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Abstract

With the advent of "smart" consumer electronics, distance sensing is an increasingly
important field in optical sensing. A novel approach to active infrared(IR) 1D dis-
tance sensing is proposed, employing both intensity and time-of-flight information.
Conventional intensity based sensors lack in distance accuracy, and conventional time-
of-flight sensors suffer from crosstalk and backscatter issues. The purpose of this work
is to explore the solution space to these issues that hybrid intensity/time-of-flight sys-
tems enable, and to investigate their characteristics.

Optical behavior of time-of-flight and intensity of an active IR system is analyzed,
and a comprehensive reflection model is created. This model is then applied to
describe discrete objects, and a parameterized object model is developed. Techniques
such as the use of differentiated signals, least square estimation, and optimization
algorithms are introduced and applied to the object model. A range of techniques
based on specific use cases are developed, and their capabilities and limitations are
discussed.

Results show that in a limited set of conditions, combining time-of-flight and
intensity information can allow the extraction of distance in conditions that are typi-
cally unfavorable for conventional methods, such as high crosstalk or high backscatter
environments. Used in the right conditions, these techniques can gain immunity to
these sources of error, at the cost of higher computational complexity.
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Chapter 1

Introduction

Spatial characterization is a long studied field with many competing technologies,

including but not limited to 3D cameras, structured light, LIDAR, and many others.

An approach to the particular problem of distance sensing from low level sensors

is proposed, combining the technologies of intensity based proximity sensors and

time-of-flight distance sensors. Methods of combining the two independent sources

of information are discussed, and compared to conventional means. The goal of this

study is to investigate the solution space to the challenges encountered in intensity

based and time-of-flight distance sensors by utilizing information from both.

This chapter is dedicated to introducing the state of spatial characterization, in

particular ID distance sensing. Several system level traits will be discussed such as

range, field of view, power, size, and cost, and the potential market for low cost

monolithic sensors is discussed.

Chapter two describes a model of the optical environment as viewed from a time-

of-flight sensor. A general model will be established using reflectance models and

basic optics.

Chapter three extends the model to describe objects, and will develop a parametric

model of an object in the field of view of the sensor.

Chapter four will explore the properties of the object parameter model developed

in chapter three, and will introduce several real time techniques unique to hybrid

intensity/time-of-flight systems for determining distance under unfavorable condi-
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tions.

Chapter five will broaden the discussion in chapter four to account for multiple

readings, and will discuss algorithms that will extend the capabilities of the techniques

developed in chapter four.

Chapter six will provide a comprehensive summary of the capabilities and limi-

tations of hybrid intensity/time-of-flight systems, and will discusses design trade offs

and applications that best suit the technology.

1.1 Intelligent Distance Sensing

1.1.1 Motivations for Spatial Characterization

The idea of spatial characterization in the field of discrete Integrated Circuit (IC)

sensors are motivated by the recent trends in consumer electronics for "smart" devices.

Optical sensing ICs have established a place in this market with proximity sensors

for mobile applications, primarily in use for detecting when a mobile phone is placed

against the ear.

Spatial "awareness" of smart devices is certainly not a new idea, but one that

has been increasing in popularity. Implementations in lighting, bathroom units, au-

tomobiles and security has been around for over a decade, but there has been little

advancement in the form factor or power consumption since their introduction. IC

sensors have the potential of delivering small, low power solutions to many of these

applications, as well as introducing similar functions to a whole range of electronics

and appliances that were previously thought to not be suitable for the technology.

Another important motivation is the trend for gesture based interfaces in consumer

electronics. Especially with the introduction of Kinect in 2010, open-air gesture

has received a lot of interest, and is considered by some as the "holy grail" of user

interfaces. Most gesture recognition solutions are currently implemented using power

hungry cameras and structured light.

Based on these trends there appears to be a gap in the current technology for low

18



power spatial characterization. Monolithic System-On-Chip solutions for distance

sensing and event detection beyond the basic proximity sensing has just begun to

enter the market as of 2013. This work will investigate one such approach, combining

time-of-flight techniques and intensity based techniques using a single photodetector.

1.1.2 From 5D to 1D: Challenges in Distance Sensing

For many applications, the acquisition of spatial information is the goal in itself.

3D scanning and 3D mapping are just a few examples. However, for most other

applications, the end goal is to detect an event. This event could be the presence

of an object, a target reaching a specific location, or the prediction of a collision.

If given a 3D model of a particular situation, most events can be detected with

the use of generous computation. However, this approach is generally extremely

computation intensive, and requires bulky and power hungry hardware to obtain the

spatial information necessary.

However, many simple events do not require a full 3D model, and can be de-

tected by much more primitive means. A ID distance sensor is one such approach.

Distance is the inherently quantitative language to describe the relationship between

two objects, and is often the only metric required. The primary advantage for using

a distance sensor over a 3D spatial characterization technique is due to the amount

of information collected, distance sensors are inherently more compact and require

less power. In fact, many 3D spatial characterization techniques are simply arrays

of distance sensors or a single distance sensor multiplexed to scan through the other

dimensions.

It is important to recognize here some issues that come with the fact that a

distance sensor is one dimensional. Because of the 3 dimensional nature of the world,

describing a feature as 1 dimension requires specifying how the other two dimensions

are treated. In fact, more generally speaking, an active reflection based sensor has

up to 5 dimensions of interest; 2 spatial dimensions at the illumination source and

detector each, and time-of-flight or 'depth'.

Perhaps the application of this technique that most illustrates exactly how much

19



information can be encoded by the reflection of light is the CORNAR project con-

ducted by the Camera Culture group at the MIT Media Lab. The CORNAR projects

takes a series of picosecond resolution images, each illuminated by a coherent beam

of light. By processing this large amount of data collected over 5 dimensions (4 spa-

tial dimensions and time-of-flight), this project demonstrates the capability to "look

around corners", generating 3D models of objects hidden from the camera's field of

view [11].

A typical distance sensor is taking a small slice of the 5D information present in

the system, and computes a single distance. The process in which these dimensions

are reduced is of particular importance in understanding the tradeoffs involved in

distance sensor design.

1.1.3 Multipath, Field of View, and Target Ambiguity

ALII

Kkjk ~ ~Ip 1S *

1Ip~
I".

I
I

I
I

I
I

I
I

I
I

* * S

LIZ

LII

Figure 1-1: A Simple Multipath Scenario. Two optical
A-C-D-B are both detected by the detector B.

paths A-C-B, and a weaker

The first issue to recognize is that there are always multiple optical pathways for

20
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the light to travel. Figure 1-1 illustrates this issue for a simple scenario. A sensor

with source A and detector B emits a signal which strikes object C and is reflected

back. However, another object D is also present, and also reflects the signal from C

and back at the detector. Different sensor technologies are designed to respond to

these different reflection paths, presenting very different requirements in both opto-

mechanical and opto-electrical considerations.

Another important parameter to introduce, particularly for detecting events, is

the field of view. Also known as angle of view for photography, this metric measures

the extent of the physical world the sensor is looking at, and consequently influences

the nature of the measured distance. Distance sensors with a wide field of view can

be advantageous in detecting certain types of events, specifically when the target of

interest is not in a guaranteed orientation from the sensor, such as in the case for

presence detection and collision detection.

However, a wider field of view also implies that there may be more than one object

in the field of view, in which case the both objects would contribute to the signal.

Figure 1-2shows a the same scene, but with a wide field of view source. Note that

on top of the signals shown for the previous example, the paths A-D-B and A-D-C-B

are added to the picture, resulting in further ambiguity.

There are three general ways a system can respond to multiple paths and multiple

objects. The first is to sample along the relevant dimension. These systems would

report all of the paths and their respective strengths, preserving as much information

about the scene as possible. The second is select the information, most commonly

by reporting the minimum distance at which the signal strength exceeds a certain

signal, or by having selective responsively to a certain incident angle or distance.

The third is to add or average the information according to some function. Adding

or averaging always results in the best signal Signal to Noise Ratio (SNR), but at

the cost of the information being inherently less useful, as the significance of the

reading is ambiguous, no longer providing a one-to-one relationship between a physical

scene and it's corresponding reading. It is always possible to post process sampled

information to emulate a selective or averaging system, but usually at the cost of

21



LI
Bw

C

0 *I

10 go

Ob so 11AI
Figure 1-2: Wide Field of View Scenario. A source with a wide radiation profile adds
paths A-D-B and A-D-C-B (red), on top of the existing paths (blue)

increased quantization noise and power. Typical tradeoffs and implementations for
these three strategies are summarized in Figure 1-3 and Table 1.1.

Averaged Selective Sampled
Simple Complex
Low Cost Expensive
Low Power Resource Intensive
Ambigous Unambigous

Figure 1-3: Properties of Averaged, Selective, and Sampled Systems

This work will focus on an implementation where all of the five dimensions are

averaged or summed, such that a wide field of view is achieved with the simplest

circuitry and optical set up possible. This also introduces the largest ambiguity in

the significance of the signal, making it prone to systematic errors caused by multi

path and target ambiguity issues.
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Table 1.1: Common Language and Implementations for Averaged, Selected, and Sam-
pled Systems

-_Averaged Selective Sampled

Time-Of-Flight I-TOF D-TOF Deconvolution
Illumination Source Dispersed Source Coherent Source Scanned Source
(Example) (LED) (Laser) (Laser & Mirror)
Detector Single Detector Slit/Aperature Pixelated/Arrayed Sensor

1.2 Active IR Distance Sensing Technologies

Most distance sensors use the properties of the propagation of infrared light or ultra-

sound waves through a medium, due to the fact that these waves are not perceivable

by the human body. The basic concept behind these sensors is to drive an source,

typically a laser or LED for infrared light, or a transducer for sonar/ultrasound sen-

sors, and characterize the response to extract distance. This section will introduce

three methods that use infrared radiation to measure distance, and discuss some of

their properties and common applications.

1.2.1 Active IR Intensity Based Systems

Intensity based systems are the most primitive of the three, and are not strictly

distance sensors, but proximity sensors. Reflections from an IR LED are measured,

and the strength of the reflected signal is thresholded to detect proximity. These

sensors are extremely simple, and can be made very small and low power. Although

not technically a distance sensor, we will briefly discuss some of the properties of

monolithic IC proximity sensors as they will later be addressed in the context of

distance sensing.

These primitive sensors rely on the assumption that objects closer will present

a stronger reflected signal than those that are further away. However, they have

the disadvantage that they are not capable of reporting distance, as the reflected

signal strength is also a function of the reflectivity and size of the target. In an

extreme example, a material that is 100% absorptive would not be registered (or be

equivalently, at infinite distance) regardless of how close it is from the sensor.
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Intensity based optical proximity sensors have been around for decades. However,

as an monolithic IC sensor, they have only become popularized for their use in smart

phones in the last 5 years. Monolithic IC proximity sensors are either stand alone

solutions or are used in conjunction with an external IR LED, and are available on

the market for $3 or less. Package sizes have evolved to be as small as 7.4mm2 for a

complete solution. Ranges are typically on the order of approximately 10cm, although

some models have higher power modes that claim operation up to 50cm. Their field

of view vary depending on the LED's angular intensity distribution, but are typically

around 30 degrees to 120 degrees.

1.2.2 Triangulation

Triangulation based sensors are the are one of the most common type of compact

distance sensors in the market, and are commonly used in robotics, manufacturing,

and presence detection. The nature of the technology fundamentally limits these

systems to a narrow field of view, and require a certain minimum size for the sensor

that is proportional to the range of the sensor. This technology is best suited for

distances in the 10cm ~ Im range, and a typical sensor would be 20mm x 40mm x

20mm (L x W x H)

Figure 1-4: A Triangulation Based Distance Sensor : Sharp GP2YOA21YK [5]

The 3D equivalent of triangulation based of sensors are often called structured

light, and are used for structure light 3D scanners. Possibly the most prevalent of

these scanners is the Microsoft Kinect, an imaging system used for Human-Machine-

Interaction for the gaming console Xbox 360.
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1.2.3 Time-Of-Flight Systems

Time Of Flight systems take advantage of the finite speed of light and measure dis-

tance by measuring the time taken for an optical signal to strike a reflective target

and reflect back. Conceptually, these systems are based on the same principles as

RADAR, but use modulated light (typically near-infrared) as a radiation source. A

light source is either pulsed or modulated with a sinusoidal signal, which is then

detected and converted to distance.

Time-of-Flight systems come in a whole variety of shapes and sizes. The longest

distance time of flight sensor in existence is likely the sensor monitoring the distance of

the moon, measuring a distance of over 300,000km to a precision of a few centimeters.

While the equipment that monitors the distance to the moon consists of a full sized

telescope and a room full of electronics, the smallest time of flight sensor is embedded

in a pixel of a time-of-flight camera.

Although based on the same physical properties, three basic methods of measuring

and processing the time of flight exist, time domain sampling, direct conversion, and

indirect or ratiometric conversion.

1.2.3.1 Time Domain Sampling

Time Domain Sampling is the most basic and brute force method of measuring the

time of flight, and is done by sampling the reflected signal at a very high sampling

rate, and processing the data using digital signal processing techniques. Due to the

large amount of information required, this approach is very power intensive and re-

quires significant computational resources and is most commonly used in sophisticated

LIDAR equipment. However, it is also the most powerful in that it preserves multi

path information, and is capable of recording signals from multiple reflections.

1.2.3.2 Direct Conversion Techniques

Direct Conversion techniques are techniques in which the time of flight is directly

measured with the use of time-to-analog/time-to-digital circuits or similar. These
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techniques are sometimes referred by the name "D-TOF" , for Direct Time-Of-Flight

[7]. Direct conversion techniques are inherently lossy, because they achieve high gain

and sensitivity by triggering off the reflected signal, and thereby limiting the detection

to the first reflection path (or combination of reflection paths) that are strong enough

to cause the system to trigger. This results in a system that is selective in multi path,

at the cost of Signal to Noise Ratio [8].

1.2.3.3 Ratiometric Conversion Techniques

This is contrasted with "I-TOF", for Indirect Time-Of-Flight, which sample the re-

flected using a windows shuttering scheme or demodulation, a topic that will be dis-

cussed in much greater detail in Chapter 2. One of the properties of I-TOF conversion

techniques is that they are inherently based on ratiometric measurements, and are

primarily implemented using LTI techniques. Unlike Time Domain Sampling, these

conversion techniques use demodulation and/or integration, and do not require the

circuits to operate at the time scales necessary in Time Domain Sampling. In ad-

dition, ratiometric conversion techniques require very little computational resources,

and are therefore are the predominant technology in arrayed systems such as Time-

Of-Flight Cameras and 3D scanners. Figure 1-5 shows two different implementations

of direct and indirect time-of-flight techniques as presented in [8].

1.2.4 Comparison of Distance Sensing Technologies

Table 1.2 shows a comparison of TOF technologies with respect their treatment of

each of the 5 dimensions. In general, technologies that involve sampling information

have greater capabilities, but are typically large, and expensive.

1.3 Hybrid Intensity/Time-of-Flight

This work aims to introduce yet another class of distance sensing, based off of intensity

based and I-TOF techniques, but with unique capabilities only made possible by

combining the two forms of information present in a reflected signal. Time-Of-Flight
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Figure 1-5: Pulsed, Modulated D- and I-TOF measuring techniques using four time-

gated photon counters, borrowed from [8]

Table 1.2: Comparison of Distance Sensing Technologies
Technology Emitter Detector TOF Examples

Intensity Based Averaged Averaged N/A ISL29OXX, Sil1XX

Triangulation Selective Sampled (ID) N/A Sharp GP2 Series

Structured Light Sampled Sampled N/A Kinect

TOF Distance Sensor Averaged Averaged Averaged ISL29200

Laser Range Finder Selective Selective Ave./Sel. Nikon Laser Series

TOF Camera (I-TOF) Averaged Sampled Ave./Sel. PMD CamCube

LIDAR(Low End) Sampled Averaged Ave./Sel. Forecast 3D Laser

LIDAR(High End) Sampled Averaged Sampled EAARL

CODAC Compressed Averaged Sampled CODAC
CORNAR Sampled Sampled Sampled CORNAR

Hybrid Intensity/TOF Averaged Averaged Averaged This Work

information is completely lost in intensity based sensors, and intensity information is

not captured for typical D-TOF and I-TOF sensors. Even if the intensity information

is captured, TOF sensors typically do not take advantage of this information.
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1.3.1 Prior Work

Intersil Corporation (Intersil) is a manufacture of electronic components, including

intensity based infrared proximity sensors. Prom 2008, there has been a development

of a time of flight based sensor that is of a similar form factor of a monolithic integrated

circuit and external LED. With a part name of ISL29200, this part will be one of the

smallest true distance sensors in the market when released[2].

During the feasibility study stages this sensor, challenges regarding crosstalk were

quickly discovered, and the concept of quantifying and subtracting out crosstalk were

considered in the early stages of the study. As background and target ambiguity

issues surfaced, a basic hybrid technique that relied on both the intensity and time-

of-flight properties was developed. A paper for an internal conference was written at

the time on this subject, and which is included in the appendix A.

This thesis is a direct extension of these findings.

1.3.2 Hybrid Techniques for Intelligent Sensors

The most basic form of using both time-of-flight and intensity information is to remove

the effect of crosstalk in the system. Time-of-Flight sensors and intensity based

sensors alike are highly prone to crosstalk, which can significantly reduce the accuracy

and effective range. If this crosstalk can be measured in advance, it is possible to

subtract or cancel the crosstalk out, effectively eliminating the systematic error.

The logical extension to this concept is to apply the technique to background

and target ambiguity issues, as well as scenarios where the crosstalk can not be

quantified in advance. This paper seeks to explore the solution space to these issues,

by modeling both the intensity and time-of-flight of the reflected signal of a wide field

of view sensor, and describing it's properties in terms of a finite set of meaningful

physical parameters.
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Chapter 2

Optical Modeling of Wide Field of

View Indirect Time-Of-Flight

Systems

A typical time of flight system is shown in the FIgure 2-1, containing the following

components:

" Illumination Source: Typically near-infrared light in the 800nm 1000nm range

is used for the illumination source, due to it's low (or lack of) visibility, and

minor radiation concerns. This light source is modulated by driving circuitry

to generate the optical signals necessary for the system. Sometimes a diffuser

is used in conjunction with the source to better distribute the light.

" Photodetector: A photodiode is used as a detector, with appropriate optical

filters to extract the desired wavelength of light. Lens and mirrors can be used

to focus or redirect the light, but we will consider this as part of our detector.

* Circuitry: Analog and Digital circuits are required to drive the illumination

source, and to sense and process the detected optical signal.

In this chapter, we will discuss the characterization and modeling of the opti-

cal components of the system, ultimately determining the relationship of the circuit
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Figure 2-1: System Setup

behavior of the illumination source to the detector. For 3D cameras and LIDAR

applications, the sensor and optical elements are arranged such that each pixel of the

detector corresponds to a relatively small area. Thus these time of flight systems are

easily modeled as a collection of time of flight measurements, each characterized by

three points in space, the source, a point on the seen, and the detector. However, for

systems that collect light from a wide field of view, the response must be obtained by

integrating over the entire field of view.

In order to model the behavior of the system, we must first be able to model the

reflections from the "scene" given our illumination source, and then determine it's

projection on to the image sensor. This a classic problem in computer graphics, and

we will use models and techniques commonly used in this field to obtain our model.

The basic premise of the technique is as follows: for every differential solid angle

illuminated by the source, we can find the reflection off an arbitrary surface, and

finally find the contribution from that reflection back to the detector. In the model

developed in this chapter, we will consider the first reflection only, but in principle,

many reflections can be modeled for more realistic results.
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2.1 Descriptions of Components

In this section, we will describe the behavior of each component of the optical system.

These descriptions will be later assembled to develop a comprehensive model of the

optical channel.

2.1.1 Radiance and Light Fields

The entire characteristics of light on any surface can be described using it's light

field, a 4 dimensional function measuring radiance as a function of the position and

direction. Light fields can be parameterized using a few different systems, one of

which is using point r = (u, v) on a plane or curved surface S, and the direction

W = (6, #), as shown on the left in Figure 2-2. This is typically the way radiance

is defined in optics, as the physical quantities are more easily obtained. Another

convention is defined using two points r1 = (u, v), and r2 = (s, t), one each on two

plane or curved surfaces, Si and S2, as shown on the right. The later technique is

more common in computer graphics, which usually requires modeling the projection

from an object onto a simulated image plane.

Figure 2-2: Different Parameterizations for the Light Field [3]

Although we will use the later for the most part, we will use both of these expres-

sions interchangeably, under the transformation:

w = r2 -r 1  (2.1)

L(ri, r 2 ) = L1 (ri, r2
1'- ) (2.2)

It is important to note that although written as one variable, both r and W' each

represent the projection of two variables on to a surface/unit sphere in three spatial
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dimensions. Also worth noting is that not all possible rays starting from Si are

modeled in the second convention, only those that strike a point in S2 are defined.

2.1.2 Bidirectional Reflectance Model

To model the behavior of a light on our scene, we must consider the relationship be-

tween incoming and outgoing light for an incremental surface element. This function

that describes redistribution of light from incident ray to outgoing radiance is known

as the bidirectional reflectance distribution function (BRDF) and was first described

by Fred Nicodemus in 1965. [4]

The BRDF is in general a 6 dimensional function, f,(r, W, W'i), where r = r(0,<4)

denotes a point on the incident surface, and wo and wi each are scaler vectors describ-

ing of the outgoing and incoming ray angle, respectively. We can obtain the outgoing

radiance from the incoming radiance according to the following relationship:

LO(r, W0 ) = Jf(r, i, o)i(r, i)(Li -i)di (2.3)

Transforming this into our two surface representation of radiance, we reach the

following equation.

