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Abstract

In recent years, considerable attention has been paid to hopping as a novel mode
of planetary exploration. Hopping vehicles provide advantages over traditional sur-
face exploration vehicles, such as wheeled rovers, by enabling in-situ measurements
in otherwise inaccessible terrain. However, significant development over previously
demonstrated vehicle navigation technologies is required to overcome the inherent
challenges involved in navigating a hopping vehicle, especially in adverse terrain.
While hoppers are in many ways similar to traditional landers and surface explorers,
they incorporate additional, unique motions that must be accounted for beyond those
of conventional planetary landing and surface navigation systems.

This thesis describes a unified vision and inertial navigation system for propulsive
planetary hoppers and provides demonstration of this technology. An architecture for
a navigation system specific to the motions and mission profiles of hoppers is pre-
sented, incorporating unified inertial and terrain-relative navigation solutions. A mod-
ular sensor testbed, including a stereo vision package and inertial measurement unit,
was developed to act as a proof-of-concept for this navigation system architecture.
The system is shown to be capable of real-time output of an accurate navigation state
estimate for motions and trajectories similar to those of planetary hoppers.

Thesis Supervisor: Jeffrey A. Hoffman, Ph.D.
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Chapter 1

Introduction

Several general trends have surfaced over the past several decades of planetary explo-

ration. One of these is that the scientific goals of exploration programs have grown in-

creasingly targeted. Initial planetary exploration programs, such as Pioneer, Mariner,

and Voyager, consisted mainly of planetary flybys and imprecise impactors. Trajecto-

ries and landing regions of more recent missions, such as Mars Pathfinder and Phoenix,

have grown more precise, encouraging scientists to ask more specific questions about

our neighbors in the solar system. Research questions have evolved over time, growing

both more complex and specific, from the initial question of "What does the surface

of the Moon look like?" (answered by the Lunar Ranger program), to the more recent,

"Is there water on the Moon?" (answered by the LCROSS mission), to the currently

unknown, "Is there water ice in the permanently shadowed regions of the Shackleton

crater near the south pole of the Moon?" To accommodate this trend, the landing

precisions of planetary landers have increased with time, as shown in Table 1.1.

A second, and related, trend is towards increased surface mobility upon landing on

other planets. The majority of surface landers have been stationary (Viking, Phoenix,

Surveyor, Venera, etc.). While returning a wealth of scientific data, stationary landers

are limited to only one location: where the vehicle lands. Many of the recent Mars

exploration missions have addressed this limitation with mobile rovers, which are

11



Mission

Surveyor
Apollo
Pathfinder
Mars Exploration Rovers
Phoenix
Mars Science Lab

Launch Year Planetary Body Landing Ellipse' (km)

1967 Moon 20 x 20
1969 Moon 1 x 1
1996 Mars 100 x 200
2003 Mars 87 x 11
2007 Mars 100 x 19
2011 Mars 20 x 25

Table 1.1: Approximate landing precisions of various planetary landers.

capable of sampling multiple locations near the landing site, greatly increasing both

the effective landing precision of the spacecraft and the diversity of the data returned.

These rovers have traditionally been limited by their low velocities to relatively short

ranges over their lifespans, as shown in Table 1.2. A significant limitation on a rover's

average speed is the capability of its onboard navigation system, as well as other

factors such as power, traction, and hazard avoidance.

In recent years, considerable attention has been paid to planetary hoppers for their

potential to overcome the limitations on landing precision and mobility facing current

planetary surface exploration technologies. Planetary hoppers have been shown to en-

able a wide range of planetary exploration missions of value [1]. This thesis describes

the architecture, design, and preliminary testing of a hopper navigation system, in-

tended for use with continued Earth-based hopper testing and as a basis for flight

hardware for future planetary missions.

Rover Name

Lunokhod 2
Sojourner
MER Spirit
MRE Opportunity
MSL Curiosity
Chandrayaan 2
ExoMars

Country

Soviet Union
United States
United States
United States
United States

India & Russia
Europe

Launch Year

1967
2996
2003
2007

2011 (launched)
2014 (proposed)
2018 (proposed)

Speed 2 (m/s)

0.55 (max)
0.007 (max)
0.01 (avg)
0.01 (avg)

0.008 (avg)
0.1 (max)

0.001 (avg)

Distance3 (km)

37
0.1

7.73
34.36

20
150
22

Table 1.2: Past and future rovers and their average speeds.

'The landing ellipses for landing on Mars are significantly larger than those for landing on the
Moon primarily due to uncertainties and challenges associated with atmospheric effects.
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1.1 Planetary Hoppers

Planetary hoppers are vehicles that traverse planetary surfaces using chemical exhaust

propulsion alone, freeing them from many of the limitations of rovers and stationary

landers. This allows hoppers to fine-tune their landing sites to very high levels of

precision, while also allowing exploration of a wide range of otherwise inaccessible

terrain. For this reason, analogies such as "reusable landers" and "airless helicopters"

are sometimes used to describe the unique mission profiles they enable. An example

of a conceptual hopper is shown in Figure 1-1.

Figure 1-1: A conceptual hopper designed for use on the moon. Image credit: Draper
Laboratory/Next Giant Leap

Hoppers provide a number of unique advantages over other types planetary surface

exploration vehicles. Cunio, et al. [2] list five basic advantages of hoppers, which are

summarized below.

2Rover speed and total distance is a mission parameter heavily affected by multiple mission goals

and requirements, as well as the technological capability of the launch organization, but it is clear
that rovers are growing more capable with each design iteration.

3 Distances given for MSL, Chandrayaan, and ExoMars are success criteria for the mission, and

are not necessarily comparable with those of the operational rovers. For comparison, the success
criteria for the MER rovers was only 600 meters.

13



Advantage 1-Rapid Regional Coverage

Hoppers can cover much greater distances than rovers or vehicles requiring a base

station for power or other infrastructure. The Mars Exploration Rover Opportunity

has traveled nearly 35 km during its 8 years thus far on the surface of Mars. How-

ever, a hopper could cover a comparable distance in a few minutes, if desired, and

then perform additional hops to different locations. This allows rapid exploration

of multiple sites of scientific interest, as well as close-range imaging throughout the

trajectory.

Advantage 2-Access to sites in rough terrain

Terrain limitations for exploration vehicles are severe. Currently, landing sites are

selected largely based off the absence of hazardous obstacles. Actual rover speeds are

much lower than their true maximum speeds in part due to terrain hazards, and the

regions in which rovers can operate are limited by the range of slopes and surface

features they are capable of handling. For example, the Mars Science Lab Curiosity

rover can traverse over obstacles up to 75 cm high, but no larger. Hoppers do not

have such limitations, as they traverse above the planetary surface, allowing them

to traverse over cliffs or canyons, explore inside of craters and caves, and pass over

especially rocky or uneven terrain, as shown in Figure 1-2. The only terrain constraint

for a hopper is the requirement for the presence of a suitable landing site that can fit

its small footprint somewhere near the end of its trajectory.

(a) Cliffs (b) Rocky Terrain

Figure 1-2: Hoppers are capable of exploring hazardous terrain otherwise inaccessible
using wheeled rovers.

14



Advantage 3-Ultraprecise landing capability

Hoppers are less reliant on entry, descent, and landing (EDL) system performance

to achieve precision landings, as they can simply perform a higher precision, correc-

tive hop upon landing, as shown in Figure 1-3. This technique, called ultraprecision,

allows for landing accuracies on the order of a meter. A hopper can utilize less com-

plex, flight-proven entry and descent techniques without the need for high-precision

guidance systems during these stages, reducing overall system cost and mass. This

also allows for selection of safer initial landing zones further from desired scientific

destinations.

Figure 1-3: Hoppers can achieve ultraprecise placement through multiple hops.

Advantage 4-Reduced system development cost

Hoppers are already designed for landing, so additional landing hardware development

is not required. On airless bodies, the hopper can use its onboard primary thrusters for

descent maneuvers and vehicle control. In the case of atmospheric bodies, the hard-

ware capabilities already onboard a hopper could be used to augment a parachute

system to provide a low- or zero-velocity touchdown utilizing Hazard Detection and

Avoidance (HDA) systems, allowing a controlled landing while still utilizing heritage

EDL technologies. Additionally, hoppers do not require any complex surface deploy-

ment systems, and all of their landed mass is part of the primary vehicle or payload.

This is in contrast to systems such as Mars Pathfinder's airbags or the Mars Science

15



Lab's "Skycrane," which both require additional mass for terminal descent, landing,

and deployment systems.

Advantage 5-Shifted operational complexity and risk

Most mobile surface exploration systems require some form of deployment, which in-

creases mission complexity and risk. However, there is generally no need to deploy the

hopper after initial touchdown because a hopper is inherently a lander. As a tradeoff,

a hopper has additional complexity and risk related to its guidance, navigation, and

control (GN&C) systems. Whereas rovers can almost always stop their motion at any

time without risk to allow additional time for decision-making, hoppers have a set

start and finish location for each motion and must operate reliably in real-time, as

all hesitations translate into additional fuel cost. This offers organizations and mis-

sion designers the opportunity to shift the complexity and risk of deployment toward

other systems, such as GN&C. This is potentially advantageous because it removes

an entire system from the vehicle, saving mass, development cost, and mission risk,

at the expense of requiring another system to be designed more robustly. This also al-

lows a shift in mission requirements, as precision navigation can occur during surface

operations as opposed to during landing from orbit.

Disadvantages of hoppers

The primary disadvantage of hoppers is that they are fuel limited, as they use chemical

propulsion rather than electrical drive motors. This means that a hopper must bring

all of its fuel with it from Earth, or utilize some form of in situ resource utilization

(ISRU), whereas rovers can use solar panels or radioisotope thermoelectric generators

(RTGs) as a long-term power source. Once a hopper expends its propellant reserves,

its capability becomes roughly equivalent to a stationary lander. A second disadvan-

tage is the high requirement for autonomy in the GN&C system. Rovers can stop and

wait for human operator instructions at any time it becomes necessary. However, be-

16



cause of communication delays and their high rates of motion, hoppers must operate

entirely autonomously. This puts stricter requirements on the navigation system for

a hopping vehicle than for a rover for both performance and reliability.

1.2 Problem and Motivation

Extensive development of hopping vehicles has been conducted by the Terrestrial Ar-

tificial Lunar And Reduced gravIty Simulator (TALARIS) Project, which is a joint

effort of the MIT Space Systems Lab and Charles Stark Draper Laboratory to develop

a prototype lunar hopper and to mature planetary hopping technologies. While the

TALARIS Project has made significant progress towards demonstrating the viability

of hopping for planetary surface exploration, an operational hopper navigation 4 sys-

tem does not yet exist. This thesis describes the architecture, design, and preliminary

testing of a hopper navigation system, intended for use with continued Earth-based

hopper testing and as a basis for actual flight hardware.

Hoppers require a fully autonomous, internal navigation system capable of handling

rapid, near-surface motions in an unknown environment. Autonomy is required due

to the long communication delays to the Moon or other planets, which eliminate the

possibility of remote operation due to the rapidity of hopper motions. The system

must be entirely internal and self-contained because installing an external navigation

system (e.g., a GPS-like system) on another planetary body is prohibitively expen-

sive. The system must be capable of navigating in an unknown environment to achieve

terrain freedom, as a hopper might be called upon to explore areas unavailable from

orbital imagery, such as permanently shadowed craters or underneath overhangs of

4 Guidance, navigation, and control are three distinct tasks often considered as a single vehicle
subsystem, called "GN&C." Navigation determines the current state of the vehicle (its location and
attitude, collectively referred to as its "pose," and its velocity), guidance determines what the vehicle
must do to reach its target, and control translates commands from guidance into physical actions and
maintains the stability of the vehicle. Note that while the term "navigation" is colloquially typically
used to refer to both navigation and guidance (such as in the case of a "GPS navigation system"
for a car), in this thesis, the term refers solely to the determination of the state of the vehicle. This
information then becomes the input to the guidance system.
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cliffs. Additionally, the precision required of hopper trajectories surpasses the resolu-

tion currently available from orbital imagery and digital elevation maps - the primary

sources of external information available.

The navigation systems developed for traditional exploration vehicles cannot meet

these requirements. Navigation systems onboard prototype hoppers currently in de-

velopment for testing on Earth are typically dependent on either an external system,

such as the Global Positioning System (GPS), or prior knowledge of their environ-

ment. Traditional terminal-descent and landing navigation systems are not designed

for extensive near-surface operation or high-rate translational motion. Helicopter nav-

igation systems are capable of handling translational motion, but are generally de-

pendent on GPS or other external systems, such as a remote operator.

1.3 Project Goals

The purpose of this work is to design, develop, and test a prototype hopper navigation

system. This can be broken down into four primary goals:

1. Develop a system architecture for a navigation system capable of estimating the

state of a hopping vehicle. (Addressed in Chapter 2.)

2. Develop a prototype system to evaluate the proposed hopper navigation system

architecture and its capabilities. (Addressed in Chapter 3.)

3. Demonstrate that unifying inertial and relative navigation techniques provides

advantages applicable to hoppers. (Addressed in Chapter 4.)

4. Evaluate the performance of the prototype system and demonstrate hopper

navigation capabilities. (Addressed in Chapter 5.)

18



1.4 Literature Review

Although a hopper-specific navigation system has not been previously developed,

there is a large amount of existing work on both hopping and navigation systems to

build upon. This brief literature review provides some background and a summary of

previous work.

1.4.1 Hopping

Hoppers are a relatively new form of planetary exploration vehicle, but their high

promise has motivated a large amount of research in recent years, especially for use

in low-gravity and low-atmosphere environments. In the early 1990s, ballistic hop-

ping vehicles were proposed as a method of surface mobility for human explorers on

Mars [3]. These vehicles were very large, required development in many areas, such

as in situ resource utilization (ISRU), and would have been difficult to certify as safe

for human passengers. Small hoppers for unmanned missions, however, do not share

these drawbacks. Several studies of unmanned Mars exploration missions conducted

by multiple organizations have included hopping vehicles [4-8]. All of these hopper

concepts included some form of ISRU, typically based around extraction of C02

from the Martian atmosphere. Most of the work done in relation to these conceptual

hoppers focused on development of ISRU systems of varying complexity, some even in-

volving prototype testing [7]. None of these early-stage development projects involved

navigation of these vehicles, and none of the concepts were selected as candidates for

NASA or European Space Agency (ESA) exploration missions.

In 2007, the Google Lunar X-Prize (GLXP) was announced, offering a prize of $20

million to the first non-government organization to land on the Moon and travel at

least 500 meters on the surface. Shortly afterwards, team Next Giant Leap (NGL)

was formed, including MIT and the Draper Laboratory amongst its team members.

Architecture studies based around the framework of the GLXP resulted in the se-

lection of a hopper as the ideal surface mobility system for the competition, as it

19



offers potential for significant reductions in both launch mass and overall mission

risk [9]. Because hoppers can bring a limited amount of fuel onboard, a small hopper,

as shown in Figure 1-4, can easily achieve the GLXP requirements without the need

for complex ISRU systems.

Figure 1-4: Artist's rendition of the Next Giant Leap hopper designed to compete in
the Google Lunar X-Prize. Image credit: Draper Laboratory/Next Giant Leap

Figure
and M

1-5: The TALARIS Prototype hopper, developed by the Draper Laboratory
is used to test hopping guidance, navigation, and control algorithms onIT,

Earth. Four electric, ducted fans are used to reduce the effect of gravity and simulate
the lunar environment.

The Talaris Project, the first comprehensive research program relating to hopper tech-

nology development and detailed mission analysis, was formed as part of NGL's GLXP

efforts in order to advance hoppers to flight-ready status. As part of this project, the
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TALARIS prototype hopper, shown in Figure 1-5, was designed, constructed, and

flown in order to gain operational experience [10-12] and validate hopping GN&C

algorithms developed by Draper [13,14]. Focuses of technology development research

by the Talaris Project have included topics such as hopper trajectories [15], avionics

systems [16,17], and propulsion systems [18-20]. Additionally, considerable effort was

made to define when and where hoppers make sense for planetary exploration [1,2], in-

cluding point designs for hoppers intended for exploration of the Moon [9], Mars [21],

and Titan [22]. Current research of the Talaris Project is focused primarily on the

development of a hopper navigation system [23] and a hazard detection and avoidance

(HDA) system [24].

The Draper Laboratory-built GENIE (Guidance Embedded Navigator Integration

Environment) system is a reliable and robust platform capable of testing GN&C al-

gorithms onboard terrestrial rockets, such as the Masten Xombie [25]. On February 2,

2012, a derivative of the TALARIS GN&C software was flown onboard GENIE and

Xombie, and successfully demonstrated a 50 m free-flight, rocket-powered hop, shown

in Figure 1-6 [26]. However, GENIE is currently dependent on GPS for its navigation.

Thus, all primary systems unique to planetary hoppers have been demonstrated in

some form, with the exception of the navigation and HDA systems. This thesis pro-

vides the design of such a hopper navigation system, as well as significant progress

towards its demonstration.

Figure 1-6: Draper's GENIE System guides the Masten Xombie terrestrial rocket
during a controlled hop. Image credit: Draper Laboratory
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1.4.2 Existing Navigation Systems

A hopper navigation system is in many ways a combination of navigation systems de-

signed for planetary landing, unmanned aerial vehicles (UAVs), especially helicopters,

and surface vehicles, such as cars or pedestrians. For this reason, a survey of capabil-

ities and existing systems available in these adjacent fields was required.

Planetary Lander Navigation

Traditionally, unmanned planetary landers have used one or more inertial measure-

ment units (IMUs) and a Doppler radar system as their primary landing navigation

sensors. However, Doppler radars are large, heavy, and expensive, and are growing

increasingly so as the desired landing ellipses (a measurement of landing precision)

grow increasingly small. For example, the Doppler radar system for the Mars Science

Lab (launched November 2011), shown in Figure 1-7, approaches the size and mass

of the entire NGL hopper.

Figure 1-7: Testing an engineering model of the Mars Science Lab Doppler RADAR

system, which is used for descent navigation. Image credit: NASA

To counter this trend toward prohibitively large and expensive landing navigation

sensors, the vast majority of landing navigation systems currently in development
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include some form of optical sensor, such as a camera, flash Light Detection and

Ranging system (LIDAR), or Doppler LIDAR, typically in addition to an IMU. Op-

tical systems are capable of determining more information at higher precision and

for lower mass than Doppler radar regarding a vehicle's position and attitude (i.e.,

its pose), but have higher algorithmic complexity. In addition, passive optical sensors

(i.e., cameras) are limited by external conditions, such as surface illumination and

texture.

The NASA Autonomous Precision Landing and Hazard Avoidance Technology (AL-

HAT) program is currently developing a navigation system intended for manned lunar

landings [25, 27, 28]. This system uses a flash LIDAR, Doppler LIDAR, passive op-

tical cameras, IMUs, and a laser altimeter. This system will be highly reliable and

redundant, with a required landing accuracy of 90 m or better, at the cost of being

large, heavy, and expensive. A flight test of this system using a helicopter is shown

in Figure 1-8, which shows its large size (for the prototype system). This system is

not a good match for small, lightweight, unmanned vehicles, such as hoppers, which

do not require the high level of redundancy and accuracy during descent from orbit

of manned vehicles. The ALHAT system uses both active and passive optical sensors

for terrain relative navigation (TRN) and hazard detection and avoidance (HDA).

