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Abstract

Household in-home activities and out-of-home transportation are two major sources of urban

energy consumption. In light of China's rapid urbanization and income growth, changing

lifestyles and consumer patterns - evident in increased ownership of appliances and motor

vehicles - will have a large impact on residential energy use in the future. The pattern of

growth of Chinese cities may also play an intertwined role in influencing and being

influenced by consumption patterns and, thus energy use. Nonetheless, models for evaluating

energy demand often neglect the evolution of appliance & vehicle ownership and directly

correlate consumption with static characteristics without explicit behavioral links. In this

thesis I aim to provide a comprehensive method for understanding household energy behavior

over time. Using household survey data and neighborhood form characteristics from Jinan, a

mid-sized Chinese city, I explore the relationship between neighborhood design and

household-level behaviors and their impact on final energy consumption. My ultimate goal is

to provide the modeling engine for the "Energy Proforma©" a tool intended to help

developers, designers, and policy-makers implement more energy-efficient neighborhoods.

To predict in-home and transportation energy use, and their trade-offs, I develop an integrated

household-level micro-simulation framework. The simulation tool is based on a total of eight

inter-related behavioral models which estimate out-of-home energy use by predicting trip

generation, mode choice and trip length for each household and in-home energy use according

to different energy sources. In the various sub-models, relevant dimensions of neighborhood

form and design are included as explanatory variables. These models are then combined with

modules that update household demographics, appliance & vehicle ownership information,

and activity trade-off patterns. These inter-linked models can then be used to estimate the

long-term effects of neighborhood design on household energy consumption and greenhouse

gas emissions.



Unlike separate in-home or out-of-home energy demand models, I develop an integrated

simulation framework for forecasting. It captures estimated trade-off effects between

in-home and transportation energy-consuming behaviors. The approach produces indicators

of detailed behavioral outcomes such as trip mode and trip length choice, making it easier to

relate policies, such as mode-oriented strategies, to ultimate outcomes of interest. I

ultimately aim to provide urban designers, developers, and policy makers a decision support

tool to explore and compare long-term energy performance across proposed neighborhood

development projects.

Thesis Supervisor: P. Christopher Zegras

Title: Associate Professor of Urban Planning, Transportation, and Engineering Systems
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Chapter 1: Introduction

1.1 Motivation and Thesis Context

The turn of the twenty-first century finds China under rapid and intense urbanization.

Between 2010 and 2030, China will add approximately 350 million people - more than the

entire population of the USA - to its cities (Woetzel et al, 2009). This unprecedented

demographic shift is intertwined with economic transformations and changing consumer

patterns and lifestyles, such as demand for larger living spaces, more appliances and more

motor vehicles (McNeil & Letschert, 2005; Hao et al, 2010). These trends will undoubtedly

be matched by rising energy consumption and greenhouse gas emissions. While the nation

has made impressive strides in reducing the greenhouse gas (GHG) intensity of its economy

in recent decades, emissions per capita have been on the rise, sharply so in recent years

(Figure 1.1). If the Chinese government is to fulfill its ambitious efforts to further reduce the

carbon intensity of its economy (by 40-50% between 2005 and 2020), it will likely have to

focus on the urbanization process.

7

- C02 emissions (metric tons per capita)
6

- - C02 emissions (kg per PPP $ of GDP)

5

2

1 ".. -

0
-0 '-4 -4 -1 -1 -1 1D -4 -0 -4 01 '-I -i ro -4 -1 -4 -4 -4 -4 N C1 'C -4 N 0 '

Figure 1.1 - China's C02 Emissions per Capita and per Unit GDP (World Bank, 2013)

Unlike cities in the 'global north,' industry and power generation currently dominate China's

cities emissions profiles (Wang et al, 2012); however, future energy demand and related
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emissions will be driven by massive increases in the urban buildings and transport sectors

(Woetzel et al, 2009). In light of this forecast growth in energy and emissions, intensifying

urbanization, and the need to realize sustainable urban development, the "Clean Energy City"

concept has been promoted at both national and local levels in China (Yao et al, 2005).

Changing the patterns of urbanization now holds great promise for mitigating short-term

urban energy use and emissions and ensuring a long-term, lower-carbon urban development

trajectory.

Given the sheer scale of urbanization in China, the pent-up demand for space and consumer

goods and services, and the underlying political economy of urban development (e.g., the

land lease system; see Liu and Salzberg, 2012), moving China's urban development towards

a lower-carbon future requires intervening at the development scale - that is the

neighborhood.

Neighborhoods constitute the fundamental building block of the modern Chinese city,

epitomized by the Da Pan, large-scale (e.g., 30-300 hectares), predominantly suburban,

developments driven by the dynamic real estate industry (Chen, 2008). In turn,

neighborhoods, the physical places where people live and often undertake a number of their

daily activities, condition residential energy consumption. Households, living in a

neighborhood, aim to maximize their quality of life, given their capabilities. More formally,

households choose their daily in-home activities (e.g., eating, sleeping, watching TV) and

out-of-home activities (e.g., eating out, going to work, attending school) to maximize their

utility subject to time, money, physical and other constraints. These activities result in

energy consumption. In addition, households implicitly consume energy "embodied" in the

neighborhood physical structure they inhabit - that is, the energy "invested" in constructing

the physical spaces we inhabit. Therefore, we can partition neighborhood-level energy

consumption into three aspects (CEC report, 2012): 1) Embodied - the energy used in the

manufacturing, transporting, and processing construction materials; 2) Operational - the

energy consumed to maintain the operations and life-supporting functions of households in

the neighborhood; and 3) Transportation - the energy involved in household travel.

This research is a component of the ongoing project - "Making the clean Energy City in

China"'. The overall project aims to understand the relationship between urban form and

all three types of energy consumption (Embodied, Operational, and Transportation) at the

1 The project is supported by China Sustainable Energy Program-The Energy Foundation and the Low Carbon
Energy University Alliance
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neighborhood scale. This research examines in-home operational energy, out-of-home

transportation energy, and their trade-offs in an integrated way with previous efforts made in

this project. To be specific, the project first directly calculates the embodied energy used in

manufacturing, transporting the materials to the site, and in the construction process. Then it

considers the operational energy for the public areas of a development, such as elevators,

water pumps, and lighting (Zhang, 2008). These components are added to the energy

estimate that comes out of the integrated in-home and transportation energy models

developed in this thesis. Together they form the engines of the "Energy Proforma©", a tool

that this project aims to provide to help developers, designers, and policy-makers implement

more energy-efficient neighborhoods.

1.2 Research Objectives

The objective of this thesis is to develop and demonstrate an integrated model that

incorporates in-home and transportation energy to better understand the impact of human

behavior and lifestyles on energy use and GHG emissions. The ultimate intention is to

enhance the behavioral modeling engine underlying the "Energy Proforma"C to provide

urban designers, developers, and policy makers a means to explore and compare long-term

energy performance across proposed neighborhood development projects (Frenchman et al,

2013)2. These objectives are pursued by researching the following tasks in detail.

1) Most of the existing studies investigate these two energy sectors separately, while total

household energy use arises from both sets of activities and, their interactions. The

overall simulation framework must find a way to incorporate both in-home and

transportation energy and their trade-offs. The development of integrated in-home and

transportation framework should also consider data constraints for model estimation.

2) Dynamic features should be added to the modeling framework. In a rapidly evolving

place like China, we must account for the evolution of demographics, appliance &

vehicle ownership and the explicit underlying behavioral links.

3) The relationship between urban form and energy at the neighborhood scale should be

explored and understood with behavioral models embedded in the overall simulation

framework. The impact of form variables on energy might be direct with energy-related

behavior or indirect through energy equipment stocks or intermediate behavior choices.

2 An on-line version of the tool can be viewed here: energyproforma.mit.edu.
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As such, each behavioral model should be correctly specified and estimated and links

and transitions between different behavioral models must be clearly identified.

4) In order to be applied in a practical tool like the "Energy Proforma"©, the simulation

model developed in this research must be validated with real data and the ability to

analyze impacts of policy scenarios should be demonstrated as well.

1.3 Research Approach

The objectives of understanding and quantifying the in-home and transportation energy use

will be achieved in the context of Jinan, a typical mid-sized city in China. Methods and

models that have already been developed in the "Clean Energy City" project will be the

basis of this research (Jiang, 2010; Zhang, 2010; Wang, 2012; and Chen, 2012).

Instead of focusing solely on the analysis of energy and urban form, I take an integrated

approach to understand human behavior within neighborhoods through empirical analysis.

Microsimulation is the modeling technique applied here since it has the ability to account for

interactions and dynamics within the complex decision-making system. The simulation tool

is based on a total of eight inter-related behavioral models which estimate out-of-home

energy use by predicting trip generation, mode choice and trip length for each household and

in-home energy use according to different energy sources. To specify and estimate those

behavioral models, I utilize a series of statistical techniques including linear regression

models, discrete choice models (MNL & Nested-Logit), and event count models (Negative

Binomial Regression).

In the various sub-models, relevant dimensions of neighborhood form and design are

included as explanatory variables. These models are then combined with modules that

update household demographics, appliance & vehicle ownership information, and activity

trade-off patterns. These inter-linked models can then be used to estimate the long-term

effects of neighborhood design on household energy consumption and greenhouse gas

emissions.

While the city of Jinan is used as the case study in this research, differences between cities

and behavior/consumption patterns should be recognized. The approach taken in this

research aims to demonstrate a feasible way of estimating neighborhood-level energy

consumption given target population, quantified design indicators, and general city-based
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factors. This does not indicate that the estimated models can directly move to other cities

and produce energy and emission calculations. Rather, the model is built based on the idea

of tracing human behavior and the overall framework can be applied as a starting point to

think about how urban form and energy are connected via human activities.

1.4 Thesis Structure

The rest of the thesis is organized as follows:

Chapter 2 reviews the literature on modeling techniques applying to household in-home and

transportation energy use. First, I summarize previous efforts on developing separate

household in-home and transport energy demand models. Then, I present three potentially

related integrated microsimulation models. I conclude with discussion of precedents and

challenges in modeling both transportation and in-home energy and their trade-offs.

Chapter 3 presents the conceptual framework and methods. I summarize the calculation

methods for in-home and transportation energy consumption and C02 emissions. Then, I

discuss the advantages of microsimulation. Within this approach, I introduce the overall

model framework and techniques.

Chapter 4 describes the data used to estimate the models related to in-home and

transportation energy use and the model estimation processes. I introduce the data source

and conduct descriptive analysis for variables used in the model. With the data survey, I

estimate the models for appliance ownership, vehicle portfolio choice, lifestyle trade-off

patterns choice, and sub-models within two energy estimation modules.

Chapter 5 presents the simulation process, model validation procedure and the forecast

results. Three types of scenarios are developed to simulate the changes of energy

consumption and C02 Emissions, including a baseline forecasts with only the evolution of

demographics and equipment stock and two other scenarios with fuel efficiency

improvement or design interventions.

Chapter 6 concludes the thesis. I summarize the findings, research limitations and directions

for future research.
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Chapter 2:Literature Review

The aim of this chapter is to review the literature on modeling techniques applying to

household in-home and transportation energy use. Most household-level analyses tend to

model in-home and transportation energy consumption separately. The first two sections of

this chapter review previous efforts on developing separate household in-home and transport

energy demand models. The third section traces several potentially related integrated

microsimulation models. The last section of this chapter summarizes the precedents and

discusses challenges in modeling both transportation and in-home energy and their

trade-offs.

2.1 In-home Energy Consumption Modeling

There are two general modeling techniques to research household in-home energy demand

and various impact factors - "top-down" and "bottom-up" approaches. The top-down

technique treats residential energy consumption as a whole, without further considering the

difference among individual end-uses. It attributes the total estimated residential energy

consumption to characteristics of the entire housing sector (Swan et al, 2009).

Macroeconomic indicators are commonly used by top-down models, such as GDP,

employment rates, climate conditions, appliance penetrations, and housing unit numbers.

They are applied at an aggregated level and normally aim to provide better understandings

of the relationship between the energy sector and the economy. On the other hand,

bottom-up models typically calculate the end-uses of individuals, households, or groups of

households and utilize samples to extrapolate the total energy consumption by the

neighborhood, region, or the entire nation. Common input data include built forms,

appliances, climate conditions, and occupants' demographics and behavior (Suganthi and

Samuel, 2012). Bottom-up models can be further categorized into two approaches:

econometric (statistical) and engineering (Swan et al, 2009).

The econometric approach correlates in-home energy demand with certain chosen

explanatory variables given the historical data. The relationship is built after coefficient

estimation and it can then be utilized for forecasting considering changes in the values of

explanatory variables. Statistical methods rely on assorted types of regression analysis and a

variety of relevant models have been introduced to estimate factors related to in-home

energy demand. Dubin and McFadden (1984) provide the seminal work, proposing a unified

model of the demand for appliances and the derived demand for electricity, utilizing
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economically consistent discrete-continuous regression models. Fung et al (1999), using

regression techniques, find that energy price, demographics, weather, and appliance

ownership significantly relate to residential energy consumption in Canada. Santin et al

(2009) find, using regression, that both physical attributes and occupant characteristics

explain the variations of in-home electricity energy consumption. To capture potential

non-linear relationships, Aydinalp et al (2002) proposed a comprehensive residential

consumption model using neural networks and utilized demographics, appliance, and

heating system information as the inputs to train the neural networks. Wang (2012) reviews a

number of recent analyses in China which find income growth, urbanization, demographic

changes, and related elements like increased consumer goods as important factors driving

household energy consumption.

The engineering approach simulates energy consumption of the end-use devices/systems

themselves based on power ratings and usage patterns. For in-home operation, appliances,

equipment age, thermodynamic principles, customer behavior, and house unit size are

normally included (Vassileva et al, 2011). Bottom-up engineering models are capable of

analyzing the impact of new technologies and are usually used for estimating energy

efficiency of new device/system technologies. The analysis units can be pretty flexible.

Several methods focusing on appliances themselves have been developed. They utilize the

distribution of the appliances and assume common appliance unit power to calculate energy

consumption (Capaso et al, 1994; Jaccard and Baille, 1996; Kadian et al, 2007). Apart from

appliances, some of the previous models treat houses as the basic units and categorize

houses according to their size and thermal/air conditions (MacGregor et al, 1993; Huang and

Broderick, 2000; Parekh, 2005). Another way to classify the houses is based on an actual

sample, and those methods are normally applied to represent high/low energy consumption

regions (Farahbakhsh et al, 1998; Larsen and Nesbakken, 2004).

As mentioned, in-home energy can be calculated with a top-down scheme, at an aggregated

level, or with a bottom-up (statistical or engineering) scheme, from the user side. The

top-down approach only requires simple macroeconomic input information but cannot

distinguish energy consumption for various individual end-uses. Bottom-up statistical

approaches have a theoretically close link with occupant behavior but also rely on detailed

historical consumption data. In addition, self-selection in housing is a theoretical challenge

in the regression analysis underlying the bottom-up statistical methods. That is, households

desiring low energy consumption might choose more efficient homes, appliances, etc.. The
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bottom-up engineering approach has the advantage of accounting for new technologies but is

usually based on simplified consumer behavior. Each of the three major in-home energy

consumption approaches have their own pros and cons and therefore can only meet a

specific need for energy modeling.

2.2 Transportation Energy Consumption Modeling

Energy demand in the transportation sector is directly related to individuals/households'

travel patterns (e.g., trips, distances, modes) and the fuel type and efficiency of involved

motor vehicles. The purpose of this section is to review the relationship between urban form

and travel patterns, and further, on transportation energy consumption. Apart from direct

aggregated-level comparative analysis, most of the existing disaggregated transport energy

models can be categorized into two types: multivariate-regression and Structural Equation

Modeling (SEM).

