator. Hence, despite the bias intro-

duced by λ, if λ is appropriately chosen, the reduction of the estimator’s

variance is so large that θ̂R,λ is more efficient than θ̂LS . In fact, there is

a trade-off between a small bias if λ is small and a small variance of the

estimator for large values of λ. Yet, which λ > 0 corresponds to an efficient

Ridge estimator, is usually unknown in a practical setting, nevertheless,

λ has to be fixed a priori. A common technique to select the regulariza-

tion parameter is to apply a cross-validation scheme, but there are many

other approaches (see, e.g., Hastie et al., 2009, Chapter 7; Draper and van

Nostrand, 1979). As the variances of the components of the Ridge estima-

tor are in general smaller than those of the LS estimator, the coefficients

are effectively shrunk in their size. Since its introduction by Hoerl and

Kennard (1970), Ridge regression was generalized in many ways by using

different shrinkage methods for the regression coefficients. Moreover, the

general idea of regularized estimation can be applied to various statistical

problems and numerous statistical methods employing this idea emerged

during the past few years. For more details on Ridge regression methods

and modern regularization techniques, see, e.g., Fahrmeir et al. (2013);

Hastie et al. (2009); Draper and van Nostrand (1979).

The Ridge estimator θ̂R,λ can be derived as the minimizer of the mod-

ified LS criterion (y − Dθ)T(y − Dθ) + λ θTθ, which is composed of the

residual sum of squares and a penalty for the length of the vector of re-

gression coefficients, for a fixed λ > 0. Equivalently, the corresponding

penalized risk EP̂V
(fθ) + λ/n θTθ can be considered as the criterion to be

minimized. The latter expression looks very similar to the regularized risk

of (5.3) that is minimized in SVR. In fact, the Ridge estimator can alter-

natively be derived as the solution of an SVR based on the LS loss and

on the linear kernel. More precisely, the SVR formulation of the linear

regression problem corresponds to the dual problem of the minimization

problem associated with the penalized LS criterion leading to the Ridge

estimator, as shown in the following. However, the interpretation of the

results is not the same in both contexts due to the different underlying

probability models.
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Consider the minimization problem of the penalized LS criterion in the

following form

min
θ∈Rd+1

1

2
(y −Dθ)T(y −Dθ) +

λ

2
θTθ,

where the criterion is divided by 2 to make the computations more con-

venient. Directly solving this problem leads to the Ridge estimator θ̂R,λ.

Alternatively, the minimization problem can be reformulated as

min
(ξ,θ)∈Rn×Rd+1

1

2λ
ξTξ +

1

2
θTθ, subject to ξ = y −D θ, (5.4)

where ξ ∈ Rn. That is, the unconstrained minimization problem is trans-

formed to a minimization problem with n equality constraints. The con-

strained minimization problem can be solved by applying the Lagrange

multiplier rule (see, e.g., Reinhardt et al., 2013, Sections 2.2 and 4.1).

The corresponding Lagrangian function Λ : Rn × Rd+1 × Rn → R with

Lagrange multipliers α ∈ Rn for the constraints is given by

Λ(ξ, θ, α) =
1

2λ
ξTξ +

1

2
θTθ + αT(y −Dθ − ξ),

for all (ξ, θ, α) ∈ Rn×Rd+1×Rn. As the minimum under the restrictions is

attained at the saddle point of Λ, a possible solution (ξ̌, θ̌, α̌) must satisfy

∇Λ(ξ̌, θ̌, α̌) = 0 ∈ Rn × Rd+1 × Rn. The partial derivatives of Λ with

respect to the primal variables, θ and ξ, imply the following conditions for

the critical point of the Lagrangian

ξ = λα and θ = DTα.

We can use these conditions to express ξ̌ and θ̌ as functions of the dual

variables α and to replace the primal variables in Λ by these expressions.

Then, we only need to maximize Λξ̌,θ̌ defined by Λξ̌,θ̌(α) = Λ(ξ̌, θ̌, α) for

all α ∈ Rn. This corresponds to the dual problem of the minimization
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problem in (5.4). The dual solution α̌ is given by

α̌ = (DDT + λ In)
−1 y.

Finally, we get θ̂R,λ by substituting α̌ for α in the primal condition of θ

θ̂R,λ = DTα̌ = DT(DDT + λ In)
−1 y,

which is a slightly different (but equivalent) expression for the Ridge es-

timator than the one introduced by Hoerl and Kennard (1970). The esti-

mated function fθ̂R,λ
can then be written for all xi ∈ X as

fθ̂R,λ
(xi) = (1, xi,1, . . . , xi,d)D

Tα̌ =

n∑
j=1

α̌j(1 +
∑d

l=1 xi,l xj,l).

This expression, in fact, corresponds to a support vector expansion of the

linear function fθ̂R,λ
. To see this, consider (5.2) with x replaced by xi and

κ by the linear kernel, given by κ(xi, xj) = 1+ ⟨xi, xj⟩ = 1+
∑d

l=1 xi,l xj,l,

for all xi, xj ∈ X . To verify the equivalence of fθ̂R,λ
with the solution

of an SVR with linear kernel and LS loss, we consider the corresponding

optimization problem in the following.

In an SVR with linear kernel, the corresponding RKHS F of considered

regression functions contains all (affine) linear functions on X . The loss

function of the regression problem is the risk functional EPV
with ψ defined

by ψ(r) = r2, for all r ∈ R≥0. Given some observations V1 = v1, . . . , Vn =

vn, the optimal regression function fP̂V ,λ̃ is the function that minimizes

the regularized risk associated with the empirical distribution of the data,

defined in (5.3), for some λ̃ > 0. According to the Representer Theorem,

the set Fn ⊂ F of candidates for the SVM contains functions of the form

fα(·) =
∑n

j=1 αj (1 + ⟨·, xj⟩), with α ∈ Rn. Hence, the corresponding

minimization problem can be written as

min
α∈Rn

1

2n
(y −DDTα)T(y −DDTα) +

λ̃

2
αTDDTα,
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which is again divided by 2 for convenience. This minimization problem

can also be transformed to a constrained minimization problem, whose

Lagrangian Λ̃ with multipliers µ ∈ Rn is defined by

Λ̃(ξ, α, µ) =
1

2n λ̃
ξTξ +

1

2
αTDDTα+ µT(y −DDTα− ξ),

for all (ξ, α, µ) ∈ R3n. The partial derivatives of Λ̃ with respect to the

primal variables, ξ and α, imply the conditions

ξ = λ̃ n µ and α = µ.

Inserting these in Λ̃, we obtain the corresponding dual problem, given as

max
α∈Rn

λ̃ n

2
αTα+

1

2
αTDDTα+ αT(y −DDTα− λ̃ n α),

whose objective function equals the function Λξ̌,θ̌, if we set λ̃ = λ/n. Hence,

for λ̃ = λ/n, the optimization problems of SVR and Ridge regression are

equivalent and consequently have the same solution fP̂V ,λ̃ = fθ̂R,λ
. Thus,

Ridge regression can be considered as a special case of SVR.

The interpretations of the estimates, however, are different. In the

case of Ridge regression, the model assumptions imply that the linear

regression function models the conditional expectation of Y given X = x

for all x ∈ X , from which Y deviates for all x ∈ X with the same variance

τ2. In this setting, the best regression function minimizes this conditional

variance τ2. In the SVR framework, the consideration of the LS loss implies

that the optimal regression function describes the conditional expectation

E(Y |x) for all x ∈ X , yet, without further assumptions about the random

behavior of Y . Here, the optimal line minimizes the mean conditional

variance of Y given X = x over X , that is, the marginal variance of

Rf . Therefore, fP̂V ,λ̃ has a more general interpretation than fθ̂R,λ
. Of

course, this only applies, if the model is correctly specified, that is, if the

conditional expectation of Y given X = x is a linear function according

to the true probability measure PV . If the conditional expectation is not
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given by a linear function, we can still define as function of interest the

line minimizing the second moment of the distribution of the residuals,

which is asymptotically given by fθ̂LS
, and thus, can also be consistently

estimated by fP̂V ,λ̃. However, the meaning of this function is less clear. In

addition, in most practical settings, the assumption of a linear conditional

expectation appears too idealistic. Therefore, LS regression would be more

interesting if no particular form of the possible regression functions has to

be imposed. In the SVR framework, this can easily be done by considering

kernel functions with very large RKHSs like, for instance, the Gaussian

kernel. Nevertheless, the representing function ψ of the LS loss is not

Lipschitz continuous, which prevents the corresponding SVRmethods from

being robust. A better configuration of SVR in this regard would be,

for example, the one employing the Gaussian kernel and the representing

function of the ν-insensitive loss.

