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Abstract

This thesis describes the construction of an automated gradient-based optimization
process using the adjoint method and its application to centrifugal compressor re-
turn channel loss reduction. A proper objective function definition and a generalized
geometry parametrization and manipulation algorithm were developed, and the ap-
propriate adjoint equations and boundary conditions were derived for internal flow of
an axisymmetric incompressible laminar flow. The adjoint-based gradient calculation
was then validated against finite-difference calculations and embedded in a quasi-
Newton optimization algorithm. An optimal design was proposed, which achieved an
approximately 5% performance improvement compared to the baseline design in an
incompressible laminar flow. The geometry was assessed in a compressible turbulent
flow at the actual Mach number and Reynolds number and found to yield a 11%
performance improvement for an axisymmetric channel with a previously optimized
geometry.
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Chapter 1

Introduction

1.1 Background and Motivation

Centrifugal compressors are used in gas turbines, automotive engine turbochargers,
petrochemical and chemical plants, and many other industries. Centrifugal com-
pressors generally have fewer moving parts compared to alternative compressors, but
lower compression ratio in a single stage than reciprocating compressors. As a re-
sult, multi-stage centrifugal compressors (shown in Figure 1-1) are widely employed

because of relatively higher efficiency than reciprocating compressors.

Figure 1-1: A horizontally-split MHI centrifugal compressor[9]. Block shows the
return channel

As shown in Figure 1-2, a typical multi-stage centrifugal compressor stage consists
of an impeller, a diffuser, a 180° return bend, a return vane, and a 90° bend. The

last four of these make up the return channel. In all subsequent figures, the return

13
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Figure 1-2: Centrifugal compressor stage schematic [9]. Block shows the return chan-
nel

channel is displayed in the same orientation as in Figure 1-2, with the left opening as

the flow inlet and the right opening the outlet.

Although there is a strong drive to more compact geometries, the change needed
can lead to efficiency decrease. Moreover, current compressors have high efficiency,
so the return channel design is growing to be a more critical part in overall stage

performance.

With fixed inlet and outlet flow conditions, optimizing the return channel design
means minimizing the losses through geometry deformation. This is usually realized
by tuning a number of geometry design variables. Considering the multi-dimensional
nature of such an optimization problem, it is computationally costly to explore the
profile design space. Adjoint methods are efficient gradient approximation methods
whose computational cost is free from the dimensions of design variables. Adjoint
methods have been successfully used in automated aerodynamic design. The emphasis
of this thesis is to apply the adjoint method to internal flow optimization and to use
it to explore the design space of the return channel in a more comprehensive and

automated manner.
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1.2 Previous Research

The work in this thesis follows that of Glass [9] and Aubry [1], where important
loss mechanisms of the return channel were identified and improved designs were
presented.

The principal loss mechanisms included viscous dissipation over the entire channel,
and flow separations on the shroud near the bend inlet, on the hub near the bend
outlet and due to non-zero incidence angle at the return vane leading edge[9]. Based
on quantitative results, the vane section contributes the most to the overall losses.
Aubry [1] identified three key locations of flow separations, shown in Figure 1-3 as A,

B and C.

Figure 1-3: Locations of baseline geometry separation regions|1]

Based on the loss mechanisms, both Glass [9] and Aubry [1] explored various
designs to achieve loss reduction and developed several design guidelines. The pro-
posed geometry modifications they explored included a radial diffuser, an increase
in the axial extent of return bend, tailored bend width with gradually increasing
radius of curvature and a swept back vane channel. The return channel geometry
was parametrized and deformed as a series of Bézier patches, as in Figure 1-4. The
proposed geometries reduced the computed losses in the return channel, 10% in [9]
and 19% in [1], but the optimization was done via trial and error. The design space
was thus not explored as fully as it could have been.