Multivariate-regression is a flexible data analysis method to explore and quantify the

relationship between variables of interest (transportation energy or its related travel patterns,

in this case) and a set of explanatory variables. It typically involves linear regression,

discrete choice, event count and other modeling techniques based on types of variables

(continuous or discrete) and forms of equations (linear or non-linear). On the transportation

side, researchers have long been interested in utilizing multivariate-regression analysis to

explore the empirical relationships between neighborhood built form and travel behavior.

Typically, such analyses focus on specific behavioral dimensions underlying energy use, but

not energy use per se. The reviews by previous researchers conclude that it is not only the

socio-economic and lifestyle differences between residents, but also the urban form itself -

its massing, road layout, location and amenities - that influence inhabitants' behavior and

therefore energy consumption (Boarnet & Crane, 2001; Goudie, 2002; Newbold et al, 2005).

Ewing and Cervero (2010) recently conducted a meta-analysis of more than 50 such

empirical studies (all but four apparently in North America), and find private vehicle

kilometers traveled (VKT) to be consistently related to population density, land use mix,

street configuration as well as relative location (e.g., distance to jobs). They find roughly

comparable effects with respect to public transport use and walking. In China, a number of

recent studies, using disaggregate data, have focused on various related aspects of urban

travel in China, including the relationship between neighborhood form and travel distances

(Pan et al, 2009), neighborhood form and household vehicle ownership and travel energy use
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(Jiang, 2010) and relative neighborhood location and travel energy use (Naess, 2010).

Multivariate-regression has the advantage of predicting from multiple impact factors and

accounting for the correlation and confounding effects of these predictors. An important

issue raised from Multivariate-regression analysis when applied to the built

environment-behavior question is the role of self-selection in residents' behavior. For

example, residents might choose to live in certain urban areas because of convenience

vis-a-vis desired travel behaviors.

Structural Equation Modeling (SEM) is one of the advanced techniques to address those

"self-selection" issues (see reviews of other approaches from Mokhtarian and Cao, 2008).

The most essential part of SEM is its ability to handle complex relationships between

endogenous and exogenous variables in transportation studies (Golob, 2003). Bagley and

Mokhtarian (2002) established a nine-equation structural equation model to test the direct,

indirect, and total effects of attitudes, lifestyle, and urban form variables on travel demand,

mode, and distance. Focusing on a specific mode like public transit, Bailey et al (2008) find

complex relationships among public transportation availability, demographics, and urban

form and travel patterns. The authors confirm their hypothesis with SEM estimations that

higher transit accessibility enables more efficient land uses and in turn will reduce carbon

footprint (negative estimated total effect between public transportation availability and

vehicle miles traveled). Structural Equation Modeling approach allows modeler to take

measurement error into account and test complex patterns of relationship in a simultaneous

fashion (Ullman, 2001). In the meantime, to achieve MLE estimation of those complex link

patterns, assumptions are usually made to require a large data set and a multivariate normal

distribution of indicator variables. In practice, variables are rarely multivariate normal and

data limitations are commonly encountered in a developing context like China.

2.3 Integrated Energy Consumption Modeling

The previous two sections have reviewed modeling techniques for in-home and

transportation energy consumption. Those approaches are static and treat components of the

urban development system as separately for in-home operation and out-of-home travelling.

However, households consume energy as a derived demand from their daily needs. That is,

people within a household decide to conduct either in-home or out-of-home activities to

maximize their quality of life subject to various time and resource constraints. In this sense,

energy demands of different sectors are internally linked through individuals' activity and
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decision systems. In practice, improved data and econometric techniques have led to a

growing interest in developing integrated models to incorporate both in-home and

transportation sectors simultaneously (Almeida et al, 2009; Tirumalachetty et al, 2009).

Apart from those newly developed models (still limited in numbers), several existing

integrated land use transportation models have the great potential to be extended as

multi-sector urban energy models. Some of these land use transportation models reproduce

travel behavior at the individual/household level, in theory enabling them to be behaviorally

augmented with a bottom-up estimation module for agents' in-home energy demand. The

reminder of this section first reviews a potentially related land use transportation model -

ILUTE. After that, two newly evolved integrated urban energy models are examined.

2.3.1 ILUTE

The Integrated Land Use, Transportation, Environment (ILUTE) framework is an

agent-based microsimulation tool designed to forecast an urban region's development by

accounting for agents' evolution and interactions (Miller et al, 2004). ILUTE consists of

various types of agents that interact within the urban environment - including individuals,

households, dwelling units, firms, etc. The underlying behavioral engine simulates the

evolving attributes and behavior of these agents over time. Figure 2.1 presents the most

recent modeling framework of ILUTE as it is still under development (Miller et al, 2011).

The integrated model is initialized from a base year census in 1986 using a modified

Iterative Proportional Fitting (IPF) procedure (Pritchard and Miller, 2009). Population

demographics, labor market, housing market (residential location) and auto ownership are

updated each year (although shorter periods are possible for simulating these longer term

decisions). Then these four dimensions of agent attributes along with other exogenous

information serve as inputs for generating activity/travel patterns with a sub-model named

TASHA (Travel and Activity Scheduler for Household Agents; see Miller and Roorda, 2003).

A traffic assignment module then can simulate the performance of road and transit network

serving movements of people and goods with the generated activity/travel patterns.

Ultimately, transportation emissions can be estimated with the simulated transportation

system.
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Within each detailed module, rule-based and utility-maximizing models are employed

depending on the process being modeled (Miller et al, 2011). Table 2.1 summarizes key

features of four longer time-period modules. The activity/travel module simulates activity,

trip start time, and activity duration using 5 minute intervals for a typical 24-hour workday.

TASHA is designed to fit into a number of network assignment models, such as EMME and

MATSIM to enhance representation of network performance (Gao et al, 2010).

Modules Features and Sub-models

Demographics Updating attributes include birth, death, marriage, divorce,

education, driver's license, and in- and out- migration

Considering 1) persons quitting and entering the market; 2)

move of jobs for persons within the market; 3) allocation

Labor Market of workers searching jobs to available positions in the

market; and 4) evolution of worker's wages by industry,

location, and job type

Housing Market Supply of housing (type and location); Choice of sales

prices and rents

Auto Ownership Vehicle type choice model and vehicle transactions model

(Mohammadian & Miller, 2003)

Table 2.1- Key features of long-term time-period modules in ILUTE

Currently ILUTE is only applied to modeling energy consumption and GHG emission for

the transportation sector by integrating with TASHA. However, it has the potential to be

extended to other sectors like in-home residential energy. From the above review, we can

detect that ILUTE incorporates several key modules (demographic evolution, vehicle

ownership, residential location, activity patterns, etc.) that would benefit from an extension

to an in-home energy consumption module. In fact, a number of other land use

transportation models have similar potential, such as ILUMASS (Moeckel et al, 2003), and

CEMDAP (Bhat and Waller, 2008). These simulation-based models typically treat

individuals/households as the analysis units and recognize their interactions within activity

and decision systems. As a result, an extra in-home operation component can be

theoretically embedded in such disaggregate analytical frameworks.
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2.3.2 iTEAM

Integrated Transportation and Energy Activity-Based Model (iTEAM) was proposed by a

collaborative team at MIT for the evaluation of "green policies" (Almeida et al, 2010).

iTEAM provides an integrated agent-based simulation framework focusing on behavior of

social actors (individual/household) and organizations (firms) at a micro level. The

aggregation of simulation results aim to reflect the complex relationships between urban

form, transport, and energy demand and enable the design of more sustainable urban areas. It

proposes human activity as the connecting bridge between complex systems of a city.

Accordingly, behavior of two involved agents is identified in Figures 2.2 and 2.3 (Ghauche,

2010).

The behavioral models within iTEAM recognize the fact that both exogenous and

endogenous factors could result in a range of decisions in different temporal and spatial

scales. In the short term, immediate decisions like daily activity patterns, mode choice and

fleet dispatching condition on equipment ownership and location availability. In the medium

term, the purchase/replace of equipment could be affected both by short-term usage patterns

and long-term location constraints. In the long term, apart from the market provision and

agents' demographic conditions, residential/organization location choice also depends on the

motivation of the short-term activities. The interactions between short, medium, and long

term behavior indicate a two-way causal relationship and require an integrated framework to

capture the complex agent decision-making mechanisms.

Figure 2.4 presents the overall framework of iTEAM (Ghauche, 2010). The transportation

part of the framework consists of several dynamic equilibrium models reflecting

demand/supply interaction. To be specific, travel choices of households and firms constitute

the demand for related locations. Then, those demands are transferred to OD matrix between

zones and they are distributed to routes connecting origins and destinations through traffic

assignment modules. After several iterations, equilibrium is achieved when supply and

demand are balanced in the road network. The performance of the network after traffic

assignment will provide feedbacks to agents and impact their later travel activities. For the

energy consumption part, equipment usage and duration module is designed to convert

activities of households/firms to energy demand. The feedback mechanism is similar as the

consumption information could influence the subsequent activity decisions.
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In practice, this sophisticated large-scale microsimulation model would require a large

amount of data that can hardly be fully collectedh trsporaditional paper surveys. Ghauche

(2010) proposed several data collection strategies based on new methodologies like

smartphones, online survey, telemetry, and bio-tracking devices and sheds some light on

future direction of this state-of-art activity-based framework. Theoretically, with the

development of better data collection techniques, iTEAM would be capable of modeling the

energy consumption and related GHG emissions in both the transportation and home

operation sectors.

2.3.3 Austin Greenhouse Gas Emission Model

Another integrated urban energy model has been developed and applied by researchers at

University of Texas, Austin to evaluate greenhouse gas emissions over a 25-year forecasting

period in the Austin area (Tirumalachetty et al, 2009). It includes a number of sub-models to

represent households and firms, traces the evolution of their attributes and decisions, and

converts those decisions to energy consumption in related sectors. The key feature of this

integrated model is that it accounts for both transportation and appliances/energy sources

energy consumption and compares aggregated regional energy performances under 5
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anticipated future scenarios (Tirumalachetty et al, 2009).
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(Source: Tirumalachetty and Kockelman, 2009)

As framed by Tirumalachetty (Figure 2.5), the overall simulation model consists of several

interrelated processes like household/firm transitions, travel demand generation/distribution,

and energy/emissions estimation. The model is initialized with a base year population

generated using Public Use Microdata Sample (PUMS) seeds (Tirumalachetty et al, 2009).

At each time step, updating agent attributes (demographics and locations) are central to

future energy consumption/emissions calculations. For households, Monte Carlo simulations

are used to represent key processes (birth, death, divorce, marriage, and income growth)

influencing household demographics. Household locations and vehicle stocks are considered

with relevant choice and transaction models. For firms, a sequence of sub-models is

employed to simulate the processes of firm death/exit, expansion/contraction, and relocation

(Kumar and Kockelman, 2008). With updated household and firm information, household

and commercial trips are generated and distributed by a set of count- and choice- based
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models. The electricity/natural gas consumption is also estimated with agent updating

characteristics using standard OLS regressions.

2.4 Summary of Precedents and Challenges

A shortcoming to the approaches reviewed in section 2.1 and 2.2 is the treatment of in-home

and out-of-home activities separately, while total household energy use arises from both sets

of activities and, their interactions. In recent years, activity-based modeling has emerged as

the 'state-of-the-art' in transportation systems analysis, based on the basic idea that travel

demand derives from the demand for activities (e.g., Bowman and Ben-Akiva, 2001) -

people do not want to travel, per se, rather they want access to daily wants and needs.

In-home energy demand can be considered analogously; people do not want energy

consumption, rather they want lighting, comfort, food, entertainment, etc. An activity-based

framework, thus, provides a formal way of integrating individual- and household-level

energy consumption by accounting for the activities that demand energy and travel as well as

potential trade-offs between them (e.g., in-home entertainment vs. traveling to leisure

elsewhere). Such trade-offs cannot be captured with separate in-home or transportation

models. Only recently, however, have efforts moved towards developing activity-based

models for fully estimating household energy (and other resource) use at the urban scale and

these efforts remain partial, either as proposed approaches (e.g., Almeida et al, 2009) or

focusing only on part of the consumption picture (Keirstead and Sivakumar, 2012). One

challenge to implementing the activity-based approach is the typical lack of adequate data.

Even for the integrated models applied in the Austin Greenhouse Gas Emission Model

(Tirumalachetty et al, 2009), the lack of detailed panel data results in a number of

simplifying and sometimes heroic assumptions (Tirumalachetty and Kockelman, 2009).

In addition, empirically understanding the relationships between neighborhood form and

behavior faces the classic causality challenge, sometimes referred to as "self-selection"

(Mokhtarian and Cao, 2008). In aiming to show whether neighborhood form produces

different household activity patterns and energy use, at least two related forms of bias may

be present: simultaneity bias (e.g., individuals who prefer a low-energy lifestyle choose to

live in low energy-oriented neighborhoods); and omitted variable bias (unobserved variables,

like preferences for lower energy use, produce the low-energy outcomes, but also correlate

with the neighborhood). In other words, the presumed exogenous causal variable, the

neighborhood, is actually endogenous, which can produce inconsistent and biased estimators.
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In other words the behavioral models underlying the simulation might be incorrect.

Furthermore, as mentioned, the neighborhood may well influence both durable goods

ownership (e.g., motor vehicles, air conditioners) and energy use and emissions. Within the

ownership and use decisions, endogeneity bias may also be present. For example, if one

specifies a regression model of, for example, household vehicle use using the household's

observed number of motor vehicles included as an explanatory variable, the choice variable

may be correlated with unobserved variables (e.g., households with more energy-intensive

travel lifestyles being more inclined to own private vehicles) and, thus, with the second stage

model's error term. This violates a basic regression assumption. One way to correct for this

endogeneity bias is by developing an instrumental variable; for example, the predicted

number of air conditioning (AC) units (estimated from the AC choice model) and

substituting this predicted value (as an instrument) in lieu of the actual number of ACs in the

household (Dubin and McFadden, 1984). Such an approach, in theory, 'purges' the

independent choice variable (in this case, number of ACs) of its correlation with the error

term in the electricity use model.

Finally, in order to predict effects into the future, particularly in a rapidly evolving place like

China, we must account for the evolution of demographics, appliance & vehicle ownership

and the explicit underlying behavioral links. To understand the role of the neighborhood in

household total energy consumption in China, I develop a model of in-home energy use,

transportation energy use, and their trade-offs. The in-home component attempts to capture

two related choices made by households - the choice of equipment/energy source type and

the choice of how frequently to use the equipment/energy source to fulfill demands for

in-home activities. For transportation energy, several aspects of the household

decision-making process are crucial, including the choice of vehicle ownership, the number

of activities to undertake, where to realize those activities, and how to get to them. As

mentioned, I can also imagine that some activities might lead to trade-offs between in-home

and transportation energy consumption.

Unfortunately, I only have access to a trip-based survey of household travel information and

reported energy bills for different energy sources. Thus, I cannot implement a full

activity-based model. Furthermore, for in-home consumption, I do not have detailed

appliance usage information; instead, I have self-reported electricity, gas, coal, and

centralized heating bills. While I can compute household energy use with those bills, I
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cannot model the underlying activity behaviors. For the transportation part, the trip-based

survey allows me to model trip frequency, mode, and distance but I cannot explicitly link the

in-home and out-of-home parts together by trade-off behaviors.
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Chapter 3:Conceptual Framework and Methods

3.1 Measures of Energy Consumption

3.1.1 In-home Operation Energy Use and C02-Equivalents Emissions

In this research, four major types of energy sources are incorporated for in-home operation

sector - electricity, gas, coal, and centralized heating. Consistent with the overall project,

standard units of output - Megajoules (energy consumption) and ton/kg of C02 (GHG

Emissions) per household per annum - are used for comparisons across different

neighborhoods. The measures for those four energy sources are first adapted by Zhang (2010)

based on self-reported utility bills. The empirical context for which these specific measures

are derived is Jinan, the capital of Shandong Province, which will be described in more

detail in the following Chapter.