Regarding the asymptotic behavior of the SVM in the setting of linear

regression with LS loss, we consider again the notion of risk consistency

discussed in the context of more general SVR methods in the previous sub-

section. Risk consistency of an SVM fP̂V ,λ means that EPV
(fP̂V ,λ(n)) →

inff∈F EPV
(f) in probability as n→ +∞ and λ(n) → 0. In the case of the

LS loss, we know that the infimal risk of the limit is attained by the func-

tion that minimizes E(R2
f ). By definition, the linear function fθ̂LS

that is

associated with the LS estimator for the regression coefficients minimizes

the risk functional EP̂V
associated with the empirical distribution of a

finite sample of observations V1 = v1, . . . , Vn = vn. As more and more

data are observed, P̂V converges to the unknown probability distribution

PV , which implies that the sequence (EPV
(f

θ̂
(n)
LS

))n∈N converges in prob-

ability to inff∈F EPV
(f). Furthermore, when we consider a sequence of

penalty parameters, (λ(n))n∈N with limn→+∞ λ(n) = 0, in the limit, the

corresponding sequence of SVMs (fP̂V ,λ(n))n∈N behaves like the sequence

of functions associated with the LS estimator. Thus, it can be shown that

EPV
(fP̂V ,λ(n)) → inff∈F EPV

(f) in probability as n→ +∞ and λ(n) → 0,

that is, the SVR estimator based on the linear kernel together with the LS

loss is risk consistent.
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5.2 Adaptation of SVR to interval data

Utkin and Coolen (2011) proposed a generalization of the SVR method-

ology to the situation in which the response variable Y is observed as

bounded intervals. That is, Utkin and Coolen (2011) consider the pre-

cise variables (X,Y ) = V ∈ V, where V = X × Y is a compact subset

of Rd+1, with d ∈ N. Instead of V , only the random set V ∗ ⊆ V can be

observed, whose possible realizations are of the form V ∗ = {X} × [Y , Y ],

with X ∈ X ⊂ Rd and Y , Y ∈ Y ⊂ R such that Y ≤ Y . Moreover, it is

assumed that (V, V ∗) ∼ P ∈ P, where P entails all probability measures

P ′ satisfying P ′(V ∈ V ∗) = 1, which corresponds to the probability model

underlying the robust LIR method with ε = 0 in (3.1). Hence, like it is

done in most approaches to analyzing imprecise data, Utkin and Coolen

(2011) assume that the imprecise data always contain the precise values

of interest.

Since the precise variables are not observable, it is impossible to eval-

uate the considered regression functions f ∈ F , where F is an RKHS,

by the associated empirical risk EP̂V
(f). However, the marginal distribu-

tion of the imprecise data can be estimated on the basis of data. When

the probability distribution PV ∗ of the imprecise data is known, the only

available information about the unknown probability distribution PV of

the precise data is that PV ∈ [PV ∗ ], where [PV ∗ ] ⊂ PV is the set of

all marginal distributions P ′
V of the precise data corresponding to models

P ′ ∈ P with P ′
V ∗ = PV ∗ . As explained in Section 3.2, since we assume here

that P (V ∈ V ∗) = 1, the set [PV ∗ ] consists of all probability measures on

V that satisfy the inequalities in (3.4). Hence, the unknown probabilities

PV (V ∈ A) of all measurable events A ⊆ V are bounded by

PV (V ∈ A) ≥ PV ∗(V ∗ ∈ {A′ ∈ V∗ : A′ ⊆ A}) and

PV (V ∈ A) ≤ PV ∗(V ∗ ∈ {A′ ∈ V∗ : A′ ∩A ̸= ∅}).
(5.5)

By consequence, for all f ∈ F , the unknown risk EPV
(f) lies in the interval
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[EPV ∗ (f), EPV ∗ (f)], where

EPV ∗ (f) = min
P ′

V ∈[PV ∗ ]
EP ′

V
(f) and EPV ∗ (f) = max

P ′
V ∈[PV ∗ ]

EP ′
V
(f).

Hence, in contrast to standard SVR, the regression functions f ∈ F cannot

be directly evaluated by a precise value here, even if the probability distri-

bution of the observable data is known. Therefore, in the decision problem

corresponding to SVR with imprecise response, the set [EPV ∗ (f), EPV ∗ (f)]

of all possible evaluations is considered for each f ∈ F . Of course, it is in

general impossible to directly determine an SVM with respect to this im-

precise optimization criterion. The central idea of the regression method-

ology proposed by Utkin and Coolen (2011) is to use the minimin or the

minimax rule to solve the decision problem, that is, to minimize either

the lower risk EPV ∗ or the upper risk EPV ∗ in order to identify a single

optimal regression function.

To derive expressions of the lower and upper risk, Utkin and Coolen

(2011) describe, for each regression function f ∈ F , the set of compati-

ble probability distributions of the residual Rf given PV ∗ by a so-called

p-box and apply results from Utkin and Destercke (2009). Introduced by

Ferson et al. (2003, Section 2), the notion p-box designates a convex set

of probability measures for a univariate random quantity that is bounded

by a lower and an upper cumulative distribution function. In the situ-

ation considered here, given PV ∗ , also the marginal distribution of the

interval-valued residual [Rf , Rf ], where Rf = min(x,y)∈V ∗ |y − f(x)| and
Rf = max(x,y)∈V ∗ |y − f(x)|, is known for each f ∈ F . According to (5.5),

the marginal distribution of the imprecise residual implies lower and upper

bounds to the probabilities of all measurable events associated with the

marginal distribution of the precise residual Rf . If we consider these lower

and upper bounds for all events of the form [−∞, r], with r ∈ R≥0, we

obtain a lower and an upper cumulative distribution function that consti-

tute a p-box. As the p-box covers all probability distributions of Rf that

comply with the bounds at least for the intervals [−∞, r], with r ∈ R≥0,

some of the probability measures included in the p-box may not satisfy
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(5.5) for all measurable events, and thus, may be incompatible with the

marginal distribution of the imprecise residual. However, the p-box ob-

tained in the described way from the random set [Rf , Rf ], with f ∈ F , is

the tightest outer approximation by a p-box of the set of probability distri-

butions of Rf implied by this random set (see, e.g., Destercke et al., 2008).

In fact, in the present situation, for each f ∈ F , the upper bound of the

associated p-box corresponds to the cumulative distribution function of

the lower endpoint of the interval-valued residual [Rf , Rf ], while the lower

bound of the p-box corresponds to the cumulative distribution function of

the upper endpoint. This can be seen by considering the corresponding

bounds to the probabilities of the events [−∞, r], with r ∈ R≥0, used to

derive the p-box for all f ∈ F , that is,

PV (Rf ≤ r) ≥ PV ∗([Rf , Rf ] ∈ {[r, r] ⊂ R≥0 : [r, r] ⊆ [−∞, r]})

= PV ∗(Rf ≤ r) and

PV (Rf ≤ r) ≤ PV ∗([Rf , Rf ] ∈ {[r, r] ⊂ R≥0 : [r, r] ∩ [−∞, r] ̸= ∅})

= PV ∗(Rf ≤ r).

It can easily be checked that the probability distributions corresponding

to the bounds of the p-box comply with (5.5) for arbitrary measurable

events, and thus, are elements of [PV ∗ ]. Since, according to (5.1), the risk

functional EPV
is the expectation of a convex function in Rf with minimum

at zero, it is straightforward to conclude that EPV ∗ and EPV ∗ coincide with

the expected errors associated with the marginal distributions of the lower

and of the upper residual, that is, of Rf and of Rf , respectively (see also

Utkin and Destercke, 2009, Proposition 3).

As the true probability distribution PV ∗ is typically unknown, it is

usually estimated on the basis of an i.i.d. sample of imprecise observations

V ∗
1 = A1, . . . , V

∗
n = An. By analogy with standard SVR, PV ∗ is estimated

by the empirical distribution P̂V ∗ of the imprecise data, i.e., by the ML

estimate, and furthermore, the complexity of the estimated functions is

restricted by an additive penalty term. Hence, the optimization criteria
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considered in the modified decision problems corresponding to the minimin

and the minimax rule are the regularized lower and upper risk, respectively.

