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Abstract

We develop a method for finding all rational points of bounded height on a variety
defined over a number field K. Given a projective variety V' we find a prime p
of good reduction for V' with certain properties and find all points on the reduced
curve V(F,). For each point P € V(F,) we may define lattices of lifts of P: these
lattices contain all points which are congruent to P mod p satisfying the defining
polynomials of V' modulo a power of p. Short vectors in these lattices are possible
representatives for points of bounded height on the original variety V (K). We make
explicit the relationship between the length of a vector and the height of a point
in this setting. We will discuss methods for finding points in these lattices and
how they may be used to find points of V(K), including a method involving lattice
reduction over number fields.

The method is implemented in Sage and examples are included in this thesis.
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Chapter 1

Introduction

Let V be a variety defined over a number field K. A basic problem of explicit arith-
metic geometry is to determine the set V(K) of K-rational points of V. Common
variants of this question include determining the set of all points of V' (K') of height
up to some bound, proving that no such points exist or finding a single point of
V(K). For example, in performing a descent on an elliptic curve E/K one con-
structs homogeneous spaces C'/ K which are smooth curves of genus one; one wishes
to find a single point of C'(K).

A family of methods for finding rational points if the variety is a curve C
over Q have been suggested, more or less independently, by several people. In these
methods one determines a lattice (a free Z-module of rank N + 1, if C C PV (Q)) of
points that are “near” C. Short vectors in the lattice correspond to points near or on
C. These may be found by enumeration of lattice vectors (such as the algorithm of
Fieker and Pohst [14]) or via lattice reduction (such as LLL-reduction [21]). In the
work of Elkies [13] this lattice contains rational points that are near the curve under
the usual Euclidean norm. The idea of constructing lattices of points that are p-
adically near C for some prime p has been suggested by Heath-Brown [17] and further
developed and implemented by Watkins [32], Womack [33] and Long [22] when C is
an intersection of two quadrics in P3. Roberts developed and implemented this for
quadric intersections defined over function fields Fy(t) in [26].

The reports by Cremona and Roberts [11] and Cremona, Roberts and the
author [10] contain the most comprehensive accounts of such methods so far. They
describe a method for finding rational points on any smooth, irreducible curve in
P? or P3 defined over Q or Fy(t). The idea of extending such a method to curves
defined over number fields is mentioned in [10].

A version of this method for varieties defined over Q has been implemented



in Magma [4] by Mark Watkins as PointSearch(S, H): given a scheme S defined over
Q in either affine or projective space, it will find rational points of height less than
H using a p-adic method. It provides a flag to choose whether to find all such points
or to stop after only one point has been found. The PointsQI function finds rational
points of bounded height in the special case of quadric intersections defined over
Q. There is no published work explaining or justifying these methods, except for a
brief online note by Watkins [32].

In this thesis we define several related lattice-based methods for finding ra-
tional points on varieties defined over a number field K. We deal with important
complications that do not arise in the case of varieties defined over QQ. We give a full
explanation and justification of how to construct Og-lattices of lifts for varieties of
any dimension > 1.

Let V C PY(K) be a variety defined over a number field K by homogeneous
polynomials in K[Xy,...,Xy|. By reducing these polynomials modulo a suitable
prime p and finding points on the resulting reduced variety V we obtain a finite
list of reduced points that comprise V(Fp). Each point of V(K) reduces to one
such reduced point P modulo p. For each P we may construct a sequence (L;)i>1
of lattices of lifts: Ox-modules inside O[A{]H containing all vectors x such that
=P modp and F(z) =0 mod p’. We use Hensel lifting to refine the points to
solutions modulo higher powers of p. Each K-rational point of V' can be represented
by a vector in L; for some reduced point P. Our aim is to find all rational points
on V with height up to some bound. After fixing a lattice of lifts L;, points of small
height on V reducing to P mod p are represented by short vectors in L;. We find
short vectors either by lattice enumeration or by using a method involving lattice
reduction (described by Cremona and Roberts in [11]) which reduces the rank of the
lattice. This reduction in the rank of the lattice reduces our search to a subvariety
of V which will usually have smaller dimension. In the case where V is a curve, this
reduction of rank means that we may find points of small height on V' by solving a
system of polynomials that defines a variety of dimension 0.

We begin in Chapter 2 by collecting some basic information about number
fields and about varieties which we will need in later chapters. In Chapter 3 we
recall the definition of height for a projective point and link it to a notion of length
for vectors in K™. This is one part in which our situation is quite different from the
case of varieties over Q since we may have infinitely many units in Ox—these will
affect the length of a vector. A potentially useful consequence of this work is that
we may use it, combined with a lattice enumeration method (such as that explained
in Chapter 7), to find all points of PV (K) with height up to some bound.



To reduce the variety V modulo a prime p we first need to find a suitable p.
The difference here from the rational case is that not every prime ideal is principal.
In Chapter 4 we explain why we choose to work with principal primes, describe
some other attributes of the primes with which we prefer to work and explain an
algorithm for constructing them.

Chapter 5 explains how to systematically construct suitable p-adic lifts of a
point P on a reduced variety V. We begin with the case of curves before generalising
to varieties of any dimension. This is an important improvement on the descriptions
of [32], [11] and [10], as we describe this procedure to arbitrary p-adic precision. We
achieve this by ignoring issues of linear dependence and by generalising the linear
forms defined by gradient vectors and quadratic forms defined by Hessian matrices
to higher degrees.

We explain what is meant by an Og-lattice in Chapter 6 and we explain how
to use the set of lifts defined in Chapter 5 to define an Og-lattice of lifts. We recall
the concept of lattice index for Og-lattices, show that the index of our lattice of
lifts L; is a power of p and find bounds for its exponent.

In Chapter 7 we convert an Ox-lattice to a Z-lattice by restricting scalars and
find points using existing lattice enumeration techniques. This means an increase
in rank: an Og-lattice of rank n becomes a Z-lattice of rank nd where d is the
degree of K over Q. The Gram matrix by which we specify a Z-lattice has entries
in R represented by floating-point numbers. We give the details about precision in
floating-point arithmetic that we need and calculate the appropriate adjustment in
length needed to compensate for the fact that the Gram matrix is not given exactly.

In [11] Cremona and Roberts explain how, by constructing a lattice of lifts
with large index and performing LLL reduction on a lattice basis, we can reduce
our search for points of bounded height to a sublattice of our lattice of lifts with
smaller rank. In Chapter 8 we survey the existing forms of lattice reduction for
Og-lattices and explain Cremona and Roberts’ idea. We show that, with the right
kind of lattice reduction, one can apply such a technique over imaginary quadratic
fields and we demonstrate a problem with this for other number fields. We cannot
conclude whether or not this is possible for number fields in general.

By discussing what kind of lattice reduction is needed we see that, unfortu-
nately, the hope we expressed in [10] that we could use Fieker and Stehlé’s lattice
reduction [15] for such a technique was wrong. However, we do show that the lat-
tice reduction described by Napias in [23] (and probably that of Fieker and Pohst
from [14]) can be used for number fields whose ring of integers is a euclidean ring.

Although we conclude that we only know a handful of number fields over which we



can use lattice reduction in this way, the information provided in this chapter could
be a starting-point for future work on Op-lattice reduction that would allow the
technique of reducing the rank of the lattice to be used in more generality.

In Chapter 9 we gather material from the rest of the thesis to describe al-
gorithms for finding points on varieties. We give some examples of points found
on curves over number fields using one of these methods. Some of the algorithms
described in this thesis have been implemented in Sage [30] and we hope that after

some further work these methods will be included in future releases of Sage.



Chapter 2

Varieties over Number Fields

None of the material in this chapter is new, but it serves to remind us of important
basic results and fix our notation. Much of this material may be found in [5], [24]
and [28].

2.1 Number Fields

Let K be a number field of degree d and let Ok be the ring of integers of K.

Definition 1. We say that aq,...,aq € Ok form an integral basis for K if

Theorem 2.1 (Theorem 4.1.8 of [5]). Let K be a number field of degree d.

1. There exists an o € K such that
K = Q(a).

Such an « is called a primitive element and its minimal polynomial over Q

is irreducible of degree d.

2. There exist exactly d field embeddings of K into C. They are the maps o; :
a — 05 where the 0; € C are the roots of the minimal polynomial of oc. These

embeddings are Q-linear.

Definition 2. The signature of K is a pair (r1,r2) where r1 is the number of
real embeddings of K whose images lie in R and 2ry is the number of complex

embeddings whose tmages are not contained in R.



The 2ry complex embeddings come in pairs: if o; is a complex embedding
sending o to 0; then there is an embedding &; that sends « to O_j. We will adopt the
convention of numbering the real embeddings of K by o1,...,0,, and the complex

embeddings by o +1,...,0p +2r, S0 that o, 1k = Gr 4rotk-

Definition 3. Let x € K. Then the (field) norm of = is given by

d
N(@) =] loj(@)].
j=1
Note that the norm is always non-negative.

2.1.1 Ideals and norms

We use the word ideal to refer to fractional ideals of O and reserve the term
integral ideal for those ideals contained in Og. Every ideal is an Ox-module of
rank 1. An ideal of Ok is principal if it is generated as an Ox-module by a single

element a € K; such an ideal aOk may also be written (a).

Definition 4. An integral ideal p of Ok is called a prime ideal if Ok /p is an

integral domain.

Definition 5. The norm of an integral ideal a of O is the cardinality of the finite
ring Ok /a. It is denoted N(a). We extend this definition to fractional ideals by

multiplicativity: if ¢ = ab~! where a and b are integral ideals, then

N(a)
N(b)

N(c) =

The norm of a fractional ideal is a rational number, not necessarily an integer.

Lemma 2.2 (Proposition 4.6.15 of [5]). Let x € K. Then

Definition 6. We say that two ideals a,b of Or are equivalent if there exists
a € K* such that
a = (a)b.

The set of equivalence classes of ideals of Ok form a group called the class group
of K that is denoted by C1(K).



The class of principal ideals is the identity class of CI(K). If the class group
CI(K) is trivial then all ideals of Ok are principal and Ok is a principal ideal

domain.

Definition 7. Let a1, ...,aq be an integral basis for K. Then
D(K) = (det(o(ai))ij)”

is a non-zero integer called the discriminant of K.

Proposition 2.3 (Theorem 7.1.2 of [29]). Every class of C1(K) contains an integral
ideal a of Ok satisfying

N < VDRI (2) " 5

s

The quantity +/|D(K)| (%)r2 % is called the Minkowski bound for K and it

depends only on the discriminant and signature of K.
Corollary 2.4. The class group of K is finite.

Proof. There are only finitely many ideals with a given norm, so this follows from

Proposition 2.3. O

The cardinality of the class group is called the class number of K and is given by
hi = | CI(K)].

2.1.2 Primes, valuations and places

Theorem 2.5 (Theorem 4.6.14 of [5]). Every fractional ideal a of O can be written

m G unique way as
a= Hpvp (Cl),
p

where the product runs over a finite set of prime ideals and each vy(a) is in Z. The

ideal a is an integral ideal if and only if all vy(a) are non-negative.

The quantity vp(a) is the valuation of a at p. We can define valuations
on K by considering the valuation of a principal ideal: if x € K, vp(x) = vp((x)).
Each prime ideal p defines a non-Archimedean absolute value |.|, on K which is
related to the valuation by ||, = N (p) @), The embeddings o1, ..., 04 define the
Archimedean absolute values of K, given by |o;(z)].

The equivalence classes of absolute values on K are called the places of K.

The finite places are defined by the non-Archimedean absolute values associated to



the prime ideals of K and the infinite places are given by the Archimedean absolute
values associated to the embeddings of K into R and C with o, 4, being identified
with o, 4r,4; because |0y 4j(2)] = |0p 4rotj(x)] for all z € K and 1 < j < ro.
Therefore there are r1 + r9 infinite places of K. The set of all places of K is denoted
Mpc; Mg denotes the infinite places and M [f(, the finite places. We associate a

number n; to each infinite place as follows:

1 if o is real
n; =
2 if 0; is complex.

It will sometimes be convenient to consider each Archimedean absolute value as
being associated to an infinite place of K rather than to an embedding. With this
in mind, we define |z|; = |o;(z)|™ for each 1 < j < rq+72. For complex embeddings,
this is a slight abuse of notation as |.|; is not an absolute value (it does not satisfy
the triangle inequality) but this will not be of any importance to us. The n; is
called the local degree at this infinite place. There is a corresponding definition of
local degree for finite places, but our definition of |.|, has already been normalised
to take this into account. We will change between using |o;(x)| and |z|; dependent

on context.

Proposition 2.6 (Product Formula, Theorem 2 of IV.4 of [3]). For any x € K* we

have
H |z]y = 1;
’UEMK
therefore
> log(|zls) =0,
vEME

with the normalisation that |x|; = |oj(z)|™ for each infinite place of M.

2.1.3 Decomposition of primes

This material can be found in Section 1.8 of [24]. Let L/K be an extension of number
fields. For any prime q of L there exists a prime ideal of K such that one has the
relation

qN Ok =p.



We say that q is a prime above p and that p lies below q. If p is a prime of K then

p decomposes in L: there exist positive integers e; such that

g
pOr = H a5,
=1

where q; are all of the prime ideals of L above p.

Definition 8. The integer e; is called the ramification index of p at q;. The

degree

fi=10Lr/qi : Ok /p]

of the extension of residue fields is called the degree of q;. (This is sometimes called

the inertia degree or residual degree).

For any extension of number fields, ramification indices and degrees satisfy the

following formula:
g

Zeifi =d.

i=1
Let p; be a prime of K which lies above a rational prime p of Q. Then the norm of

p; satisfies

N(p;) = p".

2.1.4 p-adic completion

Definition 9. Let p be a prime ideal of K. We define K, to be the completion of
K with respect to the metric induced on K by the absolute value defined by p. K,
is given by the set of p-adically Cauchy sequences in K, up to equivalence. Two

Cauchy sequences are equivalent if their difference converges to 0.

The ring of p-adic integers is denoted by Ok,: it is the set of a € K,
such that |al, < 1. We may also use a more explicit representation for the p-adics.
Every p-adic integer can be uniquely represented by a sequence (x,)22; such that

xn € Ok is chosen to be in a fixed set of representatives of Ok /p™ and
Tp = Tpy1 mod p

for every n > 1.
By considering a p-adic integer € O, modulo p™ for some m > 0 we can
truncate our representation of z to have only m terms. Such a truncation is an

element of Ok that is congruent to x modulo p"*.



2.1.5 Units

Let O} denote the group of units of Og.
Lemma 2.7. If u € O% then N (u) = 1.

Proof. If u € Oj; then (u) = Ok, so the result follows from the definition of ideal

norm. O

Theorem 2.8 (Dirichlet’s Unit Theorem, Theorem 4.9.5 of [5]). Let (r1,72) be the
stgnature of a number field K. Then

Ojc = p(K) x 2"+,

where p(K) is the subgroup of roots of unity in K.

We may choose a set of units €1, ..., &q 4r,—1 S0 that every unit x € O} may
be written as
ri+re—1
t
k=1

ri+reo—1
1

where t;, € Z and ( is a root of unity in K. We call the set {g}};"" a system of

fundamental units for K and say that r; + 79 — 1 is the unit rank of K.

2.2 Projective space and varieties

We denote by PV (K) the projective space of dimension N over K.

Definition 10. Let P € PN(K). We say that (xo,...,zy) € KNT! is a represen-
tative of P if P =[x :...: zpN].

We note that such a representative for P is not unique: if x represents P
and A € K* then A\x also represents P. If the ith coordinate of a representative of
P is zero then the ith coordinate is zero in all representatives of P. Every P has a
representative (in fact, infinitely many) that is in O%H and in this thesis we will
always use such integral representatives.

Let K be the algebraic closure of K and let f be a homogeneous polynomial
in K[Xo,...Xy]. Although it does not make sense in general to evaluate f at a
projective point P (as such a value will be affected by scaling) the set of points
P € PN(K) such that f(P) =0 is well defined because of the homogeneity of f.

10



Definition 11. Let F = (Fy,...,Fy) be a tuple of homogeneous polynomials in

K[Xo,...,Xn]. Then the projective variety V defined by F is
V={PeP"(K) | F(P)=0 for all F; € F}.

To a variety V we may associate an ideal I(V) C K[Xo,..., Xy] consisting
of all polynomials that vanish at every point of V.

Such an ideal is finitely generated so we may fix a set of homogeneous polyno-
mials {F1, ..., F,,} that generate I(V) to define a variety V. We say that a variety
is defined over K if there exists a set of polynomials defining V' that are all in
K[Xo,...,Xn]. We will assume from now on that all of our varieties are defined over

K. We may assume, by scaling, that the polynomials Fy, ..., Fy € Og[Xo,..., Xn].

Definition 12. A variety V is geometrically irreducible if [(V') is a prime ideal
in K[Xo,...,Xn].

Definition 13. The set of K-rational points of V is the set
V(K)={PePY(K) | Fi(P)=0 for all F; € F'}.
We will refer to them as rational points as the number field K will be fized for

each variety.

The aim of this thesis will be to develop algorithms for finding rational points

on a variety V defined over K.

Definition 14. The coordinate ring of V is the polynomial ring given by K(V) =

% The dimension of V is the transcendence degree of K(V) over K.

A variety in PV is defined by at least N —dim(V’) homogeneous polynomials.

The word curve is used for a variety of dimension one.

Definition 15. We say that a variety V is smooth or non-singular at P € V if

VE(z) = (g)lz (m)> )

v

the Jacobian matrix

has rank N — dim V' when x is any representative for P. If V is smooth at all
P €V we say that V is smooth. A point of a variety which is not smooth is called

singular.

We will assume throughout that varieties we are dealing with are projective,
smooth and geometrically irreducible. We will always define a variety using a specific

tuple of polynomials F' C Ok[X,...,Xn].

11



Let p be a prime ideal of K. We may reduce the coeflicients of the polynomials

F modulo p to obtain a new variety, defined by polynomials F1, ..., F}, over Fy.

Definition 16. A prime ideal p of K is a prime of good reduction or simply
a good prime if the variety V defined by the reduced polynomials F is smooth
of the same dimension as V and the polynomial ideal defined by F is prime in
Fp[Xo,..., XN].

Strictly speaking, this is a property of the polynomials F' rather than of V
itself but this definition will suffice for our purposes as we will always fix a tuple of
defining polynomials F for our variety. We say that p is a bad prime if it is not a

good prime for V.

Definition 17. Let = (2¢,...,2y) € K¥NT1. Then the content ideal of x is the
ideal

1) = {x0, .., 7).
The content ideal I(z) is integral if and only if x € (’)[A{[H.

Lemma 2.9. Let P € PN(K). Then I(x) lies in the same ideal class for every

representative r of P.

Proof. Let € KNT! be a representative for P with content ideal (xoy...,TN).

Then every representative of P is of the form Az for some A € K* and
(Ao, ..., Azn) = (A){(zg, ..., xN).
O
Definition 18. Let a be an ideal of K. We say that x € (’)%+1 is a-primitive if
I(x) is coprime to a.

We have now introduced the basic concepts of number theory and geometry
that we will use in this thesis. Our overall aim is to describe methods for finding
rational points on varieties from their representatives in certain lattices contained
in O%H. In the next chapter we will describe the concepts of height for a point
of P € PN(K) and length for a vector in OR ™, and relate the length of some
representative of P to the height of P.

12



Chapter 3

Height and length

It is well known that the number of points of projective space PV (K) whose height
is at most a given bound By is finite. It is the aim of this chapter to find a By, > 0
so that every point in PV (K) with height at most By is represented by a vector of
O%H of length at most Byr. This reduces the problem of finding points of bounded
height on a projective variety V' C PV(K) to the checking of points in a finite,
explicitly defined subset of (’)%H. Naively, one could then simply check every point
of (’)%Jr1 with length less than By. We will construct lattices later in this thesis to
significantly reduce the quantity of points to be checked.

In this chapter we will explain what we mean by height and length in this
context and link them to construct a suitable length bound By. We use standard
definitions for height, T» and the logarithmic map that can be found in [28], [15]
and [24] respectively.