These TRN algorithms match features, such as craters, and elevation measurements

to an a priori reference map of the landing region, and are partly based on navigation

systems already in use on cruise missiles [27,28].

The NASA Jet Propulsion Laboratory (JPL) is currently developing the Vision-aided

Inertial Navigation (VISINAV) system for unmanned planetary descent and landing.

The VISINAV system uses a single optical camera and an IMU, tightly integrated

using an Extended Kalman Filter (EKF) to achieve precision landing accuracy. Two

vision algorithms run onboard the system. The first extracts landmarks from images

and localizes them to an a priori map of known landmarks in the landing region,

providing absolute positioning information for the vehicle. The second tracks the

motion of features (not necessarily known a priori) to provide additional relative
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Figure 1-8: A flight test of the NASA ALHAT navigation system. Image credit: NASA

pose information, especially at low altitudes when known landmarks become sparse.

An experimental test of this system, deployed from a sounding rocket, achieved an

accuracy of 6.4 m in determining landing position [29].

The ESA Navigation for Planetary Approach and Landing (NPAL) program [30], and

its follow-up navigation system, VisNAV [31], are also developing a descent and land-

ing navigation system for unmanned planetary missions, primarily intended for the

Moon and Mars. Unlike the JPL VISINAV, which localizes landmarks to a database,

ESA's VisNAV determines the distances to extracted feature points from images and

matches them to a digital elevation map (DEM) of the landing region. VisNAV also

includes a purely relative vision navigation system to track the relative motion of

the vehicle to unmapped features to improve upon the resolution available from the

DEMs, as well as an IMU and EKF [32].

A number of other groups have begun development of vision-based navigation systems,

although most have not yet approached the level of maturity of ALHAT, VISINAV,

or VisNAV. The Draper Laboratory has developed a vision-based navigation system

for lunar descent that uses absolute positioning of craters on an a priori crater map,

as well as a feature tracking algorithm for relative positioning. The outputs of these

two algorithms are combined using an EKF [33]. Additionally, researchers at the Deep

Space Exploration Research Center in Harbin, China have also developed a combined
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vision and inertial navigation system for Martian landing that localizes detected image

features on an a priori map [34]. These systems show promising results in simulation,

but results from hardware tests are not yet published.

Unmanned Aerial Vehicle Navigation

With the growing prevalence of Unmanned Aerial Vehicles (UAVs) for both military

and commercial applications, much research has focused on development of their

navigation systems. Especially at low altitudes and with unmanned rotorcraft, these

navigation systems fulfill similar requirements to those of hoppers.

Most UAV navigation systems include a GPS receiver, often integrated with an IMU

using a Kalman filter. An example of recent work in this area involved the addition

of a magnetometer to a GPS/IMU/EKF navigation system [35]. The magnetometer

is able to provide observability into the yaw gyro of the IMU (i.e., normal to the

surface of the Earth), which is otherwise very difficult to calibrate (because gravity

does not project into yaw motions). Experimental results of this system onboard a

miniature unmanned helicopter showed that the addition of the magnetometer was

beneficial, especially to yaw measurement [36]. However, the vast majority of these

systems include sensors unavailable to hoppers (especially in lunar environments),

such as GPS receivers, magnetometers, and barometers. Additionally, many UAVs

have a human operator in the loop, and therefore have not had a need for purely

autonomous navigation and real-time decision-making.

Inertial navigation typically requires an additional sensor to constrain its error growth,

such as a GPS receiver. However, GPS is not always available or sufficiently accu-

rate, so vision systems have made their way onboard UAVs to further improve their

accuracy and robustness. Early vision systems typically involved ground-based data

processing, as hardware capable of providing the computing power required was too

large for flight systems [37]. As processors grew smaller and faster with time, these

systems were moved onboard UAVs, providing real-time pose updates [38].
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Follow-on work by groups such as the Draper Laboratory [39] and Georgia Tech [40]

led to systems capable of navigating during limited periods of GPS dropout. These

systems allow small UAVs to operate in areas with sparse GPS coverage, such as urban

canyons. More recent work has led to UAV navigation systems capable of operation in

the absence of GPS entirely [41-43]. However, many inertial and vision-only systems

still use an additional sensor, such as a barometer [44,45], to more robustly constrain

altitude measurements.

Surface Navigation

A third class of navigation systems can be formed from the many systems under de-

velopment for use by pedestrians, cars, and planetary rovers. Because the pedestrians

or vehicles requiring navigation are known to be on a fixed surface, the primary roles

of these systems tend to be odometry measurements and hazard detection rather than

attitude and altitude.

One such pedestrian system is the Draper Laboratory's Personal Navigator System

(PNS), which is a wearable navigation system using an IMU, GPS receiver, barometric

altimeter, and a three-axis miniature Doppler radar. Experimental results showed this

system to be highly effective, but the radar was critical in order to navigate during

GPS outages [46].

A number of ground vehicle navigation systems have been designed and experimen-

tally tested, primarily in cars. The Carnegie Mellon University Robotics Institute

developed a system robust to GPS outages using an IMU and a stereo camera, which

is capable of accurate navigation of a passenger car over distances of several kilome-

ters [47]. Similar systems have been developed by Oak Ridge National Lab using a

monocular camera [48], and by a group from South Korea using an omnidirectional

camera [49].

Development of navigation systems for planetary surface rovers is also an active area

of research, as NASA, ESA, China, India, and many GLXP teams all have plans to
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send mobile vehicles to the surface of the Moon or Mars within the next decade.

NASA's JPL developed a combination stereo vision and IMU system for odometry

measurements on their Mars rovers as a means to detect and overcome errors from

wheel rate measurements due to slippage and poor traction [50]. Recent developments

at JPL have led to the AutoNAV system, which enables real-time navigation and

hazard avoidance onboard future Mars rovers and has been successfully tested in

analogous environments [51]. A group in China developed a system to navigate an

unmanned lunar rover using stereo and monocular vision, which is also capable of

obstacle detection and avoidance, and has been demonstrated in simulations [52]. A

number of other navigation algorithms for lunar navigation have been proposed, such

as one that tracks the positions of mountain peaks on the surrounding horizon to

localize a rover to within approximately 100 m on the lunar surface [53].

1.4.3 Navigation Algorithms

The trend in lander, UAV, and surface navigation research and development is towards

replacement of large or high-cost sensors with small, low-cost vision systems. These

vision systems are frequently combined with inertial sensors. This section briefly de-

scribes some of the stereo and monocular vision algorithms in the literature, as well as

some examples of algorithms incorporating both vision and inertial sensor data.

Stereo Vision

Detected features in an image can be localized in space in only two dimensions,

as a camera image is only two dimensional. Stereo vision systems use the disparity

between images from two adjacent cameras to calculate distances to detected features

within a given scene [54]. With this additional information, features can be localized

in 3D space [55]. Once the locations of these features are known, pose algorithms

can calculate the location of the camera with respect to these features. Motion of the

camera can be detected by repeating this process over multiple frames, as was done
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on the early Mars rovers [50].

This process can be taken a step further by utilizing a class of algorithms called Si-

multaneous Localization and Mapping (SLAM). SLAM adds an element of memory

to the system, as all of the features localized in space are saved and built into a map

of the vehicle's surroundings. The camera is then localized with respect to the map,

rather than the series of images themselves, leading to a more robust solution. A num-

ber of stereo implementations of SLAM have been applied and experimentally tested

on surface vehicles [56, 57]. One stereo SLAM implementation of particular interest

to this thesis is the RSLAM system, developed by the University of Oxford [58]. This

system achieves particularly strong results even in the presence of changing lighting

conditions and rapid motions. The RSLAM system provides the basis from which the

Draper-developed DSLAM, introduced in Chapter 4, system was built upon. Other

recent work relating to stereo SLAM has related to increasing the computational

speed of the algorithms, such as by running portions on highly parallel hardware

architectures such as an image processing LSI [59], FPGA, or GPU [60].

Monocular Vision

Stereo vision systems require two cameras spaced a specified distance apart, which

is directly proportional to the maximum depth they can resolve. Single-camera, or

monocular, vision systems have been developed in an attempt to reduce size and mass,

especially for small surface robots and UAVs. These systems typically work in one

of three ways. First, the camera can extract information from the environment, such

as vertical and horizontal lines and their perspectives, and use them to estimate the

camera's location [61,62]. However, this will not work in an unstructured environment

such as the Moon.

A second monocular technique, called optical flow, tracks the motion of features within

the frame of the camera. From this motion, the algorithm can determine information

about the distance the camera has moved and its velocity. An example of an optical
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flow system is the Mars Descent Imager, which was flown on the Mars Exploration

Rovers during their descent in order to estimate their horizontal motion [63].

The third commonly used class of monocular vision algorithms is called structure

from motion. This is similar to iterating upon an optical flow system, in which the

relative motions of tracked features are used to determine their depths, from which

the pose and motion of the camera can be determined. These types of systems require

the camera to be in motion, are more computationally intensive, and have difficulty

resolving depth without the aid of an additional sensor, such as a laser rangefinder or

barometric altimeter. A number of SLAM implementations using monocular structure

from motion are available in the literature [64-66].

Unified Vision and Inertial

Performance improvements can come from the inclusion of multiple sensor systems

using a statistical estimator, such as an Extended Kalman Filter (EKF). Multiple

sensors are typically chosen to balance their strengths and weaknesses, leading to a

more robust integrated system. A common combination is a vision system and an

IMU, and many such systems are available in the literature using either stereo [23,

67-69] or monocular vision systems [70-73]. A detailed discussion of the advantages

provided by such a unified system is provided in Chapter 4.
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Chapter 2

Hopper Navigation

Hopping is an advantageous new means of planetary exploration. Dedicated naviga-

tion systems for vehicles similar to hoppers, such as landers, unmanned aerial vehicles

(UAVs), and wheeled surface vehicles currently exist and have been experimentally

tested. However, no such dedicated system has yet been developed for planetary hop-

pers. Development of an autonomous, real-time, precision navigation system specific

to hoppers is needed prior to deployment of operational planetary hoppers.

This chapter begins by describing the flight profile of hopping trajectories and provid-

ing an overview of the challenges a hopper navigation system must overcome. These

challenges are then rephrased as goals for a hopper navigation system, and a system

architecture capable of meeting those goals is proposed. Subsequent chapters describe

the design of a hardware and software testbed to experimentally test this architec-

ture (Chapter 3), the advantages of the primary navigation algorithm selected for this

architecture (Chapter 4), and an analysis of experimental results obtained using the

testbed system (Chapter 5). Chapter 6 provides high-level conclusions on the suitabil-

ity of this architecture for operational unmanned planetary hopping vehicles.
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2.1 Hopper Trajectories

Three types of hopper trajectories have been proposed in the literature: the ballistic

hop, hover hop, and gliding hop. The navigation system architecture described in this

thesis was designed primarily for the hover hop trajectory. However, this architecture

is expected to be additionally capable of navigating a hopper along other trajectories,

though possibly less precisely or optimally than a system designed specifically for

those trajectories.

2.1.1 The Ballistic Hop

The ballistic hop is usually the most fuel-efficient of the three, especially for long

distances. It is also the most broadly proposed in hopping literature [3-6, 8]. As de-

scribed by Middleton, the ballistic hop begins with a delta-V maneuver at a nonzero

angle relative to the surface, placing it into a ballistic coast. When the vehicle ap-

proaches the landing site, it performs a braking maneuver in order to achieve a soft

touchdown [15]. This trajectory's main drawbacks are that the vehicle must reorient

itself at the apex of the trajectory and that the vehicle has large attitude changes

during the flight. The upper portion of Figure 2-1 shows a sample 1 km ballistic

hop trajectory. Due to their fuel-efficiency, ballistic hops are typically proposed for

long-distance hops.

2.1.2 The Hover Hop

The second hopper trajectory is called the hover hop, during which the vehicle main-

tains constant attitude throughout the duration of the flight. The hover hop begins

with a vertical ascent to a specified hover altitude, followed by a constant-attitude lat-

eral traverse, and finishes with a vertical descent and soft landing. A detailed analysis

of the hover hop trajectory is provided by Middleton [15].

Draper and MIT selected the hover hop for their TALARIS Prototype and Google
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Figure 2-1: Sample 1 km ballistic hop (above) and hover hop (below) trajectories.

Lunar X-Prize (GLXP) hoppers for the many advantages it provides, including main-

taining constant attitude (beneficial for safety and possible payload scientific mea-

surements) and decoupling the vertical and lateral control systems, which simplifies

their design. A sample 1 km hover hop trajectory is shown in the lower portion of

Figure 2-1.

A hover hop includes seven distinct flight modes, as shown in Figure 2-2. A hopper

navigation system must be capable of navigating during all of these flight modes,

though each mode has unique priorities. During the first flight mode, the system

must correctly measure altitude and heading angle (roll) during the ascent. During

the stationary hovers, modes 2 and 6, the system will focus on attitude measurement,

as the vehicle must precisely control its attitude prior to firing its lateral thrusters in

order to reduce the need for corrective action later in the trajectory. During the lateral

modes, the system must continue to provide accurate attitude measurements, but

also must measure the distance the vehicle has traveled (i.e., its odometry). Vehicle

motion occurs only along one axis of the vehicle at any given time, with the exception
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Figure 2-2: Hover hop flight modes.

of erroneous motions, which are small. This allows for an effective decoupling of the

navigation system, in which the vertical and lateral motions can be considered and

designed for independently.

2.1.3 The Gliding Hop

The gliding hop is a modified hover hop for use on planets or moons with dense

atmospheres, such as Venus, Titan, or the Earth, which requires the addition of

rigid wings to the vehicle [22]. This trajectory starts with a vertical ascent to a

specified altitude, similar to the hover hop. The vehicle then conducts a downward

pitching maneuver to gain velocity and then enters a downward sloping trajectory

at its maximum lift to drag ratio. When the vehicle has lost most of its altitude, it

pitches upward, shedding velocity until it stalls. At that point, the vertical actuators

re-engage and the vehicle performs a vertical descent maneuver, similar to that which

concludes the hover hop. A sample 850 m hover hop trajectory designed for Titan is

shown in Figure 2-3.
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Figure 2-3: A sample 850 m gliding hop trajectory. Powered segments of the trajectory
are shown in red and and unpowered are shown in blue.

2.2 Challenges of Hopper Navigation

Hoppers are often referred to as "reusable landers" or "airless helicopters." However,

these analogies do not translate especially well to hopper navigation systems, due to

several additional challenges beyond those typical for landers or helicopters. Chal-

lenges beyond those typical for landing are largely a result of the hopper executing

its mission in close proximity to the planetary surface and in poorly mapped envi-

ronments. Challenges beyond those typical for UAVs arise because fewer sensors are

available for use, all computation must be performed onboard the vehicle in the ab-

sence of a human operator, the operational environments are less understood than

those on Earth, and vehicle fuel-constraints result in an unrecoverable cost for any

hesitations or corrective actions required during flight. The four key challenges of

hopper navigation are: mass and power limitations, hazard detection and avoidance,

terrain variability, and rapid motion handling. A successful hopper navigation system

must be capable of overcoming all of these challenges.
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Mass and Power Limitations

Landers must be able to determine their location over a large variation in altitudes

throughout their descent, but only have to land once. Because hoppers make repeated

landings, as well as lift-offs and traverses, the mass of every onboard system carries

a much higher penalty as far as fuel requirements. For this reason, it is important

that the mass of the navigation system (and by extension, its power requirements)

be kept to a minimum. UAV navigation systems face similar challenges, but often

use additional sensors unavailable to hoppers, such as lightweight barometers or GPS

receivers. These sensors significantly relax the requirements on the primary sensors,

allowing the use of smaller and lighter cameras and IMUs.

Hazard Detection and Avoidance

Hoppers have stricter requirements than landers for hazard detection and avoidance

(HDA) systems. Because hoppers generally remain near to the surface during tra-

verses, the HDA system must scan the region in front of the vehicle as well as that

below it for obstacles, unlike landers, which typically only scan in one direction. Fur-

thermore, the HDA system has significantly less time to identify and act on hazards,

such as rocky areas or cliff faces, because its descent time is on the order of seconds

rather than minutes. Additionally, a soft, safe touchdown on the planetary surface is

a critical requirement for hoppers, as the landing gear must not be damaged prior to

mission completion. Most planetary landers utilize one-time-use crushable structures

for kinetic energy damping on landing. Most operational UAVs are designed to land

on landing pads or runways and operate in open airspace, and thus do not typically

share these strict requirements for HDA.

Terrain Variability

Hoppers must be able to operate in environments with greater terrain uncertainty

than landers. Whereas a lander typically has a designated landing region with consis-
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tent, well-understood terrain, an often touted advantage of hoppers is their "terrain

freedom," which allows them to explore multiple types of terrain on a single mission.

This means that any surface-relative navigation system must be terrain-independent,

allowing for greater mission versatility and flexibility. This is increasingly becoming

the case with UAVs as well, particularly with small rotorcraft designed to operate

near the surface. However, this is not as strict a requirement with UAVs, as position

can be constrained by GPS when it is available, as well as other sensors.

Rapid Motion Handling

Hoppers must be capable of handling the rapid motions of repeated trajectory ad-

justments and control actions performed using small rockets. This is largely driven

by the HDA requirements and the short time scales allowed for avoidance maneuvers.

This is not as strict a requirement for landers, as they can begin scanning the landing

region for safe zones long before they enter the flight envelope of a hopper, allowing

for more gradual maneuvers initiated earlier on in the trajectory. Because UAVs are

not as strictly concerned with propellant burn time and can typically be refueled and

reflown, they do not necessarily require the same extent of rapid motion handling

capability. As UAV missions become increasingly complex, this will likely become a

stricter requirement.

2.3 Hopper Navigation System Goals

The aforementioned hover hop trajectory and challenges of hopping lead to a number

of important goals for any hopper navigation system. These goals could loosely be

considered to be stakeholder expectations for the system. In this context, the system

includes both pose estimation and hazard detection functions, as they will likely

share sensor systems and should be considered collectively for purposes of architecture

selection. The remainder of this thesis addresses only the pose estimation and velocity

and angular rate measurement functionality of the system (i.e., "navigation").
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The primary goal of the pose estimation system is to provide an accurate six degree-of-

freedom (DOF) pose estimate at a sufficient rate to the hopper guidance and control

systems during all phases of flight. During vertical ascent maneuvers, the system must

be capable of precisely measuring both roll' (i.e., "heading") and vertical motions.

Attitude must also be measured, but achieving altitude and heading is the top priority.

Small lateral drifting due to minor attitude errors is not especially harmful to the

mission objectives. By the time the vehicle achieves hover, the roll maneuver should

be complete so as to minimize propellant burn, and precise attitude and heading

measurements become the top priority as the vehicle prepares for lateral acceleration.

During vertical descent, the system still focuses on precise altitude measurements, but

hazard avoidance maneuvers must additionally be tracked. These maneuvers consist

of roll and lateral motions, and might involve large deviations in attitude depending

on the severity of the maneuvers.