The adjoint method was first introduced to aerodynamic design problems by Jame-

15



Figure 1-4: Return channel Bézier parametrization[1]

son [11, 12]. Instead of evaluating the flow field and calculating the losses repeatedly
for every dimension of the geometry design variable that is being modified, adjoint
method uses linear approximation to estimate the gradient with respect to all the
dimensions in a single run. Jameson [11] borrowed ideas from control theory, and
inserted linearized governing equations as controls into the objective function, ap-
proximating the gradient without solving the governing equations repeatedly. This
proves to be advantageous in reducing the computational cost from proportional to
the design variable dimension to only two flow calculations in each optimization iter-

ation.

The adjoint method has been successfully used in external flow optimization prob-
lems [8, 2, 13], but there are few attempts to apply adjoint method to internal flow
optimization problems. Cabuk et al. [4] were among the earliest researchers to do
this. They applied the method to optimize a two dimensional diffuser profile for
incompressible laminar flow. Walther et al. [20] employed an adjoint method for
a transonic axial compressor stage shape optimization, which is similar to previous
external airfoil shape optimization. Relevant attempts on duct flow problems include
[5, 17, 16], which had detailed derivations of adjoint equations and boundary condi-
tions as well as discussion of appropriate objective function selection. However, the
form of the adjoint boundary conditions for internal flows was not clear in terms of
implementation, and the duct geometries and flow conditions were essentially two

dimensional and thus simpler than a centrifugal compressor return channel.

As mentioned in [16], both the flow field and adjoint boundary conditions require
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careful setup because improper choices can result in solver divergence or converge to
an incorrect solution. This challenge is significant in internal flow problems because
the flow field is more sensitive to boundary conditions than in external flow problems
where boundaries can be set far away from the flow region of interest. This thesis
addresses the numerical instability issues of the boundary condition derivation as well

as solution validation.

1.3 Research Questions

In this thesis, an automated optimization process for return channel loss reduction is
developed for a simplified subset of internal flow regimes, axisymmetric, incompress-
ible, laminar flows. The core of the process, the adjoint method, is derived, validated
and applied in the optimization process.

The following research questions are addressed by this thesis are:

e How do we define the optimization problem (objective function and geome-
try parametrization) and derive the adjoint equations and boundary conditions
for an internal flow problem? What are the differences from an external flow

problem?
e How do we validate the results from an adjoint method calculation?

e What is the optimal return bend design determined by the adjoint method, and
how much loss reduction can be obtained for an axisymmetric incompressible

laminar flow?

e How does a design based on axisymmetric incompressible laminar flow, perform

in an axisymmetric compressible turbulent flow?

1.4 Thesis Contribution

The following are the contributions of the thesis :

17



e Proper adjoint equations and boundary conditions are derived and validated for

the internal flow optimization problem.

e An optimal return channel design is obtained using adjoint method for an in-

compressible laminar flow.

e The loss reduction is assessed in a compressible turbulent flow to provide an
explanatory evaluation of the usability of the incompressible laminar flow situ-

ation.

18



Chapter 2

Implementation

2.1 Optimization Framework

This thesis describes the use of an adjoint method in an automated gradient-based
optimization process for return channel design. With reducing losses as the goal and
with many continuous design variables to modify, it is reasonable to use a gradient-
based optimization method. The optimization process can be illustrated with the

flowchart in Figure 2-1. Beginning with a baseline geometry X, each optimization

Objective
J
X > Solver Optimizer (» X=X+dX
y Gradient
dJ/dX
Convergence < :
Criteria .| Optimal

Figure 2-1: A typical gradient-based optimization process

iteration provides information on the objective function J, a quantitative metric that
measures how good the current design is, as well as information on its gradient d.J/dX
with respect to the design variables X. Using the gradient information the optimizer
then chooses the direction and magnitude of design variable modification dX to effi-

ciently proceed with optimization iterations until an optimal design is achieved.
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In this thesis, a Quasi-Newton method is employed to utilize the gradient informa-
tion to construct an approximation of the Hessian matrix, which is a square matrix of
all second-order partial derivatives of the objective function. The approximate Hes-
sian matrix is then used to provide appropriate direction and magnitude for design
variable modification to accelerate the convergence of optimization. The optimizer
can be faced with a large number of design variables, resulting in a dense full Hessian
matrix and requiring large memory for matrix storage. Therefore, an extension of the
Quasi-Newton method, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) method [3], is selected to reduce the memory requirement. L-BFGS has been
successfully used in aerodynamic design and optimization together with adjoint-based
gradient calculation [7].