3.1 Heights

Let P € PV(K) and let # € KV*! be a representative for P. We recall that a
representative for P is not unique. In this chapter we will prove the existence of

certain short representatives in O%H for a point P of height less than Bpy.

Definition 19. Let P be represented by x = (xg,...,xn). Then the logarithmic
height of P is defined to be:

H(P)=H(Jxg: - :an]) = Z max log |x;]s .
'UGMK !
We will use the convention that log(0) = —oo if a coordinate z; of x is equal

to 0, but note that each term in the sum must be finite as no representative for a
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projective point may have all of its coordinates equal to 0.

Lemma 3.1. The logarithmic height of P does not depend on the representative
(.I'(),...,.Z'N) OfP

Proof. Let x and Ax be two representatives for P. Then

H([Axg:---: Axn]) = Z max log [Az;y

vEME !

— Z m?xlog(lx\lvm!v)
vEME

= > max(log(|\l,) +log(|il.))
vEME

= > log(Al) + ) maxlog(|il)
vEMK veEMK

= 3" log(IAl) + H(lmo : -+ s an]).
vEME

By the product formula (Proposition 2.6) > 5/ log(|Aly) = 0, so the height of P

does not depend on the representative used to calculate it. O

We may split up the sum in the formulation of the height to consider the
finite and infinite places of K separately. We recall that the set of finite places M If(
of K is in one-to-one correspondence with prime ideals of K. The set of infinite
places Mz of K is in correspondence with embeddings o; of K into R or C with

local degree n;. We have

H(P)= Z m?xlog|xi]v+ Z mzaxlog|azi|v
veME veM{{

r1+72

= Z n; mzax{log loj(xi)|} + Zmzax{log |zilp},
Jj=1 p

where p ranges over all prime ideals of K.
Although the height of P does not depend on the representative used, the
individual terms in the sum do. If x is a representative for P we may define
1472
Hoofw) = 3 nymax{loglo; (i)}

J=1

and
Hy(z) = ) max{log |xily},
P

14



the infinite and finite height of . H(x) and Hy(x) do vary as x varies amongst

representatives for P but they always satisfy
H(P) = Hoo(x) + Hy(x).

Given a point = = (2, ...,zy) € KN we have the following important relation-
ship between the content ideal I(x) and the finite height Hy(x):

Hy(wo, ..., oN) = zp:miax{log |zilp}
= log (];[ mgxﬂwM)
e[ o)
— _log (1;[ min {N(p)vv (2:) })

= —log N (I(z)).

3.1.1 Ideal class of a projective point

Recall from Lemma 2.9 that if P € PV(K) then the content ideals of its represen-
tatives must all lie in the same ideal class. Denote this class by ¢(P).

Let us fix A to be a set of integral ideals, one in each class of CI(K), such
that each ideal in A has minimal norm amongst integral ideals in its class. Then
|A] = |CIK)| = hg < oo. We will denote the maximum norm attained by an
ideal of A by Ng = maxgea N (a). By the Minkowski bound we know that Ny <

ID(K)| ()" %. It is clear that Ny is an invariant of the field K.

Each projective point P has a representative x € O[]\([H such that I(x) € A;
we define the ideal of P to be I(P) := I(z). If x is a representative for P such
that I(x) = I(P) then N (I(x)) is minimal amongst integral representatives for P
and Hy(x) is maximal amongst integral representatives for P. Such a representative
satisfies 1 < N(I(x)) < Nk and therefore

—log(NK) § Hf(fl,‘) < 0.

The ideal (1) = O will always be in A, as the representative of the trivial class of
CI(K). If the class number hg = 1 then Ng = 1 and in this case we can always

choose « to be a primitive representative for P: Hy(x) = 0 for all such z. All of this
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leads us to be able to relate the height of P to the infinite height of a representative.

Proposition 3.2. Let P € PN(K). Then there exists a representative x € (’)%'H of
P such that
Ho () < H(P) + log(Nx).

Proof. Choose z to be a representative of P such that I(z) € A and therefore 0 <
N(I(z)) < Nk. The finite height of = is Hy(z) = —log N'(I(z)), so —log(Ng) <
H¢(z). The finite and infinite heights of a representative sum to the height of the

point, so
Heo(x) = H(P) — Hy(x) < H(P) + log(Ni).

O]

For every x € (’)%'H the finite height satisfies Hy(x) < 0. By choosing an
integral representative whose content ideal has the smallest possible norm, we are
choosing € O™ so that H(z) is maximal. For such an x, Hoo(z) is minimised
amongst integral representatives of P. This is a benefit as Hy(x) is linked to the
length of z; minimising H () is a step towards choosing an integral representative
with short length. We wish to work with integral representatives as OQJrl has a

lattice structure: in particular there exists a vector of shortest length for any subset
of OR .

3.2 Length

We may associate to a number field K the following bilinear form. For z,y € K
define

1472

d
Ty(w,y) = foj(x)@‘(y) = Z n;oj(r)a;(y),

and define the Th-norm of x to be ||z|| = \/Ta(z,z). We note that our two defi-
nitions of T, above are equivalent; we will use each of them, depending on whether
it is more convenient to consider places (with multiplicities) or embeddings of K.
Let Kr be defined from K by extension of scalars to R on the Q-vector space K;
K ®g R 2 R% We may extend the definitions of o;, T and |.| to Kg by linearity
over R.

We can associate Kgr to another, isomorphic Euclidean space. Let o be the
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map given by

Kr -2 R™ x C™

z = (01(2), ..., 0 41, ()).

This fixes an R-linear isomorphism of vector spaces over R from Kg to R™ x C"2.
Then the Th-norm on Ky is given by the Hermitian inner product on R™ x C"2 given
by the diagonal matrix D with entries D;; = n;. Any ideal I C K is mapped to a
lattice in R™ x C™ as ¢ respects the Z-module structure.

We may also use T to measure vector length. For x,y € Kp we abuse
notation to define To(x,y) = S.7, To(w,y;) and to let ||z|| = \/To(x,z). This is
not truly a norm on K" or Ky because it is sub-multiplicative: if A € Kg then
IAz|| < ||Alll|z]|, but we will also refer to this ||.|| as the T5-norm on K™ and Kg".

We may extend the o map to vectors. Applying o : K — (R™ x C™)" gives

an n X (r; + r2) matrix:
U($) = (O'j(xi))ija

and we may interpret the square of the Th-norm of z as a weighted sum of the

squares of sizes of entries of the matrix o(z):

|l))* = Z”J w’z an‘o-] ()]

3.3 Logarithmic maps

In this section we will introduce the logarithmic map [ : K* — R"%"2 and a variant,
I (K*)™ — R™*"2, | encodes information about about the size of the image of an
element of K under each of the embeddings of K into R or C.

We define the logarithmic map [ : K* — R"1%"2 as follows:

l(x) = (nl log |01 ($)|a sy Mry4rg log ’UT1+7‘2 (l‘)‘)

This map is sometimes referred to in the literature as the “logarithmic embedding”
but it is worth noting that this is not an embedding but a homomorphism, with the
roots of unity in K* forming the kernel. We extend the definition of [ to vectors in

(K*)", with image contained in the matrix space R"*("1472) We note that [ cannot
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apply to vectors with a zero entry.

l (K*)n SN Rnx(rlJrrg)
hai(z) - ll(r1+r2)(x)
(ml,...,xn)H ,
ba(z) -+ ln(r1+1“2)(x)
where
Lij(x) = njlog |oj(xi)|.

We also define a related map [ : (K*)" — R"+72 given by
T(x) = <max li1(x),...,max li(errQ)(x)) ,

and denote the jth entry of I(z) by lAj(w)

~

li(z) = max lij(x).

For any x € (K*)™, it is clear that

lij(x) <Tj(x) and Y lij(x) < nlj(=).
=1

The map 1 has been constructed to have the following useful property. If x is a vector
in (K*)™, we can link the image of x under the logarithmic map to the infinite height

of x as follows:
N 7‘1+T2A
S i) = L)
J j=1
r1+r2

= Z n; mlaxlog loj(xs)]
j=1

= Hyo(z).

lA(x) is a richer invariant than H..(x). We will use it to help us to compare H(z)
with ||z]|.
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3.3.1 The image of [ in R+

Let z1,..., 2y 47, be coordinates on R"*"2. We define II(h) to be the hyperplane
given by 37, z; = h in R™*"2. Then every z € (K*)N*1 such that Hoo(z) = h has
image [(x) € II(h). By choosing a representative x of P that has Hy(x) as large
as possible, Hy () is minimised. In this case the image of x under 1 lies on the
hyperplane II( Ho(z)) and the distance of this hyperplane from the origin has been
minimised. By considering representatives of P with minimal infinite height h we
will restrict our search for representatives of P to only those x € O% that map to
II(h) under 1.

An important specialisation occurs when K is Q or when K is an imaginary
quadratic field. In this case r; + 7o = 1, so the unit rank of K is 0 and II(h) is
simply the point z; = h on the real line. Much of what follows will be trivially true
in this situation; we will refer to this as the “unit rank 0” case.

The length ||z is related to the logarithmic embedding I(z) by

(o, - en) > = njloj (@) = njexp(ly(x))*™,
i i

and we know that z;(a?) > 1;;(z) for every i. We use this relationship when we come
to construct a function g : R™7"2 that links Z\(x) to an upper bound for ||z|]. We
will show that u is convex and eventually use this to derive a bound By, so that
every point P € PV(K) such that H(P) < By has a representative with Th-norm
less than or equal to By.

Let p: R™*2 — R be given by
:U’(Zl’ S 7ZT1+7“2) = (N + 1) Z nj(exp(zj))Q/nj'
J
We will define what it means for a function to be convex and give a useful property
of convex functions, before proving that p is convex.
3.3.2 Convexity of

We will use the following criterion to show that p is convex.

Theorem 3.3 (Theorem 4.5 of [27]). If f is a twice continuously differentiable real-
valued function on an open convex set C in R™, then f is convexr on C if and only

if its Hessian matriz

H(f)(z) = (afafzj ($)>ij
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1s positive semi-definite for every x € C.

We will use the following fact later to derive an upper bound for the value

of p on a polytope contained in II(h).

Theorem 3.4 (Corollary 32.3.2 of [27]). Let f be a convex function and let C
be a non-empty closed bounded convex set contained in the relative interior of the
domain of f. Then the supremum of f relative to C is finite and it is attained at

some extreme point of C.
In the case where C' is a polytope, the extreme points of C are exactly its vertices.

Proposition 3.5. There exists a convex function pu: R™7"2 — R that satisfies

~

pol(z) > |l=|*.

Proof. Let u be as defined at the end of Section 3.3.1. Noticing that
2/n; ~ 2/n;
|(zo, ..., zN)|? = an (exp(lij(z))) /mi < (N + 1)an (exp (Q(x))) "
1,5 J

we see that
pol(z) = |
We wish to check that yu is convex on R"%"2, Differentiating s,
Pu %(N +1)exp(z)¥™  ifi=j
020z |0 if i # 4.

This implies that the Hessian matrix for p is diagonal with positive entries, therefore

positive definite. By Theorem 3.3, u is a convex function. O

3.4 The effect of units

We have found a way to define integral representatives of P whose finite height H¢(x)
is as large as possible, by choosing a representative x € (’)%+1 such I(z) = I(P).
This minimises Hy,(z) amongst integral representatives for P. Such an x is unique
only up to multiplication by units of O ; multiplication by a non-unit would change
the ideal I(z).

Recall that lA(x) € II(Hx(z)). We will study the effect of multiplication by

units on the image of = under 7, and use p to relate this to |-
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The logarithmic map [ maps all units of O into the hyperplane II(0) C
R™*72 We find that 1(¢) = (0,...,0) for every root of unity ¢ in K, so we need
only consider products of fundamental units. Because scaling by a root of unity
does not change the length, infinite height or finite height of a point in (K*)N*!
and it does not affect its image under Z\, we work from now on in an environment
defined only up to multiplication by roots of unity. The images under [ of the units
of Ok form a lattice of full rank in II(0) because [ is an injective homomorphism of
Z-modules from OF /u(K) into I1(0). A fundamental unit ¢, is a basis element of
O3 (modulo roots of unity); we call its image Ry := l(¢)) € R™*"2. The Ry, form a
basis for a lattice A, the image under [ of the units of K, lying in I1(0). Notice that
a different choice of fundamental units would mean only a change of basis for A.

In the unit rank 0 case there are no fundamental units as the only units of
O3, are roots of unity. The hyperplane II(0) is simply the origin, we take A = II(0).

We consider the effect of scaling an element of (K*)¥*! by a product of

fundamental units:
7<H€;kx> —7<Hg;km0,...,ng;km>
k k k

= <lA1($) + ) tenalogloi(er)l, -,

k

lpyry () + Z tkNyy 41y 10g [0 15 (Ek)|>

We see that scaling by a vector x by a unit moves the logarithmic image by the
corresponding lattice vector in A. This gives an action of the lattice A on the
hyperplane IT1(Ho.(z)). Vectors in (K*)V*! are unit multiples of one another if and
only if their images under 1 are equivalent under the action of A. Let C(h) be a
fixed fundamental domain for the action of A on II(h). For every x € (K*)" such
that Hoo(x) = h, there exists a unit u € O} such that lA(uac) € C(h).

Proposition 3.6. Let P € PV (K), with no zero coordinates. Then there exists a

representative x € (’)I]\(['H for P satisfying
Hoo(x) = H(P) + log(N (I1(P))),
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and

o~

l(z) € C(Hoo(x)) C I(Hoo(x)).

Proof. The first part is a step in the proof of Proposition 3.2. The second is a
consequence of the fact that the image of O} under [ forms a lattice A acting on
II(h). Multiplying = by a unit allows us to move its image inside II(h) to be in
C(h). O

We have already proven that given a point P € PV(K) there exists a repre-
sentative z for P with Hy(z) = H(P) + log(N (I(P))) for which

I(z) € I(H(P) + log(N (I(P)))),

holds. If we specify a particular fundamental domain for the action of A on H(H (P)+
log(N'(I(P)))), then by evaluating the maximum value of y on that region we can
identify an upper bound for x| for those z € OF ™' that map into that fundamental

domain. Proposition 3.6 proves that such a representative x for P exists.

3.5 A fundamental domain for the action of A on II(h)

In this section we will choose a fundamental domain for the action of the lattice A
on the hyperplane II(h) C R™ "2 for each h. We recall that in the unit rank 0 case,
such a fundamental domain is the point II(h).

Many choices of fundamental domain would suffice for the purpose of finding
an upper bound on ||z||. We wish both for a simple calculation and for the maximal
value of u on the fundamental domain to be reasonably small. Although not optimal,

we believe that the following represents a reasonable choice.

3.5.1 A base point that is a minimum for p

We will base our fundamental domain around the point of II(h) for which the value of
w is minimal. The hyperplane given by I1(h) = {g(z1, ..., 2 4ry) := Z;Sm zj = h}
forms our constraint, so using Lagrange multipliers (see for example [1] page 1109)
we wish to solve the equation

Vi = AVg,

for some A € R. It is clear that Vg = (1,...,1) so this is equivalent to saying that

%; = A for all j. We solve for z;: the equation

A= 2oV 1) (exple) 2
8,2]‘

22



holds if and only if

z—ﬁlo 7)\
T % v/

We then use the constraint given by the fact that (z1,..., 2p4r,) € II(h):

ri+r2 ritre s A
h = — | -
2 5= 2 5 Og(z(N+1)>

J=1 J=1

=) e o)

which can be simplified to

%—lo 7)\
a_ *low+y)

and we solve to find that h
s
zj = #. (3.1)
Let zmin(h) be the point in R™*"2 defined by equation 3.1. The value of u at zmin(h)

is (N + 1)dexp(2h/d), which is a minimum for g on II(h).

3.5.2 A fundamental domain

We choose our fundamental domain C'(h) to be the parallelotope with edges parallel
to the directions of logarithmic embeddings of units Ry and centred at the zyin(h).

This is clearly a closed, convex region with vertices that we can calculate.

ri4+reo—1
C(h) = {Zmin(h) + Z MRy i A\ € [—1/2, 1/2]}

k=1
The extreme points of C'(h) are the points zmin(h) + > A Ri where each
A, = £1/2. There are 2"7"2~! of them and by Theorem 3.4 the maximum value

for ;1 on C'(h) is attained at (at least) one of them.
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3.5.3 Maximum value of 1 on the fundamental domain C(h)

To find a maximum value of ;1 on C(h) we need to evaluate ;1 at the extreme points

of C(h). For convenience, we define a constant

>n L exp(|log|oj(ex)|) if the unit rank of K > 0,
CK = 4 2 if K is imaginary quadratic, (3.2)
1 if K = Q.

After fixing a set of fundamental units for K, cx depends only on K. It may be
beneficial to choose these fundamental units carefully to attempt to minimise the
bounds that follow.

Proposition 3.7. Let x € C(h). Then

p(z) < (N +1)exp(2h/d)ck.

Proof. Because p is convex and C(h) is a polytope, u attains its maximum on C'(h)

at one of the vertices of C'(h). We evaluate p at these points:

2/n;
o o+ o) = v+ S (o (s S et
k j k
=(N+1) Z n; (exp(njh/d))2/nj H |0 (er) [P
i k

J

= (N+1)) njexp(2h/d) [ ] loj ()P
j k

J
2k
gj (HEk >‘
k

= (N + 1) exp(2h/d) Y _n;
J
To avoid calculating this for each of the 27117271 possible sets of values for A\, =

+1/2, we choose for each Ay the larger value of the values of |o; (si’\’“)| for A\, = +£1/2

in the following way. Because

‘log\aj(ek)\‘ > ilog}aj(&?k)‘

)

= log|o;(e; )

we see that

max|0(g; )| = exp|log |0 (e)]]-
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We substitute this maximum value to find that
w (zmin(h) + Z )\kRk> < (N +1)exp(2h/d)ck,
k

and this upper bound is attained at one of the vertices of C'(h). O

Note that the maximum value of p on C'(h) depends only on h, the ambient
dimension N, the number field K and a choice of fundamental units. We may
calculate (N + 1) exp(2/d)ck once for a given number field and ambient dimension
and then scale for the parameter h.

We are now ready to state a result relating the height and length of repre-

sentatives of projective points.

Theorem 3.8. Let P € PN(K), with no zero coordinates. Recall that I(P) is
an integral ideal in the ideal class of P with minimal norm. Then there exists a

representative T € (’)%+1 for P satisfying

2(H(P) + log(N(I(P))))> ex
; :

Jol? < <N+1>exp(

Proof. Proposition 3.6 shows that we may choose a representative x so that x has
infinite height equal to H(P) + log(N (I(P))) and so that T(ac) lies in our chosen
fundamental domain C(H (P) + log(N(I(P)))). The function yx is convex and sat-
isfies o lA(a:) > ||z||?> by Proposition 3.5. The result then follows from Proposition

3.7. O

3.6 Dimension reduction

Because we have used the logarithmic map which can be applied only to (K*)N+1,

our results so far only apply to projective points that have no zero coordinates. We
show in this section that a point with zero coordinates has the same height and
length as a certain point without zero coordinates in a projective space of smaller

dimension. We assume the 0th coordinate to be 0 for simplicity of exposition.

Lemma 3.9. Let (0,z1,...,2x) € KN with not all of the z; equal to 0 and
let P = [0,21,...,2n] € PN(K). Then (z1,...,2n5) € K~ represents a point
P' € PN-Y(K) such that

H(P)=H(P") and 10,21, ...,zN)|| = [[(z1,...,2zN)].
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Proof. We recall the formal definition that log(0) = —oo and that

H(P) = Z mlaxlog|xi|v.
vEMK

Because there is some z; # 0, for each place v € Mg there is some |z;|, > —o0, so
a zero coordinate will not contribute to the sum. Therefore we can conclude that
H(P) = H(P'). Since 0(0) = 0 for all j, the contribution to the length from the

Oth coordinate is zero. O

Lemma 3.9 shows that every point P in PV (K) with exactly ¢ zero coor-
dinates (¢ < N) has the same height as a point P’ with no zero coordinates in
PN=4(K) and every representative for P has the same length as a representative for
P

3.7 A bound on vector length

The bound in Theorem 3.8 only applies to projective points of PV (K) without zero
coordinates. We extend this result using Lemma 3.9 to prove that the same bound

applies to all points of PV (K). This is the main result of this chapter.
Theorem 3.10. Let K be a number field and cx as defined in equation 3.2. Let A

be a set of integral representatives for the ideal classes of K with minimal norm and
let N = maxqea N (a).

