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Abstract

NASA's Mars Sample Return (MSR) mission involves many challenging operations. The
current mission scenario utilizes a small Orbiting Sample (OS) satellite, launched from
the surface of Mars, which will rendezvous with an Earth Return Vehicle (ERV) in
Martian orbit. One of the highest-risk operations is the guidance of the OS into the
capture mechanism on the ERV. Since the OS will most likely be passive (with no
attitude or propulsion control), the ERV must determine the OS' location in Martian
orbit, and maneuver itself to capture it. The objective of this project is to design and
develop a vision-based tracking and capture system using the SPHERES test bed. The
proposed Mars Orbital Sample Return (MOSR) system uses a SPHERES satellite to
emulate the combined motion of the capture satellite and the OS. The key elements of
the system are: (1) a modified SPHERES satellite with a white shell to match the
optical properties of the OS; (2) a capture mechanism; and (3) an optical tracking
system. The system uses cameras mounted on the capture mechanism to optically track
the OS. Software on the capture mechanism computes the likely maneuver commands
for a capture satellite, which are then translated into relative motions to be performed
by a SPHERES satellite, acting as the OS.

The focus of this thesis is on the vision-based algorithms and techniques used to ensure
accurate 3-DOF ranging of the OS. The requirements of the OS tracking system are
severe and require robust tracking performance in challenging illumination conditions
without the use of any fiduciary markers(on the OS) to assist as a point of reference. A
brief literature survey of common machine vision techniques for generic target tracking
(in aerospace and other fields) is presented. In the proposed OS tracking system, two
different methods are used for tracking and ranging of the OS. A Hough Transform
algorithm is used to ensure accurate tracking of the OS in the 'near' field within all
possible illumination regimes. A Luminosity based tracking algorithm is used to track
the OS in the 'far' and 'near' field. Results from testing at MIT's Flat Floor Facility are
presented to show the performance of these algorithms in an integrated Kalman Filter.
Lastly, a new Model Predictive controller design is proposed for the fuel-optimal capture
of the OS. Implementation and testing of the controller in the SPHERES satellite is
presented and the comparisons to the SPHERES PD control system are revealed to
highlight its strengths.

Thesis Supervisor: David W. Miller & Alvar Saenz-Otero
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Chapter 1

1 Introduction

1.1 Motivation

Ever since the beginning of planetary exploration on Mars, there's been significant
interest in a Sample Return Mission. A Mars Sample Return Mission (MSR) would be a
spaceflight mission to collect rock and dust samples from the Martian surface and return
it to Earth. It is widely considered to be a very powerful form of exploration since the
analysis of geological samples is free from the typical spacecraft constraints such as
time, budget, mass and volume. According to R.B Hargraves[1], it is considered to be

the "holy grail" of robotic planetary mission because of its high scientific return.

However, due its high system complexity (and high financial needs), all MSR-type
missions have not passed any planning phases. The goal of this thesis is to demonstrate
a control system for the rendezvous and capture of a passive Martian sample in Martian
orbit. This is considered to be a high-risk maneuver since rendezvous and capture of a
completely passive object has not been attempted past Earth orbit.

1.2 Base architecture

For the purposes of this thesis, the base sample return architecture used is that of
Mattingly et. al[2]. This architecture consists of a small passive Orbiting Sample
satellite (OS) and chaser satellite. The OS is launched from Martian surface and
contains Martian geological samples recovered by a caching rover. The OS is completely
passive during the entire rendezvous and capture process and it is possibly fitted with a
radio beacon for long-range tracking. The chaser satellite uses a visual band camera

system for final rendezvous and capture and 'the need for risk mitigation in this system

is critical'[3]. This is the primary focus of this thesis.
13



Figure 1 shows an artist's rendition of this architecture.

Figure 1: Artist's rendition of Mars sample launching from MSR lander; (right) MSR
Orbiter performing OS target search and acquisition in Mars orbit

1.3 Previous work on vision based rendezvous navigation in space

Vision based navigation for rendezvous and capture has not been well used in spacecraft

in the past. The first major use of machine vision for rendezvous was DARPA's Orbital
express[4]. The project hoped to demonstrate several satellite servicing operations and
technologies including rendezvous, proximity operations, station keeping, capture and
docking. The Advanced Video Guidance sensor was used for docking between two
spacecraft. This sensor consisted of a laser diode to illuminate a reflective visual target
that was processed by vision algorithms on board the spacecraft. A relative state
estimate consisting of relative spacecraft attitudes and positions was computed by the
on-board vision system. Figure 2 shows the two spacecraft used in the Orbital Express
mission.

14



Figure 2: DARPA's Orbital Express showing both spacecraft ASTRO and
NEXTSAT[4]

One of the more recent missions to exhibit vision based spacecraft navigation was
the Hayabusa mission by the Japanese Aerospace Exploration Agency(JAXA) which
performed a sample return mission of the Itokawa asteroid[5]. The Hayabusa spacecraft
attempted multiple vision based landings on the asteroid to gather samples on the
surface. However, due to the unknown local terrain geometry and the visual appearance
of the asteroid, many of the landings were not ideal[5]. The spacecraft navigated to the
landing sites by tracking features on the surface of the asteroid. Figure 3 shows an

artist's rendition of the Hayabusa satellite attempting to land on the surface of the
asteroid.

15



Figure 3: Artist's rendition of the Hayabusa spacecraft landing on the Itokawa

asteroid

A small yet significant application of optical navigation was done by the Mars
Reconnaissance Orbiter (MRO). From 30 days to 2 days prior to Mars Orbit Insertion,
the spacecraft collected a series of images of Mars' moons Phobos and Deimos. By
comparing the observed position of the moons to their predicted positions relative to the
background stars, the mission team was able to accurately determine the position of the
orbiter in relation to Mars. While not needed by Mars Reconnaissance Orbiter to
navigate to Mars, the data from this experiment demonstrated that the technique could
be used by future spacecraft to ensure their accurate arrival. Adler et al, have also
proposed using such a system for an MSR mission[6].

The common feature between both the missions mentioned above was the tracking of
fiduciary markers (Orbital Express) or the use of known features (Hayabusa and MRO).
Both of these navigation techniques track individual known reference points and use this
to update state estimates. However, the use of generic shape detection algorithms, where

the only assumption made is that of the target's outer shape has not been done in
16



spacecraft. This project attempts to show vision based rendezvous and docking using

such generic vision techniques. Two such techniques used are: (1) The circular Hough

Transform and (2) astronomical photometry. This also allows the use of a single camera

instead of using a stereoscopic (two or more cameras) system.

1.4 The Hough Transform

1.4.1 Hough Transform Theory

The Hough transform is a feature extraction technique used in image analysis and

machine vision. The purpose of the technique is to find imperfect instances of objects

within a certain class of shapes by a voting procedure.

The Hough transform was invented by Richard Duda and Peter Hart[7]. There is

some debate as to who the real inventor is as a patent was filed shortly(or around the

same time as the publication of the paper by Duda and Hart) by Paul Hough[8] who the

algorithm is named after.

The simplest case of Hough transform is the linear transform for detecting straight

lines. In the image space, a line can be described as y = mx + b where the parameter m

is the slope of the line, and b is the y-intercept. In the Hough transform, however, this

can be simplified further using polar coordinates, as shown in Figure 4 and Equation 1

and proposed by Duda[7].

y

r

X

Figure 4: Polar transform as used by Line Hough transform
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xcos6 + ycosO = r (1)

Extending this to discretized points(xi, y) on an image, it is easy to see that the each

coordinate pair now transforms into sinusoidal curves in the 0 - r plane as defined by

Equation 2:

p = xjcosO + y1 COS6 (2)

One can also see that for a collinear set of points (xi, y) and (xj, yj); the curves

corresponding to these points intersect at a unique point (8, r.). Therefore, the problem

for finding collinear points is converted to finding concurrent curves. This can be done

quickly computationally by any equation solver.

