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ABSTRACT

A number of techniques have been proposed to provide run-
time performance guarantees while minimizing power con-
sumption. One drawback of existing approaches is that they
work only on a fixed set of components (or actuators) that
must be specified at design time. If new components become
available, these management systems must be redesigned
and reimplemented. In this paper, we propose PTRADE,
a novel performance management framework that is general
with respect to the components it manages. PTRADE can
be deployed to work on a new system with different compo-
nents without redesign and reimplementation. PTRADE’s
generality is demonstrated through the management of per-
formance goals for a variety of benchmarks on two different
Linux/x86 systems and a simulated 128-core system, each
with different components governing power and performance
tradeoffs. Our experimental results show that PTRADE
provides generality while meeting performance goals with
low error and close to optimal power consumption.
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C.4 [Performance of Systems]: Measurement techniques,
Performance attributes; D.4.8 [Operating Systems]: Per-
formance—Measurements, Monitors; I.2.8 [Problem Solv-
ing, Control Methods, and Search]: Control Theory
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Figure 1: Overview of PTRADE.

1. INTRODUCTION
Researchers have proposed performance management tech-

niques that control a single component in a computer system
(e.g., core allocation, DRAM, processor speed) in order to
guarantee performance while minimizing power consump-
tion. For example, systems have been built that manage
dynamic voltage and frequency scaling (DVFS) [43], core
throttling [45], core allocation [26], cache [2], DRAM [46],
and disks [24].

It has been observed, however, that coordinated manage-
ment of multiple components is more efficient than man-
aging a single component [4, 13, 17, 29]. Thus, several
researchers propose performance management frameworks
that coordinate multiple components (e.g., cores and pro-
cessor speed [6, 27], processor and DRAM [25], cores, cache,
and bandwidth [35]) in order to achieve greater power sav-
ings for the same performance targets.

Although these coordinated management frameworks pro-
vide increased power savings, they consider only a fixed set
of components. However, different computer systems ex-
pose different sets of components for tuning. Therefore, each
performance management framework needs to be redesigned
and reimplemented to port to a new system. We would like
to achieve efficient performance management on new sys-
tems without the burden of constant redesign, raising the
question: Is it possible to build a generalized performance

management framework that provides performance guaran-

tees and power savings comparable to those of a framework

designed for a particular, fixed, set of components?

We address this question by developing PTRADE, a mul-
ticore performance management framework that coordinates
a general and flexible set of components. PTRADE can de-
ploy on new platforms with new sets of components with-
out redesign or reimplementation. PTRADE consists of
two interfaces and a runtime system; which together com-
prise a closed-loop system, as illustrated in Figure 1. The
first interface (for use by application developers) communi-
cates an application’s performance goals and current per-
formance. The second interface (for use by systems devel-



opers) describes the system components available for man-
agement. The runtime system actively monitors application
performance and tunes the available components to meet
the application-specified performance goal while minimizing
system power consumption. This tuning is accomplished in
two phases. First, a generalized control system produces a
generic control signal, independent of any specific compo-
nents. Second, a translator converts this generic signal into
specific settings for a particular system’s available compo-
nents. The control system keeps performance at the desired
level, while the translator selects the combination of compo-
nent settings that achieve this goal with minimal power con-
sumption. PTRADE’s controller and translator are adaptive
and model application and component behavior with a se-
ries of Kalman filters [40]. Through adaptation, PTRADE
dynamically tailors power consumption to meet the appli-
cation’s goals while reacting to the performance needs of a
specific input or even phases within an input.

We evaluate PTRADE’s ability to generalize performance
management by deploying on three different platforms with
different sets of components. Specifically, we use two real
Linux/x86 systems and one simulated manycore based on
the Graphite simulator [30]. On the Linux/x86 systems, we
use the PARSEC benchmarks [3] plus two others designed
to stress the system. On the simulated manycore, we use
four SPLASH2 benchmarks [42]. We evaluate PTRADE’s
ability to meet performance goals by measuring relative er-

ror, or the percentage difference between the goal and the
achieved performance. We evaluate power reduction by com-
paring the measured power consumption to that provided
by an oracle that represents true optimal power consump-
tion for a management framework that acts with perfect
knowledge of the future and without overhead. We find
that, on average across all benchmarks, PTRADE meets
performance goals accurately (2.9% error on the real sys-
tems, < 1% error on the simulator). Furthermore, despite
its generality, PTRADE is efficient and achieves close to op-
timal power consumption. On the real systems, PTRADE’s
average power consumption is within 6% of the oracle. On
the simulated system, PTRADE’s average power consump-
tion is within 3% of the oracle.

This paper makes the following contributions:

• It proposes a generalized performance management frame-
work that coordinates multiple components to con-
trol application performance while reducing power con-
sumption.

• It designs a generalized, adaptive control system which
ensures performance goals are met using a generic con-
trol signal, independent of the available system com-
ponents.

• It designs a generalized, adaptive translator which trans-
forms the generic control signal into specific compo-
nent settings while minimizing power consumption.

• It demonstrates that a single, generalized performance
management system can meet performance goals while
providing close to optimal power consumption on dif-
ferent systems, both real and simulated.

The rest of this paper is organized as follows. Section 2
describes the PTRADE system. Section 3 presents the ap-
plications and systems used to evaluate PTRADE. The re-
sults of the evaluation are presented in Section 4. Section 5
discusses related work before concluding in Section 6.

2. PTRADE DESIGN
A generalized performance management system must work

with a variety of applications and a variety of different sys-
tems components. PTRADE achieves this generality by
asking application developers to specify performance goals
and asking systems developers to specify components af-
fecting performance/power tradeoffs. PTRADE’s runtime
system takes these specifications and tunes component us-
age to meet goals while reducing power consumption. Ta-
ble 1 shows the responsibilities of each of these three roles
in PTRADE development. A key feature of PTRADE is its
separation of concerns; application developers do not need to
understand system-level components and systems developers
do not have to infer application-level performance. This sec-
tion describes PTRADE’s support for specification of goals,
specification of components, and runtime management.

2.1 Specifying Application Performance
PTRADE uses the Application Heartbeats API [14] to

specify application goals and progress. The API’s key ab-
straction is a heartbeat; applications emit heartbeats at im-
portant intervals, while additional API calls specify perfor-
mance goals in terms of a target heart rate or a target latency
between specially tagged heartbeats.