For a fixed λ > 0, the regularized lower and upper risks associated with

the empirical distribution P̂V ∗ are for each f ∈ F given by

EP̂V ∗ ,λ(f) =
1

n

n∑
i=1

min
(xi,yi)∈Ai

ψ(|yi − f(xi)|) + λ ∥f∥2F and

EP̂V ∗ ,λ(f) =
1

n

n∑
i=1

max
(xi,yi)∈Ai

ψ(|yi − f(xi)|) + λ ∥f∥2F ,

where as before, ψ is the convex mapping from R≥0 to R≥0 representing

the chosen loss. Following the same steps as in standard SVR, Utkin and

Coolen (2011) deduce from these expressions solvable formulations of the

optimization problems corresponding to both strategies in the special case

of linear regression for different choices of the loss function. We do not

restrict the approach to this special case here and continue to consider

more general RKHSs of regression functions. However, before deriving

formulations of the optimization problems based on the support vector

expansion of the possible solution, it has to be verified that the Representer

Theorem applies to or that its statements can be transferred to the setting

considered here. Only in this case, the simple expression (5.2) can be used

for the optimal regression function in (5.3), which provides a favorable

starting point for solving the corresponding optimization problems.

As mentioned in Subsection 5.1.1, the Representer Theorem implies

that if an SVR analysis of a data set V1 = v1, . . . , Vn = vn with empirical

distribution P̂V is based on a convex representing function ψ, then, for

all λ > 0, there exists a unique function minimizing EP̂V ,λ, which can

be represented as (5.2) (see, e.g., Steinwart and Christmann, 2008, Theo-

rem 5.5). In the proof of this theorem as it is presented in Steinwart and

Christmann (2008, Theorem 5.5), the first steps are to show strict con-

vexity and continuity of EP̂V ,λ, which provide existence and uniqueness

of the minimizing function fP̂V ,λ ∈ F , by the corresponding arguments of

the proofs of Theorem 5.2 and Lemma 5.1 of Steinwart and Christmann
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(2008), respectively. Then, the representation of fP̂V ,λ as the kernel ex-

pansion of (5.2) is derived by exploiting properties of the function spaces

Fn and F in addition to the existence and the uniqueness of the func-

tion fP̂V ,λ. The generalized SVR methods discussed in this section differ

from the standard SVR methods only in the expressions of their risks. In

case that the summands of EP̂V ∗ and EP̂V ∗ are convex functions, those

are also continuous, and thus, the continuity of EP̂V ∗ ,λ and EP̂V ∗ ,λ can

be derived by slightly adapting the first argument of the existence part of

the proof of the Representer Theorem. Therefore, the critical aspect of

transferring the arguments of the proof of the Representer Theorem to the

present situation appears to be the convexity of EP̂V ∗ ,λ and EP̂V ∗ ,λ and

their components.

In the standard SVR methodology as set out in Subsection 5.1.1, the

strict convexity of EP̂V ,λ follows from the convexity of ψ, because a weight-

ed sum of convex functions is convex, and from the fact that the mapping

f 7→ λ ∥f∥2F is strictly convex by general properties of F . In the situation

considered here, EP̂V ∗ ,λ is the sum of maxima over sets of convex functions

and the strictly convex penalty term. As, in general, a function defined

as the maximum of convex functions is convex, we can derive that EP̂V ∗ ,λ

is strictly convex. To show that EP̂V ∗ ,λ is also strictly convex, however,

requires some more effort.

Since the sum of convex functions is convex and the penalty term is

strictly convex, the regularized lower risk associated with P̂V ∗ is convex

if, for each possible A ∈ V∗, the mapping f 7→ min(x,y)∈A ψ(|y − f(x)|) is
convex. Hence, it has to be verified that for every {x} × [y, y] = A ∈ V∗

the inequality

min
(x,y)∈{x}×[y,y]

ψ(|y − (ρ f + (1− ρ) f ′)(x)|) ≤

ρ min
(x,y)∈{x}×[y,y]

ψ(|y − f(x)|) + (1− ρ) min
(x,y)∈{x}×[y,y]

ψ(|y − f ′(x)|)

(5.6)

holds for all f, f ′ ∈ F and all ρ ∈ [0, 1]. As ψ is a nonnegative convex
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mapping with ψ(0) = 0, the minimum of ψ(|y − f(x)|) over some interval

[y, y] ⊆ Y, for a given x ∈ X and some f ∈ F , is attained either at y = y,

at y = y, or at y = f(x) if f(x) ∈ [y, y]. Hence, for each f ∈ F and

{x} × [y, y] ∈ V∗ we have that

min
(x,y)∈{x}×[y,y]

ψ(|y − f(x)|) =


ψ(|y − f(x)|) if f(x) < y,

0 if f(x) ∈ [y, y],

ψ(|y − f(x)|) if f(x) > y.

(5.7)

Now, starting from the expression on the left-hand side of (5.6), the con-

vexity of the mapping ψ implies that

min
(x,y)∈{x}×[y,y]

ψ(|y − (ρ f + (1− ρ) f ′)(x)|) ≤

min
(x,y)∈{x}×[y,y]

ρψ(|y − f(x)|) + (1− ρ)ψ(|y − f ′(x)|).

Obviously, the right-hand side of this inequality is in general larger or equal

the right-hand side of (5.6). Therefore, we cannot derive Inequality (5.6)

directly from the convexity of ψ. One possibility for Inequality (5.6) to

hold is that both sides are equal. In fact, it can be shown that the equality

generally holds, by considering all 32 different cases resulting from the

distinctions in (5.7) for both functions, f and f ′, for the expression on

the right-hand side and verifying that the left-hand side yields the same

value. For example, consider the situation in which f(x) ∈ [y, y] and

f ′(x) ∈ [y, y], and thus, the right-hand side is zero. In this case, also the

convex combination ρ f(x) + (1− ρ) f ′(x) is for all ρ ∈ [0, 1] contained in

[y, y], and thus, the left-hand side is always zero, too. Hence, for this case,

the equality in (5.6) is verified. Finally, the remaining 32 − 1 cases have

to be checked, which can easily be done.

Thus, the regularized lower and upper risks associated with the empiri-

cal distribution of the imprecise data are indeed strictly convex. Therefore,

the statements of the Representer Theorem can be transferred to the SVR

methods proposed by Utkin and Coolen (2011) and f(xi) can be replaced
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by
∑n

j=1 αj κ(xi, xj), where α1, . . . , αn ∈ R and κ is the reproducing ker-

nel function of F , in the expressions of EP̂V ∗ ,λ and EP̂V ∗ ,λ. On the basis of

the simplified expressions, solvable formulations of the corresponding op-

timization problems can be derived for different configurations of loss and

kernel function, which provide the basis for an implementation of the asso-

ciated generalized SVR methods. For example, Utkin and Coolen (2011)

deduce the optimization problems associated with the minimin and the

minimax rule for different loss functions combined with the linear kernel

function.

5.3 Discussion

In the adaptation of the standard SVR methodology to interval-valued ob-

servations of the response variable suggested in Utkin and Coolen (2011),

each regression function is evaluated by the interval of the risk values asso-

ciated with all probability measures that are compatible with the probabil-

ity distribution of the imprecise data. To solve the decision problem, the

minimin or the minimax decision rule is applied, yielding a single estimated

regression function. The proposed regression methodology can be seen as

a generalization of standard SVR, because the suggested methods reduce

to standard SVR methods if the data are in fact precisely observed. How-

ever, it is not clear if the obtained functions constitute meaningful results

for the regression problem with imprecise data.

As discussed in Section 4.4, we consider as a basic requirement for a

precise SVR estimator based on imprecise data that it should yield a result

that could be obtained by the corresponding standard SVR method with a

precise data set that is compatible with the observed imprecise data. Since

the estimated function resulting from the minimin method has the smallest

regularized lower risk associated with P̂V ∗ over all f ∈ F , the configuration

of precise data (x1, y1), . . . , (xn, yn), with (xi, yi) ∈ {xi} × [yi, yi] for all

i ∈ {1, . . . , n}, corresponding to the minimal risk for this function yields

a higher regularized risk for any other function f ∈ F . Therefore, the

regression function obtained from the minimin method corresponds to the
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standard SVM for this particular precise data set. Hence, the generalized

SVR method employing the minimin decision rule yields a result that is

meaningful in the sense mentioned above. If the same holds for the SVM

obtained by the minimax method, however, remains an open question.

Nevertheless, the generalized SVR method based on the minimax decision

rule yields a result that is plausible in another sense, as we discuss in the

following section.

Furthermore, compared with the robust LIR method, the considered

data situation is more restricted, because it is assumed that X ×Y = V is a

compact subset of Rd+1. The assumption that X is compact is transferred

from standard SVR. The compactness assumption for Y is necessary be-

cause a single unbounded observation would imply that EP̂V ∗ ,λ(f) = +∞
for all f ∈ F , and thus, would cause the minimax method to break down.

