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Abstract. Quantum computers hold the promise to solve certain problems
exponentially faster than their classical counterparts. Trapped atomic ions are
among the physical systems in which building such a computing device seems
viable. In this work we present a small-scale quantum information processor
based on a string of 40Ca+ ions confined in a macroscopic linear Paul trap. We
review our set of operations which includes non-coherent operations allowing
us to realize arbitrary Markovian processes. In order to build a larger quantum
information processor it is mandatory to reduce the error rate of the available
operations which is only possible if the physics of the noise processes is well
understood. We identify the dominant noise sources in our system and discuss
their effects on different algorithms. Finally we demonstrate how our entire
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set of operations can be used to facilitate the implementation of algorithms
by examples of the quantum Fourier transform and the quantum order finding
algorithm.
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1. Tools for quantum information processing in ion traps

1.1. Quantum information processing in ion traps

A quantum computer (QC) holds the promise to solve certain problems exponentially faster
than any classical computer. Its development was boosted by the discovery of Shor’s algorithm
to factorize large numbers and the insight that quantum error correction allows arbitrary long
algorithms even in a noisy environment [1–4]. These findings initiated major experimental
efforts to realize such a QC in different physical systems [5–7]. One of the most promising
approaches utilizes single ionized atoms confined in Paul traps. Here, the internal state of each
ion represents the smallest unit of quantum information (a qubit). Multiple qubit registers are
realized by a linear ion string and the interaction between different ions along the string is
mediated by the Coulomb interaction [8–10]. In this work we present a review of a small
scale quantum information processor based on a macroscopic linear Paul trap [11]. The work
is structured as follows: the first section summarizes the available coherent and non-coherent
operations and in section 2 the experimental setup is reviewed. In section 3 the noise sources
are characterized, and finally, in section 4 we discuss examples of implemented algorithms that
use the full set of operations.
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Figure 1. (a) Level scheme of 40Ca+. Solid circles indicate the usual optical qubit
(4S1/2(m j = −1/2) = |1〉 and 3D5/2(m j = −1/2) = |0〉). Open circles indicate
the ground state qubit which is not subject to spontaneous decay (4S1/2(m j =

−1/2) = |1〉Z and 4S1/2(m j = +1/2) = |0〉Z ). (b) Schematic representation of
electron shelving detection. The histogram shows the detected photon counts
from projections onto both states during the detection interval. It can be seen
that it is possible to distinguish the two different outcomes. The highlighted area
illustrates the threshold whether the state is detected as |0〉 or |1〉.

1.2. The qubit—40Ca+

A crucial choice for any QC implementation is the encoding of a qubit in a physical system. In
ion trap based QCs, two distinct types of qubit implementations have been explored: (i) ground-
state qubits where the information is encoded in two hyperfine or Zeeman sublevels of the
ground state [9] and (ii) optical qubits where the information is encoded in the ground state and
an optically accessible metastable excited state [11]. The two types of qubits require distinct
experimental techniques where, in particular, ground-state qubits are manipulated with either
two-photon Raman transitions or by direct microwave excitation [9]. In contrast, operations on
optical qubits are performed via a resonant light field provided by a laser [11, 12]. Measuring
the state of the qubits in a register is usually performed by the electron shelving method using
an auxiliary short-lived state for both qubit types [9]. In the presented setup we use 40Ca+

ions, which contain both an optical qubit for state manipulation and a ground-state qubit for
a quantum memory. Figure 1(a) shows a reduced level scheme of 40Ca+ including all relevant
energy levels.

Our standard qubit is encoded in the 4S1/2 ground state and the 3D5/2 metastable state,
where the natural lifetime of the 3D5/2 state (τ1 = 1.1 s) provides an upper limit to the storage
time of the quantum information. The 4S1/2 state consists of two Zeeman sublevels (m = ±1/2)
whereas the 3D5/2 state has six sublevels (m = ±1/2, ±3/2, ±5/2). This leads to ten allowed
optical transitions given the constraint that only 1m = 0, 1, 2 are possible on a quadrupole
transition. The coupling strength on the different transitions can be adjusted by varying the
polarization of the light beam and its angle of incidence with respect to the quantization
axis set by the direction of the applied magnetic field. Usually we choose the 4S1/2(m j =

−1/2) = |S〉 = |1〉 and the 3D5/2(m j = −1/2) = |D〉 = |0〉 as the computational basis states
because the transition connecting them is the least sensitive to fluctuations in the magnetic field.
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Furthermore it is possible to store quantum information in the two Zeeman substates of the
4S1/2 ground-state which are not subject to spontaneous decay: 4S1/2(m j = −1/2) = |1〉Z and
4S1/2(m j = +1/2) = |0〉Z .

The projective measurement of the qubit in the computational basis is performed via
excitation of the 4S1/2 ↔ 4P1/2 transition at a wavelength of 397 nm. If the qubit is in a
superposition of the qubit states, shining in a near resonant laser at the detection transition
projects the ion’s state either in the 4S1/2 or the 3D5/2 state. If the ion is projected into the 4S1/2

state, a closed cycle transition is possible and the ion will fluoresce as sketched in figure 1(b). It
is however still possible that the decay from 4P1/2 leads to population being trapped in the 3D3/2

state that needs to be pumped back to the 4P1/2 with light at 866 nm figure 1(b). Fluorescence
is then collected with high numerical aperture optics and single-photon counting devices as
described in section 2. If the ion is projected into the 3D5/2 state though, it does not interact
with the light field and no photons are scattered. Thus the absence or presence of scattered
photons can be interpreted as the two possible measurement outcomes which can be clearly
distinguished as shown in the histogram in figure 1(b). In order to measure the probability p|1〉

to find the qubit in 4S1/2, this measurement needs to be performed on multiple copies of the
same state. In ion-trap QCs these multiple copies are produced by repeating the experimental
procedure N times yielding the probability p|1〉 = n(|1〉)/N where n(|1〉) is the number of
bright outcomes. This procedure has a statistical uncertainty given by the projection noise
1p|1〉 =

√
p|1〉(1 − p|1〉)/N [13]. Depending on the required precision, the sequence is therefore

executed between 50 and 5000 times.
Preparing the qubit register in a well defined state is a crucial prerequisite of any QC.

In our system this means (i) preparing the qubit in one of the two Zeeman levels of the
ground state and (ii) cooling the motional state of the ion string in the trap to the ground
state. The well established technique of optical pumping is used to prepare each ion in the
mj = −1/2 state of the 4S1/2 state [11]. In our setup two distinct methods for optical pumping
are available: (i) polarization dependent optical pumping by a circularly polarized laser beam
resonant on the 4S1/2 ↔ 4P1/2 transition as shown in figure 2(a) and (ii) frequency selective
optical pumping via the Zeeman substructure of the 3D5/2 state as depicted in figure 2(b). Here,
the transfer on the qubit transition at 729 nm is frequency selective. Selection rules ensure that
depletion of the 3D5/2(m j = −3/2) level via the 4P3/2 effectively pumps the population into the
4S1/2(m j = −1/2) state. The second part of the initialization procedure prepares the ion string
in the motional ground state which requires multiple laser-cooling techniques. We use a two-step
process where the first step consists of Doppler cooling on the 4S1/2 ↔ 4P1/2 transition leading
to a mean phonon number of 〈n〉 ≈ 10. The motional ground state is subsequently reached with
sideband cooling techniques [14]. In our system, the necessary two-level system can be either
realized on the narrow qubit transition [15] or as a Raman process between the two ground states
via the 4P1/2 level [9, 11]. A crucial parameter, determining the cooling rate, is the linewidth
of the actual cooling transition [14]. When cooling on the long-lived optical transition, the
excited state lifetime needs to be artificially shortened in order to adjust the effective linewidth
of the transition. This is realized by repumping population from the 3D5/2 state to the 4S1/2

state via the 4P3/2 level with light at 854 nm, as outlined in figure 2(c) [14]. The procedure
using the Raman transition is outlined in figure 2(d). Here, the spontaneous decay is replaced
by optical pumping as used for state preparation [9, 16]. In principle, this cooling technique
allows for faster cooling rates as the coupling strength to the motional mode, described by
the Lamb–Dicke parameter, increases for smaller wavelengths. More importantly, it has the
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Figure 2. Schematic view of optical pumping which is (a) polarization selective,
(b) frequency selective and (c) sideband cooling on the qubit transition. The light
resonant with the 3D5/2 → 4P3/2 transition is used to tune the effective linewidth
of the excited state leading to an adiabatic elimination of the 3D5/2 state. (d)
Scheme for sideband cooling utilizing a Raman transition. Here, the σ− light
performs optical pumping which corresponds to the spontaneous decay on the
optical transition.

advantage of being applicable within a quantum algorithm without disturbing the quantum
state of idling qubits when the population of the 4S1/2(m j = −1/2) = |0〉 state is transferred
to a Zeeman substate of the excited state that is outside the computational basis, for example
3D5/2(m j = −5/2) = |D′

〉 [17].

1.3. The universal set of gates

With a universal set of gates at hand, every unitary operation acting on a quantum register can
be implemented [18]. The most prominent example for such a set consists of arbitrary single-
qubit operations and the controlled NOT (CNOT) operation. However, depending on the actual
physical system, the CNOT operation may be unfavorable to implement and thus it may be
preferable to choose a different set of gates. In current ion trap systems, entangling operations
based on the ideas of Mølmer and Sørensen have achieved the highest fidelities [19–21]. These
gates, in conjunction with single-qubit operations, form a universal set of gates. In order to
implement all necessary operations, we use a wide laser beam to illuminate globally the entire
register uniformly and a second, tightly focused, steerable laser beam to address each ion.
Interferometric stability between the two beams would be required, if arbitrary single-qubit
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Figure 3. (a) Schematic view of the laser beam geometry for qubit manipulation.
(b) Schematic level scheme of a Mølmer–Sørensen type interaction. The
bichromatic light field couples the states |SS, n〉 with |DD, n〉 via the
intermediate states |SD, n ± 1〉 and |DS, n ± 1〉 with a detuning δ.

operations were performed with this addressed beam in addition to the global operations. To
circumvent this demanding requirement, the addressed beam is only used for inducing phase
shifts caused by the ac-Stark effect. Using such an off-resonant light has the advantage that the
phase of the light field does not affect the operations and thus no interferometric stability is
needed. The orientation of the two required laser beams is shown in figure 3(a).