During lateral maneuvers, the system primarily needs to precisely measure heading

and odometry. Altitude and attitude measurements are less important during these

phases of flight, except during the brief lateral acceleration burn. The more precise the

heading, altitude, and attitude are prior to the acceleration burn, the more efficient

the hop will be, as fewer corrective measures will be required to reach the target

location. Hover hop trajectories are not designed to handle curved flight paths, making

corrective measures especially costly, as the vehicle must stop completely prior to

changing its heading.

The primary goal of the hazard detection system is to identify and characterize all

hazards in or near the flight path of the vehicle, such as large rocks, cliffs, or canyons.

A collision with any such hazard would likely have disastrous consequences, and as

such the vehicle must scan for and track hazards in the direction of its flight path.

During the vertical ascent, the vehicle must coarsely scan for hazards above itself,

Landing spacecraft generally use the same coordinate frame as that defined for the Apollo Lunar
Module (LM) [74]. In this system, the X axis is normal to the surface being landed upon, the Z axis
is the primary forward direction ("out the hatch" for the LM), and Y completes a standard right-
handed coordinate system. This means that "roll," which is always defined as rotation about the X
axis, for a lander is physically similar to "yaw" for an aircraft.
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such as a possible overhang from a cliff. During lateral translations, the vehicle must

coarsely scan for hazards in the forward direction. Because such hazards would almost

certainly be large, they do not need to be tracked with high precision (they only

need to be detected so the vehicle knows to reduce or increase its altitude or stop

and change its heading). During the vertical descent, precise hazard detection and

tracking is required, as the vehicle must determine and navigate to a safe landing site.

In order to conduct a safe landing, any hazards larger than the maximum survivable

size must be located precisely.

2.4 Navigation Sensors

A navigation system architecture capable of performing the aforementioned mea-

surements of the vehicle state in real-time is needed. This section presents a non-

exhaustive list of available navigation sensors and compares them based on their

capacity for achieving the above navigation and hazard detection goals.

2.4.1 Sensor Descriptions

The intention of this study was to select a suite of navigation sensors that are already

available or are reasonably well developed. Inventing or maturing new sensors would

almost certainly increase development time and cost. The sensors considered for a

hopper navigation system are briefly described below.

Inertial Measurement Units (IMUs)

At least one inertial measurement unit is typically included in any spacecraft navi-

gation system. They provide high-rate acceleration and rotation rate data in all six

degrees of freedom (DOFs), and operate completely independently from any external

systems. Their main drawback, however, is their tendency to drift with time due to
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integration errors. The most accurate IMUs, with suitable drift and error character-

istics, are the largest, heaviest, and most expensive, and would, in general, not be

suitable for hoppers. A common solution to this problem is to constrain the error

growth of the IMU using an additional sensor and a statistical estimator, such as

an Extended Kalman Filter (EKF). This way the overall system still benefits from

the high-rate measurement capability of the IMU, but for a much lower cost and

mass.

Vision Systems

As discussed in Chapter 1, there are a number of ways to extract navigation infor-

mation from optical cameras. Some of these algorithms, such as many SLAM im-

plementations, can calculate the full 6-DOF pose estimation. These systems offer

many advantages, such as low hardware cost and mass, but are often computation-

ally expensive and run at relatively slow rates. The error growth in such a vision

system is directly related to how many tracked optical features are leaving the field

of view of the camera. This means a downward-facing camera system will outperform

a forward-facing camera system during a vertical maneuver, and vice versa.

Laser Rangefinders

Laser rangefinders provide range information in a single direction. Scanning laser

rangefinders rapidly move the beam along a set path at set increments. These sensors

typically are very accurate for a relatively low cost and mass, and can have very long

ranges, depending on the model. Typically a single beam model will have longer range

and higher accuracy, and would be used to provide precise altimetry, while scanning

laser rangefinders would more likely be used for coarse hazard detection at shorter

ranges.
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Horizon Cameras

A horizon camera is a special class of vision system that purely detects the horizon line

in its field of view. They are often used for attitude control at high altitudes, but are

less effective at this at the low altitudes hoppers explore, especially in mountainous

or cratered areas. At low altitudes, horizon cameras can be used instead to localize

a vehicle coarsely and provide heading information with respect to mountain peaks

detected on the horizon line.

Star Cameras

Star cameras are used on spacecraft requiring precise attitude measurement, such as

space telescopes. They can localize themselves to a known star map very accurately,

and can be used on airless bodies, such as the moon. However, the long exposure

times required to image the stars make them infeasible for use on moving hoppers,

as the images would likely have too much blurring to be effective.

Doppler Radar

Doppler radar systems are active sensors capable of measuring range and velocity

using radio waves. They are highly robust with a great deal of heritage on landing

systems at altitudes up to a few kilometers, but their limited accuracy makes them a

poor fit for close-proximity vehicles such as hoppers. These radar systems tend to be

prohibitively large and heavy for hoppers, as well.

Doppler LIDAR

Doppler LIDARs are a relatively new development and do not yet have any flight

heritage. These systems operate similarly to Doppler radars, but use light rather than

radio waves, which gives them much higher precision. In part because they are so new,

these systems require power conditioning equipment that is too large and heavy for
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use on an unmanned planetary hopper, although they will be incorporated into the

larger and more comprehensive NASA ALHAT system. In the future, a sufficiently

small and light Doppler LIDAR might be developed that could be used effectively

onboard a hopping vehicle.

Flash LIDAR

A flash LIDAR is an active sensor that provides a 2D depth map of its field of view, in-

dependent of lighting conditions. Many visual SLAM and hazard avoidance algorithms

can operate upon this data with higher accuracy than that currently obtainable from

optical imagery. However, flash LIDAR systems are still in an early stage of develop-

ment and have mass and power requirements exceeding those of Doppler LIDARs. As

such, these systems are not considered to be suitable for unmanned hoppers at this

time.

2.4.2 Sensor Combinations

None of the sensors described above are capable of conducting all of the measurements

required of a hopper navigation system on their own, and thus the system will require

some combination of complimentary sensors. The primary functions of the navigation

system, derived from the goals listed above are measuring odometry, altitude, heading,

attitude, forward hazard detection, downward hazard detection (especially at the

landing site), and proximity hazard detection. Table 2.1 shows the capability of each

sensor at performing each function. The star camera, Doppler LIDAR, and flash

LIDAR systems are in the table for comparison purposes, but as described above,

are not suitable for an unmanned hopper navigation system in their current state

of development. From this table, combinations of sensors capable of comprehensively

navigating a hopper can be determined.

The left half of Table 2.1 shows the capabilities of each sensor with respect to vehi-

cle navigation. It is clear from the table that vision navigation systems provide the
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Navigation Function Hazard Detection Function
Sensor Odom. Alt. Roll Att. Landing Forward Prox.
IMU Poor Poor Fair Good None None None
Vision (Downward) Fair Good Good Good Good None None
Vision (Forward) Good Fair Good Fair None Good None
Laser Altimeter None Fair None None None None None
Scanning Laser None Good None Poor Fair Fair Fair
Horizon Camera None None Fair Fair None None None
Star Camera Fair Fair Fair Good None None None
Doppler Radar Fair Fair None Fair Fair None None
Doppler LIDAR Good Good Fair Good Fair None None
Flash LIDAR Good Good Good Good Good None None

Table 2.1: Capabilities of various sensors to perform the functions required of a hopper
navigation system.

broadest capability across the range of required navigation functions. They also have

the added benefit of being very useful for forward and landing site hazard detection.

Combining the forward and downward vision systems offers solid performance across

all functions. As is explored in depth in Chapter 4, the performance of the vision sys-

tems is significantly improved when additionally combined with an IMU. A Doppler

radar system could potentially be used in place of the downward facing vision system,

but it would provide less functionality at a higher mass and cost.

Proximity hazard detection is coarse detection of large hazards near the vehicle but

outside its predicted motion. The purpose of this is to reduce unproductive hazard

avoidance measures, which always first involve a roll maneuver to scan the region of

predicted motion in detail prior to commencing lateral vehicle motion. If locations

of likely hazards are known prior to rotation, the vehicle can rotate to a heading

that is more likely to be free of obstacles without having to wait until it is detected

by the primary, forward-facing hazard detection system. This means that the hazard

detection does not need to be especially accurate or precise, as it merely provides an

early-warning. It is clear from Table 2.1 that few options exist for proximity hazard

detection. In addition to scanning laser altimeters, either an omnidirectional vision

system or many monocular vision systems would be technically possible, but they

would have high computational loads and significantly complicate the system, and
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thus are not considered here. A scanning laser altimeter can provide this functionality

for much less complexity than full 360-degree camera coverage.

2.5 Selected Architecture

A thorough analysis of the available sensor systems and their combinations led to the

selection of a hopper navigation system utilizing both downward- and forward-facing

vision systems and an IMU, as shown in Figure 2-4. A stereo vision system is used

in the downward direction to provide accurate range data at a high rate, primarily

during vertical maneuvers. A monocular system is used in the forward direction to

provide precise heading tracking and odometry during lateral maneuvers. An IMU is

included to accommodate rapid motions and to provide continuity amongst all phases

of flight. Hazard detection capabilities of this system are further improved with the

addition of scanning laser rangefinders for coarse, proximal hazard scanning.

Monocular
Vision

Vison

Figure 2-4: The selected hopper navigation system architecture. A downward-facing
stereo vision system provides a high-rate position estimation during vertical flight
phases, a monocular vision system provides odometry and heading tracking during
lateral flight phases, and an IMU accomodates rapid motions and provides continuity
to the system.

Error accumulated in vision systems is generally a result of detected features being lost

from the field of view of the camera. This is because data is essentially "lost" from the
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system as tracked features leave the field of view, and new features must be localized

into the internal map to replace those recently lost. The uncertainty associated with

this localization increases when the map contains fewer known locations in view.

Because of this, vision systems are most accurate when they hold features in view for

as long as possible. A hopper navigation system can benefit from the decoupled nature

of the hover hop trajectory by using separate vision systems for vertical and lateral

motions, ideally allowing features to be tracked consistently for the duration of each

primary maneuver (i.e., vertical ascent, lateral traverse, and vertical descent).

For these same reasons, a backward-facing vision system should outperform a forward-

facing system, because the same features will be tracked consistently for the duration

of the flight, with new features being added but few ever being lost except due to

being out of resolvable range (because the effective field of view is continually in-

creasing). However, a backward-facing system provides no added benefits for hazard

detection, and its tangible benefits over a forward-facing system in terms of odometry

are relatively small. An ideal system, less concerned with mass, cost, or complexity,

might include both forward- and backward-facing cameras.

2.5.1 Downward Stereo Vision System

A stereo vision system was selected for the primary sensor during vertical maneuvers.

These systems provide accurate range data within their resolvable range, which is

a function of the distance between the two cameras. Many currently implemented

stereo systems output state estimates at higher rates than mono systems because

depth calculation is a computationally simple matter of measuring the pixel distance

between a single feature viewed from each camera2

Such a system is ideal for the vertical ascent and descent maneuvers, as tracked fea-

2Stereo vision systems operate on the same principle as a pair of human eyes. If an observer focuses
on a single object at close range, they will see a shift in its relative position within the field of view of
their eye if they alternately close their right and left eye. However, this shift becomes immeasurably
small for distant objects, and the observer must rely on visual cues from their environment to
estimate distances in these cases.
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tures will typically be at close range and pose information is required at a high rate

due to stricter hazard detection requirements during landing than during a lateral

traverse. This detailed range information is particularly useful for landing site selec-

tion and hazard detection. This downward facing stereo vision system is also used

during the horizontal traverse to augment altitude estimates from the laser altimeter

and monocular vision system.

2.5.2 Forward Monocular Vision System

A monocular vision system was selected for the primary sensor during lateral ma-

neuvers. This system is mainly used to determine the vehicle's heading and measure

odometry. Monocular systems are not dependent on the disparity between images,

and thus are not limited to the same extent by range. This allows a monocular sys-

tem to track features that are further away, potentially even for the entire duration

of the hop. As is demonstrated in the testing results presented in Chapter 4, a single

downward-facing stereo camera has unacceptably high error when tracking odometry

because features are continuously entering and exiting the field of view. These results

made it clear that a single vision system would not be sufficient for a hopper.

Monocular systems are more computationally intensive than stereo systems, and as

such they cannot output state information as quickly. Because the system is further

from obstacles and making fewer trajectory corrections during the lateral traverse,

this slower output rate is sufficient. Similarly, the monocular system is sufficient for

hazard detection functions during lateral maneuvers because hazards will be large

and only need to be detected once, rather than localized and tracked in detail.

2.5.3 IMU

An IMU is desirable in addition to the dual vision systems because an IMU is always

running and completely independent of external conditions. If the vision systems

temporarily lose all their features, the IMU can continue to provide the guidance and
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control system with navigation information, such as attitude, critical for maintaining

the stability of the vehicle. The IMU also outputs at a much higher rate (typically 2-3

orders of magnitude) than the vision systems are capable of, allowing it to capture

critical short period motions required for stable vehicle control. Also, the limits on

IMU motion detection significantly exceed the expected dynamics of hopping, pro-

viding an additional level of robustness to the system. The added benefits of unifying

an IMU with a vision system are described in greater detail in Chapter 4.

A unified IMU and vision system requires rigidity between the sensor systems. There-

fore, depending on camera placement onboard the flight vehicle, two IMUs might be

used instead of one if rigidity cannot be guaranteed between the two cameras. Ideally,

the system will have two cameras and a single IMU rigidly mounted in a single, small

package, as shown in Figure 2-5a. Alternatively, the cameras might be separated, ei-

ther to simplify vehicle integration or to achieve better viewpoints for each camera.

If this is the case, the system might require two IMUs, with one rigidly attached to

each camera, as shown in Figure 2-5b. This should be avoided when possible because

it requires additional hardware, the sensors are not rigidly mounted to one another,

and it adds complexity to subsystem development and testing.

(a) Single IMU (b) Dual IMU

Figure 2-5: Alternative sensor layouts for a hopper navigation system.
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2.5.4 Scanning Laser Rangefinders

Scanning laser rangefinders can be used to both increase the accuracy of the overall

system and add proximal hazard detection capabilities to the vehicle. These systems

ideally should have a range of approximately 30 m or greater, and can constrain the

depth on both the downward and forward vision systems. In particular, monocular

systems require an additional sensor to provide accurate scaling of distance mea-

surements, which can easily be provided using a scanning laser rangefinder, provided

that at least one of the laser beams consistently lands within the field of view of the

monocular camera.

Furthermore, scanning laser rangefinders can be used for coarse navigation if the

vehicle traverses above a featureless region. Because features roughly translate into

hazards, a featureless environment typically is smooth and sufficient for landing [24].

If necessary, the laser rangefinders and IMU could still safely land the vehicle in such

a situation.

2.5.5 Additional Components

Beyond the sensors themselves, a number of additional components are required for

the navigation system. Because of the complexity of the vision algorithms, the navi-

gation system should be integrated using an independent computer. This reduces the

cost of integrating the system with the main flight computer. Because it requires its

own computer, the architecture must also accommodate a two-way data connection

to the primary flight GN&C computer, as well as a connection to the main vehicle

power system. This effectively encapsulates the entire navigation system into a single

sensor, as viewed by the primary flight computer, which simplifies both testing of the

system and its integration onto flight vehicles. Furthermore, it allows its use with a

larger variety of host vehicles and operational environments.
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2.5.6 Required Development

Each of the classes of sensors utilized by this architecture is commercially available

and already well understood. The next steps in the development of this comprehensive

navigation sensor system are to develop the algorithms to convert sensor data into a

navigation state estimate and to test these algorithms. The remainder of this thesis

focuses on the unified stereo vision and IMU portion of this architecture. Chapter

3 describes a prototype system developed to test and evaluate the combined perfor-

mance of the stereo vision and IMU sensors, and Chapter 4 describes the development

and benefits of such a system in greater detail. Future work will involve similar de-

velopment and testing of the monocular vision system and its integration with the

unified stereo vision and IMU system.
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Chapter 3

A Modular Testbed for Hopper

Navigation

A sensor testbed, including a stereo vision camera, inertial measurement unit, and

GPS receiver, was developed to allow evaluation of various combinations of naviga-

tion sensors and algorithms. This hardware and software testbed, called "Stingray,"

has a highly modular architecture, allowing additional sensors to be easily added to

the system for real-time logging and incorporation into navigation algorithms. The

algorithms themselves are fully encapsulated within the software framework, allow-

ing multiple algorithms to run simultaneously for real-time performance comparison.

Stingray, shown in Figure 3-1, is capable of operating independently of any particular

carrier vehicle, allowing it to be tested onboard various flight vehicles with little or

no modification required.

Stingray was developed primarily to serve as a proof-of-concept for a hopper naviga-

tion system, packaging unified inertial and terrain-relative navigation hardware and

algorithms into a single "sensor," as viewed by a flight vehicle. However, its modu-

larity and flexibility have additionally led to its use by other projects within Draper.

The ease of data collection using the Stingray system allowed all results presented in

this thesis to come from processing actual experimental data, with all of its imperfec-
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Figure 3-1: The Stingray navigation system.

tions and uncertainties, as opposed to simulations. Data collected using the Stingray

navigation sensor provides both the basis for the discussion of tradeoffs between in-

ertial and vision navigation systems applied to hopping vehicles, given in Chapter

4, and the testing results presented in Chapter 5. In the near future, a flight-ready

hopper navigation system will evolve from the Stingray system, based on the same

architecture.

3.1 Testbed Architecture

The primary goal of the Stingray testbed is to provide a hardware and software system

capable of processing and logging data from a stereo camera, an IMU, and a GPS

receiver. However, it was well known from the beginning that additional sensors might

be added to the system, that the currently available sensors likely would not fly on an

actual planetary hopping mission, and that the system requirements were uncertain.

For this reason, priority was placed on the development of an architecture that heavily

incorporated elements of modularity, flexibility, and upgradeability.
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3.1.1 Prior Work and External Influences

The navigation system testbed project is heavily influenced by both prior work and

a broad spectrum of goals. In part because the project evolved from previous archi-

tectures developed at the Draper Laboratory, much of the form follows that of prior

work. From one perspective, this project involved linking various sensors with various

algorithms that already existed or were in development. An evaluation of an existing

software framework showed that it was a good fit for the purposes of this project,

and with a few small modifications it was found to work very effectively.

This work is being conducted at a very early stage in the larger development process

of an operational planetary hopper navigation system. For this reason, the system

architecture was designed with a high priority placed on modularity and flexibility to

account for both future uncertainties and the planned transition into a flight-ready

system. A modular and flexible architecture allows straightforward reconfiguration to

accommodate changing goals and requirements.

Additionally, multiple projects at Draper are interested in using the system for con-

venient test data collection or for use as an integrated navigation sensor. On some

occasions this presented conflicts, which were largely resolved by designing the sys-

tem to be as flexible as possible. For example, after the sensors and algorithms for

the initial baseline system had been decided, two additional projects put in requests

for an additional type of data in the system or algorithms running onboard. These

issues were resolved by making the system even more modular than initially planned.

Now various sensor and algorithm modules can be loaded or unloaded prior to system

operation.

A particularly interesting project goal is to have the ability to perform demonstrations

using the system. Not only must the system be capable of demonstrating hopper

navigation capabilities, but another project at Draper is hoping to use the system

for real-time demonstrations to first responders in the field. They have expressed a

desire for a graphical interface to display real-time output in human-readable form.
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Figure 3-2: The Stingray navigation system was designed for both prototype testing
as part of a development program and for incorporation into a flight program in the
future. This system is encapsulated from any particular flight vehicle by interfacing
only to the flight computer, structure, and power system (unless its own self-contained
power system is utilized).