LO (r2, io) = fr(rr 2 - ri, 0 )Li(ri, r 2 )(r 2 - r1 - r1 2  (2.4)
Si

Note that in changing the variable and integration limit, we have lost the rays included

in the integrand that did not pass the surface S1. However, for these rays, Li is by

definition zero, so the equality holds. Further projecting this radiance field onto a

third surface S3 , would result in the following transformation:

Lo(r 2 , r 3 ) = fd(rr2 - r(, r3 - r2)Li5(r, r2)( r2 - r1)
Si
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2.1.2.1 Specular Reflection

The BRDF is a measurable quantity for a given object or material, that can be

experimentally determined by illuminating and measuring the irradiance at different

surface angles [1]. However, it is also a function that has been modeled with fairly high

success. One such model is known as the Torrance-Sparrow Model, first published in

1976. This model assumes that a roughened surface is composed of perfectly specular

small micro facets distributed in some distribution function. [10]

Using the Torrance-Sparrow model, the BRDF of a point on a surface with local

surface orientation n' is given by the following expression:

_W_ D (h) G (W-, Io) Fr (W- h)
fr, d ( i,'o) D 4(n - 0i)F(n -wo)(2.6)

where h is the half angle vector given by:

h = W "O (2.7)

Here, D(h) is the Distribution of micro-facets, G(W'i, W'O) is the Geometric Attenuation

Factor to account for micro facets shadowed by other micro facets, and Fr('0  h)

is the Fresnel Factor given by Fresnel Equations. All three of the terms D, G, and

Fr depend on the local surface orientation n', and the Fresnel term Fr depends on

the material's refractive index as well as the wavelength of light, but these are left

implicit in the expression above.

The original Torrance-Sparrow article used a Gaussian distribution for the distri-

bution of micro-facets. Five years later, Cook and Torrance published an updated

model that takes into account wavelength and color shift, but this time using Beck-

mann Distribution, which is considered to give the best results without introducing

any arbitrary parameters, but at the cost of increased computational demands. [6]

Armed with modern high level programming languages and multi-core processors,

this work uses the Beckmann Distribution Function reproduced below:
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Figure 2-3: The Beckmann Distribution

tan2(c,- 1 ( .q))

D (h) = - #4

irm2( . 4
1-(K.jj)2

e (K i)2m2

7r~n(h -n)4(2.8)

where m is the RMS slope of the micro facets, representing a metric of the roughness

of the surface at that point.

2.1.2.2 Diffuse Reflection

We will model the diffuse reflections using the Lambertian reflector model, which

assume an isotropic response over all viewing angles WLO independent of incidence
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angle LAj. This is equivalent to a BRDF function as follows:

frs(Wo) - 1 (2.9)
7F

2.1.2.3 Combined Reflections

Most objects exhibit some amount of diffuse reflections and specular high lights. To

model this, we will supply two parameters, k, and kd, that represent the portion of in-

cident energy that is reflected through specular and diffuse mechanisms, respectively.

Our final expression for BRDF will thus now be:

f(i, L0 ) = ksfr,s( (Wi, cZO) + kdfr, d(&o) (2.10)

2.1.3 Illumination Source

An infrared light emitting diode (IR LED) would be used as the illumination source.

To fully describe a light source, we must once again use radiance fields. However,

LEDs are generally modeled as point sources with a particular radiant intensity as a

function of angle, i.e.: 1e = Ie(0). LEDs are technically finite in size, but for distances

that are several times larger than the dimension of the diode, (which are on the order

of 1mm or less for surface mount chip LEDs), this approximation is quite accurate

and the standard method of characterizing an LED. We will also define the quantity

(Do, which represents the total optical energy emitted by the diode, given by:

fDo j Ie()sinOdOdo (2.11)

2.1.4 Photodetector

A photodiode will be used to detect the light reflected back from the target scene.

The amount of optical power incident on the photodetector is simply the integral of

the radiance across the area of the diode, across the upper hemisphere, according to
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the following expression:

4d= Jf , Lcos(O)dAdQ (2.12)

Where Q is the Solid Angle, and 0 is the zenith angle in spherical coordinates.

More generally, in vector notation:

f = L(w- - -)d Adc (2.13)

The diode photocurrent Id is equal to the total Radiant Flux times the Respon-

sivity, which is typically near constant in photoconductive mode.

I1 = R(A = 4)d (2.14)hf

where 77 is the quantum efficiency of the photodiode for a given wavelength, q is the

electron charge, h is Plank's constant, and f is the frequency of the radiation.

In avalanche mode, the Responsivity is still linear, but with an additional gain of

M. i.e.:

Id = MR4d (2.15)

However, in Geiger mode as used with Single Photon Avalanche Diodes (SPADs),

the response is better understood as an triggering event, and does not follow the same

principle. For these devices, each photon triggers a pulse, and additional circuitry is

required to integrate or "count" the number of photons arrived in a certain period

of time. This has the advantages of high sensitivity and intrinsic low noise, but

has the disadvantage that it loses accuracy at higher incident radiant flux due to

saturation of the avalanche process. The exact relation of the voltage acquired and

incident radiant flux is dependent on the implementation of the trigger circuitry and
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Table 2.1: Parameter Definitions for Intensity Model
Symbol Description Dimensionality/Units
re Point along the Emitter Surface Position Vector
rs Point along Scene Surface Position Vector
r, Point along Detector Surface Position Vector
dAe Infinitesimal Area Element on the Emitter [im 2]

dAs Infinitesimal Area Element on the Scene [IM 2]

dAd Infinitesimal Area Element on the Detector [IM 2]

the analog counter, but in general, they are designed such that:

Vit ocJ <ddt (2.16)

In either scenario, the diode is designed and used such that the diode current is

proportional to the incident optical power. This current is usually then integrated

using a capacitor, or converted to voltage before amplification and digitization. For

the purpose of this study, we will simply assume that what ever mechanism is used at

the detector and signal conditioning circuits, the optical power is the intrinsic measure

that the acquired signal is representing. Thus, we will abstract the photodetector as

simply a device that measures optical power.

2.2 Intensity Model

In assembling these results, we will define the following variables.

We will first consider a general Illumination Source, characterized by the 4D Ra-

diance Field Li(re, r,), that is occupying a surface E = re, projecting light on to the
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surface S = r. In this setup, we have:

L0 (r8,rd) - fr(reres - ie,is - rd)Li(re, r -e n e* _ (2.17)
E

(Dd = Lo(rs, rd ( ?id dcjdAd (2.18)
D 

2 .,r

= L (rs,rd)(rs--r-d id) S 2dAd (2.19)

D S

This involves three surface integrals, and is both computation intensive and too

complex to be informative for analysis. For a sufficiently small emitters we can make

the approximations as the source as a point source characterized by Radiant Intensity

Ie() = Ie(i-r e) centered at re = RE with an area AE-

Li(re, rs)dAe = Ie(rs - e)6(re - RE) (2.20)

This simplifies Equation 2.17- 2.18 down to:

(r. - )Lo(r, rd) = fr (re r- re, rs- -')ekr'sE) s R, 2  (2.21)
rd (. -RE 1r, - RE 12(.1

ffff - - - dAS dAd
(bd = f (rer -- re, rs - rd)Ie(rs - RE) 2  s e - D (rs i'd

||rs - RE121 irs - RDI 12
D S

(2.22)

Where we observe a nice bit of symmetry. To further simplify the expression, we

can model the detector as a "point detector" centered at RD with area AD and mean

surface normal Nd, by making the following approximation.

dAd(rd) = ADJ(rd - RD) Nd (2.23)
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Making these approximations, we arrive to the following formulas:

dAS -
fM(rs, rs - RE, rs - RD)Ie(rs - RE) irs - REI 2 (rs - RE

(2.24)

For clarity, we will define the following displacement vectors:

ri = rs - RE

ro = rs - RD

(2.25)

(2.26)

Substituting this, we obtain:

<D f = J

S

fr(rs, ii, fo)Ie(ifi) dA( -f) AD o 2 (2.27)

For most time-of-flight systems, the emitter and detector are close to each other,

which leads us to the approximation r = ri = ro, giving us:

S

dAs(i -- f)AD(i' Nd)
fr(r, ,I )Ie(i)r (2.28)

2.3 Time Dependancy

Light travels at the speed of light, incurring a time delay between when a ray is

emitted from a source and is detected back at the source. This time delay is the basis

of all Time-Of-Flight Systems. For Time-Of-Flight Systems, this effect must be taken

into effect.

2.3.1 Wave Propagation Model

Light travels at a finite speed through any medium. If a ray of light is emitted with

waveform f(t) is emitted at a point ro, the same ray observed at point r1 will have
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the waveform:

f (t - rol) (2.29)

To combining this with our model from Equation 2.27, we will represent the

radiant intensity of a illumination source is represented as a function of time, such

that Ie = Io(0 )f(t). Now, the flux at the detector will be:

4d (t) = Jchbd(rs)f (t - Trl +1roH) (2.30)
S

where,

sh ) AD (ro Nd)
d(Id(rS) = dA8 (i', ,~ ADi, 0 Nd)0 f) ~ (2.31)

1 ri 112  1 r0 12

2.3.2 Measuring Time-Of-Flight

As introduced in Chapter 1, there are several methods for measuring the time of

flight. Here, we will focus on "Indirect" Time-Of-Flight methods. There are two

main categories for I-TOF systems, those that use Pulsed Light and those that use a

Sine Wave Modulation.

2.3.2.1 Pulsed Light

This is the most common approach for 3D time-of-flight cameras, taking two or more

shutter windows and using the ratio to determine the time of flight. The time-of-flight

is related to the distance as:

d = 2 (2.32)2

This is implemented by using a square pulse for the waveform, with pulse width

Tp. This signal is then integrated over two or more separate windows, and the ratio

is used to determine the time.
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Figure 2-4: Window Scheme for Pulsed TOF

Using the windowing scheme shown in Figure 2-4:

T + T i ntW, 1 D (t) dt

/jj ri| + ||rol d4d(r,)

S
To+Ti'a

W2 =
Tj

=if

S

1(t)dt

Tpdld(r,)

The time of flight is computed from these two windows as following:

At = T
'W2

ff dI d(r,) Irijl+Ilrol
S

ff d~b(rs)
S

As can be seen, each component of light adds linearly, and the resultant time of flight

41

(2.33)

(2.34)

(2.35)

:tTOF:

I TP--O-I

tMAFFReflected Pulse



is effectively the weighted average of time of flights from all the paths from the emitter

to the detector. Converting this to distance, we get:

ff dId(rs)(Hri + Irol)

d -_Ct S(2.36)2 2 ff d4)d(rs)
S

2.3.2.2 Sine Wave Modulation

An alternative to Pulsed Time-of-Flight is a technique referred as Sine Wave Modula-

tion (SWM). This technique is similar to Phase Modulation used in RF applications,

but instead of modulating the signal with a signal to be transmitted, optical channel

is the modulator. Unlike pulsed light modulation which extracts the time-of-flight

using ratios between windows, this technique extracts phase delay from trigonometric

identities. This phase delay A# is related to the distance according to the following

formula:

d = AO (2.37)
47rf

The main advantages that sine wave modulation has are two fold. This first is that

the bandwidth requirements and time domain behavior is easily analyzed due to the

availability of Sinusoidal Steady State analysis as well as frequency domain techniques.

The second is that filtering and other techniques common in RF systems can be readily

applied in the signal chain to improve SNR. However, their is a slight complication

in interpreting the signals, due to the non-linear nature on the conversion.

The system is constructed by emitting an optical signal modulated with a sine

wave or similarly narrow band signal with a frequency of f, or a radial frequency

wm = 27rf. The reflected signal is detected and demodulated using a similarly narrow

band signal, typically a square wave, and the result is sampled and quantized. By

using two demodulators 90 degrees apart, one can obtain both the amplitude and

phase information. With f(t) = cos(wmt + Oo), the two demodulation signals are
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cos(wmt) and sfin(wmt).

4(t)cos(wt)dt

STdD(r,)cos(wt)cos

= JJd(r)7cos (wm

S

( Wm

( ril + 1roll

d4d(rs)sin(wmt)cos

JJ dD(rS)-rsin (wm

S

(W&m
(ri + 1ro H

The phase of the signal is computed as:

A# = tan-' ( ) +0 (2.40)

We will abstract this implementation using complex exponentials, letting x, = R(x),

XQ =(X):

X = dDd(rs)re *

S

A# = Z(x) + #o (2.41)

2.4 Simulation and Analysis of Simple Scenes

A numerical simulation model implementing Equation 2.24, 2.35, and 2.41 was writ-

ten in Python. The following section finds analytic solutions to the model for simple

scenes, and provides a comparison to simulation results to verify the simulation re-

sults.
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00 dt

XQ =

T

(2.38)

S T

t _ ri I+| |IroH) + 00 dt

(2.39)

-0S0)

(D(t )sin(wmt )dt

-00)

t - |ril| +||rol| +



2.4.1 Perfect Sphere, Point Source

We will first study the special case for the following conditions:

* Emitter is an ideal point source with uniform distribution.

i.e. Ie(W) = 1o = !, where (o is the total optical power emitted from the

illumination source.

" The scene is a perfectly diffuse shell of constant radius r.

r = (r,,)

||r|| = r

dA = r 2sin~dd5

fr(r, 7 ,Z Wo) =

1

nr=r

* Emitter and the Detector are coincident, and are oriented in the XY plane: i.e.:

RE= RD

ad = z

Nd -i- =cos(O)

(2.47)

(2.48)

(2.49)

In this scenario, Equation 2.24 simplifies to the following:

1 cosO r 2sindOo
AD-

? 2 2

1a 27w
= DoAD- 2

27r r

The time of flight is computed as:
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(2.43)

(2.44)

(2.45)

(2.46)

(2.50)



ff f7r fo 224AD cO ,2si2ldOc 2
At =zs

If ju, f I AD COsO r2sindp
f r 27r r2 r

S
_ i A AD 2r

' 0oAD2

2r
(2.51)C

Using the simulation code, the field of view of the system is divided into a N x N

array of facets, and the contribution of the first reflection off of each facet is computed

and added up to deliver the total optical power on the diode. The simulation results

are summarized in the figures 2-5 through 2-9. As can be seen quite clearly, the

simulation and analytical results match quite well, save a small constant offset due

to the discretization of the scene, which diminishes as the simulation resolution is

increases.

10
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4

2

10
v5

-10 0

10 -10

Figure 2-5: Facet Array of Spherical Shells for N=20
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2.4.2 Infinite Plane, Point Source

We will look at another simple scene that can be verified analytically. We will continue

using the same conditions for the following:

* Emitter is an ideal point source with uniform distribution.

i.e. Ie(W) = I0 = 1, where (o is the total optical power emitted from the

illumination source.

But instead of a sphere, we will use a infinite plane of diffuse material a set distance

d away form the plane of the sensor.

d
r=- (cos(O 0

dI

#)

cos(9)

dA = r 2sind~d# =
d2 sin~dOd#

cos 2(9)

fr(r, i,o) = -1

n=z

The amplitude of the detected signal is now given by:

D i o 1 cos20 r 2sindOd#

jd = - AD
%- o 27 7 r2 12

l'41)0 
1 COS'Osin~d~d#

_,7 fo i 27 7 d2

=D AD I
57r d2
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(2.53)

(2.54)

(2.55)
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The time of flight is computed as:

ff f ir 7r CAD os r2 sin d6o ( 2r

At S 
ff F 7r f0  2 AD C2 r2sind0 5
S

S oAD (2d)

(DOADd
5 d 

(2.58)
2 c

The simulation results summarized in figures 2-10 through 2-13 show a slight

systematic error in the time of flight, most likely due to the fact that at the boundary

of the field of view of the sensor (which is ill behaved for a numerical simulation)

theoretically contributes an infinite distance, converging to a finite error despite the

the 1/r 2 dependance.

10-2

A A N=10
10 -4 ... .... ..... .. .. .
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Figure 2-10: Distance v.s. Intensity for an Infinite Plane
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Chapter 3

Parameterizing Objects in Hybrid

Intensity/Time-Of-Flight Signals

This chapter will discuss how we can extract physical attributes of real scenes from

signals obtained from a system as characterized in Chapter 2. In principle, the same

signal from the detector can originate from an infinite possibility of scenes. However,

by making certain assumptions about typical scenes, we can extract useful information

from the signal obtained from our detector. In order to accomplish this, we must first

describe the signal using a finite number of sensible parameters. Our ultimate goal

will be to estimate these parameters, obtaining a description of the optical scene.

3.1 Parametrizing Objects

In this section we will use the models developed in Chapter 2 to parameterize Time-

Of-Flight signals. The base assumption that we will make here, is that the scene is

composed of distinct "objects". Physical objects tend to be fairly uniform in their

surface texture, refractive index, and surface orientation, and most importantly, are

localized in space and do not change size. Ultimately, these objects are what we would

like to be able to recognize and identify. Therefore, it is critical that we understand

how a typical object behaves in a Time-Of-Flight systems.
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3.1.1 Effective Distance

The first parameter to introduce is the Effective Distance, which we will denote simply

as re.

The effective distance of an object is defined as the distance needed for a point

reflector to result in the same time-of-flight computed from a signal reflected from an

entire object. Let us recall the results of converting our signal from the whole scene

to a single Time-Of-Flight in Equations 2.35 for Pulsed Time-Of-Flight, and 2.41, for

Sine Wave Modulated Time-Of-Flight systems. For simplicity, let us briefly focus on

Pulsed Time-Of-Flight, whose distance expression is reproduced below:

d cAt
2

ff dd(r,)(J|riJJ + 1rol|)
S

2 ff d(d(rs)
S

We will define re as the application of the above equations over the object's pro-

jected area, 0, and obtain:

c At _

re 2

ff dIobj(ro)(Jri|| + ro||)
0

2 ff dJ 0bj (rs)
0

(3.2)

The effective distance is simply half of the optical path length:

(3.3)

As can be seen, this effective distance is effectively the weighted average of the

distance of the facets on the object reflecting the illumination back at the sensor.
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ff d1 obj(rs)( ri|| + |ro|)
re=- ____________

2 2 ff Dobj(rs)
0

ff rdJoj (r)
0

ff dI 0ob(r)
S



This may or may not agree with what a person may intuitively perceive as the dis-

tance between the sensor and the target object, but it is nonetheless unique for any

particular geometry. This definition of effective distance is the natural measure to

describe an object for a time of flight system with a wide field of view, since it is the

direct extension of interpretation of time of flight measurement for a narrow field of

view LIDAR or 3D TOF camera.

Let us return to the infinite plane that we examined in Chapter 2. On the infinite

plane, r = z/cos(O), where z is the distance between the object plane and emitter/de-

tector plane. Earlier, we had assumed a uniform illumination source, but we will now

let it be a general illumination source with radiant intensity le(0). Assuming the

emitter and detector are sufficiently close, (i.e. IIriII = IIroII = r), uniform surface

material and smoothness, and radially symmetric profile, every term can be described

by the zenith angle 0, and the expression becomes:

f f f(0)Ie(0) r
2sinOdOd4(cosO) AD(COSO)

re - 0 _ 7r _ ______e__)2_ _ P C_ _ ADr2

fo2 T fo fr(0)Ie(0) sinOdOdo(cosO) AD(COS3)

7 r foF fr(0)Ie()sin0d0d2(cos) AD(COsg)
f 2 7r 

AD (COS
3 

0)

j0r o fr (O)Ie(O)si'nOdO#o(cosO) z,2

= f0 fr(O)Ie(0) cos0 0 sin OdO (3.4)

f" fr(0)Je(o) cosS4 sinOdO

For an ideal lambertian reflector and a point source, fr and le are both constants,

simplifying this further to:

fE2 cos 3 0 sin OdO
re z ,

f2 cos4 0 sin OdO

- Z (3.5)
4

If the source has an lambertian illumination profile, there will be another factor

of cos 0 in both integrands, resulting in an effective distance of z. If we approximate

narrow Illumination profiles as powers of cos 0, we see that as narrower illumination
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profiles converge towards the effective distance equaling the plane to plane distance.

This is consistent with our understanding of a TOF system with a narrow field of

view such as a laser range finder, in that the distance computed from the time-of-

flight information becomes the point to point distance between the sensor and the

spot illuminated by the laser.

Real objects are finite in size, and will behave somewhat between an infinite plane

and a point reflector. For a circular disk of radius a, if the distance between the

object plane and emitter/detector plane is greater than the radius (i.e. z >> a),

the effective distance of the object would be that of a point reflector. If the distance

between the object plane and emitter/detector plane is small compared to the disk

radius (i.e. z << a), the effective distance of the object approximates that of an

infinite plane. The exact solutions is given by the solution to the equation:

arctan a )
re= fO fr(O)Ie (O)cos3 OsinOdO (3.6)

r f= arctan a )(.)
f an ~ _fr( )Ie(9) cos4 0 sin OdO

Table 3.1 summarizes this trend.

3.1.2 Inverse Squared and Inversed Fourth Laws

We will now focus on the relationship between the effective distance re and the in-

tensity of the signal contributed from the object.

In Chapter 2, we studied two particular examples of idealized objects, a hemi-

sphere, and an infinite plane. For both of these objects, we saw that the intensity of

the detected signal decayed as an inverse square law. Mean while, we from equation

2.28 that each differential surface element contributes as an inverse quartic. This

behavior can be generalized to large and small objects, respectively. For significantly

large objects, an incremental change in distance will proportionately increase the area

of the object illuminated by the emitter, resulting in minimal energy lost in the emis-

56



Table 3.1: Effective Distance for Various Illumination Profiles

Illum. Profile Effective Distance

le z << a z >> a Exact Solution

5 5 (z2+a2) 9z5(z2+a2)1
1110 Z 52_ (
27r 4 4 z (z2 +a 2 ) -z 5

(z2+a2 z-(z2+a2)6 2 6 52_2)_ 1

P-QCos 0-6z z 6z(+a2_ 66 a
7r 5 5 (Z2+a2) -z6

(N+1) N+ Z+5 (z2+a2) zN+4(z2 2)

2 r Cos N+4 N+ 4  2+2 N+5 _ ZN+5

.06(0)*zzz( 
-

2'i
(-l)( 967r-128 z Z **See Below

7r (7r - 2) 457r I
*1o)6(O) im (N+1)4o N

27r NUo 27r Cos

** -16 (3z3 z
2+a

2 +37rz a 2237rZ3+6arctan()z3_6az2-4a3) (z 2 +a2 )

9 z2+_2 (-87a2Z2-47ra-5 arctan( )z 4 +5az3+3a3z+6 arctan( )z 2 a 2 +3 arctan( )a4)

sion to object illumination. There is still an inverse square law due to the projection

of the reflected light field onto the detector area.

For small objects, an incremental change in distance will result in a no change

in illuminated area, but the solid angle that the object occupies will decrease as an

inverse square. The loss of optical flux through the vacant space is causes an inverse

square term, which combined with the inverse square term associated to the loss of

the detector, result in an signal intensity proportional to 4.

However, real objects are typically somewhat in between the two extremes. For

example, for a detection range of 10cm to 2m, any object with a dimension in the

same range is likely to exhibit both or an "in between" behavior in significant portions

of the detection range.