The original Heartbeats API includes functions for per-
formance monitoring only. An API function allows other
applications to examine the heartbeat data for an applica-
tion. This data structure contains a log of all heartbeats
with corresponding timestamps as well as various perfor-
mance statistics, including the average heart rate since the
beginning of program execution and the average heart rate
over some application specified time window. PTRADE
augments this data structure by inserting power and energy
statistics. This additional data allows PTRADE’s runtime
system to observe the power consumption and energy for
individual heartbeats and over the life of the application.

This modification of the Heartbeats API requires no ad-
ditional work from application developers beyond inserting
heartbeats into the application. Application developers are
not required to interface with a power monitor, this is han-
dled automatically by the implementation. The runtime is
also insulated from the power monitor, as it retrieves infor-
mation only from the Heartbeats API. Thus, the runtime is
agnostic about whether power data comes from an on-chip
meter [34], an off-chip meter [1], or a model [19].

2.2 Specifying System Components
PTRADE provides a separate, system programmer inter-

face (SPI) for specifying components available for manage-
ment. This interface is summarized in Table 2. The key
abstraction in the SPI is a control panel populated with ac-

tuators. The PTRADE runtime exports a control panel and
systems developers use the SPI to register new actuators.
The actuator data structure includes: a name, a list of al-
lowable settings, a function which changes the setting, the
performance benefits of each setting, and the power costs of
each setting. These costs and benefits are listed as multi-
pliers over a nominal setting, whose costs and benefits are
unity. Each actuator specifies a delay, or the time between
when it is set and when its effects can be observed. Finally,
each actuator specifies whether it works on only the appli-
cation that registered it or if it works on all applications.
This last feature allows applications to register application



Table 1: Roles and Responsibilities in PTRADE development.
Phase Applications Developer Systems Developer PTRADE Runtime
Application Development Specify goals and performance -
Application Execution - - Manage component usage
Systems Development - Specify components

Table 2: PTRADE SPI listing
Function Name Arguments Description
ACT attach control panel Gets a handle to the system control panel
ACT detach control panel Releases handle to the control panel
ACT register actuator name [string], file [string] Registers new actuator with properties specified in the file
ACT delete actuator name [string] Removes the named actuator from the control panel
ACT get nactuators Returns the number of actuators registered to the control panel
ACT get actuators Returns an array with all actuators registered to the control panel

specific actuators with the control panel.
A systems developer writes a program to register an actu-

ator. This program first calls ACT attach control panel to
connect to the PTRADE control panel. It then calls the
ACT register actuator function providing both the name
of a text file and a name for the actuator. The text file
has an enumeration of the attributes of the actuator (set-
tings, costs and benefits, delay). Specifying these values
in text aids portability as the same program can be used
on different systems by changing the file. For example,
the same program can register a DVFS actuator on ma-
chines with different clock speeds by simply changing the
file. If the systems developer wants to disable an actua-
tor, the ACT delete actuator function removes it from the
control panel. Two query functions are used (primarily by
PTRADE) to query the number of actuators and the dif-
ferent actuators available. These functions allow multiple
systems developers to register actuators independently. The
costs and benefits for actuators only serve as initial esti-
mates and PTRADE’s adaptive features overcome errors in
the values specified by the systems developer. PTRADE
allows these models to be specified to provide maximum re-
sponsiveness in the case where they are accurate.

2.3 Runtime
The PTRADE runtime automatically and dynamically

sets actuators to meet application performance goals while
reducing power consumption. The runtime is designed to
handle general purpose environments and it will often make
decisions about actuators and applications with which it has
no prior experience. In addition, the runtime must react
quickly to changes in application workload. To meet these
requirements, PTRADE uses feedback control, but splits the
control problem into two phases. In the first phase, a gen-
eralized controller produces a generic control signal. This
control signal is independent of actuators in the system and
represents how much the application should speed up at the
current time t. In the second phase, a translator finds ac-
tuator settings which achieve the control signal while mini-
mizing power consumption. The controller is responsible for
ensuring goals are met, while the translator works to mini-
mize power consumption. Critically for generality, both the
controller and the translator are themselves adaptive and
dynamically adjust internal models of application behavior
and system performance/power tradeoffs online.

2.3.1 The Controller

PTRADE drives performance to a goal g by reading the
current heart rate h(t) and computing a control signal s(t),

where t represents time. s(t) represents the speedup nec-
essary at time t. s(t) is defined relative to the application
workload w, which represents the time between two heart-
beats when all actuators are turned to their minimal set-
tings. For example, if s(t) = 1.1 the control system is telling
the translator to increase speed by 10% over the baseline.

PTRADE computes s(t), by modeling the application heart
rate h(t) at time t:

h(t) =
s(t− 1)

w
+ δhi(t) (1)

where δhi(t) represents an exogenous disturbance in per-
formance. PTRADE eliminates the error e(t) between the
performance goal g and the observed heart rate h(t):

e(t) = g − h(t) (2)

As PTRADE uses a discrete time model, we analyze its be-
havior in the Z-domain by examining the transfer function
from the error to the control signal:

S(z)

E(z)
=

w · z

z − 1
(3)

From this transfer function, the controller is synthesized fol-
lowing a standard procedure [12] and s(t) is calculated as:

s(t) = s(t− 1) + w · e(t) (4)

PTRADE’s generalized controller acts on speedup rather
than directly managing a specific actuator (e.g., clock speed).
This distinction means the control signal is separate from the
mechanism used to achieve the control, which is essential for
generality as it allows PTRADE to work with different sets
of components (or actuators) that are available on different
systems. PTRADE’s approach contrasts with prior control-
based management frameworks like METE [35] and Control-
Ware [44], which directly incorporate the actuator into the
control equations. Thus, if METE is ported to a new system
with different actuators, METE’s control has to be reformu-
lated and re-implemented. Of course, PTRADE’s flexibility
comes at a cost of added complexity, as the speedup signal
must be converted to actuator settings by the translator as
described in Section 2.3.2.