The modular architecture allows development of this system nearly independently of

the Stingray system itself.

3.1.2 System Context

This prototype navigation system has been concurrently developed for two distinct

operational contexts: that of a testbed for preliminary testing and development, and

that of a mission-critical sensor onboard an operational flight vehicle. These two

operational contexts are depicted in Figure 3-2. After the algorithms have been tested

and verified using this prototype hardware as part of a development program, the same

software framework can be easily ported to a new, flight-capable computer, ready to

serve as part of a flight program. Only the sensor interfaces are hardware-specific,

which will significantly reduce transition costs in the near future.

Flight-critical spacecraft components, such as navigation systems, have traditionally
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been developed for a specific mission. However, there has been a recent push towards

the development of "plug-and-play" architectures for spacecraft [75], in an effort to

reduce development costs by developing fewer, more generic systems with increased

reliability, reusability, and interoperability. Recent work has involved preliminary in-

vestigations of the feasibility of plug-and-play spacecraft GN&C systems [76]. Follow-

ing this trend, one of the goals of this project is to determine how independently a

navigation system can be developed from the larger context of a flight vehicle devel-

opment program, within the scope of planetary landing and surface exploration, for

plug and play-like application to future flight projects.

Traditionally, spacecraft navigation systems have been integrated within the primary

flight computer, requiring direct interfacing to all navigation sensors and sharing pro-

cessor time with other critical systems. This navigation system has been developed in

such a way that it can be considered by a primary flight computer to be encapsulated

as a single "sensor," outputting processed vehicle state estimation, as shown in the

interface diagram in Figure 3-3, ready for direct use by the guidance and control sys-

tems. This reduces development costs by allowing more system-specific testing earlier

in the project, reducing the number of interfaces, and simplifying vehicle integration

testing. In addition, the more independently a subsystem operates from a given flight

vehicle, the more applicable it is to other missions. The goal is that this system could

provide near-surface navigation capability to planetary hoppers designed to explore

the Moon [9], Mars [21], or Titan [22], or even surface vehicles and UAVs for use on

Earth.

3.1.3 System Concept

A number of concepts were in contention for a system to navigate a planetary hop-

ping vehicle, with some of those considered shown in Figure 3-4. The main choice

was between a relative navigation system and an absolute navigation system, with

the relative system winning out due to its significantly higher accuracy at low alti-

tudes, where hover hop trajectories take place. The concept of this system is to use a
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Figure 3-3: The system interfaces to a parent vehicle through a single command and
data line, as well as a structural link. The majority of the interfaces are fully self-
contained, reducing the integration and test burden.

vision-based sensor and an inertial sensor together to create a relative navigation sys-

tem that can provide a navigation state to the primary flight computer of a hopping

vehicle. This concept was chosen as a result of several tradeoffs. The basic reasoning

is that neither a vision-only nor an IMU-only system can satisfy all of the require-

ments of a hopper navigation system, as was described in Chapter 2. However, when

combined, each can overcome the weaknesses inherent in the other to provide a more

comprehensive navigation solution, as described in Chapter 4.

3.1.4 System Function

The Stingray system provides two externally delivered functions: testing navigation

algorithms and navigating an exploration vehicle. This system can be described using

Object-Process Methodology (OPM), which is a modeling language used to design

and depict information systems [771. The decompositional view of system function,
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of the complexity of the system grows from two primary internal functions: securing

the individual sensors relative to one another and estimating a navigation state from

the data gathered from the sensors. Both of these functions exist entirely within the

system boundary, and therefore are ideal candidates for encapsulation.

As Figure 3-5 shows, the only functions of the system that require outside influences

(with the exception of the individual sensors, which sense the external environment),

are securing the encapsulated navigation system to a test vehicle, receiving commands,

and outputting the state estimate. A typical spacecraft navigation system would

have more functions performed by the host vehicle, rather than occurring onboard

the sensor platform. Most significantly, a traditional system would have the state

estimation software integrated with the primary flight computer, which would increase

ambiguity and testing complexity.
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Figure 3-5: Functions provided by the navigation system. The majority of system
complexity is contained within the system boundary, with the two primary functions
of the system shown in green. The three functions that the parent vehicle must provide
are shown in red.

3.1.5 Operator Attributes

This system has two distinct operational settings. In its current form, which was used

to collect all data presented in this thesis, the system has a human operator. This

makes it easier and less expensive to conduct repeated test runs. In the future, the

system will be operated by a parent flight vehicle. The parent computer will issue

commands to the navigation sensor in a very similar manner to those issued by a

human operator. For these tests, the system must operate very robustly, as a human

operator will not be present for troubleshooting. Before the system flies on an actual

hopping mission, it must be shown to be extremely tolerant to any possible errors, as

the mission will depend on consistent performance from this navigation system.

Figure 3-6 shows the standard operational sequence for the system during a test run
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Figure 3-6: The Stingray operational sequence.

with a human operator. The operational sequence and interface are designed to be

very straightforward once the operator has received a small amount of training. If

this system is used with a parent flight computer, all commands currently issued

by the operator via either keyboard or Secure Shell (SSH) network protocol will be

issued by the flight computer over RS-232 or a similar interface. There are preliminary

plans to add an external tablet interface to the system, which could provide real-time

status updates, navigation state visualization, and system health monitoring to a test

operator from remote.

No contingency or emergency operations have currently been implemented or ac-

counted for. The system is not capable of issuing any internal actions (from a software

perspective) that could cause damage to itself, as all of the sensors operate passively.

Damage to the system could occur if a flight vehicle crashes or a human operator

drops it, though this risk is largely mitigated by the low hardware cost of the system.
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In the future, when the system is used as a primary navigation sensor to a critical

flight system, additional measures should be put in place to conduct real-time hard-

ware monitoring, fault detection, and recovery. Given the current state of the project

as a testbed primarily used for data collection, these measures have not yet been

implemented.

3.2 Software Framework

The system software takes the form of an asynchronous task queue with distributed

message passing, implemented using C++. Such a framework can be loosely described

as having tasks, messages, and queues. Tasks are the execution units of the program,

which are connected by queues. Data is contained within messages, which are passed

along the queues between tasks. This type of framework is very modular, in that

different tasks can be added or removed to build a custom system to meet the needs

of the user. A sample task-message layout is shown in Figure 3-7, where tasks are

represented by blocks and queues are represented by arrows pointing in the direction

of data flow.

3.2.1 Messages

All data within the system is encapsulated within generic "messages," which are

passed between the various tasks in the system using queues. Each message contains

a timestamp and a data structure. The timestamp indicates when the message was

created, so the system can continue to process and log data even if the processor

becomes saturated, adding an additional level of robustness.

Each type of data (e.g., IMU data, camera images, or a state estimation) has its own

implementation of the generic message template. These messages stack up within the

queues, waiting for tasks to operate upon them. When a message reaches a task at

the end of a queue, the task first polls the message for its type. If the task operates

60



Mastertask
Source: Source: Source: Source:

IMU Camera GPS Lidar

Process: Process: Process: Process:
Algorithm A Algorithm B State Output Log Writer

Sink:
Disposer

Figure 3-7: The Stingray software framework consists of tasks and message queues.
Tasks create and operate upon messages, which move between tasks using queues.
Source tasks (green) create messages, process tasks (blue) act upon data or commands
within messages, and a single disposer (red) disposes of the messages at the end of
the final queue. The "mastertask" manages all tasks within the system.

upon that data type, it processes the data and then returns the message to the next

queue; otherwise the message is simply passed on to the next queue. This way all of the

messages remain time-ordered. Additionally, each message type includes a description

of itself for logging purposes. This allows a generic logger to easily and automatically

log every message passed through the system without needing to understand each

message type, which further adds to modularity.

3.2.2 Tasks

All of the code relating to sensor interfacing, algorithms, or data processing is encap-

sulated within various task objects in the system. Tasks are further categorized as

source, process, or sink tasks, each of which inherits from a generic "queue task," as

shown in Figure 3-8. Source tasks create data, process tasks operate upon data, and

a single sink task resides at the end of the queue. A single "master task" contains all

of the tasks and issues commands to each, telling them to initialize, process data, or

halt, for example. The task framework handles all low-level functions of the program,

allowing the tasks themselves to be written at a high level.
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Figure 3-8: The software framework is comprised of tasks and messages, which in-
herit from the generic "queue task" and "message," respectively. Tasks are further
specialized based on how they operate upon messages. Each message consists of a
"wrapper," which encapsulates the data, and a "pointer," which is passed along the
message queue.

Adding an additional sensor to the system is as simple as adding a source task,

and adding an additional algorithm simply requires adding an additional process

task. The asynchronous nature of the framework allows multithreading of the tasks

across multiple processors, which helps keep the system flowing, especially if multiple

algorithms are run simultaneously for comparison. Unnecessary tasks can be easily

removed prior to a flight test to reduce the load on the processor, such as operator

monitoring tasks.

3.3 Testbed Hardware

In its current configuration, the Stingray system comprises a single-board computer,

stereo camera, IMU, and GPS module, which are described in detail below. A sen-

sor bracket mounts the camera, IMU, and GPS receiver rigidly together, and can

be mounted remotely from the computer (within range of the cabling), as shown in

Figure 3-9. A scanning laser rangefinder will be added in the near future. A decom-
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positional view of the current Stingray system form to three levels is provided in

Figure 3-10. The modular nature of the system means that many of the first level

components (shown in blue in the figure) could be added, removed, or upgraded with

little or no impact on the other hardware components. Prior to flight onboard an ac-

tual hopper, it is expected that each of these components will be upgraded or replaced

with higher-grade, space-rated components.

One of the key advantages of this hardware system over simply logging data natively

is that each critical data packet is provided with an accurate timestamp when the

data is collected, rather than simply time-tagging the packet when it is received by

the host computer CPU. Time-accuracy of the data is critical to achieving maximum

performance from the navigation algorithms.

Figure 3-9: The Stingray system includes a stereo camera, IMU, and GPS antenna.
The IMU is accessed using a dedicated interface board that also houses additional,
unused sensors.

3.3.1 Computer

At the core of the Stingray system is a Jetway NF81 single-board computer. The

NF81 is a mini-ITX form-factor (17 x 17 cm) motherboard with an AMD Brazos
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breakdown of the hardware framework.

eOntario G-Series APU (combined CPU and GPU). It has 8 GB of DDR3 RAM and

an 80 GB mSATA solid state drive (SSD). The system also has a wide range of I/O,

including eight USB ports, two RJ-45 (Ethernet) ports, and ten pins of GPIO. A

Firewire adapter on a mini-PCIe slot adds an additional three IEEE 1394 Firewire

ports. A picture of the computer is shown in Figure 3-11.

The Stingray computer runs Ubuntu Linux 11.04 Server Edition, but the software

framework is cross-platform compatible, allowing the code to also run on Windows or

Mac OS. The computer itself is far more powerful than a typical, space-rated flight

vehicle would likely use, ideally allowing multiple navigation algorithms to run in

parallel simultaneously for comparison and evaluation.

3.3.2 Inertial Measurement Unit

The IMU currently in use on the system is an Analog Devices ADIS16364BMLZ

industrial-grade MEMS IMU, whose specifications are provided in Table 3.1. A Draper-

developed interfacing board, including a digital signal processor (DSP), provides a

convenient interface to the IMU, as well as a magnetometer, barometer, and addi-
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Figure 3-11: The Stingray computer, with its case open. A 802.11n wireless antenna

allows remote operation of the system within range of a wireless router. The stereo

camera (gold) and GPS antenna (black) are also shown.

Property Specification

Number of Axis 3
Max Acceleration 5
Max Rotation Rate ±3000 /s
Output Rate 1200 Hz
Size 23 x 23 x 23 mm

Table 3.1: IMU specifications.

tional cameras, though they are currently unused for this project. The DSP provides

precise timestamping of the IMU data, and is capable of precisely recording an ex-

ternal input pulse from an additional sensor.

3.3.3 Stereo Camera

The stereo camera is a BumbleBee2 monochromatic stereo vision camera from Point

Grey Research, which provides a well-integrated vision system for testing. Draper has

multiple versions of these cameras, allowing testing of various frame rates, resolutions,

and lens focal lengths, as shown in Table 3.2. The version most frequently used for
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Focal Field of Max Max Max
Camera Model Length View Resolution Frame Rate Range

BB2-08S2M-6 6 mm 430 1032 x 776 20 Hz 78 m
BB2-03S2M-38 3.8 mm 660 648 x 488 48 Hz X m
BB2-08S2M-25 2.5 mm 970 1032 x 776 20 Hz X m
BB2-03S2M-25 2.5 mm 970 648 x 488 48 Hz X m

Table 3.2: Stereo camera specifications for available camera models.

0.065

0 .06

0055

Host Timestamp
- Strobe Timestamp

0.05

0.045

0.04 -

lIII IrI
i'1 -I

I I
................... 1 I** I..]- r

0 5 10 15 20 25 30

Time (s)

Figure 3-12: Length of each interval between receiving a new timestamp for each of
the two methods, which should be a constant 0.05 seconds. Timestamping accuracy
is improved by over three orders of magnitude when logged using the camera strobe
output rather than natively by the host computer processor over Firewire.

testing is the BB2-08S2M-6, which has a 6 mm focal length lens (43 degree field of

view) and runs at up to 20 fps. The camera resolution is typically downscaled to 512

x 384 pixels for each camera prior to image processing. The software system auto-

matically configures any of these cameras at run-time, so they can be interchanged in

the field without need for any software changes. Each BumbleBee2 camera connects

to the computer via an IEEE-1394a interface, which additionally supplies 2.5 W of

power.

The camera also has a 12-pin GPIO interface, which is used to output a strobe pulse

to the IMU interface board at the start of integration of each camera frame, which
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increases the accuracy of the timestamp for each frame. A comparison of time stamp

consistency from logging using the host computer CPU versus the output strobe

pulse is shown in Figure 3-12. Logging the image timestamps using this method

improves timing accuracy by over three orders of magnitude, which results in improved

navigation performance.

The BumbleBee2 stereo cameras rely on the disparity between two images taken

simultaneously. The maximum resolvable depth is a function of the distance between

the cameras (the baseline distance), image resolution, and camera focal length. Each

camera has a common baseline of 12 cm, but resolution and frame rate vary from

model to model. Figure 3-13 shows depth measurement uncertainty as a function of

actual feature depth (corresponding to pixel disparity) for each camera focal length

at a resolution of 512 horizontal pixels. The camera tested to have the best overall

navigation performance (and which is used for all results presented in this thesis

unless otherwise stated) is the BB2-08S2M-6, with a maximum resolvable depth of 78

m. This camera has the lowest measurement uncertainty in the 5-20 m range, which

is the expected altitude range for the majority of hopper operations.
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Figure 3-13: Estimated resolvable depth and measurement error for BumbleBee2

Stereo Cameras by focal length. The 6 mm lens has the highest accuracy for depths

in the 5-20 m range and can measure distances up to 78 m, but has large uncertainty

at long range.
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3.3.4 GPS Receiver

GPS data is provided by a uBlox EVK-6T Precision Timing Kit and ANN-MS-0-

005 active GPS antenna, which is capable of outputting GPS position and velocity

estimates as well as raw pseudorange data. GPS data is logged by the main computer

over a USB connection at approximately 1 Hz, and each data packet is timestamped

by the host processor (as the higher level of accuracy achieved by logging with the DSP

is unnecessary for GPS). Although GPS data is not available to planetary hoppers,

it is used during testing to provide both an initial position for each dataset and an

absolute reference to compare against. Additionally, other projects at Draper use the

Stingray system to collect raw GPS data due to the system's ease of use. The GPS

positioning data is typically accurate to within 2-3 meters.

3.3.5 Sensor Bracket

The stereo camera, IMU (with interface board), and GPS antenna are rigidly mounted

to one another using a sensor bracket, shown in Figure 3-14. The bracket was designed

using computer-aided design software and manufactured using a computer-controlled

Stratasys Prodigy fused deposition modeler (FDM). The bracket is made of Acry-

lonitrile Butadiene Styrene (ABS) with a tensile strength of 22 MPa and flexural

strength of 41 MPa, which provides adequate rigidity between the camera and IMU.

Brackets for new sensor configurations have been designed and manufactured in less

than 24-hours. These mounts can either attach to a case enclosing the computer or

be mounted independently on a vehicle, connected by data and power cables.

(a) Bracket (b) Bracket with Sensors

Figure 3-14: A rapid-prototyped bracket mounts the sensors rigidly to one another.
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Chapter 4

Unifying Inertial and Relative

Navigation Solutions

As described in Chapter 3, the "Stingray" system was developed to evaluate the

performance of various navigation sensors and algorithms. This system is capable of

logging timestamped data from multiple sensors. Navigation algorithms can run in

real-time onboard the system, or at any time afterwards using a Matlab interface

developed to post-process the data. This allows a single dataset to be processed using

multiple algorithms for performance comparisons. Data collected using the Stingray

system is here used to provide the basis for a comparison of inertial and vision-based

terrain-relative navigation systems and to demonstrate the benefits of combining these

two systems into a single, unified navigation system.

Two different algorithms, developed internally by the Draper Laboratory for previous

projects, were available for this comparison. The first was an inertial system intended

for use with a small, low-cost IMU, which is constrained by updates from a GPS

receiver and was originally developed for a personal navigation system. The second

was a stereo vision algorithm capable of outputting the relative pose of a camera with

respect to its initial pose. The hypothesis was that a single system, combining the

advantages of both the inertial and vision systems, would outperform both existing
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systems.

4.1 Inertial Navigation

The first existing navigation system tested, the Inertial Navigation System (INS),

combines a commercially available Analog Devices IMU with a uBlox GPS receiver,

in a similar fashion to those described in the literature [78,79]. Taken alone, the IMU

accrues error exponentially with time (a characteristic common to any IMU), so an

absolute position update from the GPS receiver is used to frequently constrain this

error growth using an extended Kalman filter (EKF).

The combination of these sensors improves pose knowledge between GPS updates, as

shown in Figure 4-1. IMUs are particularly well suited to measurement of high-rate,

short period motion. However, if GPS updates become unavailable, the integrity of

the INS is rapidly lost, as shown in Figure 4-2. Thus, navigation systems in GPS-

denied environments, such as other planetary bodies than Earth, must either use a

high-grade IMU (which are typically heavy and expensive) or receive position updates

from an alternative navigation sensor.

GPS Update

-55 .GPS Path
- INS Path

E

0 -60-
z

-65

-25 -20 -15
East (m)

Figure 4-1: The INS path (shown in blue) provides sensor pose between GPS updates
(green).
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Figure 4-2: Sample INS Navigator path (blue) and associated GPS updates (green),
illustrating the effects of an INS navigation system during periods of GPS unavail-
ability.

4.2 Surface-Relative Navigation

The second navigation sensor tested uses the Draper Laboratory's stereo vision-based

Simultaneous Localization and Mapping (SLAM) implementation, hereafter referred

to as 'DSLAM,' similar to those in the literature [58]. The basic concept of SLAM is

that a map of an unknown environment is built from observed 3-dimensional "land-

marks," and the observer is localized within this map. DSLAM acquires images from

a stereo camera and then performs the following steps to measure the position of

the camera relative to its initial position: feature detection, feature matching, pose

estimation, and landmark registration. These steps are briefly described below.