Instead of explicitly forming and storing the dense approximate Hessian matrix,
L-BFGS uses history from a few previous steps to update an implicit approximation
of the Hessian matrix at the current step. In this thesis the L-BGFS algorithm from
the optimization library NLOpt [14] is used.

The overall optimization process is shown in Figure 2-2. The optimizer starts

Flow Objective
Solver > J
Original New
Geometry LBFGS |—» Geometry [—>» GFFD
X A X+dX
A Adjoint | Gradient
Solver 7l ddidX
Convergence < Optimal
Criteria Design

Y

Figure 2-2: Adjoint-gradient-based optimization process

from a baseline geometry X, solves for the flow field to obtain the objective function
J, and the adjoint field to obtain the gradients d.J/dX. The optimizer then uses
the gradient information to decide what design variable modification dX is needed,
and executes the geometry deformation with the geometry deformation algorithm
(generalized free-form deformation, GFFD, described in the next section) to form

a new geometry X + dX. The optimization loop iterates until the design variable

20



modification is smaller than a predefined convergence criteria, and the geometry at
this step is considered the optimal design. Solving for the adjoint field and calculating

the gradient is the central component in the optimization process.

2.2 Objective Function Definition

As a first step in the optimization process, it is necessary to define an object function

J. Figure 2-3 shows the governing equations and boundary conditions of the flow

field.

- Vi+VP -V .-uyVi=10
V-id=10

Shroud

z=10

-
-

Outlet

541
i
£
=Ly
aqll
=y
H

Figure 2-3: Schematic of flow field governing equations and boundary conditions

Following previous research [1], an appropriate objective function for a return
channel should reflect how much loss is generated in the channel. One definition

would thus be the difference in mass flux of stagnation pressure between the outlet
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and the inlet of the channel. For an incompressible flow,

J=| (o0 <P+£§E> dA (2.1)

where (2 is the flow domain, 02 is the domain boundary, 7 is the unit normal vector
at the boundary, @ is the velocity, p is the fluid density, and P is the static pressure.

Equation 2.1 is in terms of a boundary integral. As mentioned in [16] and shown in
the later derivation of adjoint equations, using a domain integral instead of a boundary
integral as the objective function makes the form of adjoint boundary conditions free
from the specific form of the objective function and therefore easier to implement.
We thus transform Equation 2.1 to a domain integral.

For a steady incompressible laminar flow, using integration by parts and Navier-

Stokes equations,

N
i
m\
2
N
&
N
’.U
+
R
M| g
N
j= N
b

S~— 55— 55—

£
q
-
<
&
Q,
<

Il
o~

(7 - uVi) - TdA — / U@ - Vidv (2.2)
Q Q

If a velocity inlet, a pressure outlet and non-slip walls are used as the boundary
conditions as shown in Figure 2-3, then we have 77 - uV4 = 0 at the outlet and @ =0
at the wall. As a result [y, (7- uV) - 4dA is zero at these boundaries. We also

assume 7 - uVd = 0 at the inlet. If so, we can write
J = / (ﬁ-uVﬂ’)-ﬁdA—/uVﬂ’-VﬁdV
a0 Q
= — / uVi - VudV (2.3)
Q
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Since the inlet velocity is enforced in later calculations, 7 - uV# is in fact non-zero.
However, calculations show only a small difference (~1% in relative difference) be-
tween the boundary integral and the domain integral objective functions. This means
the gradient-free inlet assumption is a good approximation for an incompressible lam-
inar flow using the boundary conditions we have specified.