Adapting Control.
As the controller is based on classical control techniques,

it will meet the performance goal provided that w is a rea-
sonable approximation of the actual workload [27]. In a
generalized setting, however, it is not possible to know the
workloads of every application beforehand. Furthermore, we



expect applications to exhibit phases with different work-
loads. Thus, assumption of a time-invariant w is not suf-
ficient. PTRADE would like to know w(t), the workload
at the current time, but it is not possible to measure this
value without turning all actuators to their lowest setting
and, thus, failing to meet the performance goal. Therefore,
PTRADE treats w(t) as a hidden value and estimates it with
a one dimensional Kalman filter [40]; i.e., it models the true
workload at time t as w(t) ∈ R:

wi(t) = wi(t− 1) + δwi(t)

hi(t) =
si(t− 1)

wi(t− 1)
+ δhi(t)

(5)

where δwi(t) and δhi(t) represent time varying noise in the
true workload and heart rate, respectively. The estimate of
this true workload is denoted as ŵi(t) and calculated as:

x̂−(t) = x̂(t− 1)
p−(t) = p(t− 1) + q(t)

k(t) =
p−(t)s(t− 1)

[s(t)]2p−(t) + o
x̂(t) = x̂−(t) + k(t)[h(t)− s(t− 1)x̂−(t)]
p(t) = [1− k(t)s(t− 1)]p−(t)

ŵ(t) =
1

x̂(t)

(6)

Where q(t) and o represent the application and measure-
ment variance, respectively. The application variance q(t)
is the variance in the heart rate signal since the last filter
update. PTRADE assumes that o is a small fixed value as
heartbeats have been shown to be a low-noise measurement
technique [14]. h(t) is the measured heart rate at time t and
s(t) is the applied speedup (according to Equation 4). x̂(t)
and x̂(t)− represent the a posteriori and a priori estimate
of the inverse of workload at time t. p(t) and p−(t) repre-
sent the a posteriori and a priori estimate error variance,
respectively. k(t) is the Kalman gain at time t.

PTRADE adapts control online by first updating Equa-
tion 6. ŵ(t) is then substituted in place of the fixed value w
when calculating the control signal using Equation 4.

We note that control theory is, in general, a discipline
for building adaptive systems. Classical control techniques
(like those used to formulate Equation 4) make the system
under control adaptive. However, adaptive control implies
something stronger, meaning the controller itself is updated
(in this case by Equation 6). Therefore, a classical (non-
adaptive) control scheme is simply a static set of equations
whose coefficients do not change over time. An adaptive
control scheme modifies itself in order to generalize and cope
with possible non-linearities or unmodeled dynamics in the
controlled system.

2.3.2 The Translator

Adaptive control produces a generic speedup signal s(t)
which must be translated into specific actuator settings.
PTRADE does this by scheduling over a time window of
τ heartbeats (referred to as a “decision period”). Given a
set A = {a} of configurations for multiple actuators with
speedups sa and power costs ca, the runtime would like to
schedule each configuration for τa ≤ τ heartbeats so that
the desired speedup is met and the total cost is minimized:

minimize(τidlecidle +
1
τ

∑
a∈A(τaca)) s. t.
1
τ

∑
a∈A τasa = si(t)

τidle +
∑

a∈A τa = τ
τa, τidle ≥ 0, ∀a

(7)

Note the idle action, which idles the system paying a cost of
cidle and achieving no speedup (sidle = 0). Solutions to this
system will vary with platforms and having a flexible set of
solutions is essential for achieving generality.

Linear optimization provides a solution for some power
management problems, but it does not scale to large sets
of actuators [41]. Therefore, PTRADE approximates the
solution to Equation 7 by selecting three separate candi-
date solutions, computing their costs (power consumptions),
and then selecting the best of these candidates. Specifically,
PTRADE considers: race-to-idle, proportional, and hybrid.
First, PTRADE considers race-to-idle; i.e., setting ac-

tuators to achieve maximum speedup for a short duration
hoping to idle the system for as long as possible. Assum-
ing that max ∈ A such that smax ≥ sa∀a ∈ A, then

racing to idle is equivalent to setting τmax = si(t)·τ
smax

and
τidle = τ − τmax. The cost of doing so is then equivalent to
crace = τmax · cmax + τidle · cidle.
PTRADE then considers proportional scheduling by se-

lecting fromA, an actuator setting j with the smallest speedup
sj such that sj ≥ si(t) and an actuator setting k such that
sk < sj . Given these two settings, PTRADE configures the
system at j for τj time units and k for τk time units where
si(t) = τj · sj + τk · sk and τ = τj + τk. The cost of this
solution is cprop = τj · cj + τk · ck.

The third solution PTRADE considers is a hybrid, where
PTRADE finds a setting j as in the proportional approach.
Again, sj is the smallest speedup such that sj ≥ si(t); how-
ever, PTRADE considers only actuator settings j and the
idle action, so si(t) = τj · sj + τidle · sidle, τ = τj + τidle, and
chybrid = τj · cj + τidle · cidle.

In practice, the PTRADE runtime system solves Equa-
tion 7 by finding the minimum of crace, cprop, and chybrid
and and using the actuator settings corresponding to this
minimum cost.

Adapting Translation.
The translator provides good solutions to Equation 7 as-

suming that the values of sa and ca are known for all combi-
nations of actuators a ∈ A. Unfortunately, the true values of
sa and ca are application dependent and not directly measur-
able online, so they need to be estimated dynamically. This
situation is analogous to estimating the true value of appli-
cation workload in the controller. Thus, PTRADE adopts
the same approach, estimating sa and ca online as ŝa(t) and
ĉa(t) using one dimensional Kalman filters. The specifica-
tion of these filters is analogous to that presented in Equa-
tion 6, so it is omitted for brevity. Similar to the control
system, the translator adapts its behavior by first estimat-
ing ŝa(t) and ĉa(t) online using the value of a selected for the
prior decision period, and then substituting these estimates
for the values in Equation 7.

3. USING PTRADE
This section describes the applications and platforms used

to evaluate PTRADE.

3.1 Applications
We use two sets of benchmark applications. One set is

run on the real machines. On the simulated machine, we are
limited by the number of benchmarks ported to the system
and modified to run on more than 100 cores. Therefore, we



use a restricted set of benchmarks. We discuss each set in
more detail below.