Let By > 0. Then every P € PN(K) such that H(P) < By has a represen-
tative T € O%H such that

l=]* < B

where

d
Proof. By Lemma 3.9 combined with Theorem 3.8 we see that every point in PV (K)

Br, = (N +1)exp (Q(BH i IOg(NK))) CK-

with g zero coefficients has a representative whose length is less than or equal to

2(Bu +1og(N(I(P))))>
CK.

(N+1—q)exp< -

The maximum value of (N + 1 — ¢q) is (N + 1) and so the upper bound given by
Theorem 3.8 holds for projective points with any number of zero coefficients. The
result then follows from the fact that the maximum value of N (I(P)) amongst all

projective points is Ng. ]

26



3.8 Examples

It is clear that the upper bound on the squared length of a representative x for points
with logarithmic height less than or equal to By depends only on the number field,
the ambient dimension and the height bound. To get a better understanding of this
quantity we calculate it for several examples of number fields K = Q(x)/ f(z).

f() (r1,79) | N | ex < By
v 0,0) | 1 1 (N + 1) exp(2By)
241 (0,1) 1 2 2(N + 1) exp(Bp)
22 -5 (2,0) | 1 | 3.236068 | 3.236068(N + 1)exp(By)
% 431 (0,1) 2 2 A(N + 1) exp(By)
-2 (1,1) | 1 | 7.7702405 | 7.7702405(N + 1) exp(2Bp)
23— 59z — 132 | (3,0) | 16 | 14413078 | 91517338(N + 1) exp(2By)
Proz—1 | (2,1) | 1 |9.2838648 | 9.2888648(N + 1) exp(}Bp)
9(z) (2,3) | 1 |33.749686 | 33.749686(N + 1) exp(1Bp)

We use g(z) to denote 28 — 20 — 2% — 23 + 22 + 2 — 1 to save space in the

table. The values of cx are not necessarily the smallest possible as we have not
proved that when the unit rank is greater than 1 the optimal choice of fundamental
units has been used. However, the units used form an LLL-reduced basis of A and
so our value of cg is likely to be reasonable.

The calculation of the class group (needed to calculate N ) and fundamental
units (needed for ¢ ) can be slow for fields of large degree; there exist faster methods
that depend on the Generalised Riemann Hypothesis. We note that even for number

fields of small degree, the constant cx can get rather large.
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Chapter 4
Choosing a prime

A key step in our method of finding rational points on a variety V is to choose a
suitable prime. We reduce the variety at the prime and then for each point on the
reduced variety construct a lattice of lifts. We require that the chosen prime is a
prime of good reduction for V and we impose some further conditions which will
improve the theoretical exposition and the implementation of the lattice methods
we will later describe.

In this chapter we will explain the kinds of primes we need and want for our
methods, show that infinitely many such primes exist and explain our method for

finding them.

4.1 Conditions on suitable primes

4.1.1 Good reduction

We require the prime used to be of good reduction for the variety because our
constructions in the following chapters require every point on the reduced variety
to be smooth. This will be necessary for Hensel lifting in the construction of sets of
lifts.

4.1.2 Degree one

Recall from Chapter 2 that a rational prime decomposes in K as pOg = [[, p;* and
that each of the p; gives rise to a residue field O /p; with degree f; = [Ox/p; :
Z/pZ). We wish to use primes whose degree is 1 because it allows for quick com-
putation: if f; = 1 then Ok /p; = Z/pZ and we take advantage of the fact that
arithmetic in Z/pZ runs efficiently. By choosing primes with degree 1, we also fix

the fact that AM(p) = p; knowledge of the norm of our prime will be useful when
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employing the method of finding points described in Chapter 8. When the number

field in question is Q, all primes have degree 1.

4.1.3 Principal

Ensuring that the primes we use are always principal has two main benefits. One
is ease of exposition: if the prime ideal p is principal we may fix a generator w
of p and work concretely with elements of O at every stage. Secondly it means
that our Og-lattices, whose index-ideal will be a power of p, will be free. This will
allow us to work with bases rather than pseudo-bases for them. (More information
on Og-lattices and pseudo-bases of can be found in Chapter 6.) Principal primes
have practical computational advantages too, as Hermite normal form (whose use is
described in Chapter 6 in the construction of lattices of lifts) is available for principal
ideal domains; we may use the same code even in non-PIDs by taking care to ensure

that all ideals arising are principal.

4.1.4 Norm

To a lattice such as the lattices of lifts described in Chapter 6 we may associate an
ideal called the index-ideal. We show in Chapter 6 that the index-ideal of a lattice
of lifts is a power of the prime used and we give bounds for its exponent.

In Chapter 8 we will describe a way of finding points from a lattice of lifts
which requires that the norm of the index-ideal be larger than a given bound. We
use the lower bound on the exponent to show that the norm of the index-ideal will
be large enough if the norm of the prime we use is greater than a certain bound.

In Chapter 7 we will describe how to use Z-lattice enumeration on any Q-
lattice. In this case, if we use a lattice of lifts there is no need to bound the norm
of the prime. In fact, there is a compromise to be found. Large primes cause the
lattices of lifts to be sparse, with fewer points to find and check up to a given length
bound. On the other hand, the number of rational points on a reduced variety will
increase as the prime increases, so more lattices will be constructed and checked.

We will show that there are infinitely many primes of K that satisfy our

conditions.

4.2 Decomposition of rational primes

We will obtain primes of K by decomposing rational primes. The following theorem

will help us to find primes of degree 1.
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Theorem 4.1 (Theorem 4.8.13 of [5]). Let K = Q(«) be a number field, where o
is an algebraic integer whose (monic) minimal polynomial is denoted T'(z) € Zlx].
Then for any rational prime p not dividing the index [Ok : Z[a]] one can obtain the

prime decomposition of pOk as follows. Let

g
T(X) = HTZ(az)el mod p
i=1
be the decomposition of T' into irreducible factors in Fplx], where the T; are taken

to be monic. Then p decomposes as

g
pOK = HP?>
=1

where

Furthermore, the residue degree f; of p; is equal to the degree of T;.

The final sentence indicates that we may find a prime of degree 1 in K from

a linear factor of the minimal polynomial modulo a rational prime.

4.3 Existence of suitable primes

We have constructed a list of properties that our chosen prime should have, but it is
still necessary to prove that such primes exist. In this section we show that all but
finitely many primes of K are primes of good reduction for a given variety. We also
demonstrate that the set of rational primes whose decomposition in Ok includes a
principal prime of degree 1 has positive density. We will conclude by proving that
there are infinitely many principal primes of degree one that are primes of good

reduction for the variety.

Proposition 4.2. Let K be a number field and V', a geometrically smooth projective
algebraic variety defined over K. Then there are only finitely many prime ideals p

of K such that the reduced variety V defined over Fy is singular.
We start by proving a result over algebraically closed fields.

Lemma 4.3. Let k be an algebraically closed field and V', a projective algebraic

variety defined over k by homogeneous polynomials Fi,...,Fy € k[Xo,..., Xn].

Let VF = <g§;) _be the Jacobian matrixz of the F; and let my be the determinants
ij
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of (N —dim(V)) x (N — dim(V')) minors of V(F). We call the number of such
minors D. Then V is smooth if and only if there exist g; ; and hy ; € k[Xo, ..., Xn]

and integers nj > 0 such that
M D
Zgi,jFi + Z hyjmy = X;Lj, for each 0 < j < N. (4.1)
i=1 I=1

Proof of Lemma 4.3. V is smooth if and only if there is no point P € V (k) such that
the Jacobian VF'(x) for any x representing P has rank less than N — dim(V'). Let
I = (F;,m;) C k[Xo,...,Xn] be the ideal generated by the defining polynomials F;
and determinants of minors of VF. Then V is smooth if and only if the variety V(1)
of the ideal I is empty in PV (k). The result follows by application of the Projective
Weak Nullstellensatz. (See Chapter 3 of [8].) O

Proof of Proposition 4.2. To apply Lemma 4.3, we pass to the algebraic closure K
of our number field K. By Lemma 4.3 there exist g; j and h;j € K[Xo, ..., Xn] and
integers n; > 0 such that Equations 4.1 hold.

Let L/K be the finite extension of K given by adjoining all the coefficients
of the g; ; and h; ;. We can then scale Equations 4.1 so that they have coefficients
in the ring of integers Of, of L. Then there exist g; ; and hg,j € Or[Xo,...,Xn] and
nonzero R € Oy, such that the equation

N D
> 9igFit Y Hymi = RX
i=1 =1

holds for each j.
Let q be a prime ideal in Oy, and Fy the corresponding residue field. Let
x +— T denote the g-reduction map on Op. Then

N D
Z éli,jﬁi + Z ]’;’lel = RXJn] (4.2)
i=1 =1

holds for each j. If q does not divide the ideal RO, then we can scale Equations
4.2 by the inverse S of R in I to obtain the equations

N D
Z Sg—/l,]Fl + Z SE/]JTTLZ — X‘?j,
=1 =1

where the polynomials S¢/; ; and Sh/j; are now in Fy[Xo,...,Xy]. The residue

field IFy is an algebraic extension of Fy for a unique prime ideal p of Ok. Therefore
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for such p C Ok, S gz j and S h;l are polynomials defined over the algebraic closure
of Fy, Fy. By Lemma 4.3 the variety defined over Fy, by all of the F; and 1y is
non-singular over Fp and so over [F,. We may therefore conclude that if q does not
divide R, q is a prime of good reduction for V.

It remains to note that since R # 0 there are only finitely many primes of
Oy, dividing ROp. For each such prime q there is a unique prime of K lying below
q, so there are only finitely many primes of K whose decomposition in L contains
a prime of L dividing ROj;. We conclude that there can only be finitely many bad
primes for V in K. O

4.3.1 Density of primes

In this section we prove that a number field has infinitely many principal primes of

degree one. Let K be a number field and let S be a set of primes of K.
Definition 20. The Dirichlet density of S is
N —S
5(5) = i 22 @) T
s—1+ Zp N(p)
if this limit exists, where p ranges over all primes of K in the denominator.

We will not explain this definition here, but it can be shown (Lemma 3.2 of
[7]) that the denominator can be replaced by log(1/(s — 1)). The following propo-
sition is a corollary of the Chebotarev density theorem (Theorem 13.4 of [24]).

Proposition 4.4 (Corollary 13.6 of [24]). Let L/K be a finite extension of number
fields of degree n and let P(L/K) be the set of unramified prime ideals of K whose

decomposition in L contains a prime of degree 1 over K. Then

O(P(LIK)) =

1
n
and equality holds if and only if L is a Galois extension of K.

Proposition 4.5. 1. The set of rational primes whose decomposition in K con-

tains a prime of degree one has positive Dirichlet density (within primes of

Q).

2. The set of primes of degree one in K has Dirichlet density 1 in the set of
primes of K.

3. The set of principal primes of K has Dirichlet density 1/hg in the set of

primes of K, where hi is the class number of K.
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Proof. 1. This follows immediately from the application of Proposition 4.4 to the
extension K/Q.

2. We sketch the proof, following Example 3.3 of [7]. It is equivalent to show that
the Dirichlet density of the set of primes p in K with degree f, > 1 is zero.
We denote this set by S=;. For such p|p, N(p)~* = p~/»% < p~2%. There are
at most [K : Q] such p over each p in Q. Hence the numerator » -, s N (p)~*
is bounded above by [K : Q]}_, p~2% and this is bounded for s close to 1.
Dividing by log(1/(s — 1)) and letting s — 1% gives a limit of 0.

3. There exists a Galois extension H of K called the Hilbert class field of K
(see Section VI.6 of [24]), with the properties that Gal(H/K) = Cl(K) and
that a prime of K has a prime of degree one in its decomposition in H if and
only if it is principal. (In fact, as H is Galois, all primes of H above a principal
prime will have degree one.) We apply Proposition 4.4 to the extension H/K
and note that [H : K] = |Gal(H/K)| = | CI(K)| = hx as H is Galois over K.

O

Corollary 4.6. There are infinitely many principal primes of degree one in K.

Proof. We start by showing that the density of principal degree one primes of K is
the same as the density of principal primes of K. Let Spin be the set of principal
primes of K. We know from part 3 of Proposition 4.5 that 6(Sprin) = 1/hk.

Using the method of proof of part 2 of Proposition 4.5, we show that the

density of primes of degree greater than 1 inside Sy, is 0:

. Zpes>1msprin N(p)_s . ZpeS>1r\|Sprin N(p)_s . Zp N(p)_s
lim — = lim — . lim —
s=1* Zpésprin N(p) ° 51t ZPN(p) ° s=1* Zpesprin N(p) °
=0.hg =

Labelling the set of primes of degree 1 in K as Si, 6(Sprin N S1) = 6(Sprin) =
1/hg. By part 1 of Proposition 4.5, there are infinitely many rational primes whose
decomposition in K yields a prime of degree one. Since the density of principal
degree one primes of K is positive there are infinitely many principal primes of

degree one in K. O

By combining Corollary 4.6 and Proposition 4.2 we have proven that there
are infinitely many primes of K suitable for use in the construction of lattices of

lifts for any variety.

33



4.4 Algorithm

We will use Theorem 4.1 to construct an iterator that yields principal primes of
degree 1 that are primes of good reduction for our variety V. We do not claim that
this algorithm will yield all such primes; in particular we avoid primes that divide
[Ok : Z[a]] so that Theorem 4.1 applies.

Primes of degree one dividing a rational prime p correspond to linear poly-
nomials in the factorisation of T'(z) modulo p. If n is a root of T'(x) modulo p then
x —n is a factor of T'(x) and the ideal (p, « — n) is a prime dividing p of degree one.

This algorithm comes from Theorem 4.8.13 of [5] and its implementation has
been influenced by the rings.number_fields.small_primes_of _degree_one module of Sage
[30], written by Nick Alexander.

Algorithm 1: Primes of degree one

Input:

- K, a number field with integral primitive element o which has minimal

polynomial T' € Z|x],
- N, a lower bound for the norm of primes, by default set to 0,

- is_good, a function which takes as input a prime ideal of K and outputs

True or False. Must satisfy is_good(p) = False if p|[Ok : Z[a]].

Output: - Prime ideals p of O with degree 1 and norm greater than N for
which is_good(p) is True.

Procedure:
Set p to be the next prime larger than N.
For each root n of T" mod p with 0 < n < p:

set p < (p,a —n).

If is_good(p) = True:

yield p.

Replace p by the next rational prime and repeat the previous step.

It is essential that is_good(p) = False for any p|[Ok : Z[a]]. We will also set

it to return False for any bad primes for V' and all non-principal primes.
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Chapter 5
Constructing sets of lifts

The aim of this chapter is to explain the construction of a set of lifts of a point on
a reduced variety. We will focus on curves for the main part of the chapter. The
general concepts that work for curves apply to all varieties. We will show how to
generalise the construction of sets of lifts for curves to the case of higher dimensional
varieties towards the end of the chapter. We also explain how we may view these sets
of lifts as local analytic parametrisations of residue discs of V(K}). The material in
this chapter was inspired by the method given in [10] but goes significantly further,
generalising the procedure explained there.

We will begin with some material about multivariate Taylor expansions, de-
scribe the first and second sets of lifts and then explain an inductive step allowing us
to continue finding higher lifts. Let V' be a variety and p, a prime. We will construct
a sequence of vectors in O%H that will generate sets of points that are lifts of a
particular point of V(F,) and satisfy the defining polynomials of V' modulo powers
of p. This will involve passing to the p-adic completion of our number field, which
makes it easier to prove the existence of the vectors that we require. In practice,
we only need to specify them to some finite p-adic precision. We may do this by
truncating the coefficients of a vector x € (’)?(p at the required precision to give an

approximation ¥ which actually lies in O%.

5.1 Taylor expansions, polynomial functions and power

series

Let G be a multivariate polynomial, an element of R[X7, ..., X,] for some coefficient
ring R. We will use X to denote the vector (Xi,...,Xy).
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Definition 21. The gradient vector of G at x is defined by:

VG(z) = <§;(aj),...,88)(i(m)> .

For any x € R", this defines a polynomial

oG oG

() Xn,

which is a linear form in X.

The notation VG has been used before and the gradient vector is a special
case of the Jacobian matrix. We may interpret VG(x)(X) as a polynomial function
of total degree deg(G). It has degree deg(G) — 1 in x and degree 1 in X.

Lemma 5.1. For any polynomial G € R[X1,...X,] and any x € R", the linear
form defined by the gradient of G satisfies:

V(VG(2)(X))(2)(X) = VG(z)(X).

Proof. Because VG(x)(X) is a linear polynomial it is clear that the equality

0 oG
55 VO@(X) = 5 (@)

holds for each X;. O

Definition 22. The Hessian matriz of G is a symmetric matrixz of second deriva-
tives defined by

Hess(G)(z) = (a;?jgj(j(w))

v

For any x € R", the Hessian of G defines a quadratic form in X given by

n 2
Hess(G)(z)(X) = X Hess(G)(z) X' = ) (g%(x)xixj.
=1

We wish to generalise the idea of the gradient and Hessian and their associ-
ated forms. We look at an ¢-dimensional array of all ith derivatives of G and form
the corresponding homogeneous polynomial in Xy, ..., X, of degree i. We will use
multi-indices to ease notation. A multi-index a = (a1,...,q,) is a list of non-
negative integers. We say « has size |a| = ), ;. There are finitely many a such

that || = m for any non-negative integer m. We say that X* = X7"*'..X3". We
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o o
1 lti-ind in defining derivatives: D% = . We will
can also use multl-Indexes 1 denning derivatives 8X?1 ann € W1

also need a! =[], a;!.
Definition 23. The ith Hessian form of G at x is given by:

DG (x)

Xa
a!

Hi(G)(2)(X) = )

|ae]=1

We note that Hy(G)(z)(X) = G(x), H1(G)(z)(X) = VG(z)(X) and H2(G)(z)(X) =

Hess(G)(z)(X). The ith Hessian form has degree i in X and degree deg(G) — ¢ in
x for i < deg(G).

Lemma 5.2. [Taylor Expansion] Let y,y' € R", G € R[X1,...,X,] and ¢ some

scalar parameter. Then we may perform a Taylor expansion on G:

deg(G) deg(G) '
Gly+cy)= Y Hi(G)y)(cy)= D H(G))W).
1=0 =0

Proof. The first equality is the well-known Taylor expansion formula, the second

recognises that H;(G)(y)(X) is a homogeneous polynomial of degree 7 in X. O

We wish to generalise the usual Taylor expansion to deal with expressions
of the form G(yo + cy1 + c?y2 + --- + c"y.). We will grade the terms of such an
expansion by the power of ¢ that appears in the term. A general expression of this
kind (especially for arbitrary r and degree of GG) looks complicated to formulate, as
it involves taking repeated Taylor expansions to fully expand. However, this can be
calculated by hand or computer for any particular G and r. We will show in the
general case that such an expansion exists, but do not attempt to describe explicitly
the relationship with the usual Taylor expansion except in some easy cases.

We work with power series in a scalar parameter ¢, before specialising to

finite sums.