This concept can also be extended to the circle as proposed by Kierkegaard et. al [91.
Here the parametric representation of the equation of a circle can be written in the form

as given in Equation 3.

(x - a)2 + (y - b)2 = C2 (3)

For any arbitrary point (xi, yi), this can be transformed into a surface in three

dimensional space with the dimensions being (a,b,c) as defined in Equation 4:

(xi - a) 2 + (y - b)2 = C2 (4)

Each sample point (xi, y) is now converted into a right circular cone in the (a,b,c)

parameter space. If multiple cones intersect at one point (a0,b,,c0), then these sample

points now exist on a circle defined by the parameters ao,bo, and co.

The above process is repeated over all the sample points in an image and votes are

gathered for each set of parameters (ao,bo,c). This method is extremely computationally

intensive and has a memory requirement on the order of O(m n c) where mn is the total

number of sample points(i.e. image size) and c is the number of possible radii. This

memory requirement is needed for the accumulator array where the columns of the

18



accumulator array are the possible radii in the image and each row is the unique set of

(a,b) points for the coordinate of the centers.

However, the computational burden of this method can be significantly lower if the
radius c is known a priori. This reduces the 2-D accumulator array into a single column

vector for a specific c. or range of radii (ci - c1). Thus, if the radius is known a priori,
the algorithm's memory requirement reduces to O(mn) time, since fewer cells in the
accumulator array have to be updated for each sample point. Figure 5 and shows a
purely graphical representation of the circular Hough transform.

Figure 5: Circular Hough Transform

The process described above only applies to certain simple shapes like lines and
curvilinear shapes like circles and ellipses. However, this can be extended to detect
shapes in any orientation as proposed by Ballard et. al [10]. This key advancement in
the theory shows its possible use in detecting generic objects in a space environment.

1.4.2 Applications of Hough Transform

Uses of the Hough Transform are spread over a variety of fields but their use in
aerospace applications is very limited.

One of the most widespread uses of the Hough transform is in the medical industry.
Zana et. Al [11] proposed using the Hough transform to detect blood vessels and lesions
in retinal scans. This method is used on multiple retinal scans at different orientations
and common blood vessels and lesions are marked in each so that physicians can follow

19



the progress of a certain disease or general retinal health over time. This also improves
the identification of some lesions and allows easy comparison of images gathered from
different sources.

Another use of the Hough transform is in traffic monitoring. As suggested by Kamat et.
al[12], the Hough transform is used for the general problem of detection of vehicle
license plates from road scenes for the purpose of vehicle tracking. It describes an
algorithm for detecting a license plate from a road scene acquired by a CCD camera
using image processing techniques such as the Hough transform for line detection (the
shape of the license plates is defined by lines). Here the Hough transform is more
memory efficient since the dimensions of the license plates are known.

Lastly, the use of the Hough transform is also fairly common in the geological industry
for detecting features in terrain. As proposed by Karnieli et. al[13], the Hough transform
is used for detecting geological lineaments in satellite images and scanned aerial
photographs.

As previously mentioned, the use of the Hough transform is severely limited in the
aerospace industry. Only one application is known at this time. Casonato et. al[14]
proposed an automatic trajectory monitoring system designed for the rendezvous
between the automatic transfer vehicle (ATV) and the International Space Station
(ISS). During the final approach phase, a TV camera on the ISS currently provides
images of ATV visual targets to be used by ISS crew for visual monitoring. The
proposed monitoring system, based on the Hough transform is applied to these TV
images of the approach, and is intended to autonomously and automatically determine
relative ATV-ISS position and attitude. Artificial intelligence techniques for edge
detection, Hough transform and pattern matching are used to implement a recognition
algorithm, able to fast and accurately indicate ATV visual targets position and
orientation with respect to ISS. Those values are then processed in order to calculate
the full set of relative ATV navigation data. However, in this case, the Hough transform
is used only in a supervisory role and not as part of a vision based control system. It is
also important to note that the circular Hough transform is used to detect fiduciary
markers (in the shape of circles) that already exist on the outer facade of the ISS
(shown in Figure 6).
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Ipp,

Figure 6: Circular fiduciary markers on the ISS

1.5 Astronomical photometry

1.5.1 Astronomical Photometry theory

Photometry is an astronomical technique concerned with measuring the flux, or

intensity of an astronomical object's electromagnetic radiation. In this case, the

spectrum of electromagnetic radiation is limited to the visible light spectrum.

When using a CCD camera to conduct photometry, there are a number of possible

ways to extract a photometric measurement from the raw CCD image. The observed

signal from an object will typically be smeared (convolved) over many pixels. When

obtaining photometry for a point source the goal is to add up all the light from the

point source and subtract the light due to the background. This means that the

apparent brightness or luminosity (F) of a point source in an image is a simple sum of

pixel brightness B(xi,yi) of all the pixels across the point source(with dimensions m, n

pixels in each direction) as shown in Equation 5.

21



m~n (5)
Fpoint = B(xi, yi)

i=oj=

The pixel brightness B(xi,yi) is the CCD value for that pixel in a grayscale

(monochrome) camera and is the average across all three red, green, blue channels for a
color camera as shown in Equation 6 and Equation 7.

B(xi, yi) = CCD(xi,yi) for monochrome CCDs (6)

B (xi, yi) (7)

RED (xi,yi) + BLUE(xi,yi) + GREEN (xi,yj) for color (RGB) CCDs
3

The flux density or apparent brightness of a point source can also be given by the
flux density relationship in Equation 8:

L (8)
Fpit= 72

Here, L is the true luminosity of the source and r is the distance away from the
source.

In this application, the target is not a point source. For Equation 8 to apply, each
pixel is regarded as a point source. Therefore, the apparent luminosity FEtaet is simply
the sum of the apparent luminosity over all points on the target as shown in Equation
9.

Ftarget Fpoin (9)
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It is interesting to note, that one can calculate the distance away from the target
using this method as shown in Equation 10.

L (10)L
r = t_FTaryet

However, the true luminosity L needs to be known first. In this application, the true
luminosity is pre-calculated from a previous state estimate given to the algorithm from
another ranging algorithm (such as the radio beacon described in Section 1.2). This
algorithm also shows an increased sensitivity to depth measurements since the distance
to the target given by r scales quadratically to the flux density (or apparent brightness)
of the target.

1.5.2 Applications of Photometry

As mentioned before, photometry is limited to the field of astronomy. The
preeminent source on the subject is Astronomical Photometry: A guide by Christiaan
Sterken and Jean Manfroid[15].

The first major application to ranging was by Shapley et. al[16] who used astronomical
photometry to measure the distance to star clusters. This was done by measuring the
apparent brightness of Cepheid stars whose true luminosities are known. The use of
photometry in a spacecraft application is limited to one. Reidel et. al[17] proposed using
such a ranging technique for the Mars CNES Premier Orbiter mission but this has not
been tested in hardware.

1.6 Model Predictive Control (MPC)

An equally important role is played by the control algorithms in this system.
Sections 1.4 to 1.5 presented the vision algorithms used while Section 1.6 will describe
the control system and its applications.
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1.6.1 Model Predictive Control Theory

Model predictive controllers rely on dynamic models of the process, most often linear
empirical models obtained by system identification. The main advantage of MPC is that
it allows the current timeslot to be optimized, while keeping future timeslots in account.
This is achieved by optimizing a finite time-horizon, but only implementing the current
timeslot. MPC has the ability to anticipate future events and can take control actions
accordingly. PID controllers do not have this predictive ability. MPC is based on an
iterative, finite horizon optimization of a plant model. At time t the current plant state
is sampled and a cost minimizing control strategy is computed (via a numerical
minimization algorithm) for a relatively short time horizon in the future, (t - t+T). An
online or on-the-fly calculation is used to explore state trajectories that emanate from
the current state and find a cost-minimizing control strategy until time t+T. Only the
first step of the control strategy is implemented, then the plant state is sampled again
and the calculations are repeated starting from the now current state, yielding a new
control and new predicted state path. The prediction horizon keeps being shifted
forward. Figure 7 shows a graphical representation of MPC and the receding horizon
control strategy.

past future

Predicted outputs y(t+kl t)

( Manipula,,ted u(t+k)
Inputs

t t+ I t+NV t+Nn
input horizon

output horizon

Figure 7: Graphical representation of MPC[18]
Receding horizon strategy: only the first one of the computed moves u(t) is

implemented.
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MPC also maintains a history of past control actions. This history is used in a cost
optimization to optimize a certain parameter of the control system. In this application,
the cost function relates directly to thruster fuel efficiency. For details about this

system, the reader is advised to refer to [19].