In this thesis, therefore, we define the objective function as
J=- / uVi - VudV (2.4)
Q

the interpretation of which is the entropy generation over the entire flow field.

2.3 Generalized Free-form Deformation

Once the objective function is defined, a geometry parametrization scheme needs to
be developed [1]. The design variables on which the objective function is dependent
are defined as the control points derived from the parametrization. In this thesis the

free-form deformation (FFD) [19] is used as the basis of the geometry parametrization.

=

g_ a

Figure 2-4: FFD example [18]. Left: original geometry, right: deformed geometry

FFD has been widely used in computer graphics, especially computer-aided design,
3D geometric modeling and 3D object sculpturing [19, 10, 6].As illustrated in Figure
2-4, FFD is essentially a map between the original coordinates and the deformed
coordinates. The method defines control points aligned as rectangular blocks around
the original geometry, and then uses the control points as the basis of Bézier curves to

translate the displacement of control points into deformation of the geometry inside
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the blocks. The implementation is that the original geometry is first transformed into
non-dimensional coordinates

where § is the non-dimensional coordinate, Z is the original coordinate, X, and

)_('max are the coordinates of the corner points of the rectangular blocks. Assuming
(n+1)x (m+1) control points are defined, the deformed non-dimensional coordinates

t are computed as follows

n

Y bim(s(1))bin(s(2) P, (2.6)

§=0 i=0

=
|

where b, y(u)’s are Berstein coefficients defined as

B j = w;;(5;; + Ag,)

Here A3 ; denotes the deformation and w;; is a weighting function set as (1,1) in

this thesis. The deformed coordinates are

— — —

fdef - E (Xma.x = Xm'm) B 2 Xmin (27)

N A N S A S

........

s=6
(a) Undeformed Grid with un-displaced control points. (b) Deformed Grid.

Figure 2-5: FFD applied to a grid of lines using 4 x 3 control points [18]
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A key advantage of FFD is its topology-preserving property [18]. As shown in
Figure 2-5, topological relations between the grid lines are preserved after the de-
formation, resulting in no lines intersecting with others. This property ensures the
quality of the computational mesh to remain stable during deformation, preventing
any negative volume cell from being created. FFD also has a disadvantage that the
control points for the original geometry have to align in rectangular blocks, and this
is very restrictive when deforming a relatively complex geometry such as the return
channel. Control points in rectangular blocks cannot provide fine deformation follow-
ing the geometry curvature either. Therefore, a generalized FFD (GFFD) has been
developed to overcome the control point restriction.

The idea of GFFD is to treat the return channel as the deformed outcome of
a rectangle. The inverse mapping function F~! converting the coordinates of the

rectangle (u,v) into the return channel coordinates (z,y) can be predefined as

(iL’,y) = F_l(u,v) = ((a?(u), y(u))shroud - (:II(U), y(u))hub) v

The forward mapping function F' converting the return channel into the rectangle
is unknown. Using Newton’s method, the map matching the original geometry and
the rectangle is solved for and the original coordinates are converted to rectangular

coordinates according to the following algorithm:

e Guess rectangular coordinates (u,v)

e Find corresponding guess in original coordinates (z,y) by mapping (z,y) =

F~Y(u,v)

e Calculate the error £ between the (x,y) guess and the true coordinates

Update rectangular coordinates (u,v) = (u,v) — (VE1)"1.¢

Loop until the error is small enough (107'2 relative error in this thesis) and

every point is considered matched

Once the rectangular coordinates are found, GFFD follows the conventional FFD and

deforms the rectangle. The deformed rectangle is then mapped back into the deformed
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return channel. This process is shown in Figure 2-6. The original computation mesh,
shown as blue dots in the first subplot is first converted to the rectangle in the second
subplot using the forward mapping F. The left boundary of the rectangle is the inlet
of the return channel. The FFD control points are assigned to the rectangle, shown
as red dots. Going from the second to the third subplot, FFD translates the control
point displacement to a deformation of the rectangle. The inverse mapping F~! is

then applied to convert the rectangle back to deformed return channel in the fourth

subplot.
3
8 P L T E T
* : . .
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Figure 2-6: GFFD mapping schematics

2.4 Adjoint Equation Derivation

The next block in the optimization process, the gradient calculation using the adjoint
method, is the subject of this section.