3.1.1.1 Electricity

In the context of urban China, electricity is the major source to power electronic appliances

for the purposes of lighting, comfort, food, entertainment, etc. Besides, electricity is

commonly used for heating in households without the provision of centralized heating or in

units that desire to have additional heating appliances. The household monthly electricity bill

is introduced as the weighted average of typical spring/fall, summer, and winter months to

capture the fluctuations throughout the year (Wang, 2012). With the monthly bill, household

electricity energy consumption can be calculated in Megajoules as follows (Zhang, 2010):

BE * 12
EE = * qE+ (1- +E - Equation

PE

EE - Household annual electricity energy consumption (MJ)

BE - Household monthly electricity bill (Yuan RMB)

PE - Electricity price (Yuan/KWH, 0.5469 in survey city)

qE - Thermal-electricity conversion factor (MJ/KWH, 3.6 in this case)

fl - Electricity transmission loss rate (7.08% in this case)

E - Coal power plant conversion rate (35.47% in this case)
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3.1.1.2 Gas

Natural gas is the primary source for cooking and water heating in Jinan Three typical types

of gases are consumed by households in the survey city: liquefied natural gas (LNG),

liquefied petroleum gas (LPG) and coal gas (Wang, 2012). The measurement of gas energy

consumption is based on gas type and reported monthly gas bill. The calculation equation is

summarized as below (Zhang, 2010):

EG = BG *G12 - Equation 2

EG - Household annual gas energy consumption (MJ)

BG - Household monthly gas bill (Yuan, RMB)

PG - Gas price (Yuan/rm3 ; 2.4 for LNG, 13.9 for LPG, and 1.3 for coal gas in survey city)

yg - Gas unit thermal value (MJ/m 3 ; 36.4 for LNG, 118.2 for LPG, and 16.74 for coal gas)

3.1.13 Coal

Households directly consume coal for the purpose of cooking and heating. With the

introduction of pipeline gas and centralized heating system, coal usage has been decreasing

in China. Similar to the gas energy calculation, the following equation presents the

measurement of coal energy consumption (Zhang, 2010):

E C = - Equation 3

EC - Household annual coal energy consumption (MJ)

BC - Household annual coal bill (Yuan, RMB)

PC - Coal price (Yuan/ton, 876 in survey city)

Yc - Coal unit thermal value (MJ/ton; 26700 in this case)

3.1.1.4 Centralized Heating

Centralized heating is primarily designed and used for space heating. In Jinan, centralized

heating does not allow individual control over switching on/off or adjusting temperature for

specific dwelling units. As required by the local government, the heating fee is charged on a
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general construction-area basis, not on actual consumption levels. Accordingly, energy

consumption for centralized heating can only be estimated based on dwelling unit area as

follows (Zhang, 2010).

tj -t
ECH = 86.4 *A * N * h * ti + - Equation 4

ECH - Household annual centralized heating energy consumption (MJ)

A - Dwelling unit area (M 2)

N - Heating period per year (140 days in survey city)

qh - Building heating index (W/m)

ti - Indoor designed temperature during heating period (18 'C in survey city)

ta - Average outdoor temperature during heating period (-0.9 'C in survey city)

toh - Outdoor designed temperature during heating period (-7 *C in survey city)

pb - Cogeneration boiler efficiency (0.87 in this case)

pp - Pipe network efficiency (0.98 in this case)

3.1.1.5 C02-Equivalents Emissions

As mentioned above, electricity, gas, coal, and centralized heating are four major sources for

in-home energy consumption. The C02-Equivalent emission associated with those energy

sources can be calculated using the method developed by the Intergovernmental Panel on

Climate Change (IPCC). The relationship between C02-Equivalent emission and fuel

consumption can be expressed as follows (Zhang, 2010):

C02fuel = Efuel * EFfuel - Equation 5

CO2fuel - C02-Equivalents emission of a certain fuel (ton)

Ejuei - Amount of fuel combusted (TJ)

EFfuel - Emission factor (ton/TJ)

In Jinan, almost all of the electricity and centralized heating are coal-based. This research

assumes that all the coal used in industry is bituminous coal while anthracite coal is used in

the residential sector (Table 3.1). Other emission factor values for different types of gases

are summarized in Table 3.1.
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Fuel Type EFfuel Associated Energy Source

Bituminous coal 94.6 Electricity & Centralized heating

Anthracite coal 98.3 Household coal

Natural Gas 56.1 Household gas

LPG 63.1 Household gas

Coal Gas 44.4 Household gas

Table 3.1 - C02 Emission Factors for different energy sources (from Zhang, 2010)

3.1.2 Transport Energy Use and C02 Emissions3

Household transport energy use depends on how many trips the household generates, the

modes involved, fuel types, and trip distances. Measurement of household transport energy

use is adapted by Jiang (2010) based on reported weekly travel patterns. Theoretically, the

weekly scope better captures individual/household routine travel schedules than a single day.

Within the household, shared trips should also be considered to avoid double counting of the

energy consumption. Equations 6 - 8 present the calculation method for household travel

and energy use (Jiang, 2010).

ETi = Ei m  - Equation 6

m

Ei m =Y (TFmi.j.k * )*EIm - Equation 7

j ,k Ti.j.k

El m = FUm * EC m  - Equation8

i- i Household

j - jth Person in the household

k - Purposes, including work, maintenance, leisure, and school

m - Modes, including EBike, motorcycle, car, and bus

E - Total household weekly transport energy consumption (MJ/HHWeek)

E - Household weekly transport energy consumption with mode m (MJ/HH/Week)

TF m i.j.k - Trip frequency for person j in household i for purpose k with mode m

3 Transportation emissions are calculated for C02 only, which differs slightly from C02-Equivalents from the
in-home side. Hence, the calculated emissions from the transport sector are slightly lower that total
C02-Equivalents.
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(Trips/Week)

TDm i.j.k - Average trip distance for person j in household i for purpose k with mode m

(km/Trip)

TOtmii.. - Trip occupancy for person j in household i for purpose k with mode m

EIm - Energy intensity factor for mode m (MJ/km)

FUm - Fuel economy factor for mode m (L/km or KWH/km)

ECm - Energy content factor for mode m (MJ/L)

The detailed fuel economy, fuel energy content, and energy intensity factors are summarized

in Table 3.2. Those estimations do not consider specific traffic conditions (e.g. congestion)

and their impact on fuel consumption.

Mode FUm  ECm  ElIm

EBike 0.021 KWH/Ikm -- 0.076 MJ/km

Motorcycle 0.019 lkm 32.2 MJ/L 0.612 MJ/km

Car 0.092 L1km 32.2 MJ/L 2.962 MJ/km

Bus 0.3 L/km 35.6 MJ/L 10.680 MJ/km

Table 3.2 - Fuel economy, energy content, and energy intensity factors (Jiang, 2010)

Similar to the energy intensity factor (El m), I introduce the C02 emission factor (EFm ) to

estimate emissions associated with fuel consumption. To be specific, Elm in Equation 7

should be replaced with EF m and EFm and can be calculated as follows (Jiang, 2010):

EF m = FUm * CC m Equation 9

FUm - Fuel economy factor for mode m (U1km or KWH/km, see details in Table 3.3)

CCm - C02 content factor for mode m (kgCO2/L or kgCO2/KWH, see details in Table 3.3)

Mode FU m  CC m  EFm

EBike -- -- 0.026 kgCO2/km

Motorcycle 0.019 L/km 2.165 kgCO2/L 0.041 kgCO2/km

Car 0.092 L/km 2.165 kgCO2/L 0.199 kgCO2/km

Bus 0.3 L/km 2.470 kgCO2/L 0.741 kgCO2/km

Table 3.3 - Fuel economy, C02 content, and C02 emission factors (Jiang, 2010)
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3.2 Advantages of Micro-Simulation

This research aims to develop and demonstrate an integrated model that estimates the

long-term effects of urban form on household in-home and out-of-home energy use and related

trade-off behaviors. Microsimulation is a possibly well-suited modeling technique here since

it has the ability to account for interactions and dynamics within the complex

decision-making system (Lemp et al, 2007). Microsimulation is a social scientific analysis

tool that has been in existence since the 1950s (Orcutt, 1957). The essential core of

microsimulation is that it logically represents agent behavior at the disaggregate level,

typically taking firms or individuals/households as the fundamental analytic units.

Microsimulation models simulate the change of state and behavior of agent units, normally

referred to as "ageing" of the data (Zaidi & Rake, 2001). There are two types of ageing

approaches - static and dynamic. Static ageing requires the direct replacement of data inputs

(panel data) or reweighting of the base records to trace the changes in related variables and

behavior. On the contrary, dynamic ageing captures the evolution of agent attributes at time

t+1 by applying behavioral probabilistic equations or sub-models to the same agent

attributes at time t (typically with Monte Carlo simulation). The ageing process provides

necessary information needed for underlying behavioral modules within the overall

microsimulation framework and together they are capable of predicting future scenarios of

complex system.

The basic concept and features of a microsimulation approach offer major advantages for

both theoretical research and practical applications. Orcutt (1957), Ballas (1999), Mitton

(2000), Vovsha (2002), and Lemp (2007) have outlined several key strengths of

microsimulation. These include the ability to consider population heterogeneity, aggregate,

and modularize.

Compared to traditional macroeconomic theory, using micro-level data allows one to

account for a wide range of heterogeneity in both populations and related behaviors. For

example, most macroeconomic approaches utilize representative agents to account for

heterogeneity in the residential sector. They typically group households based on several key

demographic variables like income and household type. However, in order to achieve

maximum homogeneity within each group, a large combination of characteristic variables

are inevitably needed. In theory, a 10-variable combination with 3 levels each would require

nearly 60,000 population groups (3^10), probably exceeding the sample size itself. In this
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sense, microsimulation provides a better and natural way to represent data heterogeneity by

keeping the characteristics of each agent as an individual unit and forming an initial or raw

database for the subsequent modeling process.

Despite the behavioral attractiveness of microsimulation, decision makers are typically

interested in macro effects of policies in a complex system. Using microsimulation,

underlying econometric analysis is able to trace behaviors at the level where decisions are

actually taken by agents. This disaggregated level allows macro effects to be studied and

aggregated without bias that might result from macro-level models. In complex systems,

inputs and outputs are normally linked in a nonlinear fashion. It is difficult or sometimes

inappropriate to utilize a direct formula to represent the relationships. Instead, a number of

internal links and transitions determine the state and behavior of the agents. Microsimulation

can be conducted at great detail to simulate behaviors and in turn provide a flexible output

by aggregating interested clusters of agents.

Another important strength of microsimulation comes from its modularized structure.

Modules are typically introduced as inter-correlated processes within the overall simulation

framework. One advantage of modularization is that it can break down the complex system

into a set of single manageable processes. For example, with a standard statistical approach,

tracking agent evolution requires detailed panel data, incorporating lagged variables and

rigorous constraints and assumptions for time series theory. Microsimulation adopts a

simpler idea to realize the decision at each time step, predicting the future based on the fact

that the decision has been made instead of by multiplying a set of conditional choice

probabilities. That is, suppose we have a choice B conditional on choice A. Microsimulation

simulates what decision the agent has made for A and then deduces her decision for B based

on the actual result of A. Traditional statistical approaches, on the other hand, multiply the

conditional probability P(BIA) by P(A). If the choice set is large, there would be a huge

number of combinations of possible choices in a statistical approach. Microsimulation only

focuses on the current state of the system and the transition probability for next time step. As

such, evolution can be broken down into two processes - initialization and transition - by

considering only one time step at a time. Panel data are usually hard to collect, especially for

disaggregate-level analysis. But data needed for initialization and transition can be pooled

together from different sources without the continuation of multi-year efforts. In addition,

microsimulation modules are flexible enough to adapt different types of econometric models

within one modeling framework.
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3.3 Model Framework

Considering the modeling challenges and data constraints identified in Section 2.4, 1 develop

a simplified integrated microsimulation model (Figure 3.1). First, I define trade-off lifestyle

pattern variables to reflect some potential in-home/out-of-home activity substitution. Second,

I model in-home energy use via linear regression, incorporating the trade-off variables but

ignoring the underlying activities. Third, I disaggregate travel behavior into trip generation,

internal/external trip choice, and trip mode-distance choice models. Finally, since we

ultimately want to model energy performance over time I incorporate modules to update

demographics and vehicle and appliance ownership.

The simulation tool is based on a total of eight inter-related behavioral models which

estimate out-of-home energy use by predicting trip generation, internal/external trip rate,

mode choice, and trip length for each household and in-home energy use according to

different energy sources. Table 3.4 presents those behavioral models and techniques applied

in relevant modules. The detailed modeling techniques can be found in the following Section

3.4. In the various sub-models, relevant dimensions of neighborhood form and design are

included as explanatory variables. These models are then combined with modules that

update household demographics, appliance & vehicle ownership information, and activity

trade-off patterns, as represented in Figure 3.1. These inter-linked models can then be used

to estimate the long-term effects of neighborhood design on household energy consumption

and greenhouse gas emissions.

Sub-models

AC ownership choice

Trade-off lifestyle pattern choice

Vehicle portfolio choice

Electricity energy consumption

In-home energy consumption

Trip frequency choice

Internal/external trip choice

Trip Mode/distance choice

Modeling techniques

Multinomial Logit Model

Instrumental variables, Binary Logit Model

Multinomial Logit Model

Instrumental variables, Linear Regression

Instrumental variables, Linear Regression

Instrumental variables, Negative Binomial Regression

Binary Logit Model

Nested Logit Model

Table 3.4 - Summary of behavioral models in the overall simulation framework

4I assume, perhaps strongly, that no energy consumption takes place for "internal" trips, usually less than
500m.
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Household Demographics at Time t

Household Appliances at Time t
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Household Trade-off HoshlTrvlenatnMdl

Purchase/Replace L ifestyle Patterns odPurchase/Replace!
Module ModuleMd

Neighborhood Characteristics, Household
Demographics, Appliance & Vehicle Ownership,

Trade-off Lifestyle patterns at Time t+1

Household Trip

Household Taeof Household Travel Gnrto oe

Electricity/In-home em= Consumption -
Consumption Module Lifestyles Module HueodTi

Mode-Length Model

Household In-home Household Out-of-home
Energy Consumption Energy Consumption

at Time t+1 at Time t+1

Figure 3.1 - Integrated modeling framework



3.4 Methods

3.4.1 Binary and Multinomial Logit Choice model5

Random utility models (RUMs), of which logit choice models are the proverbial "work horse,"

are the backbone of my behavioral models. In the basic model structure, if the decision-maker,

n, selects one and only one alternative from a choice set Cn = {1,21 with only two

alternatives, the problem can be formulated as a Binary Logit Choice. We can introduce the

random utility for each alternative:

Uin = Vin + Ein - Equation 10

U2n = V2n + F-n - Equation II

Here Vin is the systematic utility expressed as a function of explanatory variables and Ein is

the random utility error component.

The decision rule is that individual n selects the altemative with the highest utility, Uin,

among those in the choice set C,. Therefore, the probability of choosing alternative 1 can be

expressed as:

Pn(1) = P(Uln U2 n)

= P(Min + Ein V2n + E2n - Equation 12

= 2n - E i V1n - V2 n)

Choosing the Type I Extreme Value distribution for the error term, we get the following:

E1n -Extreme Value(O, [); E2n -Extreme Value(O, p); E2n - c1n-Logistic(O, R).

The Type I Extreme Value distribution has two parameters - location parameter and scale

parameter. Here the location parameter is equal to zero and the scale parameter is set to g for

all alternatives. Thus,

Pn(1) =P(E2n - E1n - V1n - V2n)

1

1 + e-(Vln-V2n) - Equation 13

enlVin

e&Vin + eliV2n

s Based on the book from Ben-Akiva et al, 1985
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We can then estimate the model using maximum log-likelihood estimation (MLE) to get the

coefficients embodied in the systematic utilities V1n and V2n- The parameter p scales the

coefficients and they are estimated together if scale parameter p is not pre-identified.