Our benchmarks for the real system consist of the 13 PAR-
SECs [3] plus dijkstra and STREAM [28]. PARSEC has a
mix of important, emerging multicore workloads. dijkstra
is a parallel implementation of single-source shortest paths
on a large, dense graph developed for this paper. STREAM
tests memory performance. These last two benchmarks test
PTRADE’s ability to handle resource limited applications.
dijkstra has some parallelism, but does not scale beyond 4
cores, and it is more efficient to increase processor speed
than allocate more cores. STREAM is generally memory
bandwidth limited, but needs sufficient compute resources
to saturate the available memory bandwidth.

Our benchmarks for the simulated system consist of four
of the SPLASH2 benchmarks [42]: barnes, ocean non-contiguous,
raytrace, and water spatial. The ocean benchmark runs on
up to 128 cores but slows down as the number of cores in-
creases beyond 8. Ocean benefits most from additional cache
resources. In contrast, the other applications scale well with
increasing numbers of cores but receive only marginal ben-
efit from increasing cache size.

Although PTRADE’s runtime can work with any perfor-
mance feedback metric that increases with increasing per-
formance (e.g., instructions per second, etc), in this paper
we use direct feedback from the application in the form of
heartbeats [14]. Each application has been modified to emit
heartbeats at important locations in the code. Note that
these are not necessarily regular signals. In fact, these ap-
plications have a range of performance behaviors, so this
suite tests PTRADE’s ability to handle applications with
both high and low variance in performance feedback. Ta-
ble 3 illustrates this range. The variance data is gathered by
running each benchmark, measuring the reported heart rate
at each heartbeat, and computing the variance in heart rate
signal. Benchmarks with regular performance have low vari-
ance, while benchmarks with irregular performance (some it-
erations much harder/easier than others) have high variance.
Six of the 13 PARSECs (bold in the table) have high vari-
ance. To manage these benchmarks, PTRADE will adapt
its internal models to the characteristics of each application
including phases and variance within a single application.

The PARSEC benchmarks contain thirteen diverse, mod-
ern multicore workloads [3]. Interestingly, perhaps indica-
tive of a modern emphasis on interactive applications, twelve
of the thirteen might be deployed with soft real-time per-
formance goals or quality-of-service requirements including
examples from financial analysis (blackscholes, swaptions),
media search (ferret), graphics (facesim, fluidanimate, ray-
trace), image/video processing (bodytrack, vips, x264), and
streaming data analytics (freqmine, streamcluster). In ad-
dition, for applications with externally defined performance
goals, reducing power consumption will reduce energy as
well, leading to reduced cost or extended battery life. These
benchmarks, therefore, represent good targets for testing
PTRADE’s ability to meet performance goals while mini-
mizing power consumption.

3.2 Importance of Application Feedback
As noted in Section 2, PTRADE incorporates application

level feedback in the form of heartbeats. This distinction is
critical for applications that execute data dependent code;
i.e., where the processing changes based on the input data.

Table 3: Variance in Application Performance.
Benchmark Variance Benchmark Variance
blackscholes 1.90E-01 raytrace 9.55E-02
bodytrack 2.32E-01 streamcluster 7.41E-03
canneal 2.40E+09 swaptions 9.23E+07
dedup 1.10E+10 vips 4.93E+09
facesim 3.51E-03 x264 4.94E+02
ferret 2.27E+07 STREAM 1.93E-01
fluidanimate 1.29E-01 dijkstra 2.50E+01
freqmine 1.17E+09

Figure 2: Instructions per second vs. heart rate.

As an example of why this distinction is important, con-
sider the x264 benchmark from PARSEC. This benchmark
performs video encoding and the key metric of performance
is therefore frames per second. It is easy to indicate this
goal by issuing a heartbeat every time a frame is encoded.
To show the benefits of using heartbeats, we collect 16 dif-
ferent high-definition (HD) video inputs from xiph.org and
measure both the heart rate (or frames per second) and the
instructions per second (IPS) on a Linux x86 Xeon server.

Figure 2 shows the results with IPS on the x-axis and
heartbeats (or frames) per second on the y-axis. In ad-
dition, the figure shows the trend line and the R2 value
for this data. The results show that IPS is a poor pre-
dictor of actual application-level performance goals for this
benchmark. In fact, there is a slight negative correlation be-
tween the two, which means that a system which uses IPS
to allocate resources to x264 would do the wrong thing and
under-allocate resources when they are most needed. This
negative correlation is because harder inputs cause x264 to
spend more time in motion estimation, which is expensive,
but implemented with highly efficient code. Overall, these
results show the importance of using application level feed-
back for data dependent applications. Since we cannot know
if an application is data dependent a priori, the PTRADE
framework adopts the stance of using application feedback
for all applications.

3.3 Hardware Platforms
To demonstrate the generality of PTRADE, we deploy it

on real Linux/x86 systems and a simulated many core sys-
tem, summarized in Table 4. All three platforms have dif-
ferent components governing power and performance trade-
offs, summarized in Table 5. For each platform, this ta-
ble lists the components available, as well as the maximum
speedup and maximum increase in power consumption mea-
sured across all benchmarks. These values represent the
ranges of each individual component when only that com-
ponent is varied and all other components are held constant.



Table 4: Hardware platforms used in evaluation.
Name Processor Cores Memory Controllers Speeds (GHz) TurboBoost Variable Cache Size Idle State
Machine 1 Intel Xeon X5460 8 1 2.000–3.160 no no yes
Machine 2 Intel Xeon E5520 8 2 1.596–2.395 yes no yes
Simulator Graphite 128 1 0.100–0.500 no yes no

Table 5: Power/Performance Tradeoffs.
Actuator Max Speedup Max Power Increase
Cores 7.95 1.57

Machine 1 DVFS 1.59 1.56
Idle Time 1.00 1.00
Cores 8.02 2.05
DVFS 1.50 1.21

Machine 2 Idle Time 1.00 1.00
TurboBoost 1.07 1.15
Mem. Cont. 1.81 1.27
Cores 136.20 84.70