Feature Detection

"Features," or 2-dimensional points of interest, are detected in the images from

each camera using a FAST (Features from Accelerated Segment Test) feature de-

tector [80,81], and are combined into corresponding pairs between the two cameras
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of known spacing. The distance between the camera and a detected feature pair (cor-

responding to a single point of interest in the environment), or "depth," is calculated

from the distance between the detected features in the stereo image pair, or "dispar-

ity," measured in pixels. This process is repeated for each set of stereo images, or

"frame."

Feature Matching

The rotation of the current frame is first coarsely estimated using sum-of-squared

difference (SSD) inter-frame tracking, which aligns the current images with the corre-

sponding images from the previous frame using image intensity. This rotation is then

used to project all of the landmarks already existing in the internal map into the 2-D

plane of both the left and right stereo images. The features from the current frame

are matched with these projected landmarks in the image plane using the mean sum

of absolute difference (SAD) to determine best matches. A sub-pixel refining step

determines which features remain matched and which are rejected.

Pose Estimation

The camera pose is estimated using three-point-pose RANSAC (RANdom SAmple

Consensus) [82], which calculates the transformation (change in pose) between three

randomly chosen new feature pairs and the landmarks they were matched to in the

map and repeats this process many times. This generates a large but noisy set of pose

estimations, and RANSAC is used to iteratively select a subset of "inliers" from this

data that represent a best estimate of the actual camera pose. The newly detected

features that do not agree with the pose estimate from the inliers, called "outliers,"

such as features detected from objects in motion, are then thrown out to prevent

causing errors in subsequent frames.
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Landmark Registration

A frame is promoted to a "key frame" if it has exceeded a given threshold of motion

since the last key frame. If this threshold is exceeded, a new key frame is registered and

the RANSAC-determined inliers from the previous step are registered in the world

map as landmarks in 3-dimensional space. Registering landmarks only at key frames

as opposed to every frame prevents the map from getting too cluttered or growing

too large to operate upon efficiently. DSLAM keeps these landmarks in the map for

only a set number of key frames, called the "window." Once a key frame is no longer

within the window, all of its landmarks expire and are removed from the map. This

system is ideal for mobile observers that do not return to their original location, such

as hoppers, as the window length can be set so that landmarks are no longer tracked

once they are behind the vehicle, reducing the map size and speeding up the system

without affecting performance.

Sources of Error

Pose error using DSLAM is primarily related to errors associated with estimating the

locations of feature pairs, matching features to landmarks, and the loss of landmarks

from the field of view. For example, uncertainty (and thus error) grows every time an

established landmark is no longer tracked and a new landmark must be initialized to

replace it. This is because the new landmark can, at best, only be localized to the

accuracy of previous landmarks. For this reason, the system has difficulty with large

rotation rates because during these motions the system must rapidly initialize new

landmarks as the existing landmarks are lost from the field of view, causing error to

accrue especially quickly. If all of the existing landmarks are lost, the system must

effectively start over and build a new map. In contrast, the system does well with

straight trajectories, where new landmarks are initialized as they come into the field

of view to a much larger cloud of existing landmarks at a more gradual rate.

DSLAM also has difficulty with environments with few distinguishing features, which
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result in few landmarks and a sparse map that is less conducive to outlier rejection

by RANSAC. The system is also limited by the characteristics of the stereo camera,

which limit the resolvable range of distant features to the minimum pixel disparity.

Beyond this distance, detected features have very high uncertainties, especially in

depth, as was shown in Figure 3-13. Despite these shortcomings, DSLAM is well

suited to navigating low rates of motion in environments with an abundance of high

contrast terrain within the resolvable range of the stereo camera.

4.3 Algorithm Comparison

In order to compare the aforementioned navigation algorithms side by side, sensor

data was collected for both navigation systems simultaneously using the absolute ref-

erences of a GPS receiver and the lines on the MIT football field. Figures 4-3 through

4-7 show the actual path traveled in green (from GPS measurements), INS results in

blue/yellow, and DSLAM results in red for several challenging situations for a stereo

vision system. The concentric yellow circles in the figures represent regions of 5 and

10 percent total positioning error at the conclusion of the test. To illustrate the dif-

ficulties of inertial systems, the INS paths are calculated using random periods of

intermittent GPS data. It is important to note that IMU error is easily constrained

when sufficient position updates are available, but increases exponentially in the ab-

sence of such updates.

4.3.1 Distant Features

Stereo imaging systems rely on binocular disparity between simultaneously captured

images to determine feature depth. However, as features grow increasingly distant,

this binocular disparity shrinks to be less than the pixel width of the camera, elimi-

nating the system's ability to accurately localize features in the map. The majority of

the high-contrast features detected around the MIT football field are outside of the
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Figure 4-3: Vision (DSLAM) and inertial (INS) navigator results for a straight line
trajectory with distant features and periodic loss of GPS, plotted in the relative frame
(left) and in the global frame (using Google Earth, right). The concentric yellow circles
in the Google Earth plot represent regions of 5 and 10% cumulative accuracy over
the entire trajectory with respect to the actual finish location. The points in green at
left show the specific locations of the GPS updates received by the INS system.

resolvable range, as the field itself is monochromatic and flat. As shown in Figure 4-3,

the vision system does well initially at maintaining its heading, but error begins to

accumulate as the features being tracked begin to be resolvable in depth (around the

50 yard line), inducing error as they are effectively lost from view and re-acquired.

Additionally, the lack of depth disparity reduces accuracy in odometry measurements,

typically resulting in a 5-8% cumulative positioning error.

For comparison, the INS system experiences GPS outages near the 20 and 50 yard

lines, causing error to accumulate until updates are reestablished. In this case, INS

total heading error grew to that of DSLAM in roughly one eighth the distance trav-

eled.

4.3.2 High Rotation Rates

The vision navigation system's accumulated error increases as tracked features leave

the field of view. This happens most significantly during rotations, as the system

rapidly loses tracked features and must detect and localize new ones, each carrying
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Figure 4-4: Vision (DSLAM) and inertial (INS) navigator results for a trajectory in-

cluding two 90-degree turns and periodic loss of GPS. The inertial system accumulates
error when GPS updates (shown in green) are unavailable, while the vision system

mainly accumulates error during turns.

with it additional uncertainty. Figures 4-4 and 4-5 show paths with two and six 90-

degree turns, respectively. These figures suggest that the majority of the error occurs

during the turns, and error increases with additional turns. The two-turn path ends

up with a position error of just over 5%, while the six-turn path misses even the 10%

error target.

An abundance of high-contrast terrain borders the athletic complex on all sides.

However, during both tests, the heading errors from each 90-degree turn are more

than five times larger on the north sideline of the field (top of the figure) than they

are on the south sideline. This is because the terrain elements to the north are roughly

10 meters further from the camera path than those to the south. This closer proximity

allows the navigation system to more accurately localize the new feature pairs on the

map due to less depth uncertainty, which in turn reduces drift.
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Figure 4-5: Vision (DSLAM) and inertial (INS) navigator results for a trajectory
including six 90-degree turns and periodic loss of GPS. Error tends to increment at
each corner due to miscalculation of angular rotation while turning, during which the

system loses all its persistent features and must rapidly acquire new ones.

4.3.3 Featureless Terrain

The third major source of error in the vision system occurs when FAST is unable

to extract unique features within the field of view. This can be caused by either

highly patterned or low contrast terrain, both with similar effects. Figure 4-6 shows

a trajectory similar to that shown in Figure 4-3, except that the camera is pointing

downward at the field from an altitude of about 1 meter. In this situation, FAST is

unable to distinguish a sufficient number features to calculate a pose during much of

the trajectory.

Figure 4-7 shows two additional examples of the effects of feature loss. First, at the

point marked with a black circle, FAST is unable to determine sufficient features

as the camera pans over an empty parking lot. Second, at the point marked with a

black square, the camera approaches a heavily textured brick wall and then rotates.

The system is unable to identify and track unique features from so many detected

points, causing roughly 50 degrees of heading error from just one turn. A planetary

hopper might encounter a similar situation if it traverses repetitious or featureless

terrain.
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Figure 4-6: Vision (DSLAM) and inertial (INS) navigator results for a straight-line
trajectory with a downward-facing camera and periodic loss of GPS. This configura-
tion emphasizes the weakness of the vision system when many features rapidly pass in
and out of the field of view of the camera. The system is most accurate when tracking
persistent features over long periods.
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Figure 4-7: Vision (DSLAM) and inertial (INS) navigator results for a trajectory
circling the perimeter of the top of the Draper parking garage with periodic loss of
GPS. The black circle and square show locations where DSLAM momentarily lost all
tracked features, inducing especially large errors.
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4.4 Advantages of the Unified System

Inertial navigation systems work well for high-rate, short-period motion, and are

entirely independent of their environment. However, they have poor performance for

low-rate, long-period motion, as they can drift uncontrollably within a matter of

seconds. Vision navigation systems work well for low-rate, long-period motions, but

poorly during rapid rotation. Performance of vision systems is also dependent on

characteristics of their operational environments, such as lighting conditions, which

cannot be ensured. The aforementioned inertial and stereo vision navigation systems

have been combined using an EKF to form a single, unified inertial and vision-based

navigation system, which exceeds the navigation performance of either system taken

independently.

Figure 4-8 shows the raw data from Figure 4-3 reprocessed using this unified naviga-

tion filter. Similarly, Figure 4-9 shows the data from Figure 4-4 processed with the

unified filter. Both of these examples show improvements over the individual systems,

following the known path of the GPS updates very precisely. Figure 4-8 shows the

filter can successfully navigate long segments with distant features, and Figure 4-9

shows the successful navigation of a sharp corner. This unified system offers many

advantages over the individual systems by improving IMU bias estimation, reducing

IMU drift, handling rapid rotations, and managing periods of sensor outages.

4.4.1 IMU Bias Estimation

The IMU often drifts far from its GPS updates, especially before the EKF has had

sufficient time to estimate and account for the biases of the three gyroscopes and

three accelerometers within the IMU, which typically takes 30 to 60 seconds for this

system. During this time, the EKF is using all available data to calibrate itself to

each sensor input. The INS system estimates these IMU biases using updates from

the GPS receiver, which provides a 3 degree-of-freedom (DOF) position-only update

at approximately 1 Hz. From the combination of these position updates and the
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Figure 4-8: Navigation results from the stereo vision (DSLAM), inertial (INS), and

unified (Filter) navigation systems for a straight-line trajectory. The unified system

accepts GPS updates for self-calibration during the first segment of the trajectory,
then GPS updates are turned off and used only as "truth" for comparison. The unified

filter succeeds as inhibiting drift in both the IMU and vision systems.
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Figure 4-9: Navigation results from the stereo vision (DSLAM), inertial (INS), and

unified (Filter) navigation systems. The unified system is successfully able to navigate

the 90-degree corner without GPS updates, which were turned off just after the first

corner. The inertial-only system drifts significantly during the loss of GPS near the

beginning of the trajectory, but the vision updates keep the unified system from

exhibiting this same behavior.
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measurement of the gravity vector, the EKF can estimate the biases of only 5 of the

6 total DOFs of the IMU. The EKF does not have visibility into the Z-axis (yaw)

gyro, as gravity does not project into this rotation axis.

DSLAM outputs a full 6-DOF navigation state at 20 Hz, and is especially precise when

completely stationary, such as during the 120-second stationary calibration phase

performed prior to any data collection with the system. Because DSLAM updates

the filter more frequently, more precisely, and with all 6 DOFs (3 position and 3

attitude), the unified system converges upon the IMU biases more rapidly and more

accurately than it does with GPS updates alone. Figure 4-10 shows the EKF gyro

bias estimates over time for the same IMU measurements processed with and without

vision updates. Not only does the addition of vision data allow proper estimation of

the Z-axis gyro, but it also speeds up convergence for the X- and Y-axes. This allows

the filter to use the IMU more effectively, improving the navigation performance of

the unified system.
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Figure 4-10: Filter-calculated estimates of IMU gyro biases with and without vision
updates. By incorporating the vision updates, the filter gains visibility into the Z-axis
gyro and is able to more rapidly converge upon the biases of all three gyros.

4.4.2 IMU Drift

Due to the numerical integration of sensor noise, IMU drift error grows exponentially

with time until constrained by an external sensor update. However, despite growing

increasingly erroneous, IMUs have very low drift for brief periods immediately fol-
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lowing updates. An IMU receiving frequent updates is capable of providing accurate

measurements over a wide range of rotational rates and accelerations. DSLAM can

provide these updates more frequently (based on the frame rate of the camera) than

GPS, improving both the accuracy and usability of the IMU measurements. Figure 4-

11 shows the comparative performance of the IMU being updated by GPS versus by

the vision system. Near the start of this path (at the left of the figure), the INS sys-

tem's heading is inaccurate, requiring several updates to correct, only for it to end up

being over-corrected. The unified trajectory (comprising of vision and IMU updates)

is updated more frequently, resulting in a significant reduction in the effects of IMU

drift.
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Figure 4-11: The effect of IMU drift when updated using low-rate

high-rate vision (blue) updates. The frequent updates from the

in a significant improvement in positioning accuracy.

GPS (orange) versus
vision system result

4.4.3 Rotation Rates

As was previously illustrated by Figures 4-4 and 4-5, rapid rotations result in errors in

the vision system because the tracked features are too rapidly lost outside of the field

of view of the camera. A well-constrained IMU can identify these rotation rates and
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help the vision system to either maintain or regain its pose estimate after features are

lost or as features are rapidly exiting the field of view, as long as the high-rate motion

is brief in duration. In the unified inertial and vision navigation system, the vision

system can provide accurate updates to the IMU until the high-rate motion begins,

and quickly re-constrain the system again afterwards. As shown in Figure 4-12, this

results in improved accuracy in traversing sharp corners.
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Figure 4-12: The unified navigation filter improves performance during short periods
of high-rate motion, such as sharp corners. DSLAM alone measures the corner to
be 980, while the unified system (shown with GPS updates turned off) measures it
correctly as 90'. GPS updates are shown for reference.

4.4.4 Vision System Dropouts

The worst errors in the vision system occur when all features are lost from the camera

field of view, causing the vision system to stop returning motion estimates (often called

a "dropout"). This happens mainly in low-contrast environments or due to lighting

effects, such as lens flares. However, the IMU always outputs continuously regardless

of external conditions. This means that the inertial system can propagate the filter

forward during brief outages of the vision system. Figure 4-13a shows an example of a

simulated 5 second vision dropout during a straight traverse, and Figure 4-13b shows
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a simulated 10 second vision dropout during a gentle curve. Running independently,

DSLAM halts motion entirely when it cannot detect enough features to calculate

a camera pose estimate, and the INS would typically begin to rapidly drift (note

that in these figures the INS is still being constrained by GPS updates, in order to

better depict the behavior of the IMU during that time). When running with the

combined filter, the IMU bias and drift are better accounted for, allowing the system

to continue to navigate during brief periods of complete outage by both the vision

and GPS systems.
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Figure 4-13: Simulated vision system dropouts during a straight (left) and gently
curved (right) trajectory. The combined vision and inertial system (in blue) is able to
successfully navigate for brief periods in the absence of vision or GPS updates, making
the system more robust to inconsistencies and changes in its operational environment.
The affected segments are plotted in bold for emphasis. Note that the INS path still
uses GPS updates here to constrain its error growth.
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Chapter 5

Testing & Results

The Stingray navigation testbed, described in Chapter 3, was used to test both the

DSLAM stereo vision navigation system and the unified inertial and vision navigation

system described in Chapter 4, for their suitability for accomplishing the goals of hop-

per navigation presented in Chapter 2. This chapter presents a method for measuring

the accuracy of calculated trajectories, demonstrates the capabilities of the system

in various environments, and provides a discussion of the relative sensitivities of the

system to key parameters.

An actual operational hopper was unavailable for testing, due to issues of availabil-

ity and operational costs. For this reason, the system was designed to be portable

and self-contained, making it operational in a variety of alternative contexts, such

as that of a pedestrian or a car. Without question, navigating a car driving in an

urban environment is different from navigating a hover above the lunar surface. How-

ever, the experimental results presented in this chapter were carefully selected for

their similarities to various challenges a hopper navigation system must overcome.

For example, while pedestrians move slower than hoppers, they have frequent, large

disturbances and rapid rotation rates due to the dynamics of walking. A car has

slower rotation rates and fewer disturbances, but velocities more comparable to those

of hoppers.
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Testing the various challenges of hopping in this piecewise fashion provides a good

first step towards demonstration of the system in a more directly relevant hopper en-

vironment. Future work will involve integrating a modified Stingray system onboard

a vehicle with similar dynamics to a hopper, such as a helicopter or terrestrial rocket,

in a lunar-analog environment. Although the stereo vision system onboard an opera-

tional hopper will point downward, as described in Chapter 2, the majority of these

tests were conducted with the camera oriented forward in order to observe features

at more realistic depths, as mission designs for hoppers typically involve traversing

at least ten meters above the planetary surface.

The inertial system is independent of external influences, and thus performs consis-

tently amongst all of the various test environments and conditions. The performance

of the vision system, which calculates a terrain-relative state estimate, is highly depen-

dent on both testing dynamics and environments. The unified system combines the

inertial and vision-based solutions, and therefore is dependent on the performance of

each. For this reason, this chapter discusses only the vision and unified systems, mak-

ing the assumption that the IMU-specific performance remains consistent within its

specified range of dynamics and environments (with the exception of its calibration,

which is provided by the unified system). These codes have not yet been optimized

for computational performance, and thus processing time was not measured and is

not directly addressed.

5.1 Testing Goals

The primary goal of the experimental system tests described here was to determine

whether the system does or does not warrant continued development for the purpose

of hopper navigation. To accomplish this, the following capabilities required demon-

stration:

1. Output of a 6 degree of freedom (DOF) navigation state.

2. Measurement of basic planetary hopper motions, including:
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(a) Vehicle position and velocities.

(b) Vehicle attitude and rotation rates.

(c) Hover hop trajectory.

3. Navigation in unstructured' environments similar to those expected for a plan-

etary hopper.

The second major goal of this testing campaign was to determine the major sources

of error in the system. In some cases, these errors can be mitigated by changes in

parameters or operational procedures. As part of achieving this goal, the position

and attitude accuracy of the system are addressed. Because the only "truth2" data

available is from GPS, only positional accuracy can be addressed directly. Attitude

accuracy is only discussed at a high level. The GPS truth data provides an absolute

(as opposed to relative) navigation solution, which does not suffer from the effects of

error propagation or long-term drift. However, the unified vision system is significantly

more precise than GPS. Future work will include incorporation of more comprehensive

truth data for a more detailed assessment of attitude measurement accuracy.

5.2 Data Collection

All data presented in this chapter was collected using the Stingray testbed, described

in detail in Chapter 3. While this system is capable of outputting a full navigation

state in real-time, all of the results presented here were post-processed from the raw

data logs. Post-processing the data allows more detailed analysis and plotting of the

results, which are identical to those of the real-time system. Because the standard

Stingray system does not have a keyboard or display, the computer was replaced with

a laptop (running the same software), shown in Figure 5-la, for added convenience

'In vision navigation, an environment is considered "unstructured" when it is not controlled. A
structured environment might have identifiable beacons in known locations, such as in a factory, to
improve navigational performance.