3.1.3 Analytic Examples

Let us consider an ideal lambertian reflector shaped as a circular disk of radius a.

Then, our bidirectional reflectance fr is independent of incident and outgoing angle.

fr = -. We will once again assume a point source, 1, = !, and then extend the

analysis to other distributions. Along the object surface, r = . and the object is
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defined for 0 < 9 < arctan(l). Solving for the flux using Equation 2.24, we obtain:

obj = jir arctan(R)
- 0 i

/7r farctan(R)
-r 0

1
= O AD 7z2

Cos 2 9 r 2 sin OdOdq
IeAD 2 2

COS4 (0) sin 9ddo
leAD 2

za5

5(Z2 + a2)52

(3.7)

Although this expression looks quite complex, this expression can be largely divided

into two regions, corresponding to the conditions z 2 >> a2 , and z2 << a2. For these

two extremes, the expression simplifies to:

( AD for Z2 2

2z24obj ~%

0oAD for z2 a2

These two trends intersect at Z2 = a2, orz= a

This behavior can be approximated by an inverse quartic of the form:

OA a2

(3.8)

or in terms of re

z 2(2z 2 - 0.70az + 5a 2 )

a2

27r r2 (2r2 - 0.81are + 3.2a 2 )

For a lambertian source, we simply apply our analysis with Ie = 1o cos(8) and
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obtain:

r arctan() 0 cosZ(0)
41)= A D 2 si dd

-7r 0 7T Z

4)0 1
= -A D z

(1
k6

z 6

6(z 2 + a2)3

(3.11)

(3-12)

(3.13)

Once again, for the two extremes, this relation simplifies to a simple quartic and a

quadratic.

24AD 6z
2

2oAD -42

for z 2 « a2

for z 2 >a 2

(3.14)

intersecting at z 2 = 3a 2 , or z = V3a

This approximates to:

)0AD (Z a2 2A Dz2(2z2-0.85az+6a2)

i D r2(2r2-0.95are-+4.17a 2 )

in terms of z

in terms of re

Table 3.2 below summarizes the behavior of several illumination profiles that are

analytically solvable.

3.1.4 Generalization and Numerical Simulations result

In general, we will find that the intensity and time-of-flight of the detected signal of

an object can be approximated using the following model:

obj = 0 r(r2 + clre + co)
ree

At =
C

(3.16)

(3.17)

Note that this approximation has no loss in generality, for there are more parame-

59

(3.15)



Table 3.2: Intensity Behavior for Various Illumination Profiles
Illum. Profile Limit Behavior Quartic Approximation
Ie > <a >> D (z)/D(re)

2 D IJD AD z 2 (2z 2 -0.70az+5a 2 )
cos 0 2oAD~ 2~A z 2 (2z24 a 2

OiF~~Aa2 -. 5+6 2 )
20AD r2(2r2-0.81are+3.2a

COS~ 24 0DD DoAD- z2(2Z2--0.85az+6a2)

AD r2 (2r2 -0.95are+4.17a 2 )
(N+1)-% _N o N D A (N + )oAD (N + _)_z Dz2(2z2-abz+(N+5)a2)

2 (N + 1)oAD a 2
(2r2-abre+ N a2

406(0) 1 D -
27 z2 ADz 2  ADr2

7r(7r-2) 0oAD 64 (7r- 2)Z2 4 AD 4(72)Z4 1 5 2
2)__________ _________ OC4w)45 A D(47r-8)(5Z

2
-az±16a)

* b is some function of N (i.e. b = f(N)). The exact expression is not important for
this analysis.

ters than observable quantities. However, we will find that this model is a particularly

useful one in analyzing the scope of signals that occur naturally from an ordinary ob-

ject. Specifically, we will find that for radial motion, the parameters c0 , ci, and c2

are not effected to first order for a large range of objects. We will call this model the

Object Parameter Model, and will refer to the three parameters c0, ci, and c2 as the

object parameters.

The two measurable quantities for a Pulsed TOF system can now be represented

in terms of this object parameter model as follows:

W1 = DoAD c0c2  re

W27 = %oAD cc
r2(r2 + cire + co) ro

W 2 = bAD (CC2 ) 27, (3.18)

cT
where r0 = 2

2

Using the numerical simulation model developed in Chapter 2 with a 100 by

100 grid. Intensity was measured against Effective Distance, and each set of data

was fit to object parameters using linear least square estimation. The results are

summarized in Appendix B The results show that for the set of scenes tested, all

scenes can be modeled with a constant values for co, ci, and c2 , with only the values
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of re changing over the course of the motion. The average error for each point was

less than 0.1%, showing that the model sufficiently represents the effective distance

to intensity relationship of objects for the scenes simulated.

3.2 Physical Interpretation of Parametric Model

The physical interpretation of these object parameters cO, c1, c2, are as following:

" co: The Effective Area. This parameter signifies the effective area of the object.

The effective area of an object is a function of the physical surface area of the

object illuminated by the source, weighted by the strength of the source and the

efficiency of the detector in that solid angle. Narrow illumination profiles result

in larger effective areas for the same object, and off axis objects will appear to

have a smaller effective area. I is closely related to the fraction of the opticalr2

power incident on the object.

" ci: The Effective Dimension. This parameter is related to the dimensions of the

object's profile. The closer the object is to a perfect disk/sphere, the smaller this

value becomes. Being further off axis of the source also increases this parameter.

For on axis objects, - of the circumference is an effective order-of-magnitude

approximation.

* C2 : The Effective Reflectivity This parameter is the joint effect of the object's

orientation and surface properties, as well as the radiance of the source observed

at the object. It can be roughly understood as the ratio of the strength of light

incident on the object to the strength of light reflected from the object, and will

take on values of between 0 and unity.

In this section, we will look into further detail how each parameter is effected by

physical attributes.
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3.2.1 Size

Size of the object predominantly effects the two parameters co and c1 . These two

parameters are a direct consequence of the way the light falls off the edge of the

object, and are therefore directly related to the size of the object. For small objects

that are directly in line of sight of the sensor, we expect co to be roughly equal to the
profile area of the object. Objects that are in the peripherals of the field of view would

appear smaller, and would diminish as they exit the field of view. ci also depends on

size, but is roughly proportional to linear dimension as opposed to area.

These observations can be explained by our understanding of the limit cases.

When an object is very close to the sensor, it appears like an infinite plane, and the

behavior becomes independent of the area to first order. This corresponds with our

model's behavior for re << Vco - _ - -g, where the intensity is independent of both

c1 and co. When the object is far away, the intensity equation converges to <DOAD C240

which agrees with the behavior of an infinitesimal area element dA = co.

10-4

10_ __ O.2x0.2

1014- - 1.6x1.6
10-

110 100
Effective Distance [meters]

Figure 3-1: Effective Distance v.s. Intensity for a Diffuse Square of Various Sizes
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3.2.2 Shape

Shape has an effect on the transition between square law behavior and fourth law

behavior. This is characterized by the parameter ci in the object parameter model.

Figure 3-2 show a series of simulation results of a rectangular sheet of fixed area of

0.36m 2, but with various ratios of width and height. In general, an elongated shape

results in a larger value of ci, or equivalently, a slower transition from square law to

fourth law behavior.

1 0 - 5 .. . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . .

1 0 - 6 .. . . . .. ..-. . .. .. . . . .. . . ...-. .. . . . . . . . . . .

10-8 - (0.6x0.6)

10-9 - (0.4x0.9)
10-10 - (0.3x1.2)
10-11 (0.2x1.8)
10-12 - (0.1x3.6) - -
10- 13

10-2 10-1 lop 101

Effective Distance [meters]

Figure 3-2: Effective Distance v.s. Intensity for Rectangles of Various Proportions
w/ Diffuse Surface

3.2.3 Object Orientation

The object orientation can potentially effect all three of the parameters co, ci, and

c2 . However, most of those effects are a consequence of the shape of the effective

illuminated area changing as an object rotates. Unless the object has radial symettery

around the axis of rotation, rotation will change the shape and size of an objects

profile. For a planer object, the size or projected area of an object goes as the cosine

of the angle between the face normal and the direction of the object. These resultant

effects are summarized in the section above, we will focus on the effects that are

external to the shape (and size) of the object.
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The remaining effect is purely due to the surface orientation of the facets on the

object. The primary effect is on c2 , due to the angle dependance of reflectivity of

most objects. A metasurface such as a retroreflector also would be exempt from a

similar relationship, due to it's property to reflect most of the incident light back

at the direction of the source. For objects that have a diffuse surface, c2 is also

mostly independent of object orientation, as angle independence that is the defining

property of lambertian reflectors. However, if the object exhibits significant specular

components, the object orientation can heavily impact the effective reflectivity. This

is due to the dependency of the surface normal in the behavior of specular reflections,

and will generally result in a higher effective reflectivity if the object's illuminated

surface is orthogonal to the direction of the sensor. Similar to the case of co, However,

it is possible for the effective area to remain unchanged, while the effective reflectivity

changes, and vice versa.

Although relatively small in effect, co can also be effected due to surface orien-

tation. This secondary effect is due to the fact that for an object that is oriented

at an angle some parts of the object are closer to the sensor than others, resulting

in the transition from square law to fourth law be biased towards the edges that

are closer to the sensor. Usually a larger tilt means that this unevenness in edges is

exaggerated more, resulting in the transition occurring at a closer effective distance,

or equivalently a smaller co.

Figures 3-3 and 3-4 show these effects for diffuse reflector and specular reflector,

respectively. The small changes in intensity for the diffuse surface are caused by

the non-uniform distance of the object, causing closer facets to impact the effective

distance more than facets that are further away.

3.2.4 Zenith Angle

The zenith angle also has the potential to effect all three parameters. Although the

actual exposed area of the object may not change with the angular position with

respect to the sensor, due to the weighting caused by the emitters radiant intensity

distribution, (i.e. the shape of Ie(0)), and the detectors angular response (generally
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at

lambertian for a planer diode), off axis objects tend to be represented by a smaller

effective area co than those near the zenith.

ci can be understood as a parameter that represents how distributed the object's

edge is with respect to zenith angle. Physically, this distribution doesn't change as

a function of zenith angle, but once again, the weighting mentioned above makes

this a little more complicated. As the zenith angle changes, different parts of the
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object have a different weighting, and hence so does the zenith angle distribution.

Therefore, ci ends up being larger objects positioned closer to the zenith. Only one

of the two dimensions of the object gets shrunk due to this effect, so once again, ci

scales roughly as the square route of co.

c2 changes as a direct consequence of the zenith angle, as this is the parameter

that gets directly effected by the emitters radiant intensity distribution, and the

detectors angular response. c2 generally is larger for angles close to the zenith, due

to the emitter and detectors angular response. For diffuse reflections, this is the only

factor that effects c2 as a function of zenith angle. However, for specular components,

we must take into account the change in specular reflectivity that is caused by the

alignment between the illumination source and the object orientation, as discussed

above. This usually results in c2 peaking at an angle somewhat in-between the zenith

and the angle that maximally aligns the object's prominent surface normal and the

direction of the object. As discussed above, this effect highly depends on the shape

of the object, and is non existent for symmetrical shapes such as a sphere.

Figure 3-5 shows these relationships for a diffuse object. These effects are similar

but are generally stronger for specular objects as well as systems that use a illumina-

tion source with a non-uniform radiant intensity.

3.2.5 Surface Properties

The surface property of an object has two main effects. The first is to influence

the overall intensity of the the reflection. Stemming from difference in a materials

inherent reflectivity, this effect is represented by different values of c2 in the object

parameter model.

The second effect is the angular redistribution due to diffuse v.s. specular reflec-

tions. Objects with surfaces that behave as specular reflectors oriented towards the

sensor will tend to exaggerate their sizes, resulting in larger values of co compared to

diffuse objects. As briefly mentioned above, this influences the behavior for the ob-

ject orientation as well as zenith angle. Change in both surface properties and other

physical attributes can create chaotic results, but luckily, surface properties tend to
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stay consistent for typical physical objects.

Figure 3-6 shows the effective distance to intensity relationship for different surface

properties, ranging from diffuse to highly specular. Note the brief transition to fourth

law behavior at around O.4m caused by light falling off the edge of the object at O.4m,

but switching back to square law behavior for highly specular objects. This is due to

the highly direction dependent nature of specular reflectivity, resulting in the area of

the object less relevant than the sections of the object that are directly orthogonal

to the incoming rays. Even with these artifacts, the behavior can be approximated

with the object parameter model with an average error of less than 1.5% for the case

of a smooth object with the rms slope m 0.1, and an average error of less than 4%

for a smooth surface with m =0.01.
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3.2.6 Compound Motion

The results shown above are quite promising, but it would be a gross over simpli-

fication to say that the parameters co, ci, and c2 can be considered constant. The
simplest example is off axis linear motion, where an object moves linearly in space,
but not as a simple radial motion with respect to the sensor. In this case, both the
radial distance and the zenith angle changes, resulting in a change in the effective

distance re as well as potentially all of the the object parameters co through c2. Figure

3-7 illustrates 4 sets of linear motion, where the motion indicated in red (i.e. C.D)
are off-axis motions, and those indicated in black (i.e. A, B) are on-axis. Figure 3-8
shows an example of the effective distance v.s. intensity relationship that can result
from off-axis linear motion.

Even when the object motion is on-axis, the effective reflectivity can drastically

change depending on the shape of the object. Figure 3-9 shows an example of this
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where a smooth object whose face is not orthogonal to the direction of motion. When

the object is close, part of the face is directly orthogonal to the rays, contributing

a large part of the reflected intensity. When the object is far, none of the object is

orthogonal to the incident rays, and the intensity decays much steeper. This can be

interpreted as the object's effective reflectivity c2 changing as well as the effective

distance re.

Sensor]

Figure 3-9: An object whose face is at an angle may present a change in effective
reflectivity.

3.2.7 Parameterizing Objects in SWM TOF Systems

The analysis above was conducted for a pulsed TOF system. However, a similar

analysis applies to directly for a SWM TOF system. the major difference between

the two is how the components add linearly for a Pulsed TOF system, where as

components add as vectors for SWM TOF systems. This manifests itself in a slightly

different relationship between physical distance and the effective distance parameter.

This relationship will depend on the frequency of the modulation, and is given by the
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solution to the equation:

re 4 f Z If dIObj(r,)ejkIjriI+jjrojl)

0

C t (ff dob (r) sin(k( ri + |ro))
= + tan
47f ff d~l),b (r,) cos (kl lril +||r,)

(3.19)

Using this modified definition, we can now express the two measurable quantities

x, and xQ as the following:

C0 C2XI ~ 4oAD 27 COS(kr, + 2
re(re + cire + co)

xQ = ±DoAD COC2 7r sin( kre + o)
r2(r2 + Cire + CO)

where k =

(3.20)

2 Wm 47rf
c C
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or, in complex notation:

x = 1 OAD C0C2  eij(kre+ko)
r2(r2 + clre + co)

XI = R(x)

XQ =O9x (3.21)

In the case of the time-of-flight distance sensor IC ISL29200, the modulation

frequency is 5MHz, and has a detection range of 2m. For this system, the range

of distances detectable by the system only occupies a range of 24 degrees in phase,

due to noise considerations. This is a sufficiently small enough range in phase such

that the effective distance becomes approximately the same as that in a pulsed TOF

system. In a numerical simulation similar to those shown in Tables B.1 through B.4

for a SWM system with a modulation frequency of 5MHz, and similarly low error

rates are achieved with an average error of less than 0.1%. However, in the general

case, if designing a SWM TOF system that utilizes much more of it's phase range,

this approximation may not be appropriate.

3.3 Compound Scenes

The models developed above describes a planer facet as a function of it's position and

orientation. However, a typical scene consists of more than just the a single object (or

to be more specific, a single face of an object). Thus we must consider how multiple

faces, multiple objects, and backgrounds behave in more complex scenes. In addition

to these additional components of the optical scene, we will also study the effect of

electrical and optical crosstalk in the system.

3.3.1 * Crosstalk

Cross talk in TOF systems come in two forms, electrical and optical. Electrical

crosstalk is caused by electrical coupling between driver circuitry and the sensing
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circuitry. Both capacitive and inductive (magnetic) coupling is possible, resulting in

the injection of a signal in to the detector. Regardless of the exact mechanism, the

result is a signal that behaves much like a TOF signal, superimposed on top of the

actual signal.

Optical crosstalk can be considered as part of the scene, but is worth special note

since it can be quite significant and is highly systematic. For many assemblies, light

from the emitter of the system reflects inside the internal structure of the sensor

or sensor housing, resulting in a some signal at the detector even in the complete

absence of reflective objects in the sensor's field of view. This is a known problem for

many amplitude based proximity sensors, especially for those used in electronics with

a glass cover such as smart phones. Glass has an index of refraction of approximately

1.5, resulting in approximately 4% reflection per air-glass interface, for a total of 8%

reflection. 3D structures and anti-reflective coatings can be used to minimize these

reflections, but typically at the expense of field of view and higher manufacturing

costs. Even industry standard practices result in some residual internal reflections,

limiting the dynamic range for amplitude based proximity sensors.

For both forms of crosstalk, the crosstalk simply linearly superimposes itself to

any real TOF signal received by the sensor. For Pulsed TOF, this implies that the

two windows will now be given as follows:

Wi' = W1 + CT1

W2= W2 + CT2  (3.22)

Similarly, for SWM TOF, the two demodulated signals would result in the follow-

ing:

x' = x,+ CT,

x' = xQ + CTQ (3.23)

If this crosstalk is not considered in the time of flight computation, it will create
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an error in the computed time of flight, and consequently any distance measurement

based on such measurement. The combined signal computes to a effective distance

with a systematic error that is dependent on both the strength and the timing or

phase or the crosstalk.

However, this problem is relatively simple to calibrate. If the two quantities CT

and CT 2 (or CT and CTQ for SWM TOF) can be quantified, they can be subtracted

out from the measured signal.

For Pulsed TOF, the expression becomes:

, cAt c W1
re = 2 TW1

cAt c W1 +HCT1ct cT W,+C,(3.24)
2 2 PW 2 +CT 2

For SWM TOF, the expression is:

r - c tan-' (4
e 47rf /

= tan~- (3.25)
47rf xQ + CTQ(

Figure 3.3.1 below show how crosstalk can adversely impact the distance response

of a time of flight system.

3.3.2 Multiple Objects

Multiple objects, or multiple faces of an object, will each behave as the model devel-

oped through this chapter. Since this model was developed by specifying the limits

of integration, we can expect multiple objects to simply add together, as long as

their respective regions or limits do not intersect. The combined signal will have an
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cAt c W1A + W1B
e -- T2 2 "W2A-+ W2B

r. = tan' ( XIA + XIB)

4rf XQA± XQB

for Pulsed TOF

for SWM TOF

The effective distance computed from the combined signal can be understood

as a "vector sum" of the two objects. For SWM TOF, this is literally the case,

as the two signal is represented as two orthogonal components, and the phase can

be understood as the argument of the signal in the complex plain. The effective

distance of a combined signal for Pulsed TOF is similar in mechanism, although

not as mathematically elegant. In principle, it is possible to have two objects that

cancel each other for SWM. If an object that is sufficiently far enough such that

the phase contribution is 180 degrees apart from a small object, it is conceivable
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for the two components to cancel each other out. For the ISL29200 the signal from

any reflector would drop below the noise floor before reaching full phase inversion,
thus, interpreting the combined effective distance as the weighted average is sensible.

However, this would not be the case for systems that operate over the full range of

phase, often called the unambiguous detection range in distance. This implies that the

use of very high frequency modulation can be problematic for systems that employ

a high degree of spatial averaging such as the ISL29200, as the computed combined

signal may not accurately represent any object in the field of view, or even a sensible

combination of objects in the field of view.

3.3.3 Uniform Background

Up until this point, we have assumed that the light that falls off the edge of the

object simply disappears. However, in reality, the light must hit something, however
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far away, and some of that light, is bound to make it back to the sensor. Although

at first site, the background may seem similar to the problem of multiple objects,

there is one fundamental difference; the background reflection is dependent on the

object's shadow. For example, if the object is very close to the sensor and is occupying

the entire field of view, there would be no signal contribution from the background.

conversely, as the object is farther away, the background occupies most of the scene's

field of view, resulting in being the dominant contribution to the signal.

We will first consider the case of a uniform background. In this scenario, we will

assume that the background is effectively a uniform sphere surrounding the sphere at

some distance R.

The total signal intensity JBG from such a background would be given by the

expression:

BG = frBG(O)Ie(O)AD cos sinOdOd (3.27)

and the time of flight would simply be At = 2cR.

However, in the presence of an object, the background is limited to the perimeters

of the object, and the integral is evaluated over the region 0' = Q-0, the compliment

of the region 0 used in defining the object parameter model above. We will denote

this signal intensity as GDg:

(Dbg f fBGIe(O)AD cos 0 sin OdOdS
io = fTBGe( D R2
0'

(DBG - JfrBGe()ADCOS s 2 OdOdo (3.28)
0

Compare this to the signal intensity for the reflection from an object:

(1 obj = f o(0)Ie(0)AD cos 2 sidOd (3.29)
0
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We will apply the exact same approximation that led us to the object parameter

model, and obtain:

(g = (DBG - (BG -
(r2 + c're + c')

re2 + clre
= DBBG (3-30)

(re + cire + cO)

where in the general case co, ci are related to c' and c', but are not necessarily

equal. In the case where fr(O) is constant for all re, the two expressions converge.

This condition is only met if the object is perfectly diffuse, or for a metasurface such

as a retro reflector. Note that for limreo, the expression converges to 0, indicating

that the background is completely shadowed by the object.

This background signal superimposes itself with the signal from the object similar

to the fashion of crosstalk or multiple objects.

D = g + (Dobj (3.31)

We can quantify the effects this additional term has on the measured quantities

W1 and W2 for a Pulsed TOF system, by integrating over the window for each case:

BG1 = bg (re, c' c/ )dt

= 4g(reCoCi)T ( - -

BG2 = (bg(re , cC/)dt

= Dbg(re, c', c'1)Th (3.32)

Now, our total measured quantities W and W2 can be expressed as a superposition
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of the desired components and the background component.

W1'=W1+ BG1

W 2 =W 2 + BG2  (3.33)

Similarly, for a SWM TOF system:

x' = x, + BGI

x' = xQ + BGQ

BG1 =J4g(re, c'o, c') sin (kR)

BGQ = 4g(7e, c', c'),7r cos (kR)

x'= x, + BGI

xQ = xQ + BGQ (3.34)

We will use these models to help us estimate the parameters in the next chapters.

