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Abstract

We develop a method for finding all rational points of bounded height on a variety

defined over a number field K. Given a projective variety V we find a prime p

of good reduction for V with certain properties and find all points on the reduced

curve V̄ (Fp). For each point P̄ ∈ V̄ (Fp) we may define lattices of lifts of P̄ : these

lattices contain all points which are congruent to P̄ mod p satisfying the defining

polynomials of V modulo a power of p. Short vectors in these lattices are possible

representatives for points of bounded height on the original variety V (K). We make

explicit the relationship between the length of a vector and the height of a point

in this setting. We will discuss methods for finding points in these lattices and

how they may be used to find points of V (K), including a method involving lattice

reduction over number fields.

The method is implemented in Sage and examples are included in this thesis.
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Chapter 1

Introduction

Let V be a variety defined over a number field K. A basic problem of explicit arith-

metic geometry is to determine the set V (K) of K-rational points of V . Common

variants of this question include determining the set of all points of V (K) of height

up to some bound, proving that no such points exist or finding a single point of

V (K). For example, in performing a descent on an elliptic curve E/K one con-

structs homogeneous spaces C/K which are smooth curves of genus one; one wishes

to find a single point of C(K).

A family of methods for finding rational points if the variety is a curve C
over Q have been suggested, more or less independently, by several people. In these

methods one determines a lattice (a free Z-module of rank N + 1, if C ⊂ PN (Q)) of

points that are “near” C. Short vectors in the lattice correspond to points near or on

C. These may be found by enumeration of lattice vectors (such as the algorithm of

Fieker and Pohst [14]) or via lattice reduction (such as LLL-reduction [21]). In the

work of Elkies [13] this lattice contains rational points that are near the curve under

the usual Euclidean norm. The idea of constructing lattices of points that are p-

adically near C for some prime p has been suggested by Heath-Brown [17] and further

developed and implemented by Watkins [32], Womack [33] and Long [22] when C is

an intersection of two quadrics in P3. Roberts developed and implemented this for

quadric intersections defined over function fields Fq(t) in [26].

The reports by Cremona and Roberts [11] and Cremona, Roberts and the

author [10] contain the most comprehensive accounts of such methods so far. They

describe a method for finding rational points on any smooth, irreducible curve in

P2 or P3 defined over Q or Fq(t). The idea of extending such a method to curves

defined over number fields is mentioned in [10].

A version of this method for varieties defined over Q has been implemented
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in Magma [4] by Mark Watkins as PointSearch(S,H): given a scheme S defined over

Q in either affine or projective space, it will find rational points of height less than

H using a p-adic method. It provides a flag to choose whether to find all such points

or to stop after only one point has been found. The PointsQI function finds rational

points of bounded height in the special case of quadric intersections defined over

Q. There is no published work explaining or justifying these methods, except for a

brief online note by Watkins [32].

In this thesis we define several related lattice-based methods for finding ra-

tional points on varieties defined over a number field K. We deal with important

complications that do not arise in the case of varieties defined over Q. We give a full

explanation and justification of how to construct OK-lattices of lifts for varieties of

any dimension > 1.

Let V ⊂ PN (K) be a variety defined over a number field K by homogeneous

polynomials in K[X0, . . . , XN ]. By reducing these polynomials modulo a suitable

prime p and finding points on the resulting reduced variety V̄ we obtain a finite

list of reduced points that comprise V̄ (Fp). Each point of V (K) reduces to one

such reduced point P̄ modulo p. For each P̄ we may construct a sequence (Li)i>1

of lattices of lifts: OK-modules inside ON+1
K containing all vectors x such that

x ≡ P̄ mod p and F (x) ≡ 0 mod pi. We use Hensel lifting to refine the points to

solutions modulo higher powers of p. Each K-rational point of V can be represented

by a vector in Li for some reduced point P̄ . Our aim is to find all rational points

on V with height up to some bound. After fixing a lattice of lifts Li, points of small

height on V reducing to P̄ mod p are represented by short vectors in Li. We find

short vectors either by lattice enumeration or by using a method involving lattice

reduction (described by Cremona and Roberts in [11]) which reduces the rank of the

lattice. This reduction in the rank of the lattice reduces our search to a subvariety

of V which will usually have smaller dimension. In the case where V is a curve, this

reduction of rank means that we may find points of small height on V by solving a

system of polynomials that defines a variety of dimension 0.

We begin in Chapter 2 by collecting some basic information about number

fields and about varieties which we will need in later chapters. In Chapter 3 we

recall the definition of height for a projective point and link it to a notion of length

for vectors in Kn. This is one part in which our situation is quite different from the

case of varieties over Q since we may have infinitely many units in OK—these will

affect the length of a vector. A potentially useful consequence of this work is that

we may use it, combined with a lattice enumeration method (such as that explained

in Chapter 7), to find all points of PN (K) with height up to some bound.
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To reduce the variety V modulo a prime p we first need to find a suitable p.

The difference here from the rational case is that not every prime ideal is principal.

In Chapter 4 we explain why we choose to work with principal primes, describe

some other attributes of the primes with which we prefer to work and explain an

algorithm for constructing them.

Chapter 5 explains how to systematically construct suitable p-adic lifts of a

point P̄ on a reduced variety V̄ . We begin with the case of curves before generalising

to varieties of any dimension. This is an important improvement on the descriptions

of [32], [11] and [10], as we describe this procedure to arbitrary p-adic precision. We

achieve this by ignoring issues of linear dependence and by generalising the linear

forms defined by gradient vectors and quadratic forms defined by Hessian matrices

to higher degrees.

We explain what is meant by an OK-lattice in Chapter 6 and we explain how

to use the set of lifts defined in Chapter 5 to define an OK-lattice of lifts. We recall

the concept of lattice index for OK-lattices, show that the index of our lattice of

lifts Li is a power of p and find bounds for its exponent.

In Chapter 7 we convert anOK-lattice to a Z-lattice by restricting scalars and

find points using existing lattice enumeration techniques. This means an increase

in rank: an OK-lattice of rank n becomes a Z-lattice of rank nd where d is the

degree of K over Q. The Gram matrix by which we specify a Z-lattice has entries

in R represented by floating-point numbers. We give the details about precision in

floating-point arithmetic that we need and calculate the appropriate adjustment in

length needed to compensate for the fact that the Gram matrix is not given exactly.

In [11] Cremona and Roberts explain how, by constructing a lattice of lifts

with large index and performing LLL reduction on a lattice basis, we can reduce

our search for points of bounded height to a sublattice of our lattice of lifts with

smaller rank. In Chapter 8 we survey the existing forms of lattice reduction for

OK-lattices and explain Cremona and Roberts’ idea. We show that, with the right

kind of lattice reduction, one can apply such a technique over imaginary quadratic

fields and we demonstrate a problem with this for other number fields. We cannot

conclude whether or not this is possible for number fields in general.

By discussing what kind of lattice reduction is needed we see that, unfortu-

nately, the hope we expressed in [10] that we could use Fieker and Stehlé’s lattice

reduction [15] for such a technique was wrong. However, we do show that the lat-

tice reduction described by Napias in [23] (and probably that of Fieker and Pohst

from [14]) can be used for number fields whose ring of integers is a euclidean ring.

Although we conclude that we only know a handful of number fields over which we
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can use lattice reduction in this way, the information provided in this chapter could

be a starting-point for future work on OK-lattice reduction that would allow the

technique of reducing the rank of the lattice to be used in more generality.

In Chapter 9 we gather material from the rest of the thesis to describe al-

gorithms for finding points on varieties. We give some examples of points found

on curves over number fields using one of these methods. Some of the algorithms

described in this thesis have been implemented in Sage [30] and we hope that after

some further work these methods will be included in future releases of Sage.
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Chapter 2

Varieties over Number Fields

None of the material in this chapter is new, but it serves to remind us of important

basic results and fix our notation. Much of this material may be found in [5], [24]

and [28].

2.1 Number Fields

Let K be a number field of degree d and let OK be the ring of integers of K.

Definition 1. We say that α1, . . . , αd ∈ OK form an integral basis for K if

K = ⊕di=1Qαi and OK = ⊕di=1Zαi.

Theorem 2.1 (Theorem 4.1.8 of [5]). Let K be a number field of degree d.

1. There exists an α ∈ K such that

K = Q(α).

Such an α is called a primitive element and its minimal polynomial over Q
is irreducible of degree d.

2. There exist exactly d field embeddings of K into C. They are the maps σj :

α 7→ θj where the θj ∈ C are the roots of the minimal polynomial of α. These

embeddings are Q-linear.

Definition 2. The signature of K is a pair (r1, r2) where r1 is the number of

real embeddings of K whose images lie in R and 2r2 is the number of complex

embeddings whose images are not contained in R.
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The 2r2 complex embeddings come in pairs: if σj is a complex embedding

sending α to θj then there is an embedding σ̄j that sends α to θ̄j . We will adopt the

convention of numbering the real embeddings of K by σ1, . . . , σr1 and the complex

embeddings by σr1+1, . . . , σr1+2r2 so that σr1+k = σ̄r1+r2+k.

Definition 3. Let x ∈ K. Then the (field) norm of x is given by

N (x) =

d∏
j=1

|σj(x)|.

Note that the norm is always non-negative.

2.1.1 Ideals and norms

We use the word ideal to refer to fractional ideals of OK and reserve the term

integral ideal for those ideals contained in OK . Every ideal is an OK-module of

rank 1. An ideal of OK is principal if it is generated as an OK-module by a single

element a ∈ K; such an ideal aOK may also be written 〈a〉.

Definition 4. An integral ideal p of OK is called a prime ideal if OK/p is an

integral domain.

Definition 5. The norm of an integral ideal a of OK is the cardinality of the finite

ring OK/a. It is denoted N (a). We extend this definition to fractional ideals by

multiplicativity: if c = ab−1 where a and b are integral ideals, then

N (c) =
N (a)

N (b)
.

The norm of a fractional ideal is a rational number, not necessarily an integer.

Lemma 2.2 (Proposition 4.6.15 of [5]). Let x ∈ K. Then

N (x) = N (〈x〉).

Definition 6. We say that two ideals a, b of OK are equivalent if there exists

a ∈ K∗ such that

a = 〈a〉b.

The set of equivalence classes of ideals of OK form a group called the class group

of K that is denoted by Cl(K).
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The class of principal ideals is the identity class of Cl(K). If the class group

Cl(K) is trivial then all ideals of OK are principal and OK is a principal ideal

domain.

Definition 7. Let α1, . . . , αd be an integral basis for K. Then

D(K) = (det(σj(αi))ij)
2

is a non-zero integer called the discriminant of K.

Proposition 2.3 (Theorem 7.1.2 of [29]). Every class of Cl(K) contains an integral

ideal a of OK satisfying

N (a) 6
√
|D(K)|

(
4

π

)r2 d!

dd
.

The quantity
√
|D(K)|

(
4
π

)r2 d!
dd

is called the Minkowski bound for K and it

depends only on the discriminant and signature of K.

Corollary 2.4. The class group of K is finite.

Proof. There are only finitely many ideals with a given norm, so this follows from

Proposition 2.3.

The cardinality of the class group is called the class number of K and is given by

hk = |Cl(K)|.

2.1.2 Primes, valuations and places

Theorem 2.5 (Theorem 4.6.14 of [5]). Every fractional ideal a of OK can be written

in a unique way as

a =
∏
p

pvp(a),

where the product runs over a finite set of prime ideals and each vp(a) is in Z. The

ideal a is an integral ideal if and only if all vp(a) are non-negative.

The quantity vp(a) is the valuation of a at p. We can define valuations

on K by considering the valuation of a principal ideal: if x ∈ K, vp(x) = vp(〈x〉).
Each prime ideal p defines a non-Archimedean absolute value |.|p on K which is

related to the valuation by |x|p = N (p)−vp(x). The embeddings σ1, . . . , σd define the

Archimedean absolute values of K, given by |σj(x)|.
The equivalence classes of absolute values on K are called the places of K.

The finite places are defined by the non-Archimedean absolute values associated to
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the prime ideals of K and the infinite places are given by the Archimedean absolute

values associated to the embeddings of K into R and C with σr1+j being identified

with σr1+r2+j because |σr1+j(x)| = |σr1+r2+j(x)| for all x ∈ K and 1 6 j 6 r2.

Therefore there are r1 +r2 infinite places of K. The set of all places of K is denoted

MK ; M∞K denotes the infinite places and Mf
K , the finite places. We associate a

number nj to each infinite place as follows:

nj =

1 if σj is real

2 if σj is complex.

It will sometimes be convenient to consider each Archimedean absolute value as

being associated to an infinite place of K rather than to an embedding. With this

in mind, we define |x|j = |σj(x)|nj for each 1 6 j 6 r1+r2. For complex embeddings,

this is a slight abuse of notation as |.|j is not an absolute value (it does not satisfy

the triangle inequality) but this will not be of any importance to us. The nj is

called the local degree at this infinite place. There is a corresponding definition of

local degree for finite places, but our definition of |.|p has already been normalised

to take this into account. We will change between using |σj(x)| and |x|j dependent

on context.

Proposition 2.6 (Product Formula, Theorem 2 of IV.4 of [3]). For any x ∈ K∗ we

have ∏
v∈MK

|x|v = 1;

therefore ∑
v∈MK

log(|x|v) = 0,

with the normalisation that |x|j = |σj(x)|nj for each infinite place of MK .

2.1.3 Decomposition of primes

This material can be found in Section I.8 of [24]. Let L/K be an extension of number

fields. For any prime q of L there exists a prime ideal of K such that one has the

relation

q ∩ OK = p.
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We say that q is a prime above p and that p lies below q. If p is a prime of K then

p decomposes in L: there exist positive integers ei such that

pOL =

g∏
i=1

qeii ,

where qi are all of the prime ideals of L above p.

Definition 8. The integer ei is called the ramification index of p at qi. The

degree

fi = [OL/qi : OK/p]

of the extension of residue fields is called the degree of qi. (This is sometimes called

the inertia degree or residual degree).

For any extension of number fields, ramification indices and degrees satisfy the

following formula:
g∑
i=1

eifi = d.

Let pi be a prime of K which lies above a rational prime p of Q. Then the norm of

pi satisfies

N (pi) = pfi .

2.1.4 p-adic completion

Definition 9. Let p be a prime ideal of K. We define Kp to be the completion of

K with respect to the metric induced on K by the absolute value defined by p. Kp

is given by the set of p-adically Cauchy sequences in K, up to equivalence. Two

Cauchy sequences are equivalent if their difference converges to 0.

The ring of p-adic integers is denoted by OKp : it is the set of α ∈ Kp

such that |α|p 6 1. We may also use a more explicit representation for the p-adics.

Every p-adic integer can be uniquely represented by a sequence (xn)∞n=1 such that

xn ∈ OK is chosen to be in a fixed set of representatives of OK/pn and

xn ≡ xn+1 mod pn

for every n > 1.

By considering a p-adic integer x ∈ OKp modulo pm for some m > 0 we can

truncate our representation of x to have only m terms. Such a truncation is an

element of OK that is congruent to x modulo pm.
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2.1.5 Units

Let O∗K denote the group of units of OK .

Lemma 2.7. If u ∈ O∗K then N (u) = 1.

Proof. If u ∈ O∗K then 〈u〉 = OK , so the result follows from the definition of ideal

norm.

Theorem 2.8 (Dirichlet’s Unit Theorem, Theorem 4.9.5 of [5]). Let (r1, r2) be the

signature of a number field K. Then

O∗K ' µ(K)× Zr1+r2−1,

where µ(K) is the subgroup of roots of unity in K.

We may choose a set of units ε1, . . . , εr1+r2−1 so that every unit x ∈ O∗K may

be written as

x = ζ

r1+r2−1∏
k=1

εtkk ,

where tk ∈ Z and ζ is a root of unity in K. We call the set {εk}r1+r2−1
k=1 a system of

fundamental units for K and say that r1 + r2 − 1 is the unit rank of K.

2.2 Projective space and varieties

We denote by PN (K) the projective space of dimension N over K.

Definition 10. Let P ∈ PN (K). We say that (x0, . . . , xN ) ∈ KN+1 is a represen-

tative of P if P = [x0 : . . . : xN ].

We note that such a representative for P is not unique: if x represents P

and λ ∈ K∗ then λx also represents P . If the ith coordinate of a representative of

P is zero then the ith coordinate is zero in all representatives of P . Every P has a

representative (in fact, infinitely many) that is in ON+1
K and in this thesis we will

always use such integral representatives.

Let K̄ be the algebraic closure of K and let f be a homogeneous polynomial

in K̄[X0, . . . XN ]. Although it does not make sense in general to evaluate f at a

projective point P (as such a value will be affected by scaling) the set of points

P ∈ PN (K̄) such that f(P ) = 0 is well defined because of the homogeneity of f .
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Definition 11. Let F = (F1, . . . , Fm) be a tuple of homogeneous polynomials in

K̄[X0, . . . , XN ]. Then the projective variety V defined by F is

V =
{
P ∈ PN (K̄)

∣∣ Fi(P ) = 0 for all Fi ∈ F
}
.

To a variety V we may associate an ideal I(V ) ⊂ K̄[X0, . . . , XN ] consisting

of all polynomials that vanish at every point of V .

Such an ideal is finitely generated so we may fix a set of homogeneous polyno-

mials {F1, . . . , Fm} that generate I(V ) to define a variety V . We say that a variety

is defined over K if there exists a set of polynomials defining V that are all in

K[X0, . . . , XN ]. We will assume from now on that all of our varieties are defined over

K. We may assume, by scaling, that the polynomials F1, . . . , FN ∈ OK [X0, . . . , XN ].

Definition 12. A variety V is geometrically irreducible if I(V ) is a prime ideal

in K̄[X0, . . . , XN ].

Definition 13. The set of K-rational points of V is the set

V (K) =
{
P ∈ PN (K)

∣∣ Fi(P ) = 0 for all Fi ∈ F
}
.

We will refer to them as rational points as the number field K will be fixed for

each variety.

The aim of this thesis will be to develop algorithms for finding rational points

on a variety V defined over K.

Definition 14. The coordinate ring of V is the polynomial ring given by K̄(V ) =
K̄[X0,...,Xn]

I(V ) . The dimension of V is the transcendence degree of K̄(V ) over K̄.

A variety in PN is defined by at least N−dim(V ) homogeneous polynomials.

The word curve is used for a variety of dimension one.

Definition 15. We say that a variety V is smooth or non-singular at P ∈ V if

the Jacobian matrix

∇F (x) =

(
∂Fi
∂Xj

(x)

)
ij

has rank N − dimV when x is any representative for P . If V is smooth at all

P ∈ V we say that V is smooth. A point of a variety which is not smooth is called

singular.

We will assume throughout that varieties we are dealing with are projective,

smooth and geometrically irreducible. We will always define a variety using a specific

tuple of polynomials F ⊂ OK [X0, . . . , XN ].
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Let p be a prime ideal ofK. We may reduce the coefficients of the polynomials

F modulo p to obtain a new variety, defined by polynomials F̄1, . . . , F̄m over Fp.

Definition 16. A prime ideal p of K is a prime of good reduction or simply

a good prime if the variety V̄ defined by the reduced polynomials F̄ is smooth

of the same dimension as V and the polynomial ideal defined by F̄ is prime in

Fp[X0, . . . , XN ].

Strictly speaking, this is a property of the polynomials F rather than of V

itself but this definition will suffice for our purposes as we will always fix a tuple of

defining polynomials F for our variety. We say that p is a bad prime if it is not a

good prime for V .

Definition 17. Let x = (x0, . . . , xN ) ∈ KN+1. Then the content ideal of x is the

ideal

I(x) = 〈x0, . . . , xN 〉.

The content ideal I(x) is integral if and only if x ∈ ON+1
K .

Lemma 2.9. Let P ∈ PN (K). Then I(x) lies in the same ideal class for every

representative x of P .

Proof. Let x ∈ KN+1 be a representative for P with content ideal 〈x0, . . . , xN 〉.
Then every representative of P is of the form λx for some λ ∈ K∗ and

〈λx0, . . . , λxN 〉 = 〈λ〉〈x0, . . . , xN 〉.

Definition 18. Let a be an ideal of K. We say that x ∈ ON+1
K is a-primitive if

I(x) is coprime to a.

We have now introduced the basic concepts of number theory and geometry

that we will use in this thesis. Our overall aim is to describe methods for finding

rational points on varieties from their representatives in certain lattices contained

in ON+1
K . In the next chapter we will describe the concepts of height for a point

of P ∈ PN (K) and length for a vector in ON+1
K , and relate the length of some

representative of P to the height of P .
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Chapter 3

Height and length

It is well known that the number of points of projective space PN (K) whose height

is at most a given bound BH is finite. It is the aim of this chapter to find a BL > 0

so that every point in PN (K) with height at most BH is represented by a vector of

ON+1
K of length at most BL. This reduces the problem of finding points of bounded

height on a projective variety V ⊆ PN (K) to the checking of points in a finite,

explicitly defined subset of ON+1
K . Naively, one could then simply check every point

of ON+1
K with length less than BL. We will construct lattices later in this thesis to

significantly reduce the quantity of points to be checked.

In this chapter we will explain what we mean by height and length in this

context and link them to construct a suitable length bound BL. We use standard

definitions for height, T2 and the logarithmic map that can be found in [28], [15]

and [24] respectively.

3.1 Heights

Let P ∈ PN (K) and let x ∈ KN+1 be a representative for P . We recall that a

representative for P is not unique. In this chapter we will prove the existence of

certain short representatives in ON+1
K for a point P of height less than BH .

Definition 19. Let P be represented by x = (x0, . . . , xN ). Then the logarithmic

height of P is defined to be:

H(P ) = H([x0 : · · · : xN ]) =
∑
v∈MK

max
i

log |xi|v.

We will use the convention that log(0) = −∞ if a coordinate xi of x is equal

to 0, but note that each term in the sum must be finite as no representative for a
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projective point may have all of its coordinates equal to 0.

Lemma 3.1. The logarithmic height of P does not depend on the representative

(x0, . . . , xN ) of P .