Lemma 5.3. Let (y:)72, be a sequence of vectors in R" and G € R[Xq,...,X,].
Then there exist unique polynomial functions Gy : (R™)*t! — R such that:

G (Z ctyt> = ZCSGS(yov s 7y8)‘
t=0 s=0

Proof. Considering > ;°, c'y: as a vector of power series in ¢, the existence of the

G follows by expanding G(> ;2 c'y;) term by term. Each G, depends only on
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Y0, - - -, Ys because y; appears on the left hand side multiplied by c!. If G depends

on ¥, then ct|cf, so t < s. O

To ease notation, we may write G4(yo,...,y;) for some j > s. In this case
G does not depend on any of the y; for i > s, so Gs(yo,...,y;) = Gs(Yo,---,Ys)-
For j < s we may write G4(yo, .- .,¥;,0,...,0) to indicate the value of G, evaluated
with the last s — j — 1 vectors set to 0. We now use the results of Lemmas 5.3 and

5.2 to find out more information about the Gs(yo, - .., ys)-

Lemma 5.4. Let G and G be as defined in Lemma 5.3. Then,

Gj(yo,---,yj) = VG(yo)(y;) + G (%o, - - -, yj-1,0),

for each j.

Proof. By Lemma 5.3, we know that

J m(G.j)
G(thyt> = Z CSGS(y(byla"'7yj707"'70)7
t=0 s=0

and similarly

j_l m(GJ*l)
G(thyt> - Z csGs(y07y17"°7yj—1707"')0)'

t=0 s=0

These sums are finite, as they are simply Taylor expansions of the polynomial G on
a finite number of terms. The number of terms m(G, k) + 1 depends on the degree
of G and the number of terms k.

The coefficients of ¢® in these two expressions agree for all s < j. Using
Lemma 5.2, we take the first two terms of a Taylor expansion of G(Z‘ZZO ctyt) with
base point Z{;& cly; to find that:

J Jj—1 Jj—1
G <Z ctyt> =G (Z ctyt> + VG (Z ctyt> (c7yj) + higher order terms in c.
t=0 t=0 t=0
Comparing the coefficients of ¢/ on each side, we conclude that

Gj(y07 s 72/]) = G](y07 cee 7yj—17 0) + VG(IUO)(Z/J)
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In Lemma 5.3 we show that G (Zﬁo ctyt) may be viewed as a power series in
¢, with coefficients G4(yo, - ..ys). We may investigate G (Z?io ctyt) by performing

Taylor expansions recursively:

0o deg(G) 00
G (; ctyt> = > Hi(G)(w) <; ctyt>

i=0
deg(G) o0
= Z c'H;(G)(vo) (Z ctlyt> (by the homogeneity of H;)
i=0 t=1

deg(G) i o
— Z C’LZH](HZ(G)(y(]))(yl) (Z Ct—lyt>
i=0  j=0

t=2
deg(

G) 7 e’}
= Z chCJHJ(Hl(G)(yQ)) (y1) <Z Ct2yt> ' (51)
=0  j=0 t=2

We can continue with such Taylor expansions as long as we like and the expressions
contained therein will get more and more complicated. By comparing this sort of
expansion with that of Lemma 5.3 we may check small powers of ¢ to work out the

first few G, explicitly.

s=0:
G(yo) = Go(¥o)-
s=1
G(yo + cy1) = G(yo) + ¢cVG(yo)(y1) + h.o.t.
so: G1(yo, y1) = VG(yo)(y1)-
s=2:

G(yo + cyr + Py2) = Glyo) + VG(yo)(cyr + Py2)+
Hy(G)(yo)(ey1 + c*y2) + heo.t.
= Go(yo) + G1(yo, y1) + *VG(yo) (y2)+
Hy(G)(yo)(y1 + cy2) + ho.t.
so: G2(Y0, Y1, y2) = VG (y0)(y2) + H2(G)(yo) (y1)-

This process looks more complicated at each stage and it quickly becomes difficult
to write an explicit expression for G in general. We will avoid this difficulty by

using Lemma 5.4 to provide the (partial) information about G that we need.
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We will define a variety V' with a tuple of m polynomials which we de-
note by F. All of the material in this section may be applied to such a tuple
componentwise, using the following notation. We write H;(F)(z)(X) for the tu-
ple of polynomials (H;(Fj)(x)(X ))J The degrees of the polynomials in F are
given by deg(F) = (deg(F})); and we may use this componentwise as follows: if

x = (x1,...,%,) is a vector of length m and ¢ a scalar parameter then cdes(E)

(cdeg(Fl)xl, e cdeg(Fm)xm).

xTr =

5.2 Hensel lifting

Recall that Ok, is the completion of O with respect to the p-adic metric.

Proposition 5.5 (Hensel’s Lemma). Let G be a tuple of m polynomials in n vari-
ables (with m < n) defined over Ok. Let x1 € O} satisfy G(x1) = 0 mod p with
the Jacobian VG(x1) having full rank m mod p. Then there erxists an x € O%p
such that G(x) =0 and © = x; mod p.

Proof. We construct a p-adically convergent sequence (z;) of elements of O} with
the property that G(x;) =0 mod p’. This sequence will define z € (’)}l(p.

Because VG(x1) is an m x n matrix of full rank m, there exists an m x m
submatrix of VG(x1) of full rank mod p. For simplicity we may assume without
loss of generality that the first m columns of VG(z1) form such a submatrix and
denote it by VG(z1)m. There exists an m x m matrix A with entries in Ok that
forms an inverse to VG(z1),, mod p. Therefore, AVG(z1) = (I,|D) mod p, where
I, is the m x m identity matrix and D is some m X (n —m) matrix.

We proceed by induction. Assume that x, € O% satisfies , = 1 mod p
and G(x;) = 0 mod p*. Set xp11 = x5 + 7Fy. We will solve for y to find a x4
such that G(zr41) =0 mod p*+!. We take a Taylor expansion of G(xj41) at xj to
find:

G(xp41) = Gk + 7y) = G(ax) + VG(w) (v*y)  mod p*H.

Therefore, G(x141) =0 mod p**! if and only if
VG(zp)(7*y) = —G(xr) mod pFTl.

We may divide through by 7*:

—G(xy)

k

VG(xk)(y) =

mod p,
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and because xy = 1 mod p, we have

-G
VG(z1)(y) = W(,f’“) mod p. (5.2)
Congruence 5.2 holds if and only if
-G
AVG(z1)(y) = A <7r(k$k)> mod p.

We know that the first m columns of AVG(z1) form an identity matrix mod p and

so we choose y € OF so that

the ith entry of A <_Q(x"’)) for 1 <i < m,

yi = ™
0 for i > m.
Then we have o
A6 =4 (5 ) moa .

SO Tpp1 = xp + 7y satisfies x3.; = 0 mod p and G(zpr1) = 0 mod pF+l. We
know that G(z1) =0 mod p so by induction there exists a sequence (x;) of vectors,
each congruent to the last modulo increasing powers of p: z; = 2;,_1 mod p’. They
also satisfy G(x;) =0 mod p’. The entries of the z; form p-adic Cauchy sequences
of elements of Ok; they therefore converge to elements of O, and their limit is a
vector x € (’)?{p that is a root of G. O

Note that, unless m = n, z; is not unique and therefore x is not unique
because we made a choice of m x m submatrix of VG(z1). However, once such a
choice has been fixed the values of x; and therefore of x are unique.

For the next part of this chapter we will be constructing sets of lifts in the
case of curves. We will construct vectors that define sets of lifts of a reduced point
P. At each stage we will construct s; € O%jl using Hensel lifting but the sets of
lifts are actually subsets of (9%“. When z € O%DH we use the notation T € (9%+1

for a truncation of x to the necessary precision. For any given m € Z~ we have

The precision needed will always be clear from the context. By using this notation,
we emphasise that there is always an exact Of,-vector z from which the truncated
Og-vector 7 is taken.

We begin with the first and second sets of lifts, as they are needed for the
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process of induction.

5.3 First sets of lifts

Let C be a projective curve in PV defined over K by F € O[Xo,..., Xy] and let
p be a principal prime of good reduction for C with generator m. We note that in
general C may not be a complete intersection and hence may be defined by more than
N — 1 polynomials. However, for any point P on C (or indeed P on C) only N — 1
of the polynomials are needed to define C at that point. Because C is smooth, the
Jacobian of such a tuple of polynomials will have full rank N — 1 when evaluated at
a representative of P. The choice of tuple of polynomials will vary with P. We will
assume for simplicity that our curves are always complete intersections; in practice
for each reduced point P a suitable tuple of polynomials can be chosen.

Let P be a rational point on the reduced curve C. We may choose a repre-
sentative for P in IF,JDV *1: there are N'(p) — 1 possible choices, one for each non-zero
element of Fy,. By choosing a lift of each coordinate from [, to O, we may choose
an integral representative s for P. s € (9%+1 satisfies s = P mod p and F(z) =0
mod p. s is p-primitive. If it were not then each coordinate of s would be in p and
reducing s mod p would give the zero vector in IF',]JV +1 which does not represent
a point in PV (F,). This choice of s is clearly not unique: the set of all integral
representatives for P is the set of all z € O%H that reduce mod p to some repre-
sentative of P in Fév +1If s is some integral representative for P, then every integral
representative for P is given by cs + my for some ¢ € O satisfying ¢ Z 0 mod p
and some y € (’)%‘H.

Because VF(s) has full rank, we may employ Hensel lifting to construct a
p-adic solution from s. By Proposition 5.5 there exists an sy € (’)%:1 such that
s =sp mod p and F(sp) = 0. Although sy depends on the choice of representative
s, the sets we proceed to construct will be unique. We fix sg to be a lift of s and

recall that 5y will represent a truncation of sq.

Definition 24. Let Sy be the set of all points x € O[]\(H'l such that

x is a representative for P mod p and

F(z) =0 mod p*.

We note that these sets nest: Sx11 C Sy for each k.
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Lemma 5.6. We have
S = {Co§o+7fy } co € Okg,co#Z0 mod p,y € Ol]\gﬂ}’

where 5y is any mod p approzimation to sg.

Proof. If x € Sy then z is a representative for P mod p and x may be written as
co8o + my for some ¢y Z0 mod p and some y € (’)%H.
If 2 = ¢pS9 + my then F(x) = F(coSp) mod p. Because F(x) is a set of
homogeneous polynomials, F(coSp) = 0 if and only if F(Sp) =0 mod p.
O

S1 is simply the set of all elements of (9%+1 that reduce to P mod p. How-

ever, the sets S; for ¢ > 1 have a more complicated structure.

Lemma 5.7. Let sg € O%;’l be as above. Then the Jacobian matrix for F evaluated
at so gives a surjective linear map VF(so)(X) : O%p“ — O%p_l with so contained

in the kernel.

Proof. The fact that so lies in the kernel of VE(s¢)(X) follows from the fact that
VF;(X)(X) = A\jFj(X) for some scalar \; for each F};, by Euler’s theorem on homo-
geneous functions. VF(so)(X) is linear, so we need only to prove that VF(sg)(X)
is surjective. The matrix VF(sg) has full rank mod p, so it defines a surjective
map Févﬂ — F{,V_l.

Let y € (9%_1. Because VF(s9)(X) is surjective mod p there exists an
T € (9%“L such that

VE(s0)(z) =y mod p.

By Lemma 5.1, the Jacobian of VF(s)(X) — y is VF(sp) and this has full rank
mod p. Therefore by Hensel’s Lemma (Proposition 5.5) we may lift , which satisfies
F(s0)(z) —y =0 mod p, to a p-adic solution 2’ € O]val such that VE(sp)(z') =
Y. [

This use of Hensel’s Lemma proves the existence of solutions to equations of
the form VF(s0)(X)—y = 0 mod p™ for any y and any m and is a key step in
the construction of further sets of lifts. By considering the s; as lying in the p-adic
completion at their construction, we do not have to fix a p-adic precision at the start
or update our calculations at each stage but can use 5; to represent the truncation
of s; to the required precision.

The rank of the kernel of VFE(s0)(X) is 2. Choose a vector s € (’)%;H that

is linearly independent of syp modulo p (and therefore also linearly independent over
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Ok,, by the same method as the proof of Lemma 5.7) such that so and s; generate
the kernel of VF(sg)(X). The new vector s; will be used in the construction of the

second lattice of lifts.

Lemma 5.8. If x € Sy then x € Sy if and only if x = co(80 + 7c181) mod p? for
some cg,c1 € Og with cg 2 0 mod p. Here Sy and §1 are any approrimations

mod p? and mod p respectively.

Proof. Write x = coSp+my € S1 and set deg F'—1 to be the multi-index (deg(F;)—1);.

We perform a Taylor expansion based at cySp:

F(x) = F(coso + my) = F(coS0) + VFE(coSo)(my) mod p2
= g F(50) + g™ P IV E o) () mod p?
= (BT F(5)(y) mod p?,

because 5y is a mod p? approximation to so. Since cg Z 0 mod p, x € Sy if and
only if VF (50)(y) =0 mod p. This is the case if and only if y is a linear combination

of sy and s7, so z € Sy if and only if
T = ¢pSy + mapSo + ma181  mod p2.
By relabelling constants, we have
x = co(50 + me151) + 1y

for some cg,c; € Ok such that ¢y € p. As x is an arbitrary element of S7 and
Sl D SQ,

Sy = {co(§0 + me181) + 7y ‘ co,c1 € Og,co0 20 mod p,y € (’)IJ\([H} )

5.4 Further sets of lifts

We apply the results of Section 5.1 to the polynomials defining C at P and start to

think p-adically by setting our power series parameter c = ma.

Lemma 5.9. There exist tuples of homogeneous polynomials F; with the same de-
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grees as F', such that
oo o0 )
F ( (ﬂ'c/)tyt) = Z(Trc/)JEj (Yo, -+, Y5), (5.3)
t=0 =0

and
Ej(yoa oo ay]) = VE(yO)(y]) +Eg(y07 cee 7yj*1a0)'

Proof. Apply Lemmas 5.3 and 5.4 to F, with ¢ = .
O

Although the notation F'; for the terms in the power series expansion for £’
is similar to that used for that for the individual polynomials F; in F', there should

be no confusion as the F; will not feature individually again in this chapter.

5.4.1 Construction of vectors
We are now in position to construct further vectors s;. We will consider F' as above:
oo o0
F (Z(m’)tyt> => (7)Ey(yo, - ys),
t=0 s=0

and solve
Es(y07 cee 7ys) - 07

for each s in turn.
Recall that sg,s1 € (’)%jl and that F(sg) = 0 and VF(s0)(s1) = 0. We

define a sequence of s; € Og:l inductively. Let the vector s; be a solution to
VE(SO)(Si) == _Ei(807 e 7Si—17 0)7

noting that this is satisfied for ¢ = 0 and 1.
Such vectors s; always exist because VF(sg) is surjective, and solutions are

unique up to addition of an element of ker(VF(sg)). By definition, the s; satisfy
Ei(SOa s 75i) = Oa

for each i. We note that sequences of vectors (sp,...,s;) generated in this way do
not necessarily form a linearly independent set, even if i < N + 1.

From the definition of the s; and 5; and our Taylor expansion reduced modulo
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p*1 we observe that F satisfies

i i
F (Z 7Tt8t> =Y 7°F(s0,...,5;) mod p'T!
t=0 s=0
i
=Y 7°F,(%,...,8) mod p't
s=0
=0 mod ptt

Theorem 5.10. The set S; of all points x in (’)%:1 such that

F(x)=0 mod p’ and

x reduces to P mod p
is defined by

co,c1 € Ok,
i—1 i1~

Si=qco(So+ansi+...+c 7w si,l)+7riy coZ0 modp, ;,
yEOI]\gH

where 5 is any mod p'~7 approzimation to s;.

Proof. Note that S; and S5 are both of the form described in the statement of
Theorem 5.10, as shown in Lemmas 5.6 and 5.8. We proceed by induction.

Assume that

co,c1 € Ok,
Si—1 =< co(So+c1msy + -+ 63_277F2/8\2‘_2) + TFifly co Z0 mod p, )
Yy € (9%+1
and recall that S; C S;_1. If x is an element of S;_1 then
i—2 -2~ i—1

2 =co(S0 + 178 + -+ 202G y) + Ly,

for some ¢y, c1 € Ok with ¢g 20 mod p and some y € (’)%H. Then, z € 5; if and
only if F(x) =0 mod p’. We perform a Taylor expansion on F:

F(z) = F(co(S0 + 18y + -+ + 27 725,0))+

VFE(co(So+ c1msy + -+ c’i_zﬂi_2§i,2))(7ri_1y) mod pi

= N (FGo+ ams + -+ ¢ 207 %5 0) + 7 'VE(S))(y)) mod p’.
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Therefore F(z) =0 mod p’ if and only if the congruence
7ri71VE(§o)(y) = —CoE(§0 +eymsy 4+ 63_271'1.72/8\1‘_2) mod pi, (54)

holds. Recalling that the construction of the s; means that F,(so,...,s;) = 0 for all
t <1 — 2, we expand the main part of the right hand side:

[\

71—
E(§0 + -4 62'1_271'1'723\1'_2) = (Clﬁ)tﬁt(:‘fg, .. ,/S\t)-i-
t

Il
=)

(Clﬂ')iilﬂifl(g(), ...,8i—2,0) mod pz

=0+ (Cﬂ[’)iilﬁifl(go,...,gi_Q,O) mod pl
We substitute back in to Congruence (5.4):
T IV (30)(y) = —co(erm)' T Fi_1 (30, -+, 8i-2,0)  mod p".

We divide by 7*~! and conclude that F(z) =0 mod p® if and only if

VE(S)(y) = —cocflEi_l(go, ...,8i—2,0) mod p. (5.5)
Recall that s;—; is defined so that VF(sg)(si—1) = —F,_1(so,--.,Si—2,0) and that

this definition is unique up to addition of an element of ker VF(sg). Therefore all

solutions to Congruence (5.5) will be of the form
y = coci 151 + aoso + a151 + Y/,

for some ag,a; € Ok and 3y € (’)I]\(]H.
After some relabelling of constants we see that if x € S;_1, then x € S; if

and only if
x=co(So+cimsy+ -+ Ciﬁlﬂi_lgiq) + 7Tiy»

for some ¢y, c;1 € O with ¢g 0 mod p, and some y € (’)%H.

Cp, C1 S OK)
S; = Co(§0 +emsy -+ Ci_lﬂ'i_lé\i_l) + 7riy co 5_’5 0 mod p,
y e O%Jrl
Therefore, by induction, .S; takes this form for each ¢ > 0. O
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5.5 Higher dimensional varieties

The method used to construct lattices of lifts in the case of curves can be extended to
work in essentially the same way for higher dimensional varieties. We will generalise
our work to describe the sets of lifts for a point on a smooth reduced variety V,
where dim(V') > 1.

Just as in the case of curves, after finding a lift sy € OI]\(I;FI of P the key
first step is to find a basis for ker(VF(sp)) that includes sg. These vectors span the
tangent space of V(Kj) at sp and this tangent space is dim(V')-dimensional, as V
is smooth. To generalise our construction to a variety of dimension D we require D
parameters; we will therefore be using multivariate power series.

Let ¢ = (c1,...,cp) be a tuple of parameters. When working with univariate
power series and Taylor expansions we used a sequence of vectors (y;). Here we will
index vectors by multi-indices: yo. If v and « are multi-indices we will say that
v < aif v; < o for each i. Recall that |a] = > a4, and let ng = #{v: v < a}. We
say that v < a if v < a and || < |a| or, equivalently, if v < « and there is some
index ¢ where 7; < a;. If |a| = 0 then we will denote it by 0 and if |a| = 1 then the
multi-index whose ith coefficient o; = 1 will be denoted by 1.

Let (y) be a sequence indexed by multi-indices on D variables. The number
of multi-indices of size j on D variables is given by ¢p(j) = (D +;_1). Where
the number of variables is unambiguous, we will shorten this to ¢(j). We use the
notation (y)y<a to indicate the finite subsequence of (y,) consisting of those y.
such that v < . We will use the notation (y, : condition) to indicate the sequence
(zy) where

y  if v satisfies condition and

2y =
0 else.

These new notations perform the same functions as the notations described for the

sequences that are inputs to Gs on page 38. As an example, (y, : 7 < a)y<q is the

finite sequence with one position for each multi-index v < a. Its coefficients are y,

for each v < o and 0 for a.