2 The truth data in this case provides an absolute (as opposed to relative) navigation solution,
eliminating the effects of long-term drift. However, the unified vision system tends to be more
accurate than GPS over short periods.
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during data collection. This allowed the test operator to monitor the performance of

the sensors and restart the test in the event of a system error.

5.2.1 Data Collection Process

The first step in data collection is to start the computer, load the software, and

position the sensors. The IMU and stereo camera are mounted securely to one another,

with the sensor mount being compatible with any of the BumbleBee2 cameras listed

in Table 3.2. Two identical IMUs and sensor mounts were used interchangeably for

data collection. The GPS antenna was not rigidly mounted to the other sensors, as

interference from the camera and IMU interface board required it to be kept at least

20 cm from the sensor mount. For tests conducted using a car, a suction cup camera

mount was used to attach the sensors to the inside of the windshield, as shown in

Figure 5-1b.

Prior to collection of any data set, the system is calibrated by being left entirely sta-

tionary for at least 120 seconds. The vision system itself does not require calibration,

but this period is used by the EKF of the unified system to determine the biases of

the IMU based on the output of the GPS receiver and vision system. The quality of

the calibration is typically further enhanced by leaving GPS updates on for the first

30-60 seconds of a trajectory, especially if this segment includes rotational motion.

When consistency amongst datasets collected along the same test route was desired,

the trajectory began with a wide circle to provide repeatable rotational motion.

During the actual data collection, there is very little for the operator to do beyond

following the planned trajectory. The sensor output rates are displayed on the screen

as a high-level diagnostic, though issues with sensor logging are rare. At the conclusion

of the test, the operator stops the system, records the unique dataset identifier (i.e.,

"log stamp"), and then either shuts down the system or restarts the process with a

new calibration phase.
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(a) Laptop for Data Collection (b) Camera Mounted to Vehicle

Figure 5-1: Testing hardware for data collection.

5.2.2 Data Processing

Collected data is post-processed into a navigation state using a Matlab interface to

the C++ application. First, the vision data is processed using the DSLAM GUI,

shown in Figure 5-2, which outputs a text file of the pose calculations, as well as

some diagnostics used by the filter. A Matlab script then loads this text file of vision

poses and logs of the raw GPS and IMU data, processes them using the unified

navigation system (implemented as a C++ library), and then provides several options

for plotting and analysis of the results. Post-processing the data enables comparison

of navigation performance of identical datasets processed using various parameters,

as well as operation at nearly twice real-time (depending on parameter selection and

system hardware).
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Figure 5-2: The DSLAM graphical user interface.

5.3 Description of Test Data

The Stingray system has logged over 500 gigabytes of sensor data since its creation.

The results and discussion of system performance presented in this section are pri-

marily based on seven datasets that were selected for their ability to address the goals

stated above. These datasets are discussed based on the operational settings of:

1. walking in natural environments,

2. driving in urban environments, and

3. attached to the indoor crane at Draper Laboratory.

5.3.1 Walking in Natural Environments

Two datasets were collected while walking outdoors at Halibut Point State Park, near

Rockport, Massachusetts. The first route, referred to as "Halibut-Trail" and shown

in Figure 5-3, follows a hiking trail through the park for 790 meters. This dataset

includes the largest elevation change and largest range of observable feature depths

of all the datasets presented. The hiking trail includes natural terrain ranging from
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an open area to a forest, with several gentle curves.

(a) Terrain Image (b) Google Earth View

Figure 5-3: Typical terrain and Google Earth path for Halibut-Trail dataset, which
involves walking on a wooded hiking trail.

The second route, referred to as "Halibut-Shore" and shown in Figure 5-4, follows

the rocky Atlantic shoreline for 180 meters at low tide. The only terrain visible in

this dataset is large rocks, making it the most monotonous of those presented, and

it is also the most lunar-like. It also includes several large disturbances and unsteady

motion due to the uneven terrain being traversed by foot.

(a) Terrain Image (b) Google Earth View

Figure 5-4: Typical terrain and Google Earth path for Halibut-Shore dataset, which
involves walking on rocky terrain.

5.3.2 Driving in Urban Environments

Two datasets were collected while driving a similar route through a residential area

of Cambridge, Massachusetts. This 3.6 km route, shown in Figure 5-5, includes the
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largest velocities of all the routes. These datasets are referred to as "Cambridgeport"

and "Cambridgeport-Wide," and were collected using the 43-degree and 66-degree

field of view cameras, respectively, and are additionally used to compare the per-

formance of the two cameras. This route is unique because it includes three laps

around a single block with only right turns followed by three laps around an adjacent

block with only left turns, and it starts and ends at the same location. This makes it

especially useful for evaluating cornering performance and consistency.

(a) Terrain Image (b) Google Earth View

Figure 5-5: Typical terrain and Google Earth path for Cambrideport dataset, which
involves driving in an urban residential neighborhood.

5.3.3 Indoor Crane at Draper Laboratory

The Draper Laboratory in Cambridge, Massachusetts has an indoor crane, shown

in Figure 5-6, which was used to simulate basic hopper motions. Due to the large

disturbances and vibrations caused by moving the crane (larger than those expected of

an actual hopper), the IMU is too noisy to be beneficial to the system. Therefore, these

results are presented using only the vision system. Future tests and development will

address this unacceptable level of sensor noise, as well as determine the operational

vibration limits of the system.

The crane was used to collect three datasets, all of which utilize a downward-facing

camera in a similar configuration to that planned for use onboard a hopper. "Crane-

Roll" comprises a roll rotation (change in heading) without any altitude change.
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(a) Indoor Crane (b) Crane Test Environment

Figure 5-6: An indoor crane at Draper Laboratory was used to simulate small-scale
hopper motions.

"Crane-Ascent-Descent" is an ascent, hover, and descent maneuver. "Crane-Hop"

performs a small-scale hover hop, including a roughly 1 m ascent, 9 m lateral traverse,

and 1 m descent. All of these datasets include large, impulsive disturbances, as the

crane was not designed for slow or gradual motion. Additionally, because the High

Bay is a relatively small room, the majority of the observable features were within

1-2 meters of the camera, limiting the effectiveness of testing. The Crane datasets

are useful for demonstration of hopper maneuver navigation, but were not used for

extensive analysis or parameter testing due to their many additional sources of error

and lack of GPS truth data.

5.4 Measuring & Quantifying Error

The Stingray system calculates a full 6 degree-of-freedom (DOF) pose estimation plus

velocities and angular rates in all axes, but has only 3-DOF positional truth measure-

ments available from GPS. This means that, although Stingray calculates position,

velocity, attitude, and angular rates for each axis (12 measurements in all), only the

accuracy of positional performance (3 measurements) can be evaluated directly. Full

6-DOF truth measurements are difficult to obtain, especially in an outdoor setting

over long trajectories. Evaluation of the full system performance would require either

purchase or development of a similar navigation system with higher performance,
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defeating the purpose of developing Stingray.

5.4.1 Estimating Error

Due to the nature of the EKF in the unified navigation system, the error of all

estimated states is closely coupled. This means that successful estimation of position,

which can be compared to truth, indicates successful estimation of velocity, attitude,

and angular rate, which cannot. At this time, the only other means of evaluating the

full system performance is by visual inspection of plots of the data and comparing it to

the raw video feed. Due to their relative simplicity, rough measurements of roll angle

and altitude can be made for the "Crane-Roll" and "Crane-Ascent-Descent" datasets.

However, the navigation system is more precise than these hand calculations, and

deviations from these measurements do not necessarily indicate errors.

5.4.2 The Error Vector Sum Metric

A metric was developed in order to objectively assess the positional accuracy of cal-

culated trajectories. This metric, called the Error Vector Sum (EVS) metric, can be

used either to compare multiple trajectories from the same dataset processed using

different parameters, or to identify locations within a trajectory where the system

encounters difficulties. The EVS metric summarizes system performance into a sin-

gle numerical value, which can then be used to compare navigational performance of

multiple trajectories or to determine the relative sensitivity of the system to various

parameters. The EVS is not a perfect, all-encompassing measure of system perfor-

mance, but it does provide a useful tool for comparing navigation solutions.

The EVS metric is the sum of incremental errors of a measured trajectory with

respect to some reference, normalized by the total distance traveled, as measured

by the reference. With relative navigation systems, a small heading error early in a

trajectory can appear as a large error late in the trajectory. This means that if error

is calculated simply as the distance from a particular point to truth, errors occurring
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early in a trajectory would be weighted significantly higher than those occurring

later in a trajectory. The EVS metric eliminates this problem by first removing the

influence of previous measurements in the navigation system, and then calculating the

error only for only a specific increment of the trajectory. Additionally, calculating the

error independently for each small segment allows the incremental error to be tracked

over time, providing insight into sources of error in the system. The lengths of these

increments are determined by the frequency and availability of the reference data,

in this case GPS measurements, which are typically recorded at an average value of

about 0.8 Hz.

Because GPS has its own uncertainty and error, a trajectory will likely never have

a "perfect" EVS metric of 0, as the error is often mistakenly inflated as a result

of GPS errors. A number of heuristics have been additionally implemented in the

EVS calculation algorithm to reduce the frequency of these cases. For example, the

GPS receiver has a built-in motion model that causes it to grow very noisy when

it is stationary (such as during calibration periods), but DSLAM is generally very

accurate when stationary. To account for this, the EVS algorithm trusts DSLAM or

the unified filter when it returns zero change in motion, unless DSLAM is reporting

an error indicating that it is unable to calculate motion at that time (e.g., not enough

features are being tracked).

5.4.3 EVS Metric Calculation

The Error Vector Sum (EVS) metric is a measure of how similar two 3-dimensional

paths of points are. The EVS is the sum of errors calculated from short intervals,

called "incremental EVS," which require only the current point and the two that

preceded it for calculation. The algorithm presented here can be implemented either

for post-processing of trajectories or for real-time error tracking, potentially allowing

parameter adaptation during operation when reference information is present, such

as in environments with intermittent GPS availability.
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The EVS grows increasingly indicative of path similarity as the intervals between

points grow smaller. Therefore, the intervals are always selected to match the fre-

quency of the slower data stream, which is the GPS data in this case. First, point

correspondences are established by matching each "reference" time stamp with the

closest "trajectory" timestamp, as shown in Figure 5-8. The incremental EVS is cal-

culated using the three most recent matches, from which two vectors are formed, as

shown in Equation 5.1.

rk - (ref - rf- 1 ,refv - rfj- ,ref2i - re- 1 ) (5.1a)

(ref- - refx 2 ,ref - ref- 2 , ref 1 - ref. 2 ) (5.1b)

tk = (tra 'k - trajk-1 , traj -k traj- 1 , trap - trajk-1) (5.l1c)

tkI = ta - kra _2 t - t ak-2 trajk-Il tr ajzk2 ) (5.l1d)

The incremental EVS is a measurement of the error over only the current interval,

independent of any previous trajectory errors. This independence is achieved by cal-

culating the orientation of the previous trajectory vector, tk-1, with respect to the

previous reference vector, rk-1, and then rotating the current trajectory vector, tk,

by the same amount. The incremental error is the magnitude of the vector difference

between this adjusted trajectory vector and the current reference vector.

Because the individual points do not have orientations, the rotation requires only

two angles: yaw and pitch, which are calculated for the previous interval of both the

reference and trajectory as shown in Equations 5.2 and 5.3. The relative yaw and

pitch angles are simply the differences between the individual angles, as shown in

Equation 5.4.

Tk-i
= arctan rk-l (5.2a)

x

tk-l
- = arctan t k- (5.2b)

x
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rk-1

O,-1 = arcsin (5.3a)
r litk-11

O- 1 = arcsin - || (5.3b)

Vk-1 -=k-1 - ok-I (5.4a)

0 k-1 o-- 1 - ok-1 (5.4b)

Rotation matrices, shown in Equation 5.5, are then formed from the yaw and pitch

angles, and used to transform the current trajectory vector into the adjusted trajec-

tory vector, ak, as shown in Equation 5.6. The incremental error vector, ek, is the

vector difference between the adjusted trajectory vector and the current reference

vector. Figure 5-7 shows an example of the six vectors involved in the incremental

EVS calculation.

cos Ok-1 sin /k-l 0

R= -sin Ok-I cos 4k- 1 0 (5.5a)

00 1

cosOk-I 0 sin k-1

RO 0 1 0 (5.5b)

-sinok-1 0 cosOk-1

ak = RoR0tk (5.6)

ek - ak -rk (5.7)

The scalar EVS metric is the sum of the magnitude of each incremental error vector

97



divided by the magnitude of each reference vector, as shown in Equation 5.8.

EVS = .
k=3

(5.8)

In theory, the dimensionless EVS metric can be used to compare performance of tra-

jectories calculated using different datasets. However, the integrity of the metric is

dependent on the precision of the reference data, which adds "noise" to the mea-

surement, making it difficult to compare paths calculated from dissimilar datasets.

In fact, the magnitude of the GPS uncertainty often exceeds the magnitude of the

incremental EVS for both DSLAM and filter-calculated trajectories, which are shown

to scale in meters in Figure 5-8. This noise is specific to a given reference path, and

therefore effectively cancels out when multiple trajectories are compared to the same

reference path.
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Figure 5-7: The vectors used for EVS calculation.
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Figure 5-8: The short black lines show correspondences between the GPS updates
and the DSLAM and filter trajectories. Trajectory errors (with respect to GPS) are
related to changes in length and heading of these lines of correspondence, and can
be measured using the incremental Error Vector Sum (EVS) values (shown in pink
and light blue). If the system is perfectly accurate, these lines will all be identical.
However, this is rare due to the relatively large uncertainty of the GPS positions,
shown in gray, which adds considerable noise to the EVS.

5.5 Walking Tests

Both the Halibut-Trail and Halibut-Shore datasets described above involved walk-

ing outdoors in a natural environment. These datasets were processed using both

the vision-only and unified inertial and vision extended Kalman filter (EKF). Each

DSLAM trajectory, which was then directly input into the unified filter, was calcu-

lated using the parameters shown in Table 5.1. The effects of varying these parameters

are discussed in greater detail in Section 5.7.

Various filter parameters, such as measurement covariances and sensor update rates,

were tuned independently for each dataset in order to best show the capabilities of the

system. An operational lunar hopper would have a more consistent environment, and

these parameters would be carefully tuned for that specific environment. The EVS

metrics calculated for the DSLAM and filter trajectories are shown in Table 5.2.

99



DSLAM
Param Value DescriptionParameter

Maximum 150 Maximum number of image features to at-
Features tempt to match to map landmarks per frame.
Minimum Minimum depth for a detected feature to be
Landmark Depth 0 initialized as a new landmark in the map.
Maximum Maximum depth for a detected feature to be

1000 m
Landmark Depth initialized as a new landmark in the map.

10 Key Length of time a landmark persists within the
Frames map and can be matched to features.

Table 5.1: DSLAM parameters used to calculate trajectories for Halibut-Trail,
Halibut-Shore, and Cambridgeport datasets.

Trajectory Halibut-Trail Halibut-Shore Cambridgeport

DSLAM 0.248 0.241 0.243
Unified filter 0.296 0.338 0.163

Table 5.2: DSLAM and unified filter error metrics for walking and driving trajectories.

5.5.1 Halibut-Trail Dataset

"Halibut-Trail" is a 790 meter walk on a wide hiking trail with a moderate elevation

change. Figure 5-9 shows both the vision-only and unified filter trajectories, as well as

the GPS reference data. As expected, the trajectories both start out very accurately

then begin to diverge as time passes due to error accumulation. GPS updates were

used by the filter for calibration during the first 83 meters (10%) of the trajectory. In

the figures, the magenta "GPS Stop" marker indicates where GPS is disabled.

Figure 5-10a shows the magnitudes of the incremental EVS overlaid on the trajec-

tories, which highlights the main points of divergence. Near the last curve of both

trajectories, a particularly large error is caused by camera glare, causing the only ma-

jor divergence. Prior to that point, the system successfully navigates several difficult

situations, such as brief vision outages and curves well over 90-degrees.

Figure 5-10b shows the elevation profile of both trajectories, which is far less accu-

rate than the North/East position shown by the overhead view in Figure 5-9. These
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Figure 5-9: DSLAM and unified filter-calculated trajectories for the Halibut-Trail
dataset, which was collected while walking on a wooded hiking trail.
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Figure 5-10: DSLAM and unified filter-calculated trajectories for the Halibut-Trail
dataset showing incremental EVS error contributions (left) and elevation profiles
(right).
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large discrepancies are partly caused by an imperfect initialization. For example, GPS

has far greater vertical uncertainty and drift than lateral uncertainty, which makes

the initial bias estimation less accurate for the vertical accelerometer. An additional

source of error in the vertical direction is that the camera images have only 384 verti-

cal pixels, compared to 512 horizontal pixels, allowing landmarks to be tracked longer

during rotations to the left or right rather than upward or downward. The wide angle

camera also allows landmarks to be distributed more widely horizontally than ver-

tically, where more widely distributed landmarks increase the accuracy of the pose

calculation.

5.5.2 Halibut-Shore Dataset

"Halibut-Shore" is a 177 meter walk through rocky terrain. The features in view of

the camera during the vast majority of the trajectory are only rocks, making it more

analogous to a lunar environment than the wooded or urban environments of the other

datasets. GPS updates were used for additional calibration for the first 36 m (20%) of

the filter trajectory. As shown in the trajectory plot in Figure 5-11, both DSLAM and

the unified filter were very successful at navigating this terrain. Table 5.2 shows the

EVS metrics of the trajectories, Figure 5-12a shows the incremental EVS overlaid on

the trajectories, and Figure 5-12b shows the elevation profiles of the trajectories.

For this dataset, both the vision-only and filter trajectories were accurate to within

a few meters at all times. This accuracy is partly due to the rocky features being

perfectly stationary (unlike trees or grass, which often have small motions due to

wind that cause measurement noise). The rocky terrain provides an abundance of

high-contrast features which are guaranteed not to move, allowing accurate matching

of features to existing landmarks within the map.
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Figure 5-11: DSLAM and unified filter-calculated trajectories
dataset, which was collected while walking on rocky terrain.
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Figure 5-12: DSLAM and unified filter-calculated trajectories for the Halibut-Shore
dataset showing incremental EVS error contributions (left) and elevation profiles
(right).
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5.6 Driving Tests

"Cambridgeport" is a 3.6 km drive through an urban residential neighborhood, with

typical vehicle speeds ranging from 7-9 m/s (about 20 mph), and including 28 90-

degree turns. The initial calibration included GPS updates for the first 275 m (7.5%)

of the trajectory and a full 360-degree circle while in GPS coverage to help calibrate

the inertial sensor. Figure 5-13 shows the DSLAM and filter trajectories for this

dataset, and their EVS metrics are given in Table 5.2.
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Figure 5-13: DSLAM and unified filter-calculated trajectories for the Cambridgeport
dataset, which was collected while driving in an urban environment.