Simulator DVFS 4.50 5.67
Cache 2.10 2.02

As shown in Table 4, both Linux/x86 systems are 8-core
Xeon servers. Both machines support clock-gating of in-
active cores, so assignment of application threads to cores
(through affinity masks) affects power/performance trade-
offs. Additionally, both machines support DVFS (accessed
through cpufrequtils); Machine 1 supports four settings,
while Machine 2 supports 8. Finally, both machines can
suspend the current application and idle the processor. Ma-
chine 1’s idle power consumes 94% of the lowest measured
active power (200 W idle, 213 W lowest active power). In
contrast, Machine 2 supports a low-power idle state that
consumes 69% of the lowest measured active power (90 W
idle, 131 W lowest active power). In addition to these shared
components, Machine 2 supports assignment of memory con-
trollers to an application (through libnuma) and Turbo-
Boost. The power and performance gains available through
these actuators are summarized in Table 5. We note that
idling the application never increases performance or power
consumption, but lowers both. To measure power consump-
tion on these platforms, both are connected to WattsUp?
power meters which report total system power consumption
at 1 second intervals. We note that PTRADE makes de-
cisions at speeds much faster than 1 Hz. When querying
power at finer-granularity, the heartbeats interface uses a
model to interpolate power consumption since the last mea-
surement. The models are updated online every time new
power feedback is available.

As shown in Table 4, the third experimental platform sup-
ports a different set of components available on the Graphite
simulator [30]. Specifically, Graphite is configured to simu-
late the Angstrom processor [17]. Angstrom is designed to
support a wide range of power and performance tradeoffs
in hardware and expose these tradeoffs to software. Specifi-
cally, Angstrom allows software to adapt the number of cores
assigned to an application (from 1-128), the L2 cache size
of each core (from 32-128KB, by powers of 2), and the volt-
age and frequency (from 0.4 – 0.8 V, and 100 – 500MHz)
of those cores. To provide power feedback, Graphite inte-
grates 32 nm cache and core power models from McPat [23],
32 nm DRAM models from CACTI [36], and 32 nm network
power models from Orion 2.0 [21]. In the simulations, power
feedback can be read on a cycle by cycle basis. In all other
respects, we maintain the default Graphite configuration.

We use the real systems to show PTRADE’s ability to
manage power goals on contemporary systems. The simu-
lated system allows us to evaluate PTRADE on future many-

core systems with larger configuration spaces. In addition,
the simulator allows us to test PTRADE in an environment
where fine-grain power feedback is available.

4. EVALUATION
We demonstrate PTRADEmeeting performance goals and

optimizing power. We first describe approaches to which we
compare PTRADE and present the metrics used in evalu-
ation. We then evaluate PTRADE on the Linux/x86 plat-
forms and the simulated manycore.

4.1 Points of Comparison
We compare PTRADE’s management to the following.
Static Oracle: This approach configures components

for an application once, at the beginning of execution, but
knows a priori the best setting for each benchmark. The
static oracle is constructed by measuring the performance
and power for all benchmarks with all available actuators on
each machine. This approach provides an interesting com-
parison for active decision making as it represents the best
that can be achieved without execution-time adaptation.

Uncoordinated Adaptation: In this approach, com-
ponents are tuned individually, without coordination. All
available actuators are used, but each is tuned by an inde-
pendent instance of PTRADE. Comparing to this approach
demonstrates the need for coordinated management.

Classical Control: This approach implements the con-
trol and translation system from Section 2 without using
adaptation; i.e., the control system computes the control
signal using Equation 4, and the translator schedules com-
ponents according to Equation 7. In this case, the con-
troller does not update its model of workload and the trans-
lator does not update its models of performance and power.
This approach is limited by the fact that no one model can
capture the interactions of all components across a range
of applications. Comparing to this approach highlights the
benefits of PTRADE’s adaptive control and translation.

Dynamic Oracle: This oracle represents ideal behavior
for a system that can act with knowledge of the future and
without overhead. This oracle is calculated by running the
application in every possible configuration and recording the
heartbeat logs. We then select the best possible configura-
tion for each heartbeat based on the recorded data. Thus,
the dynamic oracle is a good proxy for the best possible per-
formance management framework that could be built and
tailored to a specific machine and application. Comparing
to the dynamic oracle demonstrates the loss PTRADE’s gen-
eralized approach incurs compared to an idealized solution
built for a specific set of components1. We believe a less
general system that is optimized for a particular machine
will achieve power savings close to the dynamic oracle.

4.2 Metrics

1Our use of static and dynamic oracles is motivated by a
similar approach used to evaluate the efficacy of managing
per core DVFS [20]



We evaluate the accuracy of each approach (i.e., its ability
to meet the performance goals), by determining the error,
calculated as (g−min(g, h))/ g, where g is the performance
goal, and h is the achieved performance (see Equation 1).
This metric penalizes systems for not achieving the perfor-
mance goal, but provides no reward or penalty for exceed-
ing it. Note that exceeding the performance goal will likely
cause greater than optimal power consumption, and this will
be reflected in the power efficiency.

To evaluate the efficiency of each approach (i.e., its ability
to minimize power while meeting the performance goal), we
compute normalized power, which measures average power
consumption when controlling a performance goal. Power is
normalized to that achieved by the static oracle. For this
metric lower values are better; normalized power consump-
tion less than unity indicates a savings over the best possible
non-adaptive strategy. We compute power by measuring to-
tal system power and subtracting out idle power.

4.3 Linux/x86 Results

4.3.1 Overhead

To evaluate PTRADE’s overhead, we run all benchmark
applications with PTRADE, but disable its ability to actu-
ally change component settings. Thus, the runtime executes
and consumes resources, but cannot have any positive effect.
We compare execution time and power consumption to the
application running without PTRADE. For most applica-
tions, there is no measurable difference. The largest differ-
ence in performance is 2.2%, measured for the fluidanimate
benchmark, while the power consumption is within the run
to run variation for all benchmarks. We find this overhead to
be acceptable and note that all measurements in this section
include the overhead and impact of the runtime system.

Additionally, we account for overhead by measuring the
rate at which the runtime makes decisions when not limited
by waiting for feedback. We collect traces of application per-
formance and power, feed them into the runtime,and mea-
sure the maximum achievable decisions per second. We mea-
sure a rate of 10.3 million decisions per second, confirming
the above overhead measurement and demonstrating that
the runtime is not a bottleneck in the system.