Lemma 5.11 (Generalisation of Lemma 5.3). Let R be a coefficient ring and let
¢ = (c1,...,¢p) be a tuple of variables. Let (y,) be a sequence of vectors indexed

by multi-indices on D variables and let G € R[X1, ..., Xy]. Then there exist unique
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polynomial functions G : (R™)"> — R such that:

Z Z Yo | = Z Z CaGa((y*/)'ysa)-

3=0 |a|=j 3=0 lal=j

Proof. As in the univariate case, the existence of the G, follows from a term-by-
term expansion of G (Z;io Z| al=j co‘ya). The fact that G, only depends on v < «
follows for the same reason as in the univariate case: y, appears on the left hand

side multiplied by ¢” so if G depends on y, then ¢7|c* and v < a. 0

Lemma 5.12 (Generalisation of Lemma 5.4). Let G and G, be as in Lemma 5.11.

Then we have

Ga((Yy)y<a) = VG(H0)(Wa) + Ga((yy 1 ¥ < @)y<a)-

Proof. This proof is a generalisation of that of Lemma 5.4. We perform a Taylor
expansion to allow us to compare G <Z{:O > lal=t co‘ya> to G (Ei:o > lal=t co‘ya>.

J j—1 J—1
Z Z Yo | =G Z Z Yo | + VG Z Z Yo Z “Ya
t=0 |a|=t t=0 |a|=t t=0 |a|=t |a|=3

We compare coefficients of ¢ for some |a| = j and find that

Go((Yy)v<a) = Ga((yy : 17l < J = 1)r<a) + VG(50) (Ya)
= Ga((yv < a)v a) =+ VG( )(yoz)

O]

Let V be a variety of dimension D defined by a tuple of polynomials F in
Ok[Xo,...,Xn] and let P be a smooth point on the reduced curve V(Fy). F is a
tuple of m polynomials where m > N — D. As in the case of curves, exactly N — D
polynomials are required to define V' at any particular reduced point P. We assume
for simplicity that V' is a complete intersection, defined by N — D polynomials. In
practice, for each reduced point P a suitable subset of F of size N — D can be found.

We will now construct sets of lifts S; D So D ... for P. We may apply
Hensel’s Lemma (Proposition 5.5) to VE(P) and so construct sg € (’)%:1, a lift of
P satistying F(so) = 0.
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For exactly the same reasons as when D = 1, the first set of lifts is given by
S, = {60:9\0 + 7y } co € Or,c0Z0 mod p,y € (’)[]\(TH}.

By the same argument as Lemma 5.7, VF(sg) defines a surjective linear map
(9%:1 — O%;D. The kernel is D + 1 dimensional and, as before, sy € ker(VF(s)).
We extend from sy to fix a basis sg,s1,...,8p € (’)I]\{ljl for this kernel. Then
VF(sp)(y) =0 if and only if y = ZZD:O ¢;si for some co, ..., cp € Ok,.

Lemma 5.13 (Generalisation of Lemma 5.8). The second set of lifts is

D
Sy = {CO <§0 + 7 Z cif‘;}) + 7y

=1

€oy---,¢cp € Og,c0 #0 modp,yE@%“}a

where 3y is an approzimation mod p? to so and 5; is an approzimation mod p to
si for1 <1< D.

Proof. Let x € S;. Then z € Sy if and only if F(z) = 0 mod p2. We write

T = ¢p8g + my. Performing a Taylor expansion on I yields:

F(coso + my) = F(coSo) + VE(coS0)(my) mod p?
= g (0P (s0) + TVE(30)(y))  mod p2.

We know that cg # 0 mod p, so F(x) =0 mod p? if and only if
coF(50) + VE(5)(y) =0 mod p*.
Recall that F(sg) =0, so F(59) =0 mod p? and consequently = € Sy if and only if
VE(o)(y) =0 mod p.

This means that y = ZZZ 0@;5; mod p for some a; € O. This implies that
D
T = cpSp + Z a;8; mod p?,
i=0
so, by rearranging constants, we have

D
T =C (§0 + ZQ@) + 72y,

=1
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where ¢; € Ok, cg 20 mod p and y € (’)%H. O

We may now inductively construct more vectors s, € O%p“. For each multi-

index a we define s, € (’)%:1 by:

VE(50)(5a) = =Fo((5y:7 < @)y<a)-

This definition is unique up to the addition of an element of ker(VFE(sp)).

Theorem 5.14 (Generalisation of Theorem 5.10). The ith set of lifts is given by:

¢ € Ok,
i1

N - co Z0 mod p,
S; =< ¢ s, | + 7
’ ZZ Y c=(ci...,cp) € OF,

7=0lal=j N
yeoxt

Proof. We know from page 50 and Lemma 5.13 that S; and S5 are of the form
given in the statement of the Theorem. We proceed by induction. Assume that the
(i — 1)th set of lifts is given by

Co € OKa

i—2
o . coZ0 mod p,
Si—1 =< ¢ mc%s + a1
' ZZ “ Y c=(ci...,cp) € OF,

7=0|a|=j N
ye ot

If z € S;_1, then x € S; if and only if F(x) = 0 mod p’. We perform a Taylor

expansion on F:

i—2
F@)=F|co | YD w0 | +7 "y

J=0 |o|=3
i—2 i—2

=F1{c Z Z G, + VF | ¢ Z Z Y5, (Trifly) mod p’
7=0|al=j J=0 |af=5

1—2
= cgeg(E)fl coF Z Z %, | + Tri_IVE(%)(y) mod p’.

3=0 |a|=j

Therefore F(z) =0 mod p* if and only if

i—2
" IVE5o)(y) = —coF Z Z 7 %5, mod p’. (5.6)
7=0 |a|=j
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Expanding part of the right hand side using Lemma 5.11, we have

i—2 i—1
F Z Z 5, | = Z Z AmIF L ((3y 1 7] <i—2)y<a) mod p’
J=0lal=j J=0lal=5
1—2
- Z Z 1 Fo((8y)7<a) +
7=0 |al=j

Z AT EL((8y 1y < a)y<a).

|a|=i—1
By the definition of the s, and Lemma 5.12 we know that
Fo((8y)7<a) =0,

for each a.. Therefore Congruence 5.6 becomes

VE(50)(y) = —co Z cF,((53y:v<a)) mod p.

|a)=i—1
From the definition of the s,, we know that this congruence holds if and only if
D
Yy = co Z *Sq + Zaié} +
la|=i—1 i=0

for some 3’ € (9%+1 and a; € Ok. After relabelling constants, we see that x € S; if

and only if
i
T =cy Z Z IS, + ity
7=0 |a|=j
for some cg € O, co Z0 mod p, c € OF and y € O%H, as required. O

5.6 Implementation

The vectors s, have been defined p-adically, and the 5, have been given as arbitrary
truncations of the vectors s,, where the p-adic precision (that is, an exponent m so
that we work modulo p") depends on the context. In practice, we can only work
to a finite p-adic precision to construct each of the s,. Each s, will be constructed
by solving a congruence modulo p and Hensel lifting that solution to the required
p-adic precision. It would be highly preferable to fix the p-adic precision at the

start, for two main reasons.
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1. Each s, depends on all s, such that v < a. We will need to calculate 5y to the
highest precision we use. If we decided to increase the precision after some of

the s, had been calculated, this would require a recalculation of every vector.

2. Fixing the p-adic precision will aid the calculation of the F',((yy)y<a). Al-
though we can perform Taylor expansions on power series (see Equation 5.1),
finding explicit expressions in terms of H, for each F, will be tricky. It
is simple to fix a p-adic precision m and evaluate F(> ", > lal=i €*Ya) €

Oklet, -+ -5 ¢py (Ya)jaj<m]- Terms with coefficient c¢* will then form F,.

In Section 6.3 we will discuss our strategy for choosing an appropriate p-
adic precision. This p-adic precision will coincide with the label i of S;; the set .S;
contains piO%H so no vector in 5; need be defined to greater p-adic precision than

1.

5.7 Interpretation of sets of lifts

The construction of the sets of lifts S; involves passing to the p-adic completion O,
of O via Hensel lifting (Proposition 5.5). The fact that V(K) C V(K}) underpins
our method of finding representatives for points of V(K). In this section we will
discuss V (K, ) and relate sets of representatives for points of V' (K}) to the sets of lifts
we have constructed, which are sets of possible representatives for points of V(K).
Each representative of a point of V' (K,) must satisfy the defining polynomials F' of
V' modulo every power of p.

Every point of V(K}) can be reduced modulo p to a point in V(F,). Re-
duction modulo p on V(K,) partitions points of V(K,) into certain disjoint residue
discs, each one associated to a point of V(F,). For each P € V(Fy) we construct a
lift s¢ € (’)%:1 of P such that F(sg) = 0. The vector s is a representative of a point
of V(K,) and all other integral representatives in (9%;1 of this point are given by
coso for some cg € Ok, . The residue disc of V(K}) corresponding to P is the set of
points in V(K}) that have a representative x satisfying vy(z — so) > 1. We aim to
find all p-primitive representatives of such points. The set of p-primitive represen-
tatives for the residue disc of PV (K,) at P contains the residue disc of V(K,) at P

and is given by
_ N+1
81—{co(so+7ry) | co € Ok,,c0 #0 modp,yEOKp }

We note that S1 N (’)%Jr1 = 51. The subset of &1 whose elements satisfy F is the set

of all p-primitive representatives in O%:l of points of V(K,) that lie in the residue
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disc represented by P.

By solving each F, to find the vectors (s,) we construct sets

CO G OKp?
i
, . coZ0 mod p
Si=<co Z Z c%sq | + 7ty c oD Ty
=0 |al=; CETE
Yy € (’)Kp

that satisfy
O%:rl 581D D8.1D08D....

The set S; is the subset of Sy (p-primitive representatives for the residue disc of
PN (K,) given by P) whose elements satisfy F modulo pi*!.

The set of convergent infinite sums

(o)
i D
Soo =< Cp ZZTF]CQSQ co € Ok,,c0 #0 modp,cEOKp ,
7=0 |a|=j

gives an analytic parametrisation of p-primitive representatives of the residue disc
of V(K,) given by P. S is the limit of the sequence of S;; alternatively we could
see the S; as truncations modulo p*™! of S...

The set of all p-primitive representatives in Ol]\(fjl of points on V(Kj) is
easier to describe than for V(K) because, in general, the infinite sums of Sy, do not
converge in (’)%H. For each i, the set S; is §; N (’)%H or the set of (’)I]\(f'H points
in the truncation of Sy, modulo p**t!. As we truncate s, to obtain 5,, we discard

information about V(K,).
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Chapter 6

Constructing lattices of lifts

from sets

6.1 Og-lattices

In correspondence with the classical notion of Z-lattices as finitely generated free

Z-modules, we define Og-lattices.

Definition 25. An Og-lattice M is a finitely generated, torsion-free module over
Ok.

Much of the theory of Og-lattices that we will see applies more generally to
modules over Dedekind domains. The first chapter of [6] provides a good introduc-
tion and the standard results given here may be found there.

A lattice over Z is endowed with an associated quadratic form which deter-
mines length and angles for vectors in the lattice; our Og-lattices will have length
defined by the T5-norm as introduced in Chapter 3. This differs from the classi-
cal Z-lattice case as Th(x,y) is not generally a K-bilinear form on K™ and so the
Th-norm is not a quadratic form on K". Because O is itself a finitely generated
torsion-free Z-module, an Og-module may also be viewed as a Z-lattice with the T5-
norm inducing the quadratic form. This is a valid quadratic form because T (x,y)
is a Q-bilinear form on (Q¥)" = K™,

Although Z-lattices are always free, this is not the case for Og-modules,
which may be torsion-free without being free if Ok is not a principal ideal domain.
Therefore if M is an O-lattice we cannot necessarily provide a basis for M; this

motivates the use of a pseudo-basis.

Lemma 6.1 (Corollary 1.2.25 of [6]). If M is an Og-lattice, there exist elements
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ai,-..,an € M and fractional ideals a1, ..., a, of O such that
M=a1a1 @D ayay,.

Such a set (aj,a;) is called a pseudo-basis for M. We may think of M as an
abstract Og-module M ~ @ ;a; with n equal to the rank of M. The ideal class of
[, @i is independent of the choice of pseudo-basis and is called the Steinitz class
of M. (This is Corollary 1.2.25 of [6].) M is free if and only if its Steinitz class is

principal.

Lemma 6.2 (Prop 1.4.2 of [6]). The pseudo-basis of an Ok -lattice is not unique.
Let (a;,a;) and (bj,b;) be two pseudo-bases for an O -lattice M and let U be the
matriz giving the bj in terms of the a;. Then [[; a; = (det(U))]; b;.

To state the definition and algorithm of LLL-reduction for Z-lattices, one
requires Gram-Schmidt orthogonalisation as described on page 82 of [5]. We extend
this definition to Kg-vectors; this will be used when we discuss lattice reduction in
Chapter 8.

Definition 26. Let (b;, b;); be a pseudo-basis for an Ok -lattice M C Kg. Then the
Gram-Schmidt orthogonalisation of the pseudo-basis vectors b; may by defined
nductively by
by =bi — Y b},
i<t
where p;; is given by
 Ta(bi, b5)

M = (b bty

37
The vectors b} lie in K, the Kg-span of {b;},_,,, is equal to that of {b;i},;,,
and they are orthogonal: T5(b}, b;‘) =0 for all ¢ # j.

6.1.1 Index-ideals of sub-lattices

We will use the structure of torsion modules over Ok to help us to understand the
index of a sub-lattice in the setting of Og-lattices. This material can be found in
Section 1.2.2 of [6].

Let T be a finitely generated torsion module over Og. Then there exist
elements ai,...,a, € T and non-zero integral ideals 01,...,0, not equal to Ok
such that

T = (OK/Dl)al ©---D (OK/Dn)ana
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and 9;_1 C 0; for each 2 < ¢ < n. The ?; are unique and depend only on the
isomorphism class of T'. The product of these ideals [[, d; is called the order-ideal
of T.

Let M D L be Og-lattices with the same rank. Then the quotient module
M/L is a torsion Og-module. The order-ideal of M /L will be called the index-
ideal of L in M and will be denoted [M : L]. If M D L D N are all of the same

rank, then their index-ideals satisfy
[M : N]=[M : L][L : NJ.

We can construct a special pseudo-basis to relate an Og-lattice and a sub-lattice.

Lemma 6.3 (Theorem 1.2.35 of [6]). Let M DO L be two Ok-lattices of rank n.
Then there exist a pseudo-basis (a;,a;) for M and integral ideals d1,...,0, such
that (a;,0;0;) is a pseudo-basis for L and [[,0; = [M : L].

Lemma 6.4. Let M C O% be an Ok-lattice of full rank. If M is given by a

pseudo-basis (b;, b;) and B is the n X n matriz whose rows are the b;, then
[O% : M] = (det(B)) [ ] b:-

Proof. We know from Lemma 6.3 that there exists a pseudo-basis (a;, a;) of O} and

integral ideals 9; such that (a;,9;a;) is a pseudo-basis for M. Therefore we have that
(0% : M] =]
i

Let A be the matrix with rows given by the a;. To prove the statement for (a;, 0;a;)
it will be enough to show that (det(A))[[;a; = Ok. O} has a standard pseudo-
basis (e;, Ox). A has full rank and its inverse A~! is the change-of-basis matrix
between the a; and e;. From Lemma 6.2 we see that [[; a; = (det(471))Ok and we

can conclude that

(det(A)) H a; = (det(A))(det(A™1)) O = Ok.

It follows quickly from Lemma 6.2 that the result holds for all pseudo-bases of
M. O
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6.2 Lattices of lifts

We now construct some particular Og-lattices which we call lattices of lifts. We
first recall what we mean by a set of lifts. Let V be a variety of dimension D
defined by polynomials F in Og[Xo, ..., Xn]. Let p be a good prime for V' which
has degree one and is principal and let P be a smooth point on the reduced curve
V(F,). Then the ith set of lifts, .S;, is the set of vectors z € (9%+1 that are lifts of P
mod p and which satisfy F((xz) =0 mod p’. S; is defined by a sequence of vectors

(§a)| al<i—1 € 0%“ whose construction is explained in Chapter 5. S; is given by

i—1
S; =< ¢ Z Z %S | + 7y |co € Ok, co 0 mod p,c e O[l?,y € O%H
J=0 |a|=j

We will define lattices of lifts from these sets.

Definition 27. Let S; be a set of lifts as defined above. Then the ith lattice of
lifts, L;, is the Ok -submodule of (’)%'H generated by

{W‘O‘l?a} and 7'('10%4-1.
|a|<i—1

We will see later that L; is free. A key part of the the method of finding points via
lattice reduction explained in Chapter 8 is to construct a lattice L; for which the
norm of the index-ideal of L; in O%H is bounded below. To achieve this, we must

find out more about the index-ideal of L;.

Proposition 6.5. The index-ideal of L; in (’)%'H (also called the index of L;) is
p™i for some m; <i(N +1).

Proof. Because S; is contained in (9%“, we have

ORT o L; > poRT.

The index of piOgH in (QQJr1 is [(9%+1 : pi(’)%+1 = (p")N+1. Multiplicativity of

indexes shows that
O L 0N = [OFF p 0N ). (6

O]
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When (b;, b;) is a pseudo-basis for L;, Lemma 6.4 shows that

(det(by, ..., by)) Hb = [OF : L] = p™.

Since (det(bq,...,by)) is a principal ideal, [ ], b; is principal and L; is free.
We now wish to find bounds on m;. Recall that ¢p(j) is the number of
multi-indices on deg(V') coefficients of degree j; we shorten this to ¢(7).

Theorem 6.6. The indez-ideal of L; is p™i, where

i—1

N +1) = m; > i(N+1) =Y 6(5)(i — ).
j=0

Proof. We start with the assumption that the set of 5, for || < i—1 form a linearly
independent set mod p. In particular, each of them is p-primitive. Consider the
image of the module generated by {7r|a|§a}|a|<i_1 in O%H/piO%H. This is the
same as Li/]:ﬂi(’)%Jrl and is generated by the images of the 7l®/3,.
The span of the image of 71®5, in OI]\(ZH/]J’AO[A(Url is a finite Og-module
isomorphic to
Ok /pt ~ O Jpilel,

Therefore, the index of piogﬂ in L; is given by

Lo plOR] = ﬁ 1+ = ﬁ(pz‘—j)gb(j) _ 1:[1 P00 i=3),
J=01al=j j=0 =0

and hence we have
Ox T plogtt .
N+1 . :{ KPR } _ i (N4 =08 6() (i—5)
Or™ 1 L; — p .
|:Lz : szKJr }

If the 5, are linearly dependent mod p there may be linear relations amongst
the images of the 7*I5, in (’)I]\([H/pi(’)%ﬂ. These may reduce the rank of the image
of the module generated by {7r|°‘|§a}‘a|<i_1 or reduce the exponent in the index of a
generator. Either of these would reduce the exponent of p in the index [L; : p"(’)gﬂ]
so that it is less than Z;;% #(3)(@ — j). Therefore the minimal possible exponent
of p in [O%‘H s L] isi(N +1) — Z;;B #(j)(i — 7). Proposition 6.5 gives the upper

bound on m;. ]
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6.3 Implementation

6.3.1 p-adic precision

In Section 5.6 we discussed the need to construct the vectors 5, using a fixed finite
p-adic precision and noted that this precision matches the label 7 of S; and L;. Now
that we know how the exponent of p in the index-ideal of a lattice of lifts arises we
are ready to discuss what this p-adic precision should be.

For a fixed prime p it is to our benefit to construct a lattice with as large an
exponent of p in the index-ideal as possible. If we find points by lattice enumeration
as in Chapter 7, a large exponent means a sparse lattice with few points to check.

Let ¥(j) indicate the number of linearly independent vectors added at stage
j of the construction of vectors 5,. If, at stage 7, fewer than N linearly independent
vectors S, have been constructed, by continuing to stage j + 1 we increase the
exponent of p. The p-adic precision we wish to use is k, where k is minimal such

that
k

> (i) =N

§=0
If we fix this k£ then in constructing Si we generate at least N linearly independent
vectors ml®l5,. To proceed on to stage k + 1 would add vectors 73, for |a| = k,
but these vectors were already in L as they are contained in pk(’)gﬂ.