Proof. Let x and λx be two representatives for P . Then

H([λx0 : · · · : λxN ]) =
∑
v∈MK

max
i

log |λxi|v

=
∑
v∈MK

max
i

log(|λ|v|xi|v)

=
∑
v∈MK

max
i

(
log(|λ|v) + log(|xi|v)

)
=
∑
v∈MK

log(|λ|v) +
∑
v∈MK

max
i

log(|xi|v)

=
∑
v∈MK

log(|λ|v) +H([x0 : · · · : xN ]).

By the product formula (Proposition 2.6)
∑

v∈MK
log(|λ|v) = 0, so the height of P

does not depend on the representative used to calculate it.

We may split up the sum in the formulation of the height to consider the

finite and infinite places of K separately. We recall that the set of finite places Mf
K

of K is in one-to-one correspondence with prime ideals of K. The set of infinite

places M∞K of K is in correspondence with embeddings σj of K into R or C with

local degree nj . We have

H(P ) =
∑

v∈M∞K

max
i

log |xi|v +
∑
v∈Mf

K

max
i

log |xi|v

=

r1+r2∑
j=1

nj max
i
{log |σj(xi)|}+

∑
p

max
i
{log |xi|p},

where p ranges over all prime ideals of K.

Although the height of P does not depend on the representative used, the

individual terms in the sum do. If x is a representative for P we may define

H∞(x) =

r1+r2∑
j=1

nj max
i
{log |σj(xi)|},

and

Hf (x) =
∑
p

max
i
{log |xi|p},
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the infinite and finite height of x. H∞(x) and Hf (x) do vary as x varies amongst

representatives for P but they always satisfy

H(P ) = H∞(x) +Hf (x).

Given a point x = (x0, . . . , xN ) ∈ KN+1, we have the following important relation-

ship between the content ideal I(x) and the finite height Hf (x):

Hf (x0, . . . , xN ) =
∑
p

max
i
{log |xi|p}

= log

(∏
p

max
i
{|xi|p}

)

= log

(∏
p

max
i

{
N (p)−vp(xi)

})

= − log

(∏
p

min
i

{
N (p)vp(xi)

})
= − logN (I(x)).

3.1.1 Ideal class of a projective point

Recall from Lemma 2.9 that if P ∈ PN (K) then the content ideals of its represen-

tatives must all lie in the same ideal class. Denote this class by c(P ).

Let us fix A to be a set of integral ideals, one in each class of Cl(K), such

that each ideal in A has minimal norm amongst integral ideals in its class. Then

|A| = |Cl(K)| = hK < ∞. We will denote the maximum norm attained by an

ideal of A by NK = maxa∈AN (a). By the Minkowski bound we know that NK 6√
|D(K)|

(
4
π

)r2 d!
dd

. It is clear that NK is an invariant of the field K.

Each projective point P has a representative x ∈ ON+1
K such that I(x) ∈ A;

we define the ideal of P to be I(P ) := I(x). If x is a representative for P such

that I(x) = I(P ) then N (I(x)) is minimal amongst integral representatives for P

and Hf (x) is maximal amongst integral representatives for P . Such a representative

satisfies 1 6 N (I(x)) 6 NK and therefore

− log(NK) 6 Hf (x) 6 0.

The ideal 〈1〉 = OK will always be in A, as the representative of the trivial class of

Cl(K). If the class number hK = 1 then NK = 1 and in this case we can always

choose x to be a primitive representative for P : Hf (x) = 0 for all such x. All of this
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leads us to be able to relate the height of P to the infinite height of a representative.

Proposition 3.2. Let P ∈ PN (K). Then there exists a representative x ∈ ON+1
K of

P such that

H∞(x) 6 H(P ) + log(NK).

Proof. Choose x to be a representative of P such that I(x) ∈ A and therefore 0 <

N (I(x)) 6 NK . The finite height of x is Hf (x) = − logN (I(x)), so − log(NK) 6

Hf (x). The finite and infinite heights of a representative sum to the height of the

point, so

H∞(x) = H(P )−Hf (x) 6 H(P ) + log(NK).

For every x ∈ ON+1
K the finite height satisfies Hf (x) 6 0. By choosing an

integral representative whose content ideal has the smallest possible norm, we are

choosing x ∈ ON+1
K so that Hf (x) is maximal. For such an x, H∞(x) is minimised

amongst integral representatives of P . This is a benefit as H∞(x) is linked to the

length of x; minimising H∞(x) is a step towards choosing an integral representative

with short length. We wish to work with integral representatives as ON+1
K has a

lattice structure: in particular there exists a vector of shortest length for any subset

of ON+1
K .

3.2 Length

We may associate to a number field K the following bilinear form. For x, y ∈ K
define

T2(x, y) =
d∑
j=1

σj(x)σ̄j(y) =

r1+r2∑
j=1

njσj(x)σ̄j(y),

and define the T2-norm of x to be ‖x‖ =
√
T2(x, x). We note that our two defi-

nitions of T2 above are equivalent; we will use each of them, depending on whether

it is more convenient to consider places (with multiplicities) or embeddings of K.

Let KR be defined from K by extension of scalars to R on the Q-vector space K;

K ⊗Q R ∼= Rd. We may extend the definitions of σj , T2 and ‖.‖ to KR by linearity

over R.

We can associate KR to another, isomorphic Euclidean space. Let σ be the
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map given by

KR
σ−→ Rr1 × Cr2

x 7→ (σ1(x), . . . , σr1+r2(x)).

This fixes an R-linear isomorphism of vector spaces over R from KR to Rr1 × Cr2 .

Then the T2-norm on KR is given by the Hermitian inner product on Rr1×Cr2 given

by the diagonal matrix D with entries Djj = nj . Any ideal I ⊂ K is mapped to a

lattice in Rr1 × Cr2 as σ respects the Z-module structure.

We may also use T2 to measure vector length. For x, y ∈ Kn
R we abuse

notation to define T2(x, y) =
∑n

i=1 T2(xi, yi) and to let ‖x‖ =
√
T2(x, x). This is

not truly a norm on Kn or Kn
R because it is sub-multiplicative: if λ ∈ KR then

‖λx‖ 6 ‖λ‖‖x‖, but we will also refer to this ‖.‖ as the T2-norm on Kn and KR
n.

We may extend the σ map to vectors. Applying σ : Kn
R → (Rr1×Cr2)n gives

an n× (r1 + r2) matrix:

σ(x) = (σj(xi))ij ,

and we may interpret the square of the T2-norm of x as a weighted sum of the

squares of sizes of entries of the matrix σ(x):

‖x‖2 =
∑
i,j

nj |(σ(x))ij |2 =
∑
i,j

nj |σj(xi)|2.

3.3 Logarithmic maps

In this section we will introduce the logarithmic map l : K∗ → Rr1+r2 and a variant,

l̂ : (K∗)n → Rr1+r2 . l encodes information about about the size of the image of an

element of K under each of the embeddings of K into R or C.

We define the logarithmic map l : K∗ → Rr1+r2 as follows:

l(x) = (n1 log |σ1(x)|, . . . , nr1+r2 log |σr1+r2(x)|).

This map is sometimes referred to in the literature as the “logarithmic embedding”

but it is worth noting that this is not an embedding but a homomorphism, with the

roots of unity in K∗ forming the kernel. We extend the definition of l to vectors in

(K∗)n, with image contained in the matrix space Rn×(r1+r2). We note that l cannot
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apply to vectors with a zero entry.

l :(K∗)n −→ Rn×(r1+r2)

(x1, . . . , xn) 7→


l11(x) · · · l1(r1+r2)(x)

...
. . .

...

ln1(x) · · · ln(r1+r2)(x)

 ,

where

lij(x) = nj log |σj(xi)|.

We also define a related map l̂ : (K∗)n → Rr1+r2 given by

l̂(x) =

(
max
i
li1(x), . . . ,max

i
li(r1+r2)(x)

)
,

and denote the jth entry of l̂(x) by l̂j(x):

l̂j(x) = max
i
lij(x).

For any x ∈ (K∗)n, it is clear that

lij(x) 6 l̂j(x) and

n∑
i=1

lij(x) 6 nl̂j(x).

The map l̂ has been constructed to have the following useful property. If x is a vector

in (K∗)n, we can link the image of x under the logarithmic map to the infinite height

of x as follows:

∑
j

l̂j(x) =

r1+r2∑
j=1

l̂j(x)

=

r1+r2∑
j=1

nj max
i

log |σj(xi)|

= H∞(x).

l̂(x) is a richer invariant than H∞(x). We will use it to help us to compare H∞(x)

with ‖x‖.
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3.3.1 The image of l̂ in Rr1+r2

Let z1, . . . , zr1+r2 be coordinates on Rr1+r2 . We define Π(h) to be the hyperplane

given by
∑

j zj = h in Rr1+r2 . Then every x ∈ (K∗)N+1 such that H∞(x) = h has

image l̂(x) ∈ Π(h). By choosing a representative x of P that has Hf (x) as large

as possible, H∞(x) is minimised. In this case the image of x under l̂ lies on the

hyperplane Π(H∞(x)) and the distance of this hyperplane from the origin has been

minimised. By considering representatives of P with minimal infinite height h we

will restrict our search for representatives of P to only those x ∈ OnK that map to

Π(h) under l̂.

An important specialisation occurs when K is Q or when K is an imaginary

quadratic field. In this case r1 + r2 = 1, so the unit rank of K is 0 and Π(h) is

simply the point z1 = h on the real line. Much of what follows will be trivially true

in this situation; we will refer to this as the “unit rank 0” case.

The length ‖x‖ is related to the logarithmic embedding l(x) by

‖(x0, . . . , xN )‖2 =
∑
i,j

nj |σj(xi)|2 =
∑
i,j

nj exp(lij(x))2/nj ,

and we know that l̂j(x) > lij(x) for every i. We use this relationship when we come

to construct a function µ : Rr1+r2 that links l̂(x) to an upper bound for ‖x‖. We

will show that µ is convex and eventually use this to derive a bound BL so that

every point P ∈ PN (K) such that H(P ) 6 BH has a representative with T2-norm

less than or equal to BL.

Let µ : Rr1+r2 → R be given by

µ(z1, . . . , zr1+r2) = (N + 1)
∑
j

nj(exp(zj))
2/nj .

We will define what it means for a function to be convex and give a useful property

of convex functions, before proving that µ is convex.

3.3.2 Convexity of µ

We will use the following criterion to show that µ is convex.

Theorem 3.3 (Theorem 4.5 of [27]). If f is a twice continuously differentiable real-

valued function on an open convex set C in Rn, then f is convex on C if and only

if its Hessian matrix

H(f)(x) =

(
∂2f

∂zi∂zj
(x)

)
ij
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is positive semi-definite for every x ∈ C.

We will use the following fact later to derive an upper bound for the value

of µ on a polytope contained in Π(h).

Theorem 3.4 (Corollary 32.3.2 of [27]). Let f be a convex function and let C

be a non-empty closed bounded convex set contained in the relative interior of the

domain of f . Then the supremum of f relative to C is finite and it is attained at

some extreme point of C.

In the case where C is a polytope, the extreme points of C are exactly its vertices.

Proposition 3.5. There exists a convex function µ : Rr1+r2 → R that satisfies

µ ◦ l̂(x) > ‖x‖2.

Proof. Let µ be as defined at the end of Section 3.3.1. Noticing that

‖(x0, . . . , xN )‖2 =
∑
i,j

nj
(
exp
(
lij(x)

))2/nj 6 (N + 1)
∑
j

nj

(
exp

(
l̂j(x)

))2/nj
,

we see that

µ ◦ l̂(x) > ‖x‖2.

We wish to check that µ is convex on Rr1+r2 . Differentiating µ,

∂2µ

∂zj∂zi
=

 4
nj

(N + 1) exp(zj)
2/nj if i = j

0 if i 6= j.

This implies that the Hessian matrix for µ is diagonal with positive entries, therefore

positive definite. By Theorem 3.3, µ is a convex function.

3.4 The effect of units

We have found a way to define integral representatives of P whose finite heightHf (x)

is as large as possible, by choosing a representative x ∈ ON+1
K such I(x) = I(P ).

This minimises H∞(x) amongst integral representatives for P . Such an x is unique

only up to multiplication by units of OK ; multiplication by a non-unit would change

the ideal I(x).

Recall that l̂(x) ∈ Π(H∞(x)). We will study the effect of multiplication by

units on the image of x under l̂, and use µ to relate this to ‖x‖.
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The logarithmic map l maps all units of OK into the hyperplane Π(0) ⊂
Rr1+r2 . We find that l(ζ) = (0, . . . , 0) for every root of unity ζ in K, so we need

only consider products of fundamental units. Because scaling by a root of unity

does not change the length, infinite height or finite height of a point in (K∗)N+1

and it does not affect its image under l̂, we work from now on in an environment

defined only up to multiplication by roots of unity. The images under l of the units

of OK form a lattice of full rank in Π(0) because l is an injective homomorphism of

Z-modules from O∗K/µ(K) into Π(0). A fundamental unit εk is a basis element of

O∗K (modulo roots of unity); we call its image Rk := l(εk) ∈ Rr1+r2 . The Rk form a

basis for a lattice Λ, the image under l of the units of K, lying in Π(0). Notice that

a different choice of fundamental units would mean only a change of basis for Λ.

In the unit rank 0 case there are no fundamental units as the only units of

O∗K are roots of unity. The hyperplane Π(0) is simply the origin, we take Λ = Π(0).

We consider the effect of scaling an element of (K∗)N+1 by a product of

fundamental units:

l̂

(∏
k

εtkk x

)
= l̂

(∏
k

εtkk x0, . . . ,
∏
k

εtkk xN

)

=

(
l̂1(x) +

∑
k

tkn1 log |σ1(εk)|, . . . ,

l̂r1+r2(x) +
∑
k

tknr1+r2 log |σr+s(εk)|

)
=
(
l̂1(x), . . . , l̂r1+r2(x)

)
+
∑
k

tkRk

= l̂(x) + l

(∏
k

εtkk

)
.

We see that scaling by a vector x by a unit moves the logarithmic image by the

corresponding lattice vector in Λ. This gives an action of the lattice Λ on the

hyperplane Π(H∞(x)). Vectors in (K∗)N+1 are unit multiples of one another if and

only if their images under l̂ are equivalent under the action of Λ. Let C(h) be a

fixed fundamental domain for the action of Λ on Π(h). For every x ∈ (K∗)n such

that H∞(x) = h, there exists a unit u ∈ O∗K such that l̂(ux) ∈ C(h).

Proposition 3.6. Let P ∈ PN (K), with no zero coordinates. Then there exists a

representative x ∈ ON+1
K for P satisfying

H∞(x) = H(P ) + log(N (I(P ))),
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and

l̂(x) ∈ C(H∞(x)) ⊂ Π(H∞(x)).

Proof. The first part is a step in the proof of Proposition 3.2. The second is a

consequence of the fact that the image of O∗K under l forms a lattice Λ acting on

Π(h). Multiplying x by a unit allows us to move its image inside Π(h) to be in

C(h).

We have already proven that given a point P ∈ PN (K) there exists a repre-

sentative x for P with H∞(x) = H(P ) + log(N (I(P ))) for which

l̂(x) ∈ Π(H(P ) + log(N (I(P )))),

holds. If we specify a particular fundamental domain for the action of Λ on Π
(
H(P )+

log(N (I(P )))
)
, then by evaluating the maximum value of µ on that region we can

identify an upper bound for ‖x‖ for those x ∈ ON+1
K that map into that fundamental

domain. Proposition 3.6 proves that such a representative x for P exists.

3.5 A fundamental domain for the action of Λ on Π(h)

In this section we will choose a fundamental domain for the action of the lattice Λ

on the hyperplane Π(h) ⊂ Rr1+r2 for each h. We recall that in the unit rank 0 case,

such a fundamental domain is the point Π(h).

Many choices of fundamental domain would suffice for the purpose of finding

an upper bound on ‖x‖. We wish both for a simple calculation and for the maximal

value of µ on the fundamental domain to be reasonably small. Although not optimal,

we believe that the following represents a reasonable choice.

3.5.1 A base point that is a minimum for µ

We will base our fundamental domain around the point of Π(h) for which the value of

µ is minimal. The hyperplane given by Π(h) = {g(z1, . . . , zr1+r2) :=
∑r1+r2

j=1 zj = h}
forms our constraint, so using Lagrange multipliers (see for example [1] page 1109)

we wish to solve the equation

∇µ = λ∇g,

for some λ ∈ R. It is clear that ∇g = (1, . . . , 1) so this is equivalent to saying that
∂µ
∂zj

= λ for all j. We solve for zj : the equation

λ =
∂µ

∂zj
= 2(N + 1) (exp(zj))

2/nj ,
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holds if and only if

zj =
nj
2

log

(
λ

2(N + 1)

)
.

We then use the constraint given by the fact that (z1, . . . , zr1+r2) ∈ Π(h):

h =

r1+r2∑
j=1

zj =

r1+r2∑
j=1

nj
2

log

(
λ

2(N + 1)

)

=

(
r1 + 2r2

2

)
log

(
λ

2(N + 1)

)
,

which can be simplified to

2h

d
= log

(
λ

2(N + 1)

)
,

and we solve to find that

zj =
njh

d
. (3.1)

Let zmin(h) be the point in Rr1+r2 defined by equation 3.1. The value of µ at zmin(h)

is (N + 1)d exp(2h/d), which is a minimum for µ on Π(h).

3.5.2 A fundamental domain

We choose our fundamental domain C(h) to be the parallelotope with edges parallel

to the directions of logarithmic embeddings of units Rk and centred at the zmin(h).

This is clearly a closed, convex region with vertices that we can calculate.

C(h) =

{
zmin(h) +

r1+r2−1∑
k=1

λkRk : λk ∈ [−1/2, 1/2]

}
The extreme points of C(h) are the points zmin(h) +

∑
k λkRk where each

λk = ±1/2. There are 2r1+r2−1 of them and by Theorem 3.4 the maximum value

for µ on C(h) is attained at (at least) one of them.
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3.5.3 Maximum value of µ on the fundamental domain C(h)

To find a maximum value of µ on C(h) we need to evaluate µ at the extreme points

of C(h). For convenience, we define a constant

cK =


∑

j nj
∏
k exp

(
| log |σj(εk)‖

)
if the unit rank of K > 0,

2 if K is imaginary quadratic,

1 if K = Q.

(3.2)

After fixing a set of fundamental units for K, cK depends only on K. It may be

beneficial to choose these fundamental units carefully to attempt to minimise the

bounds that follow.

Proposition 3.7. Let x ∈ C(h). Then

µ(x) 6 (N + 1) exp(2h/d)cK .

Proof. Because µ is convex and C(h) is a polytope, µ attains its maximum on C(h)

at one of the vertices of C(h). We evaluate µ at these points:

µ

(
zmin +

∑
k

λkRk

)
= (N + 1)

∑
j

nj

(
exp

(
njh/d+

∑
k

λknj log |σj(εk)|

))2/nj

= (N + 1)
∑
j

nj (exp(njh/d))2/nj
∏
k

|σj(εk)|2λk

= (N + 1)
∑
j

nj exp(2h/d)
∏
k

|σj(εk)|2λk

= (N + 1) exp(2h/d)
∑
j

nj

∣∣∣∣∣σj
(∏

k

ε2λk
k

)∣∣∣∣∣ .
To avoid calculating this for each of the 2r1+r2−1 possible sets of values for λk =

±1/2, we choose for each λk the larger value of the values of |σj(ε2λk
k )| for λk = ±1/2

in the following way. Because

∣∣log |σj(εk)|
∣∣ > ± log

∣∣σj(εk)∣∣
= log

∣∣σj(ε±1
k )
∣∣,

we see that

max |σj(ε±1
k )| = exp

∣∣log |σj(εk)|
∣∣.
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We substitute this maximum value to find that

µ

(
zmin(h) +

∑
k

λkRk

)
6 (N + 1) exp(2h/d)cK ,

and this upper bound is attained at one of the vertices of C(h).

Note that the maximum value of µ on C(h) depends only on h, the ambient

dimension N , the number field K and a choice of fundamental units. We may

calculate (N + 1) exp(2/d)cK once for a given number field and ambient dimension

and then scale for the parameter h.

We are now ready to state a result relating the height and length of repre-

sentatives of projective points.

Theorem 3.8. Let P ∈ PN (K), with no zero coordinates. Recall that I(P ) is

an integral ideal in the ideal class of P with minimal norm. Then there exists a

representative x ∈ ON+1
K for P satisfying

‖x‖2 6 (N + 1) exp

(
2(H(P ) + log(N (I(P ))))

d

)
cK .

Proof. Proposition 3.6 shows that we may choose a representative x so that x has

infinite height equal to H(P ) + log(N (I(P ))) and so that l̂(x) lies in our chosen

fundamental domain C
(
H(P ) + log(N (I(P )))

)
. The function µ is convex and sat-

isfies µ ◦ l̂(x) > ‖x‖2 by Proposition 3.5. The result then follows from Proposition

3.7.

3.6 Dimension reduction

Because we have used the logarithmic map which can be applied only to (K∗)N+1,

our results so far only apply to projective points that have no zero coordinates. We

show in this section that a point with zero coordinates has the same height and

length as a certain point without zero coordinates in a projective space of smaller

dimension. We assume the 0th coordinate to be 0 for simplicity of exposition.

Lemma 3.9. Let (0, x1, . . . , xN ) ∈ KN+1 with not all of the xi equal to 0 and

let P = [0, x1, . . . , xN ] ∈ PN (K). Then (x1, . . . , xN ) ∈ KN represents a point

P ′ ∈ PN−1(K) such that

H(P ) = H(P ′) and ‖(0, x1, . . . , xN )‖ = ‖(x1, . . . , xN )‖.
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Proof. We recall the formal definition that log(0) = −∞ and that

H(P ) =
∑
v∈MK

max
i

log |xi|v.

Because there is some xi 6= 0, for each place v ∈ MK there is some |xi|v > −∞, so

a zero coordinate will not contribute to the sum. Therefore we can conclude that

H(P ) = H(P ′). Since σj(0) = 0 for all j, the contribution to the length from the

0th coordinate is zero.