With more than two alternatives, we can use the Multinomial Logit choice model. Now we

have the choice sets Cn = {1,2,..., Jn} with Jn alternatives. Again, with the utility

maximization decision rule, the probability of choosing i can be expressed as:

P(iIC) = P(Uin Un,vj C)

= P(Vin + Ein Vn + En, Vj c Cn)

= P(Ejn - Ein in - Vn, Vj E Cn)

Equation 14

If Cn are independently and identically distributed (IIA assumption) as Extreme Value (0, R),

we obtain the choice probability for individual n:

POICO = eliVin

Ej ECnepVjn
- Equation 15

Again, we can estimate the model coefficients using MILE.

3.4.2 Nested Logit Model6

If two types of choices are decided jointly (e.g., the trip mode and distance choice), the IIA

assumption described above for Multinomial Logit choice will be violated. Therefore, we

need to model the joint choice with two-level Nested Logit techniques. For decision-maker,

n, the alternatives are divided into K nests and each nest k contains Bk alternatives.

Accordingly, for alternative i E Bk, we can define the utility function for i:

Uni = Wnk + Yni + Eni - Equation 16

Here Wnk is a function of variables that only describe nest k and Yni depends on variables

related to alternative i.

The probability of decision-maker n choosing alternative i (Pni) can be decomposed into a

marginal probability (PnBk) and a conditional probability (PniIBk):
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- Equation 17Pni = PnilBknBk

The marginal and conditional probabilities take the Logit form and they are linked by the

so-called "Logsum" (or inclusive value), the denominator from the lower-level nest, i.e.:

Bk = exP(Wnk + Xknk)

Bk exp(Wn + X1In 1)

PnIBk = eXP(Yni/Xk)
ZjEBk exp(Ynj/Xk)

Ink = In Ynj/Xk
jEBk

- Equation 18

- Equation 19

- Equation 20

Here Ink is the Logsum value and Ak is the coefficient on the Logsum. In most cases, the

scale parameters associated with the lower level utilities are normalized at 1, allowing the

upper level scale parameter and hence the Logsum parameter Ak to be unrestricted. Ak is a

measure of correlation within each nest k and it should take values between 0 and 1. If Ak is

larger than 1, a basic assumption of the nesting structure is violated.

3.4.3 Event Count models - Poisson and Negative Binomial Regressions 7

For trip frequency, I apply event count models. A commonly used model for count data is the

Poisson. For decision-maker, n, the conditional mean of the frequency Yn can be written as a

function of explanatory variables Xn and parameters Pn:

E(YnIXn) = eXnPn

Then, the probability for individual n to choose frequency

distribution:

pe"An"

Here An is the mean of the Poisson distribution and An =

log-likelihood function can be written as:

- Equation 21

Yn can be expressed as a Poisson

- Equation 22

E(YnIXn) = eXnPn. Therefore, the

InL(p) = In J7J eA = yn(P'Xn) - exp(P'Xn) - In(yn!)
n n
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and the model can be estimated using MLE. The Poisson model makes a strong assumption -

the conditional mean equals the conditional variance. I expect unobserved heterogeneity in

our empirical application so that this assumption will probably be violated. Therefore, I also

test a negative binomial model to account for the potential overdispersion of the trip

frequency data. The Negative Binomial regression relaxes the assumption of equal mean and

variance by adding the unobserved heterogeneity, E, into the parameter Xn:

Xn = E(YnXn) = eXnn+E - Equation 24

Here, E is Gamma distributed, leading to the Negative Binomial distribution of the frequency.

With this relaxation of the Poisson regression model, we can then estimate the Negative

Binomial Regression with MLE as well.

3.4.4 Endogeneity and Instrumental Variables

As we can see, the overall model framework requires the lower level models to use outputs

from the upper level choice models. This can cause endogeneity problems, as described above.

Suppose we have a response variable Y, say, electricity use and several explanatory variables

Xi in the lower level model:

Y = f(X 1,X 2, .. , ... XI) + E - Equation 25

If X1 is a choice result variable from the upper level model, such as number of air

conditioners, we will possibly fail to include all the explanatory variables when modeling

Xi in a choice model. Those omitted variables could also be related to Y (e.g. in-door

temperature preference in the AC and electricity case) and incorporated in the E. This violates

the Exogeneity assumption E(X I E) = 0. A method to solve this endogeneity problem is to

introduce an instrumental variable - the fitted probability of Xi. Since this fitted probability is

only estimated with observed explanatory variables, it is no longer correlated to the omitted

variables in the error term for the lower level model.

Another important potential source of endogeneity is "self-selection," as mentioned above.

We attempt to mitigate this problem by incorporating household attitude information, as

collected in the surveys, in the choice models. This represents the "statistical control"

approach, whereby the attitudinal variables included in the relevant behavioral models serve

to make some of the unobserved characteristics (e.g., attitudes towards energy consumption)

"observed," and thus at least partly "purging" the model of endogeneity (Mokhtarian and Cao,
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2008). This approach faces practical challenges, including those related to the validity and

reliability of the attitudinal variables themselves. Ideally, more advanced models could solve

the "self-selection" problem, but those remain an area of future research (including better

data).
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Chapter 4:Data and Model Estimation

4.1 Data Sources

The main data used for estimation and simulation of the models in this thesis come from a

survey of households in Jinan in 2010. Jinan is a reasonably typical medium-sized city in

China (see Wang, 2012) with a population of approximately 3.5 million people in 2010.

MIT-Tsinghua (2010) identifies four neighborhood typologies prevalent in the city:

"Traditional", "Grid", "Mixed Enclaves", and "Superblock" (see Table 4.1). These typologies

form the basis for the stratified random sampling approach used. The research team chose 14

typical neighborhoods, representing the different typologies; within these neighborhoods,

households were sampled randomly in 2010, producing 1523 households and nearly 9000 trip

records8 . Figure 4.19 shows the location of those 14 neighborhoods. After data cleaning, we

were left with 1203 observations for model estimation and simulation. The household data

consist of demographics and attitudes, home attributes, energy bills, and travel records. In

addition, detailed data characterizing the physical form of the neighborhoods and their

environs were collected (Table 4.2).o

Typology Building/Street/Function

Traditional 1-3 story courtyards; fractal/dendritic fabric off a main shopping street,

on-site employment

Grid Block structure with different building forms contained within each block;

(1920s) retail on connecting streets

Enclave

(1980-1990s) Linear mid-rise walk-ups; housing integrated with commercial facilities

Superblocks
(2000 s Towers in park with homogeneous residential use
(2000s)

Table 4.1 - Descriptions of four neighborhood typologies in Jinan (MIT-Tsinghua, 2010)

8 The survey was conducted by Shandong University.
9 Figure drawn byiJohnna Cressica Brazier from MIT
ID The physical characteristics were developed in a Geographic Information System (GIS) by Beijing Normal
University.
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Figure 4.1 - Location distribution of 14 neighborhoods in Jinan 2010 Survey



Measure Description Mean Std. Min Max

Neighborhood Size Area (m2) 189461.0 72936.33 25572 302507

Total Households

Residential Density

FAR

Building Coverage

Green Coverage

Entry_in

Function mix

Lumix_500m

Underground Parking

Surface Parking

Walking Facility

Distance to Center

Street Level Shop

Road Density

Motor-width

SEI

Number of households per neighborhood

Number of households per acre

Ratio of floor area of buildings to size of neighborhood land

Building footprint as share of neighborhood area

Green space as share of neighborhood land area

Entry interval distance in meters

Building function mix

Land use mix w/in 500 meter buffer

Average underground parking area (m2) per household

Average surface parking area (m2 ) per household

Percentage of roads with walking facilities

Distance from the neighborhood center to the center of Jinan (kms)

Percentage of street level shops

In the neighborhood (km/m2)

Average motorway width (m)

Southern Orientation Index (area of projection of fagade onto the south plane)*

Table 4.2 - Descriptive statistics: Variable measures of neighborhood form

2899.9

63.3

1.884

.292

.086

319.6

.149

.660

7.339

9.6

.265

4.90

.095

30.280

6.575

.3490

1557.38

21.94

.6453

.1166

.0803

201.31

.1244

.0749

8.5850

10.19

.2201

2.133

.0994

14.6540

3.1104

.02640

515

26

.78

.07

.01

81

.03

.54

.00

0

.00

.7

.00

10.16

3.17

.274

5992

104

3.16

.53

.29

929

.46

.81

24.00

35

.82

8.7

.35

56.72

13.00

.391



Measure Description Mean Std. Min Max

Porosity

Surface to volume ratio

Footprint

Fagade continuity

culdesac

Factory Accessibility

Office Accessibility

Public Accessibility

Shopping Accessibility

School Accessibility

BRT Routes

Ratio of volume of open spaces to the total volume (buildings+open spaces)*

Ratio of building surface area to the total volume

Average site coverage area (in square meters)

Measure of the continuousness of the building facade

Percentage of "dead end" roads

Regional accessibility for factory**

Regional accessibility for office**

Regional accessibility for public**

Regional accessibility for shopping**

Regional accessibility for school**

BRT routes with stops within 200m of the neighborhood 0

.6980 .09035 .557 .907

.499

583

.6988

.109

12.423

10.196

5.319

153.920

8.448

.2287

381.8

.05571

.1972

11.0893

13.6261

8.4899

133.2590

8.9295

.267

48

.5978

.00

3.75

.94

.69

26.12

1.28

.944

1179

.7892

.73

44.88

45.25

32.10

426.84

34.05

0.393

1 0.455

2 0.088

3 0.064

Table 4.2 (continued) - Descriptive statistics: Variable measures of neighborhood form

Notes: * Calculated using GIS maps (figure ground maps and building height information) and simulation tools (see MIT, 2012). ** Calculated as a

gravity-based measure, using calculated road network times (see Chen, 2012).



Household Demographics & Equipment ownership Household Energy Consumption, Emission and Attitudes
Emission (kgCO2) Consumption (MJ)

Sinale 6.68% Electricity Min 227 Min 2397

Couple 23.64% Max 22672 Max 239665

Family Structure Couple & kids 42.11% Mean 2962 Mean 31945

Couple & parents 4.76% Std. 1929 Std. 20396

Grandparents & grandchild 2.92% In-home Min 227 Min 2397

Three generations 19.97% Max 32203 Max 342195

1 4.90% Mean 6235 Mean 67679

2 25.30% Std. 3128 Std. 33570
Household Size 3 40.90% Transportation Min 0 Min 0

4 16.70% Max 74681 Max 371366

>4 12.20% Mean 647 Mean 5909

Min 4300 Std. 2043 Std. 17734

Annual Income (Yuan) Max 720000 Driving is a sign of prestige*** 34.0%

Mean 93066 It is convenient to take buses*** 67.5%

Std. 74756 I like riding bicycles*** 53.7%

0 12.7% Time spent on travel is a waste to me*** 35.6%

Air Conditioner 1 36.7% I'd like to live in bigger house*** 55.2%

>1 50.6% I like traveling*** 66.7%

No vehicle owned 30.6% Plastic shopping bags in supermarkets should be free*** 50.6%

E-bikes only 23.9% High-rank officials do not take buses or ride bicycles to go 57.9%

Vehicle Portfolio Motorcycles 5.2% Rich men do not take buses or ride bicycles to go out*** 52.4%

Cars only 24.1% I exercise regularly outside*** 62.3%

Cars and other vehicles) 16.2% I reuse things like plastic bottles or bags*** 69.3%

Notes: *** Percentage of positive responding: scores of more than 3 are counted as positive responding

Table 4.3 - Descriptive statistics: Household characteristics

'4,
0



Table 4.3 presents the descriptive statistics for several key demographic variables, equipment

ownership, and energy consumption. For family structure, the two main household types are

"couple & kids" and "couple & parents", consistent with the most common household size of

3. The average household income in the 14 neighborhoods is more than 90K (approximately

US$15,000). Most households already have more than 1 AC while about 40% have at least

one car. The sample may be biased towards higher income households. Here the in-home

energy is the sum of electricity, gas, coal and centralized heating energy. The standard

deviations of electricity and in-home energy consumption and emission are less than their

means which helps in modeling since we don't need to predict too many extreme values.

However, transportation energy consumption data appears to be overdispersed, indicating a

number of outliers with large travel energy use, making predictions more difficult.

4.2 Appliance Ownership Modeling

We do not have appliance purchase information for households, only current ownership levels.

Furthermore, we only have consistent ownership information for air conditioners (AC). AC

ownership may be correlated with other energy consuming devices, but, together with heating

demand AC is more likely related to neighborhood form than other appliances (such as

refrigerators and clothes washers). Furthermore ownership of ACs has been the most rapidly

increasing energy consuming appliances among urban Chinese households since 2000 (Zhou

et al, 2011). As such, we model AC ownership; specifying and estimating a discrete choice

model (Table 4.4). Household income and unit size are positively related to AC ownership,

while renters and those living in neighborhoods with high surface-to-volume ratio have lower

likelihood of owning ACs.

AC1 AC 2 and more
Variables --- -

Coef. t-value Coef. p-value

Constant -.722 -0.53 -8.52 -5.35
Income (1000) .0158 4.61 .0226 6.49

Rent -.843 -3.39 -1.15 -3.89

Unit Area (log) .480 1.77 2.22 7.05

Surface-to-Volume Ratio -1.67 -2.57 -2.53 -3.52

Reference choice: No AC; Rho-square: 0.291; n = 1203; L(0) = -1321.631; L(0) = -936.620....

Table 4.4 - Estimation Results for AC ownership
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4.3 Vehicle Portfolio Ownership and Car Purchase Intention

Household motor vehicle ownership logically drives household travel energy demand. Jinan's

households have a range of ownership patterns, or "vehicle portfolios" (Chen, 2012) (see

Table 4.3), approximately increasing in energy intensity from: zero motorized vehicles, to

electric bikes (e-bikes) only, motorcycles (MCs) only (or plus e-bikes), cars only, or cars plus

other motorized modes (MCs and/or e-Bikes).

We specify and estimate a multinomial logit model of vehicle portfolio choice (Table 4.5) and

find that household type, income, and employment status, and some neighborhood design

variables significantly impact vehicle portfolio choice. In addition, given the dynamism of

private car ownership in China and its importance to travel energy consumption, we attempt

to model the likelihood of car purchase. For this, estimate a binary choice model of the

intention to purchase a car (Table 4.6). Household income, current vehicle portfolio and

several neighborhood form variables play significant roles in this intention "choice." This car

intention model is not used in the simulation model as it does not reflect the attitude in the

next year. Rather, it provides interesting insights into household long-term car purchase

decisions.