Suppose a small perturbation is introduced to the design variables, s;, which is
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reflected in the objective function J. The conventional way of computing the gradient
of the objective function with respect to the design variables, is to use finite-difference
(FD)

ﬂ ~ J(Si + 55,‘) — J(S,)

| — ... 9.

where NV is the dimension of the design variables. This requires N + 1 evaluations
of the objective function, or N + 1 flow field solutions. Moreover, a concern about
gradient-based optimization methods is that they can only converge to local opti-
mums, and the only way to obtain a global optimum is to start from a number of
different baseline geometries to cover the entire design space, making the problem
computationally expensive as the number of flow solutions becomes large. It is this
difficulty in high-dimensional gradient-based optimization that motivates the intro-
duction of the adjoint method. We therefore use the continuous adjoint method for

gradient calculation, as described below.

We can express any small perturbation as having contributions due to a pertur-

bation in the flow field and a perturbation in the geometry.

aJ du oJ oJ

For the perturbed flow field with the unperturbed geometry is

57 = —/5(uVﬁ-Vﬁ)dV
Q

= — / 2uvVY - VéudV (2.10)
Q
The original flow field satisfies the following governing equations

V.i=0 (2.11)
@ -Vi+VP—V-uVi=0 (2.12)

n all following discussions, the fluid density p is set to 1 kg/m*® due to the incompressible
assumption.
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The perturbed flow field satisfies the linearized equations

V-di=0 (2.13)
- Voi+0u-Vi+ VP -V - uVoui =0 (2.14)

If only the geometry is perturbed and the original flow field is forced to stay
the same, the flow field will not satisfy the linearized equations, and the previous

Equations 2.13 and 2.14 become

V.6i=Rp (2.15)
@- Vi + 6t - Vii + V6P — V - uVéii = Ry (2.16)

where Rp and Ry, are non-zero residuals. Rp is denoted as the pressure residual and

Ry as the velocity residual.

350 T T T T

T T
| #—e Finite Difference
= e -o [Forcing FD
300 +
250 |
3
200
150 T
1, 1 5 5 7 8 9 10
Control points

Figure 2-7: Gradient results computed using direct finite-difference and residual forc-
ing finite-difference at Re~40

Assume the perturbations made above are small enough that the linear approxi-
mations are satisfied. If so, adding the residuals obtained from the unperturbed flow
field with the perturbed geometry to the right hand side of the governing equations

as forcing terms with the unperturbed geometry should drive the unperturbed flow
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field to become the perturbed flow field. To verify this, a test case was run on the
return channel to compare the gradient computed using a direct finite-difference and
the residual forcing finite-difference. The results are shown in Figure 2-7. 12 con-
trol points were put on the return channel shroud, and gradient was computed using
the two methods at each control point. Figure 2-7 shows that the gradient results
are within 2% for the direct finite-difference and the residual forcing finite-difference.
In all following discussions, therefore, the direct finite-difference and residual forcing
finite-difference are not distinguished and all gradients, unless specially noted, are

computed using residual forcing.

Our next target is to insert the linearized equations as controls into the objec-
tive function perturbation in order to eliminate the contribution from the flow field
perturbation. This is done by multiplying the linearized equations 2.15 and 2.16
with Lagrangian multipliers, called adj\oint variables in this thesis, ¥ and ¢, and plug-
ging them into the perturbed objective function. The variable ¥ is called the adjoint

velocity, and g the adjoint pressure.