4.3.2 Results

We launch each benchmark on the target machine and
evaluate each approach’s accuracy and efficiency. Each bench-
mark requests a performance equal to half the maximum
achievable on Machine 1. We use this target because it is
hardest to hit while minimizing power consumption. Targets
at the extremes can be achieved by only a few configurations,
giving the management system fewer possibilities. Targets
in the middle can be met by the most possible combinations,
making it harder to find the one that minimizes power.

For each benchmark, we compute the performance error
and normalized power. Figure 3 shows the results. In all
cases, the x-axis shows the benchmarks (and the average
for all benchmarks). In Figures 3(a) and 3(c), the y-axes
show performance error on the two different machines. In
Figures 3(b) and 3(d), the y-axes show the normalized power
for each machine (lower is better).

The results in Figures 3(a) and 3(c) indicate that, on av-
erage, PTRADE is more accurate for performance targets
than either uncoordinated adaptation or classical control.

The average performance error on Machine 1 is 10.8% for
uncoordinated control, 21.2% for classical control, and 3.6%
for PTRADE. The average performance error on Machine 2
is 11.7% for uncoordinated control, 35.8% for classical con-
trol, and 2.2% for PTRADE. The lower performance error
shows that PTRADE does a better job of meeting goals than
uncoordinated or non-adaptive approaches.

Figures 3(b) and 3(d) show that PTRADE is more ef-
ficient than uncoordinated adaptation; i.e.provides lower
power consumption for the given performance targets. In
some cases, power consumption is slightly lower than the
dynamic oracle. These cases correspond to times when the
performance target was missed, so these small additional
savings are coming at a cost of not meeting the performance
goal, whereas the dynamic oracle is 100% accurate. On
machine 1, the normalized power is 1.22 for uncoordinated
adaptation, 1.18 for classical control, 0.80 for PTRADE and
0.77 for the dynamic oracle. Both uncoordinated and classi-
cal control are worse than the static oracle, while PTRADE
is better. Uncoordinated control consumes 58% more power
than the dynamic oracle while PTRADE exceeds optimal
by 4.1%. On machine 2, the normalized power is 0.94 for
uncoordinated adaptation, 0.96 for classical control, 0.84 for
PTRADE and 0.79 for the dynamic oracle. In this case,
all approaches improve on the static oracle, but PTRADE
is closest to optimal. On machine 2, uncoordinated control
consumes 19% more power than the dynamic oracle while
PTRADE exceeds optimal by only 6.3%.

These results demonstrate the accuracy and efficiency of
PTRADE, which achieves the performance goal with low
error and close to optimal savings. In contrast, uncoordi-
nated control is less accurate, less efficient, and on Machine
1 is actually worse than the static oracle on average. Fur-
thermore, the results indicate the benefits of PTRADE’s
adaptive control and translation, as PTRADE is both more
accurate and more efficient than classical control. These re-
sults illustrate that even when components are coordinated
(which classical control does), accuracy and performance can
suffer unless the management system adapts to the applica-
tion (e.g., using adaptive control) and system (e.g., using
adaptive translation) on which it is running.

This section demonstrates PTRADE’s broad behavior across
many applications. Additional results showing detailed be-
havior for several applications as a function of time are in-
cluded in Appendix A. A detailed study of how PTRADE
can benefit the x264 video encoder by adapting control to the
needs of different video scenes is included in Appendix B.

4.4 Manycore Simulation Results
This section presents the results of running PTRADE on

the simulated manycore described in Section 3. Deploying
on the simulator allows us to test PTRADE on a new set
of components and to gain insight into the scalability of the
approach. In this section we omit results for uncoordinated
adaptation due to limitations of simulation time. Again, the
performance goal is set to half the maximum possible for
each application as this stresses the management systems’
ability to reduce power consumption.

Figure 4 shows the results. Performance error is shown in
Figure 4(a) while normalized power is shown in Figure 4(b).
The classic control system produces an extremely large er-
ror for ocean non contig, but not for any other applications.
PTRADE produces a very small performance error for ocean



(a) Performance Error, Machine 1 (lower is better) (b) Normalized Power, Machine 1 (lower is better)

(c) Performance Error, Machine 2 (lower is better) (d) Normalized Power, Machine 2 (lower is better)

Figure 3: Controlling performance and minimizing power.

on this system and no error for the other benchmarks as
it slightly exceeds goals for all applications. PTRADE is
clearly more efficient than the classic control system. On
average, PTRADE produces power consumptions only 3%
higher than the dynamic oracle. In contrast, the classic
control system’s power consumption is quite bad on aver-
age because it performs so badly on ocean non contig. This
benchmark actually slows down as core allocation increases
beyond 8 cores; the most efficient configuration for this ap-
plication is to use eight cores and maximum cache size and
then idle for slack periods. PTRADE’s adaptive translation
learns to use this configuration through repeated updates of
its internal models. The classical control formulation, how-
ever, cannot adjust its models on the fly and ends up allo-
cating all resources on the chip and missing the performance
goal while burning unnecessary power.

These results demonstrate that PTRADE can provide ac-
curacy and efficiency for large scale multicores. They also
demonstrate that PTRADE can work with systems that pro-
vide much finer grain power feedback than is available from
the WattsUp? meter. Finally, these results further demon-
strate the importance of incorporating adaptation into a
generalized control system to manage the complexity of in-
teractions between various components.

4.5 Summary
These results show PTRADE can achieve accurate and ef-

ficient performance management for a range of applications

on different systems with different components. As shown in
Table 3 the benchmarks include both high and low variance
applications. The same PTRADE runtime is deployed on all
platforms without redesign or re-implementation. The only
thing that changes moving from one machine to the next is
the specification of the different components on the differ-
ent machines. Given an application and set of components,
PTRADE’s runtime manages the available components, au-
tomatically changing its own behavior based on feedback
from the applications and machines. Overall, these re-
sults demonstrate that it is possible to build a generalized
performance management system which approaches the per-
formance of customized implementations. PTRADE’s gen-
eralized approach allows applications to be ported to new
platforms with new combinations of components governing
performance versus power tradeoffs and still ensure that the
goals are met while reducing corresponding power costs.

5. RELATED WORK
Multicore scalability is increasingly limited by power and

thermal management [9, 37]. These limitations have inspired
a number of techniques for managing power. These tech-
niques can be distinguished by the guarantees they provide.