1.6.2 Applications of Model Predictive Control

As briefly mentioned in Section 1.6, MPC is commonly used in the chemical and oil

industries.

Though the ideas of receding horizon control and model predictive control can be

traced back to the 1960s[20], interest in this field started to develop in the 1980s after

dynamic matrix control (DMC) [21]. DMC was conceived to tackle the multivariable

constrained control problems typical for the oil and chemical industries and it had a

tremendous impact in those industries.

In spacecraft applications, MPC has been proposed and theorized before. However,
no hardware applications are known at this point. Manikonda et. al[22] proposed an

application of a model predictive control-based approach to the design of a controller for

formation keeping and formation attitude control for the NASA DS3 mission[23].

Richards et. al [24] presented an MPC controller for a spacecraft rendezvous approach

to a radial separation from a target. Both Richards and Manikonda used MPC to reduce

thruster fuel or power usage. Lavaei et. al[25]further extended the use of MPC to

multiple cooperative spacecraft with communication constraints.

1.7 Outline of thesis

The work presented in this thesis is part of an overall research initiative to develop

computer vision based rendezvous and docking algorithms for an MSR-type mission.

This thesis presents the three steps in this program: the development of a research

testbed to be tested onboard the ISS, the verification of this research testbed through

the implementation of a vision tracking algorithms (based on the Hough transform and

astronomical photometry), and the preliminary analysis of an MPC based controller for

rendezvous and capture.
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Chapter 2 presents the design and development of a testbed for computer vision
based navigation onboard the ISS. This testbed utilizes the Synchronize Position Hold
Engage Re-orient Experimental Satellites (SPHERES) along with new hardware such as
cameras and lights. This hardware was developed in a partnership with Aurora Flight
Sciences as part of the Mars Orbital Sample Return Rendezvous and Docking of Orbital
Sample (MOSR) program.

Chapter 3 discusses the performance and analysis of the machine vision algorithms
outlined in Section 1.4 and Section 1.5. Experimental results using these algorithms are
shown along with suggested improvements and integration into a Kalman filter. An
approach to a linearly coupled Kalman filter is proposed and experimental comparisons
with the SPHERES Global Metrology system (used as ground truth) are presented.

Chapter 4 presents the Model Predictive Controller. Simulation and experimental
results are shown to compare its performance with classic PID controllers.

Chapter 5 summaries the conclusions and contributions of this thesis and discusses
future work.
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Chapter 2

2 The MOSR RDOS System

2.1 Introduction

The current MSR mission scenario utilizes a small Orbiting Sample (OS) satellite,
launched from the surface of Mars, which will rendezvous with a chaser spacecraft. The
guidance of the OS into the capture mechanism on the chaser satellite is critical. Since

the OS will most likely be passive-possibly outfitted with a radio beacon for long-

distance detection, but with no means of active propulsion or attitude control-the
chaser spacecraft must determine the location of the OS in Martian orbit, and maneuver
itself to capture it. As proposed earlier in Chapter 1, the chaser spacecraft will rely on
optical tracking using a single visual-band camera to perform the final rendezvous and
capture operation.

Using the Synchronize Position Hold Engage Re-orient Experimental Satellites
(SPHERES) satellites (created at the Massachusetts Institute of Technology), the
existing MOSR testbed is augmented to incorporate optical tracking and control. This
augmentation will facilitate the repeated trial and testing of new control and vision
based algorithms to be used on a final launch MSR mission. The goal of the MOSR
testbed is to provide a research platform where such algorithms and controls can be

tested in a relatively 'risk-free' environment onboard the International Space Station.

This thesis focuses on the Phase II work of the MOSR project. The Phase II effort
focuses on the adaptation of the SPHERES MOSR test bed to address the "last few
meters" GN&C problem of Mars Sample Return Orbiting Sample capture - integrating
and demonstrating the tracking and relative maneuver capabilities with respect to the
passive OS. There are two main technical objectives for the Phase 2 effort: (1) provide
visual tracking for the MOSR test bed by integrating the required cameras and lighting
and (2) emulate the combined chaser/OS dynamics using a SPHERES satellite by
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integrating the relative motion controls into the MOSR baseplate and SPHERES
software.

2.2 Existing capabilities

2.2.1 OS Capture Mechanism

The existing SPHERES MOSR test bed currently has the capability to analyze the
contact dynamics between the OS and the OS capture mechanism, using a SPHERES
satellite as a surrogate OS and incorporating an instrumented baseplate to measure the
contact loads between the OS and the capture mechanism. The MOSR test bed is also
equipped with boresight and side-view cameras to provide video data to correlate the
contact dynamics data.

Figure 8 shows the capture mechanism being tested onboard a reduced gravity flight.
Figure 9 shows the boresight camera view which is the primary capture view used by

the vision system.

Figure 8: SPHERES-MOSR test bed performing OS contact dynamics experiments

on reduced gravity flight
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Figure 9: Boresight view of SPHERES-MOSR testbed

2.2.2 Synchronized Position Hold Engage & Reorient Experimental
Satellites (SPHERES) as OS

The SPHERES test bed is a test bed for the development of multi-satellite GN&C
algorithms. Currently, there are three SPHERES used in 3DOF ground testing and
three SPHERES on the ISS for full 6DOF microgravity testing, shown in Figure 10.
This test bed provides a unique opportunity for researchers to test algorithms, analyze
data, then refine and uplink new algorithms in a relatively short period of time. This
iterative process allows algorithms to be matured in a low-cost, low-risk environment.

Each satellite is equipped with a processor, two communication transceivers, battery
power, 12 cold-gas thrusters, and 24 ultrasound receivers. These ultrasound receivers are
used in a time-of-flight metrology system analogous to GPS. Using ultrasound beacons
placed in a designated volume around the SPHERES, the satellites individually measure
their respective positions and attitudes with an accuracy of a few millimeters and 1-2
degrees, respectively (Miller et. al[26]).
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Figure 10: SPHERES onboard the International Space Station[26]

One of these SPHERES will be modified to serve as a surrogate OS. While the actual

OS will not have the same capabilities as SPHERES, many of the SPHERES

subsystems will aid the development, testing and verification of the SPHERES MOSR

test bed. First, the propulsion system will enable the surrogate OS to maneuver and

perform motions equivalent to the chaser being actuated. Using this reversed-roles

maneuvering precludes the development of a larger chaser satellite that would have to

maneuver with the capture cone. Second, the communication system will allow the OS
to receive the control commands necessary to execute the reversed-roles maneuvering.