3.3.4 Non-uniform Backgrounds, Multiple Overlapping Ob-

jects, and Beyond

Of course the real world is not quite so simple, and is really a continuous 3d structure

with multiple independently moving objects. Although it is conceivable to extend

our model to cover multiple overlapping objects, or a non-uniform background, it is

impossible to do so with out introducing new parameters that are dependent on the

geometry between the two objects. However, for the scope of this work, we will limit

the complexity to models developed up to this point.

3.4 Summary of Object Parameter Model

In this chapter, we have identified the effective distance re as a natural metric to

characterize the contribution of an object on a TOF system. We have considered a
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wide range of possible objects and have found that objects can typically be modeled

using the object parameter model by introducing the three parameters co, ci, and

c2 . The physical significance of each of these parameters were examined, identifying

trends and properties of each. For many physical scenarios, it was shown that these

three parameters can be considered constant while equally many other scenarios cause

the parameters to change.
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Chapter 4

Real Time Parameter Extraction

Techniques

We will now focus on the original problem at hand, to extract the distance and other

information from intensity and time of flight information. Although there are many

ways to process the information acquired, we will classify them into two categories;

real time techniques, and algorithmic techniques. This chapter will discuss the first

of the two, where information from only the current samples and it's derivatives are

used. These techniques are generally have a low computational cost, but often will

often require some prior knowledge of the scene in question.

Many circuit level concerns such as noise, phase jitter, and changes in frequency

and gain through thermal drift are not included in this analysis for the sake of sim-

plicity, but would need to be considered for implementation in a physical system. In

general, the techniques developed in this chapter are still applicable in the presence

of these circuit non-idealities, but they may required to be adapted to account for

their effect.

4.1 Redundancy from Intensity Information

The basic principle behind all hybrid Intensity/Time-Of-Flight techniques is redun-

dancy. Time-of-flight is sufficient for extracting distance in a conventional system,

81



but by looking at the intensity information, we can remove the effects of error sources

or extract more information about the scene than is possible using a conventional sys-

tem. This redundancy can be illustrated using our object parameter model developed

in Chapter 3.

The time-of-flight naturally provides a way to compute the effective distance.

However, the amplitude of the signal also provides information of the effective dis-

tance, as shown in equation 3.16, reproduced below:

~obj = O AD ccr2(r2 + cire + co)

4.1.1 Extracting Effective Distance From Intensity Informa-

tion

In principle, if the intensity contributed from an object and object parameters co, cI, c2

can be quantified, we would be able to solve for re, enabling us to find the effective

distance with out the use of time of flight information. The most straight forward

method of doing this is to convert the expression to a polynomial in re, and find the

roots of the polynomial.

obobjre + 4cDbjc1re + Iobjcore - 'J oADcOc2 = 0 (4.1)

Where (O, AD, and T, are known constants, and co, ci, c2 are the object parame-

ters which we will assume are known for now. It can be shown that for positive real

values of 'obj, co, ci, and c2, there will always only be one positive real root of re.

This allows one to compute the effective distance based off of the only the intensity

and the object parameters, such that re = f(1 obj, Co, C1, c2).

This technique can be directly applied to the Pulsed TOF component W2 as
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W2r + W 2c1rl+W2cor2 - OADCOC 2Tp = 0

e =f (W Co, c1, c2 )

For SWM TOF, we

follows:

can apply the technique to the amplitude of the signal as

_ 2 2- r A C fC 2Ix| x+ x2= 4oAD7X I Q r Cire + co)

converting to polynomial form:

|x r4 +| xc 1r3 + xcOr2 - IoAD7COC2 = 0

re f (xI, XQ, co, ci, c2 )

(4.3)

4.1.2 Application to Time-Of-Flight Components

This concept of solving for the effective distance using our object parameter model

can be extended to any of the measurable quantities of the system. For example, W,

can be represented as a polynomial resulting in the expression:

W 1 rOr +W ciror 2 + Wicorore - 4OADcOc2  0

re f (W1, co, ci, c 2 )

(4.4)

(4.5)

To take the concept yet further, we can take multiple equations and solve a system

of equations. For example, between equations 4.2 and 4.4, we have two vequations

with three parameters (co, c1 , c2) and one unknown (re). This allows us to combine
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the equations to eliminate some of the parameters, in the following way:

Wiror3 - Wiciror2 + Wicorore = <boADCoC2 Tp (4.6)

W2r +W 2c1r3 - W 2 cOr2 - boADCOC 2TP (4-7)

Equating the LHS for Eq. 4.6 and Eq. 4.7 :

W i r o r3 - Wiciror 2 + Wicorore = W 2 r4 + W 2cir3 - W 2 cor 2 (4.8)

Dividing re + cr! + core from both sides:

W 1ro = W2re

Wi
re = ro = f(W 1 , W2) (4.9)

W 2

As expected, we reach the definition of re, which can be solved from the two

quantities W1 and W2 without any dependance on the object parameters. Although

this result was trivial, we can apply the same concept to any predictably manipu-

lated form of the TOF components, and more importantly, when sources of error or

introduced.

4.2 Differentiation of Time-Of-Flight Signals

Another important tool we will introduce is the derivative form of the TOF compo-

nents. The derivative information of an intensity based sensor is often used in the

form of a motion sensor where changes in the signal level are set to trigger a binary

detection of motion. While these sensors are simple and effective at detecting motion,

they do so at cost of losing information about the distance, as fast motion is indis-

tinguishable from close motion. However, in a hybrid intensity/time-of-flight system,

we will find that the derivatives are not only immune to crosstalk, but that they also

retain information about the distance.

In this section, we will analytically solve for the time based derivative of the two

orthogonal components of the time of flight measurements, assuming that each of the

parameters can potentially changing as a function of time. We will first study the
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effects of differentiation of the intenisty response of the parameter based object model

developed in Chapter 3. Then, we will extend the analysis to the differentiated TOF

components for both Pulsed TOF and SWM TOF, and characterize their relationship.

It is worth noting that differentiation is a inherently noisy process, and typically

degrades the signal integrity of the system. These effects are not included in this

analysis. However, the analysis for derivatives can also be applied to band limited

operations such as a first order high pass filter, and a strict differentiation operation

is not necessarily required to apply these concepts.

As shown in Chapter 3, the intensity of the signal contribution of an object in the

field of view can be approximated by the expression:

COc2
Iobj(eCoC1,c2) OAD (r + cr + co)

where all four parameters, (i.e. Te, co, c1, and C2) are potentially a function of

time. To fully differentiate this expression, we must apply the chain rule for each

parameter.

ob( 4r 3 3c1r2 + 2core
aTe0b ~ obj -- rT(r + CiTe -| Co)/

&OIobj (1 _____

ac0  A1 obj o Tr2-±c1Te-hC)

ob 2obj -re
obj

aobj IbI

ac2  C2

The full time derivative is given by the sum of all these components:

a91 ob3 _ aI obj are a(obj 8c ab ac1 Iob aC2  (4.12)

at are at aco at ac1  at aC2 at

We will focus on these derivatives term by term to understand their behaviors.
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4.2.1 Differentiation with respect to Effective Distance re

The first of these terms is possibly the most interesting of the four. This term 2Ltb are

represents the component of the derivative caused by an object moving closer or

farther from the sensor, all other parameters held constant. A small subset of ap-

plications could be physically constrained to this condition, making this term the

dominant term in an application. Furthermore, objects that move radially with re-

spect to the sensor are likely to be the objects of most interest to the host system.

We will mathematically analyze the expression for these derivatives, and study what

properties they may have that can be exploited to estimate the object's parameters.

4.2.1.1 Intensity

We will first consider how the derivative of the intensity with respect to effective

distance behaves. Using the object parameter model, we obtain:

a(DbO ( 4r3 + 3cir 2 + 2cor(
= 4)Obi - (4.13)ar b r2(r2 + cire + co)

In itself, this measure does not appear particularly revealing. However, taking

another look at the effective distance v.s. intensity curves from Chapter 3, we recall

that the logarithmic slope off the effective distance and intensity revealed important

features about the objects size and shape. Thus, we will evaluate an expression that

best describes the logarithmic slope: 0 arebj 

&94bobj re 4r + 3cir2 + 2core re

&re obj J obj ( r(r2 -+ Cire + C) /D ob

4r2 +3cirl+ 2co= ( - cir ) (4.14)
re + ie + CO

This expression ranges from -2 to -4, and describes the logarithmic slope of the effec-

tive distance.
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4.2.1.2 Pulsed TOF

For Pulsed TOF, the effective distance was derived from the ratio of the two windows

W1 and W 2 as following:

re = ro I (4.15)
W 2

From Chapter 3, the windows W2 and consequently W1 can be described in terms

of cobj (re, co, c1, c2 )

W2 = o (rIoe, cO, c1, C2)T

W1 = (Dob (re, co, c1, 2)Tp, (4.16)
ro

We will now differentiate these quantities with respect to effective distance:

aWl _ ObJTAr
are Ore(0 bobj re+ obj P

are r±ob o T)

(Dobj (re)T 3r 4 + 2cir 3+ cor2e cire +oe_ (4.17)
ro r2(r2 + cire + co)

O~e e~aW2 a

are are 4)ojT( OobjT

Ore )

4r 3 + 2cIr2 + 2core
=e -b (r)T (4.18)
)obj (re)TP r 2(r2 + cire + c0)

If we take the ratio of these two quantities just as we would do for their non-

differentiated forms, we obtain:

aw 1  <Djb(re)Tp 3rl+2ci4r+cor2
Ore _ ro r2(r2+cire+co)

W2 4 ) r3+2c1r2+2core
an. Dobj(reP re(r +c1re+co)

Te 3r2 + 2 cIre + CO
ro 4r2 + 2cire + 2co
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Compare this two a standard time of flight measurement obtained by the non-

differentiated forms:

W1 D obj (re)T r
(4.20)

W 2  'Iob (re)T

re (4.21)

We notice two things. First, the time of flight term L term persists through the

differentiation process. Secondly, the result has another dimensionless term dependent

on the object parameters co, ci and re. We will revisit this term later.

4.2.1.3 SWM TOF

For Sine Wave Modulated Time of Flight, the time of flight information is encoded in

the phase of the received signal. This phase is obtained ratiometricly by measuring

two orthogonal components of the signal. These two orthogonal components can be

approximated similarly to Pulsed TOF as follows:

XI = t1obi(re) cos(kre - 0o) (4.22)

XQ = iobj (re) sin(kre - #o) (4.23)

where k = 2-, representing the conversion factor between phase and effective dis-

tance. Note the factor of two due to the incident and return path of the optical signal,

differing from the optics definition of wave number.

We will now study the properties of the derivative, -- using the polar form nota-

tion as shown in equation 3.21:

ax a-00)(4.24)
are are (Iobj(re)ei(kr )

a(Dobj are _ j(kre-o) + j k]obj(re ,jekr,-Oo) (4.25)
are at

= are+ jko0 bj) ei(kre,-o) (4.26)
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Substituting our expression for are , we get:

ax (4r 3cr2 + 2core +
ar (r c4r, ec) -+-'k) 'IDobj(re )ei -0e0) (4.27)iBr, r2 (r2 + CIre + CO) 3

the phase of this signal is given by:

ax tn 1  r +C1re + co
z 9, = tan-- -kr,-e+ r,+C + kre - #0 (4.28)

are 4r2 + 3cire + 2co

(4.29)

We are once again left with an expression that closely resembles the non-differentiated

time of flight response, but with an additional dimensionless term that is a function

of co. ci, and ro. In fact, if the range of distances present in the system are relatively

small such as is the case for the ISL29200, we can make the small angle approximation

tan(x) - x, resulting in the following expression:

ax r 2+ cire + co
-a 1 - +cr-+-co kre - #0 (4.30)

are 4re+3cire+2co

(3r2 + 2cire + cO4r + 2cire + co) kre - #0 (4.31)
4r2 + 3cir, + 2co

the same exact dimensionless term as that for Pulsed TO. We will name this di-

mensionless term Distortion Coeffecient, and will discuss it's significance in further

detail in section 4.2.3.

4.2.2 Differentiation with respect to Object Parameters co,

c1 , and c2

Although differentiation with respect each of the Object Parameters result in a dif-

ferent expression, their effects are all similar in that they affect the intensity, but not

the time of flight. To illustrate this, we will once again consider the derivative of the
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components for each type of system.

For a Pulsed TOF system, the derivative with respect to the parameters become:

aW 2 -Ql b W1 - obaT re
= 0 T = TP - (4.32)aco  aco ' &co ac o  ro

OW 2 - Oqobj T W1 - o re(4.33
=c c " T =c Oc Tr- (4.33)

___ ____ Owal aOl 7'
OW 2 _ OaJobj T awl_ - a(ob T re (4-34)

= T = TT - 4.35)
Dc2  Dc2  *' ' Oc2  Dc2  Pr0
9W1 OW1 OW1
0% = 0ci = C2 re _W 1
W2 - - (4.35)

As can be seen, all of the derivative terms with the exception of re have no effect

on the time of flight computed. A similar effect is true for SWM TOF systems:

Ox1 _ 
0 obj OxQ 0 Qobj

=c0 - o0 cos(kre) , - sin(kre) (4.36)aco aco aco aco
Ox1 _ Q1 objOX _x 

0 4Qobj
=c1  a Oc cos(kre) , - sin(kre) (4.37)

Ox 1 _ Q'objOX _x OQobj
=c2 - Dc2 cos(kre) - sin(kre) (4.38)aC2 aC2 aC2 OC2

ax ax 8z (O) z ( = kre = Z(x) (4.39)aco aci aC2

This indicates that for a change in only one or more of the object parameters

c0 , ci, or c2 , computing the time-of-flight of the derivative results in the exact same

result as the original signal.

4.2.3 Differential TOF and Distortion Coeffecient

The implications of these results are quite surprising. First of all, we find that when

we differentiate the components of an TOF measurement (i.e. W 1/W 2 for Pulsed

TOF, xI/xQ for SWM TOF), the ratio of the two differentiated measurements form

a one to one relationship between effective distance given a the object parameters co,

ci and c2. Secondly, this function is the same function for solving for a standard TOF

with a relatively simple correction term, which we will call the Distortion Coeffecient
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awl
at for Pulsed TOF (4.40)

=aW2 reat

= + for SMW TOF (4.41)at )kr,

This term is dimensionless, and is different depending on the kind of change

observed. For a change in one or more of the parameters co, ci, or c2 , this factor is

simply unity. For a change only in effective distance re (i.e. ! = 0 for i = 0, 1, 2),

this term is

3r 2 + 2 clre + co

4r2 + 2cire + 2co

This value is bounded between 1 and 1. In fact, it traces from ,to , and then
2 4 21 3',adte

to 3 exactly as the logarithmic slope traces from -2 to -3, and finally to -4. This can
4

be proven by locally modeling our signal intensity as follows:

4Iobj(re) = A(re)(re)b (4.43)

a9I Qbj (re) = bA(re) (re )b- 1  (4.44)
are

'Iobj(re + 6re) ~ A(re) (re + 6re)b (4.45)

The solution to this equation is given by:

ra'lob
b e are

(1 obj

1 -(4.46)

1 - (

This is consistent with the observations made in the paper attached in Appendix A,

where the differentiated signal has a time of flight of 1 - , where N is the power law

of the signal with respect to distance.
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This indicates that if the values of co and ci are known a priori, it is possible to

obtain the effective distance with only knowledge of the differentiated time of flight

signals.

4.3 Use Cases and Examples of Real Time Extrac-

tion Techniques

Using the identities developed above, we will now consider methods to extract prop-

erties of the object including distance in various scenarios. The techniques involved

will depend highly on the scenario, so we will consider several use cases and discuss

possible techniques that can be used in each case. For Pulsed TOF, we will consider

the quantities W1 and W2 (and as a result, W1 ) to be readily available, as well as

their derivatives , .at. We will also introduce their object parameters co, c1 , c2

as necessary. Do, AD, Tp, ro, and are all considered to be known fixed constants.

For SWM TOF we will consider the quantities x1 , xQ, ax, axQ readily available,

and will introduce co, c1 , c2 as necessary. <bo, AD, k, and 0o are known fixed constants.

4.3.1 Single Object

We will first consider the simple scenario where there is only a single object in the

field of view. In a physical system, this occurs when the background is is sufficiently

far or sufficiently non-reflective (at least in the direction of the sensor), such that for

the range of interest, the background term is negligible compared to the reflections

from the object. (i.e. (Dbg(re) << DoDbj(re) for re < rmax).

Under this scenario, the effective distance is trivial to extract by definition. Thus,

we would simply apply the conversion equations for the particular time of flight

system, and obtain the effective distance.
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Wi
re = t (

W2

r, tan-1
k xI

for Pulsed TOF

for SWM TOF

However, due to the redundant information in the intensity, we can do a little

better than this. We will first obtain the time derivative of the intensity a, the

instantaneous intensity 1 obj, the effective distance re, and the derivative of the ef-

fective distance are Now, if we assume that the change in object parameters co, ci,

and c2 are small, we can estimate the effective power law b by examining the ratio of

normalized rate of change of intensity and effective distance:

1 A 01 ob 1 Ore

'obj at re (4

When 9t is purely due to change in effective distance (i.e.

this becomes equal to the power law b as shown in equation 4.46

at ar, at

Change in co, ci or c2

can be essentially ignored

will result in an inflation or deflation in

if all of the following is true:

a)0 . This effectat

504obj Oco
aco at

a(Dobj Oc1
Oc1 Ot

OaI)obj Oc2

0c2 Ot

<< -obj at
re Ot

a 4)bj re
Ore at
0 Ore

ore at

(4.50)

(4.51)

(4.52)

We will substitute and simply each expression, and it can be shown that it is
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sufficient for the following to be true:

1 << 2 1 are (4.53)
co at re at

ac << 4are (4.54)at at
I1aC2 a re<< 2 1 (4.55)
c2 Dt re at

This means that if the precent change in each parameter is significantly smaller

than the percent change in effective distance, the estimated power law b' estimated

from -a4bj is valid. For example, if the effective distance changes by 10% from im to

0.9m, and co changes 2% from 1m 2 to 0.98m 2 , the error introduced in the estimated

power law b' is on the order of 1 = 0.1. On the other hand, if both parameters

change by the same rate, the error introduced would be upwards of 50%, making the

difference between a square law and forth law.

A similar technique can be done by using the Differential TOE. The TOF com-

puted from the differentiated components (aw2 , awl for Pulsed TOF, 2, x for

SWM TOF) has the property that it is equal to the TOF computed form the non-

differentiated values, but scaled by the distortion coeffecient (. Thus, we can solve

for C as follows:

awl aw 2 _ for Pulsed TOF (4.56)at at W1
I( for SMW TOF (4.57)

Zx

(4.58)

If the if the object parameters are kept constant, (i.e. 1ci = 0 for i = 0, 1, 2),

= 4r, and this value can than be converted to an estimate of the power law using

the identity:

1
b ~ 1 - (4.59)

(r (re)
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This technique is also limited by the constrains set in Equation 4.53.

4.3.2 Single Object w/ Crosstalk

We will now consider the scenario where crosstalk is superimposed on top of the

desired signal. From Equation 3.22 and 3.23 , we have:

= W1+CT

= W 2 +CT 2

= x1 +CT

= xQ+CT

for Pulsed TOF

for SWM TOF

where Wl, W2 and x', x' are the two observed quantities, and W1, W2 and x1 ,

xQ are the natural response in the absence of crosstalk. In the existence of crosstalk,

both the time of flight information and intensity information are contaminated, and

will result in erroneous time of flight and parameter information if the same technique

as a single object scenario is used. We will consider several scenarios and discuss the

techniques that can mitigate this error.

4.3.2.1 Known Crosstalk

Although this technique does not strictly rely on the concepts developed in this chap-

ter, we will include this here to contrast with what is to come. If the crosstalk can

be quantified, it can simply be subtracted out of the signal, and the problem reduces

itself to the Single Object Problem. This is contrasted with cases where the crosstalk

cannot be quantified a priori.
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(W'- CT1'
re= W - CT ro

W21 - CT2)

1(x'f - CT
re = -a -

k x'/- T

for Pulsed TOF

for SWM TOF

4.3.2.2 Unknown Crosstalk

This is now a much more difficult problem, as we must remove the effect of an unknown

but constant signal. However, we are not completely powerless as we would be if only

time-of-flight information was recorded. Because crosstalk does not change over time,

differentiating the TOF components with respect to time would make the crosstalk

terms vanish. We will also include the convenience function W = W2- W1 for clarity.

awl _ a(W1 + CT) _ aw1
at at at

aW_ a(W2+ CT2 ) aW2
at at at

aW_ a(W2 - W1) W1
at at at

ax' a(x1 + CT) ax1
at at at

ax'Q a(XQ+cTQ) aXQ
at at at

for Pulsed TOF

for SWM TOF

Now, by using the differentiated TOF components, we are still able to

time of flight with a factor of the distortion coeffecient ((re).

extract the
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awl
-t = Ie( for Pulsed TOF (4.64)

aW2
at

zax ,krecre
kre((r,) - 00 for SMW TOF (4.65)at

Case 1: Fixed Distance The first scenario we will consider is the case where the

effective distance of the target object stays constant (i.e. are = 0). Examples of this

include when the object is traversing the field of view at a fixed radius, or a small

object rotating around it's own axis. A person shifting around in the field of view

of the sensor would likely approximate to this scenario. In this case, the Distortion

Coeffecient is equal to unity, (( = 1), indicating that the time-of-flight computed

from the differential components are equal to the time-of-flight that would have been

computed in the absence of crosstalk. In this case, the effective distance is given by a

function interns of just the differential components, i.e. re = f(aw, aw) for Pulsed

TOF, re = f(Z!) for SWM TOE.

awl

QW2at
awl-

- at (4.66)
aW2at

1 ax
re= (- Z+$o

1 (ax
a- x +0o (4.67)

k at

Case 2: Change in distance, w/ known ((re) If the object parameters co and

c1 are known fixed constants, ( can be fully described as a function of re. In this

scenario, it is possible to solve for re given a particular combination of awl and a,

or L and xQ

For the case of Pulsed TOF, we must simply solve the equation 4.19. This re-

lationship reduces to a third order polynomial in re, which can be explicitly solved.
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Although third order polynomials generally have 3 solutions, choosing the only real

and positive solution will result in the correct effective distance re. This results in an

equation for re in terms of the derivatives , , and the object parameters co, ci,

i.e. re = f (a1, 2, Co, Ci)

a3re + a2re2 + alre + ao - 0 (4.68)

where:

3 oW2
a3  = -- _ar

ro Ore
2c1 ow2 _ w1
r0 Ore are
cO aW 2 _ 3aw

___=_-_ 3ci
ro are are

ow 1
ao = -2co are

In the case of SWM TOF, analytic solutions do not exist for the general case, but

numerical solutions can be obtained to Equation 4.28. Alternatively, using the small

approximations as shown in Equation 4.31, we can reduce this relation to a third

order polynomial similar to the Pulsed TOF case. Similarly to the Pulsed TOF case,

we obtain re = f(t, , co, ci)

a3re + a2re2 + alre + ao = 0 (4.69)

where:

a3 = 3k

as= 2kc1 -4 Z Ox+
a Ore

a1 = kco - 3c1 Z OX+ 0

Ox
ao = -2co (Z ae+ 0
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Case 3: Change in distance, w/ unknown ((re) Unfortunately, ((re) is typi-

cally an unknown parameter. The ((re) contributed from a change in effective dis-

tance is bounded between 1 and , and the ( contributed from changes in one of the

object parameters co, ci, or c2 is equal to unity. Thus, if we can constrain the object

such that there is change in at most one of these parameters, we can definitively con-

strain the effective distance to within a factor of two. However, if there is a change

in more than one of these parameters, there is a risk of the contributions canceling

each other out. This occurs when 2 '-I- is not the same sign as ,c resulting

in the change in amplitude canceling each other out. An clear example of this is

visible in Figure 3-8 depicting the effective distance v.s. intensity curve for off-axis

linear motion. In this graph, one can see a region where the logarithmic slope is flat.