Applying an off-resonant laser light with Rabi frequency � and detuning δ onto a the j th
ion modifies its qubit transition frequency by an ac-Stark shift of δac = −

�2

21
. This energy shift

causes rotations around the Z -axis of the Bloch sphere and the corresponding operations on ion
j can be expressed as

S( j)
z (θ) = e−iθσ

( j)
z /2,

where the rotation angle θ = δact is determined by the ac-Stark shift and the pulse duration. As
the 40Ca+ ion is not a two-level system, the effective frequency shift originates from ac-Stark
shifts on multiple transitions. We choose the laser frequency detuning from any 4S1/2 ↔ 3D5/2

transition to be 20 MHz. There, the dominating part of the ac-Stark shift originates from
coupling the far off-resonant transitions from 4S1/2 to 4P1/2 and 4P3/2 as well as from 3D5/2

to 4P3/2 [22].
The second type of non-entangling operations are collective resonant operations using the

global beam. They are described by

Rφ(θ) = e−iθ Sφ/2,

where Sφ =
∑N

i=0(σ
(i)
x cos φ + σ (i)

y sin φ) is the sum over all single-qubit Pauli matrices σ (i)
x,y

acting on qubit i . The rotation axis on the Bloch sphere φ is determined by the phase of the
light field and the rotation angle θ = t� is fixed by the pulse duration t and the Rabi frequency
�. Together with the single-qubit operations described above this set allows us to implement
arbitrary non-entangling operations on the entire register.

The entangling MS gate operation completes the universal set of operations. The ideal
action of the gate on an N -qubit register is described by

MSφ(θ) = e−iθ S2
φ/4 .

New Journal of Physics 15 (2013) 123012 (http://www.njp.org/)

http://www.njp.org/


7

For any even number of qubits the operation MSφ(π/2) maps the ground state |00..0〉

directly onto the maximally entangled GHZ state 1/
√

2(|00 . . . 0〉 − i eiNφ
|11 . . . 1〉). For an odd

number of ions the produced state is still a maximally GHZ-class entangled state which can be
transferred to a GHZ state by an additional collective local operation Rφ(π/2).

Implementing the MS gate requires the application of a bichromatic light field E(t) =

E+(t) + E−(t) with constituents E± = E0cos((ω0 ± (wz + δ))t) where ω0 is the qubit transition
frequency, ωz denotes the frequency of the motional mode and δ is an additional detuning. The
level scheme of the MS operation acting on a two-ion register is shown in figure 3(b). Mølmer
and Sørensen showed that if the detuning from the sideband δ equals the coupling strength
on the sideband η� the operation M S(π/2) is performed when the light field is applied for a
duration t = 2π/δ.

However, implementing MS operations with rotation angles π/2 is not sufficient for
universal quantum computation. Arbitrary rotation angles θ can be implemented with the same
detuning δ by adjusting the Rabi frequency on the motional sideband to η� = δ

√
θ /(π/2).

Due to this fixed relation between the rotation angle and the detuning, the gate operation needs
to be optimized for each value of θ . In practice this optimization is a time-consuming task and
thus the gate is optimized only for the smallest occurring angle in the desired algorithm. Gate
operations with larger rotation angles are realized by a concatenation of multiple instances of
the already optimized operation.

If the physical system consisted of a two-level atom coupled to a harmonic oscillator
the ac-Stark introduced by one off-resonant light field would be perfectly compensated by its
counterpart in the bichromatic field. However, 40Ca+ shows a rich level structure where due to
the additional Zeeman levels and coupling to the other 4P states an additional ac-Stark shift is
introduced [22]. This shift changes the transition frequency between the two qubit states which
has the effect that the detuning from the sideband transition δ is not equal for both constituents
of the bichromatic light field. This would degrade the quality of the operation drastically and
thus the shift has to be compensated which can be achieved by two distinct techniques [23]:
(i) the center frequency of the bichromatic light field can be shifted or (ii) the light intensity of
the two constituents can be unbalanced to induce a Stark shift on the carrier transition which
compensates the unwanted Stark shift. Depending on the application, one compensation method
is preferable over the other. Method (i) makes it easier to optimize the physical parameters to
achieve very high gate fidelities but leads to an additional global rotation around σz which is
tedious to measure and compensate for in a complex algorithm. This can be avoided by method
(ii) but the compensation is not independent of the motional state leading to a slightly worse
performance [23]. Therefore, we generally choose method (i) if the goal is to solely generate a
GHZ state whereas method (ii) is favorable if the gate is part of a complex algorithm.

In general an algorithm requires operations with positive and negative values of the rotation
angles for the available operations. For the resonant Rφ(θ) operation both signs of θ can be
realized by changing the phase of the light field since e−i(−θ)Sφ = e−iθ S(π+φ) which is not possible
for MS operations as S2

φ = S2
φ+π . The sign of the rotation of the MS operation angle can only be

adjusted by choosing the sign of the detuning δ [24]. However, performing MS operations with
positive and negative detunings results in a more complex setup for generating the required
radio-frequency (RF) signals and also a considerable overhead in calibrating the operation.
Therefore it can be favorable to implement negative θ by performing MSφ(π − |θ |) which works
for any odd number of ions whereas for an even number of ions, an additional Rφ(π) operation
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is required [24]. With this approach the quality of operations with negative rotation angles is
reduced but the experimental overhead is avoided.

1.4. Optimized sequences of operations

Typically, quantum algorithms are formulated as quantum circuits where the algorithm is build
up from the standard set of operations containing single qubit operations and CNOT gates.
Implementing such an algorithm is straightforward if the implementation can perform these
standard gate operations efficiently. Our set of gates is universal and thus it is possible to
build up single qubit and CNOT operations from these gates. However, it might be favorable
to decompose the desired algorithm directly into gates from our implementable set as the
required sequence of operations might require less resources. This becomes evident when one
investigates the operations necessary to generate a four-qubit GHZ state. Here, a single MS gate
is able to replace four CNOT gates.

The problem of breaking down an algorithm into an optimized sequence of given gate
operations was first solved by the NMR quantum computing community. There, a numerical
optimal control algorithm was employed to find the sequence of gate operations that is expected
to yield the lowest error rate for a given unitary operation [25]. This algorithm optimizes the
coupling strength of the individual parts of the Hamiltonian towards the desired sequence.
Unfortunately the NMR algorithm is not directly applicable to our ion trap system as the set
of operations differ. In an NMR system the interactions are present at all times, only their
respective strengths can be controlled. This allows for an efficient optimization as there is no
time order of the individual operations. This is not true for current ion trap QCs where only
a single operation is applied at a time which makes it necessary to optimize the order of the
operations within the sequence in addition to the rotation angles. Furthermore, the same type
of operation might appear several times at different positions. Thus we modified the algorithm
so that it starts from a long random initial sequence and optimizes the rotation angles of the
operation. This optimization converges toward the desired algorithm, if the required sequence is
a subset of this random initial sequence. The key idea of our modification is that rotation angles
of operations that are included in the random initial sequence but are not required for the final
sequence shrinks during the optimization. If the rotation angle of an operation shrinks below a
threshold value, the operation is removed from the sequence as it is superfluous. If the algorithm
fails to find a matching sequence, further random operations are inserted into the sequence.
A more detailed treatment on the algorithm is given in [26]. In general this optimization method
is not scalable as the search space increases exponentially with the number of qubits but it is
possible to build up an algorithm from optimized gate primitives acting on a few qubits.

Even for complex algorithms on a few qubits, the sequence generated with this
optimization method might include too many operations to yield acceptable fidelities when
implemented. Then it can be advantageous to split the algorithm in parts that act only on a subset
of the register and generate optimized decompositions for these parts. For this task, the physical
interactions need to be altered so that they only affect the relevant subset. Multiple techniques
for achieving this in ion traps have been proposed, where the best known techniques rely on
physically moving and splitting the ion-chains in a complex and miniaturized ion trap [27]. Our
approach to this problem is to decouple them spectroscopically by transferring the information
of the idling ions into a subspace that does not couple to the resonant laser light. Candidates
for such decoupled subspaces are either (i) 4S1/2(m j = +1/2) with 3D5/2(m j = +1/2) or
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Figure 4. (a) The process to decouple individual qubits: (i) the population from
|S〉 is transferred to |D′

〉 and (ii) the population from |D〉 is transferred to |S′
〉

and subsequently to (iii) |D′′
〉. (b) Implementing controlled amplitude damping

using the 397 nm σ beam. (i) Transferring the population from |D〉 to |S′
〉. (ii)

Optical pumping of |S′
〉 using light at 397 nm. (c) Controlled phase damping with

strength γ utilizing light at 854 nm. (i) Population from |D〉 is hidden in the |S′
〉

state. (ii) The population from |S〉 is partially brought to |D′
〉 and (iii) shining

in light at 854 nm depletes the 3D5/2 via 4P3/2 and finally (iv) the population is
brought from |S′

〉 back to |D〉.

alternatively (ii) 3D5/2(m j = −5/2) = |D′
〉 with 3D5/2(m j = −3/2) = |D′′

〉. The decoupling
technique (ii) is sketched in figure 4(a). The only remaining action of the manipulation laser
on the decoupled qubits is then an ac-Stark shift that acts as a deterministic rotation around the
Z -axis. This rotation can be measured and subsequently be compensated for by controlling the
phase of the transfer light. When qubits in the set U are decoupled, the action of the operations
can then be described by (

∏
j∈U 1j) ⊗ U where the operation U is the implemented interaction

on the desired subspace. Note that the parameters of the MS operations do not change when the
number of decoupled qubits is altered thus the gate does not need to be re-optimized.