For the driving tests, the camera and IMU were fixed rigidly to the windshield of a

passenger car. This led to very smooth motions of the camera and less "noise" in the

IMU compared to the dynamics of walking and holding the camera unsteadily. This

resulted in the IMU being more reliable for the Cambridgeport dataset than either

of the Halibut datasets.
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5.6.1 Navigation Performance

Due to the improved IMU accuracy when collecting data using the car, the threshold

for vision frame acceptance by the unified filter could be set especially high, meaning

vision updates with higher effective uncertainties were not used. As shown in Figure 5-

14, the DSLAM and filter trajectories register errors in different locations, indicating

that the filter is successfully rejecting the majority of the erroneous vision frames,

which serves to improve the accuracy of the filter. For example, rejecting more frames

results in significantly improved navigation performance at the northernmost corner,

where fewer features were tracked due to solar glare on the camera lens during the

turn.
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Figure 5-14: DSLAM and unified filter-calculated trajectories for the Cambridgeport
dataset with incremental EVS error overlaid on the trajectories to show the locations
of the largest contributions to the trajectory error metrics.

Especially with the unified navigation filter, the system exhibited consistent perfor-

mance while navigating repeated turns and moderate velocities. These motions are

more consistent with those planned for hoppers, with expected velocities in the range

of 5-20 m/s, despite occurring in a different environment and operational context.

These tests demonstrate that the navigation system is capable of accurately navigat-

105



ing within this range of motion, which is an important step towards preparing for a

future flight demonstration of the system.

Figure 5-15 shows the total system speed, rotation rate, and incremental EVS plot-

ted over time during the trajectory. In this figure, 28 spikes in total rotation rate

correspond to 28 noticeable drops in velocity at times that align with the 28 corners

navigated by the system. Although direct reference data is unavailable for velocity

and rotation rate, alternative analysis methods, such as comparison of the results

to those expected of the trajectory, provide strong indications that the system is

correctly estimating these states.

The EVS is generally very low for this trajectory, with the exception of a few large

spikes. The largest incremental EVS measurements, occurring about 500 seconds into

the trajectory, are actually the result of GPS errors rather than filter errors, most

likely caused by multipath. The other large EVS values, at about 750 seconds into

the trajectory, occurred during an extended period of camera glare during one of the

corners, during which all vision frames were rejected for an extended period.

5.6.2 Elevation Profiles

Figure 5-16a shows the elevation profiles for the Cambridgeport trajectories. Despite

being erroneous in scale, the DSLAM elevation profile does follow the contour of the

GPS profile more accurately than it did in the Halibut datasets. This is most likely

the result of the steadier dynamics of the car compared to the pedestrian. However,

the filter receives a particularly bad altitude calibration from GPS in this dataset. The

system is stationary for the first 120 seconds, and then the calibration loop, which

was conducted in a level parking lot, completes at around 200 seconds. This means

the sensors are known to have remained at a very nearly constant altitude during this

time, although GPS is shown to be drifting downward erroneously. This inaccurate

GPS drift causes the Z-axis accelerometer to become incorrectly calibrated, leading

to the system steadily drifting downward throughout the trajectory.
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Figure 5-15: Total measured system speed, rotation rate, and incremental EVS for
the Cambridgeport dataset. Comparing these values to those expected for a given
trajectory serves to further validate system performance. The incremental EVS of
the unified filter-calculated trajectory is never consistently zero, in part due to noise
in the GPS "truth" measurements.

Figure 5-16b shows the elevation profile of the trajectory calculated using additional

altitude updates from the barometric altimeter on the IMU interface board. Including

even these highly uncertain altitude updates significantly improves the accuracy of

the navigation filter. Although barometric altimetry is unavailable on airless bodies

such as the Moon, a laser altimeter could easily provide similar updates at much

higher precision, further constraining the altitude drift.
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Figure 5-16: DSLAM and unified filter-calculated elevation profiles for the Cambridge-
port dataset, calculated with and without the onboard barometric altimeter. Use of
additional altimeter data helps to reduce elevation drift, which in this case was partly

caused by a poor GPS calibration.

5.7 Parameter Testing

Both DSLAM and the unified system filter have many parameters that can be varied

to "tune" their performance to various operational environments. Evaluating system

response to a range of parameter values offers insight into sources of error and allows

some extrapolation of navigation performance characteristics to hopping and the lu-

nar environment beyond what was able to be tested directly. While there are too

many of these parameters to test all of them in detail, a few DSLAM parameters

were selected for further study based on their applicability to planetary hopping: the

number of features tracked in the field of view, the minimum and maximum depths

of landmarks added to the map, and the length of time that landmarks remain in the

map. The system's response to changes in these parameters is presented below, as

well as a discussion of their meaning in the context of a planetary hopper navigation

system.
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5.7.1 Effects of Non-Determinance

The effect of the number of RANSAC iterations the system performs should be men-

tioned prior to any discussion of system parameter sensitivity. As was discussed in

Section 4.2, DSLAM uses three-point-pose RANSAC to repeatedly calculate the trans-

formation between three randomly chosen feature pairs and the landmarks they were

matched to in the map. This generates a large, noisy set of pose estimations, from

which RANSAC determines a set of best-fit inliers. If the system were to test every

possible combination of three features from the total set of matched features, thou-

sands of iterations would be required. To speed up this process, the algorithm uses a

random subset of the points to reduce the number of calculations performed.
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Figure 5-17: The Halibut-Trail dataset processed 16 times for each of three different
numbers of RANSAC iterations to show the effect of the internal non-deterministic
algorithm. The resulting EVS metrics of these trajectories were then fit to normal
distributions, shown at right.

Figures 5-17a and 5-18a show the Cambridgeport and Halibut-Trail datasets pro-

cessed repeatedly using 50, 100, and 500 minimum RANSAC iterations to show the

effects of nondeterminism on system performance. Figures 5-17b and 5-18b show the

probability distributions of the EVS metrics for these trajectories. These figures show

that some deviation will always occur in the system, and that small differences in cal-

culated trajectories might be the result of the randomness induced by RANSAC. As

these plots show, the standard deviation of the EVS metric tends to slowly decrease
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as more RANSAC iterations are used. A significant noise component is induced due

to RANSAC even when processing identical data, and small changes in parameters

should not be taken to necessarily indicate sensitivity of the system to the parameter.

All of the trajectories presented in this chapter were calculated using 100 RANSAC

iterations to calculate each frame, which provides a good balance between accuracy

and computational load.
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Figure 5-18: The Cambridgeport dataset processed 8 times for each of three different
numbers of RANSAC iterations to show the effect of the internal non-deterministic
algorithm. The resulting EVS metrics of these trajectories were then fit to normal
distributions, shown at right.

5.7.2 Number of Features Tracked

It makes intuitive sense that tracking additional features in a scene should lead to

more landmark matches and therefore greater accuracy (i.e., a smaller EVS metric).

However, the quality of those features is also important. Adding an additional hun-

dred bad features, such as moving points, weak matches, or uncertain locations, often

harms accuracy by throwing off the mean, especially if these points are clustered to-

gether. DSLAM internally first weights the quality of all detected features and orders

them in a list, so each marginal tracked feature will be less accurate than a feature al-

ready being tracked. The goal is to find the point at which adding additional features

no longer benefits the system, as computational speed is also heavily influenced by
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Figure 5-19: DSLAM trajectories calculated from the Cambridgeport dataset using
increasing numbers of tracked features. As shown at right, the system is unable to
navigate even that initial calibration circle when only allowed to track 50 features.

the number of tracked features. Figure 5-19 shows the results of processing the urban

Cambridgeport dataset five times with increasing numbers of tracked features. Fig-

ure 5-20 shows the results of similarly processing the two Halibut datasets. Figure 5-21

shows the EVS metrics for the various numbers of features.

These results make it clear that 50 features are not sufficient for accurate navigation.

Additionally, the figures show that the system begins to lose accuracy as the number

of features grows especially large. The ideal number of features to track was found

to typically be around 150, based off observing the performance of the trajectories

plotted in the figures. However, as the EVS shows, the average system accuracy is

generally insensitive to this parameter, and the errors tend to occur at a few difficult

points, such as times of bad camera glare or rapid motions.

The number of features tracked is an important parameter for testing the applicability

of such a system to hopping. The lunar environment has generally fewer features

available to track than the environments tested on Earth. This can be compensated for

somewhat by reducing the number of features tracked by the system. The robustness

to this parameter demonstrated here is important to any vehicle operating in an

uncertain environment.
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Figure 5-20: DSLAM trajectories calculated from the Halibut-Trail and Halibut-Shore
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0

a)

U,
w

1

0.8

0.6

0.4

0.2

0

* Cambridgeport
* Halibut-Trail
* Halibut-Shore

50 100 150 200 250
Maximum Feature Matches

300

Figure 5-21: Effect on DSLAM navigation performance of limiting the maximum
number of feature-landmark matches per frame in DSLAM.

112

0

-100

-200

o -300z

-400

-500

* GPS Updates
- <50 Features

- <100 Features
<150 Features

---- r <2 n"
- <300 Features
T Start

0



5.7.3 Landmark Distance

The depth error associated with localizing landmarks when using a stereo camera

is directly related to the actual distance to the point, meaning pose estimates are

most accurate when calculated using features and landmarks close to the camera.

There are two ways to test the sensitivity of the EVS metric to the distances of

landmarks being used to calculate pose: either eliminate all landmarks in the map

closer than some minimum depth threshold, or eliminate those further than some

maximum threshold.
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Figure 5-22: DSLAM trajectories calculated from the Cambridgeport dataset using
various minimum and maximum landmark depth thresholds.

Figures 5-22a, 5-23a, and 5-24a show multiple DSLAM trajectories calculated with

various minimum landmark depth thresholds for the three outdoor datasets, and

Figure 5-25a shows the EVS metrics for these trajectories. These results suggest that

the minimum landmark depth has an effect on the system, but it does not tend to

manifest itself until around 9-12 meters. This is expected, as there are very few objects

within this range to the camera at any point in these datasets, as shown in Figure 5-

26, which gives the distribution of landmark depths for each dataset, as calculated

using the parameters given in Table 5.1. The rapid increase in EVS metric shown

by Figure 5-25a indicates that features in the 10-20 meter range are particularly

important when calculating the pose estimate, which is due to both the large number
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Figure 5-25: Effect on DSLAM navigation performance of limiting the (a) minimum
and (b) maximum depths of landmarks added to DSLAM's internal map.

of landmarks in this range and their relatively small depth uncertainties.

Figures 5-22b, 5-23b, and 5-24b show multiple DSLAM trajectories calculated with

various maximum landmark depth thresholds, and Figure 5-25b shows the EVS met-

rics for these trajectories. From these figures and the EVS metric, the effect of limiting

the range of the landmarks does not appear to be significant above 20-40 meters. The

effect of using these distant landmarks is more one of increasing the consistency and

error checking within RANSAC than one of actually shifting the trajectory. These dis-

tant landmarks should be included when available, but are not necessary for consistent

performance. Additionally, as Figure 5-26 shows, there are relatively few landmarks

in the map with depths greater than 40 or 60 meters, so the effect of limiting max-

imum depth is less significant than that of limiting minimum range because fewer

landmarks are actually affected.

These results are significant when considered in the context of planetary hoppers. As

was discussed in Chapter 2, a planetary hopper navigation system uses a downward-

facing stereo vision system, primarily for navigation during the ascent and descent

phases of the hover hop. During such maneuvers, the features in the environment being

tracked (and thus also the landmarks they are being matched to) grow increasingly

distant during an ascent, and increasingly proximal during descents. The stereo vision
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Figure 5-26: Distribution of the depths of all landmarks added to the internal map
for each of the three outdoor datasets.

system will not be able to achieve the same level of accuracy at high altitudes as at

low altitudes. However, navigational accuracy is most critical when the vehicle is

near to the surface, as the hopper is much more robust to navigational inaccuracies

when it is further from the surface, and thus further from hazards. Additionally, the

most critical measurement during the ascent and descent phases of the hover hop is

altitude, which can easily be constrained with the addition of a laser altimeter. Small

deviations in translational motion are acceptable, as long as altitude and heading

angle (measured by the forward-facing camera) can be constrained.

5.7.4 Window Length

Figures 5-27 and 5-28 show DSLAM trajectories calculated from the Cambridgeport,

Halibut-Trail, and Halibut-Shore datasets using window lengths of 5, 10, 15, and 20

key frames. Each of these trajectories is roughly within the expected noise due to

RANSAC. Figure 5-29 shows the EVS metrics for each of these trajectories, which

are approximately unchanged throughout the range of window lengths tested for each

dataset.

Increasing the window length essentially equates to increasing the number of land-
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Figure 5-28: DSLAM trajectories calculated from the Halibut-Trail and Halibut-Shore
datasets using various window lengths.
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Figure 5-29: Effect of window length on DSLAM navigation performance.

marks stored in the map. A longer window is only beneficial when the oldest land-

marks in the map are still being matched to features in the current frame, as the

oldest landmarks should be the most accurate (ignoring all other factors affecting

landmark accuracy). However, walking and driving trajectories generally do not re-

peat themselves, and rarely return to a location within the window length (typically

15 seconds or less). This means that for these types of trajectories, changes in window

length should not have a significant effect on navigational accuracy, as long as the

window is within a reasonable range (typically 5 key frames or greater).

One particular point of interest in the Cambridgeport trajectory is shown in Figure 5-

27b, when a large truck drove in front of the camera. RANSAC is typically very

effective at filtering out these types of disturbances, but the truck took up nearly the

entire field of view of the camera, causing DSLAM to register it as camera motion

(the truck was driving northeast). Here, the 5 key frame window has noticeably larger

error than the 10-20 frame windows, as the longer window lengths were beneficial

for relocating the camera to the original landmarks after the incorrect motion. The

window with only 5 key frames had already removed the previous landmarks from its

map at this point.

This insensitivity to window length might not translate as directly to hoppers as the

other parameters discussed in this section. The hover hop trajectory and planetary
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environments result in tracked features remaining in the camera field of view for long

durations. Both the vertical maneuvers and the lateral traverse have long, straight

segments along the axis of the camera. Hoppers do not turn corners, and only a small

amount of drift should occur during vertical motions and hovers, meaning features

will remain in the field of view of the camera for very long durations. This means

that a hopper will benefit from common landmarks being held in memory for the

duration of those maneuvers. However, increasing the window length significantly

increases memory requirements and computational load. For this reason, future work

will include the development of an intelligent algorithm to determine which landmarks

are no longer in use and remove them from the map, rather than using a fixed window

size.

5.7.5 Parameter Sensitivity

Multifactor Analysis of Variance (ANOVA) testing was used to provide an indication

of which parameters have an effect on the EVS metric, and the likelihood that this ef-

fect is more significant than that of the noise caused by RANSAC nondeterminance.

The three parameters tested and the range of values used are shown in Table 5.3.

Maximum landmark depth was omitted from this analysis. A linear ANOVA model

was selected in order to focus on the main effects of the factors, as opposed to their

interactions, for two reasons. First, the interactions of combinations of two parame-

ters are not intuitive in this system, many of them only potentially affecting system

performance in rarely observed fringe cases, which were not being directly tested and

are not applicable to hopping. Second, the linear model leaves four DOFs for error

estimation, which was known to be of significance.

Factor 'Low' 'High' Description

Features 100 150 Maximum number of features tracked.
Depth 0.5 10 Minimum depth of initialized landmarks.
Window 10 15 Length of time to keep landmarks in the map.
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Parameter Cambridgeport Halibut-Trail Halibut-Shore
Factor DOF Mean Sq. P-Value Mean Sq. P-Value Mean Sq. P-Value
Features 1 0.00014 0.086 0.00483 0.358 0.00116 0.254
Depth 1 0.00917 0.067 0.04147 0.038 0.00008 0.749
Window 1 0.00001 0.576 0.00219 0.524 0.00036 0.500
Error 4 0.00003 0.00449 0.00065

Table 5.4: DSLAM analysis of variance results for maximum number of features
tracked, minimum landmark depth, and window length. P-values in red indicate a
greater than 90% likelihood of significance, and those in blue indicate 75% likelihood
of significance.

Parameter Cambridgeport Halibut-Trail Halibut-Shore
Factor DOF Mean Sq. P-Value Mean Sq. P-Value Mean Sq. P-Value
Features 1 0.12128 0.013 0.02906 0.293 0.00121 0.729
Depth 1 0.01831 0.175 0.07093 0.132 0.00663 0.433
Window 1 0.00072 0.760 0.03907 0.233 0.00001 0.978
Error 4 0.00676 0.01986 0.00876

Table 5.5: Unified filter analysis of variance results for maximum number of features
tracked, minimum landmark depth, and window length. P-values in red indicate a
greater than 90% likelihood of significance, and those in blue indicate 75% likelihood
of significance.

The results of the ANOVA analysis are presented in Table 5.4 for the DSLAM EVS

and Table 5.5 for the unified system EVS for each of the three datasets introduced in

Section 5.3. This analysis calculates the mean sum of squares contribution per DOF

(labeled "mean sq.") for each factor, as well as for the error. In this case, "error"

(not to be confused with the EVS error metric), represents randomness induced by

RANSAC, as well as any interactions between the various parameters. When the

mean sq. for a factor exceeds the threshold of the mean sq. for the error, it indicates

that the factor causes a greater change in the variance of the measurement (i.e.,

the EVS metric) than that likely to be caused by random noise. The p-value gives

the probability that a particular mean sq. value would be calculated as a result of

randomness in the system, meaning a lower value indicates a greater likelihood of a

factor having an effect on the trajectory EVS metric.

A p-value of 0.10 or less, indicating 90% or greater likelihood that the effect of the

factor is not the result of random noise, was selected to identify factors of significance
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to system error. A p-value of 0.25 or less, indicating 75% or greater likelihood of a

nonrandom effect, was selected to indicate likely effects. Across both DSLAM and the

unified filter, changing the window length by five key frames does not appear to cause

a distinguishable effect on the EVS metric. However, changing the minimum landmark

depth or the number of features tracked does cause a distinguishable effect in several

cases. These results support the findings of the preceeding sections discussing each

parameter independently.

5.7.6 Camera Properties

In addition to the adjustable software parameters available in both DSLAM and the

unified filter, adjustments can also be made to the camera. These include operational

parameters, such as frame rate, resolution, shutter speed, and exposure time, as well

as hardware parameters specific to the camera, such as field of view. Currently frame

rate and resolution are manually fixed at runtime, while the camera automatically

adjusts its shutter speed and exposure time during operation to its environment.

The most interesting of these parameters, however, is the camera field of view. A

larger field of view means features can be located in a larger area, which should help

in situations with more dynamic motion, such as cornering, because features can be

tracked for longer durations. However, the larger field of view also means that a single

pixel references a larger area in the map, reducing precision for feature matching. An

additional drawback of a wide angle camera is that solar glare is more likely to occur

on the lens, which makes the camera unusable.

Figure 5-30 shows the Cambridgeport loop repeated nearly identically using a wide

field of view (66-degree) stereo camera. This trajectory's DSLAM EVS metric is

1.00, compared to 0.24 for the standard camera. However, when processed using the

filter, many of the erroneous frames are rejected (10% of the total frames output by

DSLAM), and the filtered trajectory EVS metric is only 0.16, which is identical to

that of the standard camera (which is also 0.16). This result shows the robustness
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Figure 5-30: Cambridgeport loop repeated using a wide field of view (66-degree)
stereo camera. When considered independently, this camera has higher error than the
narrow field of view camera shown in Figure 5-13, but exhibits similar performance

when filtered using the unified system.

of the unified inertial and vision system filter. This wider field of view might be

especially useful for the downward-facing vision system onboard a planetary hopper,

which would allow a larger region to be scanned for both features for terrain-relative

navigation and hazard detection. As long as it remains pointed downward, the system

should be unaffected by solar glare on the lens, the largest additional source of error

when switching to the wider camera field of view.