This is due to the fact that the SVR methodology is based on the ex-

pected error, which is not a robust centrality measure for the distribution

of ψ(Rf ). However, in most practical settings, the range of possible values

of the response variable is not naturally bounded and there is typically

not enough information to justify a particular choice of the lower and

upper bounds, which have a strong effect on the obtained result. More-

over, a generalization of the approach to imprecisely observed explanatory

variables X appears to be very challenging, because in this situation the

regression functions cannot be represented as the linear combination of

kernel functions as implied by the Representer Theorem, since the impre-

cise observations cannot each be identified with a single function κ(·, xj),
for all j ∈ {1, . . . , n}. These aspects clearly limit the applicability of SVR

methods based on the approach proposed by Utkin and Coolen (2011).

Finally, in the context of the statistical analysis of imprecise data,

methods yielding precise results are in general problematic, because a rea-

sonable statistical method should reflect the imprecision of the data in its

result. In addition, a responsible statistical analysis should always take

the involved statistical uncertainty into account. The LIR methodology

allows expressing both types of uncertainty by the extent of the set-valued

result of the regression analysis. In fact, it can easily be shown that, for
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each f ∈ F , the interval [EP̂V ∗ (f), EP̂V ∗ (f)] is the ML estimate of EPV
(f)

in the situation considered by Utkin and Coolen (2011). Therefore, for

this particular kind of imprecise data, we can alternatively derive a gener-

alization of SVR within the LIR framework.

5.4 A LIR method for SVR with interval data

In this section, we propose an alternative adaptation of SVR based on

the LIR methodology described in Chapter 3 for the particular setting

considered in Utkin and Coolen (2011). Hence, we suppose that V is a

compact subset of Rd+1, with d ∈ N, and that the response variable is

observed as a bounded interval, i.e., V ∗ is of the form {X} × [Y , Y ], with

X ∈ X ⊂ Rd and Y , Y ∈ Y ⊂ R such that Y ≤ Y . Furthermore, we

consider the fully nonparametric probability model P = Pε with ε = 0 in

Assumption (3.1).

Following the LIR methodology, we regard the regression problem with

imprecise data as a decision problem on F × P. Since the aim of a LIR

analysis is to identify those functions in the RKHS F that well describe

the relationship between the precise variables, the loss function of the de-

cision problem is a characteristic that depends only on the probability

distribution of the precise data. On the other hand, as the variables are

only imprecisely observed, the likelihood function used to derive a set-

valued decision criterion for the regression problem depends only on the

marginal distribution of the imprecise data. Like in standard SVR, we

consider as loss function the risk functional EPV
(f), assigning to each

pair (f, P ) ∈ F × P the expected error implied by f under the corre-

sponding marginal distribution PV of the precise variables. Adopting the

terminology of Section 3.2, we define a function-specific loss function Ef

for each f ∈ F by Ef (P ) = EPV
(f), for all P ∈ P. We can express

Ef also as a function on PV by writing E′
f (PV ) instead of Ef (P ), for

all P ∈ P. Furthermore, we define an imprecise version E∗
f of Ef as-

signing to each marginal distribution PV ∗ of the imprecise data the set

E∗
f (PV ∗) =

⋃
PV ∈[PV ∗ ]E

′
f (PV ) of all compatible risk values. Obviously,
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for every function f , we have that E∗
f (PV ∗) = [EPV ∗ (f), EPV ∗ (f)], for

all PV ∗ ∈ PV ∗ . The (normalized) likelihood function lik induced by an

i.i.d. sample of imprecise data V ∗
1 = A1, . . . , V

∗
n = An assigns to each

probability measure P ∈ P the probability with which P had predicted

the observations relative to the highest possible one, see also (3.2). As

only the imprecise data are available, lik is entirely determined by their

marginal distribution PV ∗ , hence, we write lik(P ) = lik∗(PV ∗), for all

P ∈ P.

Within the LIR framework, the information provided by the likelihood

function is used to determine likelihood-based confidence regions for the

loss Ef associated with a function f ∈ F , which constitute the imprecise

decision criterion of the regression problem. The confidence regions Ef,>β

can be expressed by means of the (normalized) profile likelihood function

likEf
and the threshold β ∈ (0, 1) as

Ef,>β = {e ∈ R≥0 : likEf
(e) > β},

where likEf
is for all e ∈ R≥0 given by

likEf
(e) = sup

PV ∗∈PV ∗ : e∈E∗
f (PV ∗ )

lik∗(PV ∗),

see also (3.3), (3.5), and (3.6). As V is compact here, the support of

the distribution of ψ(Rf ) is also a closed and bounded subset of R≥0, for

each f ∈ F . In this case, informative confidence regions for the expected

value of a random quantity can be obtained under the fully nonparamet-

ric probability assumption, which are moreover intervals (see, e.g., Owen,

2001, Section 2.5).

For each function f ∈ F , the confidence region Ef,>β contains all risk

values associated with f that are plausible to certain degree, which is

determined by the choice of β ∈ (0, 1). If the cutoff point β is chosen close

enough to one such that only the empirical distribution P̂V̂ ∗ exceeds the

likelihood threshold, we have that Ef,>β = E∗
f (PV̂ ∗). Thus, the interval

[EP̂V ∗ (f), EP̂V ∗ (f)] corresponds to the ML estimate of the risk EPV
(f)
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in the considered regression problem. According to the standard SVR

methodology, we furthermore replace the risk EPV
by the regularized risk

EPV ,λ, for some λ > 0, and consider the corresponding modified decision

problem for the estimation. For some λ > 0 and β ∈ (0, 1), we obtain as

confidence intervals for the regularized risk

Ef,λ,>β = {e+ λ ∥f∥2F : e ∈ R≥0 and likEf
(e) > β},

for all f ∈ F . The confidence regions Ef,λ,>β then constitute the decision

criterion of the LIR method for SVR with interval data. If the cutoff point

β is chosen close enough to one such that Ef,λ,>β is the ML estimate of the

regularized risk EPV ,λ(f), for all f ∈ F , the minimax method proposed by

Utkin and Coolen (2011) corresponds to applying the LRM rule discussed

in Section 3.2, which aims at a single optimal regression function. In

contrast to this approach, in the LIR methodology, we apply the dominance

principle to the imprecise decision criterion in order to identify the set of

all regression functions that are plausible in the light of the observations.

Hence, all functions f ∈ F for which

inf Ef,λ,>β ≤ inf
f ′∈F

sup Ef ′,λ,>β

is satisfied are considered as the set-valued result of the regression anal-

ysis. This set consists of all regression functions that are plausible given

the imprecise data. In Subsection 4.1.3, we discussed that the result of

the robust LIR method always contains all compatible precise LQS re-

gression functions. Likewise, the set of undominated regression functions

obtained here is always a superset of the set of all accordingly configurated

SVMs obtained from precise data sets that are compatible with the im-

precise data. To see this, consider a precise data set (x1, y1), . . . , (xn, yn)

with (xi, yi) ∈ {xi} × [yi, yi], for all i ∈ {1, . . . , n}, and the correspond-

ing SVM f = fP̂V ,λ = arg inff ′∈F EP̂V ,λ(f
′). For all regression functions

f ′ ∈ F , the regularized risk EP̂V ,λ(f
′) associated with the empirical distri-

bution of this compatible data set is larger or equal EP̂V ,λ(f). Therefore,

for each f ′ ∈ F , the upper endpoint sup Ef ′,λ,>β of the confidence in-
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terval is also larger or equal EP̂V ,λ(f), which implies that EP̂V ,λ(f) ≤
inff ′∈F sup Ef ′,λ,>β . As furthermore EP̂V ,λ(f) ≥ inf Ef,λ,>β , we obtain

that inf Ef,λ,>β ≤ inff ′∈F sup Ef ′,λ,>β , and thus, f is an undominated re-

gression function. Finally, as the LRM function is always included in the

set of undominated functions and since the sets of undominated functions

are nested for different levels of β because the confidence intervals Ef,λ,>β

are nested for each f ∈ F , we can conclude that the result of the minimax

method by Utkin and Coolen (2011) is meaningful in the sense that the

obtained regression function is always an undominated regression function.