1.5. Tools beyond coherent operations

In general, any QC requires non-reversible and therefore also non-coherent operations for state
initialization and measurements [18]. For example, quantum error correction protocols rely on
controlled non-coherent operations within an algorithm to remove information on the error
from the system similar to state initialization. Furthermore, the robustness of a quantum state
against noise can be analyzed by exposing it to a well defined amount of phase or amplitude
damping [28]. Surprisingly, it has been shown theoretically that non-coherent operations can
serve as a resource for quantum information [24, 29, 30]. Naturally, these ideas can only be
implemented if controlled non-coherent operations are available in the system. Mathematically,
these non-reversible operations are described by a trace-preserving completely positive map
E(ρ) acting on a density matrix rather than unitary operations acting on pure states. The
action of such a map is described by E(ρ) =

∑
k E†

k ρEk with Kraus operators Ek fulfilling∑
k E†

k Ek = 1 [18].
In our system two different variations of these controlled dissipative processes are

available [31]: the archetype of a controlled non-coherent optical process is optical pumping.
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Table 1. The extended set of operations in our ion trap QC. This set of operations
allows us to implement any possible Markovian process.

Name Addressed/global Ideal operation

Ac-Stark shift pulses Addressed S(i)
z (θ) = e−iθ/2σ

(i)
z

Collective resonant operations Collective non-entangling Sφ(θ) = e−iθ/2Sφ

Mølmer–Sørensen Collective entangling M Sφ(θ) = e−iθ/2S2
φ

Phase damping Addressed non-coherent E p
0 =

∣∣∣ 1
0

0
√

1−γ

∣∣∣ E p
1 =

∣∣∣ 0
0

0
√

γ

∣∣∣
Amplitude damping Addressed non-coherent Ea

0 =

∣∣∣ 1
0

0
√

1−γ

∣∣∣ Ea
1 =

∣∣∣ 0
0

√
γ

0

∣∣∣
Single-qubit measurement Addressed non-coherent Projection onto |0〉〈0| or |1〉〈1|

We can perform optical pumping on individual qubits inside the register with the following
sequence as shown in figure 4(b): (i) partially transfer the population from |D〉 to |S′

〉 with
probability γ and (ii) optical pumping from |S′

〉 to |S〉 analogous to the qubit initialization. The
partial population transfer is performed by a coherent rotation with an angle θ on the transition
4S1/2(m j = +1/2) ↔ 3D5/2(m j = −1/2) which leads to γ = sin2(θ). This reset process can be
described as controlled amplitude damping on an individual qubit where the map affecting
the qubit is shown in table 1. Note that the information in the qubit states is not affected as
the optical pumping light couples to neither of the original qubit states. For a full population
transfer (γ = 1) the procedure acts as a deterministic reinitialization of an individual qubit inside
a register as required for repetitive quantum error correction [32].

Furthermore an alternative implementation of optical pumping can be used to generate
controlled phase damping. This process preserves the populations in the respective qubit states
but destroys the coherences between them with probability γ : (i) the information residing in
state |D〉 of all qubits is protected by transferring it to the |S′

〉 = 4S1/2(m j = +1/2) state before
the reset step. (ii) On the qubit to be damped, the population from |S〉 is partially transferred
into the |D′

〉 = 3D5/2(m j = −5/2) state with probability γ . Here, the partial population transfer
is performed by a coherent rotation on the transition 4S1/2(m j = −1/2) ↔ 3D5/2(m j = −5/2).

(iii) Shining light resonant with the 3D5/2 ↔ 4P3/2 transition at 854 nm onto the ions depletes
this level to |S〉. (iv) Transferring |S′

〉 back to |D〉 restores the initial populations, the coherence
of the qubit has been destroyed with probability γ . The schematic of this process is shown in
figure 4(c) and the resulting map can be found in table 1.

Our system furthermore allows the measurement of a single qubit without affecting the
other qubits in the same ion string. For this, all spectator ions need to be decoupled from
the detection light. This is realized by transferring the population from the |S〉 state to the
|D′

〉 = 3D5/2(m j = −5/2) state. Applying light on the detection transition measures the state of
the ion of interest while preserving the quantum information encoded in the hidden qubits. This
information can be used to perform conditional quantum operations as needed for teleportation
experiments [17] or quantum non-demolition measurements [33].

It should be noted, that the operations forming our implementable set of gates shown in
table 1 allow the realization of any completely positive map, which corresponds to a Markovian
process [33–35]. The quality of the operations is affected by multiple physical parameters that
are discussed in more detail in section 3. In order to faithfully estimate the resulting fidelity
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Figure 5. Schematic drawing of the linear Paul trap used in our experiment.
The distance between the endcaps is 5 mm whereas the distance between the RF
blades is 1.6 mm.

of an implemented algorithm, a complete numerical simulation of the physical system has to
be performed. However, a crude estimation can be performed assuming a fidelity of 99.5%
for non-entangling operations and {98, 97, 95, 93, 90}% for the MS operations on a string of
{2, 3, 4, 5, 6} ions [36]. The fidelity of the entire algorithm can then be estimated by simply
multiplying the fidelities of the required operations. In section 3, this fidelity estimation is
compared to numerical simulations and experimental results.

2. Experimental setup

In this section we give an overview of the experimental setup of our ion-trap quantum
information processor. First, we describe in detail the ion trap, the optical setup and the laser
sources. Then we concentrate on the experiment control system and techniques to infer the state
of the qubit register.

2.1. The linear Paul trap

The trap in our experimental system is a macroscopic linear Paul trap with dimensions as shown
in figure 5 [11]. The trap is usually operated at a radial motional frequency of 3MHz and an axial
motional frequency of 1MHz. These trapping parameters are slightly adjusted with respect to the
number of ions in the string to prevent overlap of the frequencies from different motional modes
of all transitions. In order to minimize magnetic field fluctuations, the apparatus is enclosed in a
magnetic shield (75 × 75 × 125 cm) that attenuates the amplitude of an external magnetic field
at frequencies of above 20 Hz by more than 50 dB.6 The trap exhibits heating rates of 70 ms per
phonon at an axial trap frequency of 1 MHz. Micromotion of a single ion can be compensated
with the aid of two compensation electrodes. The remaining micromotion creates sidebands
at the trap frequency which can be observed in an ion spectrum on the qubit transition. The
strength of the excess micromotion is described by the modulation index β of these sidebands
where in our setup a modulation index of β < 1% is observed [37, 38].

6 Imedco, Proj. Nr.: 3310.68.
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Table 2. Laser wavelengths needed for a Ca+ ion trap experiment. The lasers are
stabilized to a reference cavity with the Pound–Drever–Hall locking technique
except for the photoionization lasers which are not actively stabilized.

Transition Wavelength Usage Linewidth

4S1/2 ↔ 4P1/2 397 nm Doppler cooling, optical pumping and detection <1 MHz
4S1/2 ↔ 3D5/2 729 nm Sideband cooling and qubit manipulation <20 Hz
3D3/2 ↔ 4P1/2 866 nm Repumping for detection <1 MHz
3D5/2 ↔ 4P3/2 854 nm Quenching for Sideband cooling and qubit reset <1 MHz
Neutral calcium 422 nm Photoionization first stage –
Neutral calcium 375 nm Photoionization second stage –

2.2. Optical setup

A quantum information processor with 40Ca+ requires multiple laser sources, listed in table 2,
to prepare, manipulate and measure the quantum state of the ions. The ions are generated from
a neutral atom beam with a two-step photo-ionization process requiring laser sources at 422 and
375 nm. Manipulating the state of the qubits is done with a titanium-sapphire laser at 729 nm on
the 4S1/2 ↔ 3D5/2 qubit transition and its setup as described in [39]. Its frequency and amplitude
fluctuations affect crucially the performance of the coherent operations as will be discussed in
section 3. The laser has a linewidth of below 20 Hz and the relative intensity fluctuations are in
the range of 1.5% [39].

The vacuum vessel housing the trap and the laser sources reside on different optical tables
and thus the light is transferred between different tables with optical fibers. The optical access
to the trap itself is constrained by the surrounding octagon vacuum vessel which is sketched
in figure 6 including the available beams with their respective directions. The 397 nm light
is required for multiple tasks and thus multiple beams are required: one beam for Doppler
cooling and detection, another beam for optical pumping (labeled pumping σ ), and two beams
for Raman sideband-cooling (labeled Raman σ , Raman π ). In particular, the beams used for
optical pumping need to be aligned with the magnetic field generated by the coils as indicated
in figure 6. In practice it is favorable to adjust the orientation of the magnetic field with respect
to the light beam since the magnetic field can be adjusted without moving any mechanical part.
The beams of the 866 and 854 nm laser are overlapped with the 397 nm detection beam in a
single-mode photonic crystal fiber.

In order to implement our set of operations, the 729 nm light needs to be applied to the
ions from two different optical ports: (i) the addressed beam which is a tightly focused beam
illuminating only a single ion and (ii) the global beam which is a wide beam that illuminates all
ions with an approximately homogeneous light intensity. The angle between the global beam
and the axial trap axis is 22.5◦ which leads to a Lamb–Dicke parameter of ηglob = 0.06 [40]. The
width of the beam is chosen so that the light intensity shows variations of less than 2% over the
entire ion string. Considering that the ions are arranged in a linear crystal, it is advantageous to
use an elliptical shape for the global beam to achieve higher light intensities at the position of
the ions. The elongated axis of the beam has typically a diameter of 100 µm which is sufficient
for ion strings with up to 8 ions. For larger ion strings, the beam size needs to be enlarged which
increases the required time for performing collective operations.
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Figure 6. Overview of the alignment of the various laser beams, the coils
generating the magnetic field and the trap with respect to the vacuum vessel.