Using the differentiated components to measure time-of-flight relies on the existence

of change in intensity of the signal, and thus any region where the intensity of the

signal is constant with a change in effective distance is a clear problem. Due to the

ratiometric nature of the conversion, a positive logarithmic slope is not necessarily a

problem as long as it is sufficiently steep, but a flat region indicates a region where (

is ill behaved.

Although the general case has it's limitations, limiting the scope to certain surface

types, and certain distances can also result in powerful capabilities. For example,

limiting the scope to diffuse objects (thereby decreasing the variability in co, ci and

c2 ) alone allows the effective distance to be determined within a factor of 25%, by

asserting = 0.6123%. If one limits this to short range uses where the ( is always

around 1, the effective distance can be determined with a fair amount of accuracy
2'

with out calibration. Alternatively, using the techniques for known ((re) with a very

rough approximation of co and ci can also be effective, For example, even with an

order of magnitude error in each of co and ci, error is limited to around 20%.

Figures 4-1 and 4-2 show hese results for a typical set of signals, for a range

of values for re with a modest levels of crosstalk. We will collectively refer to the

techniques that use the ratios of the differential forms of the TOF components as

Differential Time-Of-Flight (DTOF).

99



102
T0
-TOF

DTOFE
1i 10 - DTOF w/ error.- .-

U

40-

10-L

0.

U

10101 100 101 102
Effective Distance[meters]

Figure 4-1: Comparison of Conventional TOF and DTOF techniques in the presence
of a Unknown Cross Talk

4.3.3 Single Object w/ Uniform Background

The presence of a uniform background is a yet even more difficult problem to solve.

The signal intensity of the contribution from the background is dependent on the

effective distance, and therefore shows up as another error source. For a pure time-

of-flight system or an intensity based sensor, this problem is hopeless, as the signals are

completely indistinguishable from an object at a different distance. However, using

the redundant information available in both information, we can do much better using

hybrid techniques.

From Chapter 3, the background signal is characterized in the following way:
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Figure 4-2: Error from Conventional TOF and DTOF techniques in the presence of
Unknown Cross Talk

BG1 'b g(re,BG, o, cI Tp I - -

BG2 = ?bg(re, bBG, c/, C1)l7 (4.70)

W'l = W (re, CO, C1, C2) + BG1(re, C'O, C')

W= W 2 (re, co,ci, c 2 ) + BG2 (re,c',c'1) (4.71)

We once again have two equations, one unknown, but with up to seven param-

eters, cO, c1i, c2, cO, c1, BG, R. However, we can eliminate some of these with some

algebra. We have two options: one is to eliminate the background term, the other is

to eliminate the object term.
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4.3.3.1 Eliminating the Background Term

= W2(re, CO, Ci, c2) + Dbg (re, 41)BG, c0, c1)I,

R
W = Wi(re, C0, Ci, c2 ) + Ibg (re, 'BG, c', c1)T -

ro

Isolating the background term:

W2 - W2(re, cO, cl, c2)

(W1 - W1 (re, cO, c, c2))

Equating both LHS:

W2' - W2(re, co, ci, c2)

Writing out the full equations:

W- OAD C0 C2  T
re(re + cire + cO)

= Obg(re, BG, CO, C1)Tp

= 4Ibg (re, 1 BG, c', c1)7p

= T0(wi - W14(re, co, c, c2))

= W1 - DoAD C(C2 T r 4.72)
R r2(r2 + cire + co) pro

Converting this to polynomial form, we reach a 4th order polynomial.

a4re + a3re + a2re2 + alre + a0 = 0 (4.73)

where:

a4 = W2 - W'
R

a3 = (W - W ci

a 2  (W2 - RW) cO

a1 = %ADpCOC2 1

ao = -@oADIpCOC 2

Solving this polynomial would result in the successful extraction of the effective

distance re. This requires the object parameters c0 , Ci, c 2 and the distance of the

background to be known a priori (i.e. re = f(Wj, W2, cO, ci, c2 , R)), but enables

the system to compute the effective distance much further than the range allowed
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by a conventional TOF system. However, this polynomial potentially has multiple

positive real roots, and it may be up to the user or higher level algorithms to select the

correct root. We will refer to this technique as Background Cancelling Time-Of-Flight

(BCTOF).

Figures 4-3 and 4-4 show the results of applying these equations for a typical set

of signals, for a range of values for r, with a background located at a distance of 10m.

When an error is introduced in each of the parameters, the solutions start to diverge

as the background signal gets stronger, but an order of magnitude improvement in

usable range is still seen compared to conventional TOF. In general, the errors seem

to be proportionally large for an error in c2 and R, but are relatively small for an

error in co and c1 .
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Figure 4-4: Normalized Error from BCTOF

4.3.3.2 Eliminating the Object Term

Similarly to the background term case, we will eliminate the dependancy on co, c1, c2

from both equations.

W2- BG 2 (re, c'O, c') = W2(re, co, cI, c2) (4.74)

W'- BG1(re, co, c'I) = W1 ,(re, co, ci, c 2 )

= W2 (re, CO, Ci, C2) r
re

Solving for W2(re, CO, c 1 , c 2)

(4.75)

W2'- BG 2(re, c',c) =

Writing out the full equations:
2

S r 2 + c'ire
2 BG _Tp

ir 2 + c're + c' p

r(W, - BG1(re, c', c))

ro 
,f= -- (W1

re

r2
re2 + c'Ire

re + c'ire + C0
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Transforming this to polynomial form will result in a 3rd order polynomial in re, re-

sulting in an equation for effective distance in the form re = f(WI, W2, C'O, C'1 , DBG, R)

Because this technique essentially relies on the intensity behavior of the background,

we will refer to this technique as Background Intensity.

4.3.4 Single Object w/ Uniform Background and Unknown

Crosstalk

We will now consider when both a uniform background and crosstalk are present.

W' = W(re, cO, c1, c2) + BG1(r, c', c') + CT

W2 = W 2 (re, co, ci, c2) + BG 2(re, c', c') + CT2  (4.77)

In this scenario, the background cancellation method above will result in erroneous

results. Using Differential TOF as we did in the scenario with only crosstalk won't

work either, as the background is also a function of effective distance. Figure 4-

5 shows the results of applying Differential TOF and Background Canceling TOF

techniques on a signal that contains both background and crosstalk. As can be seen,

both perform better than conventional Time-Of-Flight, but become unusable as the

unexpected error source becomes more significant.

If the crosstalk can be measured independently, this problem simples down to a

background cancellation problem, by simply subtracting the crosstalk. If this is not

possible, we must consider a different approach, using concepts from both Differential

TOF and Background cancellation techniques.

We will use the TOF components W2 and W1 in their differentiated form:

aW 2 _ aW2 are aw 1 aci (4.78)
at are at _ aci at

aw1 _ aW1 are awl a (4.79)
at are at _ ci ati=n

However, the actual measured signal includes the background signal, resulting in
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Figure 4-5: TOF, D-TOF and BC TOF Techniques on a signal containing both
Background and Crosstalk

the following measured quantities:

aW2 aW2 +BG2

at at at

=W + TP (4.80)at at
aWl aw +W aBG1
at at at

=w + P TR- (4.81)
at at ro

Once again, we have a two equations, which we can combine to eliminate some

parameters. Now solving this expression completely requires us to know all the rela-

tive strengths of the partial derivatives a, -9-,Q 21, and ag. We will solve this for

1t0I at I at at
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the case where the object parameters are kept constant (i.e. %c = 0 for i = 0, 1, 2).

aW2
at

awl
at

aW'
at

aW2 + a TOre Ore '
owl

at
OWl + aDgT
Or6  Ore P ro

Equating both LHS and multiplying through:

aw 2 (aw 1  a 9_ R)

at are are Pro

_ (aW 2

are

= awl

are

are

at

+ T are
are at

+ TR)
are Pro at

Ore
at

= w/ aw2 + T (4.82)
at are are

Writing this out fully results in:
/ (r -+ c re) (2cir/ + cl)R '

aW2 coc 2 (3r! + 2c1r' + core) re + ( T ')
at joADp r(r2 + clre + co)2  ro BG (r2 + c're + c') 2  ro

aW coc2(4r3 + 3cir2 + 2core) (r2 + c'lre)(2cir' + c')T
=a (4o&T AD2 - C + 4BG 2 'r +C P)

are " r.(r! + cIre + co)2  (re + c're + c')2  J
(4.83)

As can be seen from this expression, this equation can be converted to a 10th order

polynomial and solved for re. However, it is quite likely that multiple positive real

roots are possible, and this technique requires both the strength of the background

4DBG and the distance of the background R to be known, as well as the object param-

eters cO, c1, c2, C', '1. In any practical system, it is likely much easier to quantify the

crosstalk than it is to measure additional parameters. We will refer to this technique

as Background Canceling Differential TOF (BC D-TOF).

107



4.4 Summary of Real Time Techniques

Table 4.4 summarizes the real time techniques discussed in this chapter. Besides the

conventional TOF and intensity based techniques that are commonly used, analysis

and simulations shows the feasibility of alternative techniques provide good results

even in the presence of crosstalk or background, in exchange for further information

about the scene at hand. All of these techniques require the object parameters co,

ci, and c2 to be fixed. Error or changes in these parameters introduce an error

in the computed time-of-fight, the significance of which is largely correlated to the

complexity of the technique.

While conventional time-of-flight techniques only require the two measurable time-

of-flight parameters to compute effective distance, intensity based sensors require one

the the two measurable parameters and all three object parameters. Differential

TOF uses the differentiated form of the components and is immune to crosstalk but

requires co and ci for best results. Because this technique is only based off the relative

intensities of the two windows, it is quite tolerant of incorrect parameter values. Back-

ground Canceling TOF requires all three object parameters and the distance of the

background. This technique relies on the intensity heavily, and thus requires an accu-

rate estimate of the object parameters including c2. All of the above techniques can

adjust to crosstalk if the crosstalk information (i.e. CT1, CT2/CTI, CTQ) is known,

with the exception of Differential TOF, which is natively immune to crosstalk.

While the conventional time-of-flight technique is by far the most robust of all

techniques listed, Differential TOF and Background Canceling TOF in particular are

likely to be useful for a few select use cases. The largest challenge associated with

these techniques is the dependency on the hidden parameters that characterize the

object parameter model. We will revisit this aspect in Chapter 5.

Of course, each of these techniques also introduce another performance constraint

regarding computational cost. While differential TOF can be estimated with a sim-

ple ratio, all other techniques require some sort of polynomial root solver in order to

compute the effective distance, which can be potentially limiting in it's application.
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Some of this can be mitigated by precomputing the roots based off the known pa-

rameters, and only keeping a lookup table or polynomial approximation on the local

system. This, as well as much of the implementation level concerns such as the effect

of circuit non-idealities, are subjects of future research.

Table 4.1: Summary of Real Time Techniques for extracting Effective Distance

Technique Components and Parameters Immunity
Pulsed TOF / SWM TOF CT BG Both

Conventional TOF f(Wi W 2 ) No No No
f(xIXQ)

Intensity f (W 2, coci, c2) No No No
f (I X1, CO, C1, C2)

Differential TOF fat, Lo2, c0, c) Yes No No
f('

9 X1 aXQ

f( at , at7 ,O I ci)

BC TOF f(W1,W 2 co, c, c2,R) No Yes No
f (xI, XQ, co, cl, c 2 , R)

Background Intensity f(W, W 2, , c1 BG, No Yes No
f(xj, XQ, CO, c, C2BG, R) _____ R)

BC D-TOF ', tI co, ci, Yes Yes Yes
af , co, c1, c2, c, c' BG, R) 
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Chapter 5

Algorithmic Parameter Extraction

In the previous chapter, we developed several techniques for extracting object proper-

ties based off the current reading and it's derivatives. We will extend this to multiple

measurements, where we are no longer solely rely on arithmetic identities. Once

again, we will take advantage of redundancy, but this time in the parameters that are

kept constant with the use of least square estimation and optimization algorithms.

5.1 Introduction to Least Square Estimation and

Numerical Optimization

Least Square Estimation is the technique of estimating a finite number of parameters

from an overdetermined system, or a system with more equations than unknowns.

Least square estimation and more generally, numerical optimization, is invaluable for

fitting data to a model. These techniques take advantage of redundancy in the data

to solve for parameters in the presence of noise. For linear systems, this technique

results in a closed form solution, and is easily solved using linear algebra. Non-linear

systems do not have closed form solutions, but can typically be solved numerically

using iterative methods. Linear least square techniques do not require any initial

guesses, are not guaranteed to converge on the minimum least square error due to

local minima.
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We will use these techniques to estimate the effective distance and object parame-

ters from a series of intensity and time-of-flight measurements. It is important to note

here that in order for most of these techniques to work, the number of observations

must be greater than the number of parameters. Although fitting a model with more

parameter than observations is not impossible, it typically relies on the data being

sparse and compressible. Thus, we will limit the scope of models to those that have

less parameters than observations.

Specifically, each instance allows two measurements: the time of flight and the

intensity. Equivalently, we can use the two components used for acquiring the time

of flight measurement, W and W2 for Pulsed TOF, or x, and xQ for SWM TOE.

If we model a series of N measurements using less than N parameters, least squares

techniques can be used.

It is important to note that this chapter does not seek to find the best algorithm

nor attempts to achieve unbiased results, but rather seeks to show implementations

of simple algorithms that illustrate the potential for using optimization techniques in

the implementation of hybrid intensity/TOF systems.

5.2 Estimations Techniques for Object Property

Extraction

Once again, we will come up with several use cases, and examine techniques that

can be used to extract parameters. The basic advantage from using multiple samples

stems from the fact that while we expect the effective distance re to change, we are

assuming the object parameters co, ci, and c2 to be fixed. This creates redundancy

in the data, and allows us to extract parameters with less information that we would

have needed otherwise.
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5.2.1 Single Moving Object

Simarly to the previous section, we will begin by examining the case of a single object

in the field of view of the sensor. As we established last time, the effective distance

re can be obtained trivially:

Wi
re=r
r. (W2

re = tan1 "G

for Pulsed TOF

for SWM TOF

(5.1)

(5.2)

We also know the intensity of the signal I = 41 ob:

for Pulsed TOF

for SWM TOF

W2

TP

= X 2

(5.3)

(5.4)

We also know that 1 = Dobj can be modeled using our object parameter model:

22C
r = +ob = +oAD 22 C)re(e+cr+c)

(5.5)

We will now seek to solve for co, ci, and c2 using least square estimation. The

fundamental assumption we make here is that the parameters co, ci, and c2 remain

constant while the effective distance re varies. This problem can be reduced to a

linear system, using the following transformation:
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1

C2

1
X 3 =

CfJC2

i 1/~ob-i

Ai,3 =rT _

X =41C2

CO C2

1
CO C2

3 4reN e-N /

)
We are interested in solving for x such that Ax = b, which is generally an over

constrained system, and generally is not solvable in the presence of noise such as this

case. Instead, we will find the value = w, hich is the least square error estimateATA, es qaeerretmt

of x [9]. Solving this minimizes the total error in 1 for each of the sample data. If
'Iobj

we wish to minimize the percent error, we need to normalize the weighting such that

each row of contributes equally. This can be achieved by multiplying both sides of

the equation with the diagonal matrix Cjj = y

C =

tf 1
b1

1

1
bN-1

bN
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for j = 1, 2, 3

/

(5.6)

2_
Te_

2re_2

T2_e-3

3_
Te_

3re_2

3_
e-3

r 4

4
e,-2

r4
e-3

(

2
re N

1
'1obj-1

1
4obj-2

1
'cobj-3

1
'obj-N /



The new equation we now wish to solve becomes A'' = b', where

A' = CA

b'= Cb

solved by the estimator given by:

A'IT b'
X/ AITAI'

(CA)T b
(CA) T (CA)
AT CT b

ATCTCA(5.7)

The parameters c0,ci,and c2 can be derived from these results using these rela-

tionships:

To
CO =

X2
1

C2 -=

ci = - (5.8)
X2

This technique is possible for a minimum of three samples, which is when A is a

square matrix, making A invertible and x = -. For greater number of measurements,

redundancy in the data allows us to reduce the effects of noise and measurement error.

However, it should be noted that because of the nature of the parameters being solved

for, this technique does not produce accurate values of c0 unless a sample is taken

from the region where the model displays forth law behavior, and similarly does not

produce accurate values of ci unless third law behavior or the transition point between

square and forth law behaviors is recorded.

The main limitation of this technique is that it is only accurate if the object

parameters are constant, or equivalently, the motion is purely radial. Simultaneous

rotation and translation, or other complex motions will likely result in erroneous
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results. However, this technique is relatively robust, as can be seen in Figures 3-7 and

3-10 show the technique estimating a set of parameters that be closely approximate

a similar object undergoing linear on-axis motion.

5.2.2 Single Object with Unknown Crosstalk or Second Sta-

tionary Object

We will now consider the problem of removing an unknown offset from our signal.

In Chapter 4, we solved this problem by using computing the TOF from differential

components, and making assumptions of the time of flight v.s. effective distance

relationships. Here we will do similar, but with optimization algorithms using many

samples.

In this problem, the number of known parameters are much greater than that for a

single object, because effective distance of the target object is not trivially extractable

like it was for the single object scenario.

As discussed in Chapter 3, in the presence of crosstalk, the measured compo-

nents are composed of composed of the signal components as well as some unknown

crosstalk. For Pulsed TOF, this relation is summarized by:

W{ =W1 +CT1

COC2 Tp + CT (5.9)
re(r2 + clre + co) ro

W2=W 2 +CT 2

CC 2  _T + CT2  (5.10)
r2 (r2 + clre + co)TP
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For SWM TOF,

x' =xi+CT

CfJC2

r2(r2 -i-cr + co) cos(kre + #o) + CTI (5.11)

XQ xQ + CT

COC2

r2(r + cre + c) -sin(kre + o) + CTQ (5.12)
re(e +0e+c)

where k and 0 are known constants, although the technique can still be applied

if they are unknown by considering them as parameters.

We know have up fixed parameters (CTI, CTQ), and up to four parameters (re,

co, ci,c 2 ) per sample, but with only two observable quantities per sample (xI,xQ).

To limit the complexity of the problem, we will once again assume constant object

parameters co, ci and c2 . This would limit the problem to five fixed parameters and

one parameter per sample. This is less parameters than observable quantities if more

than three samples (or equivalently, six observations) are collected.

However, unlike the Single Object case, we are unable to transform the system into

a linear system. Thus, non-linear techniques must be used. A straight forward but

inefficient method of solving for the unknown parameters would be to simply set up

an optimization algorithm with all of the unknowns, including the effective distance

for each reading, set as parameters. This results in an optimization algorithm with

N + 5 parameters for for series of N measurements.

Although this technique could theoretically work, the objective function must be

very carefully chosen, and the initial guess of the parameters must be fairly close

for the method to converge. Furthermore, computation time becomes rather large

for data sets of modest size, due to the high dimensionality of the problem. This

motivates us to find more efficient algorithms to solve for the parameters.

One particularly effective method is a direct extension of the DTOF method in-

troduced in Section 4.3.2.2. In this section, we introduced a method of solving for

the effective distance given a set of DTOF measurements and the object parameters

co and c1 . Conceptually, we can iteratively pick a value of co and ci, solve for the
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distance using the DTOF method, compare the results for a good fit, and adjust co

and ci accordingly.

The most straightforward method of doing this is to use another linear least square

estimator to evaluate the fit. Given a particular choice of estimates for co and ci, we

can represent Equation 5.9 as a series of 2N equations with three unknowns(c 2 , CT1,

CT 2). We will solve this once again with a linear least square estimator as follows:

1 0 1_1

0 1 2-1 W2-

1 0 C 1- 2  CT Wj_2

A1 2-= CT2  b= W2
C2 2

1 0 W2L^
C2 0 1-N W1-N

\0 1 -L2-N \W2-N

where:

1 co re-i

C2 r _i(r_ + cirei + co) r
1 - Co

-22- 2 2 (5.13)
C2  re_i(rei + cire-i + CO)

We will once again minimize the normalized error, obtained by Equation 5.7. The

accuracy of this best fit relies on correctly chosen values for co and c1. Therefore,

error of the least square estimator IIb'- A'i 12 is minimized when co = 8o and ci = 61.

We will use this fact to run a second optimization algorithm to minimize the best

case error in the linear least square estimator. The result of this nested optimization

is a complete set of optimized parameters, cO, ci, c2 , CT1, and CT2. The effective

distance is computed with the DTOF technique using the final optimized parameters.