EBike Only Motorcycle Cars Only Cars andOthers
Variables-

Coef. t-value Coef. t-value Coef. t-value Coef. t-value

Constant .672 3.40 -1.71 -9.39 -10.6 -7.73 -5.13 -3.79

Income (logK) - - - -- .949 6.25 .760 4.70

NoEmployed -.955 -4.69 -.976 0.383 -2.51 -5.69 -2.91 -4.71
Single -.870 -2.65 - - - -- -1.37 -2.18

Unit Area (log) - - - - 1.56 5.84 .618 2.29

BusConvenient -.452 -2.50 - - -.746 -3.92 -1.07 -5.17

Adult_3+ .438 2.58 .718 2.47 - - .725 4.01

Walking Facility -- - - -- -1.06 -2.35 -1.21 -2.42

Function Mix -2.39 -3.92 - - - -- -2.41 -2.53

ParkUnder - - - - .0293 2.89 - -

Reference choice: NoVehicle; Rho-Square: 0.212; n=1203; L(O) = -1936.154;

Table 4.5 - Estimation of vehicle portfolio choice
L(0) = -1525.557
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Variables Buy-Car
Coef. t-value

Constant -2.58 -4.66

Income (logK) .280 2.44

P_EBikeOnly .488 2.83
P_Motorcycles .723 2.42

PCarsOnly -2.80 -8.27
P_CarsandOthers -2.43 -6.42

Child .438 3.17
Attitude - LoveTravel .572 3.44

Residential Density -.00896 -2.48

Distance to city center .136 3.74

Reference choice: NotBuyCar, Rho-Square: 0.364; n=1203; L(0) = -833.856; L(3) = -530.236

Table 4.6- Estimation of car intention choice

4.4 Lifestyle Trade-Off Patterns

As discussed in the previous section, total household energy use will partly be determined by

activities performed in-home versus out-of-home. I model household propensity to undertake

different relevant activities: work outside vs. work-at-home, dine-out vs. cook at home,

leisure out vs. in-home entertainment. From the household's perspective, members working

outside the home may result in additional transportation energy use, while working at home

may create additional in-home energy consumption. Similar trade-offs can exist in the cases

of dining and leisure activities. These patterns will then possibly influence later-stage models

of household trip frequencies (i.e., trip generation) and in-home energy consumption.

To quantify these three trade-off behavior patterns, I define three binary variables for work,

eating, and leisure to indicate whether household preferences for going outside or staying at

home for the same type of activity. I hypothesize that household and neighborhood design

characteristics will impact those three aspects of lifestyle trade-off patterns. Table 4.7 presents

the estimation results for the three trade-off patterns. The results intuitively suggest that

higher incomes increase the likelihood of working at home, but also increase the likelihood of

going out for leisure activities, consistent with intuition. Household attitudes, predicted

vehicle portfolio (instrumental variable), demographics and neighborhood characteristics have

influence, particularly for more flexible activities (i.e., leisure and dining).
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Work at Home Dine at Home Leisure at Home
Variables ________

Coef. t-value Coef. t-value_ Coef. t-value

Constant -5.45 -4.04 3.60 8.03 -1.60 -3.56

Income (log)

Income (per 1000 Yuan)

Three Generation family

Elder

House Owner

Reside elsewhere

Residence Year 1+
P_Motorcycles

P_CarOnly

P_CarOther
Attitude - LoveTravel

Attitude - Not prefer bus or

bike
Attitude - Prefer big house

Attitude - regular exercise

Building story
Building coverage

Residential Density

Motor width
Distance to city center

Culdesac

RATotal

.264

.448

.381

.438

2.20

2.26

1.97

2.52

.275

-1.08

-17.5
-3.15

-3.52

-.00759
-.0490

3.21

-5.84

-5.33

-5.43

-4.88

-2.32
-3.88

-.00140 -2.64

-.00173
-.415

-.179

-1.75
-2.41

-2.06

-.476 -2.77

-.417 -3.10

.682 5.16

-.720

.0831
2.76

.0847
1.18

-5.17

4.18

3.40

2.67
3.45

Reference Work Outside Dine Outside Leisure Outside

# of observations 1203 1203 1203

Rho-Square .439 .125 .111

L(0) -833.856 -833.856 -833.856
L(0) -467.506 -729.538 -741.199

Table 4.7- Estimation of trade-off lifestyle choice
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4.5 Household Travel Consumption

To estimate household transportation energy use, I develop three models: a trip frequency

model, a model estimating whether generated trips are internal or external to the

neighborhood and a trip mode & length choice model. These models are applied to four trip

types: work, maintenance, leisure, and school.

As mentioned in Section 3.4.3, Negative Binomial Regression models are applied to account

for the potential overdispersion of the trip frequency data. Tables 4.8-4.11 present estimation

results for work, maintenance, leisure, and school trips". In these tables, the variable

"Negative binomial" is an estimate of the dispersion coefficient. A Poisson Regression Model

is one with a zero "Negative binomial" value. For all trip purposes, estimates of this value are

greater than zero indicating over-dispersion and hence the necessity to use Negative Binomial

Regression models. The trip frequency model results show that household characteristics, the

predicted vehicle portfolio (instrumental variable), neighborhood form, and regional

accessibility variables are all significant.

Variables Coef. Wald Chi-Square Sig.

(Intercept) -.225 1.354 .245

Employ_2 .486 59.714 .000

Employ_2+ .710 49.919 .000

Elder -.375 133.718 .000

P_EBikeOnly 3.745 71.873 .000

P_Motorcycles 13.793 102.022 .000

P_CarsOnly 3.495 128.123 .000

P_CarsandOther 3.256 113.345 .000

parkingunder -.019 18.274 .000

parkingsurface .017 4.509 .034

RAoffice .008 17.563 .000

Residential Density -.005 13.831 .000

(Negative binomial) .537 - -

Table 4.8- Estimation of work trip generation

For school trips, the trip frequency models are estimated based on families with kids. Those without any

child are assumed not to generate any school trip.
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Variables Coef. Wald Chi-Square Sig.
(Intercept) .683 3.411 .065

P_CarsOnly -.599 14.326 .000
Income (log) .071 6.329 .012

Unit Area (log) .093 3.364 .067
Roaddensity .010 54.065 .000
BRT routes 1+ .238 20.213 .000

Distance to city center -.019 5.440 .020
Attitude - Bus Convenient .085 5.185 .023

(Negative binomial) .185 -- --

Table 4.9- Estimation of maintenance trip generation

Variables Coef. Wald Chi-Square Sig.

(Intercept) 1.035 23.301 .000
Roaddensity .024 22.863 .000
BRT routes 1+ .468 9.667 .002

Distance to city center -.124 23.246 .000
Elder .194 11.319 .001
Floor -.031 5.160 .023
Rent -.547 14.777 .000

Total hh 1.4 E-4 10.585 .001
Residential density -.016 19.068 .000

Attitude - Exercise regularly .700 55.306 .000
(Negative binomial) 1.923 -- -

Table 4.10 - Estimation of leisure trip generation

Variables Coef. Wald Chi-Square Sig.

(Intercept) 1.922 885.025 .000
RASchool .018 9.659 .002

Kid_1+ .661 14.669 .000
(Negative binomial) 1.000 -. --

Table 4.11- Estimation of school trip generation
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The internal/external trip choice model results (Tables 4.12 - 4.14) show, as expected, that

numerous neighborhood design variables - such as sidewalks, green coverage, and BRT

routes - play a significant role.

Internal Trip

Coef. t-value

Constant -.891 -2.71
BRT -.888 -3.94

Residential Density .0172 2.58

Attitude - LoveTravel -1.12 -5.56
ParkUnder -.0965 -6.46

Road Density -.0409 -3.94

Single 1.42 4.40

Reference: External Trip; Rho-Square: 0.67 1; n=1658; L(0) = -1149.238; L(O) = -348.142

Table 4.12- Estimation of internal work trip choice

Variables Internal Trip
Coef. t-value

Constant -2.82 -14.52

BRT -.286 -2.46

Walking Facility .945 3.88
Single .612 2.62

Street Level Shop 3.54 8.43

Reference: External Trip; Rho-Square: 0.380; n=2729; L(0) = -1891.599; L(O) = -1173.317

Table 4.13 - Estimation of internal maintenance trip choice

Variables Internal Trip
Coef. t-value

Constant -7.29 -8.76
Residential Density .0672 7.72

Elder .466 3.93
Green Coverage 3.81 5.37

Neighborhood Size 3.53e-6 6.96

Footprint -.00289 -5.92

Distance to city center .161 3.36

Reference: External Trip; Rho-Square: 0.388; n=2273; L(0) = -1575.524; L(O) = -963.963

Table 4.14 - Estimation of internal leisure trip choice
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Figure 4.2 - Trip length distributions for work, maintenance, leisure and school trips

For the external trips, I then model trip mode & length choice together as a nested logit model.

The modes include walk, bike, E-Bike, motorcycle, car, and public transit. I categorize trip

distance as short, medium, and long, since survey reporting of this variable tended to be in

rough distance estimates (see the histograms in Figure 4.2). Two nesting structures are

theoretically possible (Figure 4.3). The nesting structure does not represent a sequential

decision-making process, per se, but shows the pattern of similarities within a decision

process that is simultaneous (e.g., Small and Winston, 1999). In other words, in the depiction

in Figure 4.3 - Version 2, the traveler views the different modes for traveling short distances

as more similar to each other than the different travel distances that one can choose by a

particular mode. As described in the modeling techniques (see Nested Logit Model in Section

3.4.2), the logsum from the lower level nest (e.g., mode choice in Figure 4.3 - Version 2),

figures directly into the utility function for the upper level choice and the coefficient on the

logsum in the upper nest determines whether the nest structure is consistent with the model

assumptions. For work, maintenance and leisure trips, the model estimation process suggests

that "Version 2" in Figure 4.3 is the appropriate model structure (Final estimation results in

Tables 4.15 -4.21).
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Version 1

Walk Bike E-Bike Motor Car Transit Mode Choic*

Short Me ium Long ................................. Length ChQ1*

Version 2

Short Medium Long Length Choice

Wa k BW e E- ike Motor ar Transit ......... MOde ChOice

Figure 4.3 - Alternative nesting structures for mode-distance joint choice model

For school trips we take a different approach. Rather than specify an internal/extemal choice

model, we account for the normal size of a school district in the city: 1.5km by 2.5 km 2 . So

we use the length of a diagonal - 3km - as the threshold for short and long trips (i.e., we do

not further divide them into internal or external trips). Tables 4.22 and 4.23 show the

estimation results for school trip mode-distance choice, indicating the predominance of

household characteristics, although a few form-related and relative location variables do play

a role.

Apart from household socio-demographics and neighborhood form variables, travel time and

cost are important factors influencing trip mode-distance choice. For travel cost, I use energy

efficiency (see Table 3.2) and energy unit price data 3 to estimate the cost for each mode

given the distance approximation of short, medium, and long trips. The resulting unit prices

are summarized below:

X Gasoline: 5.54 Yuan/km

X Electricity: 0.547 Yuan/KWH

X EBike: 0.0115 Yuan/km

X Motorcycle: 0.1053 Yuan/km

X Car- 0.5097 Yuan/km

X Transit: 3 Yuan if Long Trip; others 2 Yuan

12 http://zhuanti.sdnews.com.cn/2013/xuequ/
1 Data collected from Jinan Price Administration Bureau's website: http://www.qpn.gov.cn/index.html
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For travel time, I use in-vehicle travel time (IVTT) and out-of-vehicle travel time (OVTT) for

the model estimation. Since I have the distance approximation associated with short, medium,

and long trips, I only need the average speed to get the IVVT. Here I calculate the average

speed with trip records in 2010 Jinan survey according to different modes.

X Walk: 10 minutes/km

X Bike: 5 minutes/km

X EBike: 3.7 minutes/km

X Motor: 3.4 minutes/km

X Car: 2.5 minutes/km

X Bus: 3.5 minutes/km

OVTT is related to the time to access the vehicles and is pre-determined for different modes

as follows.

X Walk: 0 minutes

X Bike: 1 minutes

X EBike: 1.5 minutes

X Motor 2 minutes

X Car: 5 minutes
X Bus: 10 minutes
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Variables Coef. t-value
Constant - WA .481 1.36
Constant - BI .898 2.44

Constant - EB .471 1.60
Constant - CA 1.50 5.93

Constant - TR 1.08 3.96

Cost -.103 -2.67
IVTT -.0515 -5.76
OVTV -.307 -5.71

Female - WA .758 3.60

Female - EB .957 4.99

Female - TR .718 4.85
Income(1OK)- BI -.0665 -2.40
Income(1OK)- EB -.0644 -4.12
Income(1OK)- TR -.0466 -4.28

BRT -WA -1.12 -5.44
BRT - BI -.684 -3.12
BRT - EB -.429 -2.28

TravelWasteTime - WA -.782 -3.50
TravelWasteTime - BI -.318 -1.39
Travel Waste Time - TR -.628 -4.15

Alternatives: WA (Walk), BI (Bike), EB (EBike), MO (Motorcycle, reference), CA (Car), TR (Transit)

Rho-Square: 0.325; n=1534; L(0) = -1917.061; L(O) = -1294.254

Table 4.15- Estimation of work trip mode choice (lower level)

Variables Coef. t-value
Constant - Medi 4.81 5.67
Constant - Long 7.39 4.32

LOGSUM .680 1.42
RAFactory - Medi -.0138 -2.24
RAFactory - Long -.0206 -1.49

Elder - Medi -.0100 -1.64
Elder - Long -.0336 -2.90

Rent - Medi -.396 -2.35
Rent - Long -.618 -1.84

Continuity - Medi -4.93 -4.21
Continuity - Long -8.34 -3.75

Alternatives: Short (reference), Medi (Medium), and Long trips

Rho-Square: 0.172; n=1534; L(0) = -1685.271; L(O) = -1395.534

Table 4.16 - Estimation of work trip distance choice (upper level)
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Variables Coef. t-value
Constant - WA 1.76 5.47
Constant - BI .335 1.10
Constant - EB -.831 -2.00

Constant - CA -.482 -.95
Constant - TR .383 -1.06

Cost -. 109 -1.95
IVTT -.0601 -10.30
OVTT -. 136 -6.29

Female - WA 1.51 2.94
Female - BI 1.18 2.25
Female - EB 1.14 2.12
Female - CA 1.22 2.31
Female - TR 1.35 2.62

Footprint - EB .00176 3.31
Footprint - CA .00299 4.39
Footprint - TR .00134 3.86

Alternatives: WA (Walk), BI (Bike), EB (EBike), MO (Motorcycle, reference), CA (Car), TR (Transit)
Rho-Square: 0.227; n=2286; L(O) = -2711.158; L(O) = -2095.390

Table 4.17- Estimation of maintenance trip mode choice (lower level)

Variables Coef. t-value
Constant - Medi 1.19 1.92
Constant - Long 3.51 4.58

LOGSUM .682 2.39
Income - Medi .00303 2.52
Income - Long .00194 1.54
Elder - Medi -.582 -4.51
Elder - Long -.805 -5.28

RAShopping - Medi -.00332 -2.99
RAShopping - Long -.00274 -1.93

Street Level Shop -Medi -1.00 -1.94
Street Level Shop - Long -2.97 -5.18

Nsize - Medi 2.72e-6 7.29
Nsize - Long 1.76e-6 4.52

Land Use Mix - Medi -2.51 -2.62
Land Use Mix - Long -4.21 -4.43

Alternatives: Short (reference), Medi (Medium), and Long trips
Rho-Square: 0.095; n=2286; L(0) = -2511.428; L(O) = -2273.969

Table 4.18 - Estimation of maintenance trip distance choice (upper level)
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Variables Coef. t-value

Constant - WA 6.14 2.86

Constant - BI 4.13 1.85

Constant - EB 4.24 1.80

Constant - CA 4.92 2.25

Constant - TR 6.80 3.17

Cost -.189 -3.42

IVTT -.100 -6.80

OVTT -.146 -2.51

EntryDistance - WA -.541 -1.38

EntryDistance - BI -.622 -1.51

EntryDistance - EB -.838 -1.92

EntryDistance - CA -.593 -1.48

EntryDistance - TR -.972 -2.45

Alternatives: WA (Walk), BI (Bike), EB (EBike), MO (Motorcycle, reference), CA (Car), TR (Transit)

Rho-Square: 0.381; n=1894; L(0) = -2245.471; L(O) = -1389.732

Table 4.19 - Estimation of leisure trip mode choice (lower level)