The angle between the addressed beam and the trap axis is 67.5◦ which results in a smaller
Lamb–Dicke parameter of ηadd = 0.025. The addressed beam needs to be able to resolve the
individual ions in the string which means that the beam size needs to be smaller than the inter-
ion distance of approximately 5 µm. This small beam size is realized with the aid of a custom
high numerical aperture objective situated in an inverted viewport as sketched in figure 7(a)7.
Additionally, the beam has to be rapidly deflected to manipulate the desired ion which is realized
with an electro-optical deflector (EOD). The switching speed depends on the capacitance of the
EOD and the output impedance of the driving high voltage amplifier. Figure 7(b) shows the
voltage on the EOD during a switching event between two neighboring ions which demonstrated
that a switching event requires approximately 15 µs. Experience has shown that a delay between
the switching event and the next light pulse of 30 µs is sufficient to switch between arbitrary
ions in a string of up to 8 ions. Note that the voltage ramp measured at the EOD can only serve
as an indicator for the position of the laser beam but does not provide information about the
settling time of the laser light phase at the position of the ion. It was observed that the phase of
the light field keeps changing for more than 100 µs after a switching event. However, this does
not affect the qubit operations for our set of operations as the ac-Stark shift does not depend on
the phase of the light field as described in section 1.

2.3. Experiment control

Any ion-trap quantum information experiment requires precise and agile control of duration,
frequency and amplitude of laser beams originating from multiple sources. A typical

7 Silloptics, Germany; the objective consists of five lenses with a working distance of 58 mm (corrected for a 6 mm
fused silica window).
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Figure 7. (a) Optical setup for the addressing beam setup. The second lens of
the telescope is mounted on a motorized translation stage indicated by black
arrows. (b) Time dependence of the voltage on the EOD switching between
two neighboring ions. After approximately 15 µs the voltage settles and thus
the switching process is finished.

Figure 8. (a) Timing sequence of the different lasers for a typical experiment
consisting of state initialization, coherent manipulation and measurement.
(b) Schematic representation of the experiment control hardware. The FPGA is
programmed by the experimental control PC and controls the timing of all signals
used in the experiment. RF signals for the coherent manipulation are generated
by DDS. It is possible to perform conditional operations based on measure-
ment outcomes with external counters that analyze the photon counts from
the PMT.

experimental sequence consists of optical pumping, cooling the center-of-mass (COM) mode,
coherent operations and qubit measurements as shown in figure 8(a). Usually the required
control is achieved by using acousto-optical devices which map the control over intensity
and frequency of the light field onto the manipulation of amplitude and frequency of a RF
signal. Thus, versatile and fast RF signal generators are a necessity for a high-fidelity quantum
information processor. Modern RF signal generators are commonly based on direct digital
synthesizers (DDSs) enabling switching times on a nanosecond timescale and frequencies
between 1 and 400 MHz with sub-Hertz resolution. In our experiment, these DDSs are
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Table 3. List of automatically calibrated parameters.

Parameter Type Required for each ion

Ion position Voltage Yes
Telescope lens position Position No
Rabi frequency Time Yes
Zeeman splitting Magnetic field No
Laser frequency drift Frequency No

controlled by a special purpose microcontroller embedded on a field-programmable-gate-
array (FPGA) [41].8 This FPGA is able to generate digital pulses with a duration from
10 ns up to several seconds. In order to allow coherent rotation on different transitions to be
realized, the control system needs to be able to perform phase-coherent switching between
multiple frequencies. The phase stability of the phase-coherent switching has been tested to
be 0.0001(90)◦ [38]. The controller is connected to the experimental control computer via
a standard ethernet connection. For quantum algorithms requiring feed-forward operations,
such as teleportation, it is necessary to use the outcome of a measurement within the
algorithm to control subsequent operations in the algorithm. This can be realized by analyzing
the measurement outcome by counting the photo-multiplier-tube (PMT) signal on dedicated
counters and performing the controlled operations in the sequence depending on state of this
counters [17]. A schematic view of the control system including this feedback mechanism is
shown in figure 8(b).

The FPGA determining the timing of the experiment is itself controlled by a personal
computer running a custom LabView program. This program translates the sequence of
operations from a human readable format to binary code that can be executed on the FPGA.
In order to minimize the required time for calibrating the system, the parameters shown in
table 3 are calibrated automatically without any user input. Our set of operations can only be
implemented, if the frequency of the manipulation laser is close to the qubit transition frequency.
Since the frequency of each individual transition is mainly determined by the center frequency
of all transitions shifted by the respective Zeeman shift due to the applied magnetic field, it is
sufficient to infer the magnitude of the magnetic field and the frequency difference between the
laser and the center frequency. For this, the difference frequencies between the laser and two
distinct transitions are measured on the transitions 4S1/2(m j = −1/2) ↔ 3D5/2(m f = −1/2)

and 4S1/2(m j = −1/2) ↔ 3D5/2(m f = −5/2) which allows us to determine the long-term drift
of the magnetic field and the 729 nm reference cavity. Typical values for the magnetic field drift
are 10−8 G s−1 and for the cavity drift 60 mHz s−1 which is expected due to aging of the cavity
spacer crystal [42].

In order to perform addressed single-qubit operations, the position of the addressed beam
with respect to the ion positions needs to be characterized. The position of the beam is controlled
via the motorized lens9 before the objective, as indicated in figure 7(a), and the voltage that
is applied to the EOD. The calibration routine consists of moving the beam onto the center
of the ion string with the motorized lens, followed by finding the EOD voltages for every

8 http://pulse-programmer.org.
9 Newport NSA12 motorized actuator and 460A translation stage.
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Figure 9. Histogram of counted pulses from the PMT for a four ion string. The
histogram is derived from 21 200 measurements with a detection time of 5 ms.

individual ion. The position of the beam with respect to the ions is determined by fitting
a Gaussian envelope to the excitation probabilities as a function of the lens position. This
method allows us to determine the position of the ions to the laser beam with an accuracy
of approximately 50 nm. In order to precisely perform local operations on the qubit, the Rabi
oscillation frequencies on the global beam and the addressed beam need to be measured. On the
global beam, the Rabi frequencies of the two transitions required for the drift compensation need
to be calibrated, whereas on the addressed beam, the oscillation frequencies for each ion for the
ac-Stark operations are measured using Ramsey spectroscopy. In general, the frequencies can be
determined with a precision of approximately 1% due to statistical fluctuations of the measured
data and fitting errors.

2.4. Measuring individual ions within a quantum register

As described in section 1, measuring the quantum state of the ions is performed by counting
single photons on the 4S1/2 ↔ 4P1/2 transition. We use high numerical aperture objectives
located in an inverted viewport to reduce the distance between the ion and the objective as
shown in figure 6. Two detection channels are available: one with a PMT and another with an
electron multiplying CCD camera. The PMT integrates the photons over its sensitive area and
thus cannot infer any spatial information on the ions. The number of detected photon counts
depends on the number of bright ions as is indicated in the histogram of PMT counts shown in
figure 9. By setting appropriate thresholds it is then possible to determine the number of ions
found in the 4S1/2 = |0〉 state which is sufficient information for performing permutationally
invariant state tomography [43] or determining the fidelity of a multi-qubit GHZ state [36].

In contrast, the CCD camera provides spatially resolved information of the detected light
and is thus able to determine the state of each ion in the string separately. For fluorescence
detection, the same objective is used as for the focused 729 nm beam is used. As sketched in
figure 7(a), the light at 729 and at 397 nm are separated by a dichroic mirror. The analysis of the
camera data is performed in five steps: (i) a camera image is taken with an exposure time of 7 ms.
The value of each pixel corresponds to the number of detected photons. (ii) For further analysis,
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a limited region of interest (ROI) around the ion’s position of the whole camera image is used.
For a register of four ions the ROI consists of 35 × 5 pixels but the ROI size needs to be adjusted
to the length of the ion string. (iii) The pixel values are summed over the y-axis of the ROI-image
to get the brightness information along the ion string. (iv) This brightness distribution is then
compared to pre-calculated distributions which are generated from a reference image where
all ions are bright. From this reference image, the position and brightness distribution of each
ion are determined. The state of the ion string is then inferred by comparing the summed pixel
values with the pre-calculated distributions of each possible outcome by calculating the mean
squared error χ2. (v) Finally, the state with the smallest mean squared error is chosen to be the
most likely state. Two examples of this analysis procedure are shown in figure 10. Note that this
method is not scalable as the number of pre-calculated distributions grows exponentially with
the number of ions. However recent work on state detection in trapped ion system promises
efficient detection schemes [44].

3. Error sources

Any implementation of a QC will be affected by errors which ultimately need to be corrected
with quantum error correction techniques. Identifying and characterizing the noise sources are
therefore crucial steps toward a large-scale quantum information processor. In this analysis we
distinguish noise sources, that affect a qubit used as a quantum memory, from additional error
sources, that occur when performing operations. For the presented error sources, we describe
the origin, present a method to characterize the magnitude, and provide typical values for our
experimental system.

3.1. Errors in the qubit memory

In general, errors affecting a qubit memory are described by a combination of phase damping
and amplitude damping [18]. In optical qubits, amplitude damping corresponds to decay from
the excited to the ground state whereas phase damping destroys the phase of a superposition state
but does not alter the population of the qubit. The lifetime of the excited qubit is a fundamental
property of the ion species and gives an upper limit to the storage time of a quantum memory
encoded in an optical qubit. In the experiment, the lifetime of the excited state can be reduced
due to residual light fields depleting the 3D5/2 state via another state, or by collisions with
background gas particles. This possible error source can be investigated by confirming that the
time constant of the exponential decay from the 3D5/2 state is close to the natural lifetime of
1.168(7) s [45]. In our setup, we find a lifetime of τ1 = 1.13(5) s [31].