Some systems guarantee power consumption while maxi-
mizing performance subject to the power constraint. Clus-
ter level solutions which guarantee power consumption in-
clude those proposed by Wang et al. [39] and Raghavendra et



(a) Performance Error (lower is better) (b) Normalized Power (lower is better)

Figure 4: Controlling performance on simulated 128-core manycore.

al. [31]. These cluster-level solutions require some node-level
power management scheme. Node-level systems for guaran-
teeing power consumption have been developed to manage
DVFS for a processor [22], to manage per-core DVFS in a
multicore [20], to manage processor idle-time [11], and to
manage DRAM [7]. Other approaches provide power guar-
antees while increasing performance through coordinated
management of multiple components, including processor
and DRAM [5, 10], processors speed and core allocation [6,
33], and combining DVFS and thread scheduling [32, 41].
While important, these techniques do not provide any guar-
antees about performance, so they may not be usable with
applications that require a certain level of performance to
be maintained for correctness.

To address this need, other systems provide performance
guarantees while minimizing power consumption. Examples
exist at the cluster level [18, 38], and the node level. At the
node level, proposed techniques provide performance and
minimize power by managing DVFS in the processor [43],
core throttling [45], assignment of cores to an application [26],
caches [2], DRAM [46], and disks [24]. Researchers have
shown that additional power savings can be achieved by
coordinating multiple components within a node [29]. For
example, Li et al. propose a method for managing mem-
ory and processor [25], while Dubach et al. demonstrate
a method for coordinating a large collection of microar-
chitectural features [8]. Maggio et al. develop a classical
(non-adaptive) control system for managing core allocation
and clock speed [27]. Bitirgen et al. coordinate clockspeed,
cache, and memory bandwidth [4]. Sharifi et al. develop an
adaptive (but non-general) control scheme (called METE)
for managing cores, caches and off-chip bandwidth [35]. While
METE can adapt to different applications, it is not general
with respect to actuators and requires the control system
to be redesigned to work with new sets of components. All
of these solutions provide performance guarantees by fixing
a set of components and then tuning them to meet a per-
formance target while minimizing power consumption; how-
ever, each of these approaches would require redesign and
reimplementation to incorporate new components or to be
ported to a new architecture with different components.

A recent approach, called PowerDial, uses a control sys-
tem to manage tradeoffs between the performance of appli-
cations and the accuracy of their results [15]. Like PTRADE,

PowerDial makes use of a generic control system, proposed
by Maggio et al [26], to split management into separate con-
trol and translation phases. PowerDial, however, is limited
by reliance on extensive offline profiling to create models of
performance and accuracy tradeoffs. PowerDial has no ca-
pacity to update its internal models online; and thus, cannot
adapt to either applications or system components which it
has not previously profiled. PTRADE, in contrast, extends
the idea of separate control and translation phases by mak-
ing each adaptive and capable of modifying their behavior
to continue to function even with previously unseen appli-
cations or system components.

PTRADE is another example of a node-level performance
management framework based on the coordination of mul-
tiple components. PTRADE is distinguished by the fact
that the components it manages are not known at design
time. Instead, PTRADE is general and can be deployed to
new platforms and new sets of components without redesign
and reimplementation. Adding a new component for man-
agement simply requires a systems developer to register the
component with PTRADE using the appropriate interface.
In contrast, frameworks like those mentioned above, require
the designers to re-architect their management system and
reimplement it to take advantage of new components.

6. CONCLUSION
This paper proposes PTRADE, a novel performance man-

agement framework designed to be general with respect to
the components and applications it manages. PTRADE
is an example of a self-aware computing system [17, 16]
that understands high-level user goals and automatically
adjusts behavior to meet those goals optimally. PTRADE
meets performance goals accurately and efficiently by break-
ing the management problem into two phases: a control
phase, which determines how much to change performance
at the current time, and a translation phase, which deter-
mines the most efficient configuration of components that
will realize the desired performance. We evaluate PTRADE
using a variety of benchmarks on both real and simulated
machines. Across three different platforms with different
characteristics, we find the PTRADE runtime meets goals
with low error while providing close to optimal power con-
sumption. We see PTRADE as an example of an emerging
class of generalized management systems, which will help



navigate the complicated tradeoff spaces brought in to being
by the necessity of managing both power and performance.
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APPENDIX

A. DETAILED RESULTS FOR X86
This section presents some supplemental results showing

the behavior of three applications under PTRADE’s con-
trol. This data demonstrates: 1) how PTRADE handles the
same benchmarks differently on two different machines, 2)
how PTRADE handles a low-variance benchmark (facesim),
3) how PTRADE handles a high-variance benchmark (swap-
tions), and 4) how adaptive control and translation allows
PTRADE to adopt new strategies dynamically and not over-
allocate resources for STREAM, which is the most chal-
lenging benchmark for the system to handle. Controlling
STREAM requires PTRADE to adapt to non-linearities in
the interaction between the system components.

Figures 5–7 show detailed behavior for facesim, swap-
tions and STREAM managed by both PTRADE and by the
static oracle. Each figure consists of six sub-figures (a-f) il-
lustrating behavior in time; (a-c) show the data for Machine
1, while (d-f) show the data for Machine 2. Sub-figures (a)
and (d) show performance (normalized to the goal). Sub-
figures (b) and (e) show power consumption (subtracting out
idle power). Sub-figures (c) and (f) show system component
usage as the proportion of the component in use (e.g., using
four of eight cores would be depicted as 0.5).

Figure 5 shows detailed results for the facesim bench-
mark. For both machines, PTRADE’s performance is very
close to that of the static oracle which is close to the de-
sired performance. This is not surprising since facesim is
a very regular benchmark; however, PTRADE saves power
compared to the static oracle in both cases. On machine 1,
PTRADE’s average performance is 98% of the target per-
formance while its average power consumption is 27% less
than the static oracle. On this machine, PTRADE’s trans-
lator periodically allocates all resources and then idles the
machine for large portions of time, as illustrated in Fig-
ure 5(c). On machine 2, PTRADE consumes 7% less power
than the static oracle by allocating the minimal amount of
resource required to meet goals and idling for short amounts
of time when there is slack in the schedule, as shown in Fig-
ure 5(f). For this benchmark, PTRADE holds performance
steady at the desired level. These examples show that there
is some oscillation in the power, however, but we note that
power consumption is not under control. Instead, PTRADE
is minimizing average power consumption, and has deter-
mined that the best way to do so for the given performance
target is to alternate component configurations.