Variables Coef. t-value

Constant - Medi -0.539 -0.80

Constant - Long 6.64 7.49

LOGSUM .454 4.15

Income - Medi .00779 5.51

Income - Long .00946 6.57

Elder - Medi -1.08 -8.28

Elder - Long -1.10 -6.33

HouseholdMember_3+ - Medi -.622 -4.75

HouseholdMember_3+ - Long -.713 -4.89

Continuity - Medi 2.62 2.83

Continuity - Long -4.96 5.19

Residential Density - Medi -0.0138 -3.06

Residential Density - Long -0.0249 -4.60

Alternatives: Short (reference), Medi (Medium), and Long trips

Rho-Square: 0.146; n=1894; L(0) = -2080.772; L(O) = -1776.618

Table 4.20- Estimation of leisure trip distance choice (upper level)
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Variables Coef. t-value

Constant - WA 1.93 6.63

Constant - BI .930 4.22

Constant - CA .428 .94

Constant - TR 2.96 6.56

Cost -.226 -2.98
IVTT -.0703 -7.60

OVTT -.212 -4.43

Entry Distance - TR -.00119 -2.91

Age less than 20 - TR -1.67 -4.70

Nuclear Family - CA .834 2.11

Alternatives: WA (Walk), BI (Bike), EB (EBike, reference), CA (Car), TR (Transit)

Rho-Square: 0.317; n=626; L(0) = -762.181; L(P) = -520.427

Table 4.21 - Estimation of school trip mode choice (lower level)

Variables Coef. t-value

Constant - Long .955 1.15

LOGSUM .645 1.91
Totalhh -.000165 -4.44

Income (log) .132 2.48

RASchool -.0209 -1.67
Household Member 3+ -.526 -2.81

2 Employed parents -.575 -2.77

Parking under .0510 4.17

Alternatives: Short (reference) and Long trips

Rho-Square: 0.121; n=626; L(0) = -433.910; L(O) = -381.338

Table 4.22 - Estimation of school distance choice upper level)

4.6 Household Electricity/In-home Energy Use Models

As mentioned, due to the lack of activity data for in-home appliance use, I cannot model

in-home energy consumption with the quasi-activity-oriented approach as in the

transportation energy consumption estimates. Therefore, I use a linear regression model to

estimate in-home electricity and total energy consumption. The model includes in-home

energy type, i.e., electricity, gas, coal, and centralized heating. Note that variables coming

from upper level choices (e.g., trade-off behaviors) may be a source of endogeneity so that we

employ instrumental variables (the expected values of these upper-level choices).
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Tables 4.23 - 4.25 present the estimation results for electricity and total in-home energy

consumption and C02-Equivalents emissions. Here the in-home energy is the sum of

electricity, gas, coal and centralized heating energy. Beyond household income and some

demographics and dwelling unit attributes (i.e., size), we see that several form variables play a

direct role, as well as indirect role, via, for example, the fuel choices and the AC choices'.

We can also see that all three of the trade-off variables are significant, which partly supports

my hypotheses. The signs on the work and leisure trade-off variables make sense since

working at home and leisure at home are "in-home" versions of these two possible

out-of-home activities. However, the sign on the dine-home variable is negative for in-home

energy consumption, which is counter-intuitive. We can imagine some plausible explanations

for this result. Perhaps households with a tendency to dine out have other unobserved

characteristics that lead to more in-home energy consumption. In any case, this particular

result requires additional research to better understand what is going on.

Variables Coef. t-value

Constant -3.658 -2.761
P_Telecommute 4.412 4.074

P_DineHome -.631 -1.636
P_LeisureHome 1.949 4.681

Income (log) .336 3.706
Elder .369 2.575

Household member 3 .242 1.868
Household member 3+ .436 2.619

Unit Area (log) 1.053 7.838
Function mix 1.149 2.597

SouthernExposureIndex -10.747 -4.656

ACl .304 1.755

AC2_and more .858 4.540

Dependent variable: electricity energy consumption (10,000 MJ); R-Square: 0.212; n=1203

Table 4.23 - Estimation of electricity energy consumption

14 The fitted probabilities of AC choices provide counter-intuitive signs of coefficients, and thus replaced by
actual number of AC numbers in the model estimation.
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Variables Coef. t-value

Constant -12.244 -7.443
P_Telecommute 5.474 4.067
P_DineHome -.534 -1.077

P_LeisureHome 2.929 5.631
UseCoal 2.946 10.244

CentralizedHeating 2.714 12.396
Income (log) .464 4.165

Elder .388 2.188
Household member 3+ .402 2.192

Unit Area (log) 3.086 18.421
SouthemExposureIndex -17.268 -5.912

Porosity 1.612 1.656
ACI .279 1.286

AC2_and more 1.097 4.627

Dependent variable: in-home energy consumption (10,000 MJ); R-Square: 0.592; n=1203

Table 4.24 - Estimation of total operational energy consumption

Variables Coef. t-value

Constant -9.677 -6.314
P_Telecommute 5.352 4.282
P_DineHome -1.3304 -3.131
P_LeisureHome 2.852 5.959

UseCoal 2.902 10.900
CentralizedHeating 2.494 12.301

Income (log) .340 3.298
Elder .286 3.094

Household member 3+ .387 2.558
Unit Area (log) 2.904 18.725

SouthemExposureIndex -17.917 -6.578
Porosity 1.697 1.949

ACi .228 1.135
AC2_and more .942 4.268

Dependent variable: in-home C02-Equivalents (tonCO2); R-Square: 0.596; n=1203
Table 4.25 - Estimation of total in-home C02-Equivalents emissions
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Chapter 5:Simulation of Energy Use

Using the estimation results from the models described above, I now develop and implement

a simulation of household in-home and transportation energy at the neighborhood scale, as

depicted in Figure 3.1. This chapter includes three sections. In section 5.1, overall simulation

processes are summarized, including model initialization, design input,

demographic/equipment/lifestyle evolution, and energy/emissions estimation. Section 5.2

conducts a series of validation analysis to assess the reliability of the microsimulation model.

In section 5.3, a sequence of scenarios are developed and examined to demonstrate the

application of the integrated model.

5.1 Simulation Processes

The simulations utilize MATLAB'5 to run 1000 iterations to provide forecasts of energy

consumption and C02 emissions over time via the following steps. The simulation provides

annual results (i.e., a time step of one year, or t+1). As discussed above, the simulation

framework involves numerous sub-models dealing with behavioral choice probabilities. To

connect household decisions at multiple levels, I realize the choice probabilities at each level

with Monte Carlo simulation techniques. Take a two-alternatives choice for example.

Suppose the probability of choosing alternative 1 is 0.4 and the chance of selecting alternative

2 is 0.6. I just need to generate a uniformly distributed random variable between 0 and 1. The

cut point here is 0.4 and the agent will take alternative 1 if the generated random variable is

less than 0.4.

5.1.1 Model Initiation

The model is initiated with a base neighborhood (existing or new design), which provides the

relevant base year built form characteristics, and base household demographics, which in

combination, and using the relevant model estimation results (described in the previous

section) provide estimates of appliance & vehicle portfolio ownership, lifestyle trade-off

lifestyle patterns, and the in-home and transportation energy consumption.

5.1.2 Household Demographics Evolution Module

The inputs of this module are household demographics at time t (from the model initiation)

and the outputs are household demographics at time t+1. The household characteristics

15 Student version of R2012a obtained from MIT Information Services & Technology
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include household size, household type, household income, etc. The evolution of these

characteristics alone will impact energy use. Taking this evolution into account allows us to

predict energy consumption of a certain household 5 or 10 years later.

The module designed here simulates future household characteristics with assorted

assumptions. Those assumptions assign change probabilities to birth and death and generate

new characteristics at next time step. For childbirth, we use a birth rate of 12.1 per thousand

people (World Bank, 2013). We have a total of six household types ("family structure" in

Table 4.3): 1) Single, 2) Couple, 3) Couple & Kids, 4) Couple & parents, 5) Grandparents &

Grandchildren, and 6) Three Generation family. If a certain type of household has a child, the

household size will increase by 1 and the household type will change (from Couple to Couple

& Kids, for example). This child birth rule is applied to household types including Couple,

Couple & kids, Couple & Parents, and Three-Generation Family. The death rate comes from

life tables stratified by gender and age in China (Cai, 2005) and applying it decreases

household size and possibly changes family structure as well.

For income, I use the government-reported forecast average annual income growth rate of

10.7%16. However, using a constant growth rate applied to all households is naive. So, I apply

an assumed triangular distribution to simulate annual income change across the households

(Figure 5.1, adapted from Tirumalachetty and Kockelman, 2009). In addition, the average

annual income rate decays every year, eventually declining to 3% in 20 years. The average

household income updating results can be found in Table 5.1.

-50% 10.7% 75%

Figure 5.1- Triangular distribution for income growth rate

16 http://news.iqilu.com/shandong/yaowen/2013/0125/1435312.shtml
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No vehicle Cars and
Year Income # of ACs E-bikes only Motorcycles Cars only ohrs

owned others

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

93070

96210

99420

102620

105770

108820

112000

114890

117790

120640

123350

125970

128400

130840

133160

135440

137630

139410

141020

142690

1.67
1.95

2.07

2.12

2.16

2.19

2.20

2.22

2.23

2.24

2.24

2.25

2.25

2.25

2.25

2.25

2.25

2.26

2.26

2.26

30.6%
24.8%

18.6%

17.4%

16.3%

15.5%

14.4%

13.4%

10.90/

9.9%

10.9%

9.1%

8.7%

8.1%

8.5%

9.6%

8.2%

7.5%

8.2%

6.8%

23.9%
18.9%

19.1%

15.7%

13.3%

11.3%

9.2%

8.2%

8.1%

8.4%

5.8%

6.7%

6.5%

7.2%

6.4%

4.4%

5.3%

5.0%

4.2%

4.8%

5.2%

7.0%

7.0%

6.3%

6.5%

5.4%

5.4%

5.2%

5.2%

4.3%

4.5%

4.3%

4.2%

3.2%

2.9%

3.1%

3.1%

3.6%

3.2%

3.5%

24.1%
26.2%

26.9%

29.7%

29.8%

31.4%

32.1%

32.2%

34.5%

34.3%

34.7%

34.2%

33.3%

33.8%

35.7%

34.1%

35.3%

36.3%

37.7%

38.5%

16.2%
23.2%

28.4%

30.9%

34.1%

36.4%

38.9%

41.1%

41.3%

43.1%

44.1%

45.6%

47.3%

47.8%

46.5%

48.8%

48.1%

47.6%

46.7%

46.4%

Table 5.1- Estimated evolution of average household income, AC ownership, and

vehicle portfolios over 20 years

5.1.3 Neighborhood Design Module

This module takes as inputs the neighborhood characteristics at time t and then provides, as

outputs, the neighborhood characteristics at time t+1. This module involves no actual

calculations; rather it represents the change of neighborhood characteristics as a result of

design interventions.

5.1.4 Equipment Ownership Modules

Households may buy/replace a new/retired appliance or vehicle in each time step. I account

for this via "appliance & vehicle purchase/replace" modules. Household appliance ownership

is quite dynamic with the purchase of new appliances or replacement of break-down

appliances. For appliance replacement, we assume constant energy efficiency performance
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(i.e., we do not account for potential changes in this attribute), an assumption which could be

relaxed if efficiency improvements wanted to be explicitly included. This simplifying

assumption enables us to avoid having to predict appliance breakdown. As discussed above,

we currently only account for AC ownership, an assumption which could also be relaxed with

more information on household appliance holdings.

For vehicle portfolio ownership, vehicle replacement is not considered due to the lack of such

data in the survey.

For both AC and vehicle portfolio simulations, the inputs are household demographics,

ownership levels and neighborhood characteristics at time t and the outputs are AC ownership

and vehicle portfolio ownership at time t+1. The updating results for AC ownership and

vehicle portfolio are present in Table 5.1 as well.

5.1.5 Transportation and In-Home Energy Use

These modules use the neighborhood and household characteristics and apply the relevant

models to predict at times t, t+1, etc.: household lifestyle trade-off lifestyle patterns,

household trip generation, mode choice, and length, conditional upon expected vehicle

ownership portfolios; and household electricity and total operational energy use conditional

upon AC ownership and lifestyle trade-off patterns.

5.2 Validation

Microsimulation is a technique designed to model complex systems by simulating the effects

of changes (e.g., new policies) on agent behaviors and associated aggregate projections. The

validation of the models is equally essential as the results of policy simulations since it

assesses whether the model generated outcomes are credible as empirical evidence for policy

development (Caldwell & Morrison, 2008). Despite the growing interest in applications of

microsimulation models, literature on systematically validating the results of microsimulation

approaches is relatively limited. There are generally two types of validation methods. One is

to directly compare the model projections against historical statistics and another is an

indirect approach known as the "multiple module approach" (details and examples from

Caldwell, 1996). Most of the previous microsimulation frameworks utilized ex-post analyses

of the previous periods to ensure the model is credible (see reviews from O'Donoghue, 200 1).

70



In this research, I implement the direct comparison approach, using the actual (i.e., survey)

and simulated base year data. The base year data comparison here is only a validation of

model fitness since I use the same model estimation data set for simulation validation.

Figures 5.2 and 5.3 compare the simulated versus actual energy consumption and C02

emissions for the base year in the form of cumulative distribution functions (CDF). The CDF

curve depicts the overall distribution of energy use among all households in the base year.

Overall, we can see that the simulation works well for all three energy categories: electricity,

in-home operation, and out-of-home transportation. The fitted model does a reasonable job,

except for some households with high levels of energy consumption and C02 emissions.

We can also validate performance at the level of neighborhood (Figures 5.3 and 5.4). Among

them, we have two "Traditional (T)", two "Grid (G)", three "Enclave (E)", and seven

"Superblock (S)" neighborhoods. We can conclude that the simulated energy and emissions

are close enough to the actual energy consumption for most of the neighborhoods. Comparing

across typologies, we can see that superblocks have higher consumption levels for in-home

energy. For transportation, most of the superblocks have higher consumption levels.

Traditional neighborhoods have the lowest transportation energy use. Energy and emission

in transportation side is much lower than in-home part across the 14 different neighborhoods.

By further breaking down the simulation of trip frequency, internal trip rate, trip mode and

distance distribution, we can validate the detailed dimensions of transport energy

consumption and emissions. Figure 5.6 compares the simulated average trip number per

household with the survey data. The simulated and actual bars are reasonably close, showing

that work is the most frequent purpose, followed by maintenance, school and leisure trips.

Regarding internal trips, from Figure 5.7, we can observe that the model slightly

underestimates the internal trip rate for maintenance and leisure trips (as discussed in the

previous Chapter, school trips are not categorized as internal/external trip but rather

distinguished based on size of school district). Although I utilize a joint nested choice model

for trip mode and distance, I present the separate simulated distributions of mode and distance

in Figures 5.8 and 5.9 to enable the comparison with the survey data. For modes, both the

actual and simulated results indicate that EBike, Car, and Transit are the three major ways of

travel for work trips while walking has the largest share for the other three purposes. As for

distance, the simulation replicates the survey well - with short and medium trips dominating

work, maintenance, and leisure purposes. For school trips, the share of short (inside the school
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district) and long trips (outside the school district) is relatively close to each other.

In summary, the simulation results compare favorably to values from the base year survey

data. Of course, this only validates the first year prediction. When it comes to a longer time

period (20 years in this case), the ability for the model system to provide a reasonable

prediction of the future depends on a range of uncertainties. In the following section I discuss

some of the uncertainties and how they are represented in the forecasts.
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5.3 Forecasts

In this section, forecast uncertainty is first discussed and then three types of scenarios are

developed to simulate the changes in energy consumption and C02 emissions resulting from

the evolution of socioeconomic and demographic (SED) characteristics, equipment stock, fuel

efficiency, and neighborhood forms:

1) Baseline with only the evolution of SEDs and equipment stock

2) Adding yearly fuel efficiency improvement to the baseline forecasts

3) Adding neighborhood design interventions to the baseline forecasts

5.3.1 Uncertainty of simulation-based forecasts

Forecast uncertainty largely depends on the distributions of the output projections, not just the

means. There are various sources of variability in the output that come from microsimulation.