Lemma 3.9 shows that every point P in PN (K) with exactly q zero coor-

dinates (q 6 N) has the same height as a point P ′ with no zero coordinates in

PN−q(K) and every representative for P has the same length as a representative for

P ′.

3.7 A bound on vector length

The bound in Theorem 3.8 only applies to projective points of PN (K) without zero

coordinates. We extend this result using Lemma 3.9 to prove that the same bound

applies to all points of PN (K). This is the main result of this chapter.

Theorem 3.10. Let K be a number field and cK as defined in equation 3.2. Let A

be a set of integral representatives for the ideal classes of K with minimal norm and

let NK = maxa∈AN (a).

Let BH > 0. Then every P ∈ PN (K) such that H(P ) 6 BH has a represen-

tative x ∈ ON+1
K such that

‖x‖2 6 BL

where

BL = (N + 1) exp

(
2(BH + log(NK))

d

)
cK .

Proof. By Lemma 3.9 combined with Theorem 3.8 we see that every point in PN (K)

with q zero coefficients has a representative whose length is less than or equal to

(N + 1− q) exp

(
2(BH + log(N (I(P ))))

d

)
cK .

The maximum value of (N + 1 − q) is (N + 1) and so the upper bound given by

Theorem 3.8 holds for projective points with any number of zero coefficients. The

result then follows from the fact that the maximum value of N (I(P )) amongst all

projective points is NK .
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3.8 Examples

It is clear that the upper bound on the squared length of a representative x for points

with logarithmic height less than or equal to BH depends only on the number field,

the ambient dimension and the height bound. To get a better understanding of this

quantity we calculate it for several examples of number fields K = Q(x)/f(x).

f(x) (r1, r2) NK cK 6 BL

x (0, 0) 1 1 (N + 1) exp(2BH)

x2 + 1 (0, 1) 1 2 2(N + 1) exp(BH)

x2 − 5 (2, 0) 1 3.236068 3.236068(N + 1) exp(BH)

x2 + 31 (0, 1) 2 2 4(N + 1) exp(BH)

x3 − 2 (1, 1) 1 7.7702405 7.7702405(N + 1) exp(2
3BH)

x3 − 59x− 132 (3, 0) 16 14413078 91517338(N + 1) exp(2
3BH)

x4 − x− 1 (2, 1) 1 9.2888648 9.2888648(N + 1) exp(1
2BH)

g(x) (2, 3) 1 33.749686 33.749686(N + 1) exp(1
4BH)

We use g(x) to denote x8 − x6 − x5 − x3 + x2 + x − 1 to save space in the

table. The values of cK are not necessarily the smallest possible as we have not

proved that when the unit rank is greater than 1 the optimal choice of fundamental

units has been used. However, the units used form an LLL-reduced basis of Λ and

so our value of cK is likely to be reasonable.

The calculation of the class group (needed to calculate NK) and fundamental

units (needed for cK) can be slow for fields of large degree; there exist faster methods

that depend on the Generalised Riemann Hypothesis. We note that even for number

fields of small degree, the constant cK can get rather large.

27



Chapter 4

Choosing a prime

A key step in our method of finding rational points on a variety V is to choose a

suitable prime. We reduce the variety at the prime and then for each point on the

reduced variety construct a lattice of lifts. We require that the chosen prime is a

prime of good reduction for V and we impose some further conditions which will

improve the theoretical exposition and the implementation of the lattice methods

we will later describe.

In this chapter we will explain the kinds of primes we need and want for our

methods, show that infinitely many such primes exist and explain our method for

finding them.

4.1 Conditions on suitable primes

4.1.1 Good reduction

We require the prime used to be of good reduction for the variety because our

constructions in the following chapters require every point on the reduced variety

to be smooth. This will be necessary for Hensel lifting in the construction of sets of

lifts.

4.1.2 Degree one

Recall from Chapter 2 that a rational prime decomposes in K as pOK =
∏
i p
ei
i and

that each of the pi gives rise to a residue field OK/pi with degree fi = [OK/pi :

Z/pZ]. We wish to use primes whose degree is 1 because it allows for quick com-

putation: if fi = 1 then OK/pi ∼= Z/pZ and we take advantage of the fact that

arithmetic in Z/pZ runs efficiently. By choosing primes with degree 1, we also fix

the fact that N (p) = p; knowledge of the norm of our prime will be useful when
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employing the method of finding points described in Chapter 8. When the number

field in question is Q, all primes have degree 1.

4.1.3 Principal

Ensuring that the primes we use are always principal has two main benefits. One

is ease of exposition: if the prime ideal p is principal we may fix a generator π

of p and work concretely with elements of OK at every stage. Secondly it means

that our OK-lattices, whose index-ideal will be a power of p, will be free. This will

allow us to work with bases rather than pseudo-bases for them. (More information

on OK-lattices and pseudo-bases of can be found in Chapter 6.) Principal primes

have practical computational advantages too, as Hermite normal form (whose use is

described in Chapter 6 in the construction of lattices of lifts) is available for principal

ideal domains; we may use the same code even in non-PIDs by taking care to ensure

that all ideals arising are principal.

4.1.4 Norm

To a lattice such as the lattices of lifts described in Chapter 6 we may associate an

ideal called the index-ideal. We show in Chapter 6 that the index-ideal of a lattice

of lifts is a power of the prime used and we give bounds for its exponent.

In Chapter 8 we will describe a way of finding points from a lattice of lifts

which requires that the norm of the index-ideal be larger than a given bound. We

use the lower bound on the exponent to show that the norm of the index-ideal will

be large enough if the norm of the prime we use is greater than a certain bound.

In Chapter 7 we will describe how to use Z-lattice enumeration on any OK-

lattice. In this case, if we use a lattice of lifts there is no need to bound the norm

of the prime. In fact, there is a compromise to be found. Large primes cause the

lattices of lifts to be sparse, with fewer points to find and check up to a given length

bound. On the other hand, the number of rational points on a reduced variety will

increase as the prime increases, so more lattices will be constructed and checked.

We will show that there are infinitely many primes of K that satisfy our

conditions.

4.2 Decomposition of rational primes

We will obtain primes of K by decomposing rational primes. The following theorem

will help us to find primes of degree 1.
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Theorem 4.1 (Theorem 4.8.13 of [5]). Let K = Q(α) be a number field, where α

is an algebraic integer whose (monic) minimal polynomial is denoted T (x) ∈ Z[x].

Then for any rational prime p not dividing the index [OK : Z[α]] one can obtain the

prime decomposition of pOK as follows. Let

T (X) ≡
g∏
i=1

Ti(x)ei mod p

be the decomposition of T into irreducible factors in Fp[x], where the Ti are taken

to be monic. Then p decomposes as

pOK =

g∏
i=1

peii ,

where

pi = 〈p, Ti(α)〉.

Furthermore, the residue degree fi of pi is equal to the degree of Ti.

The final sentence indicates that we may find a prime of degree 1 in K from

a linear factor of the minimal polynomial modulo a rational prime.

4.3 Existence of suitable primes

We have constructed a list of properties that our chosen prime should have, but it is

still necessary to prove that such primes exist. In this section we show that all but

finitely many primes of K are primes of good reduction for a given variety. We also

demonstrate that the set of rational primes whose decomposition in OK includes a

principal prime of degree 1 has positive density. We will conclude by proving that

there are infinitely many principal primes of degree one that are primes of good

reduction for the variety.

Proposition 4.2. Let K be a number field and V , a geometrically smooth projective

algebraic variety defined over K. Then there are only finitely many prime ideals p

of K such that the reduced variety V̄ defined over Fp is singular.

We start by proving a result over algebraically closed fields.

Lemma 4.3. Let k be an algebraically closed field and V , a projective algebraic

variety defined over k by homogeneous polynomials F1, . . . , FM ∈ k[X0, . . . , XN ].

Let ∇F =
(
∂Fi
∂Xj

)
ij

be the Jacobian matrix of the Fj and let ml be the determinants
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of (N − dim(V )) × (N − dim(V )) minors of ∇(F ). We call the number of such

minors D. Then V is smooth if and only if there exist gi,j and hl,j ∈ k[X0, . . . , XN ]

and integers nj > 0 such that

M∑
i=1

gi,jFi +
D∑
l=1

hl,jml = X
nj
j , for each 0 6 j 6 N. (4.1)

Proof of Lemma 4.3. V is smooth if and only if there is no point P ∈ V (k) such that

the Jacobian ∇F (x) for any x representing P has rank less than N − dim(V ). Let

I = 〈Fi,ml〉 ⊆ k[X0, . . . , XN ] be the ideal generated by the defining polynomials Fi

and determinants of minors of ∇F . Then V is smooth if and only if the variety V (I)

of the ideal I is empty in PN (k). The result follows by application of the Projective

Weak Nullstellensatz. (See Chapter 3 of [8].)

Proof of Proposition 4.2. To apply Lemma 4.3, we pass to the algebraic closure K̄

of our number field K. By Lemma 4.3 there exist gi,j and hl,j ∈ K̄[X0, . . . , XN ] and

integers nj > 0 such that Equations 4.1 hold.

Let L/K be the finite extension of K given by adjoining all the coefficients

of the gi,j and hl,j . We can then scale Equations 4.1 so that they have coefficients

in the ring of integers OL of L. Then there exist g′i,j and h′l,j ∈ OL[X0, . . . , XN ] and

nonzero R ∈ OL such that the equation

N∑
i=1

g′i,jFi +

D∑
l=1

h′j,lml = RX
nj
j

holds for each j.

Let q be a prime ideal in OL and Fq the corresponding residue field. Let

x 7→ x̄ denote the q-reduction map on OL. Then

N∑
i=1

ḡ′i,jF̄i +
D∑
l=1

h̄′j,lm̄l = R̄X
nj
j (4.2)

holds for each j. If q does not divide the ideal ROL then we can scale Equations

4.2 by the inverse S of R in Fq to obtain the equations

N∑
i=1

Sḡ′i,jF̄i +

D∑
l=1

Sh̄′j,lm̄l = X
nj
j ,

where the polynomials Sḡ′i,j and Sh̄′j,l are now in Fq[X0, . . . , XN ]. The residue

field Fq is an algebraic extension of Fp for a unique prime ideal p of OK . Therefore
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for such p ⊂ OK , S ¯g′i,j and Sh̄′j,l are polynomials defined over the algebraic closure

of Fp, F̄p. By Lemma 4.3 the variety defined over Fp by all of the F̄i and m̄l is

non-singular over F̄p and so over Fp. We may therefore conclude that if q does not

divide R, q is a prime of good reduction for V .

It remains to note that since R 6= 0 there are only finitely many primes of

OL dividing ROL. For each such prime q there is a unique prime of K lying below

q, so there are only finitely many primes of K whose decomposition in L contains

a prime of L dividing ROL. We conclude that there can only be finitely many bad

primes for V in K.

4.3.1 Density of primes

In this section we prove that a number field has infinitely many principal primes of

degree one. Let K be a number field and let S be a set of primes of K.

Definition 20. The Dirichlet density of S is

δ(S) = lim
s→1+

∑
p∈S N (p)−s∑
pN (p)−s

,

if this limit exists, where p ranges over all primes of K in the denominator.

We will not explain this definition here, but it can be shown (Lemma 3.2 of

[7]) that the denominator can be replaced by log(1/(s − 1)). The following propo-

sition is a corollary of the Chebotarev density theorem (Theorem 13.4 of [24]).

Proposition 4.4 (Corollary 13.6 of [24]). Let L/K be a finite extension of number

fields of degree n and let P (L/K) be the set of unramified prime ideals of K whose

decomposition in L contains a prime of degree 1 over K. Then

δ(P (L|K)) >
1

n

and equality holds if and only if L is a Galois extension of K.

Proposition 4.5. 1. The set of rational primes whose decomposition in K con-

tains a prime of degree one has positive Dirichlet density (within primes of

Q).

2. The set of primes of degree one in K has Dirichlet density 1 in the set of

primes of K.

3. The set of principal primes of K has Dirichlet density 1/hK in the set of

primes of K, where hK is the class number of K.
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Proof. 1. This follows immediately from the application of Proposition 4.4 to the

extension K/Q.

2. We sketch the proof, following Example 3.3 of [7]. It is equivalent to show that

the Dirichlet density of the set of primes p in K with degree fp > 1 is zero.

We denote this set by S>1. For such p|p, N (p)−s = p−fps 6 p−2s. There are

at most [K : Q] such p over each p in Q. Hence the numerator
∑

p∈S>1
N (p)−s

is bounded above by [K : Q]
∑

p p
−2s and this is bounded for s close to 1.

Dividing by log(1/(s− 1)) and letting s→ 1+ gives a limit of 0.

3. There exists a Galois extension H of K called the Hilbert class field of K

(see Section VI.6 of [24]), with the properties that Gal(H/K) = Cl(K) and

that a prime of K has a prime of degree one in its decomposition in H if and

only if it is principal. (In fact, as H is Galois, all primes of H above a principal

prime will have degree one.) We apply Proposition 4.4 to the extension H/K

and note that [H : K] = |Gal(H/K)| = |Cl(K)| = hK as H is Galois over K.

Corollary 4.6. There are infinitely many principal primes of degree one in K.

Proof. We start by showing that the density of principal degree one primes of K is

the same as the density of principal primes of K. Let Sprin be the set of principal

primes of K. We know from part 3 of Proposition 4.5 that δ(Sprin) = 1/hK .

Using the method of proof of part 2 of Proposition 4.5, we show that the

density of primes of degree greater than 1 inside Sprin is 0:

lim
s→1+

∑
p∈S>1∩Sprin

N (p)−s∑
p∈Sprin

N (p)−s
= lim

s→1+

∑
p∈S>1∩Sprin

N (p)−s∑
pN (p)−s

. lim
s→1+

∑
pN (p)−s∑

p∈Sprin
N (p)−s

= 0.hK = 0.

Labelling the set of primes of degree 1 in K as S1, δ(Sprin ∩ S1) = δ(Sprin) =

1/hK . By part 1 of Proposition 4.5, there are infinitely many rational primes whose

decomposition in K yields a prime of degree one. Since the density of principal

degree one primes of K is positive there are infinitely many principal primes of

degree one in K.

By combining Corollary 4.6 and Proposition 4.2 we have proven that there

are infinitely many primes of K suitable for use in the construction of lattices of

lifts for any variety.
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4.4 Algorithm

We will use Theorem 4.1 to construct an iterator that yields principal primes of

degree 1 that are primes of good reduction for our variety V . We do not claim that

this algorithm will yield all such primes; in particular we avoid primes that divide

[OK : Z[α]] so that Theorem 4.1 applies.

Primes of degree one dividing a rational prime p correspond to linear poly-

nomials in the factorisation of T (x) modulo p. If n is a root of T (x) modulo p then

x−n is a factor of T (x) and the ideal 〈p, α−n〉 is a prime dividing p of degree one.

This algorithm comes from Theorem 4.8.13 of [5] and its implementation has

been influenced by the rings.number fields.small primes of degree one module of Sage

[30], written by Nick Alexander.

Algorithm 1: Primes of degree one

Input:

- K, a number field with integral primitive element α which has minimal

polynomial T ∈ Z[x],

- N , a lower bound for the norm of primes, by default set to 0,

- is good, a function which takes as input a prime ideal of K and outputs

True or False. Must satisfy is good(p) = False if p|[OK : Z[α]].

Output: - Prime ideals p of OK with degree 1 and norm greater than N for

which is good(p) is True.

Procedure:

Set p to be the next prime larger than N .

For each root n of T mod p with 0 6 n < p:

set p← 〈p, α− n〉.
If is good(p) = True:

yield p.

Replace p by the next rational prime and repeat the previous step.

It is essential that is good(p) = False for any p|[OK : Z[α]]. We will also set

it to return False for any bad primes for V and all non-principal primes.
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Chapter 5

Constructing sets of lifts

The aim of this chapter is to explain the construction of a set of lifts of a point on

a reduced variety. We will focus on curves for the main part of the chapter. The

general concepts that work for curves apply to all varieties. We will show how to

generalise the construction of sets of lifts for curves to the case of higher dimensional

varieties towards the end of the chapter. We also explain how we may view these sets

of lifts as local analytic parametrisations of residue discs of V (Kp). The material in

this chapter was inspired by the method given in [10] but goes significantly further,

generalising the procedure explained there.

We will begin with some material about multivariate Taylor expansions, de-

scribe the first and second sets of lifts and then explain an inductive step allowing us

to continue finding higher lifts. Let V be a variety and p, a prime. We will construct

a sequence of vectors in ON+1
K that will generate sets of points that are lifts of a

particular point of V̄ (Fp) and satisfy the defining polynomials of V modulo powers

of p. This will involve passing to the p-adic completion of our number field, which

makes it easier to prove the existence of the vectors that we require. In practice,

we only need to specify them to some finite p-adic precision. We may do this by

truncating the coefficients of a vector x ∈ OnKp
at the required precision to give an

approximation x̂ which actually lies in OnK .

5.1 Taylor expansions, polynomial functions and power

series

Let G be a multivariate polynomial, an element of R[X1, . . . , Xn] for some coefficient

ring R. We will use X to denote the vector (X1, . . . , Xn).
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Definition 21. The gradient vector of G at x is defined by:

∇G(x) =

(
∂G

∂X1
(x), . . . ,

∂G

∂Xn
(x)

)
.

For any x ∈ Rn, this defines a polynomial

∇G(x)(X) =
∂G

∂X1
(x)X1 + · · ·+ ∂G

∂Xn
(x)Xn,

which is a linear form in X.

The notation ∇G has been used before and the gradient vector is a special

case of the Jacobian matrix. We may interpret ∇G(x)(X) as a polynomial function

of total degree deg(G). It has degree deg(G)− 1 in x and degree 1 in X.

Lemma 5.1. For any polynomial G ∈ R[X1, . . . Xn] and any x ∈ Rn, the linear

form defined by the gradient of G satisfies:

∇
(
∇G(x)(X)

)
(x)(X) = ∇G(x)(X).

Proof. Because ∇G(x)(X) is a linear polynomial it is clear that the equality

∂

∂Xi
∇G(x)(X) =

∂G

∂Xi
(x),

holds for each Xi.

Definition 22. The Hessian matrix of G is a symmetric matrix of second deriva-

tives defined by

Hess(G)(x) =

(
∂2G

∂Xi∂Xj
(x)

)
ij

.

For any x ∈ Rn, the Hessian of G defines a quadratic form in X given by

Hess(G)(x)(X) = X Hess(G)(x)Xt =

n∑
i,j=1

∂2G

∂Xi∂Xj
(x)XiXj .

We wish to generalise the idea of the gradient and Hessian and their associ-

ated forms. We look at an i-dimensional array of all ith derivatives of G and form

the corresponding homogeneous polynomial in X1, . . . , Xn of degree i. We will use

multi-indices to ease notation. A multi-index α = (α1, . . . , αn) is a list of non-

negative integers. We say α has size |α| =
∑

i αi. There are finitely many α such

that |α| = m for any non-negative integer m. We say that Xα = Xα1
1 ...Xαn

n . We
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can also use multi-indexes in defining derivatives: Dα =
∂α1

∂Xα1
1

. . .
∂αn

∂Xαn
n

. We will

also need α! =
∏
i αi!.

Definition 23. The ith Hessian form of G at x is given by:

Hi(G)(x)(X) =
∑
|α|=i

DαG(x)

α!
Xα.

We note thatH0(G)(x)(X) = G(x), H1(G)(x)(X) = ∇G(x)(X) andH2(G)(x)(X) =

Hess(G)(x)(X). The ith Hessian form has degree i in X and degree deg(G) − i in

x for i 6 deg(G).

Lemma 5.2. [Taylor Expansion] Let y, y′ ∈ Rn, G ∈ R[X1, . . . , Xn] and c some

scalar parameter. Then we may perform a Taylor expansion on G:

G(y + cy′) =

deg(G)∑
i=0

Hi(G)(y)(cy′) =

deg(G)∑
i=0

ciHi(G)(y)(y′).

Proof. The first equality is the well-known Taylor expansion formula, the second

recognises that Hi(G)(y)(X) is a homogeneous polynomial of degree i in X.

We wish to generalise the usual Taylor expansion to deal with expressions

of the form G(y0 + cy1 + c2y2 + · · · + cryr). We will grade the terms of such an

expansion by the power of c that appears in the term. A general expression of this

kind (especially for arbitrary r and degree of G) looks complicated to formulate, as

it involves taking repeated Taylor expansions to fully expand. However, this can be

calculated by hand or computer for any particular G and r. We will show in the

general case that such an expansion exists, but do not attempt to describe explicitly

the relationship with the usual Taylor expansion except in some easy cases.

We work with power series in a scalar parameter c, before specialising to

finite sums.

Lemma 5.3. Let (yt)
∞
t=0 be a sequence of vectors in Rn and G ∈ R[X1, . . . , Xn].

Then there exist unique polynomial functions Gs : (Rn)s+1 → R such that:

G

( ∞∑
t=0

ctyt

)
=

∞∑
s=0

csGs(y0, . . . , ys).

Proof. Considering
∑∞

t=0 c
tyt as a vector of power series in c, the existence of the

Gs follows by expanding G(
∑∞

t=0 c
tyt) term by term. Each Gs depends only on

37



y0, . . . , ys because yt appears on the left hand side multiplied by ct. If Gs depends

on yt, then ct|cs, so t 6 s.

To ease notation, we may write Gs(y0, . . . , yj) for some j > s. In this case

Gs does not depend on any of the yi for i > s, so Gs(y0, . . . , yj) = Gs(y0, . . . , ys).

For j < s we may write Gs(y0, . . . , yj , 0, . . . , 0) to indicate the value of Gs evaluated

with the last s− j − 1 vectors set to 0. We now use the results of Lemmas 5.3 and

5.2 to find out more information about the Gs(y0, . . . , ys).

Lemma 5.4. Let G and Gj be as defined in Lemma 5.3. Then,

Gj(y0, . . . , yj) = ∇G(y0)(yj) +Gj(y0, . . . , yj−1, 0),

for each j.

Proof. By Lemma 5.3, we know that

G

(
j∑
t=0

ctyt

)
=

m(G,j)∑
s=0

csGs(y0, y1, . . . , yj , 0, . . . , 0),

and similarly

G

(
j−1∑
t=0

ctyt

)
=

m(G,j−1)∑
s=0

csGs(y0, y1, . . . , yj−1, 0, . . . , 0).