For a variety of dimension D there are ¢p(j) new vectors constructed at
stage j. For each j, we know that ¥(j) < ¢p(j). We note that ¥ (j) = ¢p(j) for
j = 0or 1, as these vectors are chosen to be a basis for ker(VE'(5p)) and therefore are
linearly independent. Beyond this, we do not know whether there will be any linear
dependence between the 5, before we construct them and so we cannot guarantee
choosing the optimal precision. We use ¢p(j) as a substitute for #(j) when we
attempt to choose our p-adic precision. The time required to perform extra Hensel
lifting steps on each vector is likely to be small compared to other steps in the point-
finding algorithm, so an attempt to overestimate k& would not be very detrimental to
timing and in some cases could have significant benefits. On this basis, we propose

using p-adic precision k, where k is minimal such that

k
Y 6n(j) = N+2.

J=0

The frequency of linear dependence between the 5, may merit further investigation.
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6.3.2 Constructing a lattice from a set

We have defined the L; by using the vectors s, that were constructed in Chapter 5.
However, to be able to compute further with L; we need to construct a pseudo-basis
of L;.

One way to generate a basis of a Z-lattice from a generating set is to apply
the Hermite normal form (HNF) algorithm to find an upper-triangular basis. We
may specify an Og-lattice over a principal ideal domain using a basis rather than
a pseudo-basis—in this case there is a HNF algorithm that works in the same way
as the one over Z. If we work carefully we may use this version of HNF to find a
basis for L; even when Ok is not a principal ideal domain. By including pi(’)lj\{[‘*'l
in the generating set of the lattice we ensure that ideals generated from entries in
columns of the matrix during the HNF process are principal: such ideals divide p’
so they must be powers of the principal prime p. This overcomes the only way in
which such a HNF algorithm may fail for number fields with class number greater
than 1 and is an important reason to choose a principal prime ideal (as in Chapter
4).
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Chapter 7

Points from lattices via Z-lattice

enumeration

In Chapters 5 and 6 we explained how to construct Og-lattices of lifts L; for a
variety V' C PV (K). These lattices contain representatives for all rational points of
V. As explained in Chapter 3, rational points in PV (K) of height < By correspond
to vectors of length < By, in Og“. To find rational points of V' we search for such
points in Lj;.

In this chapter we will consider the problem of finding points of bounded
To-norm in an arbitrary Og-lattice M C O%. In Section 7.4 we will give a few
remarks that apply to the case M = L;, but the majority of this chapter will be
quite general.

One way to find points in an Og-lattice is to “restrict scalars”, i.e., to con-
sider an Og-lattice of rank n as a Z-lattice of rank nd. Efficient enumeration of
Z-lattice points has already been implemented in several computer algebra packages.
We will explain how to convert our Ox-lattice to a Z-lattice with the same T5-norm.
Although all of the numbers involved are algebraic and may be described exactly
in a computer algebra system, to do so would be expensive. Existing Z-lattice enu-
meration implementations take floating-point real input in which the real numbers
involved are given to finite precision. If it is necessary to prove that all points up to
a certain height have been found, it is important to deal with matters of precision

to ensure that no points are missed.
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7.1 A Z-lattice from an Og-lattice

Let K be a number field of degree d and let M be an Og-lattice of rank n given
by a pseudo-basis M = @' b;b;. Let T3 be the function on vectors of Ky given by
To(z,y) = >0y Zizl or(z;)or(y;). As ideals of O are clearly Z-modules of rank
d, we may write b; = @?:1Zﬁi,j and so M = @; ;Zf; ;b; as a Z-module. For clarity
in what follows, we relabel these basis vectors so that M = @?ﬁlei. T5 provides a
quadratic form to allow us to view the Z-module M as a Z-lattice. We may think of
the Z-lattice M as Z"* € R™ with an inner product given by the positive-definite,
symmetric matrix 1" := (T2(bs, bj))i;. Although 75 is not an inner product on Ky or
K™ as it is not K- or K-bilinear, it is Q-bilinear and does provide an inner product
on R™,

We encounter issues of precision and accuracy in the construction of the ma-
trix T that we need to consider. The images of elements of K under embeddings oy
of K into C are algebraic numbers, to be represented with finite precision. We wish
to find all z € Z™ such that z!Tz < By, for a vector length bound By. Approxi-
mating 1" without adjusting B, could mean that some such points are missed. The
next section will explain the precision and the length bound adjustment needed so
that provably all points of To-norm less than or equal to By, are found. In practice
our vector length bound By, for vectors in a lattice of lifts will be derived from a

bound on height as explained in Chapter 3.

7.2 Precision

The aim of this chapter is to show how to explicitly compute T'. The algorithm will

be presented on page 69 in Algorithm 2 and we will prove the following theorem.

Theorem 7.1. Let n > 1. Then there exists an explicitly calculable € > 0 such
that if € is the unit roundoff on floating-point operations, Algorithm 2 constructs an
approzimation S to the matriz T := (Ta(b;, bj))ij such that if x satisfies x'Tx < By,
then xSz < nBy.

To make this precise, we will need some facts about floating-point arithmetic.

7.2.1 Unit roundoff, precision and matrix entry precision

This material can be found in the early chapters of [18]. Fix positive integers p
and emax and a negative integer eni,. Then we define the floating-point approx-

imation fl,(z) of z € R to be the nearest number of the form £m2°7P to =, where
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0<m < 2P -1 and epin < € < emax. (We assume that ties are dealt with so
that every x in the range available has an unique floating-point approximation.)
The precision p is the number of binary digits used to represent the mantissa, m.
IEEE double precision arithmetic is a standard format for floating-point arithmetic;
here we have p = 53, epnin = —1021 and e = 1024. We define the unit roundoff
in terms of the precision by ¢ = 277, Every x € R in the range allowed by our
floating-point system can be approximated by a floating-point number with relative

te

error no more than e. For ¢t € Z we define ¢ = -5 and will assume in all cases

that te < 1. This is entirely reasonable as ¢ will always be less than or equal to nd

in our applications and IEEE double precision arithmetic has e ~ 10716,

Lemma 7.2. 1. ([18], Theorem 2.2) For any a € R in the range of our floating-
point system,
fi(a) = a(1l + ¢) for some |c| < e.

2. ([18], Section 2.2) If a,b € R are exactly floating-point numbers, i.e. fl(a) = a
and fl(b) = b, then

fl(ab) = ab(1 + ) for some |c| < e.

3. ([18], Problem 4.3) If x; are given exactly by floating-point numbers and s, =
Yo @i, then fl(sy,) = D" (14 d;)x; for some |di] < Yn—1.

We will now bound the relative error in matrix entries. If S is an approx-
imation to the matrix 7' calculated in floating-point arithmetic with unit roundoff
€, we wish to bound |S;; — Ti;|/|Tij|]. The entry T;; € R is given by Ta(b;, b;) =
Yk 2om Ok(bim)Tk(bjm), where b; ,, denotes the m-th coordinate of vector b;.

Lemma 7.3. A floating-point approximation S of T calculated with unit roundoff €

satisfies
|55 — Tis| _ (1+¢)°
T35 (1—e(d=1))(1 —e(n—1))

— 1.

Proof. We will denote error terms by ¢ (for errors bounded by €) and d (for errors
bounded by some ;) as in Lemma 7.2, with subscripts matching the operation or

number to which the error relates.
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|Sij — Tijl = 1f1(Ti5) — Tiy
fl <Z Z O-k(bi,m>5-k(bj7m)> - Z Z Uk(bi,m)6k(bj,m)
E m k-m

DS (U4 din) (1 + di)fl (0% (bi )Tk (bj.m))
k m

> " 01 (bim)n(bjm)

wm
zk: > (4 din) (1 + d) (1 + i gm0k (i) B (k(Bjm))
- g ; 71e(bim) Tk (bj.m)
zk: D1+ dn) (14 di) (1 + crgan) (1 + hin) (1 + €8 (bim)Ti (bjam)
- Ek: Emj 1 (bi.m) 7k (bj,m)

S (A4 dm) (1 + dr) (1 + hjm) (L + Crim) (L + ¢ jm) — 1) %
k m

0% (bim )Tk (bjm)

>N ok(biim)Fr(bjm)
k m

(1 + Y1) (L4 74-1) (L + €)* — 1) T3
(1 i 6)3 — .
((1_5(d— 1))(1—€e(n—1)) 1) |35

< (M+m)A+7a)1+)* 1)

O

The bound is small when € is small. This result will allow us to choose a suitable

. . . |8 —Ty;
unit roundoff € for a required matrix entry precision |1‘3T7|z]| < 4.
)

7.2.2 Adjusted length bounds

We collect some useful results from the theory of matrices. If A is a matrix with real
1

entries A;; then the Frobenius norm of A is given by ||A|| = (ZZ > \Aij\g) CIfA
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is a symmetric n X n matrix we denote the eigenvalues of A by A;(A4) < ... < A\, (A).

Lemma 7.4 (Fact 1.11 and Inequality (1.30) of [25]). For symmetric matrices A
and B,

m?X!Aj(A) = X(B)| < ||A- B

where ||.|| denotes the Frobenius norm on matrices.

Parlett describes this result in [25] by saying that eigenvalues are “perfectly

conditioned”. This is not the case for non-symmetric matrices.

Lemma 7.5. Let A and B be matrices such that |A;j — Byj| < v|Ayj| for some
0 <v < 1. Then we have the bound
| Bij|
|A”| < 1 :jy.

If, furthermore, A and B are both symmetric, then

Ni(B) = 7 IBI| < A;(A).

1
Proof. The first part is a simple application of the triangle inequality:

|Aij| < |Aij — Bij| + Byl
< v|Ai| + |Bijl-

AsO<v<l,
(1 = v)|Aij| < |Byjl

and the conclusion follows.

For the second part we use Lemma 7.4 to show that
Aj(B) = [|[A = Bl < Aj(A) < Aj(B) +[|A = Bll.

We apply the matrix entry precision and the first part of the Lemma to the norm
of A— B:

1/2
1A= Bl = [ >_IAy — Byl?
i
1/2
< Y (w4
i

66



1/2

Z(lilezjl)Q

i7j

1A= Bl

A

1/2
v 2
=1 > " |Bjjl
i

14
=Bl

Therefore,
v
Xj(B) = = IIBIl < X;(B) = (|4 = Bl < Aj(4)
O

Lemma 7.6. Let A be a positive definite symmetric matriz, By, > 0 a real number

and x a real vector such that ' Az < Br. Then each entry x; of x satisfies

By,
A1(A)

|z ]” <

Proof. We may diagonalise A; there exist a unitary matrix U and a diagonal matrix
D such that A = U'DU. Note that because A is positive definite its eigenvalues
are all strictly positive; therefore the diagonal entries of D are also strictly positive.
Let y be equal to Uz. Because U is unitary, |z| = |y|.

Because 2t Az < Bp, we have (Uz)!D(Ux) < By, so y satisfies y'Dy < By.
This leads us to see that

2t Az = y'Dy = Z Diiy; < By.
i

The diagonal entries of D are the eigenvalues D;; = \;(A) of A. We consider the

smallest eigenvalue and see that A;(A) >, y? < By, and that >, y? = |y|> = |z]2. We

conclude that |x|? < /\?(54). This bound applies to each entry of z: |z;|> < 7/\13(54). O

7.3 Approximating the Gram matrix

We can now calculate a floating-point approximation to 1" and find the resulting

error in the Th-norm.

Theorem 7.7. Let T be a positive definite symmetric matrix and let By, satisfy
Br, > 0. Then for all n > 1 there exists a § > 0 such that if |S;; — Ti;| < 0|Ti;| for
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all i and j then we have
2! Sz — 2'Tx| < (n—1)By,

for every = such that z'Tx < By,

Proof. For all z, we can estimate the error in terms of 7" and x:
t t - . o
| Te — 2" Sx| = E Tijzix; g SijTiz;
1,J 1,J

= Z(Tz — Sij)wiz;

i

< |Tyj = Sijl il |
i

<D olTyllwill|
i

Choose a positive-definite symmetric matrix S° with entry-wise precision
|55 —Tij| < v|T;5| for some 0 < v < 1. We may always choose S° so that Amin(5°) —
%:115°|| > 0 by choosing v to be small. We label 1(S°) = Anin(S°) — 1%115°| .
This S° only needs to satisfy these conditions; it is not our final approximation to
T. We use the first part of Lemma 7.5 to bound the error in terms of S°:
|51
1—-v

| Te — 2'Sz| < Z J

0
llojl = T2 3 IS5l leallas
i’j 17-]

We may bound the size of |z;| and |z;| using Lemma 7.6, concluding that

0 By, ) By,
Uy — ot - o = o
|l’ X $S$|< 1—VZ.Z].|S”|A1(T) 1_1/)\1(T)izj|sz]|7

for all 2 such that 2'Tx < Br. We wish to find a § that satisfies W > 1S5 <
n — 1. Everything on the left-hand-side of this inequality is already known apart
from A\ (7). Here, we employ Lemma 7.4, applied to T and S°. Let A\pin be a lower
bound for the eigenvalues of S°: A\1(S°) > Amin(S°) > 0. By Lemma 7.5 we have

14

Amin(57) = [1S°[] < A (T).

1—v
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Choose a 6 > 0 such that

< -1 —v) el (7.1)
Zi,j |S’Lj’
Then the inequality
0By,
s —_— < (n—1)B
T —aSel < ey 21961 < (0= DB
holds for all  such that z!Tz < By. O

We may find an approximation S to the Gram matrix 7' that satisfies the
matrix entry precision condition of Theorem 7.7 using the following algorithm. We

use fl, to denote a floating-point approximation with precision p.

Algorithm 2: Approximation to To matrix with bounded length error

Input:

- Z-linearly independent vectors by, ..., b, with entries in K ,
- n > 1, an acceptable proportional increase in the length bound,
- p, default precision (unit roundoff = 277).

Output: - a matrix S that approximates T5, so that x!Sz < nz!Tha for all .

Procedure:
For each embedding o}, : K — C and entry b; ,, of a vector b;:
calculate exactly and store oy (b ) and 7 (b;m).
Set S« (fl, (3, >k ak(bi’m)&k(ijm)))ij, calculated with precision p from
exact values.
While S° is not positive definite or 1(S°) < 0:
increase p and go to previous step.
Find § > 0 satisfying inequality 7.1.
Find e > 0 satisfying inequality 7.2.
If —logy(e) < p:
set § < S°.
Else:
set p <= [—logy(e)],
set S <= (flp (320, Dok Ok (biim) Tk (bjm))),; ; calculated with precision p

from exact values.
Return S
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We now restate and prove the main result of this chapter:

Theorem 7.1. Let n > 1. Then there exists an explicitly calculable € > 0 such
that if € is the unit roundoff on floating-point operations, Algorithm 2 constructs an
approzimation S to the matriz T = (Ta(b;, bj))i; such that if x satisfies 'Tx < By,
then x'Sx < nBr.

Proof. Use the method outlined in the proof of Theorem 7.7 to find a 6 > 0 that

satisfies the conclusion of that Theorem. Choose € satisfying % > € > 0 such that

(1+¢)°

V< A= c@a— ) —em-1)

1< (7.2)

This is possible because for fixed n and d the expression tends to 0 as ¢ — 0 and
we can use a computer algebra system to solve this inequality. By Lemma 7.6 and

Theorem 7.7, the floating-point approximation S of T' will have the property that

2! Sz — 2'Tx| < (n—1)By,

for all = such that z!Tz < By. We conclude that if Tz < By, then
r'Sr < 2'Tx + |2'Sx — 2'Tx| < nBr.

O]

Theorem 7.1 shows that Algorithm 2 provides a method of constructing a
floating-point approximation to 1" that approximates the To-norm to within a pre-
scribed relative error. We will now consider some of the practical issues involved in

using Algorithm 2.

7.3.1 Adjusting precision

In Algorithm 2 we describe finding € as in Theorem 7.1 corresponding to our chosen
1. We use a unit roundoff less than or equal to € to construct a matrix S which
is an approximation to T" with known accuracy. We construct the appropriate unit
roundoff by defining a precision p. As the precision is integral, we may find that
we need to overestimate the precision and therefore end up with a smaller ¢ than
expected. Considering Inequality 7.1, we can recalculate our 7 in view of this explicit
e and so potentially reduce the length bound compared to what was expected. It
make sense to set p to be the usual double precision of 53 initially, increasing it only

if necessary.
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In fact, we may go further and consider this process in the other direction.
If we fix a precision p we can calculate a suitable n as follows. We still require a S°
as constructed in the proof of Theorem 7.7. We use ¢ = 277 to find a J satisfying
Inequality 7.2 and then rearrange Inequality 7.1 to define a suitable proportional
error bound 7. If the reason for fixing the precision is a limitation of the machine,
then we may struggle to construct a suitable S° as this may need an arbitrarily high
precision.

Although in theory we do not need our final approximation S to be positive
definite (the S output by Algorithm 2 satisfies Theorem 7.1 even if it is not), this will
be necessary for finding points. If S turns out not to be positive definite, we could
attempt to deal with this by increasing the working precision. However, if A;(T)
is very small this could be difficult and require a restrictively high precision. A
possible solution would be to construct S using exact algebraic numbers, converting
to a floating-point version once the entries have been calculated. A drawback of this
would be that such exact arithmetic is likely to be slower in general than floating-
point arithmetic. An alternative idea would be to use a ridge adjustment: adding a
small quantity to all diagonal entries of S to force the matrix to be positive definite.
This would take some care and likely involve an adjustment to n, and has not yet
been implemented. We do require S to be positive definite to complete the lattice

enumeration step.

7.4 Finding points

After fixing p and n (and a positive-definite S) we know that all points z in our
lattice (a sub-lattice of O%) such that ||z|| < By, satisfy 2! Sz < nBr. We construct
the lattice in Magma [4] from the Gram matrix S and then use the ShortVectors
function to find all points with norm up to nBy. The Magma function ShortVectors
allows the user to specify a minimum as well as a maximum norm for lattice points,
so this could be used to extend point searches whilst avoiding unnecessary repetition.

We could also use Pari’s [31] gfminim function to enumerate lattice points.
To do this in Sage [30] requires a small change from Sage 5.10 (the current version
at the time of writing), for which a patch has been created.! This method will
be implemented soon. Further discussion of the use of lattice enumeration to find

rational points of V' can be found in Chapter 9.

!This patch can be found at http://trac.sagemath.org/ticket/14867.
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Chapter 8

Points from lattices via lattice

reduction

Our aim in this chapter is to generalise a method given by Cremona and Roberts in
[11] for finding points on curves from lattices via lattice reduction. We will outline
the circumstances under which such a method might be applicable and discuss exist-
ing lattice reduction methods. Unfortunately this method is not always applicable

and we explore the issues that cause it to fail in certain cases.

Theorem 8.1. Let K be an imaginary quadratic field (with degree d = 2) and L an
Ok -sub-lattice of O of rank n, with pseudo-basis (b;,b;) satisfying

Yi <N (b)) < Yo (8.1)
and
165,17 = Zo| b, (8.2)

for all i and some fized Y1,Y2,Z1,Zy > 0, with b denoting the Gram-Schmidt
orthogonalisation of b;, as in Definition 26 on page 56. If

(Z1+1)dn Zydn Zind

N(O% - L)) > Zy™d=— = YeB, * Y[ 2" 5, (8.3)

then every z € L such that ||z||*> < By lies in the submodule Lo of L given by
(bi, b))

Despite the fact that imaginary quadratic number fields are the only ones
considered in this theorem, we retain the variable d as it allows us to see how

the theorem might be generalised in future. We will eventually use this result to
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construct points on curves in a manner analogous to that of Section 3.3 of [11] where

it applies. We first collect relevant information relating to norms on K.