Third, the ultrasound metrology system provides the OS with the ability to determine

its position and attitude. These independent measurements will provide a means to

validate the visual tracking algorithm's accuracy. Figure 11 shows a brief

communications overview in this reversed-roles model.
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2.2.3 OS Shell

As shown in Figure 10, the SPHERES satellites are of different colors. In order to
make the SPHERES MOSR system not dependent on a single satellite, a removable OS
shell prototype is built. The prototype (shown disassembled in Figure 12) is fabricated
from black ABS-M30 plastic using Fused Deposition Modeling (FDM) rapid prototyping

technology. It consists of six parts - two hemispheres that encase the satellite,
connected via four size 4-40 button head cap screws to two disks, one on each side that
locks the assembly in place. The hemispheres each contain four extrusions on its interior
surface that fit snugly over the satellite, preventing the shell from moving relative to it.
Two additional disks rotate into the two hemispheres with a quarter-lock mechanism to

provide access to the satellite's battery compartments. Figure 13 shows the assembled
shell next to a SPHERES satellite to illustrate the mounting orientation.
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Figure 12: OS Shell disassembled

Figure 13: OS Shell (with SPHERE for comparison)

The color scheme selected for the shell involves a quarter of the sphere being painted
flat black and the rest of the sphere painted flat white, as shown in Figure 14. This
allows for testing of the OS in a variety of lighting conditions that simulate that of on
orbit operations, where the majority of the OS will be illuminated by the capture
spacecraft during rendezvous. Lighting of the OS will range from fully illuminated (only

the white section being visible) to the worst case lighting condition where the black

section of the OS will cover half of the OS surface orientated towards the tracking

cameras so only half of the OS is visible, as seen in Figure 15.
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Figure 14: OS Shell showing both light and dark configurations

During flat floor testing, the orbiting sample is mounted on a SPHERES air bearing
support structure that is suspended on a cushion of C02 gas, allowing it to move
around the polished flat floor surface with minimal friction, thus simulating motion in a
2-D space environment. Figure 15 shows the OS on the MIT flat floor facility.

Figure 15: OS on an air bearing support structure
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2.2.4 Camera system

The visual tracking of the OS utilizes at least two cameras based on the already
NASA-approved VERTIGO cameras, uEye UI-1225LE-M-HQ. These gray-scale cameras

have a resolution of 752x480 pixels with 8-bits of depth over a USB 2.0 interface. One

camera is mounted inside the baseplate looking along the bore sight of the capture cone.

This enables video from the final approach and capture of the OS. The second camera is

mounted offset from the capture cone and provides a wider field of view. This enables

visual tracking of the OS tens-of-meters away from the capture system and provides the

mechanism for the rendezvous and approach of the chaser satellite with the OS, as

emulated by the movements of the SPHERES module. Table 1 presents the camera's

specifications. Figure 16 shows the camera with the lens detached. The focal length of

the lens used is 5 mm.

Table 1: Specifications of uEye LE Camera

Sensor 1/2" CMOS with Global
Shutter

Camera

Resolution 640 x 480 pixels

Pixel Size 6.0 pm, square

Lens Mount CS-Mount

Frame Rate 87 FPS (Max), 10 FPS

(Typical)

Exposure 80 pis - 5.5 s

Power

Consumption 0.65 W each

Size 3.6 cm x 3.6 cm x 2.0 cm

Mass 12 g
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Figure 16: uEye LE camera (lens not shown)

2.3 Software Architecture

The overall software architecture is shown in Figure 17. The chaser's visual tracking
algorithm provides the relative positions and velocities of the chaser and the OS. The
chaser then, using the controller and model described in Section 1.6 and Chapter 4,
computes its required forces and torques to rendezvous and capture the OS. For the
purposes of the MOSR Chaser/OS emulation, the chaser's baseplate computer then
converts these into the forces required to move the SPHERES satellite, representing the
OS, in order to emulate the combined motions. The baseplate then transmits these to
the SPHERES satellite, whose internal controller then actuates its respective thrusters
to execute the motion. This architecture expects to transmit the x, y, and z forces (or
accelerations) and relative location components from the chaser's baseplate to the OS at
a rate greater than or equal to 1Hz.
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Chapter 3

3 Vision Algorithms and Kalman Estimator

3.1 Introduction

Chapter 2 has described the overall SPHERES MOSR system. This chapter will
describe the algorithms used in developing the software on this testbed. First, the reader
is introduced to the Hough Transform and how it integrates into the MOSR system.
Equations describing key fundamental relationships are shown and raw data from the
algorithm are shown. The process is repeated for the astronomical photometry algorithm
and raw data is shown. Key results and breakdowns are shown in both algorithms and
the need for a Kalman estimator is revealed. Finally, the application of a Kalman filter
is shown and the results are presented. Comparisons are made with the SPHERES
global metrology system to gauge the accuracy of a single camera vision system.

3.2 Hough Transform

3.2.1 Brief Review

Revisiting the Hough Transform shown in Section 1.4.1, the parametric
representation of the equation of a circle can be written in the form as given in Equation
11.

(x - a) 2 + (y - b)2 = C2()

For any arbitrary point (xi, yi), this can be transformed into a surface in three
dimensional space with the dimensions being (ab,c) as defined in Equation 12:

(xi - a) 2 + (y - b)2 = C2 (12)
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Each sample point (xi, y) is now converted into a right circular cone in the (a,b,c)

parameter space. If multiple cones intersect at one point (ao,bo,c), then these sample

points now exist on a circle defined but the parameters a.,b., and c0.

The above process is repeated over all the sample points in an image and votes are

gathered for each set of parameters (a0 ,bo,c). This method is of course extremely

computationally intensive and has a memory requirement on the order of O(m n c)

where mn is the total number of sample points(i.e. image size) and c is the number of

possible radii. This memory requirement is needed for the accumulator array where the

columns of the accumulator array are the possible radii in the image and each row is

the unique set of (ab) points for the coordinate of the centers. However, the

computational burden of this method can be significantly lower if the radius c is known

a priori. This is reduces the 2-D accumulator array into a single column vector for a

specific co or range of radii (ci - cj). Thus, if the radius is known a priori, the algorithm's

memory requirement reduces to O(mn) time, since fewer cells in the accumulator array

have to be updated for each sample point.

3.2.2 The role of Canny edge detection

Based on the above method, a similar algorithm based on Yuen et. al [27] is used.

Here the key difference is an edge detector such as that proposed by Canny[28]is used.

This eliminates all the sample points in the image that do not lie on an edge.

Canny edge detection[28] works by computing derivatives in the horizontal and

vertical direction. These are performed on slightly blurred images in order to discard

any discontinuities due to CCD sensor noise. These derivatives are the change in pixel

brightness along those directions. Equation 13 shows the derivative G(also known as the

edge gradient) which the magnitude of the G. and Gy.

G = G (13)

One can also calculate an edge direction e which is given as:
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tan' (Gx (14)

(Gy)

Once these gradient magnitudes are found, a localized search of the area is done to

find if the gradient magnitude is a local maximum. If it indeed lies in a local maximum,

the sample point lies on an edge and is kept. Any other sample points in the localized

search area are discarded.

This process is repeated until all the edge points are located. The edge points are

then set to max brightness (max pixel value in a monochrome camera). The points that

do not lie on an edge are set to pixel level 0. Figure 18 shows the original blurred image

followed by an image with Canny edge detection performed.

Figure 18: Edge Detection using the Canny edge Detection algorithm
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3.2.3 The Hough Transform applied to MOSR

Yuen et. al[27] proposed using an edge detection algorithm to reduce the storage and
computational demands of circle finding. Using edge detection, the problem of circle

finding can now be decomposed into two stages consisting of a 2D Hough Transform to

find the circle centers, followed by a ID Hough Transform to determine radii. Since the

center of the circle must lie along the gradient direction of each edge point on the circle,
then the common intersection point of these gradients identifies the center of the circle.

A 2D array is used to accumulate the center finding transform and candidate centers are

identified by local peak detection. This can be viewed as an integration along the radius

axis of all values of the Hough Transform at a single value of (a,b). The second stage of

the method uses the center of the first stage to construct histogram values of possible

radii values. The radius value with the most number of edge points lying on it is

considered the radius of the circle.

A potential problem with this modified Hough Transform method is that any 3D
information from the image in the edge detection process is lost. For example, any
circles that do not lie parallel to the camera image plane are completely lost since their

gradients might not lie in the vertical and horizontal directions. This problem is not a

concern for MOSR since the OS is assumed to be a "few meters" away from the capture

mechanism. The cross-section of a spherical object will always remain parallel to the

image plane.