5.8 Hopping Motions

The indoor crane at Draper Laboratory was used to simulate typical hopper ma-

neuvers, including an ascent and descent, roll rotation, and a scaled down hover hop.

Unfortunately, the impulsive motions of the crane combined with the mechanical noise

from its large motor meant that the IMU was too noisy to effectively use the filter.

These datasets were post-processed with DSLAM using a longer window length (20

key frames) and more tracked features (200) than the outdoor walking and driving

tests in order to better handle the harsh disturbances unique to the crane dynam-

ics. DSLAM was able to recover most of the motions of the crane, but frequently
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struggled with the large impulses of the crane, such as occur when starting or stop-

ping translational motion. Because GPS was unavailable indoors and no alternative

form of detailed truth measurements were available, these results are presented as

is for purposes of demonstration and discussion, although no error metrics can be

calculated. Future plans include testing the system on a hopper or hopper-like test

vehicle, and such a vehicle will have smoother dynamics and truth data available for

comparison.

The camera was attached to the crane facing downward for these datasets, rather

than forward as in the previous datasets, to more realistically emulate the downward-

facing stereo vision system onboard a hopper. Additionally, previous results presented

in this chapter were all presented with the "world" coordinate system in north-east-

down (NED) coordinates. The results of this section are presented in terms of altitude,

cross-range, and down-range, due to the lack of GPS reference. The down-range axis

of the world frame is defined by the direction of translational motion of the hop, when

available, or as the initial heading of the system (in the case of the pure ascent and

descent tests).

5.8.1 Roll Rotation

A roll rotation in a hopper coordinate system corresponds to a change in heading of

the vehicle. This capability was tested by hanging the camera in the center of the

room on the crane, rotating it about its vertical axis first in one direction and then in

the other, and returning it to approximately its initial heading. Markings were added

to the floor within the field of view of the camera to allow approximations of roll

angle to be made by hand for comparison.

Figure 5-31 shows the DSLAM-calculated roll angle, as well as the manually measured

comparison values. As the figure shows, DSLAM accurately estimates roll angle for

the majority of the rotation, but struggles during one segment. When the camera

reached the apex of its roll, some of the main features being tracked were lost from
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Figure 5-31: DSLAM-measured roll maneuver.

the field of view, and this may have caused the significant error in this region. When

the roll direction reversed, these features returned to the field of view while the

landmarks were still within the window, allowing them to be reacquired. An actual

operational hopper will operate at larger altitudes, reducing the likelihood of these

types of errors.

5.8.2 Ascent & Descent

The ascent and descent test was performed by raising the crane to its maximum

altitude, holding it stationary for 10 seconds, and then returning it to its approximate

initial location (similar roll angle and 5 cm lower than its initial position). DSLAM

successfully measured position during this test, as shown by Figure 5-32. The slight

disturbances match the motion profile of the raw video feed, indicating high likelihood

that DSLAM is at least semi-accurately navigating the disturbances. However, these

types of motion would typically be measured primarily using the IMU rather than

the camera. The altitude vs. downrange plot, shown in Figure 5-35a, shows that the

system experienced very little drift during the course of the maneuver, and Figure 5-

35b shows that the maximum detected lateral motion was less than 15 cm, which is

within the possible range of motion of the crane when it is started or stopped.
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Figure 5-32: DSLAM-measured ascent and descent.

Figure 5-33 shows the position and attitude measurements from DSLAM during the

ascent and descent maneuver. Coarse altitude and roll angle measurements were able

to be calculated manually based off the orientation and size of markings placed on

the floor before the test. These manual measurements are shown in Figure 5-33 in

green, and show very good agreement with the DSLAM-calculated results.

The disturbances in this dataset are relatively small, but do appear to induce some

drift. While the sensor head did experience roughly the roll profile shown in Figure 5-

35b, the yaw and pitch angles should have returned to zero degrees at the apex and

conclusion of the maneuver, when the crane was held stationary for 10 seconds. As

soon as the descent segment begins, 150 seconds into the trajectory, both roll and yaw

experience a near-discontinuity due to the impulsive jolt of the crane. However, the

system is robust enough to regain its landmarks after this jolt and continue outputting

a state estimate.
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Figure 5-33: DSLAM-measured position and attitude of sensor head during a vertical
ascent, hold, and descent maneuver.

5.8.3 Hover Hop

Figures 5-34 and 5-35 show the position results of a short-range hover hop trajectory,

as measured by DSLAM from the Crane-Hop dataset. The altitude change of roughly 1

meter is consistent with expectations. However, the actual length of the trajectory was

approximately 9 to 9.5 meters, rather than the 8.5 meters calculated by DSLAM.

This hover hop was a particularly difficult maneuver for the vision system to navigate,

as a number of challenges were added to those already present in the Crane-Ascent-

Descent dataset. One of these additional challenges is that especially large distur-

bances occur when lateral motion of the crane starts or stops, which cause the heavy

cabling and hook to sway far enough that the camera loses nearly all of its original

tracked landmarks. A second challenge occurred when the hop trajectory passed over

a row of cabinets in the center of the room with close enough proximity that all fea-

tures were lost for roughly a meter of travel. Once the camera exited this region, every

126



1 --- DSLAM
Start

a) 0.5-
Y0)r_ 0-

C -0.5
0
0 1

-1.5
0 1 2 3 4 5 6 7 8 9

Downrange (m)

1.5 - DSLAM
E Start

0.5 -

-0.5-

-1-
0 1 2 3 4 5 6 7 8 9

Downrange (m)

Figure 5-34: DSLAM-measured hover hop trajectory.

previously tracked landmark was out of the field of view of the camera, essentially

requiring the map to be rebuilt from scratch. This occurs at the discontinuity visible

in Figure 5-34 near 4 meters down-range from the starting location.

Figure 5-36 shows the measured trajectory (the location of the camera at each key

frame is shown as a small blue coordinate frame, which together form the trajectory)

and the locations of landmarks in the map. The landmarks that make up the cabinets

at the midpoint of the trajectory can be seen near the midpoint of the trajectory,

giving a sense of scale, as well as a gap in the blue coordinate frames, which indicate

that no key frames were created during that brief period. The gap occurs right above

the the highest landmarks (the top of the cabinets) and the trajectory is offset at

the end of the gap, with a roughly 5 degree pitch error, and offset in down-range

position by approximately a meter. As was discussed in Chapter 2, the system was

predicted to struggle with these situations, and this is why a secondary, forward-

facing vision system is additionally included in the proposed hopper navigation system

architecture.
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Chapter 6

Conclusions

This thesis describes the architecture, design, and preliminary testing of a hopper

navigation system. Various capabilities of this system have been demonstrated in

successful Earth-based tests, which confirmed the viability of this system for continued

development for application to planetary hopping vehicles.

The goals of this project, as stated in Section 1.3, were to:

1. Develop a system architecture for a navigation system capable of estimating the

state of a hopping vehicle.

2. Develop a prototype system to evaluate the proposed hopper navigation system

architecture and its capabilities.

3. Demonstrate that unifying inertial and relative navigation techniques provides

advantages applicable to hoppers.

4. Evaluate the performance of the prototype system and demonstrate hopper

navigation capabilities.

All of these goals have been met, and the following sections present the conclusions of

this work with relation to each of these goals, as well as a summary of lessons learned.

Section 6.5 comments on this system's applicability to alternative systems beyond

planetary hoppers, and Section 6.6 presents suggestions for further development.
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6.1 Hopper Navigation System Architecture

A system architecture for a planetary hopper navigation system, consisting of a

downward-facing stereo vision system, forward-facing monocular vision system, an

IMU, and scanning laser rangefinders, was proposed in Section 2.5. This architecture

overcomes the challenges of hopper navigation presented in Section 2.2, and achieves

the goals established for hopper navigation in Section 2.3.

6.1.1 Challenges of Hopper Navigation

The first challenge of hopper navigation is the strict mass and power limitations

that apply to all components onboard a hopper. This was accommodated by utilizing

passive vision-based sensors in place of the more traditional, active Doppler radar

sensors used for planetary landing. Using a vision-based system also allows the use

of a lower-grade IMU than would traditionally be used onboard a landing spacecraft.

The prototype Stingray system demonstrated that these lower mass, power, and cost

sensors are capable of estimating a navigation state, although the accuracy of this

system in comparison to the more traditional systems could not be directly compared.

The prototype system has a total mass of about 1.5 kg and consumes approximately

40 W of power.

The second challenge is hazard detection and avoidance. These specific capabilities

have not yet been demonstrated in hardware, although there are plans to do so in

the future. The system architecture, however, is capable of collecting the sensor data

required to run such systems. The flexible software framework of the prototype system

was designed to allow seamless integration of such algorithms as soon as they become

available for testing.

The third challenge is that of terrain variability in the operational environment. While

the IMU is effectively immune to terrain conditions, the performance of vision systems

is highly dependent on the terrain viewed by their cameras. In order to mitigate the

130



associated risks, the vision system was designed to use purely generic features from

images, rather than requiring any particular objects to be within view. This capability

was demonstrated by the results presented in Chapter 5, which showed relatively

consistent performance across various classes of terrain.

The fourth challenge is that a hopper navigation system must be capable of estimating

the vehicle state even during rapid motions. This challenge is especially apparent in

the vision systems when the cameras blur due to rapid movements, but is mitigated

by the inclusion of the IMU. The results of Chapter 5 show many rapid motions being

accurately navigated by the unified navigation system, showing that this challenge

has been met.

6.1.2 Goals of Hopper Navigation

The goals described in Section 2.3 can be broken down into three categories: verti-

cal maneuvers, lateral maneuvers, and hazard avoidance. Navigation capability was

demonstrated for these goals, with the exception of hazard avoidance, which was not

evaluated by this thesis.

The primary concerns during vertical motion were determined to be measurement

of altitude and heading. The test results presented in Section 5.8.2 and Figure 5-33

show that the prototype system is capable of accurately making these measurements

to within 0.10 m and 2.5 degrees, respectively, using vision alone. These measurements

are expected to be more accurate with the further inclusion of the unified system,

which was shown to provide improved performance.

The primary concerns during lateral motion were determined to be measurement

of attitude and heading, as well as vehicle odometry. While attitude measurement

accuracy could not be evaluated directly, inspection of the calculated state estimations

showed good agreement with the expected results. Odometry measurements taken

with the prototype system and shown in Chapter 5 showed very good agreement with

GPS truth data in a variety of operational settings.
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6.1.3 Architecture Evaluation

The system's numerous advantages make it an ideal navigation sensor system for plan-

etary exploration by hopping. First, and most importantly, the selected architecture

is capable of performing all of the required top-level functions of an effective hopper

navigation system, as listed in Table 2.1. The system combines multiple specialized

systems into a single generic system, and at least one of these systems is capable of

measuring any predicted motion of a hopper at high accuracy, while the others are

always running to provide supplemental data, providing smooth transitions and re-

dundancy. Furthermore, this architecture is designed to take advantage of attributes

unique to planetary hoppers, such as the hover hop trajectory and its decoupled axes

of motion.

The largest disadvantage of the selected architecture is its heavy reliance on vision

systems, which have only limited flight heritage. Robust vision algorithms are still in

the developmental stage and require flight demonstration. Additionally, vision sys-

tems are highly dependent on their external environments, which puts limitations

on mission planning. Fortunately, vehicle hazards are generally directly correlated to

detected features, so these vision systems will actually gain accuracy as their sur-

rounding terrain grows more treacherous.

6.2 Stingray Testbed

As described in detail in Chapter 3, the Stingray hardware and software testbed was

developed to evaluate the components of the selected architecture and to serve as a

prototype hopper navigation system. The Stingray system is highly modular, allow-

ing flexibility in future development and testing. The use of commercially available

sensors and hardware reduced the cost of development, and the experimental results

of Chapters 4 and 5 showed the system was operational and could meet the project

goals, even with low-grade sensors.
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An additional objective of developing the Stingray system was to determine whether

a navigation system can be encapsulated independently of a vehicle, allowing devel-

opment and testing of the navigation system to occur entirely independently of the

flight vehicle. Verifying such an objective must be done in two stages: testing the

system independently and testing the system once integrated with a flight vehicle.

The first stage of this was demonstrated by the success of testing the system, as pre-

sented in Chapter 5. However, a flight vehicle was not yet available for testing, and

thus demonstration of the more critical functionality of the integrated system must

be saved for future work.

6.3 Unified Inertial and Relative Navigation

The Stingray navigation system testbed was used to develop and test the unified

inertial and stereo vision-based navigation algorithm, which was described in detail

in Chapter 4. The modularity of the Stingray system allowed multiple algorithms to

be compared side by side using the same data, which showed that the unified system

provides improvements to navigation accuracy over both the inertial-only and vision-

only systems. Additionally, the unified system is more robust to sensor dropouts and

other sources of error than either system operating independently. The unified system

was shown to provide improvements to overall navigation performance by improving

IMU bias estimation, mitigating the effects of IMU drift, more accurately navigating

periods of rapid rotation, and being more robust to sensor dropouts. For these reasons,

the unified inertial and vision-based navigation system is recommended for planetary

hopping applications over either the inertial-only or vision-only systems operating

independently.
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6.4 Prototype System Performance Evaluation

The experimental testing campaign of the prototype system (conducted using the

Stingray testbed) had two primary goals: to demonstrate the capability of the system

and to determine its major sources of error. These capability demonstrations focused

on estimation of a 6 degree-of-freedom (DOF) navigation state, measurement of veloc-

ities and rotation rates, navigation in an unstructured environment, and navigation

of a hover hop trajectory. The success of these demonstrations, shown in Chapter 5,

established the system to be at NASA Technology Readiness Level (TRL) 41, and

supports additional development of the system.

6.4.1 System Performance

As the results presented in Chapter 5 show, the testbed system produces promising

results, especially given its early stage of development. Even when using the low-grade

sensors intended for preliminary development of the project, the system does a very

good job of navigating the demonstration trajectories in a variety of environments.

The effects of many of the observed current performance issues could be mitigated

by upgrading the IMU to a model more likely to fly onboard a planetary exploration

mission.

Section 5.5 presented results of tests conducted walking in outdoor environments. In

these environments, the system was shown to work well as long as features were kept

within range of the camera. Walking on the uneven terrain caused larger disturbances

than those predicted for a hopper, but the system was able to navigate the majority

of these situations with reasonable accuracy (less than 5% final positioning error

with respect to distance traveled), especially when additionally using data from the

IMU. This indicates that the navigation system is capable of handling moderate

'The Technology Readiness Level (TRL) is a metric used by NASA to evaluate the maturity of
a technology. TRL 4 is defined as "Component and/or breadboard validation in laboratory environ-
ment" [83].
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disturbances comparable to those caused by thruster firings of a hopper for thrusting

and attitude corrections (in the absence of vehicle vibration).

Section 5.6 presented results of tests conducted driving in an urban environment,

where the system successfully navigated repeated corners and moderate velocities

throughout the test run. The unified system did especially well in these tests, due to

the smoother dynamics of the car as opposed to the pedestrian, achieving navigation

accuracies of less than 1% error in final position with respect to total distance traveled.

This indicates that, if vehicle dynamics of a hopper can be kept fairly steady, naviga-

tion of long-distance hops in moderately feature-rich environments is feasible.

Section 5.8 presented results of tests conducted using an indoor crane to simulate

hopper motions with a downward-facing vision system, highlighting many strengths

and weaknesses of the system. The testbed system was able to reconstruct a small

scale hover hop trajectory, although the large disturbances induced by the crane

caused the reconstructed trajectory to have significant error (approximately 10% final

positioning error with respect to total distance traveled). Furthermore, the vibrational

environment of the crane induced too much noise in the low-grade IMU to effectively

use the unified system. The system requires additional development to increase its

robustness to vehicle vibrations. The roll and ascent and descent tests further showed

that the system is capable of measuring components of vehicle pose, although truth

data was unavailable to evaluate exactly how accurately.

6.4.2 Sources of Error

As discussed in Section 5.4, only positional accuracy of the system can be evaluated

directly due to the limitations of using GPS for attitude truth data. However, an

error metric was developed to evaluate system performance relative to the limited

information available from GPS, which provides significant insight into the sources of

error in the system by indicating locations of difficulty in the trajectory. Segments of

significant error tend to be the result of vision system dropouts, high rotation rates,
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and a lack of features detected near to the camera. The worst errors typically involve

simultaneous combinations of these scenarios.

Sustained vision system dropouts, the largest source of error, were most often the

result of either glare on the camera from the sun or a large disturbance causing

the camera to point too far upwards above the horizon, losing all features. However,

because a hover hop does not involve turns, a carefully designed mission plan can easily

avoid ever pointing the cameras too near to the sun. Additionally, only an extreme

disturbance could cause both the downward- and forward-facing camera systems to

completely lose track of the planetary surface, the most likely cause of which would

be a vehicle crash.

6.5 Applications Beyond Hopping

Predicted planetary hopper trajectories involve a broad spectrum of velocities, rota-

tion rates, altitudes, feature depths, and unknown terrain that must all be accounted

for without use of GPS, as well as many other difficult situations and scenarios. These

numerous challenges of navigating planetary hoppers, combined with the vehicle-

independent hardware and software system developed for preliminary testing, have

led to the development of what is in many ways a "generic" navigation system. This

generic system could be applied to any vehicle requiring near-surface navigation in

GPS-denied environments, provided its motions do not exceed the operational thresh-

olds of the system and the environment contains sufficient features for the vision

system to detect and track.

Chapter 5 showed that the system is already capable of navigating a pedestrian or

vehicle in urban and natural environments. A derivative of the Stingray system would

be well suited for navigation of first responders in emergency situations, such as inside

unmapped buildings or areas lacking GPS coverage. Additional system testing may

include navigation within buildings and onboard low-altitude flying vehicles, such as

terrestrial rockets or unmanned aerial vehicles.
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6.6 Future Work

While the primary goals of this project have been met, an operational hopper navi-

gation system is far from fully developed. However, the success of the various testbed

demonstrations confirms that the system is ready to move forward to the next stage

of system testing, which will involve re-testing the system with more accurate truth

data to determine the performance limitations of the system and integrating the sys-

tem with a flight vehicle for open-loop flight tests, advancing the system to TRL 52

Comprehensive closed-loop testing onboard a terrestrial rocket will further advance

the system to TRL 6', enabling selection of the system by a flight program.

Additional development of the Stingray system will focus on working towards this

goal of performing a closed-loop flight test onboard a terrestrial rocket. This will

require a thorough investigation of the latencies for data throughput in the system.

The forward-facing monocular vision system and a scanning laser rangefinder will

be added to the system in order to fully implement the architecture proposed in

Section 2.5. Once this is complete, a second testing campaign will determine the hard

performance, operational, and environmental limits of the system, as well as system

performance in environments analogous to those of planetary hoppers.

2 "Component and/or breadboard validation in relevant environment" [83].
3 "System/subsystem model or prototype demonstration in a relevant environment (ground or

space)" [83].
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