The second noise type, phase damping, is usually investigated with Ramsey spectroscopy
which determines the coherence properties of a superposition state [11]. There, the qubit is
initially prepared in an equal superposition of the two computational states by a R0(π/2)

rotation. After a certain storage time, a second rotation Rπ(π/2) is applied that ideally maps the
qubit back into the state |1〉. If the phase φ of the second pulse Rφ(π/2) is varied with respect
to the first pulse, the probability of being in state |1〉 is a periodic function of φ. If the coherence
of the state is decreased due to phase damping, the second mapping pulse cannot reach the basis
states anymore which is observed as a decrease in the amplitude of the oscillation. This loss
of contrast corresponds directly to the remaining phase coherence of the superposition which
naturally decreases with increasing storage time.
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Figure 10. Schematic illustration of the camera detection in a four ion register.
(a) False color image of the ROI. (b) Brightness information after summation
over the y-axis of the image. (c) 1/χ 2 of the sum with generated data for every
possible state. The peak corresponds to the most likely state. In this case index
6 15), which corresponds to the state |SDSD〉 (|SSSS〉), is the most likely state.

In our system, phase damping is predominantly caused by fluctuations between the
frequency of the qubit transition and the driving field. The two main contributions are (i) laser
frequency fluctuations and (ii) fluctuations in the magnetic field which cause fluctuations of
the qubit transition frequency. It is then possible to distinguish between these contributions by
investigating the coherence decay on multiple transitions between different Zeeman substates
of the 4S1/2 and 3D5/2 levels because they show different susceptibility to the magnetic field
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Figure 11. (a) Ramsey contrast decay on two transitions with different
sensitivity to the magnetic field fluctuations. Blue squares indicate the less
sensitive 4S1/2(m j = −1/2) ↔ 3D5/2(m j = −1/2) transition whereas green
diamonds correspond to the 4S1/2(m j = −1/2) ↔ 3D5/2(m j = −5/2) transition.
(b) Ramsey contrast decay on the transition which is least sensitive to magnetic
field fluctuations, without (blue squares) and with (red diamonds) spin echo.

due to different Lande g-factors. In figure 11(a) the blue rectangles represent the coherence
decay on the 4S1/2(m j = −1/2) ↔ 3D5/2(m j = −1/2) transition which is least sensitive to
fluctuations in the magnetic field. The green diamonds show the coherence decay for the
4S1/2(m j = −1/2) ↔ 3D5/2(m j = −5/2) which has approximately five times higher sensitivity
to fluctuations of the magnetic field [38, 46]. Note that both transitions show effectively the
same coherence decay for storage times up to 1 ms. This suggests that for typical experiments
where the coherent manipulation is shorter than 1 ms, the main source for dephasing are laser-
frequency fluctuations.

The phase damping process can be theoretically described by a model that applies random
phase flips with a certain probability p to multiple copies of the same state. The ensemble
of all states is then described by a density matrix whose off-diagonal elements are affected
by the phase damping as ρi, j

i 6= j
−→ρi, j(1 − 2p). This model of a phase-flip rate is close to the

concept of a bit-flip rate used in classical computer science and is therefore widely used in
theoretical works on quantum information [18]. However, a physical model for phase damping
describes the phase-flip probability as a function of the information storage time. In order to
do so, one has to find a noise-model describing temporal correlations of the noise source.
The most straightforward noise model assumes temporally uncorrelated noise which leads
to an exponential decay of the coherence characterized by the transversal coherence time τ2

and therefore to off-diagonal elements ρi, j = ρi, j e−t/τ2 [9]. This description is used in most
quantum computing models where the noise can be fully characterized by the amplitude
damping timescale τ1 and the phase coherence time τ2 [18]. In most physical systems, technical
noise is temporally correlated and thus this simple model of uncorrelated phase noise does
not apply [36]. In particular the coherence decay in our system deviates notably from an
exponential decay as can be seen in figure 11(a). This effect can be amplified with the aid
of a well known method to enhance the storage time of a quantum memory known as the spin-
echo technique. There, the basis states are swapped at half the storage time which reverses the
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phase evolution and thus cancels fluctuations provided their timescale is longer than the storage
time. However, it is possible that the performance with a single echo is worse than the original
register if this condition is not satisfied. This effect is demonstrated in figure 11(b) where the
coherence with spin-echo (red diamonds) is worse than without echo (blue squares). There exist
more sophisticated methods to enhance the qubit storage time which are able to take temporal
correlations into account. A formal description of this techniques is known as dynamical
decoupling which has already been demonstrated in various physical systems [47–53]. For a
given noise spectrum an optimal pattern of echo pulses can be determined to maximize the phase
coherence. Interestingly, one can use this technique to determine the spectral noise density from
multiple coherence decays with varying number of echos [54, 55]. In the following we describe
a simple experiment for identifying the dominant features of the noise spectrum without using
any spin echo technique.

It is possible to infer the noise spectrum from a coherence decay C(T ) without any echo
when only a few parameters of the noise spectrum need to be determined. For a given noise
spectrum A(ω), the Ramsey contrast decay is given by

C(T ) = exp
{
−

∫
∞

0
dω

A(ω)2

ω2
sin2(ωT/2)

}
,

which is a special case of the general coherence decay for dynamical decoupling given in
reference [55]. Calculating the noise spectrum from a measured coherence decay is not uniquely
possible, thus we characterize A(ω) assuming a certain spectral shape of the noise and inferring
only a few parameters. Our main source of phase noise at relevant timescales smaller than 1 ms
seems to be the laser frequency noise and thus we model the spectrum accordingly. Typically a
laser spectrum is modeled as a Lorentzian line, which we extend with two broad Gaussian peaks,
where the first originates from the laser locking electronics centered at 300 Hz and the second
peak is attributed to the second harmonic of the power line frequency at 100 Hz. We model these
two contributions with Gaussian peaks Gν(ω) = exp((ω − ω0 − ν)2/σ 2) where σ = 10 Hz. The
resulting spectral noise density for our model is then

A(ω) = α
( γ 2

γ 2 + (ω − ω0)2
+ a1G300(ω − ω0) + a2G100(ω − ω0)

)
.

Noise at the fundamental frequency of the power line (50 Hz) is not included in the model as
it is not distinguishable from Gaussian noise for storage times below 10 ms. Figure 12 shows
the fitted coherence decay of the model with parameters α = 89

√
Hz, γ = 3 Hz, a1 = 0.22 and

a2 = 0.02.
When generalizing these results to multi-qubit systems, the spatial correlation of the noise

on all qubits needs to be considered. In our system the noise from the laser and magnetic
fields are almost identical over the entire register and therefore the phase noise can be modeled
affecting the entire register simultaneously. This correlation leads to a faster loss of coherence
between states with large total energy difference [36]. On the other hand, this spatial correlation
enables decoherence free subspaces (DFS) which are not affected by dephasing. The DFS
consists of states in which acquiring an equal phase on all qubits leads only to a global phase
of the state and thus to no dephasing. For example, a single logical qubit can be encoded in two
physical qubits as |0l〉 = |01〉 + |10〉 and |1l〉 = |01〉 − |10〉 respectively. The two logical states
have identical total energy difference and thus form a DFS, where a universal set of operations
with two logical qubits has been demonstrated in our system [56]. However, it is not clear
how well the concept of a DFS can be extended to larger register sizes, and thus we show the
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Figure 12. Measured Ramsey contrast decay on the 4S1/2(m j = −1/2) ↔

3D5/2(m j = −1/2) transition. The solid line shows a modeled Ramsey contrast
decay with fitted parameters.

Figure 13. Coherence as a function of the qubit storage time of an 8-qubit DFS
state encoded in the optical qubit (blue squares) and the ground-state qubit (green
diamonds) eliminating amplitude damping decay. The solid lines represent the
expected decay for both qubit types.

coherence decay of an 8-qubit DFS state of the form |00001111〉 + eiφ
|11110000〉 in figure 13.

The state is generated by preparing the qubit register in the state |00001111〉 and performing
a MSφ=0(π/2) operation. If the DFS is also present for 8 ions, the loss of coherence should
correspond to the spontaneous decay of the 3D5/2 state resulting in an exponential decay of the
coherence with timescale τ = τ1/n where n = 4 is the number of excited ions. This is illustrated
in figure 13 showing the measured coherence decay and the expected decay, assuming only
spontaneous decay. Furthermore, the spontaneous decay can be eliminated by encoding the
qubit in the two substates of the 4S1/2 level as introduced in section 1. The red squares in
figure 13 show no noticeable decay during a storage time of 200 ms where limitations of the
experiment control system (and PhD students) prevent investigating longer storage times. The
storage time limit of this DFS is then given by fluctuations in the magnetic field gradient and is
expected to be in the 30 s regime [57].
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3.2. Errors in quantum operations

Performing operations on the qubit adds additional noise sources, and thus the error rate of the
entire algorithm cannot be described by spontaneous decay and phase damping. We will now
describe these sources by their physical causes and categorize them by their occurrence in (i)
state initialization, (ii) coherent manipulation and (iii) state detection.

3.2.1. Initialization. As described in section 1 the qubit is initialized by means of an optical
pumping process toward the 4S1/2(m = −1/2) state using a circularly polarized laser beam
aligned parallel to the magnetic field. The possible error sources are (i) imperfect polarization
of the pumping light and (ii) misalignment with respect to the magnetic field. The polarization
quality is determined by the quality of the polarization optics and the birefringence caused by
stress on the window attached to the vacuum vessel. The quantization axis can be aligned by
biasing the current in the different magnetic field coils. The error probability of this process
can be measured by transferring the remaining population from the 4S1/2(m = 1/2) to the 3D5/2

level and measuring it subsequently. If the transfer works perfectly, the population left in the
4S1/2 level is due to imperfect optical pumping. Since the transfer is imperfect, the population
needs to be shelved multiple times to multiple substates in the 3D5/2 manifold. Every shelving
pulse is performed with an error rate of less than 1% and thus the error rate of two combined
shelving pulses is on the order of 10−4. With this technique, the fidelity of the optical pumping
process can be determined accurately. We find a fidelity of the optical pumping process of better
than 99.1% [58]. The second optical pumping technique, as introduced in section 1, is frequency
selective on the qubit transition. Thus the direction of the magnetic field with respect to the laser
beam can be neglected which leads to a more robust pumping. With this technique we find a
pumping fidelity of larger than 99.9% although at a slower pumping rate [59].