Lemma 8.2. Let K be a number field of degree d. Let B € K™ ™ be of full rank
with rows by, ..., b,. Let N'(x) denote the field norm of x. Then we have

d"2N (det(B))V4 < H [13]].
Proof. Let the o be the d embeddings of K into C. The definition of norm implies

that
N (det(B H or(det(B))ok(det(B)).

We use the notation b;; for the jth coordinate of b;. The definition of T5-norm
says that [|b;||> = Zk 1 2 j=1 0k (bij) Tk (bij). By Hadamard’s inequality for complex

matrices (see page 51 of [5]), we may state that, for each embedding oy,
or(det(B))54(det(B H Z ok (bij)F (bij)
=1 j5=1

Multiplying across all embeddings oy to bound the norm of det(B), we have

n

n d
det HHZUk ij )Tk (b 2] HHZ bij )Tk(b
=1k=1j=1

k=1i=1j=1

We now apply the arithmetic mean-geometric mean inequality to show that

d n 1/d d n
1
L1 onbi)antig) | < 5> >  oulbi)on(biy)
k=1 j=1 k=1 j=1
d n 1/d d n
d [ T]D_ orvij)ar(biy) <Y Y owlbiy)or(biy) = [1bill?
k=1 j=1 k=1 j=1

73



Taking the product over all rows, we have

n d n 1/d n n 1/d
e I]D_ orbiy)arviy) = d" [ [TTI D on(bi)aw(biy)
=1 \k=1j=1 i=1 k=1 j—1
<IT e
i=1

Therefore, we have
d"N (det(B))¥4 < H 113]|%,
and the result follows. ]

Lemma 8.3. Let a be a non-zero element of a fractional ideal a. Then, |al/®> >

AN (a).

Proof. Note that N'(z) = \/[1} lok(z)ok(z)|. If a is non-zero in a then N(a) >

N(a). By the arlthmetm mean - geometrlc mean inequality,

1
‘o 1
W = (H (o ) < g S oua)ula) = gl
The result follows by combining the two inequalities. O

Lemma 8.4. Let K be an imaginary quadratic field. Then for all v € Kg and
a € Kg, we have

1
[lazl[* = 5 lal ||l

Proof. Let o1 and o2 be the two embeddings of K — C, extended to Kg. The two

embeddings are complex conjugates, so we have

2
[|al| ZUJ

= ol(a)61(a) + og(a)az(a)
= 201(a)d1(a) = 203(a)dz(a) = 2N (a).

Therefore, we have
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ool = 323 osfazes oz
_ Zza] o (1))
- Z 5||a\|2 Zgj($i)6j(xi)
_ %HaHQ ;Zj:aj@i)&j(wi)

1 2 2
= 5llal?ls]

This works because both of the embeddings of any element are of the same size.

We have now collected the results needed to prove Theorem 8.1.

Proof of Theorem 8.1. The combgnation of Lemma 8.3 and our bound on the norms
of ideals implies that ||a]|> > dY;? for all non-zero a € b;. By Lemma 6.4, it follows
that N([O% : L]) < N({(det(b1,...,by)))Y5"

By Inequality 8.2, we see that |[b};||?™ > Z5 ], ||bi]| and therefore ||b}||* >

2 2
71 (T1; 1164]]) 727 . We then set up a chain of inequalities as follows:

1 % * (12 1 % le o
AVl > Saviz (T Ind)

1 2 2 n %
> Sdvy 2" (da (N (det(by, . .., bn)))%) 7 (by Lemma 8.2)
1 2 Zl 1 2
= SV 25 47 (N (det(br, . b)) 7
1,2 2 1 2
> SAY{ 27 % (N (O : L)Yy ™) A%
12 2 1 -7
= 5dY1' 2y dn Y, "N(Ok : L])Zlnd
_2
> ;dYFZfQI 47y, Z?"’< Zying- By gy Zmzzl”d>zl”d
1,2 2 1 -2 -2 _zZia1 2o _2
= AV 2] ATy P2, T Y By 2
> ||z
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We have ||2|* = || 32; aibil|* = || 32; a;b7 11 = 32, llafb;11? > llasbil* = llanby|* =
lan|[?[|b5]1%. We know that a, = aj, because the change of basis from b; to by is
triangular. ,

Therefore $dY,%||b5|[> > 1||a,||?||b%||?, which implies that a,, = 0 by Lemma
8.3. Therefore whenever ||z||> < By, z is in Lg, the submodule of L given by

(bi, b)) 0

8.1 Effective methods over number fields

There are two main differences that cause difficulties in extending Proposition 3.1
of Cremona and Roberts [11] to number fields. The first is the availability of a
suitable lattice basis reduction method. Several algorithms have been proposed
that attempt to generalise LLL reduction [21] to Og-lattices but not all of them
preserve the aspects of LLL reduction that we require for Theorem 8.1.

The second difference involves the Th-norm. When working over Q we use
the Euclidean norm: for pairs a € R, z € R" it is clear that |az| = |af|z|. Over
imaginary quadratic fields we can use Lemma 8.4 to relate ||az||, ||| and [|z]|. It is
unclear whether it is possible to prove such a result in general because the Th-norm

on Ky is sub-multiplicative: it is not a true norm.

8.1.1 Lattice reduction methods

We outlined our requirements of lattice reduction in the statement of Theorem 8.1:
we need a form of lattice reduction satisfying Inequalities 8.1 and 8.2. There have
been several attempts to generalise LLL reduction to the case of Og-lattices but not
all of them are suitable for our needs. We are not aware of any methods that satisfy
Inequalities 8.1 and 8.2 for every sub-lattice of O%H defined over any number field.

The important property of LLL reduction used in Proposition 3.1 of [11] is
the “Lovasz condition” which bounds the lengths of each b; vector in terms of the
next: [b? > (2 — 1175 1)|bf_1|?, with the p; ; bounded. (See Definition 2.6.1 of [5].)
This implies (Part 2 of Theorem 2.6.2, [5]) that |b;| < 2%|bf| for1<j<i<n,
repeated application of which allows us to deduce a lower bound on |b}| in the form
of Inequality 8.2. As noted by Cohen in [5], the % may be replaced by any constant
cr € (3,1).

A Lovész-type condition would therefore be sufficient to satisfy Inequality 8.2
in Theorem 8.1. The lattice reduction algorithm outlined by Fieker and Pohst in
[14] contains what they call an “LLL condition” of this form. After an adjustment of

cr, (though ¢y, must remain strictly less than 1), this could give an effective Lovdsz
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condition if and only if a bound for p;; can be found so that ¢y — uii_l > 0 for
each 7. Fieker and Pohst state that this is not possible in general when cj, = %. The
attempt to minimise y; ; is contained in the Red(k,[) step of Algorithm 2 of [14].

Consider the case in which the initial pseudo-basis has all ideals a; = Ok.
This could well fit our situation as the lattices L; are always free. Then minimising
fi,; means to adjust p; ; € Kr by an element of Og. We may therefore bound | 5
above by the maximum value of ||z|| for z in a fundamental domain for the action
of the lattice O on Kg. For certain Euclidean fields such a maximum is less than
1, which is necessary for the Lovéasz condition. The lattice reduction algorithm of
[14] does not change the ideals appearing in a pseudo-basis; these are the same in
the input and output.

Fieker and Pohst also provide a form of Ok-lattice enumeration in [14]. The
main purpose of their lattice reduction algorithm is to improve performance of this
enumeration. Because we already have a method of Z-lattice enumeration detailed in
Chapter 7, we have not explored the use of this algorithm. Vectors in the Og-lattice
and Z-lattice are in one-to-one correspondence and arithmetic in number fields is
in general slower than over Z. The only source of benefit of using this Og-lattice
enumeration could be a reduction in the number of vectors found whose T5-norm is
greater than the bound specified. We do not yet know whether Fieker and Pohst’s
O -lattice enumeration could achieve this kind of improvement.

A more recent form of lattice basis reduction by Fieker and Stehlé described
in [15] provides absolute bounds for the norms of ideals and bounds for the lengths of
basis vectors based on the successive lattice minima. It uses standard LLL reduction
on a full rank submodule of the Z-lattice corresponding to a Og-lattice but in general
does not follow closely the method of LLL. In particular, it has no Lovasz-type
condition for us to use.

Napias has generalised the LLL algorithm to Euclidean rings in [23]. This
algorithm seems to be very similar to that of [14] but far less general. Euclidean
rings are always principal ideal domains, which provides an important simplification.
This is the only form of lattice basis reduction which we have found that we may be
able to use. We will show that this reduction will allow us to leave out the last vector
of a reduced basis, when applied to Og-lattices when K is imaginary quadratic and

Ok is Euclidean. There are exactly five number fields satisfying these conditions:

Proposition 8.5. Let K be an imaginary quadratic Euclidean number field. Then
the output of the lattice reduction for Ok -lattices described by Napias in [23] satisfies

the conditions of Theorem 8.1.
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Proof. For each of these five fields, the ring of integers is a Euclidean domain.
Euclidean domains are always principal ideal domains, so the five fields all have
class number 1 and every Og-lattice has a basis, not just a pseudo-basis. In Section
2 of [23], Napias describes properties of what she calls an “A-LLL-reduced” lattice
basis, where A is an Euclidean ring. In our cases we take A to be Og. Let C be

the Euclidean minimum of K, defined by
Cp=sup{inf {N(y—=z) | € Ok}|y e Kr}.

For each of the fields K = Q(v/—1), Q(v/-2),Q(v/-3),Q(v/—7) and Q(v/—11), the

Euclidean minimum of Ok is strictly less than 1 (see Section 4.1 of [19]). Let Co
be any real number satisfying 0 < Cy < Cy < 1. Then, part ii) of “Properties” in
Section 2 of [23] states that

1Bll? < (Co — CO)I||B3]|? for 1 < i < j < m,

for any by,...,b, that form an A-LLL-reduced basis (with parameters C7 and C5)
for an O-lattice. Therefore, (b;, O )", forms a pseudo-basis for the Og-lattice
and this satisfies the conditions of Theorem 8.1. ]

Corollary 8.6. Let K be an imaginary quadratic FEuclidean number field and let
L C (’)%4'1 be an Ok -lattice such that

N(OXTL L)) > BNFY(Cy — ¢p) "N HDg=(N+D),

If (b)Y is an “A-LLL-reduced” basis for L in the sense of [23] then every z € L
such that ||z||* < By, lies in the submodule Lo of L given by (b;))~N,".

Proof. By Proposition 8.5, we know that L satisfies the conditions of Theorem 8.1.
Therefore, it suffices to show that Inequality 8.3 holds for some Y7, Y5, Z1, Zo > 0.
Let Y1 =Yoo =21 =1, Zy = (Cy — Cl)% and d = 2. Then we see that

_ (Z1+1)d(N+1) Zy(N+l)d Z{(N+1)d
Z; d(N+l)d7%Y2N+lBL >y, Z1(B+1)o 210N
Biv+1(02 . Cl)fN(N+1)27(N+1),
and Theorem 8.1 provides the result. ]

We can therefore conclude that if K is one of the five imaginary quadratic
Euclidean number fields, there already exists a form of lattice reduction that allows

us to exclude the last vector when searching for points up to a given bound.
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The algorithm of Fieker and Pohst described in [14] is similar to that of [23],
and we expect that we could apply it to any lattice for which we can find suitable
bounds on p; ; to construct a Lovasz condition. The conditions on number fields or
lattices required for this have not yet been fully investigated beyond the idea that
Euclidean fields are likely to be suitable: but this is simply the algorithm of [23].

The next section will explain why Theorem 8.1 is limited to imaginary
quadratic fields. If this restriction could be lifted, then use of the algorithm of
[23] could be extended to all Euclidean fields.

8.1.2 Norms, scalar multiplication and imaginary quadratic fields

Theorem 8.1 was stated only for imaginary quadratic number fields. In this section
we will explain why this is the case and discuss the difficulties involved in attempting
to extend this result to other fields.

The only part of the proof of Theorem 8.1 that requires K to be an imag-
inary quadratic number field is the use of Lemma 8.4 to bound ||z||> below by
llan|[?[|b5]|%. The proof of Lemma 8.4 relies on the fact that K is an imaginary
quadratic field, because imaginary quadratic fields are the only number fields apart
from Q that have a single infinite place. (For LLL reduction on lattices defined over
Q, Proposition 3.1 of [11] forms a version of Theorem 8.1.) The proof of Lemma 8.4
relies on the fact that when K is imaginary quadratic, for any a € K the sizes of
both embeddings of a are the same: |oj(a)| = |o2(a)|. This gives a relationship
between the lengths of both of the embeddings of a given field element a, which in
turn allows them to be expressed in terms of the norm ||al|.

The following Lemma shows that such a relationship cannot be constructed
for arbitrary a € K when K is a number field that is not imaginary quadratic. This
means that the idea used in the proof of Lemma 8.4 cannot be extended to other

number fields.

Lemma 8.7. Let K be a number field that is not Q or an imaginary quadratic
number field. Then for all ¢ > 0 there exists an embedding o : K — C and a

non-zero element x € Ok such that |o(x)| < e.

Proof. Choose any € > 0. Let K be a number field and fix a1,...,aq an integral
basis for K. The set {a;}%; is Q-linearly independent.

Let 0 : K < C be any embedding of K. Then ¢ is an injective Q-linear map,
so in particular the set {o(c;)}%; must be Q-linearly independent. The complex

numbers form a real vector space of dimension 2. Soif d > 2 orif d = 2 and K is real
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quadratic (so that o : K < R) then the set of {o(;)}L; are R-linearly dependent,
since d exceeds the dimension of the codomain of ¢ as a real vector space.
Choose 6 > %Z?Zl |o(a;)]. By the R-linear dependence of the o(z;) there

exist a1, ...,aq € R, not all zero, satisfying

aro(ay) + -+ + aqgo(ag) = 0.
Using a multi-dimensional version of Dirichlet’s Approximation Theorem (see The-
orem 201 of [16]), there exist ¢, p1,...,pq € Z such that

1
lga; — pi| < 5

for each i = 1,...,d, with not all of the p; equal to 0. Therefore, we have

lo(pron + -+ + paag)| = |qlaro(or) + -+ - + ago(aq)) — o(prar + - - + paaa)|
= |(qa1 — pa)o(a1) + -+ + (qaqg — pa)o(aq)l

1 d
<5 lo(ai)l
i=1
< €.

Taking z = p1ag + - - - + pgay, the claim follows. ]

We have shown that, outside of the imaginary quadratic and rational cases,
we cannot construct a lower bound for the size of an embedding of an element of O
For any ideal a of K one cannot construct a lower bound for the size of an embedding
of an element of a; we follow exactly the same argument as Lemma 8.7 applied
to an integral basis for the ideal. This means that we cannot use a relationship
between embeddings of K to construct a version of Lemma 8.4 to use in the proof
of Theorem 8.1.
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Chapter 9
Algorithms and examples

In this chapter we will explain in detail how to use the methods described so far
in this thesis to find points on varieties over number fields. We will explain the
circumstances under which each of these methods is applicable. We also provide

some examples of points found using an implementation of Algorithm 4.

9.1 Processing lattice points

In each method we construct Og-lattices containing vectors that potentially repre-
sent rational points on a variety V. In Chapter 7 we described the conversion of
such an Og-lattice to a Z-lattice and how to use existing methods such as those
in Magma or Pari to enumerate points in the Z-lattice. We construct lattices so
that each rational point in V(K) has a representative in some Z-lattice. However,
not all lattice vectors correspond to rational points so we will need to check lattice
points to see whether they correspond to rational points of V' (K) by evaluating the
defining polynomials of V' at lattice points. This could be time-consuming, so we
wish to do some pre-processing to reduce the number of points which require this
treatment. In particular, a point of PV (K) will have multiple representatives in the
lattice: we wish (as far as possible) to avoid considering the same projective point
multiple times. Let L be an Og-lattice of rank N+1 and let M be the corresponding
Z-lattice M =2 Z4N+1D),

9.1.1 Processing in Z4N+1D

We consider some conditions that could be considered as “projectifying” the affine
lattice output, reducing the search for points from ZV+1) to Pd(N+1)_1(Z).
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A lattice point 2 € M is given by an element of Z*N+1) We need only check
half of the lattice points since x and —z define the same point in projective space.

If z is not primitive, there exists some z’ € Z4N+1) and a € Z such that
ar’ = x and 7’ and x define the same projective point. The Th-norm of such an
2/ will be shorter than the corresponding x so we restrict our search to primitive
€ Z4dN+1)

A benefit of these methods is that they can be applied to points found in
Z4N+1) without converting to the corresponding point in (9%“.

9.1.2 Processing in O} ™

We process the output of our search for lattice points by taking a point z € Z4N+1)
and converting it via the Z-basis of M to a point in L C O%H. Distinct primitive
lattice points of M may still determine the same point in PV (K). This is because
although the lattice basis (5;b;)i; is Z-linearly independent, it is not K-linearly
independent: in passing to the Z-lattice we have temporarily discarded some of the
O -lattice structure.

We recall from Chapter 3 that we can restrict our search to points of (9%+1
whose content ideal is one of a finite list of ideals A, where A contains one ideal from
each class in CI(K). To process a lattice point we may convert it to an O%H vector
and discard it if its content ideal is not in A. If Ok is a principal ideal domain this

means to discard points of (’)%H if they are not primitive.

9.1.3 Processing in PV (K)

N+ and L € OF ™ are in general

These checks performed on elements of M 2 Z
not enough to reduce the output to exactly one vector for each projective point
represented. If z € (9}]\(”’1 and u is a unit of O then uz and x represent the same
point in PV (K) and their coefficients generate the same ideal. Therefore both z and
ux would pass the checks on elements of M and L we have described so far. It may
therefore be useful to keep track of projective points found, to avoid checking the
same point for membership of V' (K) multiple times.

This is unlikely to be useful in every case: it could mean storing a large
number of projective points that are not points on the variety. The choice of strategy
is a trade-off between the time required to check whether a vector x satisfies the
defining polynomials of V' and the memory and time required to check whether x
represents a projective point that has already been seen and to store it if it has not.

If K has unit rank 0 we have a simpler method to discard superfluous unit
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multiples of a vector. Fix a coherent system to identify the unit, which will be a
root of unity, in a factorisation of an element of K. (This is a.factor().unit() for a
number field element a in Sage [30].) For a vector x we discard z if the unit in the
factorisation of the first non-zero entry of x is not 1. If K is Q, this is achieved by

only using one of {x,—x} in Section 9.1.1.

9.2 Finding points by Z-lattice enumeration

In this section we present two related algorithms for processing lattice vectors to
construct projective points. Algorithm 3 employs the methods of Section 9.1 to find
projective points from a lattice and also uses sub-functions which we call Zcheck,
Oxcheck, and PNcheck. These are an opportunity to perform further checking at
each stage of the construction of a projective point. We will give examples of the use
of Zcheck and Ogcheck after stating Algorithm 3. We use ShortVectors to denote
a function that constructs all Z-lattice vectors up to a given length, such as the

ShortVectors function in Magma [4] or gfminim in Pari [31].
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Algorithm 3: Points from an Og-lattice via restriction of scalars and Z-lattice

enumeration

Input:

- LC (’)%H, an Og-lattice, given by a pseudo-basis
- By, a bound on height,
and optionally:

- Zcheck, a function ZN+TY4 s True or False,
- Ogkcheck, a function O%H — True or False,

- PNcheck, a function PV (K) — True or False.

Output: - Points of PV (K) of height less than or equal to By with a
representative in L.
Note: The points of the output will have a Z-module representative satisfying

Zcheck, have an Ox-module representative satisfying Okcheck and satisfy
PNcheck.

Initialisation:

Let A be a set of ideals of minimal norm for each class of CI(K), as described
in Chapter 3, and let Ng be the maximum norm of an ideal in A.

Let B, = (N +1)exp (w) ¢k, as explained in Chapter 3.

Let M be the Z-lattice generated from L with quadratic form given by the
Ts-norm, as explained in Chapter 7.