The choice of optimization algorithm is not important, but for the purpose of

demonstration, SLSQP Optimization in the scipy.optimize library for Python was

used to verify this algorithm. Figures 5-1 and 5-2 show the results for fitting a model
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with parameters co = 0.1, ci = 10, c2 = 0.1, and CT = CT 2 = <bOADTp. For a data

set of 40 points, solution were obtained in around 30 iterations. Convergence was

confirmed for as few as 6 data points, or 12 observations.
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Figure 5-1: Effective Distance Computed using Iterative DTOF

5.2.3 Single Object with Uniform Background

We will now consider the case of a uniform background. In Chapter 4, we developed

a method of extracting distance given information of the distance of the background

R, and the object parameters co, ci, and c2 . Here, we will consider scenarios and

techniques where we can estimate the effective distance with less information.

From Section 3.3, we have:
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WI' =W1 + BG1

re R
= (Iobj (re, CO, C1, c2 )Tpr- + b9g (re, 'IBG, cI, C1 )Ip

ro ro

COC2 Te r 2+ C Te R
= 4oAD 2eT + BG re1 TP- (5.14)

rg (rg-+cire-t+ co)ro re + cire + C' ro

W2 = W2 + BG2

= 4ob (re, CO, C1, C2)T + (Ibg (re, (DBG, co c1)Tp

coc2r2 + cir,
= GoAD CO + BG e + p (5.15)

r2(r2 + clre + co) rG + CIe +cO

In Chapter 4. we observed that the entire background term Dbg(re, (BGCO, C')

can be eliminated from the expression given the background distance R, resulting in

an a polynomial expression that resulted in the solution re = f(W', W2, CO, Ci, C2, R).

We also saw that the object parameter model term (Iobj (re, cO, c1 , c2 ) could be elim-

inated from the equation in a similar process, giving a solution of the form re =

f(WI', W2, cO, c', I1BG, R). Here, we will attempt to estimate the missing parameters

and reduce the number of input arguments required by taking advantage of muiltiple

samples.

5.2.3.1 Known Distance, Unknown Object Parameters, c'=co, c' = c1 .

Let us recall the behavior of the background term (Dbg:

2 1
re + cire

41bg = BG r + c ,re (5.16)
r2 + c're +C'

Although in general the shadow's parameters c' and c' are not known, there exists

a special case where c'=co and c' = c1 . Physically, this happens when the surface

properties of the background and the object are identical. For all practical purposes,

this only occurs when both the background and the target object are perfectly dif-

fuse objects. The relative reflectivity may differ between the two, but the angular

redistribution as a result of the reflection off of the surface must behave similarly.
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In this special case, we can set up the following matrix:

r2_ic1re,-1

rti+cire_1+c0 W W_ - #1
r2_ 1+c1re-1 R

r6_1 +cire-1+co ro W2-1

r _2+clre-2 W -
r,_ 2 +cire-2+cO 1-2

__ r2-_2+clre-2 - R X (BG b = W1_2 -W2-2re- 2 +clre-ico rb 2

r2-N+clre-N W/
rNC1re-N+CO 1 N - W1-N

.eN +clreN+C

re2N+cire-N R W-
2 e 2-N - W2-N

reN+clre-N+c ro

Finding the least square estimate of x = GBG, obtained through the i = A will

give us the only remaining unknown parameter. The resultant error can be further

minimized algorithmically by iteratively executing this process for various values of

co, ci, and c2.

A successful minimization of this problem results in a solution where the effec-

tive distance is obtained only from the time-of-flight measurements Wl, W2 and the

background distance R, i.e. re = f(W,, W2, R). However, simple simulations using

the numerical simulation model developed based on the results of Chapter 2 show

that although co and c' tend to scale together, they can be up to an order of mag-

nitude different from differences in surface properties and orientation. Under these

variations, this technique still successfully converges, but can easily be 20% 50% off.

5.2.3.2 co ' c',ic : c', Known Background

If we let the shadow parameters c' and c' take any value, this problem increases it's

cormplexity drastically. Even if the completely characterized background, where the

both parameters (BG and R are known, no stable algorithm was found.

In principle it is possible to iteratively solve for the unknown parameters. One

method that was tried using idealized signals was to use a linear least square estimator

on the results of the Background Intensity Method from section 4.3.3.2. Because this
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model fully predicts the behavior of the background signal, we can simply subtract

it from the measured signal, giving us an estimate of the signal contributions from

the object. We can then use the technique from section 5.2.1 to estimate the object

parameters cO, c1 , c2. This technique is especially worthy of note in that it provides a

way to systematically identify the most plausible solution for re when multiple real

positive roots exist to the polynomial. The error associated in this least square esti-

mation can conceivably be further minimized by iteratively applying the Background

Intensity method with various values of c', c', but this algorithm was found to be

generally unstable.

The symmetric technique would be to use Background Canceling TOF (BC TOF)

and estimate c', c'. Although this technique successfully differentiated between the

roots provided by BC TOF that adhered to the expected background behavior, further

minimization of the error using optimization algorithms were unsuccessful, due to

similar convergence issues.

Both of these algorithms, as well as the brute force method of applying an opti-

mization algorithm on all of the 5 unknown parameters (co, c1i, c2, coI, c') successfully

converged when all of the ideal parameters were set as the initial estimate, but had

trouble converging when any of the parameters were more 1% - 10% off, depending

on the algorithm.

5.2.3.3 Unknown Background

Although it would be useful to extract distance without prior knowledge of the back-

ground distance, this is not possible. This can be shown by attempting elimination

of the background distance R from or simultaneous equations.

R
W'= W1 + RBGp-

W = W 2 + (DbgTP

Because there is only one term in one equation that involves R, it is impossible
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to eliminate R from your series of equations. This means that any equation we form

in order to solve for effective distance re will always result in a function depending

on R. This indicates that it becomes impossible to distinguish between an infinite

set of signals caused by a different background/signal combinations. This makes this

problem impossible, regardless of choice of algorithm.

5.3 Summary of Algorithmic Techniques

Table 5.3 summarizes the successful algorithms discussed in this chapter. Linear least

square estimation proved invaluable for estimating the values of the hidden parameters

when effective distance over a set of data is known. Furthermore, it provides a method

for systematically identifying the correct root to the solutions to the polynomials that

result from the techniques in Chapter 4.

Iteratively using one of the real time techniques from Chapter 4, and applying

least square estimation to check the compliance with modeled behavior provides a

natural way to optimize the choice of hidden parameters with out prior knowledge.

Especially for Differential TOF, an iterative approach showed excellent convergence

properties, and worked for a wide range of inputs and initial vectors. This implies

that if the differential components of a Hybrid Intensity/Time-Of-Flight system can

be measured with sufficient accuracy, a system that responds to the distance of any

moving object can be made, regardless of crosstalk. However, this technique and all

others discussed in this chapter rely on the parameters remaining constant through

out the motion, limiting the application space of the technique.

Iteratively tuning techniques that involve backgrounds proved difficult at best.

For the special case where co = c', and ci = c', a stable algorithm was found, but

convergence was an issue all other cases. Furthermore, dependance on the background

distance is inherent for all of the proposed algorithms, severely limiting the use cases

of such algorithm.

The use of linear least square estimators requires doing algebraic computation

with large matrices. Although this is a simple task for a full processor equipped with
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MATLAB, Python, or similar, this is a daunting task for any System-On-Chip(SOC),

and would likely require a dedicated digital signal processor. The iterative techniques

such as Iterative D-TOF and Iterative BC TOF required computations on the order

of 3 - 30 seconds on a 2.4GHz Intel Quad-Core i7. Due to their iterative nature, these

algorithms require solving up to hundreds of polynomial roots and linear least squares,

and likely require computational resources that are impractical to be implanted by

any SOC, any would require intense resources from the host system. For this reason,

it is likely that these techniques are best used sparingly, if at all.

Table 5.1: Summary of Real Time Techniques for extracting Effective Distance

Technique Components and Parameters Immunity
Pulsed TOF / SWM TOF CT BG Both

{co, ci, c2 }= f (W1, W2, re) No No No
{ co, ci1, c2} f (XI, XQ, re)
{c2 ,CT1, CT2 }= f(Wi, W2, re, co, ci) Yes No No

LLS Estimation {C2 , CTI, CTQ} f (x 1 , XQ, re, Co, ci)
{co, Ci, c 2} = f(W1, W2, re, c', ci, 4BGR) No Yes No
{co, ci, c2} = f(j, xQ, , re co, c 1 BG, R)

{',c}= f(W1, W 2 , re, co, ci,c 2 , BG,R No Yes No
{ c', c/ } = f (i WQ, e, CO, Ci, C2 , 1 BG, R)

Iterative D-TOF {re, co, c1, c2, CT1 , CT2 } = f (9?, d Ys N N
{re, co, c,c 2 , CT, CT} =f , e o N

Iterative BC TOF {e, CO = C,i = ce, c2} = f(W1, W2  BGR) No Yes No
S{re, co = c' , c = c , c2} = f (i,Q,_I BG,_ _
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Chapter 6

Conclusion

This thesis has explored several classes of techniques made possible by combining

intensity and time-of-flight information for an active IR distance sensor. Starting from

modeling the reflections from an arbitrary scene as developed in Chapter 2, a model

that characterizes signals contributed from objects, crosstalk, and backgrounds was

developed and verified using analytical examples and numerical simulations. These

models were then used to develop techniques for mitigating the effects of crosstalk

and backscatter, in Chapters 4 and 5. The results show that using both time-of-flight

and intensity information, one can extract distance even when subject to crosstalk or

backscatter, with some limited knowledge about the scene.

6.1 Summary of Hybrid Intensity/Time-Of-Flight

Techniques

Table 6.1 summarizes the plain language descriptions of the computational cost and

information required for of the major techniques discussed in this work.

6.1.1 Capabilities

There are three main capabilities that hybrid intensity/time-of-flight techniques pro-

vide.

127



Table 6.1: Summary of Hybrid Intensity/Time-Of-Flight Techniques

Technique Information Required Comp. Cost
Conventional TOF TOF Low
Intensity Intensity, Object Properties Moderate
Differential TOF Intensity, TOF, Object Properties Low/Moderate
Iterative D-TOF Intensity, TOF High
BC TOF Intensity, TOF, Background, Object Moderate
Background Intensity Intensity, TOF, Background, Object Moderate
Iterative BC-TOF Intensity, TOF, Background High

Immunity to unknown crosstalk Use of Differential TOF and Iterative D-TOF

grants immunity to crosstalk.

Performance under known background. Use of Background Intensity Method

or Iterative BC TOF allows effective distance to be extracted in the presence of a

background as long as the background signal can be measured and quantified.

Ability to extract properties of the target object. Use of least square ap-

proximations allow the estimation of object parameters that are indicative of the

size, shape, and reflectivity of the object.

6.1.2 Requirements and Limitations

The underlying requirement for almost all of the techniques developed in this work

require the target object to under go radial motion. Redundancy accumulated from

multiple readings and/or derivative information is the fundamental basis of the tech-

niques, and radial motion ensures that appropriate redundant information is gener-

ated and acquired. Non radial motion and other irregularities will introduce an error

for most hybrid techniques.

In addition, all techniques require an approximate knowledge of some properties

of the target object and/or background. Iterative techniques will use these estimates

as an initial vector for an optimization algorithm, ideally converging on the optimal

approximation. Non-iterative techniques will use these parameters in their polynomial
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expressions, and any inaccuracies in these parameters will contribute an error to the

results.

Computational costs of hybrid techniques are typically much greater than that

of a conventional system. A conventional Pulsed TOF system only requires one

division operation. For SWM TOF, the CORDIC algorithm and similar approaches

allow conversion with relatively low computational cost. The techniques classified

introduced in Chapter 4 all generally require a polynomial root solver, or at least

a lookup table with it's contents pre-computed. However, for the techniques that

involve a background component, the tables would need to be a two variable look

up table, making the storage and computational costs quite large even as a lookup

table. As for the techniques introduced in Chapter 5, these require linear algebra and

may require up to hundreds of least square estimators and polynomials to be solved,

making the computational costs unsuitable for most applications.

The precision requirements for signals are also of concern for these techniques.

In particular when the signal strength contributed from the target object is small

compared to crosstalk or background, the system is likely to suffer from Signal-to-

Noise-Ratio issues. Thus higher performance front end circuitry will be likely required.

6.1.3 Applications

Applications for these techniques are not entirely obvious, as the requirements and

limitations are potentially restrictive. The high computational cost causes these tech-

niques to loses some of the advantages that a a spatially averaged sensor has. However,

it is likely that using a combination of techniques including conventional TOF, real

time techniques and algorithmic techniques will provide a good compromise between

performance and power. For example, using computationally costly algorithmic tech-

niques in a calibration phase, and relying only on real time or conventional techniques

for real time measurements can reduce power requirements where it is important. Al-

ternatively, real time techniques can be used to acquire a "first pass" measurement

that is used to trigger an event to "wake up" the host when appropriate, and the host

can use algorithmic techniques to verify the event. Combining techniques of various
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computational requirements can potentially create efficient solutions to traditionally

difficult problems.

6.2 Future Work

6.2.1 Implementation Level Concerns

This work focused on identifying plausible techniques and ignored sources of error and

noise for the majority of the analysis. For implementing in a real life system, these

non-idealities may become important. Particularly interesting are the effects of drift

in time delay/phase of the front circuitry, as well as the overall gain of the system.

Another important concern is how noise effects the hybrid techniques, in particular

the least square estimators. Optimal least square estimators depend on the shape of

the error distribution, and the techniques will likely need to be modified according to

the actual distribution of noise and error. Convergence issues associated with noise

and error for the optimization algorithms is also important for a real system, and one

that is ill understood.

6.2.2 Taking Advantage of Time Domain Information

One potential venue to take the results of this work further is to introduce the signif-

icance of the time domain in the base band. Real time techniques are only concerned

with instantaneous measurements, and treated each sample as a separate problem.

Algorithmic techniques took multiple readings, but treated it as unsorted data. How-

ever, we know that physical objects can only move at finite speeds, and that motion

is more likely to have smooth transitions. One approach would be to take the fre-

quency domain transform (z-transform, Laplace transform) of the effective distance,

and assume that the frequency content of the motion is band limited. This could even

by applied to multiple parameters, allowing potentially all of the parameters (i.e. re,

c0,c1 ,c2 , etc.) to change over time, but with low frequency content. This would reduce

the number of variables in the system, and potentially give rise to techniques that
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can estimate distance and object properties for a wider range of physical scenarios,

potentially accounting for non-radial motion and objects that dynamically change in

reflectivity or size.

6.3 Concluding Remarks

This work pioneered a completely new class of distance sensing technology which

combines the information from an intensity based and time-of-flight sensor. While

implementation details and specific applications are still up for discussion, a clear

scope of capabilities were analyzed and discussed. Although the technology has very

specific limitations, in the right application, hybrid intensity/time-of-flight sensors

have the strong potential to provide unique performance traits in otherwise difficult

environments.
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Appendix A

Internal Conference Paper

The following paper was written by Dave Ritter and the author of this work, and

submitted to an internal company conference called the Intersil Engineering Con-

ference (lEC). Titled Vector Domain Differentiation: IR Motion Detection in High

Backscatter Environments, this paper discusses a first pass at some of the techniques

discussed in this work.
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Vector Domain Differentiation: IR Motion Detection
in

High Backscatter Environments

David W. Ritter
Sr Principal Engineer
Intersil Corporation

Milpitas, CA
David.Rittergintersil.com

Abstract- This paper describes a signal processing scheme,
called Vector Domain Differentiation (VDD), for active IR
distance sensing of moving objects in the presence of significant
environmental backscatter. In particular VDD applies to a
coherent (sinusoidally modulated) time of flight system
comprising a modulated LED and PIN diode detector. VDD is
based on a critical and generally non-intuitive result: there is a
simple relationship between the first derivative of the received
signal in the IQ domain and the desired distance result. This will
be shown theoretically in the paper and simulation results
presented

I. INTRODUCTION

A category of monolithic devices is emerging that
allows electronic products to sense their environment
[1][2]. These include such diverse devices as
accelerometers, monolithic gyroscopes, light sensors and
imagers. In particular multiple market segments have
increasing interest in proximity sensing: detecting the
presence and/or distance of a user to the product for the
purpose of controlling power, displays, or other interface
options. Intersil is a leader in the ALS (Ambient Light
Sensor) and Active IR Proximity devices. ALS's are used in
portable equipment to modulate the backlight levels of
displays to conserve battery power. Proximity detectors are
used in cell phones (for example) to disable displays when
the unit is held to the ear during phone calls (further
conserving battery power). Intersil's current state of the art
in integrated proximity sensors is limited to <50 cm [3].
The following discussion and derivation is part of an
advanced active IR proximity sensor project, the ISL29200,
intended to extend the range of the product line to 2 meters
using Time of Flight (TOF) techniques.

Many schemes exist for 3D imaging or distance sensing
using time of flight (TOF) techniques [4]. These methods
either directly measure the delay of a pulse from a laser or
LED, or measure the phase delay of a modulated IR source.
In both cases the delay is proportional to distance and
independent of reflectivity of the object of interest. These
techniques perform well in a controlled optical
environment, and many systems use a lens to focus the field
of view onto an image plane. However, in a simple

Itaru L. Hiromi
Former Intern & Student

MIT
Cambridge, MA

ihiromi@MIT.EDU

proximity detector there is only a single sensor with no
focusing optics. It receives a signal that is the aggregate of
all reflections from all objects in the field of view. There is
no image, and there is no array of sensors: there is a single,
fuzzy pixel. None the less it is desirable to respond to
moving objects and determine their distance while ignoring
the static objects in the field (and other static contributors
such as electrical crosstalk). Vector Domain Differentiation
(VDD) will be shown to achieve these goals with simple
signal processing in a practical system.

I. ACTIVE IR PROXIMITY DETECTION SYSTEM

Active IR proximity detectors can be implemented using
IR LED emitters and PIN diode detectors. The ISL29200
uses a high frequency (5 MHz) modulated LED and a tuned
PIN receiver to detect the presence of objects in the field of
view and determine their distance. Figure 1 shows a
simplified diagram of the system. Details of much of the
signal processing are included in another paper at this
conference [5], but for present purposes it is only necessary
to note that the ISL29200 observes the field of view
through a single sinusoid received at the PIN diode. The
only information available about the field of view is
encoded in the amplitude and phase of this signal and its
evolution in time.

ISL29200 Block Diagram

Fir End X fn i A tC

tc c b coHghSpeed

AC DC' Numnerial

Regse
Seril Bus 0 Mp and i W R E

Figure I -TeIL900 Prxmty Sensor

Figure 2 shows the components of received signal at any
time: a) electrical crosstalk, b) optical crosstalk due to the
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glass covering, c) static backscatter, and d) the object of
interest.

LED Driver
At

5MHz

Low Noise

"PIN

constant term x0, representing the static contributors to the
signal (backscatter and crosstalk as discussed above), and a
time varying signal xs, representing a moving object (the
object of interest: the laptop user). [Note: the time varying
nature of x, does not include the high speed oscillations of
the modulating sinusoid, but only captures the variations in
amplitude and phase of that sinusoid. ]

x, = x -xo

-oECTIALCROWTALK

- OPTICAL CROSSTALK
N STATIC BACKSCATTER

-- 0 OBJECT OF INTEREST

(1)

According to the physics of light propagation, the phase
and amplitude of x, will vary according to the distance of
the object. In addition, x, will vary with angle to the sensor
since the LED is directional. We further allow that both the
distance, r, and angle of incidence to LED, a, are in
general time varying, giving us:

Figure 2 - Received Signal Elements in Active IR Proximity Detector x,[r(t), a(t)] =

One goal of the ISL29200 is to determine the distance to
the object of interest while compensating for the above Equation (2
interferers. Both electrical and optical crosstalk can be signal model: x
approximated to be relatively constant through the life time with time. Tc
of the device, and may be calibrated at the manufacturing or reflectivity is
development stage of the application. Environmental dependence of
backscatter poses a much more difficult problem. Objects the developme
such as a cabinet surface are not useful targets, but will
show up as a significant component of the signal. The We can flrt
primary difference between a useful target (user phase compon
approaching a laptop), and other objects (filing cabinets,
soda cans, cubical walls) in the environment is motion: the A, =|
user moves relative to the laptop while other objects are
still. A traditional approach to discriminating steady, 'DC', = Z
content from changing, 'AC', content is the application of a
high pass filter. While it is clear that some of the signal or equivalentwill pass through such a filter, it is not clear how such a
filter will distort the distance information in a TOF system.
What happens to the phase of a signal when the
demodulated components are passed through a high pass Invoking the
filter?

can determine
Given the spee

III. THE SIGNAL MODEL (o0, (p becomes:

x[r(t), a(t)] -x . (2)

) is a significant assumption regarding the
s varies with time if and only if r or a varies
his is equivalent to stating that the object
onstant. We will include notation showing
x, on r, a and t as necessary in the context of
it.

her express x, in terms of its magnitude and
nts:

X, = X-X I,

xZ, =(x- x),

(3a)

(3b)

ly:

(4)

physics of light propagation once again, we
the specific variation of phase with distance.
d of light c, and natural operating frequency

The received signal is the sinusoidal voltage and/or
current (of natural frequency (o) induced in the PIN diode.
It is proportional to the incident IR photonic signal reflected
from the environment. Various parasitic capacitances and
signal processing delays will cause phase and amplitude
variations in the received signal, but for our purposes we
will assume that these are corrected by a system calibration.
Relative to the transmitted signal at the IR LED, the
received signal is delayed in phase (and diminished in
amplitude) and therefore has both I and Q components (In-
phase and Quadrature). For mathematical convenience we
will represent the I component by the real part of a complex
variable x, and the Q component by the imaginary part of x.
We will further consider that x is in general the sum of a

(p(r) = r = rk,
C

(5)

where k = (00 is the wave number.
C

While the phase varies linearly with the distance, r, the
magnitude function is more complex since it varies with
both distance and angle. We begin by assuming that A, is
the product of two functions, one due to the distance from
the sensor, and one due to the angle of incidence to the LED
(which has a limited angle of illumination).

A,(r, a) = A (r)Aa(a),
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The details of an appropriate model are contained
in Appendix 1 at the end of this paper. Appendix 1 is a
physical model using simplifications for the LED
illumination profile (raised cosine), the object of interest (an
ellipse), and the reflection rule (Lambertian: simple cosine
function). This physical model predicts a curve for the
magnitude of x, vs distance. The results, for reasonable
sized objects (25cm to 2m) are easily fitted to the reciprocal
of a fourth order polynomial in r. The LED illumination
profile provides the spatial angular dependence. Both terms
are included in (7).