The second initialization step prepares the ion in the motional ground state of the harmonic
oscillator. We treat the common-mode motion (COM) separate from the other modes as it is used
by the entangling MS operations. In order to reach the lowest possible mean phonon number,
sideband cooling on the qubit transition as described in section 1 is performed on the common
mode after a Doppler pre-cooling cycle. The final phonon occupation can be determined by
various techniques where a suitable method, when the motion is close to the ground state, is
to perform Rabi oscillations on the motional sideband. This method uses the fact that the Rabi
frequency on the blue sideband for a given phonon number n is given by �n =

√
n + 1 η �0

where �0 is the Rabi frequency on the carrier transition. Rabi oscillations for a given phonon
distribution are described by

p|1〉 =

∑
n

cn sin2(η�0/2
√

n + 1 t),

where the parameters cn can be determined by performing a numerical fit to the measured
data assuming a thermal distribution of cn = 〈n〉

n/(〈n〉 + 1)n+1 which is completely described
by the mean phonon number 〈n〉. A typical value for our experiments using sideband cooling
on the optical transition is 〈n〉 = 0.05(3) after a cooling time of 2 ms [15]. In our setup we have
also the possibility of performing sideband cooling on the Raman transition as introduced in
section 1. This technique is used as an in-sequence recooling technique after a measurement
and therefore the cooling time has to be short compared to the qubit coherence time. Therefore,
we adjust the cooling parameters to achieve a faster cooling rate at the cost of a higher steady
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Figure 14. Cooling rates for sideband cooling on the Raman (red diamonds) and
the optical (blue squares) transition. Although cooling via the Raman process is
faster it leads to a higher steady state phonon number.

state phonon number of 〈n〉 = 0.5 after a cooling time of 200 µs. Figure 14 compares the cooling
rates of the two distinct cooling techniques.

An alternative method to measure the mean phonon number is to compare the excitation
on the blue and red sideband. This method shows an excellent signal to noise ratio for a
mean phonon number around and below 〈n〉 = 1, because the excitation on the red sideband
almost vanishes and the blue sideband is measured merely for calibration. However, for mean
phonon numbers below 〈n〉 = 0.1, the signal on the red sideband almost vanishes and then off-
resonant excitations of different transitions affect the measurement accuracy. In this regime, the
information that can be gained from Rabi oscillations on a single sideband is at least comparable
to what can be done with the sideband ratio technique. We prefer to use the Rabi oscillation
technique as it does not require a second calibration measurement.

In first-order Lamb–Dicke approximation (η � 1), the phonon number of the remaining
motional modes does not affect the dynamics of the system. But as a second order effect,
the occupation of these modes alters the coupling strength of the ion to the light, which
causes an effective fluctuation of the Rabi frequency as the phonon number follows a thermal
distribution after cooling [9, 60]. These fluctuations are equivalent to intensity fluctuations of
the driving laser and cause a damping of the contrast of the Rabi oscillations. This is illustrated
in figure 15(a) which shows Rabi oscillations in a register of three ions where sideband cooling
was applied only to the COM mode. In contrast, figure 15(b) shows the same oscillations where
all three axial modes were cooled subsequently and the damping of the oscillations is reduced.
An N ion crystal features 3N modes and thus cooling all modes in a crystal gets increasingly
difficult for larger registers. Fortunately, cooling all modes of the crystal is not always necessary
because the mean-phonon number decreases with increasing mode energy. Therefore we cool
only the three modes corresponding to the lowest energies to effectively suppress this error
source for up to ten ions. In our setup this error source is smaller on the addressed beam than
the global beam, because the Lamb–Dicke parameter is smaller as described in section 2.

3.2.2. Coherent manipulation. Additional errors occurring during the coherent manipulation
of the quantum information are mainly due to (i) laser intensity fluctuations, (ii) crosstalk and
(iii) the limited coherence of the motional mode.
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Figure 15. Rabi oscillations in a three-qubit register illustrating the influence
of thermal occupation of the motional modes when (a) only the COM mode is
cooled and (b) all three axial modes are cooled.

Figure 16. (a) Measurement scheme for the slow intensity fluctuations with
Ramsey type experiments. Multiple (N -times) rotations around the z-axis of
the Bloch sphere are introduced into a Ramsey experiment translating intensity
fluctuations into additional noise on the excitation probability. (b) Measured state
probability fluctuations 1p for multiple N where the slope is fitted to be 0.013(1)

leading to effective intensity fluctuations of 〈1I/I 〉N = 0.41(6)%.

Intensity fluctuations of the laser light manipulating the ions lead to a fluctuating Rabi
frequency and thus decrease the fidelity of the operations. Measuring the fluctuations of the
light field with a photodiode indicates that the fluctuations have relevant timescales on the
order of seconds to minutes. We assume therefore that the major sources are (i) fluctuations
of the coupling efficiency into a single-mode optical fiber, (ii) thermal effects in acousto-
optical devices, (iii) polarization drifts in the fiber, which translate into a varying intensity after
polarization defining optics and (iv) beam pointing instability of the laser light with respect to
the ion. These intensity fluctuations can be measured directly on the ions by inserting ac-Stark
shift operations with varying length into a Ramsey experiment as sketched in figure 16(a). The
ac-Stark shift operations convert intensity fluctuations directly into phase fluctuations and thus
the same Ramsey techniques as for characterizing phase-noise can be used to measure them.
The timescale of the intensity fluctuations is slow compared to the required time for taking 100
repetitions of the sequence and thus they cause excess fluctuations of the measured excitation
probabilities rather than a coherence decay.
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Figure 17. Illustration of the crosstalk between neighboring qubits where the
middle ion (blue rectangles) is addressed. The fitted Rabi oscillation periods are
22 µs for the addressed ion 2, 121 µs for ion 1 (red diamonds), and 464 µs for
ion 3 (green circles).

These excess fluctuations can be determined by comparing the standard deviation of the
measured data with the expected projection noise 1p2

= 12
proj + 12

excess. This excess noise
in the state probability can be translated into fluctuations of the rotation angle via error
propagation. We choose the rotation angle to be 8 = Nπ with N being an integer yielding
18/8 = 1pexcess/π N and perform this analysis up to N = 8. The measured state probability
fluctuations are then analyzed with a linear fit as shown in figure 16(b). From this, the
relative fluctuations of the rotation angles are determined which are directly equivalent to the
relative fluctuation of the Rabi frequency 18/8 = 1�/�. For the ac-Stark shift operations
the Rabi frequency is directly proportional to the laser intensity yielding 1�/� = 1I/I . From
the fitted data we can identify the average laser fluctuations to be 〈1I/I 〉N = 0.41(6)%.

An error source that affects the register when performing addressed single-qubit operations
is crosstalk where due to the finite width of the addressing laser, along with the desired
ion, its neighboring ions are affected. This addressing error is characterized by the ratio
of the flopping frequency of the addressed ion i to the flopping frequency of the ion j :
εi, j = �2

i /�2
j . The addressed operation, when addressing ion i , can then be described by

S(i)
z (θ) = exp(iθ

∑
j σ ( j)

z εi, j) where ε is the addressing matrix describing the crosstalk. The
magnitude of the error can then be bounded by the maximum off-diagonal element of this
matrix εmax = maxi 6= j εi, j . In figure 17 an example of excessive crosstalk in a three ion register
is shown with εmax = 22/121 = 18%. Typically, the maximum crosstalk on the addressed ac-
Stark operations is εmax < 3% for up to eight ions where crosstalk between more distant ions
is typically smaller than 10−3. Note that this error is coherent, and thus can be undone if the
whole addressing matrix is known. Thus, the compensation of the crosstalk can be integrated
into the numerical optimization algorithm generating the sequence of operations if the crosstalk
is constant over time.

The presented error sources affect both, entangling as well as non-entangling operations.
A loss of coherence on the motional mode does not affect non-entangling operations. However,
the entangling MS operation require coherences between different motional states, which can be
decreased by (i) fluctuations of the static voltages defining the trap frequencies and (ii) heating
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of the ion string. The coherence time of the motional mode can be determined by performing
a Ramsey type experiment which is only sensitive to the phase between two different motional
states. This is possible by using a superposition of two motional states 1/

√
2(|S, 0〉 + |S, 1〉)

instead of a superposition of the electronic state 1/
√

2(|S〉 + |D〉) [61]. The motional coherence
is then measured analogous to the qubit storage time and yields an exponential decay with time
constant τmotion = 110(20) ms. This coherence time is sufficiently long to allow high fidelity
operations to be performed [11].

3.2.3. Measurement. The dominant source of errors in the measurement of the qubit is
given by spontaneous decay from the 3D5/2 state during the measurement process as well
as stray-light. Both errors affect the measurement if the qubit is projected into the |0〉 =

3D5/2(m = −1/2) state. The stray-light is modeled by a Poissonian distribution with a mean
value of typically 1 counts ms−1. The decay from the 3D5/2 state can also be included which
slightly modifies this distribution (for details see [62]). For a ion being projected into the
|1〉 (4S1/2) state, the photon distribution corresponds to a simple Poissonian distribution with
typically 50 counts ms−1. The detection error corresponds then to the overlap of the probability
distributions for a bright and a dark ion which can be well below 10−3. The results from the
CCD camera detection overlaps with the PMT outcome at a level of better than 99.3% [63].