Procedure:

For each v € Z"® generated by ShortVectors on M with length bound By :
If v # 0 and the first non-zero coefficient of v is > 0 and v is primitive

and Zcheck(v) = True:
set w to be the vector in O%H represented by v.
If the content ideal of w is in A and Oxcheck(w) = True:
set P to be the point in PV (K) represented by w.

If PV check(P) = True:
yield P.

A simple application of Algorithm 3 is the enumeration of points in PV (K).
We can use it to find points on any variety V in the following way. If L = (9%+1
then every point of PV (K) has a representative in L. Then for any V C PV we can
find all K-rational points of V' of height < By by simply checking whether each
projective point of PV (K) of height less than or equal to By is in V(K). We can
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do this using Algorithm 3 by adding the requirement that w € (’)[]\(”rl satisfies the
defining polynomials of V' to the function Oxcheck. This method of finding rational
points does not rely on V' being smooth or irreducible and so is the most generally
applicable.

We can also use Algorithm 3 to find points in a lattice of lifts L; € (’)[A{Hl,
where L; has been constructed as in Chapters 5 and 6. In this case we use some
information about L; to further improve Zcheck.

Recall that if L = L; is a lattice of lifts for V at a point P then L; contains
all lifts of P that are roots of the defining polynomials of V modulo p’. These
are the lattice vectors that we are interested in as they are possible representatives
for points of V. It is worth remembering that L; contains many other vectors. In
particular, the vectors that we want are p-primitive.

We recall the definition of L; as the Og-module generated by {ﬂ'a‘é‘\aha‘ <
and p’(?%“. The vector 5y is p-primitive by construction as it is a representative
in (’)%‘H for P € PV (Fy). (If a vector z is not p-primitive, every coordinate is in p
and so it reduces to (0,...,0) mod p, which does not define a projective point in
PN (F,).) It is the only p-primitive vector in the generating set, as each vector 3, is
multiplied by 7l®. Therefore, we may fix a basis for L; so that it contains exactly
one p-primitive vector: we call this vector bg.

When L; is converted from an Og-lattice to a Z-lattice, by will be converted
to a set of d vectors B 1bo, ..., B0,qbo. If x in L; is to represent a lift of P, it must
be p-primitive, so the coefficient of by (as part of a basis for the Og-module L;)
must be non-zero modulo p. If we represent x using coefficients a; ; in ZANAD) e
need that Z?:l ap jBo; #Z0 mod p. We can therefore discount points in ZAN+1)
for which all ap; = 0 mod p, where p is the prime above p in Z. A small amount
of work over K to calculate the sum Z?:l ap,jPo,; and check it to make sure that
it is not 0 mod p would give a more stringent filter on lattice points, whilst still
avoiding having to construct the vector in Og“.

We defined ¢p(j) in Section 5.5 to denote the number of multi-indices of
degree j in D variables. We used this to choose a p-adic precision to use in con-
structing lattices of lifts for a variety of dimension D. For ease of notation we will
use ¢(j) = ¢p(j) in what follows, except when we need to distinguish between
varieties of different dimension.

Algorithm 4 gives an example of how to use Algorithm 3 when L is a lattice
of lifts. It may be useful to reverse the order of O@xcheck and P check or to remove
the PN check condition, depending on the particular situation; Algorithm 4 provides

one illustration of their use.
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Algorithm 4: Points on a variety via Z-lattice enumeration

Input:

- V c PV, a geometrically smooth, irreducible variety defined over K,
- By, a bound on height.

Output: - All points of V(K) with height less than or equal to By.

Procedure:

Set p to be a good prime for V', constructed from Algorithm 1.

For each P on the reduced variety V(Fy):
set i to be the least ¢ such that Zé':o »(7) = N+ 2,
set L + L;, lattice of lifts for P,
set Zcheck to return False if Z?Zl ap,jfo,; =0 mod p and True
otherwise,
set Ogcheck to return True if and only if w satisfies the defining
polynomials of V',
set PNcheck to return False if P has been seen before, otherwise True.
Return the output of Algorithm 3 with inputs L, By, Zcheck,
Oxcheck and PN check.

We can use Algorithm 4 to find points on a smooth irreducible variety defined

over any number field.

9.3 Finding points by lattice reduction

Given a form of lattice basis reduction whose output satisfies the conditions of
Theorem 8.1, we can use this lattice reduction to find all points up to some height
bound By on a variety V. After choosing a suitable prime ideal, for each point
on the reduced variety V we construct a lattice of lifts L whose pseudo-basis we
reduce. Let the reduced pseudo-basis be (b;, b;). If the norm of the index of L is
large enough then by Theorem 8.1 every vector of L with To-norm < By, will lie in
a submodule Ly of L given by (b;, bi)i]\;_ol.

To force the norm of the index of L to be large, we must choose a prime ideal

of large norm.

Lemma 9.1. Let K be a number field of degree d and V- C PV a variety of dimension
D defined over K. Let x > 0 and let p be a prime of K of degree one which is a
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good prime for V, lying above a rational prime p that satisfies

p > pUOHD-SIZh6() =)

Then for each point on the reduced variety V (Fy) at P, the ith lattice of lifts L; will
satisfy
N([Olj\{u_l : Lz]) > x.

Proof. By Theorem 6.6 we have [OR T : L] = p™, where m; > i(N + 1) —
Zj;%) ¢(4)(i — j). Because p has degree 1, N'(p) = p and N([OR T : L;]) = p™.

Therefore, we have
N([O%+1 . Lz]) — pmi > (m(i(N‘H)_Z;;%) ¢(j)(i—j))71)mi > .

O

Our aim is to use Lemma 9.1 in conjunction with Theorem 8.1 to reduce the
rank of the lattice or dimension of the variety containing the points we wish to find.
We can do this whenever Theorem 8.1 applies, this is currently restricted to the five
Euclidean imaginary quadratic fields. In Algorithm 5 we construct a good prime p
with large norm so that N([OX ! : L;]) satisfies the condition of Theorem 8.1 and
all vectors in L; with squared Ts-norm < By, can be written without use of the final
pseudo-basis vector by. This allows us to restrict our search to a subvariety V' of
V' which will usually have smaller dimension. We will then use Algorithms 6 and 7

to find points on V’. Algorithm 5 can be found on page 88.

9.3.1 Finding points from a sublattice or subvariety

We will now discuss methods for finding points of bounded height on the subvariety
V' of V; these are needed in Algorithm 5.

The simplest way to find points from a reduced lattice basis is to use Algo-
rithm 4 to find points in Ly. The rank of Ly as a Z-lattice is Nd, which represents
an improvement on the index of L; which is (N + 1)d. Finding points in Lo by
Z-lattice enumeration is always an option in cases where other methods cannot be
used or are inefficient. However, it is not always the most efficient method.

In some situations, we may use the subvariety V/ C V to find points. Once
a lattice basis has been constructed and reduced, we can use it change coordi-
nates on PV (K). If polynomials F define V' then the polynomials G;(zo,...,zy) =
F j(Zf\io x;b;) describe V' in new coordinates. G; are homogeneous polynomials with

the same degrees as I;. We use the additional information that the points we are
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Algorithm 5: Points on a variety via lattice reduction

Input:

- LatticeRed, a method of lattice reduction that takes an Og-lattice and
outputs a reduced pseudo-basis that satisfies the conditions of Theorem 8.1,
with constants as defined in that Theorem,

- V C PV, a variety defined over a number field K for which LatticeRed is
known to work, defined by polynomials F in Og[Xo,..., Xn],

- Bp, a bound on height.

Note: We require K to be imaginary quadratic for LatticeRed to satisfy
Theorem 8.1, such a LatticeRed is currently known only for Euclidean fields.

Output: - All points of V(K) with height less than or equal to By.

Initialisation:
Let A be a set of ideals of minimal norm for each class of CI(K), as described
in Chapter 3, and let Nx be the maximum norm of an ideal in A.

Let B, = (N +1)exp (w) ¢k, as explained in Chapter 3.
Let i be the least integer such that Z;‘:o o(j) = N + 2.

Set m(i) — (i(NV +1) = = #(7)(i — j))
Let p be the result of Algorithm 1 with lower bound on the norm of p given by

N(p) > (Z;d(NH)d_(zl+1)d(N+1)/2Y2N+1Bfl(N+1)d/2yle(N+1)221(N+1)d/2) m(z‘)'
Procedure:
For each P on the reduced variety V (Fy):

set L + L;, lattice of lifts for P,

set (bj, bj);\f:oo be LatticeRed(L),

set V' to be the variety defined by F and by.(Xo,..., Xn).

Yield each point of Ly lying in V/ with height < By (using

Algorithm 6 or 7).
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searching for do not involve the vector by in the old coordinates: this means that
xy = 0 in new coordinates. If V is not contained in the hyperplane z = 0, then
dim(V’) = dim(V) — 1. Equivalently, we can consider V' in the old coordinates as
being defined by F and the linear homogeneous polynomial by.(Xo, ..., Xn).

We now outline some special cases in which we may use V' to find points
without needing to use Z-lattice enumeration on Lg.

If V is a curve and dim(V’) = 0 then V/(K) is a finite collection of points,
which can be found with relative ease. If V is a plane curve given by a single
polynomial G(zg,x1,x2) then this can be achieved simply by factorising G(zg, x1,0)
over K: linear factors correspond to points on V. For curves in higher ambient
dimensions we use Groébner basis methods.

If 0 < dim(V’) < dim(V') then there are two particular cases in which we
can find all points without constructing any new lattices. If P & V'(F,) then there
can be no points of V/(K) which reduce to P mod p. In this case we can stop
computing with P altogether as there are no points of V(K) with height < By that
reduce to P mod p.

If P is a smooth point of V/(F,) then we form a lattice of lifts for V/ based
at P. The index of L; for P and V' will exceed that of L; for P and V, because
Pdim(v) () = @dim(v7)(j) for each j. In this case, we may perform the lattice reduc-
tion step on the new L; for V', aiming for a further reduction in the rank of lattice
or dimension of variety for the resulting set of possible representatives. It is vital
that we are able to use the same prime so that the new lattice is also a lattice of
lifts of the particular reduced point P.

We use these ideas in the following algorithm.
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Algorithm 6: Points on a subvariety after lattice reduction
Input:

- Pe V(]Fp)v

- By, a bound on height,
- V', a subvariety of V,
- Ly, a lattice of lifts for P on V(Fy), all as found in Algorithm 5.

Note: As for Algorithm 5, we require the number field K to be Euclidean and
imaginary quadratic.
Output: - All points of V/(K) with height less than or equal to By that

reduce to P mod p.

Procedure:
If dim(V') = 0:
yield each point of V/(K) of height < By using a Grobner basis
method.
Else if 0 < dim(V’) < dim(V):
If P g V/(F,):
exit.
If P is a smooth point on V’:
set L < L; for P and V' and go to lattice reduction step of
Algorithm 5.
Else:
use Algorithm 4 on Lg to find points on V' of height < By that reduce

to P mod p.

Algorithm 6 uses V' in some special cases; we now explore the idea of using
V' in more generality. If V'’ is smooth we may find points on V' using lattices of
lifts and lattice reduction: we may use this method recursively. This recursion only
makes sense when dim(V’) < dim(V). Once dim(V’) = 0, we can find points via
the substitution method described above.

However, if P is a point on V'(F,) that is not smooth (this is the only case
remaining after excluding the conditions in Algorithm 6) we can no longer construct
lattices of lifts based at P, as V' is not smooth at P. Therefore, a new good prime
q for V' should be found and lattices of lifts constructed for each reduced point of
V'(F,). By finding each point of V/(K) of height < By, we may find every point of
V that reduces to P mod p with height < By. The major drawback to this method
is that we spend time finding points of V'’ that do not reduce to P mod p. When
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V' is not smooth and the two special cases mentioned before do not hold, we have
to resort to lattice enumeration on L.

Finally, if dim(V’) = dim(V') then, because V' is irreducible, V' = V. This
occurs when V lies within the hyperplane defined by zy = 0 in the new coordinates.

In this case, by changing variables, we may consider V c PN-!

, thus reducing
the ambient dimension. It may then be a worthwhile strategy to start the whole
computation of points on V' = V again. A new prime of larger norm will most likely
be required for lattice reduction methods, but the resulting lattices of lifts would
have a smaller Z-rank of (N — 1)d.

Further investigation is needed to establish whether and when the construc-
tion of a new prime and new set of lattices of lifts is likely to be more efficient than
Z-lattice enumeration. These methods are illustrated in Algorithm 7, which is a
development of Algorithm 6.

Currently no examples exist of points found with Algorithms 5, 6 and 7;

further work would be required to implement a suitable LatticeRed method.
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Algorithm 7: Points on a subvariety after lattice reduction with recursion

Input:
- P e V(Fy),
- By, a bound on height,
- V', a subvariety of V,
- Ly, a lattice of lifts for P on V(Fy), all as found in Algorithm 5.

Note: As for Algorithm 5, we require the number field K to be Euclidean and
imaginary quadratic.
Output: - All points of V/(K) with height less than or equal to By that

reduce to P mod p.

Procedure:
If dim(V’) = 0:
yield each point of V'(K) of height < By by a Grobner basis method.
Else if 0 < dim(V’) < dim(V):
If P ¢ V'(F,):
exit.
If P is a smooth point on V':
set L < L; for P and V' and go to lattice reduction step of
Algorithm 5.

Else:
use Algorithm 4 on Ly to find points on V' of height < By.
Else:
yield points on V(K) C PN71(K) of height < By which reduce to P

mod p using Algorithm 5.

9.4 Examples

We have implemented a version of Algorithm 4 for curves in Sage [30], with the actual
enumeration of short vectors in Z-lattices performed by the Magma [4] function
ShortVectors. This has been parallelised to allow multiple lattices to be searched
simultaneously. We provide some examples of curves and points found on them
using this implementation.

Let C; be the plane unit circle, given by the polynomial X? + Y2 — Z2
over the quintic number field defined by x® — 2z* + 423 — 52 4+ 1. We searched for

representatives for points on C; with squared T>-norm up to 300 and found 92 points.
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By Theorem 3.10, a search with By, = 300 for a curve in P? over this number field
finds all points of logarithmic height up to -1.7146. Twelve of the points found are
the points defined over Q with logarithmic height up to log(5). This demonstrates
that we may find points of larger height than expected with our method, although
we cannot guarantee that all such points are found.

Let Cy be the genus 3 modular curve Xg,(13) as studied in [2], given as a

plane curve by

4X3Y —3X2Y?2 +3XY3 - X3Z +16X°YZ —11XY?Z +5Y3 2+
3X2%27%2 1 9XYZ?2+Y?2722 + XZ7% +2v 273

over the quadratic number field Q(+/13). By searching for representatives of points
with squared T5-norm up to 5000 on Co we verified the six points on Cy defined over

Q(V13) in [2]:
{(1:3:-2),(0:0:1),(0:1:0),(1:0:0),(3+v13:0:2)},

and found no other points of Cy. These are all of the points on Co(Q(+v/13)) with
logarithmic height up to 5.24.
Let C3 be the cubic curve defined by the polynomial

3X3 —13X2Y +4X%2Z +2XY? + XY Z -Y? —5Y%*Z2 —-YZ?+ 73

over the number field generated by «, where « is a root of 23 — 222 + 132 — 3.
Cs considered as a curve defined over Q is an example from [9] of a representative
of a non-trivial element of III(E/Q)[3] for the elliptic curve E defined over Q by
y?+ay = 2 +22— 11542 —15345. The cubic field has been chosen so as to guarantee
the existence of a rational point of C3 over this field. After a search for representatives
of points with square Th-norm up to 50, the points (a? — 2a + 13 : 3 : 0) and
(¢ —4: —a®+2a — 10 : 9) were found. By performing this calculation we have
demonstrated that there are no other rational points on C3(Q(«)) with logarithmic
height less than or equal to 1.16.

Let C4 be the elliptic curve defined by —X3 — X227 + Y27 — XZ? + Y Z?
over the field Q(+/5). The Mordell-Weil rank of this curve defined over Q is 0. The
suggestion of this curve came from Vladimir Dokchitser, who showed in [12] that if
the Birch and Swinnerton-Dyer conjecture holds for elliptic curves over number fields
then this curve has a point of infinite order over the field Q(/m) for every cube-

free m > 1. However, we have not found any examples of such points. The points
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found so far from a search (ongoing at the time of writing) for representatives with
Ts-norm up to 1000 has yielded only the three known torsion points of C4, defined
over Q: (0:—1:1),(0:0:1),(0:1:0). This calculation will find all points on C4
over Q(+/5) with logarithmic height up to 1.247.

Let Cs be the elliptic curve defined by

X34+ X274+ XYZ+Y?Z+292X 7% — 424175,

This curve is known to have rank 0 over Q. Because it is a quadratic twist of the
elliptic curve with Cremona label 605c1, which has rank 1 over Q, C5 has a point
of infinite order over Q(v/5). A search for representatives with squared Th-norm up
to 1000, which guarantees finding all points on Cs of logarithmic height up to 4.63,
returned the point (0:1:0).

Let Cg be the intersection of quadrics in P? defined by XW +Y Z+Y W +W?
and XY + XZ + 27? —3ZW. This curve arises from a second 2-descent on the
elliptic curve over Q with Cremona label 27382al which was performed in Magma
[4]. A search for points of squared Tp-norm up to 1000 over the quadratic field
Q(v/5) yielded the Q-rational points (—9/5:2: —3/5:1),(=2:0:1:0),(4/3 :
—-1:4/3:1),(11/4:-3/2:3/2:1),(0: =2/5:3/2:1),(-1:0:2:1),(0: =1:0:
1),(0:1:0:0),(6:-7/3:2:1),(=1:6:—-1:1),(=1:0:0:1)and (1:0:0:0):
this includes all points on Cg(Q(+/5)) of logarithmic height < 4.34.

Let w = 1/26521. Let C; be the elliptic curve defined over Q(w) by

— 37128125X3 + (81003w + 13179867) X2 Z + (—57225w + 27522500) XY Z+
37128125Y2 7 + (—81003w — 13179867)YZ2.

This curve was suggested to the author by Johan Bosman. It conjecturally has rank
2 over Q(w), with a torsion subgroup of order 18. A search for representatives with
T5-norm up to 100000 found only the torsion points (0 : 1:0) and (0: 0 : 1); with
this calculation we have shown that any other points must have logarithmic height
greater than —288.31. The two real embeddings of a fundamental unit of this field
are about 10'2® and 107'2%, and so CQ(w) 18 around 10'28! The disparity in the size
of the two embeddings of a unit accounts for the very small height bound attained,
relative to the bound on Th-norm used.

All computations were performed on machines at the University of Warwick
with AMD Opteron™processors 6174 and 8378, with speeds of 2200 and 2400 MHz
respectively. All machines were running Ubuntu 12.04 (LTS) server edition. The

following table contains indications of total timings for each of the three main parts
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of the algorithm: finding points on the reduced curve, constructing lattices of lifts

and searching for points in these lattices of lifts. All examples were performed using

small primes that were chosen by hand. The time should depend on the norm of the

prime, number of reduced points (which is related to the norm of the prime), the

degree of the number field, the ambient dimension and of course the length bound.

Except in the smallest of the examples, almost all of the time is spent on

finding points in lattices by exhaustive search. We could hope to improve this by

changing the size of the prime used (an increase would yield more lattices, each with

fewer points with length < Br) and optimising the way that points are found and

processed. An implementation of Algorithm 5 would remove this step entirely and

might provide an improvement in speed.

Curve Norm Number Degree Ambient  Length Time Time to Time to
of of of  dimension bound to find construct find
prime reduced field reduced lattices points
points points from
lattices
Cy 23 24 5 2 300  0.0359s 677s 296509s
Co 17 20 2 2 5000  0.0450s 12.7s 5599s
Cs 19 16 3 2 50  0.0269s 14.1s 16.1s
Cy 29 24 3 2 1000  0.0451s 19.3s 714393s
Cs 31 34 2 2 1000  0.0556s 20.8s 8739s
Cs 11 18 2 3 1000 0.936s 17.1s 59157s
Cr 11 20 2 2 100000  0.0392s 107s 1574s
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