A,(r,a)= 2 2 $+Y2cos(Yai Z',
r + ar + b, '

(7)

This model is useful for creating continuous signal
models for simulations, but it is difficult to work with for
the analytic purposes. For those purposes, Appendix 1
shows a piecewise linear fit to the magnitude function. This
version allows simple differentiation over restricted
domains, but gives clear indications of behaviour from the
analytic results. We repeat it here as Equations (8a) and
(8b).

A,(r,a) = A,, 0
2~ 3

if(r <r,l/r2,if(r <r2,r,/Irrr2/Ir)) e

4/2+ Y2 Cos% 0)

Or:

A, (r, a)= A0 R

giving:

R
Ar (r)= A

r

Aa(a)= 2 + 2cos(% r)

where:

(8a)

(8b)

(9a)

(9b)

R = 1 andN =2for r < r

R = r, and N = 3for r1< r < r2;

R = r,*r2 andN =4for r> r2.

For human sized (ellipse: 1.5m x 0.5m) objects:
Ao=0.95x10-9, r1=1.125m, r 2=2.8m for a human sized object.
The function "if(a,b,c)" in (8a) is to be understood as a
conditional statement wherein "a" is a logical condition, b
is the value of the function if "a" is true, and "b" is the
value if "a" is false. Nesting two "if' functions provides
two breakpoints in the power curve: the first at the
transition from square law to cube law, and the second at
the transition to fourth order law. Equation (8b) is a
simpler syntax for analytic purposes. Equations (9a) and
(9b) show the radial and angular components of A,. We can
now update the earlier signal definition in (4):

x,(r,a) = x-x, = A,(r)A,(a)e" . (10)

Computing the derivatives of the magnitude components:

aA,(r) R 
at rN+1

aA,(a) = T faM
at ~ 2a, s .

(11 a)

(1 lb)

where:
vr(t) = &r /it is the radial velocity of the object, and

Va(t) = aal at is the angular velocity of the object.

Using this magnitude model we can now write a full signal
model showing both the amplitude and phase dependencies
on r and a:

x, (r) = x(r)-x = AR f + Xcos(%Y J(r)e .
r

(12)

IV. DIFFERENTIATION IN THE I/Q DOMAIN

We begin by considering a simple time derivative applied
to the reflected signal.

A. Definition and Derivation

We begin with the time derivative of Eq(4):

X,(r,a) = x -x 0 = Ar(r)Aa (a)eop

dx, = (dA+
dt dt

jAs dt )i (13)

We can express this in terms of the partial spatial
derivatives which include radial and angular velocity:

dx dx A, A,
dt dt _ 8r 8a j

where 69 _ / k (wave number) isfrom (5).
/ar - /c

We now consider three cases:
1) Radial Velocity = 0 - [ vr(t)=ar/at=0 ]

(14)

An object moves into the field of view at a constant
distancefrom the sensor,

dx BA a
d t = ' v ( t ) ea J = A O a v ( t ) e ( + t) ( 1 5 )

where: 9=0 (
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2) Angular Velocity = 0 - [va(t)=cx/Ot=0 ]
An object moves toward or away from the sensor along

a radial line.

[L+ jAk v,(t) e^ = + jAaA,.kA v,(t)1 e^" (17)

where: = tan- ' Ark
a A,/ar (18)

3) General Case

=I AAr + JAA,k v(t)+ A v (t) e(Ot+09)
dt r ra

where:
0 =tan-' ArAAkv,(t)

A" r (t ' Ba (t) J

(19)

(20)

From (16) through (20) we see that the phase of the
derivative of x can be expressed as:

d dt = P +, (21)

where p = qp(r(t)) and 0 = O(r(t),a(t)) .

Equation 21 is the major point of the derivation: the
phase of the derivative of the signal in [I, Q] space is the
phase of the original signal, p, plus a phase distortion term

6. We need to bound the distortion term and determine its
affect on the processed signal.

B. The phase distortion term

6 is the corrupting element in our scheme. If 6 has a

predictable and stable relation to cp, (21) becomes a useful
means to determine the phase (and thereby the distance) of
a moving object. For the case of radial motion, we can
gain some insight from finite difference approximations:

-1( kAr or

A-4A ) As

9 (AAsA .AS
(22)

C. Behaviour in Time-of-Flight systems

Case 1: angular motion, radial velocity is zero.
This is the simplest case represented in Eq. 15, the phase

distortion term, 0, is zero. The phase is unchanged in the
VDD signal versus the original I/Q signal. If a user steps
into the field of view from outside the field of view, the
system responds with no phase distortion.

Case 2: radial motion, angular velocity is zero.
Motion along a radial line generates a more complicated

result. Collecting results from (5), (9a), (1 a), (18) and (21)
we find:

(p(r)=r WO =rk,
c

Ar(r)= A R
r

=-N4t v,(t);

0=tan-' Ark
( ,/Ar ) r

/ dt=

=dX =rk+ tan'(- AORkrN+1
/dt rNNAoR ) tn

Applying the small angle approximation,

Limfiit =x,
x-+O '

we have:

Z' dx i rk - r)
d dt ~

d dt ~ N

d dt ~ _

or, for N=2,

(5)

(9a)

(1 Ia)

(18)

(21)

(23)

(24a)

(24b)

(24c)

(24d)

Equation 22 shows that the phase distortion is related to
both the change in phase and the percentage change in
amplitude.

Equation (24c) shows that for radial motion the phase is
directly proportional to the original phase via the
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proportionality constant, (1 - 1 /N). For a square law system
the phase is precisely half of the original phase [N=2, (1 -
1/N) = / ] as seen in (24d). Recalling the original signal
model, the power law begins at N=2 for distances under
im, changes to N=3 for distance between about im and
2.8m, and moves to N=4 at 2.8m and beyond. So the VDD
processing compresses the distance vs phase shift curve
such that objects moving radially appear closer, but the
curve is very consistent for human sized objects within 1m
of the sensor.

Case 3: Motion along the diagonal. Here we look at the
'in between' case where v.= vr. [Note: we could also
consider the case of va= -vr , but the sense of the a
component changes sign across the center line, and
effectively gives both results at the extreme angles.] Again
collecting results from (5), (9a), (1 la/b), (18) and (21) we
find:

p(r)=r =rk,
C

R
Ar (r)= A0 R

rN

aA,(r) NA R
at r N

A (a)=- sin C .( ) ;

0=tanArAkv,(t)
A. 4- v (t)+ A 'A v(t)a r ' a ",

Zd = q +0,dt

and assuming vr(t) = v,(t);

aA, (a) - a i _ ;r_1 );

k sikdx -rk+ tan , r A,ka
SA. -A

a8r 1aa

=rk+ tan 1 - rk

N + a ,o s ( , r

A+, sA )

(5)

(9a)

(9b)
(1la)

(1 lb)

(18)

(21)

(1 lb)

(23)

Equation (23) shows that locations near the center line
give the same result as radial velocities (the second term in
the denominator goes to zero at the center), while locations
at the edge of the field cause an effective modulation of the
denominator. An object entering the field on a diagonal
toward the sensor results in an increase in magnitude due to
the a dependence that adds to the magnitude increase due to
the power law r dependence. The denominator of the
distortion term gets larger, and the phase distortion gets
smaller. An object leaving the field along the same
diagonal has decreasing magnitude due to the a
dependence, but increasing magnitude due to the power law
dependence. The denominator of the distortion term gets
smaller, and the phase distortion larger. The net result is
that the apparent distance entering the field is larger than
the apparent distance leaving the field. This is what we
would expect from the two velocities considered separately
in (15) and (17).

The conclusion is that VDD represents a distortion of
phase that can be viewed as weighted velocities. Objects
moving toward the sensor appear closer, but they are
generally more interesting objects. Objects moving across
the field appear farther away, but they also have a distinct
signature: the angle entering the field is positive on entering
and negative on leaving, but otherwise of the same
magnitude. On the other hand, the a dependence comes
from the restricted angle of radiation of the LED. LED's
with large radiation angles will exhibit much smaller a
dependence, and most of the phase will be due to motion
along r, ideal for determining the distance of moving
objects in a large field of view. LED's with small radiation
angles will show large a dependence and strong positive
followed by negative signatures, ideal for counting objects
crossing the field of view. VDD is therefore a useful
technique to generate orthogonal and useful data in an
active IR system, free from the corruption of steady state
signals such as crosstalk and backscatter.

V. BANDLIMITED DERIVATIVES: REDUCING NOISE

Derivatives are noisy: in the frequency domain the ideal
derivative has a zero at the origin (DC) and nothing else.
The power spectral transfer function rises without limit as
frequency increases creating an untenable noise situation in
a real system. Something must be done to control the noise
bandwidth of the system to make the technique usable. In
such situations it is typical to apply bandlimiting to the
derivatives to limit the noise. There are three ways to
include bandlimiting in this system:

1) Bandlimit the original [I,Q] data to limit the input
noise bandwidth to the derivative,
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2) Filter the output of the derivative processing to limit
the final output noise bandwidth, and,

3) Perform a discrete 'derivative' as a two sample
difference, and modify the spacing of the samples to allow
more phase difference to accumulate signal relative to the
existing noise before calculating the distance.

In the following we explore all three, and find that all are
related and useful in building a robust system.

A. Bandlimiting in the [IQ] Space

In the current system the [I,Q] space is the result of
several stages of signal processing and already contains
almost 7 orders of magnitude of bandwidth reduction from
the PIN diode input to the digital output. Although detailed
analysis of the signal chain is beyond the scope of this
paper, we can say that the signal chain limits bandwidth at 5
places to control noise amplitudes as gain increases along
the chain. These include:

1) Front end bandlimiting to approximately 5MHz
(rolling off at 6dB/oct above that frequency),

2) High Q bandpass filtering reducing bandwidth to
1MHz,

3) Demodulator limiting baseband output to 7kHz,

4) ADC output filtering reduces bandwidth to a few
kHz, and,

5) the final digital lpf reduces bandwidth to 1Hz.

The result is that there is no significant noise aliasing in
the signal chain up to the output and noise at the final
output filter has a bandwidth of about 1Hz.

B. Bandlimiting the derivative

One of the fortunate properties of derivative processing
is linearity, and it therefore inherits all of the traditional
properties of linear systems. In particular, applying a linear
filter either before or after the derivative block has a similar
effect. We've already shown that there is significant
bandlimiting applied in the [I,Q] space before the derivative
processing, and we now consider applying bandlimiting
afterward.

We begin by stating that the first difference is a valid
approximation to the derivative and is often used in
numerical solutions to differential equations [6][7]. In fact,
its pedigree reaches back to the first definition of the
derivative by Isaac Newtown [5]. For our purposes, the
discrete first difference is identical to the first derivative,
bandlimited to the appropriate Nyquist frequency range. As
long as we are not aliasing our signals the two yield the
same result.

In continuous time the derivative is often bandlimited by
adding lowpass poles to the transfer function. In the
discrete domain it is more convenient to apply a simple
moving average filter. A moving average filter has a
rectangular impulse response, and simply averages the last
M samples of a given signal or data stream to create the
new data stream. In the frequency domain it has a general
lowpass characteristic, with a corner frequency falling as M
increases, and transmission zeros creating a comb-like
response. Figure 3 [8] shows the frequency domain
behaviour of the moving average.

- - - - - I -
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Figure 3: Frequency response of moving average

For our purposes, it is of interest to determine the affect
of applying a moving average lpf to the discrete derivative
(first difference). We begin with a definition of the discrete
first difference:

AX, = x, - x' (24)

A moving average filter can be implemented as a simple
weighted sum over M samples:

1 i

Alj=i-M
(25)

but the second sum can be rearranged:

Xj-1 Xj -Xj +xj-_,,
j=i-M j=i-M

and substituted in (17) yielding:

(~I) ZAX 1 rD~Xj (M+l),

(26)

(27)

Equation (27) shows that bandlimiting the derivative can
be accomplished simply by decreasing the sample rate

i t pon

I_
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applied to the first difference: we simply subtract samples
separated by M periods. If the object is in uniform motion
over the M samples, then the result of (27) is the same as
the single sample difference, but the noise contritbution is
reduced by a factor of M. If we don't divide by M, and just
have a running sum of the first differences, the signal is
amplified by a factor of M while the noise contribution
remains constant. This makes intuitive sense: an object
moving at constant velocity will show greater phase
differences when samples are more widely spaced, while
the noise contributions will be approximately the same in
both cases (since the noise is white, the samples are
uncorrelated and subtracting any two samples yields the
same noise content regardless of where they occurred in the
sequence). Larger phase differences and constant noise
result in larger SNR. In fact, halving the sample rate will
increase SNR by approximately 6dB. This approach is used
to great effect in the adaptive sample rate method later on.

C. Issues ofAmplitude, SNR, and Dynamic Range

SNR and Dynamic Range depend on the magnitude of
the processed signal, so we should revisit the amplitude of
the derivative. For the remainder of the paper we will
restrict ourselves to objects in the center of the field of view
with no x dependence. From (13) we have directly:

(1/

dt - ar 0(~kJ vt
(28)

Substituting for the spatial derivative of As
and performing some algebra we have:

dx N 2
dt - + ±4 A, v(t)

(29)

Assuming we are within lm (for a human sized object)
our system is power law (N=2) and the operating frequency
is 5MHz [k = (271 x 5 x 106)/ 3 x 108 = 0.105] this reduces
to:

dx+ 0. 105
dt r A, v(t)~ 2AIrv(t), (30)

And further substituting for A, as in (6):

dx 24 v(t) 2AO v(t)
- r N+I 3dt r r

(31)

for N=2.

Equation (31) indicates that the amplitude of the
derivative is proportional to the velocity and inversely
proportional to the cube of the distance. If we devise a
system where we reduce the sample rate for lower velocities
and larger r, we can compensate for these losses.

D. Signal Processing Implementation

There is a deceptively simple method to accomplish the
above sample rate variation: we take a first sample at some
time t, and take another sample when the output changes by
fixed amount. This automatically adjust the effective M of
our derivative moving average in (27) to produce a signal of
known amplitude. As stated above, the noise contribution
is constant for any two samples (white assumption on
noise), regardless of M, yielding a technique that puts lower
bounds on the SNR.

The diagram below shows a block diagram of a possible
implementation.

in Pevo Sam e "0 a

o Subt-act D iff+
Prenous Sample outi C 

C 1n2

C Trigger Condition D Latch

D Latch
Trigger Trigger

FIG. 4 DIFFERENTIATOR BLOCK DIAGRAM

Assume at the start that a previous sample has been
acquired by the D Latch on the left. The Subtract block
continuously monitors the difference between this previous
sample and the current sample. When this difference
satisfies the Trigger Condition block (the difference must
be large enough, and the signal should be above some
squelch level) it generates a trigger (sampling) pulse. The
trigger latches the difference (our derivative of interest) into
the output latch on the right, and acquires a new sample in
the input latch on the left. The trigger can further be used
to clock any subsequent filtering or any other signal
processing. The triggering condition can be tuned to
optimize speed, accuracy, and SNR. The resulting system is
simple, but can optimally shift its gain and sampling rate to
maintain a minimum SNR.

VI. DISTANCE-OF-MOTION SENSING

The system of Figure 4 is applied to the vector [I,Q]
signal and effectively provides weighted average, lowpass
filtered first difference [I,Q] signals at its output. The phase
of that signal indicates the distance of the last motion
sensed by the system.

In additional the information obtained from motion
distance sensing can be used to dynamically calibrate the
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static distance sensing as shown in Fig.5. By using the
phase of the derivative and the corresponding original I/Q
vectors, it is possible to dynamically reconstruct the static
component of the signal. Over time this allows us to obtain
the environmental backscatter component and use it to
improve the static proximity results. Further work is
needed to determine whether the derivative processing is
sufficient for most proximity applications, or whether an
enhanced processor using the derivative method to calibrate
the static sensor is advantageous. We are currently
exploring all methods and their interaction.

CD - - --- masPhaseo

*'ct h Ce

StaGr Offset 1econstruct0on L Add)

Phase Converseon'

FIG. 5 DYNAMIC CALIBRATION BLOCK DIAGRAM

E. Simulation Results

Figure 6 shows the typical transfer characteristics of all
three methods discussed so far: conventional, vector
domain differentiation, and dynamic calibration.

1. The black line shows the ideal response: it is the
phase delay due to the distance of the object of interest.

2. The green line shows the result of a conventional
static TOF system with significant backscatter: an object at
40cm with 70% reflectivity.

3. The red line shows the result of vector domain
differentiation with the same backscatter and the object of
interest moving at 20 meters per second. This is equivalent
to sensing a human sized object moving at 40 mph.

4. The orange line is the vector domain
differentiation system with the same backscatter and the
o.o.i. moving at 2.5 meters per second. This is equivalent
to someone running by your laptop at 4mph.

5. The blue line represents the output of a static TOF
prox system calibrated using the vector domain
differentiation.

The plot below shows the time domain waveforms of the
dynamic calibration obtained through the vdd system for a
an object moving uniformly back and forth with a constant
speed of four meters per second. It is clear that the static
system benefits from the dynamic calibration, improving its
accuracy with each cycle.
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FIG. 7 - CALIBRATION WAVEFORMS

VIL.CONCLUSIONS

This paper introduced a new technique applicable to
active IR proximity sensing. The VDD: Vector Domain
Differentiation technique provides more than traditional
motion sensing, it combines motion sensing with distance
sensing, and provides both in the presence of large
environmental backscatter signals. As an added benefit,
VDD has been used to calibrate a traditional TOF proximity
system, learning over time the backscatter environment.
We anticipate that these features will be valuable in future
proximity sensors.

FIG. 6 - PHASE VS DISTANCE TRANSFER CHARACTERISTICS
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APPENDIX A:
Figure A. 1 shows an idealized proximity

including most important factors in determining the
received at a PIN diode from an LED.

model
signal

Ideal Proximity Sensing Model
with Raised Cosine Diode Illumination Profile

and Elliptical Object model.

Definitio"ns
D=- r + L' - 2rL cn(r) + I'

0= cos-1(hr d )

Intensity seen by sensor w th object at cistance h:

I t

(llnumination cone)

D h

Sensor LED

Figure A. 1 - Analytic Proximity Model

I'.
'I

I

I"'"'

Magnitude vs Distane.
for Various Objects Sizes

Or t " In Motors

Figure A.2 - Magnitude vs Distance vs Object Size

Magnitude variations are shown in detail in Figure A.2.
The kernel of the integral contains the following terms and
definitions:

1) Definitions:
a. P0: radiated power from LED
b. d: distance from LED to point on object.

Object assumed to be centered on LED
axis.

c. D: distance from point on object to PIN
sensor.

d. <p: polar coordinate angle spanning object
e. r: polar coordinate radius spanning object
f. RDiode: radius of illumination of LED at

distance h.
g. 0: angle from LED to point on object.
h. *: angle from point on object to PIN sensor.

2) Term: (Po/27d 2)x(l+cos(7xr(+)/RDiode))cos(4) :
Led illumination profile across the object. Includes
the inverse square (1/d2) and the loss due to
glancing angle of incidence, cos(+).

3) cos(O): Lambertian reflection.
4) l/D 2: Inverse square loss from point source on object

to PIN diode.
5) r dr d(p: polar differential area term on object.

From this model we can make an accurate reciprocal
polynomial fit for human sized objects (1.5m x 0.5m),
including the diode radiation profile for spatial angle
dependence:

(A.1)A,(r)= +)(co .; ) ,r 2 +ar+b

where AO=7.125e-09, a=-0.95, and b=3.1.

We can also generate a piecewise power law function for
ease of analysis within the piecewise regions.
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A,(r,a)=A eif(r <r,1/r2 ,if(r<r2 ,rI/r
3 ,ir2 /r

4))e

(+ Y cos(% ;r) (A.2)

Or:
R

A,(r,a)= AO - /+ Xcos(, r) (A.3)
r

where:

R = andN =2for r < r,

R = r, andN 3for r1< r < r2;

R = ri*r2 andN = 4for r > r2.

For human sized (ellipse: 1.5m x 0.5m) objects:
Ao=0.95x10-9, r1=1.125m, r2=2.8m for a human sized object.

APPENDIX B:

We should include a brief note on the accuracy of the
small angle approximation. For the current project, angles
are small (< 220) and the approximation is well within the
expected error of the system. A more general error
bounding term can be derived from the Taylor series for the
arctangent function and results in a maximum error bound
of:

I rk
AngleError < - - . (14e)

Assuming a square law magnitude function, and
substituting for the wave number we have:

1 (2,zr
AngleError -I -- 2 . (14e)

y24 A)

The percentage error is this error divided by (14b):

2 2
pError I 1 2K-r =3.29( . . (14f)

12 A A

For an error of less than 5%, we have:

0.05 > 3.29 < > r 0.1232. (14f)

In the ISL29200 system X = 60 meters, so r < 7.38
meters. The current system is designed to operate to 2
meters, giving a great deal of margin before the small angle
approximation creates significant errors.
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Appendix B

Data

Tables B. 1 through B.4 show the least square estimate of the object parameters co, c1,

c2 and the associated error, for a range of scenes simulated for a Pulsed TOF system.

A total of 108 scenes with varying object size, shape and orientation were simulated,

each scene representing series of simulation results for a rectangular sheet whose

center is placed at a range of distances from the sensor. All scenes were simulated

using an idealized point source with uniform radiant intensity. Each scene is marked

with a 12 character "Scene Code", containing information of four parameters:

" Width: This parameters specifies the width of the rectangle. The width is

oriented along the x-axis, which is also the direction that the diode is displace

from the LED in the simulation. The scene code is in units of 0.1m, such that

a width of 1.0m would be labeled as W1O, a width of 40cm would be labeled as

W04, etc.

* Height: This parameters specifies the height of the rectangle. The height is

oriented along the y-axis, which is orthogonal to the direction the diode is

displace from the LED in the simulation. The scene code is in units of 0.1m,

such that a width of 1.Om would be labeled as HiG, a width of 40cm would be

labeled as H04, etc.

* Reflectivity: This parameter specifies the type of reflector the surface is modeled

as. R00 indicates a diffuse object, R01 indicates an off-specular surface modeled
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using the Beckmann Distribution with m = 0.1, and R05 indicates a likewise

off-specular surface modeled with m = 0.5.