Using the method described above, the algorithm is applied to the MOSR OS in
steps:

Step 1 consists of gathering a raw monochrome image as shown in Figure 19.
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Figure 19: Raw Image of OS shell on the flat floor

It is important to note that the air bearing support structure as shown in Figure 15
is covered by grey foam so as not to interfere with the algorithms accuracy. Spurious
circles may be detected in the air bearing mechanism. In this image, the OS is 1.5 m
away from the camera.

Step 2 consists of a simple thresholding algorithm which sets any pixel brighter than

a certain threshold to full 'white' (pixel value 255 in an 8-bit CCD sensor) and

conversely, sets any pixel dimmer than a certain threshold to full 'black' (pixel value 0).

This can be seen in Figure 20.
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Figure 20: Thresholded OS image

It is important to note that in this image; most of the room plumbing in the
background has now disappeared. A bright speck in the top left corner passed the
thresholding algorithm but this should not be of concern since it is not circular or of the

right diameter in shape.

Step 3 consists of the image then being processed by a Canny edge detector as shown
in Figure 21.
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Figure 21: OS image after Canny Edge detection

Again, it is important to note that the speck in the top left still exists (albeit with

only its edges intact). The Canny edge detector has now removed all the pixels internal

to the OS and kept the outer edge intact.

It can now be seen that a large non-zero 752 by 480 pixel image (total pixels:

360,960) is reduced to an image with only several hundred non-zero pixels. This offloads

the computation done by the Hough Transform in Step 4.

Step 4 consists of running the image through the Hough transform algorithm with an

initial guess for a diameter. As mentioned in Section 1.4.1, this initial estimate for the

diameter will be given by another ranging algorithm (possibly using the long range radio

beacon) in the real MSR mission.

The result after Step 4 can be seen in Figure 22.
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Figure 22: Completed Hough Transform OS image

In the interest of clarity, the solution is superimposed on the original non-processed
image. The green circle signifies the radius that the transform computed, and green dot
in the center signifies the center of that circle. It is important to note that the smaller
circles were not recognized since the radii of these circles were not within acceptable

bounds (within ± 10% of the initial estimate). The new circle radius is then fed into the

following iteration as the new initial 'guess'. Here, it is assumed that the relative motion

of the OS perpendicular to the image plane is not high enough to exceed the 10%
tolerance mentioned above.

Step 1-4 can be reapplied to a partially shielded OS as shown in Figure 23.

46



Figure 23: Partially occluded OS image processed with the Hough Transform

The OS shown above was partially occluded by rotating the dark side of the OS to
face the camera (as shown in Figure 15).

In Figure 23, the circle radius is not as accurate. This is mainly due to the lower
number of edge points in the image. These circular edge points now generate fewer votes
thereby decreasing the accuracy of the algorithm.

3.2.4 Absolute Position estimation using the Hough Transform

As shown in Figure 22 and Figure 23, the Hough Transform generates a robust
radius and center measurement in pixels and pixel positions respectively. This section
will cover the transformation of the pixel positions and values to absolute position states
(in meters).

Figure 24 shows the geometry of the OS in the camera reference frame.
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Figure 24: Camera reference frame perpendicular to image plane

In Figure 24, the depth 'd' of the OS in the camera reference frame can be derived
from basic trigonometric principles and is presented in Equation 15. The reference axes
directions are also given for clarity.

d=z= - OD'h
4tan 2 X

(15)

Here, FOVX is the field of view in degrees of the camera, rp is the estimated radius in
pixels of the OS, D is the actual diameter of the OS shell in meters(O.277 m) and hx is
total resolution of the image in that direction (752 pixels).

The same calculation can be done in the perpendicular image direction using total
resolution hy and Field of View FOVY. An identical depth z is found.

Looking at the center location of the OS, Equation 16 and 17 can now be used to
calculate the x and y coordinate of the OS position using a and p (azimuth and
elevation angles) with respect to the center of the image plane(as the origin).
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Figure 25: Camera Reference frame along image plane

Using Figure 25, x and y locations can be

principles shown in Equations 16 and 17.

x = z tan (XhF )

derived using basic trigonometric

(16)

(17)
y = z tan (Y FOy

Once again, z is the depth estimate computed from Equation 15, FOVX and FOVY
are the Fields Of View in the x and y directions, x, and yp are the pixel positions of the
center of the OS with respect to a origin centered at the FOV center and hX and hy are
the total pixel resolutions in the x and y directions respectively. It is noted that z
appears in both equations and so the depth measurement z is crucially important in
state estimation.
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The next step is to plot the time history of the OS depth z in this camera reference
frame. In this case, the OS is completely stationary.
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Figure 26: Time History plot of Hough Transform for a stationary OS in the 'near'

field

In Figure 26, the time history shows a relatively low noise level for a stationary OS
in the 'near' field (actual depth is 1.75m). In ten samples, the noise level remains

between ±1 pixel which is nearly ideal for the Hough transform[29].

In Figure 27, the same time history plot is taken for the 'far' field.
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Figure 27: Time History plot of Hough Transform for

field

a stationary OS in the 'far'

In Figure 27, the noise level is higher than in the 'near' field case. Here the OS is
placed at 2.78 m. This is due to the larger thresholding errors and fewer edge points on

the circle which accumulate fewer votes for a given radii. Again, a pixel error of ±1 pixel

is expected for the Hough transform.

However, a very curious relationship can be seen. For a change in 1 pixel of radius

estimate, the resulting difference in depth is much higher in the 'far' field case (-15 cm)

than in the 'near' field case (-6 cm). This relationship can be seen more easily when

Equation 15 is plotted. Here there is a clear non-linear (inverse) relationship between
r,(pixel radius) and depth z.
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Relationship between OS size vs. Depth
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Figure 28: Relationship between OS size vs. depth

In Figure 28, the blue boxes indicate discrete pixel values whose depths can be
resolved. As the depth decreases, the radius of the OS rp in pixels increases, and the
difference between two successive pixel estimates(i.e. the vertical space between each
consecutive pixel estimate) decreases. This relationship is what is being seen in Figure
26 and Figure 27.

3.2.5 Conclusion

As a consequence of these results, it is evident that the Hough transform algorithm
can only generate depths at discrete pixel values. Therefore, a method which does not
rely on discrete pixel estimates needs to be used in order to increase fidelity in the depth
measurement. This algorithm is based on astronomical photometry.
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3.3 Astronomical Photometry

3.3.1 Review

From Section 1.5.1, the apparent brightness or luminosity (F) of a point source in an

image is a simple sum of pixel brightness B(xj,y) of all the pixels across the point

source(with dimensions m, n pixels in each direction) as shown in Equation 18.

mEn (18)

Fpoint = B(xi, yi)
i=O,j=O

The flux density or apparent brightness of point source can also be given by the flux

density relationship in Equation 19:

L (19)

Here, L is the true luminosity of the source and z is the distance away from the

source.

3.3.2 Astronomical photometry for MOSR

In this application, the target (OS) is not a point source. For Equation 5 to apply,
each pixel is regarded as a point source. Therefore, the apparent luminosity Ftarget is

simply the sum of the apparent luminosity over all points on the target as shown in

Equation 20.

Ftarget = Fpoint i (20)

However, the total number of pixels on the OS increases inverse-quadratically with
respect to depth. Figure 29 presents this relationship graphically.
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Figure 29: Number of Pixels on target scales with range

1
Number of pixels across OS oc -

Z2

(21)

Combining equations 20 and 21, the relationship between total apparent brightness

Ftwget and depth z is now an inverse quartic relationship with C1 being a new constant of

proportionality that needs to be solved a priori.

(22)C,
Ftarget - 4

Equation 22 now presents an inverse quartic relationship between Ftaxget and depth z.

This increased fidelity to the z measurement can now be seen in Equation 23.

F C(23)

Ftarget

Equation 23 is a fourth root function and can be converted to the log scale as seen in

Equation 24.

log z = a log(C1 ) + a log(Ftarget) (24)
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A linear curve fit can be done between z and Ftarget to calculate the values of 'a' and

C1.