These sums are finite, as they are simply Taylor expansions of the polynomial G on

a finite number of terms. The number of terms m(G, k) + 1 depends on the degree

of G and the number of terms k.

The coefficients of cs in these two expressions agree for all s < j. Using

Lemma 5.2, we take the first two terms of a Taylor expansion of G
(∑j

t=0 c
tyt
)

with

base point
∑j−1

t=0 c
tyt to find that:

G

(
j∑
t=0

ctyt

)
= G

(
j−1∑
t=0

ctyt

)
+∇G

(
j−1∑
t=0

ctyt

)
(cjyj) + higher order terms in c.

Comparing the coefficients of cj on each side, we conclude that

Gj(y0, . . . , yj) = Gj(y0, . . . , yj−1, 0) +∇G(y0)(yj).
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In Lemma 5.3 we show that G
(∑∞

t=0 c
tyt
)

may be viewed as a power series in

c, with coefficients Gs(y0, . . . ys). We may investigate G
(∑∞

t=0 c
tyt
)

by performing

Taylor expansions recursively:

G

( ∞∑
t=0

ctyt

)
=

deg(G)∑
i=0

Hi(G)(y0)

( ∞∑
t=1

ctyt

)

=

deg(G)∑
i=0

ciHi(G)(y0)

( ∞∑
t=1

ct−1yt

)
(by the homogeneity of Hi)

=

deg(G)∑
i=0

ci
i∑

j=0

Hj

(
Hi(G)(y0)

)
(y1)

( ∞∑
t=2

ct−1yt

)

=

deg(G)∑
i=0

ci
i∑

j=0

cjHj

(
Hi(G)(y0)

)
(y1)

( ∞∑
t=2

ct−2yt

)
. (5.1)

We can continue with such Taylor expansions as long as we like and the expressions

contained therein will get more and more complicated. By comparing this sort of

expansion with that of Lemma 5.3 we may check small powers of c to work out the

first few Gs explicitly.

s = 0:

G(y0) = G0(y0).

s = 1:

G(y0 + cy1) = G(y0) + c∇G(y0)(y1) + h.o.t.

so: G1(y0, y1) = ∇G(y0)(y1).

s = 2:

G(y0 + cy1 + c2y2) = G(y0) +∇G(y0)(cy1 + c2y2)+

H2(G)(y0)(cy1 + c2y2) + h.o.t.

= G0(y0) +G1(y0, y1) + c2∇G(y0)(y2)+

c2H2(G)(y0)(y1 + cy2) + h.o.t.

so: G2(y0, y1, y2) = ∇G(y0)(y2) +H2(G)(y0)(y1).

This process looks more complicated at each stage and it quickly becomes difficult

to write an explicit expression for Gs in general. We will avoid this difficulty by

using Lemma 5.4 to provide the (partial) information about Gs that we need.
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We will define a variety V with a tuple of m polynomials which we de-

note by F . All of the material in this section may be applied to such a tuple

componentwise, using the following notation. We write Hi(F )(x)(X) for the tu-

ple of polynomials (Hi(Fj)(x)(X))j . The degrees of the polynomials in F are

given by deg(F ) = (deg(Fj))j and we may use this componentwise as follows: if

x = (x1, . . . , xm) is a vector of length m and c a scalar parameter then cdeg(F )x =(
cdeg(F1)x1, . . . , c

deg(Fm)xm
)
.

5.2 Hensel lifting

Recall that OKp is the completion of OK with respect to the p-adic metric.

Proposition 5.5 (Hensel’s Lemma). Let G be a tuple of m polynomials in n vari-

ables (with m 6 n) defined over OK . Let x1 ∈ OnK satisfy G(x1) ≡ 0 mod p with

the Jacobian ∇G(x1) having full rank m mod p. Then there exists an x ∈ OnKp

such that G(x) = 0 and x ≡ x1 mod p.

Proof. We construct a p-adically convergent sequence (xi) of elements of OnK with

the property that G(xi) ≡ 0 mod pi. This sequence will define x ∈ OnKp
.

Because ∇G(x1) is an m × n matrix of full rank m, there exists an m ×m
submatrix of ∇G(x1) of full rank mod p. For simplicity we may assume without

loss of generality that the first m columns of ∇G(x1) form such a submatrix and

denote it by ∇G(x1)m. There exists an m ×m matrix A with entries in OK that

forms an inverse to∇G(x1)m mod p. Therefore, A∇G(x1) ≡ (Im|D) mod p, where

Im is the m×m identity matrix and D is some m× (n−m) matrix.

We proceed by induction. Assume that xk ∈ OnK satisfies xk ≡ x1 mod p

and G(xk) ≡ 0 mod pk. Set xk+1 = xk + πky. We will solve for y to find a xk+1

such that G(xk+1) ≡ 0 mod pk+1. We take a Taylor expansion of G(xk+1) at xk to

find:

G(xk+1) = G(xk + πky) ≡ G(xk) +∇G(xk)(π
ky) mod pk+1.

Therefore, G(xk+1) ≡ 0 mod pk+1 if and only if

∇G(xk)(π
ky) ≡ −G(xk) mod pk+1.

We may divide through by πk:

∇G(xk)(y) ≡ −G(xk)

πk
mod p,
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and because xk ≡ x1 mod p, we have

∇G(x1)(y) ≡ −G(xk)

πk
mod p. (5.2)

Congruence 5.2 holds if and only if

A∇G(x1)(y) ≡ A
(
−G(xk)

πk

)
mod p.

We know that the first m columns of A∇G(x1) form an identity matrix mod p and

so we choose y ∈ OnK so that

yi =

the ith entry of A
(
−G(xk)
πk

)
for 1 6 i 6 m,

0 for i > m.

Then we have

A∇G(x1)(y) ≡ A
(
−G(xk)

πk

)
mod p,

so xk+1 = xk + πky satisfies xk+1 ≡ 0 mod p and G(xk+1) ≡ 0 mod pk+1. We

know that G(x1) ≡ 0 mod p so by induction there exists a sequence (xi) of vectors,

each congruent to the last modulo increasing powers of p: xi ≡ xi−1 mod pi. They

also satisfy G(xi) ≡ 0 mod pi. The entries of the xi form p-adic Cauchy sequences

of elements of OK ; they therefore converge to elements of OKp and their limit is a

vector x ∈ OnKp
that is a root of G.

Note that, unless m = n, xi is not unique and therefore x is not unique

because we made a choice of m ×m submatrix of ∇G(x1). However, once such a

choice has been fixed the values of xi and therefore of x are unique.

For the next part of this chapter we will be constructing sets of lifts in the

case of curves. We will construct vectors that define sets of lifts of a reduced point

P̄ . At each stage we will construct si ∈ ON+1
Kp

using Hensel lifting but the sets of

lifts are actually subsets of ON+1
K . When x ∈ ON+1

Kp
we use the notation x̂ ∈ ON+1

K

for a truncation of x to the necessary precision. For any given m ∈ Z>0 we have

x ≡ x̂ mod pm.

The precision needed will always be clear from the context. By using this notation,

we emphasise that there is always an exact OKp-vector x from which the truncated

OK-vector x̂ is taken.

We begin with the first and second sets of lifts, as they are needed for the

41



process of induction.

5.3 First sets of lifts

Let C be a projective curve in PN defined over K by F ∈ OK [X0, . . . , XN ] and let

p be a principal prime of good reduction for C with generator π. We note that in

general C may not be a complete intersection and hence may be defined by more than

N − 1 polynomials. However, for any point P on C (or indeed P̄ on C̄) only N − 1

of the polynomials are needed to define C at that point. Because C is smooth, the

Jacobian of such a tuple of polynomials will have full rank N − 1 when evaluated at

a representative of P . The choice of tuple of polynomials will vary with P . We will

assume for simplicity that our curves are always complete intersections; in practice

for each reduced point P̄ a suitable tuple of polynomials can be chosen.

Let P̄ be a rational point on the reduced curve C̄. We may choose a repre-

sentative for P̄ in FN+1
p ; there are N (p)− 1 possible choices, one for each non-zero

element of Fp. By choosing a lift of each coordinate from Fp to OK , we may choose

an integral representative s for P̄ . s ∈ ON+1
K satisfies s ≡ P̄ mod p and F (x) ≡ 0

mod p. s is p-primitive. If it were not then each coordinate of s would be in p and

reducing s mod p would give the zero vector in FN+1
p , which does not represent

a point in PN (Fp). This choice of s is clearly not unique: the set of all integral

representatives for P̄ is the set of all x ∈ ON+1
K that reduce mod p to some repre-

sentative of P̄ in FN+1
p . If s is some integral representative for P̄ , then every integral

representative for P̄ is given by cs + πy for some c ∈ OK satisfying c 6≡ 0 mod p

and some y ∈ ON+1
K .

Because ∇F (s) has full rank, we may employ Hensel lifting to construct a

p-adic solution from s. By Proposition 5.5 there exists an s0 ∈ ON+1
Kp

such that

s ≡ s0 mod p and F (s0) = 0. Although s0 depends on the choice of representative

s, the sets we proceed to construct will be unique. We fix s0 to be a lift of s and

recall that ŝ0 will represent a truncation of s0.

Definition 24. Let Sk be the set of all points x ∈ ON+1
K such that

x is a representative for P̄ mod p and

F (x) ≡ 0 mod pk.

We note that these sets nest: Sk+1 ⊆ Sk for each k.
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Lemma 5.6. We have

S1 =
{
c0ŝ0 + πy

∣∣ c0 ∈ OK , c0 6≡ 0 mod p, y ∈ ON+1
K

}
,

where ŝ0 is any mod p approximation to s0.

Proof. If x ∈ S1 then x is a representative for P̄ mod p and x may be written as

c0ŝ0 + πy for some c0 6≡ 0 mod p and some y ∈ ON+1
K .

If x = c0ŝ0 + πy then F (x) ≡ F (c0ŝ0) mod p. Because F (x) is a set of

homogeneous polynomials, F (c0ŝ0) ≡ 0 if and only if F (ŝ0) ≡ 0 mod p.

S1 is simply the set of all elements of ON+1
K that reduce to P̄ mod p. How-

ever, the sets Si for i > 1 have a more complicated structure.

Lemma 5.7. Let s0 ∈ ON+1
Kp

be as above. Then the Jacobian matrix for F evaluated

at s0 gives a surjective linear map ∇F (s0)(X) : ON+1
Kp

→ ON−1
Kp

with s0 contained

in the kernel.

Proof. The fact that s0 lies in the kernel of ∇F (s0)(X) follows from the fact that

∇Fj(X)(X) = λjFj(X) for some scalar λj for each Fj , by Euler’s theorem on homo-

geneous functions. ∇F (s0)(X) is linear, so we need only to prove that ∇F (s0)(X)

is surjective. The matrix ∇F (s0) has full rank mod p, so it defines a surjective

map FN+1
p → FN−1

p .

Let y ∈ ON−1
K . Because ∇F (s0)(X) is surjective mod p there exists an

x ∈ ON+1
K such that

∇F (s0)(x) ≡ y mod p.

By Lemma 5.1, the Jacobian of ∇F (s0)(X) − y is ∇F (s0) and this has full rank

mod p. Therefore by Hensel’s Lemma (Proposition 5.5) we may lift x, which satisfies

F (s0)(x) − y ≡ 0 mod p, to a p-adic solution x′ ∈ ON+1
Kp

such that ∇F (s0)(x′) =

y.

This use of Hensel’s Lemma proves the existence of solutions to equations of

the form ∇F (s0)(X)− y ≡ 0 mod pm for any y and any m and is a key step in

the construction of further sets of lifts. By considering the si as lying in the p-adic

completion at their construction, we do not have to fix a p-adic precision at the start

or update our calculations at each stage but can use ŝi to represent the truncation

of si to the required precision.

The rank of the kernel of ∇F (s0)(X) is 2. Choose a vector s1 ∈ ON+1
Kp

that

is linearly independent of s0 modulo p (and therefore also linearly independent over
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OKp , by the same method as the proof of Lemma 5.7) such that s0 and s1 generate

the kernel of ∇F (s0)(X). The new vector s1 will be used in the construction of the

second lattice of lifts.

Lemma 5.8. If x ∈ S1 then x ∈ S2 if and only if x ≡ c0(ŝ0 + πc1ŝ1) mod p2 for

some c0, c1 ∈ OK with c0 6≡ 0 mod p. Here ŝ0 and ŝ1 are any approximations

mod p2 and mod p respectively.

Proof. Write x = c0ŝ0+πy ∈ S1 and set degF−1 to be the multi-index (deg(Fi)−1)i.

We perform a Taylor expansion based at c0ŝ0:

F (x) = F (c0ŝ0 + πy) ≡ F (c0ŝ0) +∇F (c0ŝ0)(πy) mod p2

≡ cdeg(F )
0 F (ŝ0) + πc

deg(F )−1
0 ∇F (ŝ0)(y) mod p2

≡ cdeg(F )−1
0 π∇F (ŝ0)(y) mod p2,

because ŝ0 is a mod p2 approximation to s0. Since c0 6≡ 0 mod p, x ∈ S2 if and

only if∇F (ŝ0)(y) ≡ 0 mod p. This is the case if and only if y is a linear combination

of ŝ0 and ŝ1, so x ∈ S2 if and only if

x ≡ c0ŝ0 + πa0ŝ0 + πa1ŝ1 mod p2.

By relabelling constants, we have

x = c0(ŝ0 + πc1ŝ1) + π2y

for some c0, c1 ∈ OK such that c0 6∈ p. As x is an arbitrary element of S1 and

S1 ⊃ S2,

S2 =
{
c0(ŝ0 + πc1ŝ1) + π2y

∣∣ c0, c1 ∈ OK , c0 6≡ 0 mod p, y ∈ ON+1
K

}
.

5.4 Further sets of lifts

We apply the results of Section 5.1 to the polynomials defining C at P̄ and start to

think p-adically by setting our power series parameter c = πα.

Lemma 5.9. There exist tuples of homogeneous polynomials F j with the same de-
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grees as F , such that

F

( ∞∑
t=0

(πc′)tyt

)
=
∞∑
j=0

(πc′)jF j(y0, . . . , yj), (5.3)

and

F j(y0, . . . , yj) = ∇F (y0)(yj) + F j(y0, . . . , yj−1, 0).

Proof. Apply Lemmas 5.3 and 5.4 to F , with c = πc′.

Although the notation F j for the terms in the power series expansion for F

is similar to that used for that for the individual polynomials Fi in F , there should

be no confusion as the Fi will not feature individually again in this chapter.

5.4.1 Construction of vectors

We are now in position to construct further vectors si. We will consider F as above:

F

( ∞∑
t=0

(πc′)tyt

)
=
∞∑
s=0

(πc′)sF s(y0, . . . , ys),

and solve

F s(y0, . . . , ys) = 0,

for each s in turn.

Recall that s0, s1 ∈ ON+1
Kp

and that F (s0) = 0 and ∇F (s0)(s1) = 0. We

define a sequence of si ∈ ON+1
Kp

inductively. Let the vector si be a solution to

∇F (s0)(si) = −F i(s0, . . . , si−1, 0),

noting that this is satisfied for i = 0 and 1.

Such vectors si always exist because ∇F (s0) is surjective, and solutions are

unique up to addition of an element of ker(∇F (s0)). By definition, the si satisfy

F i(s0, . . . , si) = 0,

for each i. We note that sequences of vectors (s0, . . . , si) generated in this way do

not necessarily form a linearly independent set, even if i 6 N + 1.

From the definition of the si and ŝi and our Taylor expansion reduced modulo
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pi+1 we observe that F satisfies

F

(
i∑
t=0

πtst

)
≡

i∑
s=0

πsF s(s0, . . . , si) mod pi+1

≡
i∑

s=0

πsF s(ŝ0, . . . , ŝi) mod pi+1

≡ 0 mod pi+1.

Theorem 5.10. The set Si of all points x in ON+1
Kp

such that

F (x) ≡ 0 mod pi and

x reduces to P̄ mod p

is defined by

Si =

c0(ŝ0 + c1πŝ1 + . . .+ ci−1
1 πi−1ŝi−1) + πiy

∣∣∣∣∣
c0, c1 ∈ OK ,

c0 6≡ 0 mod p,

y ∈ ON+1
K

 ,

where ŝj is any mod pi−j approximation to sj.

Proof. Note that S1 and S2 are both of the form described in the statement of

Theorem 5.10, as shown in Lemmas 5.6 and 5.8. We proceed by induction.

Assume that

Si−1 =

c0(ŝ0 + c1πŝ1 + · · ·+ ci−2
1 πi−2ŝi−2) + πi−1y

∣∣∣∣∣
c0, c1 ∈ OK ,

c0 6≡ 0 mod p,

y ∈ ON+1
K

 ,

and recall that Si ⊆ Si−1. If x is an element of Si−1 then

x = c0(ŝ0 + c1πŝ1 + · · ·+ ci−2
1 πi−2ŝi−2) + πi−1y,

for some c0, c1 ∈ OK with c0 6≡ 0 mod p and some y ∈ ON+1
K . Then, x ∈ Si if and

only if F (x) ≡ 0 mod pi. We perform a Taylor expansion on F :

F (x) ≡ F (c0(ŝ0 + c1πŝ1 + · · ·+ ci−2
1 πi−2ŝi−2))+

∇F (c0(ŝ0 + c1πŝ1 + · · ·+ ci−2
1 πi−2ŝi−2))(πi−1y) mod pi

≡ cd−1
0 (c0F (ŝ0 + c1πŝ1 + · · ·+ ci−2

1 πi−2ŝi−2) + πi−1∇F (ŝ0)(y)) mod pi.
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Therefore F (x) ≡ 0 mod pi if and only if the congruence

πi−1∇F (ŝ0)(y) ≡ −c0F (ŝ0 + c1πŝ1 + · · ·+ ci−2
1 πi−2ŝi−2) mod pi, (5.4)

holds. Recalling that the construction of the si means that F t(s0, . . . , st) = 0 for all

t 6 i− 2, we expand the main part of the right hand side:

F (ŝ0 + · · ·+ ci−2
1 πi−2ŝi−2) ≡

i−2∑
t=0

(c1π)tF t(ŝ0, . . . , ŝt)+

(c1π)i−1F i−1(ŝ0, . . . , ŝi−2, 0) mod pi

≡ 0 + (c1π)i−1F i−1(ŝ0, . . . , ŝi−2, 0) mod pi.

We substitute back in to Congruence (5.4):

πi−1∇F (ŝ0)(y) ≡ −c0(c1π)i−1F i−1(ŝ0, . . . , ŝi−2, 0) mod pi.

We divide by πi−1 and conclude that F (x) ≡ 0 mod pi if and only if

∇F (ŝ0)(y) ≡ −c0c
i−1
1 F i−1(ŝ0, . . . , ŝi−2, 0) mod p. (5.5)

Recall that si−1 is defined so that ∇F (s0)(si−1) = −F i−1(s0, . . . , si−2, 0) and that

this definition is unique up to addition of an element of ker∇F (s0). Therefore all

solutions to Congruence (5.5) will be of the form

y = c0c
i−1
1 ŝi−1 + a0ŝ0 + a1ŝ1 + πy′,

for some a0, a1 ∈ OK and y′ ∈ ON+1
K .

After some relabelling of constants we see that if x ∈ Si−1, then x ∈ Si if

and only if

x = c0(ŝ0 + c1πŝ1 + · · ·+ ci−1
1 πi−1ŝi−1) + πiy,

for some c0, c1 ∈ OK with c0 6≡ 0 mod p, and some y ∈ ON+1
K .

Si =

c0(ŝ0 + c1πŝ1 + · · ·+ ci−1
1 πi−1ŝi−1) + πiy

∣∣∣∣∣
c0, c1 ∈ OK ,

c0 6≡ 0 mod p,

y ∈ ON+1
K

 .

Therefore, by induction, Si takes this form for each i > 0.
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5.5 Higher dimensional varieties

The method used to construct lattices of lifts in the case of curves can be extended to

work in essentially the same way for higher dimensional varieties. We will generalise

our work to describe the sets of lifts for a point on a smooth reduced variety V̄ ,

where dim(V ) > 1.

Just as in the case of curves, after finding a lift s0 ∈ ON+1
Kp

of P̄ the key

first step is to find a basis for ker(∇F (s0)) that includes s0. These vectors span the

tangent space of V (Kp) at s0 and this tangent space is dim(V )-dimensional, as V

is smooth. To generalise our construction to a variety of dimension D we require D

parameters; we will therefore be using multivariate power series.

Let c = (c1, . . . , cD) be a tuple of parameters. When working with univariate

power series and Taylor expansions we used a sequence of vectors (yi). Here we will

index vectors by multi-indices: yα. If γ and α are multi-indices we will say that

γ 6 α if γi 6 αi for each i. Recall that |α| =
∑
αi, and let nα = #{γ : γ 6 α}. We

say that γ < α if γ 6 α and |γ| < |α| or, equivalently, if γ 6 α and there is some

index i where γi < αi. If |α| = 0 then we will denote it by 0 and if |α| = 1 then the

multi-index whose ith coefficient αi = 1 will be denoted by i.

Let (yγ) be a sequence indexed by multi-indices on D variables. The number

of multi-indices of size j on D variables is given by φD(j) =
(
D+j−1

j

)
. Where

the number of variables is unambiguous, we will shorten this to φ(j). We use the

notation (yγ)γ6α to indicate the finite subsequence of (yγ) consisting of those yγ

such that γ 6 α. We will use the notation (yγ : condition) to indicate the sequence

(zγ) where

zγ =

yγ if γ satisfies condition and

0 else.

These new notations perform the same functions as the notations described for the

sequences that are inputs to Gs on page 38. As an example, (yγ : γ < α)γ6α is the

finite sequence with one position for each multi-index γ 6 α. Its coefficients are yγ

for each γ < α and 0 for α.