How to obtain the set of all undominated regression functions in a

practical analysis, however, is a difficult question, because it appears to be

difficult to derive an analytical expression of likEf
. Maybe it is possible

to adapt some computation method proposed by Owen (2001, Section 2.9)

to compute the confidence regions in the situation considered here. In the

special case where Ef,λ,>β is the ML estimate of the risk for all f ∈ F , an

implementation of the LIR method for SVR can be based on the minimax

method by Utkin and Coolen (2011). The minimax method allows deter-

mining the smallest regularized upper risk, which is necessary to identify

the functions whose lower risk does not exceed this value. Thus, given

the smallest upper bound, a random search over Fn can be performed to

approximately determine the set of all undominated regression functions.
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Chapter 6

Applications

In this chapter, the regression methods discussed in the previous chap-

ters are applied to study two interesting questions in the contexts of social

sciences and winemaking, respectively. At first, we investigate the relation-

ship between the income and the perceived overall well-being of a person

by means of the robust LIR method presented in Section 4.1. After this,

the determination of the sensory quality of a particular variety of Por-

tuguese red wine by its alcohol level is analyzed in employing the SVR

methods discussed in Chapter 5, whose results are finally compared with

those obtained by the robust LIR method.

6.1 Analysis of subjective well-being with the robust

LIR method

In recent years, there has been a lively interest in analyzing subjective well-

being in various disciplines of the social and behavioral sciences. In this

context, one important question is how an increase in income translates

to subjective well-being (see, e.g., Deaton, 2012; Clark et al., 2008; Diener

and Biswas-Diener, 2002). Empirical studies in this field often use global

measures of subjective well-being, which are obtained from a single survey

question about the overall satisfaction with life. These global measures

are indicators of the state of an individual’s well-being, and therefore, it is
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sensible to use them to analyze subjective well-being (Deaton, 2008), al-

though, of course, they do not capture the entire complexity of the concept

of well-being (Huppert et al., 2009). As single-item measures are usually

measured on a discrete scale, they can be considered as coarse observations

of the latent, continuous variable of interest degree of subjective well-being.

The coarseness of the discrete values can be represented by intervals, thus,

the LIR approach is suitable to analyze this kind of data. Moreover, when

investigating the relationship between income and subjective well-being,

sometimes also the income data are only available as classes, which repre-

sent, in fact, intervals that form a partition of the associated observation

space R≥0. Finally, as the relationship between income and subjective

well-being is usually assumed to be log-linear (see, e.g., Deaton, 2012;

Diener and Biswas-Diener, 2002), we can conduct a linear LIR analysis

with the logarithm of income as independent variable X and subjective

well-being as dependent variable Y to analyze the relationship of interest,

accounting for the imprecision of the data.

To this end, we use the robust LIR method presented in detail in Sec-

tion 4.1, which is implemented for the analysis of interval data in the

linLIR package (Wiencierz, 2013) for the statistical software environment

R (R Core Team, 2013). Thus, all computations and graphs in this sec-

tion are made with the linLIR package. We analyze data from the fifth

round of the European Social Survey (ESS, Norwegian Social Science Data

Services, 2010). The ESS is a biennial multi-country survey established

to monitor changing attitudes and behavior of people in Europe. The

data collected for the ESS are available free of charge on the website

www.europeansocialsurvey.org.

Previous empirical studies indicated that the relationship between in-

come and subjective well-being on the individual level is not the same in

rich countries as in poor countries, and furthermore, that there may be dif-

ferent relationships for men than for women (see, e.g., Clark et al., 2005;

Diener and Biswas-Diener, 2002). For these reasons, we choose Finland

and Bulgaria as representatives for the groups of rich and poor European

countries, respectively, and we analyze only the corresponding subsets of
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the ESS data set. Furthermore, for each country, we perform separate

LIR analyses for the subpopulations of women and men. From the vari-

ables included in the ESS data set, we retrieve the following ones: house-

hold income (net per month, in categories corresponding to the decile

classes of the income distribution in each country) and overall satisfac-

tion with life (on a discrete scale from 0 – extremely dissatisfied to 10 –

extremely satisfied). In a data preprocessing step, the income classes are

replaced by the corresponding intervals, then the interval endpoints are di-

vided by the household size, and finally, the logarithmic transformation is

made. The data on subjective well-being are changed from discrete values

0, 1, . . . , 9, 10 to intervals [0, 0.5], [0.5, 1.5], . . . , [8.5, 9.5], [9.5, 10]. Hence,

the independent and dependent precise quantities whose relationship is

investigated by the linear LIR analysis are the logarithmic monthly net

household income per capita in euros and the subjective well-being on a

latent, continuous scale from 0 to 10, respectively.

The resulting four data frames contain each four columns: two for each

of the analyzed variables, one column for the lower interval endpoint and

one for the upper endpoint, which is the required data format for the

linLIR package. Applying the function idf.create to these data frames,

we create so-called interval data frame (idf) objects, which consist of a list

of data frames, each containing the corresponding two columns of inter-

val endpoints of one variable. For these idf-objects, the linLIR package

provides a summary method as well as a plot method with two options.

Figures 6.1 and 6.2 show the data plots of the four data sets we analyze.

As the data sets consist of roughly 1 000 observations each, we used the

two-dimensional histogram plot by choosing the option typ="hist" in the

plot function. As expected, we notice that the marginal distribution of

subjective well-being is concentrated at a higher level in Finland compared

to Bulgaria, but there appear to be no big differences between men and

women within the countries. Moreover, we can see that there are many ob-

servations that are unbounded with respect to X. This is partly caused by

the high number of observations in the lowest and highest income classes.

In addition to this, there is a significant percentage of completely missing
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Figure 6.1: Histogram plots of the Finnish data sets: women on the top
(n = 967), men on the bottom (n = 911). The darker a rectangle the more
observations overlap this rectangle.

income values (Finland 5–10%, Bulgaria 15–20%), which are represented

in the data set as intervals [xi, xi] = [−∞,+∞]. Given the high degree

of data imprecision, we can expect to obtain rather uninformative results

from the LIR analyses, reflecting the high uncertainty induced by the in-

terval data. It can be argued that using −∞ as lower endpoint of the range

of the logarithmic income (instead of using, e.g., zero) entails too much

unnecessary data uncertainty. However, the results of the LIR analyses are

affected only a little by this, because the used LIR method is very robust.

Before conducting the linear LIR analyses, we have to set up the prob-

ability model by selecting the only model parameter ε characterizing the

considered probability measures in terms of Assumption (3.1). Further-

more, we need to choose the quantile to be considered as loss function in

the robust LIR method and the cutoff point β. For simplicity, we here
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Figure 6.2: Histogram plots of the Bulgarian data sets: women on the top
(n = 1370), men on the bottom (n = 1064). The darker a rectangle the more
observations overlap this rectangle.

assume that the imprecise data are correct in the sense that the observed

rectangles contain the correct precise values with probability one, i.e., we

consider ε = 0. If we had concerns about the data quality or if we wanted to

account for possibly wrong coarsening, a positive ε could be considered in

the nonparametric probability model characterized by (3.1). As shown in

Section 4.2, this would lead to more imprecise results of the LIR analyses,

reflecting the fact that there is additional uncertainty. As the residual’s

quantile to be minimized we consider the median, that is, p = 1/2, which

is the most robust choice of p. Finally, we choose β = 0.8 as cutoff point

for the likelihood-based confidence regions Cf with f ∈ F . This choice of

β satisfies Condition (4.1) and corresponds to an asymptotic confidence

level of at least approximately 50% for each Cf .
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The model parameter ε, the LIR settings p and β, as well as the idf-

object to be analyzed are handed over to the s.linlir function of the R

package linLIR, which determines the set U ′ by the exact algorithm. As

we already mentioned at the end of Subsection 4.3.2, the current version

of the function s.linlir is not optimized for computational speed. The

computations for the present analysis took about two to ten minutes on

a standard desktop computer. Most of the time is needed for the first

part of the algorithm, where qLRM is determined. To display the results

of the conducted linear LIR analyses, we use the type typ="para" of the

associated plot method with the default option para.typ="polygon" and

obtain Figures 6.3 and 6.4, where the black points indicate the LRM re-

gression functions.

The sets U ′ resulting from the LIR analyses of the data sets of women

and men in Finland are displayed in Figure 6.3. Both sets of parameter

values are bounded and have a similar shape, admitting both lines with

positive and negative slopes ranging approximately from −9.5 to 12.
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Figure 6.3: Sets U ′ for Finland: women on the left (n = 967), men on the right
(n = 911).