Figure 6 shows how PTRADE handles swaptions on the
two different machines. First, we see that PTRADE holds
average performance much closer to the desired level than
the static oracle. On machine 1, PTRADE achieves 94% of
the target performance while consuming 10% less average
power. On this machine PTRADE allocates the minimal
amount of resources required to meet goals and idles for
very short amounts of time when there is slack in the sched-
ule, as shown in Figure 6(f). On machine 2, PTRADE
achieves 99% of the target performance while consuming
8.6% less average power than the static oracle. For this
machine, PTRADE adopts a different approach, allocating
all resources and then idling the machine for large portions
of time, as illustrated in Figure 6(c). We note that the
performance for this benchmark oscillates due to the high
variance in the performance signal Table 3. The power con-

sumption also oscillates, but as in the case of facesim, this is
desired as PTRADE has determined that oscillation lowers
the average power consumption.

Figure 7 shows how PTRADE handles STREAM on the
two different machines. STREAM forces PTRADE to adapt
its strategy in order not to over-provision resources to this
memory bound application. PTRADE holds average perfor-
mance close to the desired level; achieving the target perfor-
mance on Machine 1 and 97% of the target on machine 2.
On both machines, PTRADE reduces power consumption by
almost 10% compared to the static oracle. For this bench-
mark, the most interesting thing is how these results are
achieved. In both cases, PTRADE explores several differ-
ent strategies using adaptive translation. After some initial
exploration, the Kalman filters converge and the system set-
tles to a desired operating point. On Machine 1, PTRADE
allocates between 1 and 4 cores while keeping clock speed at
the lowest setting. On Machine 2, PTRADE allocates all the
memory controllers, and all the cores, but turns TurboBoost
off and sets the clock to its slowest speed. These resource
allocations are efficient for the memory bound application,
but are achieved without any prior knowledge of the prop-
erties of the application itself. For this application, it takes
a small amount of time to achieve the desired performance,
and during this time, PTRADE is exploring a number of
different component configurations. Once the Kalman fil-
ters have converged, performance converges as well.

These results demonstrate the generality of the PTRADE
approach with respect to both applications and components.
PTRADE can accurately and efficiently manage both high-
variance applications, like swaptions, and resource constrained
applications, like STREAM. In addition, PTRADE can han-
dle different sets of components with different tradeoffs on
different machines. As shown in the figures, PTRADE adopts
different strategies on the two different machines and does
so without redesign or re-implementation.

B. MORE VIDEO ENCODING RESULTS
This experiment highlights PTRADE’s ability to adapt

to different application inputs, each with differing compute
demands. Specifically, we show how PTRADE manages the
x264 video encoder while adapting to different video inputs.
We use fifteen 1080p videos from xiph.org and the PARSEC
native input. We alter x264’s command line parameters to
maintain an average performance of thirty frames per second
on the most difficult video using all compute resources avail-
able on Machine 1. x264 requests a heart rate of 30 beat/s
corresponding to a desired encoding rate of 30 frame/s. Each
video is encoded separately. We measure the performance
per Watt for each input when controlled by a system that
allocates the same resources to all videos to ensure that the
performance goal is met in all cases (i.e., it allocates for
worst case execution time, or wcet), and PTRADE. Fig-
ure 8 shows the results of this case study. The x-axis shows
each input (with the average over all inputs shown at the
end). The y-axis shows the performance per Watt for each
input normalized to the static oracle.

On average for Machine 1, PTRADE outperforms the
static oracle by 1.1× and the wcet allocator by 1.28×, while
achieving 97% of the desired performance. On average for
Machine 2, PTRADE outperforms the static oracle by 1.1×
and the wcet allocator by 1.44×, while achieving 99% of
the desired performance. PTRADE is meeting the perfor-



(a) Performance, Machine 1 (b) Power, Machine 1 (c) Actions, Machine 1

(d) Performance, Machine 2 (e) Power, Machine 2 (f) Actions, Machine 2

Figure 5: Details of PTRADE controlling facesim on two different machines.

mance goals, so these gains in performance per Watt reflect
considerable potential power savings compared to allocating
for the worst case input. Additional results showing detailed
behavior for several inputs as a function of time are included
in Appendix B.

PTRADE outperforms the other approaches because it
can adapt to phases within an application. To illustrate this,
we create a new video input by concatenating three of our in-
dividual inputs: ducks take off, rush hour, and old town cross.
The first input is the hardest, the second one is easiest, and
the third is in between. The encoder requests a performance
of 30 frames per second. Concatenating these together cre-
ates a new video with three distinct phases, which forces
PTRADE to adapt to maintain performance as the work-
loads vary.

Figure 9 presents the results when PTRADE controls
x264 encoding the concatenated video. The x-axes show
time, measured in heartbeats, and the y-axes show perfor-
mance (Figure 9(a)) measured in frames per second and
power (Figure 9(b)). Results are shown for both PTRADE
and the worst-case-execution-time (wcet) allocator. As shown
in the figures, the first phase causes PTRADE to work hard
and there are some sections for which neither PTRADE nor
wcet can maintain the target goal. In the second phase,
PTRADE quickly adjusts to the ease in difficulty and main-
tains the target performance while wcet has reserved over
twice as many resources as needed, consuming unnecessary
power. In the final phase, PTRADE is able to closely main-
tain the target performance and save power despite the noise
evident in this portion of the video.



(a) Performance, Machine 1 (b) Power, Machine 1 (c) Actions, Machine 1

(d) Performance, Machine 2 (e) Power, Machine 2 (f) Actions, Machine 2

Figure 6: Details of PTRADE controlling swaptions on two different machines.

(a) Performance, Machine 1 (b) Power, Machine 1 (c) Actuators, Machine 1

(d) Performance, Machine 2 (e) Power, Machine 2 (f) Actuators, Machine 2

Figure 7: Details of PTRADE controlling STREAM on two different machines.



(a) Machine 1 (b) Machine 2

Figure 8: Performance/Watt for x264 with different inputs (higher is better).

(a) Performance (b) Power

Figure 9: PTRADE controlling x264.