Lemma 5.11 (Generalisation of Lemma 5.3). Let R be a coefficient ring and let

c = (c1, . . . , cD) be a tuple of variables. Let (yα) be a sequence of vectors indexed

by multi-indices on D variables and let G ∈ R[X1, . . . , Xn]. Then there exist unique
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polynomial functions Gα : (Rn)nα → R such that:

G

 ∞∑
j=0

∑
|α|=j

cαyα

 =

∞∑
j=0

∑
|α|=j

cαGα((yγ)γ6α).

Proof. As in the univariate case, the existence of the Gα follows from a term-by-

term expansion of G
(∑∞

j=0

∑
|α|=j c

αyα

)
. The fact that Gα only depends on γ 6 α

follows for the same reason as in the univariate case: yγ appears on the left hand

side multiplied by cγ so if Gα depends on yγ then cγ |cα and γ 6 α.

Lemma 5.12 (Generalisation of Lemma 5.4). Let G and Gα be as in Lemma 5.11.

Then we have

Gα((yγ)γ6α) = ∇G(y0)(yα) +Gα((yγ : γ < α)γ6α).

Proof. This proof is a generalisation of that of Lemma 5.4. We perform a Taylor

expansion to allow us to compare G
(∑j

t=0

∑
|α|=t c

αyα

)
to G

(∑j−1
t=0

∑
|α|=t c

αyα

)
.

G

 j∑
t=0

∑
|α|=t

cαyα

 = G

j−1∑
t=0

∑
|α|=t

cαyα

+∇G

j−1∑
t=0

∑
|α|=t

cαyα

∑
|α|=j

cαyα

 .

We compare coefficients of cα for some |α| = j and find that

Gα
(
(yγ)γ6α

)
= Gα

(
(yγ : |γ| 6 j − 1)γ6α

)
+∇G(y0)(yα)

= Gα
(
(yγ : γ < α)γ6α

)
+∇G(y0)(yα).

Let V be a variety of dimension D defined by a tuple of polynomials F in

OK [X0, . . . , XN ] and let P̄ be a smooth point on the reduced curve V̄ (Fp). F is a

tuple of m polynomials where m > N −D. As in the case of curves, exactly N −D
polynomials are required to define V̄ at any particular reduced point P̄ . We assume

for simplicity that V is a complete intersection, defined by N −D polynomials. In

practice, for each reduced point P̄ a suitable subset of F of size N−D can be found.

We will now construct sets of lifts S1 ⊃ S2 ⊃ ... for P̄ . We may apply

Hensel’s Lemma (Proposition 5.5) to ∇F (P̄ ) and so construct s0 ∈ ON+1
Kp

, a lift of

P̄ satisfying F (s0) = 0.
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For exactly the same reasons as when D = 1, the first set of lifts is given by

S1 =
{
c0ŝ0 + πy

∣∣ c0 ∈ OK , c0 6≡ 0 mod p, y ∈ ON+1
K

}
.

By the same argument as Lemma 5.7, ∇F (s0) defines a surjective linear map

ON+1
Kp

→ ON−DKp
. The kernel is D+ 1 dimensional and, as before, s0 ∈ ker(∇F (s0)).

We extend from s0 to fix a basis s0, s1, . . . , sD ∈ ON+1
Kp

for this kernel. Then

∇F (s0)(y) = 0 if and only if y =
∑D

i=0 cisi for some c0, . . . , cD ∈ OKp .

Lemma 5.13 (Generalisation of Lemma 5.8). The second set of lifts is

S2 =

{
c0

(
ŝ0 + π

D∑
i=1

ciŝi

)
+ π2y

∣∣∣ c0, . . . , cD ∈ OK , c0 6≡ 0 mod p, y ∈ ON+1
K

}
,

where ŝ0 is an approximation mod p2 to s0 and ŝi is an approximation mod p to

si for 1 6 i 6 D.

Proof. Let x ∈ S1. Then x ∈ S2 if and only if F (x) ≡ 0 mod p2. We write

x = c0ŝ0 + πy. Performing a Taylor expansion on F yields:

F (c0ŝ0 + πy) ≡ F (c0ŝ0) +∇F (c0ŝ0)(πy) mod p2

≡ cdeg(F )−1
0

(
c0F (s0) + π∇F (ŝ0)(y)

)
mod p2.

We know that c0 6≡ 0 mod p, so F (x) ≡ 0 mod p2 if and only if

c0F (ŝ0) + π∇F (ŝ0)(y) ≡ 0 mod p2.

Recall that F (s0) = 0, so F (ŝ0) ≡ 0 mod p2 and consequently x ∈ S2 if and only if

∇F (ŝ0)(y) ≡ 0 mod p.

This means that y ≡
∑D

i=0 aiŝi mod p for some ai ∈ OK . This implies that

x ≡ c0ŝ0 +
D∑
i=0

aiŝi mod p2,

so, by rearranging constants, we have

x = c0

(
ŝ0 +

D∑
i=1

ciŝi

)
+ π2y,
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where ci ∈ OK , c0 6≡ 0 mod p and y ∈ ON+1
K .

We may now inductively construct more vectors sα ∈ ON+1
Kp

. For each multi-

index α we define sα ∈ ON+1
Kp

by:

∇F (s0)(sα) = −Fα
(
(sγ : γ < α)γ6α

)
.

This definition is unique up to the addition of an element of ker(∇F (s0)).

Theorem 5.14 (Generalisation of Theorem 5.10). The ith set of lifts is given by:

Si =

c0

 i−1∑
j=0

∑
|α|=j

πjcαŝα

+ πiy

∣∣∣∣∣
c0 ∈ OK ,

c0 6≡ 0 mod p,

c = (c1 . . . , cD) ∈ ODK ,
y ∈ ON+1

K

 .

Proof. We know from page 50 and Lemma 5.13 that S1 and S2 are of the form

given in the statement of the Theorem. We proceed by induction. Assume that the

(i− 1)th set of lifts is given by

Si−1 =

c0

 i−2∑
j=0

∑
|α|=j

πjcαŝα

+ πi−1y

∣∣∣∣∣
c0 ∈ OK ,

c0 6≡ 0 mod p,

c = (c1 . . . , cD) ∈ ODK ,
y ∈ ON+1

K

 .

If x ∈ Si−1, then x ∈ Si if and only if F (x) ≡ 0 mod pi. We perform a Taylor

expansion on F :

F (x) = F

c0

 i−2∑
j=0

∑
|α|=j

πjcαŝα

+ πi−1y


≡ F

c0

 i−2∑
j=0

∑
|α|=j

πjcαŝα

+∇F

c0

 i−2∑
j=0

∑
|α|=j

πjcαŝα

 (πi−1y) mod pi

≡ cdeg(F )−1
0

c0F

 i−2∑
j=0

∑
|α|=j

πjcαŝα

+ πi−1∇F (ŝ0)(y)

 mod pi.

Therefore F (x) ≡ 0 mod pi if and only if

πi−1∇F (ŝ0)(y) ≡ −c0F

 i−2∑
j=0

∑
|α|=j

πjcαŝα

 mod pi. (5.6)
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Expanding part of the right hand side using Lemma 5.11, we have

F

 i−2∑
j=0

∑
|α|=j

πjcαŝα

 ≡ i−1∑
j=0

∑
|α|=j

cαπjFα
(
(ŝγ : |γ| 6 i− 2)γ6α

)
mod pi

=
i−2∑
j=0

∑
|α|=j

cαπjFα
(
(ŝγ)γ6α

)
+

∑
|α|=i−1

cαπi−1Fα
(
(ŝγ : γ < α)γ6α

)
.

By the definition of the sα and Lemma 5.12 we know that

Fα
(
(sγ)γ6α

)
= 0,

for each α. Therefore Congruence 5.6 becomes

∇F (ŝ0)(y) ≡ −c0

∑
|α|=i−1

cαFα((ŝγ : γ < α)) mod p.

From the definition of the sα, we know that this congruence holds if and only if

y = c0

∑
|α|=i−1

cαŝα +

D∑
i=0

aiŝi + πy′

for some y′ ∈ ON+1
K and ai ∈ OK . After relabelling constants, we see that x ∈ Si if

and only if

x = c0

 i∑
j=0

∑
|α|=j

cαπj ŝα + πi+1y


for some c0 ∈ OK , c0 6≡ 0 mod p, c ∈ ODK and y ∈ ON+1

K , as required.

5.6 Implementation

The vectors sα have been defined p-adically, and the ŝα have been given as arbitrary

truncations of the vectors sα, where the p-adic precision (that is, an exponent m so

that we work modulo pm) depends on the context. In practice, we can only work

to a finite p-adic precision to construct each of the ŝα. Each ŝα will be constructed

by solving a congruence modulo p and Hensel lifting that solution to the required

p-adic precision. It would be highly preferable to fix the p-adic precision at the

start, for two main reasons.
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1. Each sα depends on all sγ such that γ < α. We will need to calculate ŝ0 to the

highest precision we use. If we decided to increase the precision after some of

the ŝα had been calculated, this would require a recalculation of every vector.

2. Fixing the p-adic precision will aid the calculation of the Fα((yγ)γ6α). Al-

though we can perform Taylor expansions on power series (see Equation 5.1),

finding explicit expressions in terms of H i for each Fα will be tricky. It

is simple to fix a p-adic precision m and evaluate F (
∑m

i=0

∑
|α|=i c

αyα) ∈
OK [c1, . . . , cD, (yα)|α|6m]. Terms with coefficient cα will then form Fα.

In Section 6.3 we will discuss our strategy for choosing an appropriate p-

adic precision. This p-adic precision will coincide with the label i of Si; the set Si

contains piON+1
K so no vector in Si need be defined to greater p-adic precision than

i.

5.7 Interpretation of sets of lifts

The construction of the sets of lifts Si involves passing to the p-adic completion OKp

of OK via Hensel lifting (Proposition 5.5). The fact that V (K) ⊆ V (Kp) underpins

our method of finding representatives for points of V (K). In this section we will

discuss V (Kp) and relate sets of representatives for points of V (Kp) to the sets of lifts

we have constructed, which are sets of possible representatives for points of V (K).

Each representative of a point of V (Kp) must satisfy the defining polynomials F of

V modulo every power of p.

Every point of V (Kp) can be reduced modulo p to a point in V (Fp). Re-

duction modulo p on V (Kp) partitions points of V (Kp) into certain disjoint residue

discs, each one associated to a point of V (Fp). For each P̄ ∈ V (Fp) we construct a

lift s0 ∈ ON+1
Kp

of P̄ such that F (s0) = 0. The vector s0 is a representative of a point

of V (Kp) and all other integral representatives in ON+1
Kp

of this point are given by

c0s0 for some c0 ∈ OKp . The residue disc of V (Kp) corresponding to P̄ is the set of

points in V (Kp) that have a representative x satisfying vp(x − s0) > 1. We aim to

find all p-primitive representatives of such points. The set of p-primitive represen-

tatives for the residue disc of PN (Kp) at P̄ contains the residue disc of V (Kp) at P̄

and is given by

S1 =
{
c0(s0 + πy) | c0 ∈ OKp , c0 6≡ 0 mod p, y ∈ ON+1

Kp

}
.

We note that S1 ∩ON+1
K = S1. The subset of S1 whose elements satisfy F is the set

of all p-primitive representatives in ON+1
Kp

of points of V (Kp) that lie in the residue
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disc represented by P̄ .

By solving each Fα to find the vectors (sα) we construct sets

Si =

c0

 i∑
j=0

∑
|α|=j

πjcαsα

+ πi+1y

∣∣∣∣∣
c0 ∈ OKp ,

c0 6≡ 0 mod p,

c ∈ ODKp
,

y ∈ ON+1
Kp

 ,

that satisfy

ON+1
Kp

⊃ S1 ⊃ · · · ⊃ Si−1 ⊃ Si ⊃ . . . .

The set Si is the subset of S1 (p-primitive representatives for the residue disc of

PN (Kp) given by P̄ ) whose elements satisfy F modulo pi+1.

The set of convergent infinite sums

S∞ =

c0

 ∞∑
j=0

∑
|α|=j

πjcαsα

 ∣∣∣∣∣ c0 ∈ OKp , c0 6≡ 0 mod p, c ∈ ODKp

 ,

gives an analytic parametrisation of p-primitive representatives of the residue disc

of V (Kp) given by P̄ . S∞ is the limit of the sequence of Si; alternatively we could

see the Si as truncations modulo pi+1 of S∞.

The set of all p-primitive representatives in ON+1
Kp

of points on V (Kp) is

easier to describe than for V (K) because, in general, the infinite sums of S∞ do not

converge in ON+1
K . For each i, the set Si is Si ∩ ON+1

K or the set of ON+1
K points

in the truncation of S∞ modulo pi+1. As we truncate sα to obtain ŝα, we discard

information about V (Kp).
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Chapter 6

Constructing lattices of lifts

from sets

6.1 OK-lattices

In correspondence with the classical notion of Z-lattices as finitely generated free

Z-modules, we define OK-lattices.

Definition 25. An OK-lattice M is a finitely generated, torsion-free module over

OK .

Much of the theory of OK-lattices that we will see applies more generally to

modules over Dedekind domains. The first chapter of [6] provides a good introduc-

tion and the standard results given here may be found there.

A lattice over Z is endowed with an associated quadratic form which deter-

mines length and angles for vectors in the lattice; our OK-lattices will have length

defined by the T2-norm as introduced in Chapter 3. This differs from the classi-

cal Z-lattice case as T2(x, y) is not generally a K-bilinear form on Kn and so the

T2-norm is not a quadratic form on Kn. Because OK is itself a finitely generated

torsion-free Z-module, an OK-module may also be viewed as a Z-lattice with the T2-

norm inducing the quadratic form. This is a valid quadratic form because T2(x, y)

is a Q-bilinear form on (Qd)n ∼= Kn.

Although Z-lattices are always free, this is not the case for OK-modules,

which may be torsion-free without being free if OK is not a principal ideal domain.

Therefore if M is an OK-lattice we cannot necessarily provide a basis for M ; this

motivates the use of a pseudo-basis.

Lemma 6.1 (Corollary 1.2.25 of [6]). If M is an OK-lattice, there exist elements
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a1, . . . , an ∈M and fractional ideals a1, . . . , an of OK such that

M = a1a1 ⊕ · · · ⊕ anan.

Such a set (ai, ai) is called a pseudo-basis for M . We may think of M as an

abstract OK-module M ' ⊕ni=1ai with n equal to the rank of M . The ideal class of∏
i ai is independent of the choice of pseudo-basis and is called the Steinitz class

of M . (This is Corollary 1.2.25 of [6].) M is free if and only if its Steinitz class is

principal.

Lemma 6.2 (Prop 1.4.2 of [6]). The pseudo-basis of an OK-lattice is not unique.

Let (ai, ai) and (bj , bj) be two pseudo-bases for an OK-lattice M and let U be the

matrix giving the bj in terms of the ai. Then
∏
i ai = (det(U))

∏
j bj.

To state the definition and algorithm of LLL-reduction for Z-lattices, one

requires Gram-Schmidt orthogonalisation as described on page 82 of [5]. We extend

this definition to KR-vectors; this will be used when we discuss lattice reduction in

Chapter 8.

Definition 26. Let (bi, bi)i be a pseudo-basis for an OK-lattice M ⊂ Kn
R. Then the

Gram-Schmidt orthogonalisation of the pseudo-basis vectors bi may by defined

inductively by

b∗i = bi −
∑
j<i

µijb
∗
j ,

where µij is given by

µij =
T2(bi, b

∗
j )

T2(b∗j , b
∗
j )
.

The vectors b∗i lie in Kn
R, the KR-span of {b∗i }16i6m is equal to that of {bi}16i6m

and they are orthogonal: T2(b∗i , b
∗
j ) = 0 for all i 6= j.

6.1.1 Index-ideals of sub-lattices

We will use the structure of torsion modules over OK to help us to understand the

index of a sub-lattice in the setting of OK-lattices. This material can be found in

Section 1.2.2 of [6].

Let T be a finitely generated torsion module over OK . Then there exist

elements a1, . . . , an ∈ T and non-zero integral ideals d1, . . . , dn not equal to OK
such that

T = (OK/d1)a1 ⊕ · · · ⊕ (OK/dn)an,
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and di−1 ⊂ di for each 2 6 i 6 n. The di are unique and depend only on the

isomorphism class of T . The product of these ideals
∏
i di is called the order-ideal

of T .

Let M ⊃ L be OK-lattices with the same rank. Then the quotient module

M/L is a torsion OK-module. The order-ideal of M/L will be called the index-

ideal of L in M and will be denoted [M : L]. If M ⊃ L ⊃ N are all of the same

rank, then their index-ideals satisfy

[M : N ] = [M : L][L : N ].

We can construct a special pseudo-basis to relate an OK-lattice and a sub-lattice.

Lemma 6.3 (Theorem 1.2.35 of [6]). Let M ⊃ L be two OK-lattices of rank n.

Then there exist a pseudo-basis (ai, ai) for M and integral ideals d1, . . . , dn such

that (ai, diai) is a pseudo-basis for L and
∏
i di = [M : L].

Lemma 6.4. Let M ⊂ OnK be an OK-lattice of full rank. If M is given by a

pseudo-basis (bi, bi) and B is the n× n matrix whose rows are the bi, then

[OnK : M ] = 〈det(B)〉
∏
i

bi.

Proof. We know from Lemma 6.3 that there exists a pseudo-basis (ai, ai) of OnK and

integral ideals di such that (ai, diai) is a pseudo-basis for M . Therefore we have that

[OnK : M ] =
∏
i

di.

Let A be the matrix with rows given by the ai. To prove the statement for (ai, diai)

it will be enough to show that 〈det(A)〉
∏
i ai = OK . OnK has a standard pseudo-

basis (ei,OK). A has full rank and its inverse A−1 is the change-of-basis matrix

between the ai and ei. From Lemma 6.2 we see that
∏
i ai = 〈det(A−1)〉OK and we

can conclude that

〈det(A)〉
∏
i

ai = 〈det(A)〉〈det(A−1)〉OK = OK .

It follows quickly from Lemma 6.2 that the result holds for all pseudo-bases of

M .
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6.2 Lattices of lifts

We now construct some particular OK-lattices which we call lattices of lifts. We

first recall what we mean by a set of lifts. Let V be a variety of dimension D

defined by polynomials F in OK [X0, . . . , XN ]. Let p be a good prime for V which

has degree one and is principal and let P̄ be a smooth point on the reduced curve

V̄ (Fp). Then the ith set of lifts, Si, is the set of vectors x ∈ ON+1
K that are lifts of P̄

mod p and which satisfy F (x) ≡ 0 mod pi. Si is defined by a sequence of vectors

(ŝα)|α|6i−1 ∈ O
N+1
K whose construction is explained in Chapter 5. Si is given by

Si =

c0

 i−1∑
j=0

∑
|α|=j

πjcαŝα

+ πiy

∣∣∣∣∣ c0 ∈ OK , c0 6≡ 0 mod p, c ∈ ODK , y ∈ ON+1
K

 .

We will define lattices of lifts from these sets.

Definition 27. Let Si be a set of lifts as defined above. Then the ith lattice of

lifts, Li, is the OK-submodule of ON+1
K generated by{

π|α|ŝα

}
|α|6i−1

and πiON+1
K .

We will see later that Li is free. A key part of the the method of finding points via

lattice reduction explained in Chapter 8 is to construct a lattice Li for which the

norm of the index-ideal of Li in ON+1
K is bounded below. To achieve this, we must

find out more about the index-ideal of Li.

Proposition 6.5. The index-ideal of Li in ON+1
K (also called the index of Li) is

pmi for some mi 6 i(N + 1).

Proof. Because Si is contained in ON+1
K , we have

ON+1
K ⊃ Li ⊃ piON+1

K .

The index of piON+1
K in ON+1

K is
[
ON+1
K : piON+1

K

]
= (pi)N+1. Multiplicativity of

indexes shows that

[ON+1
K : Li][Li : piON+1

K ] = [ON+1
K : piON+1

K ] = pi(N+1). (6.1)
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When (bi, bi) is a pseudo-basis for Li, Lemma 6.4 shows that

〈det(b1, . . . , bn)〉
∏
i

bi = [OnK : Li] = pmi .

Since 〈det(b1, . . . , bn)〉 is a principal ideal,
∏
i bi is principal and Li is free.

We now wish to find bounds on mi. Recall that φD(j) is the number of

multi-indices on deg(V ) coefficients of degree j; we shorten this to φ(j).

Theorem 6.6. The index-ideal of Li is pmi, where

i(N + 1) > mi > i(N + 1)−
i−1∑
j=0

φ(j)(i− j).

Proof. We start with the assumption that the set of ŝα for |α| 6 i−1 form a linearly

independent set mod p. In particular, each of them is p-primitive. Consider the

image of the module generated by {π|α|ŝα}|α|6i−1 in ON+1
K /piON+1

K . This is the

same as Li/p
iON+1

K and is generated by the images of the π|α|ŝα.

The span of the image of π|α|ŝα in ON+1
K /piON+1

K is a finite OK-module

isomorphic to

π|α|OK/pi ' OK/pi−|α|.

Therefore, the index of piON+1
K in Li is given by

[
Li : piON+1

K

]
=

i−1∏
j=0

∏
|α|=j

pi−j =
i−1∏
j=0

(pi−j)φ(j) =
i−1∏
j=0

pφ(j)(i−j),

and hence we have

[
ON+1
K : Li

]
=

[
ON+1
K : piON+1

K

]
[
Li : piON+1

K

] = pi(N+1)−
∑i−1
j=0 φ(j)(i−j).

If the ŝα are linearly dependent mod p there may be linear relations amongst

the images of the π|α|ŝα in ON+1
K /piON+1

K . These may reduce the rank of the image

of the module generated by {π|α|ŝα}|α|6i−1 or reduce the exponent in the index of a

generator. Either of these would reduce the exponent of p in the index [Li : piON+1
K ]

so that it is less than
∑i−1

j=0 φ(j)(i − j). Therefore the minimal possible exponent

of p in [ON+1
K : Li] is i(N + 1)−

∑i−1
j=0 φ(j)(i− j). Proposition 6.5 gives the upper

bound on mi.
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6.3 Implementation

6.3.1 p-adic precision

In Section 5.6 we discussed the need to construct the vectors ŝα using a fixed finite

p-adic precision and noted that this precision matches the label i of Si and Li. Now

that we know how the exponent of p in the index-ideal of a lattice of lifts arises we

are ready to discuss what this p-adic precision should be.