For the sample of Bulgarian women, the shape of the obtained set U ′

is much different, as shown in the left part of Figure 6.4. In this particular

data set, there are 687 observations [xi, xi]×[yi, yi] such that xi = −∞ and

[yi, yi] ̸= R. A line with an arbitrarily high slope always goes through these

observations at the lower end of the income range as long as the intercept

is not too low, and conversely, a line with a negative slope always intersects
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Figure 6.4: Sets U ′ for Bulgaria: women on the left (n = 1370), men on the
right (n = 1064).

these observations if the intercept is not too high. As here k + 1 = 673,

all lines intersecting these 687 observations are undominated. Therefore,

the obtained set of undominated functions is unbounded, reflecting the

high degree of imprecision inherent in this data set. Furthermore, we here

observe the particular data situation in which the set U ′ is not closed,

that is, the borders at b = 0 are not included (see Section 4.3.1). In the

LIR results for the sample of men in Bulgaria, U ′ is not unbounded, but

large, which is to some extent due to the almost 20% of missing income

values. In the right part of Figure 6.4, we displayed only the middle section

of U ′. Interestingly, in this LIR analysis, we find three LRM regression

lines. These lines can be characterized geometrically by the fact that the

closed bands of width 2 qLRM = 4 around them completely include at

least k = 543 observations. In the present data set, there are only 500

observations bounded with respect to X, therefore, only the band around

a horizontal line can contain at least 543 observations. Hence, each of the

three LRM functions has slope 0.

The results of the LIR analyses do not give a clear answer to the ques-

tion of how an increase in income translates to subjective well-being. How-

ever, the obtained results are more or less in line with current research in

this field, as there is no clear evidence about the direct relationship be-

tween these two variables. Some empirical studies in rich countries found

only very weak positive effects of income on subjective well-being, while
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others even suggested a negative effect at the upper end of the income

distribution (Diener and Biswas-Diener, 2002). These two possibilities are

also admitted by the LIR results for the Finnish data sets, containing

increasing and decreasing functions. In poorer countries, several studies

found a strong positive effect, reflecting the fact that in these countries an

increase in income is more often used to fulfill basic material needs that

are clearly improving the individual living standard (Diener and Biswas-

Diener, 2002). The LIR result for the sample of Bulgarian men admits

more extreme slope and intercept values, while the data of the sample of

Bulgarian women are too imprecise to obtain informative results.

6.2 Analysis of wine quality with generalized SVR

methods

In this section, we analyze a data set collected to study the quality of

Vinho Verde wines from Portugal. The data were obtained from wine

samples that were tested by the official certification entity of the system of

protected designation of origin of the Vinho Verde wines from May 2004 to

February 2007. For each of the included 1 599 red and 4 898 white wines,

11 physicochemical characteristics and an evaluation of the sensory quality

are available. The data set was initially analyzed by Cortez et al. (2009)

and is freely available from the UC Irvine Machine Learning Repository

(Bache and Lichman, 2013). Here, we concentrate on the subsample of red

wines. An important determinant of the taste of red wine is its alcohol

level. Therefore, in this section, we investigate the relationship between

the alcohol content and the taste of red Vinho Verde wine by means of the

generalized SVR methods introduced in Chapter 5 and we compare the

results with those obtained by the robust LIR method.

The sensory quality of the wine is measured by the median evalua-

tion of the wine over at least three test persons assessing the taste of

the wine on a discrete scale ranging from 0 – very bad to 10 – excellent.

Similar to the data on subjective well-being in the previous section, the

discrete quality measurements can be considered as coarse observations of
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an underlying continuous variable taking values in [0, 10]. Therefore, we

base the regression analysis on the imprecise quality data where the dis-

crete values 0, 1, . . . , 9, 10 are replaced by the intervals [0, 0.5], [0.5, 1.5], . . . ,

[8.5, 9.5], [9.5, 10]. As explanatory variable of the regression analysis, we

here consider the alcohol content of the wine. In the given data set, this

quantity is given by measurements of the volume percent of alcohol in

the wine that we assume to be sufficiently accurate. Hence, we analyze

the relationship between the precisely observed alcohol content and the

imprecisely observed sensory quality of the red Vinho Verde wine, which

corresponds to the data situation required for the generalized SVR meth-

ods. The analyzed data set is displayed in the left graph of Figure 6.5,

where X is the alcohol level in percent by volume and Y corresponds to the

sensory quality. Again, all graphs and computations are realized in the sta-

tistical software environment R (R Core Team, 2013), resorting amongst

others to functions provided by the packages kernlab (Karatzoglou et al.,

2004) and quadprog (Turlach and Weingessel, 2013).
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Figure 6.5: Histogram plot of the red wine data set (left, n = 1599) and minimax
function (black line) together with draft of the set of compatible precise SVMs
(right, 1 000 randomly chosen functions). The darker a line segment the more
observations overlap this line segment.

Since the data suggest a positive linear relationship, the linear kernel

function is chosen for the SVR methods. Furthermore, the identity map is

considered as function ψ, which corresponds to considering the expected

value of the (absolute) residual as risk. Finally, the regularization param-
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eter λ is set to 0.0001. The black line in the right graph of Figure 6.5

indicates the regression line obtained by the generalized SVR method of

Utkin and Coolen (2011) when adopting the minimax rule. Moreover, we

consider the set of all standard SVMs (with the same configuration of κ, ψ,

and λ) based on precise data sets that are compatible with the imprecise

data. This set is sketched by the gray lines in the same graph and gives

a first impression of the uncertainty about the relationship of interest as-

sociated with the imprecision of the data. The minimax function and the

compatible SVMs include no decreasing lines. Hence, these results confirm

the surmise of a positive linear relationship between alcohol content and

taste of red Vinho Verde wines.

Now, we consider the LIR method for SVR described in Section 5.4

with the choice of β for which the confidence intervals cover only the max-

imum likelihood estimate of the regularized risk. The associated set of

undominated regression functions is approximated in the way outlined at

the end of Section 5.4. The left graph of Figure 6.6 shows the obtained

results, including increasing and decreasing lines with slopes ranging ap-

proximately from −1.2 to 2. By definition, the LRM function of this LIR

method with the here chosen cutoff point corresponds to the minimax func-

tion displayed above. However, the result obtained by the LIR method for

SVR comprises also decreasing functions. As explained in Section 5.4, the

set of undominated regression functions is in general a superset of the set of

compatible SVMs. Hence, although we here consider only the most plau-

sible regression functions, a decreasing relationship cannot be excluded on

the basis of the likelihood inference underlying the LIR method for SVR.

For comparison, we analyzed the wine quality data set also by applying

the robust LIR method presented in Section 4.1 with p = 1/2. This can

easily be done by means of the linLIR package (Wiencierz, 2013), because

we, in fact, consider a simple linear regression problem here. To make

the results comparable, we furthermore assume ε = 0 and choose β =

0.9999, which implies that the confidence intervals constituting the decision

criterion of the regression problem encompass only the maximum likelihood

estimate of the median of the residuals’ distribution. The results obtained
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Figure 6.6: Drafts of the sets of undominated regression functions resulting from
applying the LIR method for SVR (left, 1 000 randomly chosen functions) and
the robust LIR method (right, 1 000 randomly chosen functions). The black lines
indicate the corresponding LRM functions.

from the robust LIR analysis are displayed in the right graph of Figure 6.6.

The extent of the associated set of undominated regression functions is

visibly larger than the set corresponding to the LIR method for SVR, that

is, steeper functions in both directions are allowed. This might be due

to the penalization involved in SVR and to the fact that the robust LIR

method always leads to very cautious inferences.
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Chapter 7

Conclusion and outlook

In this thesis, the statistical problem of analyzing the relationship between

a response variable and one or more explanatory variables when these

quantities are only imprecisely observed was studied. The goal was to find

a regression method for imprecise data that is general in the sense that it

does not impose restrictive assumptions about the form of the imprecise

observations, about the underlying probability distribution, and about the

shape of the relationship between the variables of interest.

After a review of different approaches proposed in the literature con-

stituting Chapter 2, a new likelihood-based approach to regression with

imprecisely observed variables named LIR was introduced in Chapter 3.

The LIR methodology consists in determining likelihood-based confidence

regions for the loss of the regression problem on the basis of imprecise data

and in regarding the set of all regression functions that are not strictly

dominated as the imprecise result of the regression analysis. Hence, a LIR

analysis usually yields an imprecise result, which can be interpreted as a

confidence set for the unknown regression function. In Chapter 4, a robust

regression method was derived from the general LIR methodology, where

quantiles of the residuals’ distribution are considered as loss. At first,

the formal framework of the robust LIR method was presented in math-

ematical detail and further explained by means of illustrative examples.