3.3. Estimating the effect of noise on an algorithm

In order to determine the effect of the individual error sources for a given sequence of operations,
a numerical simulation including them has to be performed on a classical computer, which is
in general a tedious task—even for a few ions. We developed and use a numerical modeling
software named ‘Trapped Ion Quantum Computing—Simulation Program with Integrated
Circuit Emphasis’ (TIQC-SPICE) [64].10 It follows a Monte Carlo approach which simulates
multiple random trajectories of varying parameters [65, 66] where each trajectory yields a pure
final state. The ensemble average over all trajectories is then the density operator corresponding
to the simulated state of the system.

In the following we investigate two algorithms which show different susceptibility to the
individual noise sources. The algorithms will not be explained in detail here as we focus on
the effect of the different noise sources on the fidelity of the final state. As a first algorithm we
investigate a single timestep of an open-system quantum simulator (details on the algorithm
are given in [67]). This algorithm acts on two system qubits but requires an additional
auxiliary qubit whose state can be neglected. We simulate its sequence of operations, shown
in the appendix, table A.1, on a three-ion register using our TIQC-SPICE program where
each simulation run consists of a Monte-Carlo simulation with 15 trajectories. The included
noise sources and their magnitudes are: crosstalk between next neighbors of εneighbor = 3%;
intensity fluctuations are given by 1I/I = 2%; dephasing is characterized by the coherence
time τcoh = 15 ms and the correlation time τcorr = 333 µs as defined in [36]. Fluctuations in
the coupling strength of the ion due to thermal occupation of the spectator modes is modeled by
additional intensity fluctuations of 2% as discussed in [64]. The simulated output state of the two
system qubits is then compared with the expected ideal state. The effect for each individual noise
source is identified by simulating the sequence multiple times where for each simulation only

10 The program is freely available at http://github.com/sxwang/TIQC-SPICE/.
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Table 4. Results for the numerical simulation of a quantum simulation algorithm
where smaller overlap means a larger error. In order to identify the dominant
error source, the simulation is performed multiple times with only a single active
error source. From the results one can infer that dephasing is the dominant source
of errors. The errors caused by motional heating, imperfect optical pumping and
spontaneous decay are negligible.

Error source Overlap with ideal state (%)

All 77
Crosstalk 95
Dephasing 84
Intensity fluctuations 99
Spectator modes 94

Table 5. Results of a numerical simulation of a three-qubit QFT algorithm
where a smaller overlap means a larger error. Here, the dominant noise source is
crosstalk. The errors caused by motional heating, imperfect optical pumping and
spontaneous decay are negligible.

Error source Overlap with ideal state (%)

All 93
Crosstalk 95
Dephasing 98
Intensity fluctuations >99
Spectator modes >99

a single source is affecting the simulation. The simulations for individual error sources indicate
that the dominant error source is dephasing as shown in table 4. This is expected because the
duration of the sequence of operations is 2 ms which is not short compared to the coherence
time of 15 ms. Including all noise sources, the simulation predicts a fidelity with the ideal
density matrix of 79% whereas the experimentally measured fidelity is 72%. The overlap of
the simulated with the measured density matrix is 94%. The crude fidelity estimation presented
in section 1 predicts a fidelity of 74%.

The second simulated algorithm is a fully coherent quantum Fourier transform (QFT)
which is treated in more detail in section 4. The sequence of operation as shown in the appendix,
table A.2, is simulated with identical parameters as the previous algorithm. The simulation
predicts a fidelity of 92.6% with the ideal state whereas an experimentally obtained density
matrix leads to an overlap of 81(3)%. The results of the simulation for the individual noise
sources are shown in table 5 where the biggest contribution is now crosstalk. Here, the crude
estimation presented in section 1 estimates a fidelity of 75%.

4. Example algorithms

In the following we provide examples of how the available toolbox can be employed to realize
various quantum algorithms where we focus on building blocks for a realization of Shor’s
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Figure 18. (a) Quantum circuit for a three qubit QFT algorithm. (b) Single-qubit
Kitaev version of the QFT. The measurement outcome is stored in a classical
memory which controls the subsequent single-qubit rotations.

algorithm to factor a large integer numbers [3, 18]. The part of the algorithm that requires
a QC is based on an order-finding algorithm which itself requires the QFT. This quantum
analogue of the discrete Fourier transform maps a quantum state vector |x〉 =

∑
j x j | j〉, into

the state |y〉 =
∑

k yk|k〉 where the vector y = (y1, . . . , yN ) = F(x) is the classical discrete
Fourier transform of x = (x1, . . . , xN ) [18]. It is straightforward to translate this operation into a
quantum circuit (see [18]) where an example for three qubits is shown in figure 18(a). The most
straightforward (although not necessarily the most effective) way to implement the QFT is to
realize directly the desired unitary using our available operations. With our optimization toolbox
as described in section 1 we are able to find an optimized decomposition of the three-qubit QFT
consisting of 18 operations as shown in the appendix, table A.2. The smallest MS operation in
the sequence is π/16 and thus the MS operations has to be optimized with this rotation angle.
A maximally entangling operation is then implemented by applying this operation eight times
subsequently.

We benchmark the QFT by performing a full three-qubit quantum process tomography
and find a process fidelity of 72% with the ideal QFT [68]. However, in order to find the
best suited measure for the quality of an algorithm, one should consider how the quantum
algorithm is embedded in the given problem. The QFT is almost exclusively used as the final
building block of larger algorithms and then only the classical information of the final state
is needed to determine the algorithm’s performance [69]. The quantum process fidelity is not
the optimal measure to benchmark the performance of the QFT as it includes correlations that
do not affect the outcome of the algorithm. One would rather choose a measure that utilizes
the classical probabilities of the individual output states which can be described by a 2N

vector p = (p1, . . . , P2N ). Such a measure is the squared statistical overlap (SSO) S(p, q) =

(
∑

i
√

piqi)
2 which is the classical analogue of the quantum state fidelity [70]. An alternative

suitable measure for the classical information is the statistical distinguishability D(p, q) =

1 − 1/2
∑

i |pi − qi |, which is related to the quantum trace distance. These benchmarks are
applied to a representative set of input states covering all possible periods. In [71], a QFT
algorithm was benchmarked using five input states with different period and thus we use similar
input states for comparability, as shown in table 6. The classical benchmarks yield on average
an SSO of 87% which is considerably higher than the quantum process fidelity of 72%.

Since the QFT is mainly used as the final block in an algorithm, it can be replaced by
the semi-classical QFT that exchanges the quantum-controlled rotations by a measurement and
a classically controlled rotation [69, 71]. This requires the measurement of each qubit to be
performed before the operations that are controlled by this qubit. In figure 18 the time order
of the measurements corresponds to qubit q0, q1, q2. A measurement furthermore destroys all
quantum coherence on the qubit and thus it is possible to reuse the physical qubit and store
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Table 6. Results for a fully coherent three qubit QFT.

Input state Period SSO Distinguishability

1/
√

8 (|111〉 + |110〉 + · · · + |000〉) 1 77.1 77.1
1/

√
4 (|110〉 + |100〉 + |010〉 + |000〉) 2 78.0 73.3

1/
√

4 (|110〉 + |100〉 + |011〉 + |000〉) 3 90.4 86.4
1/

√
2 (|011〉 + |000〉) 4 94.8 87.4

|000〉 8 97.3 88.1

Table 7. Results for the semiclassical Kitaev single qubit QFT.

Input state Period SSO Distinguishability

1/
√

4 (|000〉 + |100〉 + |010〉 + |110〉) 2 99.5 94.5
1/

√
2 (|100〉 + |000〉) 4 99.6 96.4

|000〉 8 99.7 95.6

the measurement outcome on a classical computer. This allows a semi-classical QFT to be
performed on a single qubit as sketched in figure 18(b) which is known as the Kitaev QFT [72].
Note that it is not possible to generate an entangled input state with this version of the QFT and
thus the Kitaev QFT is more restricted than the semi-classical QFT. Furthermore, the ability to
measure and reset the qubit within the algorithm is required, which is possible with our extended
set of operations. In ion-trap systems, in-sequence measurements notably disturb the motional
state of the ion string and thus it is advisable to make the measurement as short as possible. In
this case we chose a measurement duration of 150 µs which still allows for a detection fidelity
of 99% [73]. In order to achieve high fidelity operations after such a measurement it appears
necessary to recool the COM mode with the Raman cooling technique as described in section 1.
In the special case of the single-qubit QFT however only local operations are required after
a measurement which can furthermore be implemented with the addressed beam. Due to the
small Lamb–Dicke parameter, the quality of the single-qubit operations is not notably affected
by the thermal occupation of the COM and the spectator modes after the measurements and
thus recooling is not required. In table 7 the outcome for the single qubit QFT is shown for the
non-entangled input states used before, leading to an average SSO of 99.6%. As expected, the
single-qubit Kitaev QFT clearly performs better than the fully coherent QFT.

One of the important algorithms that is compatible with the presented Kitaev single-qubit
QFT is the order-finding algorithm which is able to determine the order of a permutation
operation efficiently [18]. A permutation operation π(y) has order k if k-times application of the
operations results in the identity: π(y)k

= y, where y is a decimal representation of the n-qubit
input state vector |qn . . . q0〉. The algorithm splits the available quantum register in two parts:
(i) a register where the permutation operation is applied and (ii) a QFT register that is initially
prepared in an equal superposition state. The qubits from the QFT register control whether the
permutation operations are applied. This operation is analogous to a CNOT operation where
instead of the NOT operation the permutation operation is controlled. The kth qubit from the
QFT register controls the permutation operations π(y)l with l = 2k as shown in figure 19(a).
With this algorithm it is possible to use the single-qubit QFT to reduce the number of required
qubits from 5 to 3 where the resulting quantum circuit is shown in figure 19(b).
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Figure 19. Order finding algorithm for a two qubit permutation operation in (a)
fully coherent and (b) Kitaev version.