Figure 30 shows a log plot with a linear fit to Equation 24. In this plot, z is known

using alternate methods (a laser range finder) and Fwget is computed by a simple

summation of the pixel values as shown in Equation 20.
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Figure 30: Linear fit plot for astronomical photometry

In Figure 30, the linear fit coefficients are computed as follows:

-(a)-' = b = 4.01 (25)

C1 = 8.257E7

For this linear fit, b is the power on z and is expected to be 4. However, the linear fit

does not correlate well for OS locations closer than 2 m (these points have been

55



excluded from the fit). This discrepancy can be seen clearly when the plot is converted
back to non-log axes as presented in Figure 31.
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Figure 31: Inverse Quartic relationship of astronomical photometry

The discrepancy in the result presented in Figure 31 is due to CCD sensor
saturation. As the OS approaches the camera, the pixel values cannot get higher than

255(the max pixel value for an 8-bit sensor) and the inverse quartic relationship starts
to break down. However, the performance of this algorithm is fairly robust in the far
field.

3.3.3 Conclusion

The photometry algorithm described in this section features strong performance in
the far field and relatively poor performance in the near field. On the flip side, the
Hough transform begins to breakdown in the far field, and it is this complementary
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relationship between the two algorithms that can be exploited by an integrated filter

such as the Kalman Filter.

3.4 Kalman Estimator

3.4.1 Review

The discrete time Kalman Filter equations are reviewed here. For further detail, the

reader is advised to consult numerous textbooks such [30] and [31].

The state estimate vector is xk and the measurements are Zk. If there are no known

external disturbances (as is assumed in this case), the Kalman Filtering equation is

simply given by Equation 26.

Xk = Xk + Kk(zk - Hx-) (26)

In Equation 26, xk- (the predicted state estimate vector) can be rewritten as shown in

Equation 27. In this equation, A is the system model matrix(which is known and is

constant and xk1 is the state estimate from the previous iteration.

x- = AXk_ 1  (27)

From Equation 28, the Kalman gain, Kk is calculated in the manner described in

Equation 28 and Equation 29.

P- = APklA T + Q (28)

Kk = P-HT(HP-H T + R)- 1  (29)

Equation 28 and 29 introduces four new terms: H(the measurement model matrix),
R(the covariance matrix of the measurement noise), Pk-(the predicted error covariance

matrix), and Q (the process noise matrix).
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Finally, the error covariance matrix pk can be updated using Equation 30:

Pk = Pk- - KkHPk- (30)

The accuracy of the Kalman Filter heavily depends on the matrices that define the

state model, the measurement model and the noise model. These matrices (A, Q, R and

H) are vitally important and are application specific. They are discussed in Section

3.4.2.

3.4.2 The Use of the Kalman Filter in MOSR

The Kalman Filter is used to integrate the measurements described in Sections 3.2.4

and 3.3.2. The measurement vector Zk consists of position estimate as given in Equation

31.

Zk = [XkYk,Zk] (31)

The position estimates described here are the same for both algorithms, with the key

difference being that z is different for both algorithms (and so their corresponding x and

y estimates also differ from each other).

The state estimate xk is a 9x1 column vector with position, velocity and accelerations

shown in Equation 32. While position and velocity estimates are the only required

estimates for the controller described in Chapter 4, accelerations are included to take

into account process noise. Since the Kalman Filter process noise matrix Q assumes zero

mean, Gaussian noise, the acceleration terms are required to account for variations in

velocity. This will become more apparent in Equation 35.

S[X= k>k>k4 k>k> kZk>2k> k (32)
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The state model A is assumed to be simply based on Newton's second law. Here A is

a 3x3 vector consisting of 3 3x3 terms along the diagonal resulting in a 9x9 system as

shown in Equation 33 and 34.

TS
1
0

... 0
AO
0...

o.5T 1
Ts
I1

..0-

..0
AO

(33)

(34)

In Equation 33, T, is the length of the

it is 1 second.

time step between measurements; in this case,

As mentioned previously, the motion of the OS is assumed to have zero-mean

acceleration along the entire maneuver. Therefore, the non-discretized form of the

process noise matrix is presented in Equation 35.

0 0 0- (35)
Q = p 0 0 0

0 0 1-

Discretizing Q from Equation 35 using the convolution integral results in Equation

36 for Q0.
The process noise matrix Qk is a 9x9 matrix which consists of 3 3x3 Q0 matrices

along the diagonal.
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(36)

(37)
Q0
Q0

In Equation 35 and 36, (p is the spectral noise density. This is a constant and is

tuned via trial and error when testing the Kalman Filter.

H, the measurement matrix is the mapping matrix from Zk to Xk. Since the Zk terms

exist in xk without any numeric calculations, the H matrix is simply of the form shown

in Equation 38.

1 0 0 0 0 0 0 0 0- (38)
H= 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0

The measurement noise matrix R is tuned via trial and error (using the constant R0 )

and has the form shown in Equation 39.

1 0 0 (39)
R =Ro 0 1 0

0 0 1-

Given the above constant matrices, A, Q, H and R, the Kalman filter can
integrated in MATLAB using Equations 26 to 30.
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3.5 Kalman Filter Results

With proper tuning of the parameters (p and RO, Figure 33 to Figure 35 are the

results of the filter.

It is important to note that comparisons are made to Global Metrology system (used
as ground truth). The camera reference frame is converted to the Global metrology
reference frame as shown in Figure 32.

0.5-

-0
15

0.5-0

0 0.5
-0.5 -0

y1[m] -1 -0.5

Figure 32: Comparison of Reference frames (Global Metrology and Camera)

Figure 33 shows the comparison between the raw measurement and the filtered state
estimate.
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Figure 33: Vision Estimator Convergence vs. Raw measurement

The X and Y position estimate from the Kalman filter estimator data in Figure 27

shows a clear 'smoothing' capability. As mentioned in Section 3.2, there is significant

noise at the beginning of the maneuver in the 'far' field and this is smoothed out by the
Kalman Filter. Towards the end of the maneuver (when the OS is closest to the
camera), the raw data is much less noisy as expected. The Kalman Filter works well in
tracking the mean value of the measurement while smoothing the results as is needed in
this application.

Figure 34 and Figure 35 compare the Kalman Filter state estimate generated by the
vision system with the Global Metrology data from the SPHERES system. It is
important to note here that the Global Metrology system had significantly more noise
than is usually expected. This problem was diagnosed as being due to interference from
the MOSR shell geometry. The MOSR shell blocks the infrared synch pulse from the
SPHERES satellite to the external Global metrology system. A workaround was made
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where the exterior back half of the MOSR shell was removed for the test. This
workaround was only successful for a few tests.

X Position Comnergence in the GM reference frame
0.5

- -Vision Estimator

0 Global Metrology

0.
-0.5

0 20 40 60 80 100 120 140 160 180
Time(s)

Y Position Convergence in the GM reference frame
0.4_

__ Vision Estimator
0.2 Global Metrology

0

-0.2

-0.4r
0 20 40 60 80 100 120 140 160 180

Time(s)

Figure 34: Position Convergence Comparison in the GM Reference frame

The X and Y Position data presented in Figure 34 show a bias that varies with time.
It is conceivable that this bias maybe due to a small pixel error in the Hough Transform

in the 'far' field. This 'bias' then gets propagated through the filter and slowly recovers

as the raw measurement error decreases and the OS travels closer to the camera. This
bias varies between 15 cm and 5 cm.
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Figure 35: Velocity Convergence Comparison in the GM Reference frame

The X and Y Velocity data generated by the vision estimator in Figure 35 shows

remarkable accuracy when compared the to the Global Metrology data. The velocity
error is less than 1 cm/s which is more than acceptable for the purposes of docking and

capture.