Moreover, an exact algorithm to implement this regression method for the
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special case of simple linear regression with interval data was developed

and implemented in an R package. Finally, selected statistical properties

of the robust LIR method were thoroughly investigated. Chapter 5 dealt

with an alternative regression methodology proposed by Utkin and Coolen

(2011) for situations where only the response variable is imprecisely ob-

served. This approach is based on SVR and was discussed in detail, before

an alternative adaptation of SVR was developed by following the LIR ap-

proach, which further generalizes the methods suggested by Utkin and

Coolen (2011). Finally, the discussed regression methods were applied to

investigate two practical questions in the contexts of social sciences and

winemaking, respectively, in Chapter 6. In both cases, the LIR analyses

provided very cautious inferences.

The robust LIR method introduced in Chapter 4 meets all the targets

outlined in the beginning of this thesis. The formal framework of this

regression method encompasses all kinds of imprecise data and of possi-

ble regression functions and it imposes no considerable constraints on the

set of probability measures considered as possible models of the analyzed

situation. The only restriction is the assumption that the imprecise data

contain the unobserved precise values with probability at least 1 − ε, for

some ε ∈ [0, 1/2). Hence, in contrast to most alternative approaches to

analyzing imprecise data, the LIR methodology permits accounting for

coarsening errors and even allows informative coarsening in the nonpara-

metric setting underlying the robust LIR method. Moreover, as found

in Section 4.4, this LIR method is robust in terms of a high breakdown

point and it yields highly reliable results in the sense that the coverage

probability of the resulting set of regression functions seems to be gener-

ally rather high. Despite all these desirable features, the implementation

of the robust LIR method poses a big challenge. The exact algorithm

developed in Section 4.3.1 for the special case of simple linear regression

with interval data, in principle, can be generalized to multiple linear re-

gression. In more general regression problems, however, it is yet to be

investigated whether there is a better implementation of the robust LIR

method than an inner approximation of the set of undominated functions

108



by a random search over the set of considered regression functions, which

can be computationally very demanding.

The regression methods discussed in Chapter 5 generalize standard

SVR methods, whose results can be efficiently computed, even when a

very large space of regression functions is considered as the set of possible

descriptions of the relationship of interest. However, the applicability of

the generalized SVR methods is much more limited compared to the ro-

bust LIR method, because only data situations with imprecisely observed

responses but precisely observed explanatory variables can be considered.

To adapt the generalized SVR methods to imprecisely observed explana-

tory variables appears to be very challenging, because in this case, the

imprecise observations cannot each be identified with a single kernel func-

tion. A possible solution to this problem could be to consider fixed kernel

functions similar to the basis functions at fixed knots considered in spline-

based regression methods. However, such a modification would require a

thorough investigation of its impact on the properties of the SVR estima-

tors. Another possibility to obtain a feasible regression method when the

shape of the analyzed relationship is not restricted could be to develop a

LIR method that directly generalizes a standard regression method based

on splines.

According to the general LIR methodology, the imprecise result of a

LIR analysis consists of all regression functions that are plausible in the

light of the imprecise data and its extent reflects the whole uncertainty

about the relationship of interest. In practice, also prediction is an impor-

tant goal of a regression analysis. Usually, (a region for) the value of the

dependent variable given a future observation of the explanatory variables

is predicted on the basis of a single estimated regression function. Yet, in

the situation considered here, the additional observation of the explanatory

variables is in general set-valued, while the set of undominated functions

contains all plausible descriptions of the relationship between the precise

quantities of interest. How to adapt the standard idea of prediction to this

situation, is one of the fundamental questions that have to be answered,

before it is possible to develop prediction techniques for LIR methods. In
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Cattaneo and Wiencierz (2012), a joint prediction region for a complete

future observation (including response and explanatory variables) was de-

rived in the context of the robust LIR method. The topic of predicting

(a region for) the response variable given an imprecise observation of the

vector of explanatory variables will be addressed in the future.

Furthermore, the second application in Chapter 6 suggested that not

only the robust LIR method but also the LIR method for SVR yields very

reliable results. This is partly due to the fact that in both cases the set of

possible probability distributions is not much restricted. Yet, for statistical

practice, the obtained inferences may be too cautious and there may be

more information about the behavior of the analyzed random quantities

that should be taken into account. Therefore, the impact of stronger

distributional assumptions on the robust LIR method will be investigated

in future research. In addition to this, the possibility of deriving other LIR

methods based on more restrictive probability models will be addressed.

Finally, the LIR methodology permits considering the possibility of

wrong coarsening, even if the variables are in fact precisely observed. As

the only necessary specification of this possible error is an upper bound

to the probability of an observation not containing the correct value, the

LIR methodology could provide a framework for very general measure-

ment error methods. This potential of the LIR methodology is yet to be

investigated.
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Notation

Miscellaneous

|S| cardinality of a set S
2S power set of a set S
S1 ⊂ S2,

S2 ⊃ S1

S1 is a proper subset of the set S2, while S2 is a proper

superset of the set S1

S1 ⊆ S2,

S2 ⊇ S1

S1 is a general subset of the set S2, while S2 is a general

superset of the set S1

S1\S2 set difference, i.e., S1 excluding S1 ∩ S2

IS indicator function of a set S
[c, c] closed and possibly unbounded interval, with c ≤ c and

c, c ∈ R ∪ {−∞,+∞}
(c, c) open bounded interval, with c < c and c, c ∈ R
[c, c), (c, c] bounded intervals whose lower and upper endpoint, re-

spectively, belongs to the interval while the other does

not, with c < c and c, c ∈ R
log natural logarithm

∇ gradient of a function

Iu u-dimensional identity matrix, with u ∈ N
tr trace of a square matrix

wT, MT transpose of a vector w and of a matrix M

E expectation operator
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d number of explanatory variables in X, with d ∈ N
n number of observations in a sample, with n ∈ N
p proportion associated with the p 100% quantile of a prob-

ability distribution, with p ∈ (0, 1)

β cutoff point of the (normalized profile) likelihood function,

with β ∈ (0, 1)

ε upper bound to the probability P (V /∈ V ∗) for the con-

sidered probability models, with ε ∈ [0, 1/2)

Spaces and sets

∅ empty set

N set of positive integers

R set of real numbers

R>0, R≥0 sets of positive and nonnegative real numbers, respec-

tively

R ̸=0 set of real numbers excluding zero

R<0 set of negative real numbers

X observation space of the vector X of explanatory vari-

ables, with X ⊆ Rd, for some d ∈ N
Y observation space of the response variable Y , with Y ⊆ R
V observation space of the joint random vector V = (X,Y )

V∗ observation space of the random set V ∗ describing the

imprecise observation of V , with V∗ ⊆ 2V

F (considered) set of regression functions f : X → R
G domain of some characteristic g of the considered proba-

bility measures, with G ⊆ R
G>β likelihood-based confidence region for the characteristic g,

with G>β = {γ ∈ G : likg(γ) > β}, for some β ∈ (0, 1)

Cf , Cf,>β likelihood-based confidence region for Lf , for some β ∈
(0, 1) and f ∈ F

112



Random variables and realizations

X vector of d explanatory variables, with X ∈ X ⊆ Rd, for

some d ∈ N
Y response variable, with Y ∈ Y ⊆ R
V vector of regression variables V = (X,Y )

V ∗ random set describing the imprecise observation of V

Rf (absolute) residual for some regression function f ∈ F ,

with Rf = |Y − f(X)|
vi (unobserved) realization of V , with i ∈ {1, . . . , n}
Ai realization of V ∗, with i ∈ {1, . . . , n}
rf,i (unobserved) realization of Rf , with i ∈ {1, . . . , n} and

for some f ∈ F
rf,i, rf,i infimal and supremal residuals related to an imprecise ob-

servation V ∗
i = Ai, with i ∈ {1, . . . , n} and for some f ∈ F

Probabilities

P probability distribution of the joint random object (V, V ∗)

PV marginal probability distribution of V

PV ∗ marginal probability distribution of V ∗

P̂V ∗ empirical distribution of an observed sample V ∗
1 = A1,

. . . , V ∗
n = An; when only precise observations are con-

sidered, we denote by P̂V the empirical distribution of

V1 = v1, . . . , Vn = vn

P (considered) set of probability measures P on V × V∗

Pε set of all probability measures on V × V∗ that satisfy

P (V ∈ V ∗) ≥ 1− ε, for some ε ∈ [0, 1/2)

PV (considered) set of marginal probability measures PV on

V (corresponding to probability measures P ∈ P)