Considering the detailed processes within the microsimulation, I conclude that at least three

sources of uncertainty exist - the Monte Carlo method, the sampling error, and the behavioral

parameter estimates. The uncertainty from parameter estimates is common to all statistical

forecasting approach as the distribution of the coefficient can be approximated with

asymptotic normality theory. Other two sources will be further examined in following

sections.

5.3.1.1 Uncertainty by Monte Carlo Method

Variance by Monte Carlo method refers to the fact that different runs of the model will

produce different decisions for a given agent facing the same choices, even with identical

model parameters. This type of uncertainty is due to the nature of the random number

generating process in computer programs with varying seeds. In theory, this type of

uncertainty is known as stochastic variation and it can be reduced to an acceptable range with

sufficient runs. That is, if enough runs are repeated, the value assigned each time to the agent

will converge to the theoretical probability distribution of the same variable. As such, the

average of all those values from multiple runs would be a reasonable estimate of mean

behavior of the agent. In this sense, the sensitivity analysis of exogenous impact can use mean

values to illustrate the expected effect of changes like fuel efficiency improvement and urban

design interventions. Classical variance measures such as standard deviations are suitable to

capture the magnitude of this uncertainty.
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5.3.1.2 Uncertainty by Sampling

Another important source of uncertainty also comes from the very nature of the

microsimulation, as it utilizes a sampling base to represent the starting point from which to

trace the state and behavior of the entire population. Policy makers are normally interested in

the summary statistics aggregated from microsimulation and the difference between the

simulated summary statistics of the sample and the actual values of the population is often

referred to as the sampling error. Measuring uncertainty caused by sampling error is typically

not feasible as the true population value is unknown in most cases. As a result, unlike for the

Monte Carlo method, the sample average of summary statistics is not guaranteed to be a good

estimate of the population mean.

5.3.1.3 Uncertainty in Application

Previous sections summarized three sources of uncertainty in the microsimulation. Other

important sources of variation could come from the model structure itself, the values of

exogenous variables, etc.. To deal with uncertainty, I focus on two aspects - variance

reduction and variance measurement. For variance that can be reduced (normally caused by

Monte Carlo process), I test for different number of runs and find that 1000 iterations will

give a reasonable variance range for most output projections in this case. Meanwhile, for

other existing variance sources, uncertainty measurement is estimated associated with mean

output projections to provide a comprehensive understanding of forecasting values.

5.3.2 Baseline Scenario

I first develop a baseline forecast of energy consumption and C02 emissions over 20 years,

considering only changes in the underlying demographics and equipment ownership (Tables

5.2 and 5.3). The standard deviations are measured along with mean values and we can

observe that the variance of predictions rises over time. As expected, energy consumption

across all end-uses increases, with transportation leading the way, with an average increase of

4.5% per year, versus 0.6% for electricity and 0.4% for in-home. Similarly for C02 emissions,

the transportation sector has the largest rate of increase followed by in-home operations.

These rates are consistent with the fact that household transportation energy use and

emissions in Jinan is starting from a much lower base than in-home, relative to international

precedents (e.g., Chen, 2012).
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Year Electricity(MJ) In-Home(MJ) Transportation(MJ)

1 30630±40

2 31960±50

3 32610±50

4 33000±60
5 33270±60

6 33480±60

7 33630±60

8 33770±70

9 33880±70

10 33980±70
11 34060±70
12 34120±70

13 34180±70
14 34230±70
15 34270±70

16 34310±70

17 34330±80

18 34340±80

19 34360±80

20 34360±80

Table 5.2 - Household

66780+60

68600±80

69460±80

69990±90

70340±100

70620±100

70810±100
70980±100

71110±100
71230±100
71330±110
71390±110
71460±110

71500±120
71550±120
71580±130
71590±130
71610±130
71620±140

71620±140

8700±240

9930±260

10780±300

11380±300
11910±320
12360±320

12790±310
131001300
13230±310
13510±320
13750±320
13920±310
14030±350

14140±340

14290+350
14380±350

14440±330

14520±350
14570±350

14640±350

energy use baseline predictions (ranges)

Electricity (kg CO2)

2898±5

3024±5

3084±5

3121±6

3147±6

3167±6

3182±6

3195±6

3205±7

3214±6

3222±6

3228±6

3234±6

3238±7

3242+7

3245±7

3247±7

3249±8

3250±8

3251±8

In-Home (kg C02)

6091+7
6250±7
6327±7
6372±7

6404±8

6427±9

6444±8

6459±8

6470±8

6480±8

6487±9

6492±9

6497±9

6501±10

6505±10

6507±10

6508±10

6510±11

6510±11

6510±11

Transportation (kg C02)

578+74

1106+120
1350±139

1458±165

1477+162

1479±163

1504±162

1505+150
1515±155

1538±153

1544±157

1535±155

1531±138

1523±151
1537±136

1535±129

1552+134
1528±141

1537±136
1530±144
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Year

1

2

3
4

5
6

7
8
9

10

11

12

13
14

15
16

17
18
19

20

Table 53 - Household emission baseline predictions (ranges)



Examining in detail the transportation forecasts, we see, unsurprisingly the important role of

the car in travel energy and emission growth (Figures 5.10 and 5.11). This can be traced back

to the fact that only about 40% of households have at least one car in the base year (Table 4.3)

while the rate of car ownership increases rapidly in the following years (Table 5.1). The

second largest source of transport energy and emission production is public transit, with a

much lower overall energy use and emissions than cars. Motorcycles are the third largest

transport energy consumption source, but EBikes generates more emissions than motorcycles

due to the difference between energy intensity factor and emission factor for the two modes

(Tables 3.2 and 3.3). Across neighborhood typologies, the "Superblocks" has the highest

travel energy and emissions, following by "Enclave" and "Grid", and finally the

"Traditional".

We can further explore the behavior underlying the transportation forecasts. The overall

simulation model produces indicators of the detailed behavioral outcomes of the sub-models,

such as intemal trip rate, trip mode and trip length choice, making it easier to relate policies,

such as mode-oriented strategies, to ultimate outcomes of interest. For internal/external trips,

a higher internal trip rate will reduce travel energy consumption and emissions by preventing

longer motor vehicle-based trips outside the local development area. As seen in Figures

5.12-5.14, the models predict that the internal trip rate will not change much with the

evolution of demographics and vehicle stocks. This is consistent with the coefficient estimates

from the internal/external trip choice models, as most of the significant factors are

neighborhood form variables (see in Tables 4.12, 4.13, and 4.14). For mode choice (Figures

5.15-5.18), a clear pattern is the increasing share of car trips for work, maintenance, and

leisure travel, although walking remains the most common way of travel for maintenance and

leisure purposes. School trips reveal a slight increase in the share of car use and a more

balanced split among the available modes. For external trip distances (Figures 5.19-5.22), we

observe somewhat stable overall shares among short, medium, and long trips across various

purposes over time, except with a trend of longer travels for leisure purposes.

The big story here is the rocketing car use as the evolution in socioeconomics and

demographics and the vehicle stock, which drives the rapid increase in transport energy over

time as seen in Tables 5.2 and 5.3. The baseline predictions suggest that travel energy use will

not balance itself over time; approximately constant internal trip rate and trip distance

distribution is overwhelmed by more car use. Thus, in following sections, I will further

examine two scenarios - improving fuel efficiency or adding neighborhood design

interventions - to compare energy-use mitigation strategies.
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Figure 5.12 - Internal trip rate baseline predictions for work trips

Maintenance Trips
100.0%
90.0%
80.0%
70.0%
60.0%

50.0%

40.0% E External

30.0% E Internal
20.0%
10.0%

0.0%
1 2 3 4 5 6 7 8 9 1011121314151617181920

Year

Figure 5.13 - Internal trip rate baseline predictions for maintenance trips
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Figure 5.14 - Internal trip rate baseline predictions for leisure trips
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Figure 5.15 - Mode share baseline predictions for work trips
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Figure 5.16 - Mode share baseline predictions for maintenance trips
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Leisure Trips
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Figure 5.17 - Mode share baseline predictions for leisure trips
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Figure 5.18 - Mode share baseline predictions for school trips
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Figure 5.19 - Distance distribution baseline predictions for work trips

Maintenance Trips
100.0%
90.0%
80.0%
70.0%
60.0%

50.0% U Long
40.0% 

U Medium
30.0%
20.0% m Short
10.0%
0.0%

1 2 3 4 5 6 7 8 9 1011121314151617181920

Year

Figure 5.20 - Distance distribution baseline predictions for maintenance trips
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Leisure Trips
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Figure 5.21 - Distance distribution baseline predictions for leisure trips
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Figure 5.22 - Distance distribution baseline predictions for school trips
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5.3.3 Fuel Efficiency Scenario

Fuel efficiency measures how far a vehicle can travel per unit of fuel consumed. Fuel

efficiency improvements lead to more vehicle miles traveled (VMT) with the same amount of

fuel, thus leading to energy savings. However, the impacts of the penetration of vehicle

technologies are complex, due in part to the so-called "rebound effect" (Small and Van

Dender, 2007). Herring (2006) summaries three types of rebound effects:

1) Direct rebound effect - increased use of vehicles stimulated by reduced travel cost due to

greater fuel efficiency;

2) Indirect rebound effect - increased use of other goods and services due to the reduced

price of vehicle travel;

3) General equilibrium effects - adjustment and equilibrium of supply and demand for both

producers and consumers in all sectors.

In this research, the developed microsimulation model can only account for the direct rebound

effect and thus simulate potential energy savings given the improvement in vehicle fuel

efficiency. To be specific, with more fuel-efficient cars, the cost of car travel is reduced and

the probability for choosing car is increased. This will be reflected in the household

mode-distance choice model (see Figure 3.1). Meanwhile, the fuel consumption per VMT will

decrease and the calculation methods embedded in transport energy estimation module will be

adjusted accordingly.

I explore the potential impact of fuel efficiency improvements on energy savings by assuming

a continuously increasing annual rate. More specifically, three sub-scenarios with annual

efficiency improvement rates of 1.0%, 1.5%, and 2 .0% are contrasted. The simulation results

are presented in Table 5.4. A common pattem in all these cases is that energy consumption

savings and emission reduction will be achieved despite the fact that car travel ratios increase

for all purposes. The energy savings in year 10 are significantly higher than those in year 2.

The magnitudes of consumption savings and emission reductions are about 0.5-1.5 percent in

the beginning and 6~11 percent by year 10. This sets the benchmark for comparing

energy-use mitigation strategies through urban design interventions.
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Fuel Efficiency Specific Year Car Travel Ratio Transport energy savings

11.0% annually Year 2 10.2% Work Trips 0.6% of energy consumption (MJ)
10.2% Maintenance Trips

10.3% Leisure Trips

T0. 1%School Trips 0.7% of emissions (kgCO2)

Year 10 10.6% Work Trips 5.6% of energy consumption (MJ)
10.5% Maintenance Trips

11.4% Leisure Trips 5.4% of emissions (kgCO2)
10.2% School Trips

11.5% annually Year 2 10.2% Work Trips 0.6% of energy consumption (MY)

T0.3% Maintenance Trips

10.7% Leisure Trips

10.2%School Trips 0.8% of emissions (kgCO2)

Year 10 11.2% Work Trips 7.9% of energy consumption (MJ)
10.6% Maintenance Trips

11.9% Leisure Trips 6.6% of emissions (kgCO2)
T1.1%School Trips

12.0% annually Year 2 T0.3% Work Trips 1.1% of energy consumption (MJ)

10.9% Maintenance Trips

10.4% Leisure Trips

T0.4%School Trips 1.3% of emissions (kgCO2)

Year 10 12.2% Work Trips 10.9% of energy consumption (MJ)
10.5% Maintenance Trips

t3.5% Leisure Trips

11.8%School Trips 9.1% of emissions (kgCO2)

Table 5.4 - Energy saving potentials with example change of fuel efficiency

91



5.3.4 Neighborhood Design Interventions Scenario

Given the various neighborhood form characteristics present across the underlying behavioral

models, we can use the simulation tool to predict how changes in neighborhood

characteristics would change household energy use trajectories. Such analysis could help

inform neighborhood development towards lower energy consumption based on empirical

evidence. To better associate energy saving potentials with neighborhood form variables, we

perform the sensitivity analysis based on Superblock neighborhoods, as they are the most

prevalent type of development being built across the contemporary Chinese urban landscape.

The detailed results are present in Table 5.5.

For neighborhood density and massing, higher residential density is associated with less trip

generation, more internal trips, and shorter external trip travel distance. Hence, an increase of

20 households per acre will reduce around 9% of transportation energy and C02 emissions in

year 2 and year 10. Lower porosity, in conjunction with greater building volume, may reduce

the in-home operational energy considering the winter wind cooling effects (2% energy

savings with 10% decrease of porosity). Increasing the Southern Exposure Index by 10%

could result in more than 7% of in-home energy savings and around 8% of emission

reductions due to an increase in solar gain in winter. For neighborhood land use mix, the

presence of street level shop shows some potential for mitigating transportation energy

trajectories. To be specific, 20% more street level shops are estimated to generate around 5%

in transportation energy savings. A larger number of roads with sidewalks would create more

"walkable streets," predicted to reduce 3-4 percent of transportation energy use and emissions

in the future. Building fagade continuity is a measure of the continuousness of a streetscape

which helps create a sense of enclosure and a definition of street space. A 10% increase in

fagade continuity could potentially lead to more than 10% of transportation energy savings

since it creates street-oriented, pedestrian trips.

Compared with Scenario 2, we can see that the consumption savings and emission reductions

produced by design interventions are equally impressive as fuel efficiency improvement. This

bolsters the argument for the role of neighborhood design in the development of energy

efficient cities.
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Neighborhood Form Example Value Change Average Energy Saving for a particular year

Density and Massing

Residential Density T20 households per acre 9.2% of transport consumption in year 2

10.0% of transport emissions in year 2

8.3% of transport consumption in year 10

9.3% of transport emissions in year 10

Porosity 10.1 (ratio of volume) 2.0% of in-home consumption in year 2

2.2% of in-home emissions in year 2

1.9% of in-home consumption in year 10

2.0% of in-home emissions in year 10

Passive Systems

Southern Exposure Index T10% 7.2% of in-home consumption in year 2

8.2% of in-home emissions in year 2

7.1% of in-home consumption in year 10

8.0% of in-home emissions in year 10

Function Mix and Land Use

Street Level Shop 10.2 4.4% of transport consumption in year 2

5.0% of transport emissions in year 2

4.3% of transport consumption in year 10

5.3% of transport emissions in year 10

Pedestrian Facility

Roads with Sidewalks T0.2 2.7% of transport consumption in year 2

3.3% of transport emissions in year 2

3.4% of transport consumption in year 10

4.0% of transport emissions in year 10

Building Fagade

Continuity 10.1 13.7% of transport consumption in year 2

10.4% of transport emissions in year 2

13.1% of transport consumption in year 10

9.7% of transport emissions in year 10

Table 5.5 - Energy saving potentials with example change of neighborhood form
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Chapter 6: Conclusions and Future Directions

We propose and implement an integrated model of both in-home and out-of-home energy

consumption. This newly proposed model is an extension to the original models applied in the

"Energy Proforma"©, an online tool for estimating neighborhood-level energy consumption

in China. Rather than estimate household in-home and travel energy consumption separately

and at a single point in time, our approach explicitly considers the trade-off among relevant

household behaviors that might driver energy use and, furthermore, formally incorporates a

temporal dimension to the analysis. Integrated multi-sector energy model has become a

growing interest with improved data and econometric techniques. This research contributes to

this modeling area by gaining additional insights into the dynamic linkage and transition of

human behavior under complex decision and energy-use system.