For a fixed prime p it is to our benefit to construct a lattice with as large an

exponent of p in the index-ideal as possible. If we find points by lattice enumeration

as in Chapter 7, a large exponent means a sparse lattice with few points to check.

Let ψ(j) indicate the number of linearly independent vectors added at stage

j of the construction of vectors ŝα. If, at stage j, fewer than N linearly independent

vectors ŝα have been constructed, by continuing to stage j + 1 we increase the

exponent of p. The p-adic precision we wish to use is k, where k is minimal such

that
k∑
j=0

ψ(j) > N.

If we fix this k then in constructing Sk we generate at least N linearly independent

vectors π|α|ŝα. To proceed on to stage k + 1 would add vectors πkŝα for |α| = k,

but these vectors were already in Lk as they are contained in pkON+1
K .

For a variety of dimension D there are φD(j) new vectors constructed at

stage j. For each j, we know that ψ(j) 6 φD(j). We note that ψ(j) = φD(j) for

j = 0 or 1, as these vectors are chosen to be a basis for ker(∇F (ŝ0)) and therefore are

linearly independent. Beyond this, we do not know whether there will be any linear

dependence between the ŝα before we construct them and so we cannot guarantee

choosing the optimal precision. We use φD(j) as a substitute for ψ(j) when we

attempt to choose our p-adic precision. The time required to perform extra Hensel

lifting steps on each vector is likely to be small compared to other steps in the point-

finding algorithm, so an attempt to overestimate k would not be very detrimental to

timing and in some cases could have significant benefits. On this basis, we propose

using p-adic precision k, where k is minimal such that

k∑
j=0

φD(j) > N + 2.

The frequency of linear dependence between the ŝα may merit further investigation.

60



6.3.2 Constructing a lattice from a set

We have defined the Li by using the vectors ŝα that were constructed in Chapter 5.

However, to be able to compute further with Li we need to construct a pseudo-basis

of Li.

One way to generate a basis of a Z-lattice from a generating set is to apply

the Hermite normal form (HNF) algorithm to find an upper-triangular basis. We

may specify an OK-lattice over a principal ideal domain using a basis rather than

a pseudo-basis—in this case there is a HNF algorithm that works in the same way

as the one over Z. If we work carefully we may use this version of HNF to find a

basis for Li even when OK is not a principal ideal domain. By including piON+1
K

in the generating set of the lattice we ensure that ideals generated from entries in

columns of the matrix during the HNF process are principal: such ideals divide pi

so they must be powers of the principal prime p. This overcomes the only way in

which such a HNF algorithm may fail for number fields with class number greater

than 1 and is an important reason to choose a principal prime ideal (as in Chapter

4).
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Chapter 7

Points from lattices via Z-lattice

enumeration

In Chapters 5 and 6 we explained how to construct OK-lattices of lifts Li for a

variety V ⊂ PN (K). These lattices contain representatives for all rational points of

V . As explained in Chapter 3, rational points in PN (K) of height 6 BH correspond

to vectors of length 6 BL in ON+1
K . To find rational points of V we search for such

points in Li.

In this chapter we will consider the problem of finding points of bounded

T2-norm in an arbitrary OK-lattice M ⊂ OnK . In Section 7.4 we will give a few

remarks that apply to the case M = Li, but the majority of this chapter will be

quite general.

One way to find points in an OK-lattice is to “restrict scalars”, i.e., to con-

sider an OK-lattice of rank n as a Z-lattice of rank nd. Efficient enumeration of

Z-lattice points has already been implemented in several computer algebra packages.

We will explain how to convert our OK-lattice to a Z-lattice with the same T2-norm.

Although all of the numbers involved are algebraic and may be described exactly

in a computer algebra system, to do so would be expensive. Existing Z-lattice enu-

meration implementations take floating-point real input in which the real numbers

involved are given to finite precision. If it is necessary to prove that all points up to

a certain height have been found, it is important to deal with matters of precision

to ensure that no points are missed.
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7.1 A Z-lattice from an OK-lattice

Let K be a number field of degree d and let M be an OK-lattice of rank n given

by a pseudo-basis M = ⊕ni=1bibi. Let T2 be the function on vectors of Kn
R given by

T2(x, y) =
∑n

i=1

∑d
k=1 σk(xi)σ̄k(yi). As ideals of OK are clearly Z-modules of rank

d, we may write bi = ⊕dj=1Zβi,j and so M = ⊕i,jZβi,jbi as a Z-module. For clarity

in what follows, we relabel these basis vectors so that M = ⊕ndi=1Zbi. T2 provides a

quadratic form to allow us to view the Z-module M as a Z-lattice. We may think of

the Z-lattice M as Znd ⊂ Rnd with an inner product given by the positive-definite,

symmetric matrix T := (T2(bi, bj))ij . Although T2 is not an inner product on Kn
R or

Kn as it is not KR- or K-bilinear, it is Q-bilinear and does provide an inner product

on Rnd.
We encounter issues of precision and accuracy in the construction of the ma-

trix T that we need to consider. The images of elements of K under embeddings σk

of K into C are algebraic numbers, to be represented with finite precision. We wish

to find all x ∈ Znd such that xtTx 6 BL for a vector length bound BL. Approxi-

mating T without adjusting BL could mean that some such points are missed. The

next section will explain the precision and the length bound adjustment needed so

that provably all points of T2-norm less than or equal to BL are found. In practice

our vector length bound BL for vectors in a lattice of lifts will be derived from a

bound on height as explained in Chapter 3.

7.2 Precision

The aim of this chapter is to show how to explicitly compute T . The algorithm will

be presented on page 69 in Algorithm 2 and we will prove the following theorem.

Theorem 7.1. Let η > 1. Then there exists an explicitly calculable ε > 0 such

that if ε is the unit roundoff on floating-point operations, Algorithm 2 constructs an

approximation S to the matrix T := (T2(bi, bj))ij such that if x satisfies xtTx 6 BL,

then xtSx < ηBL.

To make this precise, we will need some facts about floating-point arithmetic.

7.2.1 Unit roundoff, precision and matrix entry precision

This material can be found in the early chapters of [18]. Fix positive integers p

and emax and a negative integer emin. Then we define the floating-point approx-

imation flp(x) of x ∈ R to be the nearest number of the form ±m2e−p to x, where
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0 6 m 6 2p − 1 and emin 6 e 6 emax. (We assume that ties are dealt with so

that every x in the range available has an unique floating-point approximation.)

The precision p is the number of binary digits used to represent the mantissa, m.

IEEE double precision arithmetic is a standard format for floating-point arithmetic;

here we have p = 53, emin = −1021 and emax = 1024. We define the unit roundoff

in terms of the precision by ε = 2−p. Every x ∈ R in the range allowed by our

floating-point system can be approximated by a floating-point number with relative

error no more than ε. For t ∈ Z we define γt = tε
1−tε and will assume in all cases

that tε < 1. This is entirely reasonable as t will always be less than or equal to nd

in our applications and IEEE double precision arithmetic has ε ≈ 10−16.

Lemma 7.2. 1. ([18], Theorem 2.2) For any a ∈ R in the range of our floating-

point system,

fl(a) = a(1 + c) for some |c| < ε.

2. ([18], Section 2.2) If a, b ∈ R are exactly floating-point numbers, i.e. fl(a) = a

and fl(b) = b, then

fl(ab) = ab(1 + c′) for some |c′| < ε.

3. ([18], Problem 4.3) If xi are given exactly by floating-point numbers and sn =∑n
i=1 xi, then fl(sn) =

∑n
i=1(1 + di)xi for some |di| 6 γn−1.

We will now bound the relative error in matrix entries. If S is an approx-

imation to the matrix T calculated in floating-point arithmetic with unit roundoff

ε, we wish to bound |Sij − Tij |/|Tij |. The entry Tij ∈ R is given by T2(bi, bj) =∑
k

∑
m σk(bi,m)σ̄k(bj,m), where bi,m denotes the m-th coordinate of vector bi.

Lemma 7.3. A floating-point approximation S of T calculated with unit roundoff ε

satisfies
|Sij − Tij |
|Tij |

<
(1 + ε)3

(1− ε(d− 1))(1− ε(n− 1))
− 1.

Proof. We will denote error terms by c (for errors bounded by ε) and d (for errors

bounded by some γt) as in Lemma 7.2, with subscripts matching the operation or

number to which the error relates.
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|Sij − Tij | = |fl(Tij)− Tij |

=

∣∣∣∣∣fl
(∑

k

∑
m

σk(bi,m)σ̄k(bj,m)

)
−
∑
k

∑
m

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∑
m

(1 + dm)(1 + dk)fl (σk(bi,m)σ̄k(bj,m))

−
∑
k

∑
m

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∑
m

(1 + dm)(1 + dk)(1 + ck,i,j,m)fl(σk(bi,m))fl(σ̄k(bj,m))

−
∑
k

∑
m

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∑
m

(1 + dm)(1 + dk)(1 + ck,i,j,m)(1 + ck,i,m)(1 + ck̄,j,m)σk(bi,m)σ̄k(bj,m)

−
∑
k

∑
m

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
=

∣∣∣∣∣∑
k

∑
m

(
(1 + dm)(1 + dk)(1 + ck,i,j,m)(1 + ck,i,m)(1 + ck̄,j,m)− 1

)
×

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
<
(
(1 + γn−1)(1 + γd−1)(1 + ε)3 − 1

) ∣∣∣∣∣∑
k

∑
m

σk(bi,m)σ̄k(bj,m)

∣∣∣∣∣
=
(
(1 + γn−1)(1 + γd−1)(1 + ε)3 − 1

)
|Tij |

=

(
(1 + ε)3

(1− ε(d− 1))(1− ε(n− 1))
− 1

)
|Tij |

The bound is small when ε is small. This result will allow us to choose a suitable

unit roundoff ε for a required matrix entry precision
|Sij−Tij |
|Tij | < δ.

7.2.2 Adjusted length bounds

We collect some useful results from the theory of matrices. If A is a matrix with real

entries Aij then the Frobenius norm of A is given by ‖A‖ =
(∑

i

∑
j |Aij |2

) 1
2
. If A
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is a symmetric n×n matrix we denote the eigenvalues of A by λ1(A) 6 . . . 6 λn(A).

Lemma 7.4 (Fact 1.11 and Inequality (1.30) of [25]). For symmetric matrices A

and B,

max
j
|λj(A)− λj(B)| 6 ||A−B||

where ||.|| denotes the Frobenius norm on matrices.

Parlett describes this result in [25] by saying that eigenvalues are “perfectly

conditioned”. This is not the case for non-symmetric matrices.

Lemma 7.5. Let A and B be matrices such that |Aij − Bij | < ν|Aij | for some

0 < ν < 1. Then we have the bound

|Aij | <
|Bij |
1− ν

.

If, furthermore, A and B are both symmetric, then

λj(B)− ν

1− ν
||B|| < λj(A).

Proof. The first part is a simple application of the triangle inequality:

|Aij | 6 |Aij −Bij |+ |Bij |

< ν|Aij |+ |Bij |.

As 0 < ν < 1,

(1− ν)|Aij | < |Bij |

and the conclusion follows.

For the second part we use Lemma 7.4 to show that

λj(B)− ||A−B|| 6 λj(A) 6 λj(B) + ||A−B||.

We apply the matrix entry precision and the first part of the Lemma to the norm

of A−B:

||A−B|| =

∑
i,j

|Aij −Bij |2
1/2

<

∑
i,j

(ν|Aij |)2

1/2
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||A−B|| <

∑
i,j

(
ν

1− ν
|Bij |)2

1/2

=
ν

1− ν

∑
i,j

|Bij |2
1/2

=
ν

1− ν
||B||.

Therefore,

λj(B)− ν

1− ν
||B|| < λj(B)− ||A−B|| 6 λj(A)

Lemma 7.6. Let A be a positive definite symmetric matrix, BL > 0 a real number

and x a real vector such that xtAx 6 BL. Then each entry xj of x satisfies

|xj |2 6
BL
λ1(A)

.

Proof. We may diagonalise A; there exist a unitary matrix U and a diagonal matrix

D such that A = U tDU . Note that because A is positive definite its eigenvalues

are all strictly positive; therefore the diagonal entries of D are also strictly positive.

Let y be equal to Ux. Because U is unitary, |x| = |y|.
Because xtAx 6 BL, we have (Ux)tD(Ux) 6 BL, so y satisfies ytDy 6 BL.

This leads us to see that

xtAx = ytDy =
∑
i

Diiy
2
i 6 BL.

The diagonal entries of D are the eigenvalues Dii = λi(A) of A. We consider the

smallest eigenvalue and see that λ1(A)
∑

i y
2
i 6 BL and that

∑
i y

2
i = |y|2 = |x|2. We

conclude that |x|2 6 BL
λ1(A) . This bound applies to each entry of x: |xj |2 6 BL

λ1(A) .

7.3 Approximating the Gram matrix

We can now calculate a floating-point approximation to T and find the resulting

error in the T2-norm.

Theorem 7.7. Let T be a positive definite symmetric matrix and let BL satisfy

BL > 0. Then for all η > 1 there exists a δ > 0 such that if |Sij − Tij | < δ|Tij | for
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all i and j then we have

|xtSx− xtTx| < (η − 1)BL,

for every x such that xtTx 6 BL.

Proof. For all x, we can estimate the error in terms of T and x:

|xtTx− xtSx| =

∣∣∣∣∣∣
∑
i,j

Tijxixj −
∑
i,j

Sijxixj

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

(Tij − Sij)xixj

∣∣∣∣∣∣
6
∑
i,j

|Tij − Sij | |xi||xj |

<
∑
i,j

δ|Tij ||xi||xj |.

Choose a positive-definite symmetric matrix S◦ with entry-wise precision

|S◦ij−Tij | < ν|Tij | for some 0 < ν < 1. We may always choose S◦ so that λmin(S◦)−
ν

1−ν ||S
◦|| > 0 by choosing ν to be small. We label l(S◦) = λmin(S◦) − ν

1−ν ||S
◦|| .

This S◦ only needs to satisfy these conditions; it is not our final approximation to

T . We use the first part of Lemma 7.5 to bound the error in terms of S◦:

|xtTx− xtSx| <
∑
i,j

δ
|S◦ij |
1− ν

|xi||xj | =
δ

1− ν
∑
i,j

|S◦ij ||xi||xj |.

We may bound the size of |xi| and |xj | using Lemma 7.6, concluding that

|xtTx− xtSx| < δ

1− ν
∑
i,j

|S◦ij |
BL
λ1(T )

=
δ

1− ν
BL
λ1(T )

∑
i,j

|S◦ij |,

for all x such that xtTx 6 BL. We wish to find a δ that satisfies δ
(1−ν)λ1(T )

∑
i,j |S◦ij | 6

η − 1. Everything on the left-hand-side of this inequality is already known apart

from λ1(T ). Here, we employ Lemma 7.4, applied to T and S◦. Let λmin be a lower

bound for the eigenvalues of S◦: λ1(S◦) > λmin(S◦) > 0. By Lemma 7.5 we have

λmin(S◦)− ν

1− ν
||S◦|| < λ1(T ).
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Choose a δ > 0 such that

δ 6 (η − 1)(1− ν)
l(S◦)∑
i,j |S◦ij |

. (7.1)

Then the inequality

|xtTx− xtSx| < δBL
(1− ν)l(S◦)

∑
i,j

|S◦ij | 6 (η − 1)BL,

holds for all x such that xtTx 6 BL.

We may find an approximation S to the Gram matrix T that satisfies the

matrix entry precision condition of Theorem 7.7 using the following algorithm. We

use flp to denote a floating-point approximation with precision p.

Algorithm 2: Approximation to T2 matrix with bounded length error

Input:

- Z-linearly independent vectors b1, . . . , bn with entries in K ,

- η > 1, an acceptable proportional increase in the length bound,

- p, default precision (unit roundoff = 2−p).

Output: - a matrix S that approximates T2, so that xtSx < ηxtT2x for all x.

Procedure:

For each embedding σk : K ↪→ C and entry bi,m of a vector bi:

calculate exactly and store σk(bi,m) and σ̄k(bi,m).

Set S◦ ←
(
flp (
∑

m

∑
k σk(bi,m)σ̄k(bj,m))

)
ij

, calculated with precision p from

exact values.

While S◦ is not positive definite or l(S◦) 6 0:

increase p and go to previous step.

Find δ > 0 satisfying inequality 7.1.

Find ε > 0 satisfying inequality 7.2.

If − log2(ε) 6 p:

set S ← S◦.

Else:

set p← d− log2(ε)e,
set S ← (flp(

∑
m

∑
k σk(bi,m)σ̄k(bj,m)))i,j calculated with precision p

from exact values.
Return S
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We now restate and prove the main result of this chapter:

Theorem 7.1. Let η > 1. Then there exists an explicitly calculable ε > 0 such

that if ε is the unit roundoff on floating-point operations, Algorithm 2 constructs an

approximation S to the matrix T := (T2(bi, bj))ij such that if x satisfies xtTx 6 BL,

then xtSx < ηBL.

Proof. Use the method outlined in the proof of Theorem 7.7 to find a δ > 0 that

satisfies the conclusion of that Theorem. Choose ε satisfying 1
nd > ε > 0 such that

0 <
(1 + ε)3

(1− ε(d− 1))(1− ε(n− 1))
− 1 6 δ. (7.2)

This is possible because for fixed n and d the expression tends to 0 as ε → 0 and

we can use a computer algebra system to solve this inequality. By Lemma 7.6 and

Theorem 7.7, the floating-point approximation S of T will have the property that

|xtSx− xtTx| < (η − 1)BL,

for all x such that xtTx 6 BL. We conclude that if xtTx 6 BL then

xtSx 6 xtTx+ |xtSx− xtTx| < ηBL.

Theorem 7.1 shows that Algorithm 2 provides a method of constructing a

floating-point approximation to T that approximates the T2-norm to within a pre-

scribed relative error. We will now consider some of the practical issues involved in

using Algorithm 2.

7.3.1 Adjusting precision

In Algorithm 2 we describe finding ε as in Theorem 7.1 corresponding to our chosen

η. We use a unit roundoff less than or equal to ε to construct a matrix S which

is an approximation to T with known accuracy. We construct the appropriate unit

roundoff by defining a precision p. As the precision is integral, we may find that

we need to overestimate the precision and therefore end up with a smaller ε than

expected. Considering Inequality 7.1, we can recalculate our η in view of this explicit

ε and so potentially reduce the length bound compared to what was expected. It

make sense to set p to be the usual double precision of 53 initially, increasing it only

if necessary.
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In fact, we may go further and consider this process in the other direction.

If we fix a precision p we can calculate a suitable η as follows. We still require a S◦

as constructed in the proof of Theorem 7.7. We use ε = 2−p to find a δ satisfying

Inequality 7.2 and then rearrange Inequality 7.1 to define a suitable proportional

error bound η. If the reason for fixing the precision is a limitation of the machine,

then we may struggle to construct a suitable S◦ as this may need an arbitrarily high

precision.

Although in theory we do not need our final approximation S to be positive

definite (the S output by Algorithm 2 satisfies Theorem 7.1 even if it is not), this will

be necessary for finding points. If S turns out not to be positive definite, we could

attempt to deal with this by increasing the working precision. However, if λ1(T )

is very small this could be difficult and require a restrictively high precision. A

possible solution would be to construct S using exact algebraic numbers, converting

to a floating-point version once the entries have been calculated. A drawback of this

would be that such exact arithmetic is likely to be slower in general than floating-

point arithmetic. An alternative idea would be to use a ridge adjustment: adding a

small quantity to all diagonal entries of S to force the matrix to be positive definite.

This would take some care and likely involve an adjustment to η, and has not yet

been implemented. We do require S to be positive definite to complete the lattice

enumeration step.

7.4 Finding points

After fixing p and η (and a positive-definite S) we know that all points x in our

lattice (a sub-lattice of OnK) such that ||x|| 6 BL satisfy xtSx < ηBL. We construct

the lattice in Magma [4] from the Gram matrix S and then use the ShortVectors

function to find all points with norm up to ηBL. The Magma function ShortVectors

allows the user to specify a minimum as well as a maximum norm for lattice points,

so this could be used to extend point searches whilst avoiding unnecessary repetition.

We could also use Pari’s [31] qfminim function to enumerate lattice points.

To do this in Sage [30] requires a small change from Sage 5.10 (the current version

at the time of writing), for which a patch has been created.1 This method will

be implemented soon. Further discussion of the use of lattice enumeration to find

rational points of V can be found in Chapter 9.

1This patch can be found at http://trac.sagemath.org/ticket/14867.
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Chapter 8

Points from lattices via lattice

reduction

Our aim in this chapter is to generalise a method given by Cremona and Roberts in

[11] for finding points on curves from lattices via lattice reduction. We will outline

the circumstances under which such a method might be applicable and discuss exist-

ing lattice reduction methods. Unfortunately this method is not always applicable

and we explore the issues that cause it to fail in certain cases.

Theorem 8.1. Let K be an imaginary quadratic field (with degree d = 2) and L an

OK-sub-lattice of OnK of rank n, with pseudo-basis (bi, bi) satisfying

Y1 6 N (bi) 6 Y2 (8.1)

and

||b∗n||Z1 > Z2||bi||, (8.2)

for all i and some fixed Y1, Y2, Z1, Z2 > 0, with b∗i denoting the Gram-Schmidt

orthogonalisation of bi, as in Definition 26 on page 56. If

N ([OnK : L]) > Z−dn2 d−
(Z1+1)dn

2 Y n
2 B

Z1dn
2

L Y −Z1n
1 2

Z1nd
2 , (8.3)

then every z ∈ L such that ||z||2 < BL lies in the submodule L0 of L given by

(bi, bi)
n−1
i=1 .

Despite the fact that imaginary quadratic number fields are the only ones

considered in this theorem, we retain the variable d as it allows us to see how

the theorem might be generalised in future. We will eventually use this result to
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construct points on curves in a manner analogous to that of Section 3.3 of [11] where

it applies. We first collect relevant information relating to norms on K.