PV ∗ (considered) set of marginal probability measures PV ∗ on

V∗ (corresponding to probability measures P ∈ P)

[PV ∗ ] set of all probability distributions P ′
V of the precise

data corresponding to probability measures P ′ ∈ P with

marginal distribution P ′
V ∗ = PV ∗ for the imprecise data
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P>β set of plausible probability measures after the observation

of data, with P>β = {P ∈ P : lik(P ) > β}, for some β ∈
(0, 1); when only precise observations are considered, we

have PV,>β = {PV ∈ PV : likV (PV ) > β}

Functions

f regression function f : X → R
L loss function considered in the regression problem, with

L : F × P → 2R≥0 (possibly multi-valued mapping); de-

fined on F × PV when only precise observations are con-

sidered

Lf function-specific loss function for some f ∈ F , with

Lf (P ) = L(f, P ) for all P ∈ P; defined on PV when

only precise observations are considered

lik (normalized) likelihood function, with lik : P → [0, 1];

when only precise observations are considered, we have

likV : PV → [0, 1]

g characteristic of the probability distributions in P, with

g : P → 2G (possibly multi-valued mapping); defined on

PV when only precise observations are considered

likg (normalized) profile likelihood function for the character-

istic g, with likg : G → [0, 1]

g′ characteristic g only depending on the marginal distribu-

tion of the precise variables expressed as a function on

PV , with g
′(PV ) = g(P ) for all PV ∈ PV

lik∗ (normalized) likelihood function on PV ∗ , defined by

lik∗(PV ∗) = lik(P ) for all PV ∗ ∈ PV ∗

g∗ characteristic g only depending on the marginal distribu-

tion of the precise variables expressed as a function on

PV ∗ , with g∗(PV ∗) =
⋃

PV ∈[PV ∗ ] g
′(PV ) for all PV ∗ ∈ PV ∗

lik∗g∗ (normalized) profile likelihood function associated with g∗
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Technicalities of the robust LIR method

Qf p-quantile of the residual’s distribution considered as loss,

for some p ∈ (0, 1) and f ∈ F
Qf domain of the p-quantile of the residual, for some p ∈

(0, 1) and f ∈ F , with Qf ⊆ R≥0

likQf
profile likelihood function for the p-quantile of the resid-

ual’s distribution, with likQf
: Qf → [0, 1], for some

p ∈ (0, 1) and f ∈ F
Bf,q closed band of vertical bandwidth 2q around a function

f , for some q ∈ R≥0 and f ∈ F
Bf,q open band of vertical bandwidth 2q around a function f ,

for some q ∈ R≥0 and f ∈ F
kf number of imprecise data intersecting Bf,q, for some q ∈

R≥0 and f ∈ F
kf number of imprecise data completely included in Bf,q, for

some q ∈ R≥0 and f ∈ F
h function introduced to express likQf

in a simpler way,

with h : [0, 1]× (0, 1) → (0, 1]

i, i integers introduced to express the points of discontinuity

of likQf
, for some f ∈ F

k, k integers introduced to express Cf , for some f ∈ F
qLRM smallest upper endpoint of the confidence regions Cf over

all f ∈ F
fLRM regression function providing qLRM , if it is unique

U set of all undominated regression functions, with U ⊆ F
T set of all LQS functions for the k/n-quantile based on pre-

cise data sets that are compatible with the imprecise data

U ′ set of parameters associated with the undominated func-

tions in the case of simple linear regression, with U ′ ⊆ R2
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Technicalities of the exact algorithm for LIR

D set of indices of the bounded data, with D ⊆ {1, . . . , n}
B set of candidate slopes for the LRM functions, with B ⊆ R
zb,i, zb,i interval endpoints of the slope-adjusted imprecise data

[zb,i, zb,i] ⊆ R, for some i ∈ {1, . . . , n}
zb,[j] the k-th smallest value among those zb,i for which the

corresponding zb,i ≥ zb,(j), for some j ∈ {1, . . . , n−k+1}
and b ∈ R

I set of indices introduced to define Ab, with I ⊆ {1, . . . , n}
Ab set of intercept values of undominated functions with

slope b, for some b ∈ R
B̃ set of all b ∈ R at which two functions b 7→ zb,i − qLRM

and b 7→ zb,j−qLRM or two functions b 7→ zb,i+qLRM and

b 7→ zb,j + qLRM intersect, for some (i, j) ∈ {1, . . . , n}2

with i ̸= j

B̌ set of all b ∈ R at which the functions b 7→ zb,i−qLRM and

b 7→ zb,j + qLRM intersect, for some (i, j) ∈ {1, . . . , n}2

BU ′ set of all relevant slopes for the precise description of U ′

η small number between zero and min{|b| : b ∈ B̃ ∪ B̌ and

b ̸= 0} used in the definition of BU ′ , with η > 0

ω arbitrary positive number used in the definition of BU ′ ,

with ω > 0

Technicalities of the investigation of the statistical properties

θ coefficients vector in standard linear regression, with θ ∈
Rd+1

Gf graph of a function f ∈ F , with Gf = {(x, y) ∈ X × R :

y = f(x)}
Ũ set of all functions f ∈ F whose graphs intersect V, with

Ũ = {f ∈ F : Gf ∩ V ̸= ∅}
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Technicalities of SVR

ψ function introduced to express different loss functions of

the regression problem, with ψ : R≥0 → R≥0

EPV
risk functional considered as loss function, assigning to

each f ∈ F the expectation E(ψ(Rf )) under PV , with

EPV
: F → R≥0, for some PV ∈ PV and ψ

κ kernel function, with κ : X × X → R≥0

⟨·, ·⟩H scalar product in an RKHS H, with ⟨f, κ(·, x)⟩H = f(x),

for all f ∈ H, where κ is the reproducing kernel of H
∥·∥H norm in an RKHS H induced by its scalar product, with

∥f∥2H = ⟨f, f⟩H, for all f ∈ H
λ regularization parameter, with λ > 0

EPV ,λ regularized risk functional considered as loss function in

the estimation problem, with EPV ,λ : F → R≥0, f 7→
EPV

(f) + λ ∥f∥2F , for some PV ∈ PV and λ > 0

fP̂V ,λ SVM minimizing EP̂V ,λ given a sample of precise obser-

vations V1 = v1, . . . , Vn = vn, for some λ > 0

α vector of weights in the linear combination of kernel func-

tions constituting fP̂V ,λ, with α ∈ Rn

Fn subset of the considered RKHS of functions, containing

all linear combinations of kernel functions associated with

the observed X1 = x1, . . . , Xn = xn, with Fn ⊂ F
D design matrix of the standard linear regression model for

an observed sample V1 = v1, . . . , Vn = vn, with i-th row

given by (1, xi,1, . . . , xi,d), for all i ∈ {1, . . . , n}
τ2 error variance in the standard linear regression model,

with τ2 ∈ R≥0

θ̂LS LS estimator for the coefficients vector in standard linear

regression, with θ̂LS ∈ Rd+1

θ̂R,λ Ridge estimator for the coefficients vector in standard lin-

ear regression, with θ̂R,λ ∈ Rd+1
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Technicalities of generalized SVR

EPV ∗ , EPV ∗lower and upper risk functional, assigning to each f ∈ F
the minimal and maximal risk, respectively, over all P ′

V ∈
[PV ∗ ], for some PV ∗ ∈ PV ∗

Rf , Rf random quantities describing the lower and upper end-

point, respectively, of the interval-valued residual associ-

ated with V ∗, for some f ∈ F
EP̂V ∗ ,λ,

EP̂V ∗ ,λ

lower and upper regularized risk functional associated

with the empirical distribution P̂V ∗ of the imprecise data,

for some λ > 0

Technicalities of the LIR method for SVR

Ef risk functional considered as function-specific loss func-

tion, for each f ∈ F defined by Ef (P ) = EPV
(f), for all

P ∈ P
E′

f Ef expressed as a function on PV , with E
′
f (PV ) = Ef (P ),

for all PV ∈ PV and some f ∈ F
E∗

f imprecise version of Ef on PV ∗ , for each f ∈ F defined

by E∗
f (PV ∗) =

⋃
PV ∈[PV ∗ ]E

′
f (PV ), for all PV ∗ ∈ PV ∗

likEf
(normalized) profile likelihood function for Ef , for some

f ∈ F
Ef,>β likelihood-based confidence region for Ef , for some f ∈ F

and β ∈ (0, 1)

Ef,λ,>β likelihood-based confidence region for the regularized risk,

for some f ∈ F , λ > 0, and β ∈ (0, 1)
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