3.6 Conclusion

This chapter presents an approach for close proximity navigation and state estimation
using a single camera system. The details of this approach (including both algorithms
used in this approach) are described and experimental results using a laser range finder
and the SPHERES Global Metrology system are discussed. From these results, it can be
concluded that the system has upper bounds on accuracy of around 15 cm for position
and 1 cm/s for velocity. While these accuracies are not ideal when compared to a
stereoscopic system laid out by Tweddle [32], it is remarkable for a single camera

system.
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Chapter 4

4 Model Predictive Control

4.1 Overview

The rendezvous and docking scenario for the MOSR mission involves a chaser

spacecraft with an on-board vision based navigation system and a capture mechanism

system already described in Chapters 2 and 3. In order to capture the relative motion
between the chaser spacecraft and the target, tests are performed on the Flat Floor

facility (as shown in Figure 15). A fixed device with the vision navigation system placed

on one side of the Flat Floor operative area and a SPHERES satellite is used to perform

the rendezvous and capture maneuver. This rendezvous and capture maneuver is

performed using a Model Predictive Controller as described in Section 1.6. In order to

define how the controller works, different controller strategies can be considered.

4.2 Definition of the Control Strategy

There are two possible control strategies that can be considered:

1. In the first strategy, a planning algorithm is used to generate a (safe) reference

state trajectory, starting from an initial estimated state of the chaser spacecraft

and ending at a target location. A controller, such as an MPC-based one, could

be used to track the reference trajectory.

2. In the second strategy, an MPC-based controller is used to both compute a
reference trajectory at each time step and track it at the same time.
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For this work, the second control strategy is adopted with the aim of testing the

capability of MPC to compute and track a reference trajectory for the close-proximity

phase of the rendezvous and capture maneuver.

4.3 Controller constraints

In the reversed roles model proposed in Chapter 2, it is important that the controller

maintain certain constraints in order to correctly emulate the OS-Chaser mechanics.

The constraints are as follows.

4.3.1 Field of view constraint

It is required that the chaser remains within the FOV cone of the vision system during

the entire rendezvous maneuver. The FOV in the horizontal plane is 90 degrees and the

FOV in the vertical plane is 65 degrees.

4.3.2 Limited control authority

The thruster system on the SPHERES satellite has a maximum control force than can

be actuated. Each thruster on-board the SPHERES satellite can perform a max force of

0.112N. Taking into account the thruster configuration (two thrusters along each

direction), the maximum force that can be applied in any direction is Fmx 0.224N.

The mass of the SPHERES is assumed constant and equal to the SPHERE and the
air bearing support structure shown in Figure 15. The mass is 11 kg, and therefore the

theoretical maximum acceleration is 0.02 M/s 2. The MPC algorithm assumes a Piece

Wise constant control acceleration profile, with a control period of 1 second. Due to

interference issues between the thruster and global metrology system, thrusters can only
be fired during 0.2 sec of the 1 sec controller duty cycle.
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4.3.3 Terminal constraints

Terminal constraints are applied to the relative dynamic state of the OS in the
proximity of the target position for safety purposes and to guarantee certain conditions
for nominal capture mechanism function.

The following terminal constraints are placed on the SPHERES MPC controller:
1. The relative velocity has to be less than 3 cm/s in the z direction (in the camera

reference frame).

2. The relative velocity along the other two directions must be almost 0.

Figure 36 shows these constraints graphically.

+z

+X C OV 0sta

Camera

Figure 36: MPC Constraints

4.3.4 Attitude constraints

The attitude of the chaser spacecraft is maintained at a target orientation during close
proximity operations. This is done so that the MOSR shell (described in Section 2.2.3)
can be tested under different lighting conditions independently.

A quaternion based PD controller is used to regulate the attitude of the SPHERES
satellite during the entire maneuver. MPC does not control the attitude of the OS.

68

0+S

Max control
force



4.4 MPC Software Architecture

Due to its high computational time when run on-board the SPHERES satellite, the
MPC Engine cannot be used directly on-board SPHERES when a control frequency of
1Hz is required. In these situations, the MPC problem is solved using the laptop control
station and the computed control forces are transmitted back to the SPHERES satellite
for the actuation. To manage the time delay due to offline MPC computation and
communication lag, a new state estimate for the SPHERES satellite is propagated with
a constant assumed time delay. This time delay must be much less than 1 second in
order for new control accelerations to be output to the SPHERES satellite before a new
control cycle has begun.

Figure 37 shows the layout of the MPC Communications framework. The
communication between the offline MPC Engine and the SPHERES satellite takes place
using the regular SPHERES communication protocol.

Capture mnechanisin Control Station (laptop)

RELATIVE NIATIAB
POSITION

ESTIMATOR Flight MPCdata
Xk GLII I Sif ~c a Iu
(position) Xk~f

KALMAN XkI PLANT -
FIIT:ER Xk -I E SOLVER

(position
Vision sytem velocity)

conirol fore d kr .,A k2-
aciuation

update thrusters times +--- - - - -- - -

SPHERES satellite

Figure 37: Online Communication Framework with MPC

4.5 Definition of the Reference frames

The following Reference frames are defined:
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1. Camera Reference Frame: x and y axes are in the camera image plane, z axis

along the camera focal length axis. This is identical to the camera reference frame

defined in Section 3.5.

2. Global Metrology reference frame: This is the reference frame used by the

SPHERES ultrasound Global Metrology system.

Figure 38 shows these reference frames in a graphical format. The teal cone is FOV

constraint as it is applied to the MPC Controller.

0.5

-005 0

0- -.
-0.5 ... -- 0-5

-0-5.5

y [m] 1 - xm]

Figure 38: Camera and Global Metrology reference frames

4.6 MPC Results

For the purposes of this thesis, the exact mechanisms of the MPC controller are not

shown. The reader is advised to refer to [19] whose author is a collaborator on this

project.
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4.6.1 Offline MPC time delay calculation

In order to check the viability of offloading the MPC Engine to MATLAB, a test was

done to calculate the time delay between the SPHERES satellite requesting a new

control action from the offline MPC Engine and the accurate delivery of the new control

action back the SPHERES satellite. Figure 39 shows this result:

MPC Computation Performance
L L L L L L L L

0 10 20 30 40 50 60 70 80 90 100
Time [s]

00 L L L L

50

0 10 20 30 40 50 60
Time [s]

70 80 90 100

Figure 39: Time Delay computation for MPC Computation

Figure 39 presents the time delay and number of optimizer iterations required to

generate a new MPC control action. The time delay is much lower than the required 1

second (-50 milliseconds) and this proves the viability of offloading the MPC engine to

the control station.

4.6.2 MPC results in the SPHERES simulator

To ensure proper code functionality, the MPC code was run in the SPHERES
MATLAB simulator. The MPC engine was compared with a well-tuned PD controller
(having the same settling time as the MPC controller) and the same PD gains were used
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in the test using the SPHERES hardware. Refer to Appendix A for more information of
the simulation results.

4.6.3 MPC results using Global Metrology on SPHERES hardware

Figure 40 to Figure 42 show the MPC tests on the flat floor using the Global Metrology
for state estimation. Comparisons are made to the SPHERES simulator results.

X and Y Position Errors vs. Time
1.5 . -

SPHERES testbed
1 SPHERES simulator

z' 0.5 
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0.2 --

SPHERES testbed
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E
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Figure 40: X and Y Position Errors for MPC engine

In Figure 40, the position errors are higher than the simulation. It is conceivable that
the flat floor air bearing setup used for this test is not frictionless as the simulator
assumes. This build-up of position errors leads to a build-up of control accelerations as
shown in Figure 42. As the test progresses, the position errors tend to decay and this
behavior matches the simulator results. A non-zero X-position error is seen towards the
trailing edge of the test. This is possibly due to excessive friction in one of the air pucks

72



that the SPHERES satellite floats on for this 2D test. This is routinely seen on
SPHERES tests on the flat floor and the error is not unexpected.

X and Y Velocities vs. Time
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Figure 41: Velocity vs. Time using the SPHERES testbed
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Figure 42: Control accelerations vs. Time using the SPHERES testbed

In Figure 42, there is a noticeable increase in control accelerations along the x and y
axes. This is a direct consequence of the large position errors that build up during the
start of the test.