Object Orientation/Tilt: This parameter specifies the angle at which the ob-

ject's surface is oriented with respect to the sensor, as well as as well the position

of the object in the field of view. This tilt is in implemented by rotating the

plane around the y-axis such that the surface normal is oriented at the sensor,

and the center of the object is at a zenith angle equal to the tilt angle. The

TOO represents tilt of 0 degrees, indicating the object is located along the z-axis,

and the surface is parallel to the emittor/detector plane. T12, T06, and T04

represent a tilt of -, , and E, respectively.
12' 6' 4epciey

Tables B.5 through B.8 show similar results for a SWM TOF system for a 5MHz

modulation frequency.
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Table B.1: Object Parametrization of Systematically Generated Scenes for Pulsed
TOF, Part 1 of 4

Scene Code cO ci c2  Error

W01HO1ROOT00 4.98E-03 -2.77E-02 9.66E-02 4.88E-04
WO2HO2ROOTOO 1.97E-02 -5.90E-02 9.57E-02 2.36E-04
W04HO4ROOTOO 7.69E-02 -1.23E-01 9.57E-02 1.47E-04
W08HO8ROOTOO 3.14E-01 -2.27E-01 9.69E-02 1.73E-04
W16H16R00T00 1.54E+00 -3.55E-01 9.84E-02 7.06E-05
W01H16R00T00 9.67E-02 9.63E-01 1.26E-01 3.32E-03
W02HO8ROOTOO 8.17E-02 5.74E-02 1.03E-01 3.76E-04
W08HO2ROOTOO 8.17E-02 5.74E-02 1.03E-01 3.76E-04
W16HO1ROOTOO 9.67E-02 9.63E-01 1.26E-01 3.32E-03
W01HO1R05TOO 1.11E-02 -6.32E-02 2.75E-02 9.90E-04
W02HO2RO5TOO 4.33E-02 -1.28E-01 2.76E-02 6.22E-04
WO4HO4RO5TOO 1.69E-01 -2.50E-01 2.79E-02 7.45E-04
W08HO8RO5TOO 8.33E-01 -4.32E-01 2.86E-02 5.31E-04
W16H16R05T00 1.41E+01 -6.OOE-01 2.93E-02 1.61E-05
WO1H16R05T00 1.62E-01 7.22E-01 3.43E-02 5.97E-03
W02HO8RO5TOO 1.79E-01 -2.12E-02 2.97E-02 5.36E-04
W08HO2RO5TOO 1.79E-01 -2.12E-02 2.97E-02 5.36E-04
W16HO1R05TOO 1.62E-01 7.22E-01 3.43E-02 5.97E-03
W01HO1RO1TOO 2.91E-01 -2.75E-01 2.58E-02 5.52E-04
WO2H02R01T00 1.68E+00 -4.54E-01 2.63E-02 1.95E-04
WO4HO4RO1TOO 7.33E+01 -5.69E-01 2.66E-02 5.92E-07
W08HO8RO1TOO 2.97E+07 -6.01E-01 2.67E-02 8.44E-18
W16H16RO1T00 -2.61E+12 -8.46E-01 2.67E-02 9.19E-25
WO1H16RO1TOO 8.15E-01 -2.22E-01 2.65E-02 1.11E-04
WO2H08R01T00 3.50E+00 -4.54E-01 2.65E-02 4.05E-05
W08HO2RO1TOO 3.50E+00 -4.54E-01 2.65E-02 4.05E-05
W16HO1RO1TOO 8.15E-01 -2.22E-01 2.65E-02 1.11E-04
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Table B.2: Object Parametrization of Systematically Generated Scenes for Pulsed
TOF, Part 2 of 4

Scene Code co Ci C2 Error
WO1HO1ROOT12
WO2HO2ROOT12
W04HO4ROOT12
W08HO8ROOT12
W16H16R00T12
W01H16R00T12
W02HO8ROOT12
W08HO2ROOT12
W16HO1ROOT12
W01HO1R05T12
WO2HO2RO5T12
WO4HO4RO5T12
W08HO8RO5T12
W16H16R05T12
W01H16R05T12
WO2HO8RO5T12
W08HO2RO5T12
W16HO1R05T12
W01HO1RO1T12
WO2H02R01T12
WO4HO4RO1T12
W08H08R01T12
W16H16R01T12
W01H16R01T12
W02HO8RO1T12
W08HO2RO1T12
W16HO1ROIT12

4.93E-03
1.94E-02
7.62E-02
3.12E-01
1.55E+00
8.87E-02
8.11E-02
5.96E-02
1.50E-02
1.11E-02
4.25E-02
1.68E-01
8.41E-01
1.63E+01
1.54E-01
1.77E-01
1.30E-01
3.35E-02
2.95E-01
1.72E+00
9.39E+01
5.82E+07
-7.67E+12
8.18E-01
3.77E+00
3.35E+00
6.95E-01

-2.71E-02
-6.OOE-02
-1.22E-01
-2.25E-01
-3.48E-01
8.42E-01
5.48E-02
2.47E-03
7.15E-03

-6.22E-02
-1.28E-01
-2.49E-01
-4.27E-01
-5.85E-01
6.52E-01
-2.45E-02
-8.13E-02
-3.29E-02
-2.70E-01
-4.42E-01
-5.53E-01
-5.82E-01
-1.11E+00
-2.23E-01
-4.34E-01
-4.50E-01
-2.47E-01

9.36E-02
9.22E-02
9.26E-02
9.37E-02
9.51E-02
1.20E-01
9.96E-02
9.81E-02
9.98E-02
2.66E-02
2.66E-02
2.70E-02
2.77E-02
2.83E-02
3.28E-02
2.87E-02
2.82E-02
2.85E-02
2.51E-02
2.55E-02
2.58E-02
2.59E-02
2.59E-02
2.57E-02
2.57E-02
2.57E-02
2.56E-02

6.09E-04
1.90E-04
1.38E-04
1.82E-04
6.83E-05
3.18E-03
3.84E-04
2.19E-04
1.87E-04
1.16E-03
6.25E-04
7.41E-04
5.17E-04
1.16E-05
5.74E-03
5.44E-04
2.56E-04
3.14E-04
4.82E-04
1.61E-04
3.40E-07
1.95E-18
1.27E-25
1.55E-04
2.85E-05
4.58E-05
6.39E-05
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Table B.3: Object Parametrization of Systematically Generated Scenes for Pulsed
TOF, Part 3 of 4

Scene Code CO ci C2 Error
W01HO1ROOT06 4.77E-03 -2.71E-02 8.39E-02 6.26E-04
WO2HO2ROOT06 1.85E-02 -6.10E-02 8.28E-02 1.72E-04
W04HO4ROOT06 7.31E-02 -1.18E-01 8.37E-02 1.66E-04
W08HO8ROOT06 3.06E-01 -2.10E-01 8.49E-02 1.88E-04
W16H16R00T06 1.60E+00 -3.02E-01 8.62E-02 4.39E-05
WO1H16ROOT06 8.60E-02 7.90E-01 1.06E-01 3.37E-03
WO2HO8ROOT06 8.04E-02 5.35E-02 8.96E-02 2.99E-04
W08H02ROOT06 3.03E-02 -5.94E-02 8.45E-02 3.41E-05
W16HO1ROOT06 7.73E-03 -2.78E-02 8.48E-02 2.06E-04
W01HOlR05T06 1.07E-02 -6.26E-02 2.38E-02 1.06E-03
W02H02R05T06 4.03E-02 -1.30E-01 2.38E-02 6.63E-04
W04H04R05T06 1.63E-01 -2.44E-01 2.42E-02 8.05E-04
W08H08R05T06 8.89E-01 -4.08E-01 2.49E-02 4.37E-04
W16H16R05T06 2.80E+01 -5.38E-01 2.54E-02 3.26E-06
WO1H16RO5TO6 1.38E-01 5.26E-01 2.89E-02 5.41E-03
W02H08R05T06 1.73E-01 -3.48E-02 2.56E-02 4.82E-04
W08H02R05T06 6.64E-02 -1.40E-01 2.43E-02 2.82E-04
W16H01R05T06 1.72E-02 -6.99E-02 2.41E-02 3.45E-04
W01HO1R01TO6 2.81E-01 -2.71E-01 2.24E-02 6.03E-04
W02HO2RO1T06 1.80E+00 -4.25E-01 2.29E-02 1.66E-04
W04HO4RO1T06 2.11E+02 -5.07E-01 2.32E-02 6.08E-08
W08HO8RO1T06 3.90E+09 -5.23E-01 2.32E-02 2.83E-22
W16H16R01T06 9.73E+1 1 -9.04E-01 2.32E-02 1.32E-25
WO1H16RO1T06 8.24E-01 -2.22E-01 2.30E-02 1.55E-04
W02HO8RO1T06 3.95E+00 -4.25E-01 2.31E-02 3.28E-05
W08H02R01T06 3.17E+00 -4.30E-01 2.30E-02 5.57E-05
W16HO1R01TO6 4.47E-01 -2.90E-01 2.27E-02 3.64E-04
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Table B.4: Object Parametrization of Systematically Generated Scenes for Pulsed
TOF, Part 4 of 4

Scene Code co ci C2 Error
W01HO1ROOT04 4.38E-03 -2.44E-02 7.11 E-02 7.16E-04
WO2HO2ROOT04 1.72E-02 -5.17E-02 7.09E-02 2.18E-04
WO4HO4ROOT04 6.84E-02 -1.00E-01 7.14E-02 1.29E-04
W08HO8ROOT04 2.95E-01 -1.71E-01 7.23E-02 1.OOE-04
W16H16R00T04 1.53E+00 -2.39E-01 7.31E-02 1.81E-05
W01H16R00T04 7.90E-02 7.13E-01 8.74E-02 3.06E-03
W02H08R00T04 7.89E-02 7.39E-02 7.59E-02 2.74E-04
W08HO2ROOT04 2.09E-02 -5.53E-02 7.11 E-02 1.97E-04
W16HO1ROOT04 5.28E-03 -2.75E-02 7.09E-02 4.52E-04
W01H01R05T04 1.01E-02 -6.14E-02 1.94E-02 1.25E-03
W02H02R05T04 3.88E-02 -1.24E-01 1.95E-02 7.77E-04
W04H04R05T04 1.61E-01 -2.31E-01 1.99E-02 7.84E-04
W08H08R05T04 1.1 OE+00 -3.69E-01 2.05E-02 2.33E-04
W16H16R05T04 1.27E+02 -4.53E-01 2.08E-02 1.01E-07
WO1H16RO5TO4 1.12E-01 3.39E-01 2.29E-02 4.69E-03
W02H08R05T04 1.67E-01 -4.71E-02 2.09E-02 4.72E-04
W08H02R05T04 4.72E-02 -1.33E-01 1.96E-02 7.11E-04
W16HO1R05TO4 1.21E-02 -6.77E-02 1.94E-02 8.26E-04
WO1HO1RO1T04 2.83E-01 -2.55E-01 1.84E-02 5.90E-04
W02H02R01T04 3.08E+00 -3.65E-01 1.88E-02 3.24E-05
WO4HO4RO1T04 2.97E+03 -4.18E-01 1.89E-02 1.53E-10
W08HO8RO1T04 5.87E+ 11 -7.74E-01 1.89E-02 2.20E-25
W16H16RO1T04 5.77E+11 -7.69E-01 1.89E-02 2.21E-25
W01H16R01T04 7.82E-01 -2.43E-01 1.88E-02 6.52E-05
W02H08R01T04 6.66E+00 -3.75E-01 1.89E-02 8.86E-06
W08HO2RO1T04 4.60E+00 -3.65E-01 1.89E-02 1.39E-05
W16HO1RO1T04 3.49E-01 -2.64E-01 1.85E-02 4.93E-04

Average 6.81E-4
Max 5.97E-3
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Table B.5: Object Parametrization of Systematically Generated Scenes for SWM
TOF, Part 1 of 4

Scene Code CO ci C2 Error
W01HO1ROOT00 4.98E-03 -2.77E-02 9.66E-02 4.88E-04
W02HO2ROOTOO 1.97E-02 -5.90E-02 9.57E-02 2.36E-04
W04HO4ROOTOO 7.69E-02 -1.23E-01 9.57E-02 1.47E-04
W08HO8ROOTOO 3.14E-01 -2.27E-01 9.69E-02 1.73E-04
W16H16R00T00 1.54E+00 -3.55E-01 9.84E-02 7.06E-05
W01H16R00T00 9.67E-02 9.63E-01 1.26E-01 3.32E-03
W02HO8ROOTOO 8.17E-02 5.74E-02 1.03E-01 3.76E-04
W08HO2ROOTOO 8.17E-02 5.74E-02 1.03E-01 3.76E-04
W16HO1ROOTOO 9.67E-02 9.63E-01 1.26E-01 3.32E-03
W01HO1R05TOO 1.11E-02 -6.32E-02 2.75E-02 9.90E-04
WO2HO2RO5TOO 4.33E-02 -1.28E-01 2.76E-02 6.22E-04
WO4HO4RO5TOO 1.69E-01 -2.50E-01 2.79E-02 7.45E-04
W08HO8RO5TOO 8.33E-01 -4.32E-01 2.86E-02 5.31E-04
W16H16R05T00 1.41E+01 -6.OOE-01 2.93E-02 1.61E-05
W01H16R05T00 1.62E-01 7.22E-01 3.43E-02 5.97E-03
W02HO8RO5TOO 1.79E-01 -2.12E-02 2.97E-02 5.36E-04
W08HO2RO5TOO 1.79E-01 -2.12E-02 2.97E-02 5.36E-04
W16H01R05T00 1.62E-01 7.22E-01 3.43E-02 5.97E-03
W01HO1RO1T00 2.91E-01 -2.75E-01 2.58E-02 5.52E-04
W02H02R01T00 1.68E+00 -4.54E-01 2.63E-02 1.95E-04
W04HO4RO1TOO 7.33E+01 -5.69E-01 2.66E-02 5.92E-07
W08HO8RO1TOO 2.70E+07 -5.46E-01 2.67E-02 8.44E- 18
W16H16R01T00 2.94E+08 1.25E-06 2.67E-02 1.51E-29
WO1H16RO1TOO 8.15E-01 -2.22E-01 2.65E-02 1.11E-04
W02H08R01T00 3.50E+00 -4.54E-01 2.65E-02 4.05E-05
W08H02R01T00 3.50E+00 -4.54E-01 2.65E-02 4.05E-05
W16HO1R01TOO 8.15E-01 -2.22E-01 2.65E-02 1.11E-04
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Table B.6: Object Parametrization of
TOF, Part 2 of 4

W01HO1ROOT12 5.15E-03 -2.91E-02 9.28E-02 3.64E-04
WO2HO2ROOT12 2.03E-02 -6.19E-02 9.21E-02 1.51E-04
WO4HO4ROOT12 7.96E-02 -1.24E-01 9.26E-02 1.41E-04
W08H08ROOT12 3.28E-01 -2.27E-01 9.37E-02 1.72E-04
W16H16R00T12 1.64E+00 -3.49E-01 9.52E-02 6.14E-05
W01H16R00T12 9.08E-02 8.12E-01 1.19E-01 3.20E-03
W02HO8ROOT12 8.35E-02 4.15E-02 9.90E-02 3.03E-04
W08H02ROOT12 8.40E-02 6.40E-02 9.99E-02 4.10E-04
W16HO1ROOT12 9.07E-02 8.69E-01 1.20E-01 3.21E-03
W01HO1R05T12 1. 15E-02 -6.52E-02 2.64E-02 8.22E-04
W02H02R05T12 4.43E-02 -1.32E-01 2.66E-02 5.72E-04
W04H04R05T12 1.76E-01 -2.53E-01 2.70E-02 7.43E-04
W08H08R05T12 8.98E-01 -4.31E-01 2.77E-02 4.73E-04
W16H16R05T12 1.87E+01 -5.87E-01 2.83E-02 8.93E-06
W01H16R05T12 1.57E-01 6.23E-01 3.26E-02 5.69E-03
W02H08R05T12 1.81E-01 -4.33E-02 2.86E-02 4.03E-04
W08H02R05T12 1.83E-01 -1.61E-02 2.87E-02 5.81E-04
W16H01R05T12 1.55E-01 6.64E-01 3.29E-02 5.80E-03
W01H01R01T12 2.98E-01 -2.81E-01 2.50E-02 5.25E-04
W02H02R01T12 1.80E+00 -4.50E-01 2.55E-02 1.71E-04
W04HO4RO1T12 1.09E+02 -5.58E-01 2.58E-02 2.92E-07
W08H08R01T12 7.22E+07 -4.39E-01 2.59E-02 7.25E-19
W16H16R01T12 2.94E+08 -1.29E-06 2.59E-02 5.16E-30
W01H16R01T12 8.26E-01 -2.47E-01 2.56E-02 9.96E-05
WO2H08R01T12 4.03E+00 -4.51E-01 2.57E-02 3.08E-05
W08H02RO1T12 3.51E+00 -4.49E-01 2.57E-02 4.18E-05
W16H01R01T12 8.07E-01 -2.24E-01 2.57E-02 9.09E-05
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Table B.7: Object Parametrization of
TOF, Part 3 of 4

WoiHolROOT06
WO2HO2ROOT06
WO4HO4ROOT06
W08HO8ROOT06
W16H16R00T06
WO1H16ROOT06
WO2HO8ROOT06
W08H02ROOT06
W16HO1ROOT06
W01HO1R05TO6
W02H02R05T06
W04H04R05T06
W08H08R05T06
W16H16R05T06
WO1H16RO5TO6
W02H08R05T06
W08H02R05T06
W16H01R05T06
W01HO1RO1T06
W02HO2RO1T06
W04HO4RO1T06
W08H08R01T06
W16H16R01T06
WO1H16RO1T06
W02HO8RO1T06
W08H02RO1T06
W16HO1RO1T06

5.72E-03
2.24E-02
8.86E-02
3.75E-01

2.OOE+00
9.47E-02
9.25E-02
9.32E-02
9.28E-02
1.27E-02
4.91E-02
2.OOE-01
1.18E+00
4.89E+01
1.51E-01
2.OOE-01
1.97E-01
1.41E-01
3.25E-01

2.65E+00
4.13E+02
2.86E+08
2.94E+08
9.36E-01
7.24E+00
4.22E+00
6.88E-01

-3.06E-02
-6.31E-02
-1.24E-01
-2.18E-01
-3.07E-01
6.57E-01
1.91E-02
9.94E-02
8.76E-01

-6.95E-02
-1.37E-01
-2.59E-01
-4.22E-01
-5.41E-01
4.02E-01
-8.34E-02
6.37E-03
5.43E-01
-2.97E-01
-4.30E-01
-5.06E-01
-1 .38E-02
1.71E-06
-2.96E-01
-4.52E-01
-4.20E-01
-2.65E-01

8.34E-02
8.34E-02
8.40E-02
8.51E-02
8.63E-02
1.03E-01
8.84E-02
9.08E-02
1.07E-01
2.37E-02
2.39E-02
2.43E-02
2.50E-02
2.54E-02
2.81E-02
2.54E-02
2.59E-02
2.89E-02
2.24E-02
2.30E-02
2.32E-02
2.32E-02
2.32E-02
2.29E-02
2.31E-02
2.31E-02
2.29E-02

1.85E-03
1.42E-04
1.53E-04
1.45E-04
2.84E-05
2.99E-03
1.77E-04
6.14E-04
3.70E-03
2.14E-03
6.OOE-04
7.26E-04
2.97E-04
1.12E-06
4.43E-03
2.55E-04
8.10E-04
5.59E-03
1.53E-03
7.80E-05
1.50E-08
3.71E-23
9.78E-30
8.18E-05
1.59E-05
2.37E-05
1.12E-04
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Table B.8: Object Parametrization of Systematically Generated Scenes for SWM
TOF, Part 4 of 4

W01HO1ROOT04
W02HO2ROOT04
WO4HO4ROOT04
W08HO8ROOT04
W16H16R00T04
W01H16R00T04
WO2HO8ROOT04
W08HO2ROOT04
W16HO1ROOT04
W01H01R05T04
W02H02R05T04
W04H04R05T04
W08H08R05T04
W16H16R05T04
WO1H16RO5TO4
W02H08R05T04
W08H02R05T04
W16HO1R05TO4
W01H01R01T04
WO2H02R01T04
W04H04R01T04
W08HO8RO1T04
W16H16R01T04
WO1H16RO1T04
W02HO8RO1T04
W08HO2RO1T04
W16HO1RO1T04

6.66E-03
2.65E-02
1.06E-01
4.64E-01
2.47E+00
1.03E-01
1.1OE-01
1.03E-01
8.49E-02
1.51E-02
6.OOE-02
2.63E-01

2.22E+00
3.14E+02
1.49E-01
2.43E-01
1.99E-01
1.11E-01
4.22E-01
6.15E+00
6.19E+03
2.94E+08
2.94E+08
1.70E+00
7.25E+01
6.72E+00
6.23E-01

-3.03E-02
-5.82E-02
-1.11E-01
-1.86E-01
-2.58E-01
4.86E-01
-8.43E-03
1.36E-01
7.42E-01
-7.50E-02
-1.43E-01
-2.56E-01
-3.81E-01
-4.52E-01
1.63E-01

-1.53E-01
8.88E-04
3.28E-01
-2.88E-01
-3.73E-01
-4.19E-01
4.54E-07
3.95E-07
-3.24E-01
-4.04E-01
-3.70E-01
-2.71E-01

7.08E-02
7.14E-02
7.19E-02
7.27E-02
7.33E-02
8.22E-02
7.39E-02
7.71E-02
8.82E-02
1.94E-02
1.97E-02
2.01E-02
2.06E-02
2.08E-02
2.18E-02
2.05E-02
2.11E-02
2.28E-02
1.85E-02
1.89E-02
1.89E-02
1.89E-02
1.89E-02
1.88E-02
1.89E-02
1.89E-02
1.87E-02

8.73E-04
5.99E-05
7.69E-05
5.13E-05
9.75E-06
2.24E-03
2.88E-05
8.99E-04
4.OOE-03
1.10E-03
4.96E-04
5.01E-04
6.93E-05
1.67E-08
2.73E-03
7.52E-05
9.15E-04
4.62E-03
7.29E-04
9.79E-06
3.69E-11
1.48E-29
1.47E-29
4.97E-05
1.55E-07
7.55E-06
2.84E-04
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