The microsimulation model is based on a total of eight inter-related behavioral models, which

estimate transport energy use with a sequence of trip-based forecasting techniques and

in-home energy use with multivariate-regressions. Several neighborhood form measurements

are first gathered from Jinan household & neighborhood survey, covering the aspects of

density, diversity, design, accessibility and location (see also at Table 6.1). In various

sub-models, relevant dimensions of neighborhood form and design are included as

explanatory variables. These models are then combined with updating modules that trace the

evolution of demographics, equipment stocks, and trade-off lifestyle patterns. These

inter-linked models can then be used to estimate the long-term effects of different policy

scenarios on household energy consumption and C02 emissions.

Section 6.1 of this chapter summarizes the research findings from the model estimation and

simulation processes. Section 6.2 discusses limitations of current model and section 6.3 points

out directions for future research.

6.1 Research Findings & Implications

Among the eight underlying behavioral models, we find varying relationships between urban

form and the activities that result in household energy use (Table 6.1). Combined into the

simulation tool, the integrated models can be used in a range of ways, such as: providing

ex-ante estimates of neighborhood-level household energy consumption; generating relevant

behavioral indicators such as travel mode choice which can be related to policy objectives

such as mode-oriented development; capturing long-term effects of neighborhood form and
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design while accounting for socioeconomic and demographic evolution.

In the simulation, three types of scenarios are developed to compare the changes of energy

consumption and C02 Emissions with respect to the evolution of demographic, equipment

stock, fuel efficiency, and neighborhood forms. The major findings include:

1) Energy consumption and C02 emission across all end-uses will increase over time. This

baseline forecasts provides an overall picture of what is going to happen with the natural

evolution of demographics and appliance/vehicle ownership. Transportation energy starts

from a much lower base than in-home energy (12% of the total consumption and 9% of

the total emission in base year) but with a much higher increasing rate (4.5% per year for

transportation versus 0.4% for in-home).

2) Car ownership plays an important role in travel energy and C02 emission growth. From

the base year, only about 40% of the households have a least one car but this ratio reaches

rapidly to 75% in year 10 and 85% in year 20, according to vehicle portfolio choice

model specified in the simulation.

3) Compared across different modes, car travels generate most transport energy and

emissions. Transit is the second largest energy production source but it has a much lower

energy-use. Motorcycle and EBike play slightly different roles in travel energy and

emission growth. Motorcycles are the third largest transport energy consumption source

but EBikes creates more C02 emissions than motorcycles.

4) Considering different neighborhood typologies, the "Superblock" produces the highest

energy consumption and emission per household, following by the "Enclave" and the

"Grid", and finally the "Traditional".

5) With household demographics and vehicle stock evolution, the internal trip rate and travel

distance distribution will not change significantly over time. The mode share, however,

experience a dramatic shift with an increasing number of car trips for work, maintenance,

and leisure purposes. By tracing travel behavior at the level where decisions are actually

taken, we can conclude that travel energy cannot balance itself in the near future due to

the higher proportion of car travels.

6) Improving fuel efficiency is a useful way of reducing energy and emissions even with the
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"rebound effect". By applying 1-2 percent of annual technology improvement rate, we

can expect 0.5-1.5 percent of energy savings and emission reductions in year 2 and 6-11

percent in year 10.

7) Design intervention at the neighborhood scale is capable of mitigating short-term urban

energy use and emissions and ensuring a long-term, lower-carbon urban development

trajectory. For transportation, energy savings and emission reductions can be achieved by

raising neighborhood density, adding more street level shops, enhancing pedestrian

facility, and increasing building fagade continuity. For in-home sector, reducing porosity

and improving Southern Exposure Index are empirically helpful to lower the operational

energy consumption and emission.

8) In terms of the magnitude, the neighborhood design intervention strategy is equally

impressive as fuel technology penetration. This further emphasizes the role of urban form

design in the development of clean energy cities.
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Neighborhood Trade-off In-home Trip Internal/
Appliance Vehicle EcrityMode-Distance

Variables Lifestyle Energy Generation External

Density

Residential Density V V V V V V V

Building coverage V V V
Porosity

Diversity

Function Mix V V V V V

Lumix_500m

Street level shop

Design

Neighborhood size V V

Green coverage

Continuity

Motor-width V V V

Accessibility

Footprint

Entry_m

Parking provision V V V

Walking facility V V V V V V

Road Density V V
Southern exposure index V V

Surface to volume ratio V V V

Culdesac V V V
BRT V V

Location

Distance to center V V V V V V
Regional accessibility V V V V

Table 6.1- Summary of significant neighborhood design variables for energy consumption

W.
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6.2 Research Limitations

Despite the advances implied in this work, a number of shortcomings remain.

1) The behavioral models are estimated on a rather small, likely biased, cross-sectional

survey for only 14 neighborhoods in a single city in China. The household survey itself

does not include the full range of household energy-consuming activities and relies on

reported travel behavior and reported energy bills, both of which are certainly subject to

errors. As such, the current results should be viewed as indicative and demonstrative of

the technique, not necessarily authoritative regarding the magnitudes of expected effects.

2) Several home and building physical characteristics that help to explain in-home energy

consumption and emissions are not surveyed, such as the home ventilation/orientation/

insulation and building envelop, etc.

3) Non-residential energy consumption is currently excluded from the modeling approach,

which may influence the total neighborhood energy estimates in unknown ways.

4) This model takes a non-systems approach towards neighborhood level energy use. The

simulation does not account for the fact that neighborhood change in one part of the city

will likely affect the entire dynamics of the city and the inter-relations among the relevant

agents.

5) Technology evolution for in-home appliances is ignored (e.g., the simulation does not

account for changes in appliance energy efficiency), an assumption which should be

relaxed in the future. Although the second scenario considers vehicle technology

improvement, the assumption of constant annual increasing rate is too simplistic and

requires real-world research and confirmation. Similarly, larger evolution of the city, and

the interactions among neighborhoods is also ignored, which would, at minimum, likely

impact travel energy use.

6) Vehicle and appliance replacement is ignored as it will become increasingly important

when taking technology penetration into account.

7) The simulation assumes constant birth rate for households in the demographic evolution

module, which could be more detailed with available data. Since the original survey only

has age categories, the death rate stratified by age and gender can only be approximated.
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8) The triangular distribution assumed for income change uses the average increasing rate

comes from Jinan government report, which is an overall description of the whole city.

The sample used in this case may be biased towards higher income households. As such,

the actual average income increasing rate in survey might differ from that in the city.

9) No aggregate-level control of demographic information is provided for population

evolution (cannot apply IPF process here). This could result in bias predictions of energy

consumption with those input demographics. Besides, the in-/out- migration process is not

incorporated.

10) The traditional mode-destination joint choice model is adapted as mode-distance nested

model in this case. The classification of short, medium, and long trips is purely based on

frequency analysis but not reflect the actual distribution of locations.

11) Dining trade-off lifestyle has a counter-intuitive impact on in-home energy and emissions.

Perhaps households with a tendency to dine out have other unobserved characteristics that

lead to more in-home energy consumption. This should be further examined with more

detailed data or more advanced statistical techniques.

12) In fuel efficiency scenario, the model is only capable of capturing the direct "rebound

effect". Additional study on indirect rebound effect and general equilibrium effects

should be conducted to figure out the magnitude of impact on energy savings.

13) More generally, any effort to forecast the future, particularly in a highly dynamic context

like urbanizing China, must be viewed with some skepticism. Such forecasts face

behavioral uncertainties and exogenous uncertainties (e.g., new technologies, economic

transformations) that are not currently considered in our approach. Point estimates of the

future are wrong.
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6.3 Future Directions

These shortcomings point to an ambitious future research agenda. Behaviorally, the move to

an activity-based simulation model would be productive, but would require detailed data on

in-home and out-of-home activities to enable the development of a model of activity

trade-offs and complete energy consumption. Such data could possibly be collected via new

technological devices (e.g., smartphones; see Cottrill et, al. 2013) perhaps in combination

with in-home smart meters and more comprehensive and accurate energy use data (such as

annual bills). Such an approach could lead to a more responsive decision support tool for

urban planners, developers, and communities, and enable immediate feedback to consumers

and thus realize the savings potentials due to energy-efficient neighborhood form. We hope to

have provided a step in this direction.
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Appendix - Jinan Urban Residents' Residential and Passenger Transport Energy Survey in 2010

Date: Time: Quesionnaire #

Neighborhood: Surveyor:_
Building # Entry # at the ti floor (total floor_

Housing Area: Construction Area __sq. m

Recorder:

) Apt#

(#)bedrooms and -(#)living rooms

(A) Your Household

Q1. There are family members in your household, among which of them are employed.
Household Type: E Single E Couple E] Couple with Kid El Parents with Married Children 0 Grandparents and Kid 0 3

Generations

Q2. Your household has been living in this neighbourhood for years and months

Q3. You are currently: ERenting [ Homeowner [ZHomeowner (still paying mortgage)

Q4. Fill out personal information and commuting activities (journey to/from work or school) of each household

member

Occupation: a.Teacher/Professor b.Student c. Worker d.Government official e.Company employee f service/self-employed
g.Peasant h.Unemployed i.Retired j. other

Monthly Income: a.below 600 b.600-1,000 c.1,00-2,000 d.2,00 -5,000 e.5,000-10,000 f>10,000
Mode: a.walk b.bicycle c.electric bike/scooter d.motorcycle e.taxi fprivate car g.company car h.bus i.company shuttle j.BRT
Occupancy: no need to fill if mode is bus, shuttle or BRT If the driver is sending or picking up the passenger, the driver is not counted.

Destination: put down the name of your destination, orpoint it out on a neighborhood map

Personal Weekly Commuting Activities
Monthly

H member Age Sex Occupation Distance Time Taken Occupancy
Income Frequency Mode (/o) (min) (person per vehicle) Destination

Yourself

2

3
Other

4

5

Q5. Household Non-commuting activities

Household weekly non-commuting activities
Trip Purpose

Frequency Mode Distance (/on) Time Taken (min) Destination

Farmers'Market

Convenient Store

Shopping Supermarkets

Department Store

Other

Park

Post Office

Using Public Bank

Facilities Pharmacy

Hospital

Open space, gym
Visiting Friends and Relatives

Other

110



Q6. _ (#) of your household members have drivers' license, (#) currently hold transit passes.

Q7. Number of Private Cars , number of company cars you have access to_ . (If zero, jump to Q8)

Main Purpose of Owning a Car:

ELcommute Li pick up kids l shopping l leisure and travel l household urgencies Lother

a) This vehicle is years old, annual mileage driven_ , fuel economy liter/100km

b) Parking space ( lown Ilrent) :

Li neighborhood underground parking 0 neighborhood parking lot

Eparking outside the neighbourhood Dinot specified space (street, sidewalk)

Q8. If your family does not have a car, do you plan to buy one? (multiple choice)

L Yes, main purpose is:

E commute Lpick up kids L shopping L leisure and travel L household urgencies L other

L No, because:

Lno need of one Lthe vehicle is too expensive Lgas and maintenance is too expensive EL congestion

lilack of parking Enot environmentally friendly El other_

Q9. Your household has (#) motorcycles; _ (#) electric-bicycles; and (#) bicycles.

Q10. Any of your household members have habits of dining out? lYes LNo

a) He/she/they dine out (#) meals each week, average expenditure _yuan each time.

Q11. Any of your household members live elsewhere (not home) because of work/school/travel/other reasons?

ElYes LiNo a) Each year there are _ (#) person*days when they are not home.

Q12. In 2009, your household electricity bill is about yuan (or kwh) on average per month.

Spring/fall yuan (or kwh); Summer yuan (or kwh); winter yuan (or kwh)

Q13. Gas Source: LiNatural Gas (pipeline) LiCoal Gas (pipeline) LiLPG (gas pitcher kg)

Monthly Consumption M 3/pitchers (or yuan)

Q14. For cooking your household uses:

Li electricity Li gas(pipeline) L LPG (gas pitcher__ kg) pitchers(or yuan) /month L other

Q15. For heating your household uses:

LiNeighborhood centralized heating, heating bill: yuan/season

l Honeycomb-shaped briquet, average usage amount: ton/season

L Electric heating facility (air conditioning, electric heater) lOther(specify):

Q16. Type of Water Heater: L Electric Heater LGas Heater Li Solar Power Heater LOther_

Q17. For air cooling in the summer, your household uses: []Air conditioner l Electric fan (jump to Q19)

# of air conditioners: _ power: p; Type: O split-type ac O in-home central ac L building central ac

Q18. Your household's ac-using habits in the summer: (multiple choice)

Ouse when people feel hot at home Luse all the time to keep temperature constant (no matter people are at home or not)

L turn AC off when people leave the room L do not turn AC off when people leave the room

Liturn AC off and open window when sleeping Likeep AC on when sleeping
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Q19. In the summer your household usually sets the AC temperature at:

Dlower than 25'C D 25'C 026'C 0 27'C 028'C or higher

Q20. There are _ (#) south-facing rooms in your home.

Q21. Window ventilation of your rooms: (tick the corresponding cells)

Living Dining Kitchen Bathro Bathro

room room om 1 om 2

Open window

Window towards

patio/courtyard

No window

(B) Yourself

Q22. Rank the factors when you choose your neighborhoods (number the first five factors); and
towards your current neighborhood: 1 = Unsatisfied, 3 = neutral, 5 = Satisfied

Q23. Among the following facilities, you think it's best to be able to walk to: (multiple choices)

ELbus station El parking lot ELdaycare/kindergarten [Zelementary school ELclinic [I pharmacy

post office [Zelderly activity center ELentertainment and gym [ifarmers' market Oconvenient store

satisfaction level

Lbank 0
Erestaurant
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Items Importance Satisfaction level
Ranking

Housing price 1 2 3 4 5

Neighborhood Safety 1 2 3 4 5

Names of developer and property management 1 2 3 4 5

company

Building and room layout 1 2 3 4 5

Congestion near the entrance or around the 1 2 3 4 5

neighborhood

Within-neighborhood facilities 1 2 3 4 5

Green space in neighborhood 1 2 3 4 5

Parking space in neighborhood 1 2 3 4 5

NeQaighoro Walking environment around
d Quality th egbrod1 2 3 4 5

the neighborhood

Water quality and air quality 1 2 3 4 5
of the neighborhood

Distance to working place 1 2 3 4 5

Distance to school 1 2 3 4 5

Distance to daily shopping 1 2 3 4 5

Distance to hospitals 1 2 3 4 5

Neighborhoo Distance to public facilities 1 2 3 4 5

d Location Distance to city center 1 2 3 4 5

Distance to main roads 1 2 3 4 5

Distance to bus(BRT) stations 1 2 3 4 5

Distance to relatives and

friends 1 2 3 4 5



Lbarber shop llaundry l supermarket l department store

Q24. For each statement, express your level of agreement. 1 = strongly disagree, 3 = neutral, 5 = strongly agree

113

01. I like to buy plenty of daily food and necessities at once in big 1 2 3 4 5
supermarkets

02. Driving is a sign of prestige 1 2 3 4 5

03. It is convenient to take buses 1 2 3 4 5

04. I like riding bicycles 1 2 3 4 5

05. Time spent on travel is a waste to me 1 2 3 4 5

06. I'd like to live in bigger house 1 2 3 4 5

07. 1 like traveling 1 2 3 4 5

08. Plastic shopping bags in supermarkets should be free 1 2 3 4 5

09. High-rank officials do not take buses or ride bicycles to go out 1 2 3 4 5

10. Rich men do not take buses or ride bicycles to go out 1 2 3 4 5

11. I don't mind spending more money to achieve better quality of life 1 2 3 4 5

12. I exercise regularly 1 2 3 4 5

13. I reuse things like plastic bottles or bags 1 2 3 4 5

14. More powerful home appliances are better, if electricity bill is not
1 2 3 4 5

considered

15. I pay attention to deals and promotions, and sometimes I buy 1 2 3 4 5

second-hand stuff