Lemma 8.2. Let K be a number field of degree d. Let B ∈ Kn×n be of full rank

with rows b1, . . . , bn. Let N (x) denote the field norm of x. Then we have

dn/2N (det(B))1/d 6
n∏
i=1

‖bi‖.

Proof. Let the σk be the d embeddings of K into C. The definition of norm implies

that

N (det(B))2 =
d∏

k=1

σk(det(B))σ̄k(det(B)).

We use the notation bij for the jth coordinate of bi. The definition of T2-norm

says that ‖bi‖2 =
∑d

k=1

∑n
j=1 σk(bij)σ̄k(bij). By Hadamard’s inequality for complex

matrices (see page 51 of [5]), we may state that, for each embedding σk,

σk(det(B))σ̄k(det(B)) 6
n∏
i=1

n∑
j=1

σk(bij)σ̄k(bij).

Multiplying across all embeddings σk to bound the norm of det(B), we have

N (det(B))2 =

d∏
k=1

n∏
i=1

n∑
j=1

σk(bij)σ̄k(bij) =

n∏
i=1

d∏
k=1

n∑
j=1

σk(bij)σ̄k(bij).

We now apply the arithmetic mean-geometric mean inequality to show that

 d∏
k=1

n∑
j=1

σk(bij)σ̄k(bij)

1/d

6
1

d

d∑
k=1

n∑
j=1

σk(bij)σ̄k(bij),

d

 d∏
k=1

n∑
j=1

σk(bij)σ̄k(bij)

1/d

6
d∑

k=1

n∑
j=1

σk(bij)σ̄k(bij) = ‖bi‖2.
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Taking the product over all rows, we have

n∏
i=1

d

 d∏
k=1

n∑
j=1

σk(bij)σ̄k(bij)

1/d

= dn

 n∏
i=1

d∏
k=1

n∑
j=1

σk(bij)σ̄k(bij)

1/d

6
n∏
i=1

‖bi‖2.

Therefore, we have

dnN (det(B))2/d 6
n∏
i=1

‖bi‖2,

and the result follows.

Lemma 8.3. Let a be a non-zero element of a fractional ideal a. Then, ‖a‖2 >

dN (a)
2
d .

Proof. Note that N (x) =
√∏

k |σk(x)σ̄k(x)|. If a is non-zero in a then N (a) >

N (a). By the arithmetic mean - geometric mean inequality,

N (a)
2
d =

(∏
k

σk(a)σ̄k(a)

) 1
d

6
1

d

∑
k

σk(a)σ̄k(a) =
1

d
‖a‖2.

The result follows by combining the two inequalities.

Lemma 8.4. Let K be an imaginary quadratic field. Then for all x ∈ Kn
R and

a ∈ KR, we have

||ax||2 =
1

2
||a||2||x||2.

Proof. Let σ1 and σ2 be the two embeddings of K ↪→ C, extended to KR. The two

embeddings are complex conjugates, so we have

||a||2 =
∑
j

σj(a)σ̄j(a)

= σ1(a)σ̄1(a) + σ2(a)σ̄2(a)

= 2σ1(a)σ̄1(a) = 2σ2(a)σ̄2(a) = 2N (a).

Therefore, we have
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||ax||2 =
∑
i

∑
j

σj(axi)σ̄j(axi)

=
∑
i

∑
j

σj(a)σ̄j(a)σj(xi)σ̄j(xi)

=
∑
i

1

2
||a||2

∑
j

σj(xi)σ̄j(xi)

=
1

2
||a||2

∑
i

∑
j

σj(xi)σ̄j(xi)

=
1

2
||a||2||x||2.

This works because both of the embeddings of any element are of the same size.

We have now collected the results needed to prove Theorem 8.1.

Proof of Theorem 8.1. The combination of Lemma 8.3 and our bound on the norms

of ideals implies that ||a||2 > dY
2
d

1 for all non-zero a ∈ bi. By Lemma 6.4, it follows

that N ([OnK : L]) 6 N (〈det(b1, . . . , bn)〉)Y n
2 .

By Inequality 8.2, we see that ||b∗n||Z1n > Zn2
∏
i ||bi|| and therefore ||b∗n||2 >

Z
2
Z1
2 (

∏
i ||bi||)

2
Z1n . We then set up a chain of inequalities as follows:

1

2
dY

2
d

1 ||b
∗
n||2 >

1

2
dY

2
d

1 Z
2
Z1
2

(∏
i

||bi||

) 2
Z1n

>
1

2
dY

2
d

1 Z
2
Z1
2

(
d
n
2 (N (det(b1, . . . , bn)))

1
d

) 2
Z1n (by Lemma 8.2)

=
1

2
dY

2
d

1 Z
2
Z1
2 d

1
Z1

(
N (det(b1, . . . , bn))

) 2
Z1nd

>
1

2
dY

2
d

1 Z
2
Z1
2 d

1
Z1

(
N ([OnK : L])Y −n2

) 2
Z1nd

=
1

2
dY

2
d

1 Z
2
Z1
2 d

1
Z1 Y

− 2
Z1d

2 N ([OnK : L])
2

Z1nd

>
1

2
dY

2
d

1 Z
2
Z1
2 d

1
Z1 Y

− 2
Z1d

2

(
Z−dn2 d−

(Z1+1)dn
2 Y n

2 B
Z1dn

2
L Y −Z1n

1 2
Z1nd

2

) 2
Z1nd

=
1

2
dY

2
d

1 Z
2
Z1
2 d

1
Z1 Y

− 2
Z1d

2 Z
− 2
Z1

2 d
−Z1+1

Z1 Y
2
Z1d

2 BLY
− 2
d

1 2

= BL

> ||z||2.
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We have ||z||2 = ||
∑

i aibi||2 = ||
∑

i a
∗
i b
∗
i ||2 =

∑
i ||a∗i b∗i ||2 > ||a∗nb∗n||2 = ||anb∗n||2 =

1
2 ||an||

2||b∗n||2. We know that an = a∗n because the change of basis from bi to b∗i is

triangular.

Therefore 1
2dY

2
d

1 ||b∗n||2 > 1
2 ||an||

2||b∗n||2, which implies that an = 0 by Lemma

8.3. Therefore whenever ‖z‖2 6 BL, z is in L0, the submodule of L given by

(bi, bi)
n−1
i=1 .

8.1 Effective methods over number fields

There are two main differences that cause difficulties in extending Proposition 3.1

of Cremona and Roberts [11] to number fields. The first is the availability of a

suitable lattice basis reduction method. Several algorithms have been proposed

that attempt to generalise LLL reduction [21] to OK-lattices but not all of them

preserve the aspects of LLL reduction that we require for Theorem 8.1.

The second difference involves the T2-norm. When working over Q we use

the Euclidean norm: for pairs α ∈ R, x ∈ Rn it is clear that |αx| = |α||x|. Over

imaginary quadratic fields we can use Lemma 8.4 to relate ‖αx‖, ‖α‖ and ‖x‖. It is

unclear whether it is possible to prove such a result in general because the T2-norm

on Kn
R is sub-multiplicative: it is not a true norm.

8.1.1 Lattice reduction methods

We outlined our requirements of lattice reduction in the statement of Theorem 8.1:

we need a form of lattice reduction satisfying Inequalities 8.1 and 8.2. There have

been several attempts to generalise LLL reduction to the case of OK-lattices but not

all of them are suitable for our needs. We are not aware of any methods that satisfy

Inequalities 8.1 and 8.2 for every sub-lattice of ON+1
K defined over any number field.

The important property of LLL reduction used in Proposition 3.1 of [11] is

the “Lovász condition” which bounds the lengths of each b∗i vector in terms of the

next: |b∗i |2 > (3
4 − µ

2
i,i−1)|b∗i−1|2, with the µi,j bounded. (See Definition 2.6.1 of [5].)

This implies (Part 2 of Theorem 2.6.2, [5]) that |bj | 6 2
(i−1)

2 |b∗i | for 1 6 j 6 i 6 n,

repeated application of which allows us to deduce a lower bound on |b∗n| in the form

of Inequality 8.2. As noted by Cohen in [5], the 3
4 may be replaced by any constant

cL ∈ (1
4 , 1).

A Lovász-type condition would therefore be sufficient to satisfy Inequality 8.2

in Theorem 8.1. The lattice reduction algorithm outlined by Fieker and Pohst in

[14] contains what they call an “LLL condition” of this form. After an adjustment of

cL (though cL must remain strictly less than 1), this could give an effective Lovász
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condition if and only if a bound for µi,j can be found so that cL − µ2
i,i−1 > 0 for

each i. Fieker and Pohst state that this is not possible in general when cL = 3
4 . The

attempt to minimise µi,j is contained in the Red(k, l) step of Algorithm 2 of [14].

Consider the case in which the initial pseudo-basis has all ideals ai = OK .

This could well fit our situation as the lattices Li are always free. Then minimising

µi,j means to adjust µi,j ∈ KR by an element of OK . We may therefore bound |µi,j |
above by the maximum value of ‖x‖ for x in a fundamental domain for the action

of the lattice OK on KR. For certain Euclidean fields such a maximum is less than

1, which is necessary for the Lovász condition. The lattice reduction algorithm of

[14] does not change the ideals appearing in a pseudo-basis; these are the same in

the input and output.

Fieker and Pohst also provide a form of OK-lattice enumeration in [14]. The

main purpose of their lattice reduction algorithm is to improve performance of this

enumeration. Because we already have a method of Z-lattice enumeration detailed in

Chapter 7, we have not explored the use of this algorithm. Vectors in the OK-lattice

and Z-lattice are in one-to-one correspondence and arithmetic in number fields is

in general slower than over Z. The only source of benefit of using this OK-lattice

enumeration could be a reduction in the number of vectors found whose T2-norm is

greater than the bound specified. We do not yet know whether Fieker and Pohst’s

OK-lattice enumeration could achieve this kind of improvement.

A more recent form of lattice basis reduction by Fieker and Stehlé described

in [15] provides absolute bounds for the norms of ideals and bounds for the lengths of

basis vectors based on the successive lattice minima. It uses standard LLL reduction

on a full rank submodule of the Z-lattice corresponding to aOK-lattice but in general

does not follow closely the method of LLL. In particular, it has no Lovász-type

condition for us to use.

Napias has generalised the LLL algorithm to Euclidean rings in [23]. This

algorithm seems to be very similar to that of [14] but far less general. Euclidean

rings are always principal ideal domains, which provides an important simplification.

This is the only form of lattice basis reduction which we have found that we may be

able to use. We will show that this reduction will allow us to leave out the last vector

of a reduced basis, when applied to OK-lattices when K is imaginary quadratic and

OK is Euclidean. There are exactly five number fields satisfying these conditions:

Q(
√
−1),Q(

√
−2),Q(

√
−3),Q(

√
−7) and Q(

√
−11).

Proposition 8.5. Let K be an imaginary quadratic Euclidean number field. Then

the output of the lattice reduction for OK-lattices described by Napias in [23] satisfies

the conditions of Theorem 8.1.

77



Proof. For each of these five fields, the ring of integers is a Euclidean domain.

Euclidean domains are always principal ideal domains, so the five fields all have

class number 1 and every OK-lattice has a basis, not just a pseudo-basis. In Section

2 of [23], Napias describes properties of what she calls an “A-LLL-reduced” lattice

basis, where A is an Euclidean ring. In our cases we take A to be OK . Let C1 be

the Euclidean minimum of K, defined by

C1 = sup {inf {N (y − x) | x ∈ OK} | y ∈ KR} .

For each of the fields K = Q(
√
−1),Q(

√
−2),Q(

√
−3),Q(

√
−7) and Q(

√
−11), the

Euclidean minimum of OK is strictly less than 1 (see Section 4.1 of [19]). Let C2

be any real number satisfying 0 < C1 < C2 < 1. Then, part ii) of “Properties” in

Section 2 of [23] states that

||bi||2 6 (C2 − C1)1−j ||b∗j ||2 for 1 6 i 6 j 6 n,

for any b1, . . . , bn that form an A-LLL-reduced basis (with parameters C1 and C2)

for an OK-lattice. Therefore, (bi,OK)ni=1 forms a pseudo-basis for the OK-lattice

and this satisfies the conditions of Theorem 8.1.

Corollary 8.6. Let K be an imaginary quadratic Euclidean number field and let

L ⊂ ON+1
K be an OK-lattice such that

N ([ON+1
K : L]) > BN+1

L (C2 − C1)−N(N+1)2−(N+1).

If (bi)
N
i=0 is an “A-LLL-reduced” basis for L in the sense of [23] then every z ∈ L

such that ||z||2 < BL lies in the submodule L0 of L given by (bi)
N−1
i=0 .

Proof. By Proposition 8.5, we know that L satisfies the conditions of Theorem 8.1.

Therefore, it suffices to show that Inequality 8.3 holds for some Y1, Y2, Z1, Z2 > 0.

Let Y1 = Y2 = Z1 = 1, Z2 = (C2 − C1)
N
2 and d = 2. Then we see that

Z
−d(N+1)
2 d−

(Z1+1)d(N+1)
2 Y N+1

2 B
Z1(N+1)d

2
L Y

−Z1(B+1)
1 2

Z1(N+1)d
2 =

BN+1
L (C2 − C1)−N(N+1)2−(N+1),

and Theorem 8.1 provides the result.

We can therefore conclude that if K is one of the five imaginary quadratic

Euclidean number fields, there already exists a form of lattice reduction that allows

us to exclude the last vector when searching for points up to a given bound.
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The algorithm of Fieker and Pohst described in [14] is similar to that of [23],

and we expect that we could apply it to any lattice for which we can find suitable

bounds on µi,j to construct a Lovász condition. The conditions on number fields or

lattices required for this have not yet been fully investigated beyond the idea that

Euclidean fields are likely to be suitable: but this is simply the algorithm of [23].

The next section will explain why Theorem 8.1 is limited to imaginary

quadratic fields. If this restriction could be lifted, then use of the algorithm of

[23] could be extended to all Euclidean fields.

8.1.2 Norms, scalar multiplication and imaginary quadratic fields

Theorem 8.1 was stated only for imaginary quadratic number fields. In this section

we will explain why this is the case and discuss the difficulties involved in attempting

to extend this result to other fields.

The only part of the proof of Theorem 8.1 that requires K to be an imag-

inary quadratic number field is the use of Lemma 8.4 to bound ||z||2 below by
1
2 ||an||

2||b∗n||2. The proof of Lemma 8.4 relies on the fact that K is an imaginary

quadratic field, because imaginary quadratic fields are the only number fields apart

from Q that have a single infinite place. (For LLL reduction on lattices defined over

Q, Proposition 3.1 of [11] forms a version of Theorem 8.1.) The proof of Lemma 8.4

relies on the fact that when K is imaginary quadratic, for any a ∈ K the sizes of

both embeddings of a are the same: |σ1(a)| = |σ2(a)|. This gives a relationship

between the lengths of both of the embeddings of a given field element a, which in

turn allows them to be expressed in terms of the norm ||a||.
The following Lemma shows that such a relationship cannot be constructed

for arbitrary a ∈ K when K is a number field that is not imaginary quadratic. This

means that the idea used in the proof of Lemma 8.4 cannot be extended to other

number fields.

Lemma 8.7. Let K be a number field that is not Q or an imaginary quadratic

number field. Then for all ε > 0 there exists an embedding σ : K ↪→ C and a

non-zero element x ∈ OK such that |σ(x)| < ε.

Proof. Choose any ε > 0. Let K be a number field and fix α1, . . . , αd an integral

basis for K. The set {αi}di=1 is Q-linearly independent.

Let σ : K ↪→ C be any embedding of K. Then σ is an injective Q-linear map,

so in particular the set {σ(αi)}di=1 must be Q-linearly independent. The complex

numbers form a real vector space of dimension 2. So if d > 2 or if d = 2 and K is real
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quadratic (so that σ : K ↪→ R) then the set of {σ(αi)}di=1 are R-linearly dependent,

since d exceeds the dimension of the codomain of σ as a real vector space.

Choose δ > 1
ε

∑d
i=1 |σ(αi)|. By the R-linear dependence of the σ(xi) there

exist a1, . . . , ad ∈ R, not all zero, satisfying

a1σ(α1) + · · ·+ adσ(αd) = 0.

Using a multi-dimensional version of Dirichlet’s Approximation Theorem (see The-

orem 201 of [16]), there exist q, p1, . . . , pd ∈ Z such that

|qai − pi| <
1

δ
,

for each i = 1, . . . , d, with not all of the pi equal to 0. Therefore, we have

|σ(p1α1 + · · ·+ pdαd)| = |q(a1σ(α1) + · · ·+ adσ(αd))− σ(p1α1 + · · ·+ pdαd)|

= |(qa1 − pa)σ(α1) + · · ·+ (qad − pd)σ(αd)|

<
1

δ

d∑
i=1

|σ(αi)|

< ε.

Taking x = p1α1 + · · ·+ pdαd, the claim follows.

We have shown that, outside of the imaginary quadratic and rational cases,

we cannot construct a lower bound for the size of an embedding of an element of OK .

For any ideal a of K one cannot construct a lower bound for the size of an embedding

of an element of a; we follow exactly the same argument as Lemma 8.7 applied

to an integral basis for the ideal. This means that we cannot use a relationship

between embeddings of K to construct a version of Lemma 8.4 to use in the proof

of Theorem 8.1.
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Chapter 9

Algorithms and examples

In this chapter we will explain in detail how to use the methods described so far

in this thesis to find points on varieties over number fields. We will explain the

circumstances under which each of these methods is applicable. We also provide

some examples of points found using an implementation of Algorithm 4.

9.1 Processing lattice points

In each method we construct OK-lattices containing vectors that potentially repre-

sent rational points on a variety V . In Chapter 7 we described the conversion of

such an OK-lattice to a Z-lattice and how to use existing methods such as those

in Magma or Pari to enumerate points in the Z-lattice. We construct lattices so

that each rational point in V (K) has a representative in some Z-lattice. However,

not all lattice vectors correspond to rational points so we will need to check lattice

points to see whether they correspond to rational points of V (K) by evaluating the

defining polynomials of V at lattice points. This could be time-consuming, so we

wish to do some pre-processing to reduce the number of points which require this

treatment. In particular, a point of PN (K) will have multiple representatives in the

lattice: we wish (as far as possible) to avoid considering the same projective point

multiple times. Let L be an OK-lattice of rank N+1 and let M be the corresponding

Z-lattice M ∼= Zd(N+1).

9.1.1 Processing in Zd(N+1)

We consider some conditions that could be considered as “projectifying” the affine

lattice output, reducing the search for points from Zd(N+1) to Pd(N+1)−1(Z).
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A lattice point x ∈M is given by an element of Zd(N+1). We need only check

half of the lattice points since x and −x define the same point in projective space.

If x is not primitive, there exists some x′ ∈ Zd(N+1) and a ∈ Z such that

ax′ = x and x′ and x define the same projective point. The T2-norm of such an

x′ will be shorter than the corresponding x so we restrict our search to primitive

x ∈ Zd(N+1).

A benefit of these methods is that they can be applied to points found in

Zd(N+1) without converting to the corresponding point in ON+1
K .

9.1.2 Processing in ON+1
K

We process the output of our search for lattice points by taking a point x ∈ Zd(N+1)

and converting it via the Z-basis of M to a point in L ⊆ ON+1
K . Distinct primitive

lattice points of M may still determine the same point in PN (K). This is because

although the lattice basis (βi,jbi)ij is Z-linearly independent, it is not K-linearly

independent: in passing to the Z-lattice we have temporarily discarded some of the

OK-lattice structure.

We recall from Chapter 3 that we can restrict our search to points of ON+1
K

whose content ideal is one of a finite list of ideals A, where A contains one ideal from

each class in Cl(K). To process a lattice point we may convert it to an ON+1
K vector

and discard it if its content ideal is not in A. If OK is a principal ideal domain this

means to discard points of ON+1
K if they are not primitive.

9.1.3 Processing in PN(K)

These checks performed on elements of M ∼= Zd(N+1) and L ⊆ ON+1
K are in general

not enough to reduce the output to exactly one vector for each projective point

represented. If x ∈ ON+1
K and u is a unit of OK then ux and x represent the same

point in PN (K) and their coefficients generate the same ideal. Therefore both x and

ux would pass the checks on elements of M and L we have described so far. It may

therefore be useful to keep track of projective points found, to avoid checking the

same point for membership of V (K) multiple times.

This is unlikely to be useful in every case: it could mean storing a large

number of projective points that are not points on the variety. The choice of strategy

is a trade-off between the time required to check whether a vector x satisfies the

defining polynomials of V and the memory and time required to check whether x

represents a projective point that has already been seen and to store it if it has not.

If K has unit rank 0 we have a simpler method to discard superfluous unit
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multiples of a vector. Fix a coherent system to identify the unit, which will be a

root of unity, in a factorisation of an element of K. (This is a.factor().unit() for a

number field element a in Sage [30].) For a vector x we discard x if the unit in the

factorisation of the first non-zero entry of x is not 1. If K is Q, this is achieved by

only using one of {x,−x} in Section 9.1.1.

9.2 Finding points by Z-lattice enumeration

In this section we present two related algorithms for processing lattice vectors to

construct projective points. Algorithm 3 employs the methods of Section 9.1 to find

projective points from a lattice and also uses sub-functions which we call Zcheck,

OKcheck, and PNcheck. These are an opportunity to perform further checking at

each stage of the construction of a projective point. We will give examples of the use

of Zcheck and OKcheck after stating Algorithm 3. We use ShortVectors to denote

a function that constructs all Z-lattice vectors up to a given length, such as the

ShortVectors function in Magma [4] or qfminim in Pari [31].
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Algorithm 3: Points from anOK-lattice via restriction of scalars and Z-lattice

enumeration
Input:

- L ⊂ ON+1
K , an OK-lattice, given by a pseudo-basis

- BH , a bound on height,

and optionally:

- Zcheck, a function Z(N+1)d → True or False,

- OKcheck, a function ON+1
K → True or False,

- PNcheck, a function PN (K)→ True or False.

Output: - Points of PN (K) of height less than or equal to BH with a

representative in L.

Note: The points of the output will have a Z-module representative satisfying

Zcheck, have an OK-module representative satisfying OKcheck and satisfy

PNcheck.