However, the control accelerations in the y-direction show large fluctuations. This
could be possibly due to the lack of y-axis convergence from the Global Metrology
estimator. It is uncertain if these large fluctuations in the control acceleration are a
result of velocity fluctuations seen in Figure 41 or these control accelerations are causing
the velocity fluctuations in the y-direction.

4.6.4 PD and MPC Control comparison results using Global Metrology on
SPHERES Hardware

Figure 43 and Figure 44 are shown to compare a standard PD controller and the
MPC controller. As the results in Appendix A show, the MPC controller should show a
10-11% decrease in fuel consumption.
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Figure 43: Cumulative Av requirement in MPC vs. PD on SPHERES testbed

The MPC data displayed in Figure 43 shows a clear advantage with the PD

controller. While the Av is not as significant as the 11% seen in the simulations (refer to

Appendix A), the MPC controller is still fuel more fuel efficient than a well-tuned PD

controller. This advantage is due to the predictability features of the MPC algorithm

and the thruster saturation handling ability. As more and more time elapses, the ability

of the MPC controller to predict its state increases thereby increasing its handling

ability.

These advantages discussed here can also be seen in Figure 44.
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Figure 44: Velocity profile comparison for MPC and PD controller on SPHERES

testbed

Figure 44 presents the MPC advantages in a slightly different form. The velocity in

the x-direction is significantly lower for MPC throughout the entire maneuver even

though both satellites reach the end of the maneuver before the test ends. This

relationship is easier to see in the x-y trajectory mapped out in Figure 45.
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Figure 45: XY Trajectory comparisons of PD vs. MPC

The green points in Figure 45 refer to the final ending locations of the SPHERES

satellites. Even though both controllers had different starting points, the PD controller

overshot the target x-location causing it to backtrack to find the final target location. In

contrast, the MPC controller took a much smoother approach to the ending location

with nearly zero overshoot. This shows that the MPC controller is indeed more fuel

efficient than the PD controller. See Appendix A for more results from the PD-MPC

test.

4.7 Conclusion

This chapter presents a different controller approach for close proximity rendezvous and

capture. The details of the controller architecture and its communication framework are

described and experimental results with a PD controller using the SPHERES hardware

are shown. From these results, it can be concluded that the MPC controller is a viable

controller for use in such a rendezvous application with clear fuel efficiency benefits over
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PD control. However, no tests were performed with the vision estimator in the loop due
the MOSR shell interference issues described in Section 3.5.
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Chapter 5

5 Conclusion

5.1 Summary of Thesis

This thesis presents the first steps of a larger research initiative to investigate the

problem of rendezvous and capture of a completely passive object around Mars orbit.

Chapter 2 presents the overall MOSR SPHERES system which is currently being

developed in order to perform a full 6-DOF test on-board the International Space

Station. This testbed consists of a capture mechanism with at least two independent

non-stereoscopic cameras used in succession. A bi-color MOSR shell is designed and

built to increase the accuracy and robustness of the vision algorithm.

Chapter 3 presents the two algorithms used in the vision system. This system does

not use any fiduciary markers or known surface features to compute the 3 DOF state

estimate. The system assumes only a constant circular cross-section of given diameter.

First, the mechanism of the Hough transform is discussed. The inherent drawbacks of

using such an algorithm are explained and possible mitigating solutions are discussed.

Second, an algorithm based on astronomical photometry is presented. The increased

fidelity in measuring target range is noted and special attention is paid to the

weaknesses of each of these algorithms (when used in parallel). Finally, the use of a

Kalman Filter is discussed as a possible 'smoother' to integrate both these algorithms.

Once again, the mechanism of the linearly-coupled Kalman filter is discussed and

experimental data is shown with appropriate comparisons to the Global Metrology

system (which is assumed to be ground truth).

Chapter 4 presents the controller used in this project. The controller is based on

Model Predictive control as outlined in [19] and is used for rendezvous and capture of

the OS from 'few meters' away. The system specific constraints are listed and the

communications framework of this controller for this application is revealed. Evidence is
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presented that strongly suggests that MPC can be a better alternative to PD based

controllers for close proximity rendezvous and capture applications.

5.2 List of contributions

The following is a list of contributions of this thesis:

" Design and development of a vision system that can be used for close

proximity rendezvous applications.

* Implementation and experimental evaluation of a vision system that uses no

fiduciary markers or surface features for relative state estimation. This vision

system also uses a single camera and can be an advantage over more

sophisticated stereoscopic systems.

" Identification of the weaknesses of the approach to relative state estimation

using the vision techniques described. A Kalman filter is introduced to

integrate both these algorithms and experimental evaluation of this estimator

is presented.

" Implementation and testing of a new Model Predictive Controller for space-

based rendezvous and capture applications. This particular application of

MPC has not been done before and there is sufficient evidence to show that

MPC is a more fuel-efficient alternative to PD.

5.3 Future work

The main focus of the future work on the SPHERES MOSR project will involve more

integrated testing of the estimator and the MPC controller. As is noted before, the

MOSR shell described in Section 2.2.3 interferes with the IR synch pulse sent from the

SPHERES satellite to the Global Metrology beacons. Modifications to this shell need to

be made before more integrated testing can be done to test the estimator and the

controller in a closed-loop environment.

Future work on the vision navigation system should include incorporation of the

Kalman Filter into the Hough Transform initial estimate. This ensures that the

algorithm can deliver OS ranges with maximum accuracy possible. The ability of the

Kalman filter to predict future states of the OS can be invaluable to the accuracy of the
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Hough transform. This approach to integrate the estimator into the working of the

Hough transform is described in Mills et. al[33]. The astronomical photometry algorithm

can also be upgraded to compute new estimates for the proportionality constants on the

fly. Since the range estimate of the photometry algorithm depends heavily on the

constants of the inverse-quartic curve fit, updating these constants over time can lead to

better precision and accuracy of the range measurement. Finally, the Kalman Filter can

be upgraded to an Extended Kalman Filter to take into account of some of the inherent

non-linearities and cross coupling of the measurement model. While this upgrade will

not offer a significant increase in estimator accuracy (since the accuracy of the estimator

is driven by the 'sensor' algorithms), it might allow the initial state convergence to be

smoother than what is seen now.

A number of areas exist for the preliminary results presented in Chapter 4. The

MPC controller can be tested with the vision estimator to test closed-loop performance

of the entire system. Additionally, a test with no control inputs can be conducted to

diagnose the unexpected noise seen along the y-axis. This test will reveal the true source

of noise in the system along the y-axis; this could be sensor noise through the Global

Metrology system or inherent noise in the controller design which might need to be

accounted for, for future tests using this control system.
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6 Appendix A

6.1 MPC Simulation results using PD and MPC Control
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Figure 46: SPHERES Simulator PD MPC Comparison - Position Error vs. Time
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Figure 47: SPHERES Simulator PD MPC Comparison -

Time
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Figure 48: SPHERES Simulator PD MPC Comparison - Av requirements vs. Time
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Figure 49: SPHERES Simulator PD MPC Comparison
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6.2 PD control test on SPHERES hardware
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Figure 50: SPHERES hardware PD Comparison - Control accelerations vs. Time
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Figure 51: SPHERES hardware PD Comparison - Cumulative Av vs. Time
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Figure 52: SPHERES hardware PD Comparison - X and Y Position vs. Time
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Figure 53: SPHERES hardware PD Comparison - Velocities vs. Time
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Figure 54: SPHERES hardware PD Comparison - XY Trajectory
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6.3 MPC Test on SPHERES hardware

SPHERES trajectory on Flat Floor using MPC Controller
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Figure 55: MPC Trajectory using SPHERES Hardware
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Figure 56: Cumulative Av requirement for MPC using SPHERES hardware
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Figure 57: XY Trajectory for MPC using SPHERES hardware
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