Table 8. Representative unitary permutation operations for order 2–4 which were
used as examples for the order-finding algorithm. The number of operations for
applying the operation once and twice are also shown. The sequence of operation
for the controlled permutation operations are presented in tables A.3–A.8 of the
appendix.

y π1(y) π2(y) π3(y) π4(y)

|0〉 |0〉 |1〉 |0〉 |3〉

|1〉 |3〉 |0〉 |3〉 |0〉

|2〉 |2〉 |3〉 |1〉 |1〉

|3〉 |1〉 |2〉 |2〉 |2〉

max(order) 2 2 3 4
No. of operations π(y) 11 10 23 24
No. of operations π(y)2 – – 17 10

We seek to implement the optimized order-finding algorithm using permutations on two
qubits as a proof-of-concept experiment. The permutation operation is given by a unitary
operation where we implemented the operations shown in table 8 which span orders from 2
to 4. It becomes clear that the order of the permutation can depend on the input state as, for
example, π1(y) has order one for input states y = |0〉, |2〉 and order two for y = |1〉, |3〉. On the
other hand, π2(y) shows order two regardless of the input state. The complexity of the algorithm
depends on the investigated permutation operation, as the controlled permutation operations
require entangling operations. The number of required operations for the individual permutation
operations are presented in table 8 and the sequences of operations can be found in the appendix.
In contrast to the single-ion QFT as presented above, the use of entangling operations after
measuring the QFT qubit is required. This makes it necessary to recool the ion string within
the sequence, where we employ the Raman recooling technique as described in section 1. We
choose a recooling time of 800 µs as this proved to provide a good balance between remaining
excitation of the COM mode and additional phase damping due to the cooling time [73].

The output of the algorithm is again classical and thus the classical probabilities
for measuring the state | j〉 are sufficient to infer the quality of the operation. Figure 20
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Figure 20. State probabilities for the order finding algorithm for the permutation
operations π1 . . . π4. The ideal probabilities (blue), experimental results (red) and
predictions from a classical simulation (green) are shown.

Table 9. Results for the semiclassical Kitaev order finding algorithm using the
permutation operations defined in table 8.

Order Permutation operation SSO Distinguishability

1 π1(|0〉) 75.3(7) 75.3(7)
2 π2(|0〉) 86.4(6) 86.5(6)
3 π3(|1〉) 85.9(6) 70.3(8)
4 π4(|0〉) 91.6(5) 90.7(6)

shows the classical probabilities of the basis states for all permutation operations where
the experimental results (blue bars) are compared with the expected ideal probabilities (red
bars) and estimated probabilities from TIQC-SPICE simulations (green bars). Again the
implementation is benchmarked with the classical SSO and distinguishability measures as
presented in table 9 yielding an average SSO of 80.7%. The original problem is finding the
correct permutation and therefore one could think of using a classical algorithm to find the most
likely order for a given outcome. However, finding such an efficient evaluation is beyond the
scope of this work.

5. Conclusion and outlook

In conclusion we have presented a small-scale quantum information processor based on trapped
40Ca+ ions. A set of operations beyond coherent operations, that is suitable for implementing
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arbitrary Markovian processes, has been introduced. The major noise sources of the system
acting on a qubit memory and during operations have been analyzed and their influence on
different algorithms have been discussed. It has been shown that the dominant source of
errors depends on the actual sequence of operations. We used the entire set of operations to
realize an efficient implementation of the order-finding algorithm. Here, we have been able to
reduce the number of required qubits in the sense that only a single qubit is required for the
entire QFT register in the algorithm. We envision that these techniques will be the building
blocks in a scalable implementation of Shor’s factoring algorithm. Furthermore we hope that
the presented methods for characterizing the noise sources will lead to successful strategies
for reducing the error rate in complex algorithms paving the way to fault-tolerant quantum
computation.
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Appendix

Sequence of operations is shown in tables A.1–A.8.

Table A.1. Sequence of operations for the algorithm used for an open system
quantum simulator [67].

Number Pulse Number Pulse

1 S(1)
z (1.5π) 11 MS1.5π (0.5π)

2 Rπ (1.5π) 12 S(3)
z (1.75π, 2)

3 MSπ (0.25) 13 MS2.25π (0.5π)

4 S(2)
z (π) 14 R1.75π (0.5π)

5 MSπ (0.875π) 15 R2.25π (0.5π)

6 S(3)
z (π) 16 MS2.25π (0.25π)

7 MSπ (0.125π) 17 S(3)
z (1.5π)

8 S(3)
z (π) 18 S(2)

z (1.0π)

9 R0.5π (0.5π) 19 R2.25π (0.5π)

10 S(3)
z (0.5π)
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Table A.2. Sequence of operations for the fully coherent QFT operation on three
qubits.

Number Pulse Number Pulse

1 Rπ (π/2) 10 Rπ/2(3π/16)

2 S(2)
z (π) 11 S(2)

z (3π/2)

3 S(3)
z (π/2) 12 Rπ/2(π/4)

4 MSπ/2(π/8) 13 MSπ/2(π/8)

5 S(3)
z (π) 14 S(3)

z (π)

6 MSπ/2(π/16) 15 MSπ/2(π/8)

7 R−π/2(π/2) 16 S(1)
z (π/2)

8 S(2)
z (π) 17 S(2)

z (π)

9 MSπ/2(3π/16) 18 Rπ (π/2)

Table A.3. Sequence of the controlled π1(y) permutation operation.

Number Pulse Number Pulse

1 Rπ/2(π/2) 7 MS0(π/4)

2 S(3)
z (7π/4) 8 S(3)

z (3π/2)

3 M S0(π/2) 9 MS0(π/2)

4 Rπ (π/2) 10 R−π (π/2)

5 S(3)
z (π/2) 11 R−π/2(π/2)

6 Rπ (π/4)

Table A.4. Sequence of the controlled π2(y) permutation operation.

Number Pulse Number Pulse

1 Rπ (π/2) 5 MS0(π/4)

2 S(1)
z (3π/2) 6 S(1)

z (3π/2)

3 MS0(π/2) 7 Rπ (π/2)

4 Rπ (π/2) 8 S(2)
z (π)

Table A.5. Sequence of the controlled π3(y) permutation operation.

Number Pulse Number Pulse

1 S(3)
z (π/2) 13 S(2)

z (π/2)

2 Rπ (3π/2) 14 S(3)
z (3π/2)

3 S(3)
z (π/2) 15 MS0(3π/4)

4 MS0(π/4) 16 R−π/2(0.196π)

5 R−π (5π/2) 17 S(2)
z (2π/3)

6 S(1)
z (3π/2) 18 Rπ/2(0.196π)

7 Rπ (π/2) 19 Rπ (π/4)

8 Rπ/2(π/4) 20 MS0(π/2)

9 S(2)
z (π) 21 S(2)

z (7π/4)

10 Rπ/2(π/4) 22 Rπ/2(π/2)

11 MS0(π/2) 23 S(1)
z (π/2)

12 S(1)
z (π)
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Table A.6. Sequence of the controlled π 2
3 (y) permutation operation.

Number Pulse Number Pulse

1 Rπ/2(π/2) 10 S(2)
z (3π/2)

2 S(2)
z (π/4) 11 MS0(π/2)

3 R−π (π/2) 12 S(3)
z (3π/2)

4 MS0(π/2) 13 Rπ (π/4)

5 S(2)
z (3π/2) 14 MS0(π/4)

6 MS0(3π/4) 15 S(1)
z (3π/2)

7 Rπ (π/4) 16 S(2)
z (3π/2)

8 S(3)
z (π/4) 17 R−π (π/2)

9 Rπ (π/2)

Table A.7. Sequence of the controlled π4(y) permutation operation.

Number Pulse Number Pulse

1 R−π (π/2) 13 R−π/2(0.196π)

2 Rπ/2(π) 14 S(1)
z (4π/3)

3 S(1)
z (3π/2) 15 S(3)

z (1.905π)

4 MS0(7π/8) 16 Rπ/2(0.196π)

5 S(3)
z (π) 17 R−π (π/4)

6 MS0(π/8) 18 R−π/2(π/2)

7 Rπ/2(π/2) 19 MS0(π/2)

8 R−π (3π/2) 20 S(2)
z (π/3)

9 S(1)
z (3π/2) 21 MS0(π/2)

10 S(2)
z (π/2) 22 S(3)

z (1.905π)

11 MS0(3π/4) 23 Rπ/2(π/2)

12 S(3)
z (1.33π) 24 S(3)

z (7π/4)

Table A.8. Sequence of the controlled π 2
4 (y) permutation operation.

Number Pulse Number Pulse

1 Rπ (π/2) 6 Rπ (π/4)

2 S(1)
z (3π/2) 7 MS0(π/4)

3 MS0(π/4) 8 S(1)
z (3π/2)

4 Rπ (π/4) 9 Rπ (π/2)

5 S(2)
z (π) 10 S(2)

z (π)

1 R−π (π/2) 13 R−π/2(0.196π)

2 Rπ/2(π) 14 S(1)
z (4π/3)

3 S(1)
z (3π/2) 15 S(3)

z (1.905π)

4 MS0(7π/8) 16 Rπ/2(0.196π)

5 S(3)
z (π) 17 R−π (π/4)

6 MS0(π/8) 18 R−π/2(π/2)

7 Rπ/2(π/2) 19 MS0(π/2)

8 R−π (3π/2) 20 S(2)
z (π/3)

9 S(1)
z (3π/2) 21 MS0(π/2)

10 S(2)
z (π/2) 22 S(3)

z (1.905π)

11 MS0(3π/4) 23 Rπ/2(π/2)

12 S(3)
z (1.33π) 24 S(3)

z (7π/4)
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