Initialisation:

Let A be a set of ideals of minimal norm for each class of Cl(K), as described

in Chapter 3, and let NK be the maximum norm of an ideal in A.

Let BL = (N + 1) exp
(

2(BH+log(NK))
d

)
cK , as explained in Chapter 3.

Let M be the Z-lattice generated from L with quadratic form given by the

T2-norm, as explained in Chapter 7.

Procedure:

For each v ∈ Znd generated by ShortVectors on M with length bound BL:
If v 6= 0 and the first non-zero coefficient of v is > 0 and v is primitive

and Zcheck(v) = True:

set w to be the vector in ON+1
K represented by v.

If the content ideal of w is in A and OKcheck(w) = True:

set P to be the point in PN (K) represented by w.

If PNcheck(P ) = True:
yield P .

A simple application of Algorithm 3 is the enumeration of points in PN (K).

We can use it to find points on any variety V in the following way. If L = ON+1
K

then every point of PN (K) has a representative in L. Then for any V ⊆ PN we can

find all K-rational points of V of height 6 BH by simply checking whether each

projective point of PN (K) of height less than or equal to BH is in V (K). We can
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do this using Algorithm 3 by adding the requirement that w ∈ ON+1
K satisfies the

defining polynomials of V to the function OKcheck. This method of finding rational

points does not rely on V being smooth or irreducible and so is the most generally

applicable.

We can also use Algorithm 3 to find points in a lattice of lifts Li ∈ ON+1
K ,

where Li has been constructed as in Chapters 5 and 6. In this case we use some

information about Li to further improve Zcheck.

Recall that if L = Li is a lattice of lifts for V at a point P̄ then Li contains

all lifts of P̄ that are roots of the defining polynomials of V modulo pi. These

are the lattice vectors that we are interested in as they are possible representatives

for points of V . It is worth remembering that Li contains many other vectors. In

particular, the vectors that we want are p-primitive.

We recall the definition of Li as the OK-module generated by {π|α|ŝα}|α|<i
and piON+1

K . The vector ŝ0 is p-primitive by construction as it is a representative

in ON+1
K for P̄ ∈ PN (Fp). (If a vector x is not p-primitive, every coordinate is in p

and so it reduces to (0, . . . , 0) mod p, which does not define a projective point in

PN (Fp).) It is the only p-primitive vector in the generating set, as each vector ŝα is

multiplied by π|α|. Therefore, we may fix a basis for Li so that it contains exactly

one p-primitive vector: we call this vector b0.

When Li is converted from an OK-lattice to a Z-lattice, b0 will be converted

to a set of d vectors β0,1b0, . . . , β0,db0. If x in Li is to represent a lift of P̄ , it must

be p-primitive, so the coefficient of b0 (as part of a basis for the OK-module Li)

must be non-zero modulo p. If we represent x using coefficients ai,j in Zd(N+1), we

need that
∑d

j=1 a0,jβ0,j 6≡ 0 mod p. We can therefore discount points in Zd(N+1)

for which all a0,j ≡ 0 mod p, where p is the prime above p in Z. A small amount

of work over K to calculate the sum
∑d

j=1 a0,jβ0,j and check it to make sure that

it is not 0 mod p would give a more stringent filter on lattice points, whilst still

avoiding having to construct the vector in ON+1
K .

We defined φD(j) in Section 5.5 to denote the number of multi-indices of

degree j in D variables. We used this to choose a p-adic precision to use in con-

structing lattices of lifts for a variety of dimension D. For ease of notation we will

use φ(j) = φD(j) in what follows, except when we need to distinguish between

varieties of different dimension.

Algorithm 4 gives an example of how to use Algorithm 3 when L is a lattice

of lifts. It may be useful to reverse the order of OKcheck and PNcheck or to remove

the PNcheck condition, depending on the particular situation; Algorithm 4 provides

one illustration of their use.
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Algorithm 4: Points on a variety via Z-lattice enumeration

Input:

- V ⊂ PN , a geometrically smooth, irreducible variety defined over K,

- BH , a bound on height.

Output: - All points of V (K) with height less than or equal to BH .

Procedure:

Set p to be a good prime for V , constructed from Algorithm 1.

For each P̄ on the reduced variety V̄ (Fp):

set i to be the least i such that
∑i

j=0 φ(j) > N + 2,

set L← Li, lattice of lifts for P̄ ,

set Zcheck to return False if
∑d

j=1 a0,jβ0,j ≡ 0 mod p and True

otherwise,

set OKcheck to return True if and only if w satisfies the defining

polynomials of V ,

set PNcheck to return False if P has been seen before, otherwise True.

Return the output of Algorithm 3 with inputs L, BH , Zcheck,

OKcheck and PNcheck.

We can use Algorithm 4 to find points on a smooth irreducible variety defined

over any number field.

9.3 Finding points by lattice reduction

Given a form of lattice basis reduction whose output satisfies the conditions of

Theorem 8.1, we can use this lattice reduction to find all points up to some height

bound BH on a variety V . After choosing a suitable prime ideal, for each point

on the reduced variety V̄ we construct a lattice of lifts L whose pseudo-basis we

reduce. Let the reduced pseudo-basis be (bi, bi)
N
i=0. If the norm of the index of L is

large enough then by Theorem 8.1 every vector of L with T2-norm 6 BL will lie in

a submodule L0 of L given by (bi, bi)
N−1
i=0 .

To force the norm of the index of L to be large, we must choose a prime ideal

of large norm.

Lemma 9.1. Let K be a number field of degree d and V ⊆ PN a variety of dimension

D defined over K. Let x > 0 and let p be a prime of K of degree one which is a
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good prime for V , lying above a rational prime p that satisfies

p > x(i(N+1)−
∑i−1
j=0 φ(j)(i−j))−1

.

Then for each point on the reduced variety V̄ (Fp) at P̄ , the ith lattice of lifts Li will

satisfy

N ([ON+1
K : Li]) > x.

Proof. By Theorem 6.6 we have [ON+1
K : Li] = pmi , where mi > i(N + 1) −∑i−1

j=0 φ(j)(i − j). Because p has degree 1, N (p) = p and N ([ON+1
K : Li]) = pmi .

Therefore, we have

N ([ON+1
K : Li]) = pmi > (x(i(N+1)−

∑i−1
j=0 φ(j)(i−j))−1

)mi > x.

Our aim is to use Lemma 9.1 in conjunction with Theorem 8.1 to reduce the

rank of the lattice or dimension of the variety containing the points we wish to find.

We can do this whenever Theorem 8.1 applies, this is currently restricted to the five

Euclidean imaginary quadratic fields. In Algorithm 5 we construct a good prime p

with large norm so that N ([ON+1
K : Li]) satisfies the condition of Theorem 8.1 and

all vectors in Li with squared T2-norm 6 BL can be written without use of the final

pseudo-basis vector bN . This allows us to restrict our search to a subvariety V ′ of

V which will usually have smaller dimension. We will then use Algorithms 6 and 7

to find points on V ′. Algorithm 5 can be found on page 88.

9.3.1 Finding points from a sublattice or subvariety

We will now discuss methods for finding points of bounded height on the subvariety

V ′ of V ; these are needed in Algorithm 5.

The simplest way to find points from a reduced lattice basis is to use Algo-

rithm 4 to find points in L0. The rank of L0 as a Z-lattice is Nd, which represents

an improvement on the index of Li which is (N + 1)d. Finding points in L0 by

Z-lattice enumeration is always an option in cases where other methods cannot be

used or are inefficient. However, it is not always the most efficient method.

In some situations, we may use the subvariety V ′ ⊂ V to find points. Once

a lattice basis has been constructed and reduced, we can use it change coordi-

nates on PN (K). If polynomials F define V then the polynomials Gj(x0, . . . , xN ) =

Fj(
∑N

i=0 xibi) describe V in new coordinates. Gj are homogeneous polynomials with

the same degrees as Fj . We use the additional information that the points we are
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Algorithm 5: Points on a variety via lattice reduction

Input:

- LatticeRed, a method of lattice reduction that takes an OK-lattice and
outputs a reduced pseudo-basis that satisfies the conditions of Theorem 8.1,
with constants as defined in that Theorem,

- V ⊂ PN , a variety defined over a number field K for which LatticeRed is
known to work, defined by polynomials F in OK [X0, . . . , XN ],

- BH , a bound on height.

Note: We require K to be imaginary quadratic for LatticeRed to satisfy
Theorem 8.1, such a LatticeRed is currently known only for Euclidean fields.

Output: - All points of V (K) with height less than or equal to BH .

Initialisation:
Let A be a set of ideals of minimal norm for each class of Cl(K), as described
in Chapter 3, and let NK be the maximum norm of an ideal in A.

Let BL = (N + 1) exp
(

2(BH+log(NK))
d

)
cK , as explained in Chapter 3.

Let i be the least integer such that
∑i

j=0 φ(j) > N + 2.

Set m(i)←
(
i(N + 1)−

∑i−1
j=0 φ(j)(i− j)

)−1
.

Let p be the result of Algorithm 1 with lower bound on the norm of p given by

N (p) >
(
Z
−d(N+1)
2 d−(Z1+1)d(N+1)/2Y N+1

2 B
Z1(N+1)d/2
L Y

−Z1(N+1)
1 2Z1(N+1)d/2

)m(i)
.

Procedure:
For each P̄ on the reduced variety V̄ (Fp):

set L← Li, lattice of lifts for P̄ ,
set (bj , bj)

N
j=o0 be LatticeRed(L),

set V ′ to be the variety defined by F and bN .(X0, . . . , XN ).
Yield each point of L0 lying in V ′ with height 6 BH (using
Algorithm 6 or 7).
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searching for do not involve the vector bN in the old coordinates: this means that

xN = 0 in new coordinates. If V is not contained in the hyperplane xN = 0, then

dim(V ′) = dim(V ) − 1. Equivalently, we can consider V ′ in the old coordinates as

being defined by F and the linear homogeneous polynomial bN .(X0, . . . , XN ).

We now outline some special cases in which we may use V ′ to find points

without needing to use Z-lattice enumeration on L0.

If V is a curve and dim(V ′) = 0 then V ′(K) is a finite collection of points,

which can be found with relative ease. If V is a plane curve given by a single

polynomial G(x0, x1, x2) then this can be achieved simply by factorising G(x0, x1, 0)

over K: linear factors correspond to points on V . For curves in higher ambient

dimensions we use Gröbner basis methods.

If 0 < dim(V ′) < dim(V ) then there are two particular cases in which we

can find all points without constructing any new lattices. If P̄ 6∈ V̄ ′(Fp) then there

can be no points of V ′(K) which reduce to P̄ mod p. In this case we can stop

computing with P̄ altogether as there are no points of V (K) with height 6 BH that

reduce to P̄ mod p.

If P̄ is a smooth point of V̄ ′(Fp) then we form a lattice of lifts for V ′ based

at P̄ . The index of Li for P̄ and V ′ will exceed that of Li for P̄ and V , because

φdim(V )(j) > φdim(V ′)(j) for each j. In this case, we may perform the lattice reduc-

tion step on the new Li for V ′, aiming for a further reduction in the rank of lattice

or dimension of variety for the resulting set of possible representatives. It is vital

that we are able to use the same prime so that the new lattice is also a lattice of

lifts of the particular reduced point P̄ .

We use these ideas in the following algorithm.
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Algorithm 6: Points on a subvariety after lattice reduction

Input:

- P̄ ∈ V̄ (Fp),

- BH , a bound on height,

- V ′, a subvariety of V ,

- L0, a lattice of lifts for P̄ on V̄ (Fp), all as found in Algorithm 5.

Note: As for Algorithm 5, we require the number field K to be Euclidean and

imaginary quadratic.

Output: - All points of V ′(K) with height less than or equal to BH that

reduce to P̄ mod p.

Procedure:

If dim(V ′) = 0:
yield each point of V ′(K) of height 6 BH using a Gröbner basis

method.
Else if 0 < dim(V ′) < dim(V ):

If P̄ 6∈ V̄ ′(Fp):
exit.

If P̄ is a smooth point on V̄ ′:

set L← Li for P̄ and V ′ and go to lattice reduction step of

Algorithm 5.

Else:
use Algorithm 4 on L0 to find points on V ′ of height 6 BH that reduce

to P̄ mod p.

Algorithm 6 uses V ′ in some special cases; we now explore the idea of using

V ′ in more generality. If V ′ is smooth we may find points on V ′ using lattices of

lifts and lattice reduction: we may use this method recursively. This recursion only

makes sense when dim(V ′) < dim(V ). Once dim(V ′) = 0, we can find points via

the substitution method described above.

However, if P̄ is a point on V̄ ′(Fp) that is not smooth (this is the only case

remaining after excluding the conditions in Algorithm 6) we can no longer construct

lattices of lifts based at P̄ , as V̄ ′ is not smooth at P̄ . Therefore, a new good prime

q for V ′ should be found and lattices of lifts constructed for each reduced point of

V̄ ′(Fq). By finding each point of V ′(K) of height 6 BH , we may find every point of

V that reduces to P̄ mod p with height 6 BH . The major drawback to this method

is that we spend time finding points of V ′ that do not reduce to P̄ mod p. When
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V ′ is not smooth and the two special cases mentioned before do not hold, we have

to resort to lattice enumeration on L0.

Finally, if dim(V ′) = dim(V ) then, because V is irreducible, V ′ = V . This

occurs when V lies within the hyperplane defined by xN = 0 in the new coordinates.

In this case, by changing variables, we may consider V ⊂ PN−1, thus reducing

the ambient dimension. It may then be a worthwhile strategy to start the whole

computation of points on V ′ = V again. A new prime of larger norm will most likely

be required for lattice reduction methods, but the resulting lattices of lifts would

have a smaller Z-rank of (N − 1)d.

Further investigation is needed to establish whether and when the construc-

tion of a new prime and new set of lattices of lifts is likely to be more efficient than

Z-lattice enumeration. These methods are illustrated in Algorithm 7, which is a

development of Algorithm 6.

Currently no examples exist of points found with Algorithms 5, 6 and 7;

further work would be required to implement a suitable LatticeRed method.
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Algorithm 7: Points on a subvariety after lattice reduction with recursion

Input:

- P̄ ∈ V̄ (Fp),

- BH , a bound on height,

- V ′, a subvariety of V ,

- L0, a lattice of lifts for P̄ on V̄ (Fp), all as found in Algorithm 5.

Note: As for Algorithm 5, we require the number field K to be Euclidean and

imaginary quadratic.

Output: - All points of V ′(K) with height less than or equal to BH that

reduce to P̄ mod p.

Procedure:

If dim(V ′) = 0:
yield each point of V ′(K) of height 6 BH by a Gröbner basis method.

Else if 0 < dim(V ′) < dim(V ):

If P̄ 6∈ V̄ ′(Fp):
exit.

If P̄ is a smooth point on V̄ ′:

set L← Li for P̄ and V ′ and go to lattice reduction step of

Algorithm 5.

Else:
use Algorithm 4 on L0 to find points on V ′ of height 6 BH .

Else:

yield points on V (K) ⊂ PN−1(K) of height 6 BH which reduce to P̄

mod p using Algorithm 5.

9.4 Examples

We have implemented a version of Algorithm 4 for curves in Sage [30], with the actual

enumeration of short vectors in Z-lattices performed by the Magma [4] function

ShortVectors. This has been parallelised to allow multiple lattices to be searched

simultaneously. We provide some examples of curves and points found on them

using this implementation.

Let C1 be the plane unit circle, given by the polynomial X2 + Y 2 − Z2

over the quintic number field defined by x5 − 2x4 + 4x3 − 5x + 1. We searched for

representatives for points on C1 with squared T2-norm up to 300 and found 92 points.
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By Theorem 3.10, a search with BL = 300 for a curve in P2 over this number field

finds all points of logarithmic height up to -1.7146. Twelve of the points found are

the points defined over Q with logarithmic height up to log(5). This demonstrates

that we may find points of larger height than expected with our method, although

we cannot guarantee that all such points are found.

Let C2 be the genus 3 modular curve XS4(13) as studied in [2], given as a

plane curve by

4X3Y − 3X2Y 2 + 3XY 3 −X3Z + 16X2Y Z − 11XY 2Z + 5Y 3Z+

3X2Z2 + 9XY Z2 + Y 2Z2 +XZ3 + 2Y Z3

over the quadratic number field Q(
√

13). By searching for representatives of points

with squared T2-norm up to 5000 on C2 we verified the six points on C2 defined over

Q(
√

13) in [2]:

{(1 : 3 : −2), (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), (3±
√

13 : 0 : 2)},

and found no other points of C2. These are all of the points on C2(Q(
√

13)) with

logarithmic height up to 5.24.

Let C3 be the cubic curve defined by the polynomial

3X3 − 13X2Y + 4X2Z + 2XY 2 +XY Z − Y 3 − 5Y 2Z − Y Z2 + Z3

over the number field generated by α, where α is a root of x3 − 2x2 + 13x − 3.

C3 considered as a curve defined over Q is an example from [9] of a representative

of a non-trivial element of X(E/Q)[3] for the elliptic curve E defined over Q by

y2+xy = x3+x2−1154x−15345. The cubic field has been chosen so as to guarantee

the existence of a rational point of C3 over this field. After a search for representatives

of points with square T2-norm up to 50, the points (α2 − 2α + 13 : 3 : 0) and

(α − 4 : −α2 + 2α − 10 : 9) were found. By performing this calculation we have

demonstrated that there are no other rational points on C3(Q(α)) with logarithmic

height less than or equal to 1.16.

Let C4 be the elliptic curve defined by −X3 − X2Z + Y 2Z − XZ2 + Y Z2

over the field Q( 3
√

5). The Mordell-Weil rank of this curve defined over Q is 0. The

suggestion of this curve came from Vladimir Dokchitser, who showed in [12] that if

the Birch and Swinnerton-Dyer conjecture holds for elliptic curves over number fields

then this curve has a point of infinite order over the field Q( 3
√
m) for every cube-

free m > 1. However, we have not found any examples of such points. The points
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found so far from a search (ongoing at the time of writing) for representatives with

T2-norm up to 1000 has yielded only the three known torsion points of C4, defined

over Q: (0 : −1 : 1), (0 : 0 : 1), (0 : 1 : 0). This calculation will find all points on C4

over Q( 3
√

5) with logarithmic height up to 1.247.

Let C5 be the elliptic curve defined by

−X3 +X2Z +XY Z + Y 2Z + 292XZ2 − 4241Z3.

This curve is known to have rank 0 over Q. Because it is a quadratic twist of the

elliptic curve with Cremona label 605c1, which has rank 1 over Q, C5 has a point

of infinite order over Q(
√

5). A search for representatives with squared T2-norm up

to 1000, which guarantees finding all points on C5 of logarithmic height up to 4.63,

returned the point (0 : 1 : 0).

Let C6 be the intersection of quadrics in P3 defined by XW +Y Z+YW +W 2

and XY + XZ + 2Z2 − 3ZW . This curve arises from a second 2-descent on the

elliptic curve over Q with Cremona label 27382a1 which was performed in Magma

[4]. A search for points of squared T2-norm up to 1000 over the quadratic field

Q(
√

5) yielded the Q-rational points (−9/5 : 2 : −3/5 : 1), (−2 : 0 : 1 : 0), (4/3 :

−1 : 4/3 : 1), (11/4 : −3/2 : 3/2 : 1), (0 : −2/5 : 3/2 : 1), (−1 : 0 : 2 : 1), (0 : −1 : 0 :

1), (0 : 1 : 0 : 0), (6 : −7/3 : 2 : 1), (−1 : 6 : −1 : 1), (−1 : 0 : 0 : 1) and (1 : 0 : 0 : 0):

this includes all points on C6(Q(
√

5)) of logarithmic height 6 4.34.

Let ω =
√

26521. Let C7 be the elliptic curve defined over Q(ω) by

− 37128125X3 + (81003ω + 13179867)X2Z + (−57225ω + 27522500)XY Z+

37128125Y 2Z + (−81003ω − 13179867)Y Z2.

This curve was suggested to the author by Johan Bosman. It conjecturally has rank

2 over Q(ω), with a torsion subgroup of order 18. A search for representatives with

T2-norm up to 100000 found only the torsion points (0 : 1 : 0) and (0 : 0 : 1); with

this calculation we have shown that any other points must have logarithmic height

greater than −288.31. The two real embeddings of a fundamental unit of this field

are about 10128 and 10−128, and so cQ(ω) is around 10128! The disparity in the size

of the two embeddings of a unit accounts for the very small height bound attained,

relative to the bound on T2-norm used.

All computations were performed on machines at the University of Warwick

with AMD Opteron™processors 6174 and 8378, with speeds of 2200 and 2400 MHz

respectively. All machines were running Ubuntu 12.04 (LTS) server edition. The

following table contains indications of total timings for each of the three main parts
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of the algorithm: finding points on the reduced curve, constructing lattices of lifts

and searching for points in these lattices of lifts. All examples were performed using

small primes that were chosen by hand. The time should depend on the norm of the

prime, number of reduced points (which is related to the norm of the prime), the

degree of the number field, the ambient dimension and of course the length bound.

Except in the smallest of the examples, almost all of the time is spent on

finding points in lattices by exhaustive search. We could hope to improve this by

changing the size of the prime used (an increase would yield more lattices, each with

fewer points with length 6 BL) and optimising the way that points are found and

processed. An implementation of Algorithm 5 would remove this step entirely and

might provide an improvement in speed.

Curve Norm

of

prime

Number

of

reduced

points

Degree

of

field

Ambient

dimension

Length

bound

Time

to find

reduced

points

Time to

construct

lattices

Time to

find

points

from

lattices

C1 23 24 5 2 300 0.0359s 677s 296509s

C2 17 20 2 2 5000 0.0450s 12.7s 5599s

C3 19 16 3 2 50 0.0269s 14.1s 16.1s

C4 29 24 3 2 1000 0.0451s 19.3s 714393s

C5 31 34 2 2 1000 0.0556s 20.8s 8739s

C6 11 18 2 3 1000 0.936s 17.1s 59157s

C7 11 20 2 2 100000 0.0392s 107s 1574s
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