5] = /(—2uVﬁ-V66+6‘-(ﬁ-V6ﬁ+5ﬁ-Vﬁ+V6P—V~MV56)+(V~6ﬁ)q)dV
Q
—/(6-Ry+q-RP>dv
Q

- / (—2uVoid - -G+ 2uVE - - 06+ @ -7 68T
o0
+7- 6P T — (7 pV &) - T+ 81 - pii - Vi + q - 71 - 51) dA

—/(-5&-(v-zwﬁ)-5a-va.5+5a.a-w+5a-(v-wﬁ)ma-vq
Q
+(5P-(V-U))dV—/(ﬁ-RU+q-Rp)dV

Q

_ / (8- (27 - VG + 7 - uVF + (i@ - )T + q- ) + 6P -5
on
(7 - uV6E) - (7 + 20)) dA
—/(M.(—v-zwzz—va-5+ﬁ-w+v-wa+vq)+ap-(v-a))dv
Q

—/(17- Ry +q- Rp)dV (2.17)
Q
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To eliminate the contribution from the flow field perturbation, the sum of terms
in the domain integration containing 4 or 6 P must be set to zero, forcing the adjoint

variables to satisfy the following steady state adjoint equations

V.5=0 (2.18)

§-Vi—V§- -5+ Vq+V-uVi=2V.- Vi (2.19)

The terms in the boundary integrals must be eliminated also, yielding

8- (27 Vi + 7t - pVT + (@A) + q - 7)

+ 6P -fi-5— (- pVéd) - (T+2) =0 (2.20)

This results in the following adjoint boundary conditions:

e At the inlet and wall, since the velocity stays the same, du = 0, and the shear

stress is assumed negligible, meaning 7 - Vi = 0, we have

§P 77 =0 (2.21)

e The outlet is set as a pressure outlet, so 6P =0, and 7 - Vi = 0. Thus

A uVE+ (@ 7T +q-7=0 (2.22)

The form of adjoint boundary conditions implemented are

o At the inlet and wall

1
I
o

(2.23)

e At the outlet
7=0, ¢q=0 (2.24)

The adjoint field reflects how much an upstream perturbation can influence the

downstream flow field, which means the adjoint field generally propagates in the
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Figure 2-8: Schematic of adjoint field governing equations and boundary conditions

opposite direction of the flow field. The inlet of a flow field thus serves as an “outlet” in
the adjoint calculation and usually has little influence over the adjoint field upstream
if set correctly. In the return channel calculation, setting the inlet adjoint boundary
with a Dirichlet boundary condition turns out to cause reflections and numerical
oscillations near the inlet. To damp out the oscillation, an artificial viscosity nine
times the laminar viscosity is introduced to the domain from the inlet to one inlet
width downstream. The inlet is set as an outflow Neumann boundary so that the
remaining oscillations are carried outside the channel. The final form of the adjoint

boundary conditions are

e At the inlet

31
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(2.25)
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o At the wall
=0 (2.26)

e At the outlet
v =0, g=20 (2.27)

The overall adjoint field schematic is shown in Figure 2-8. The artificial viscosity
layer is excluded from the objective function integration domain. The influence on
loss reduction and gradient calculation is negligible because the layer is very thin and
the inlet geometry and velocity remain unchanged.

The only terms left in the perturbed objective function are the domain integrals

containing the residuals, and the gradient can be calculated as

dJ 1 . oJ

The adjoint equations 2.18 and 2.19 have also been seen in [4, 17, 22]. However,
[4] and [17] both mentioned that some adjoint equation formulations may cause insta-

bility in solutions, though no definitive fix was derived. Looking back on the adjoint

equations
V-uv=0 (2.18)
©-Vi—-Vi-74+Vqg+V . -uVeg=2V.uVvy (2.19)
and the adjoint boundary conditions
e At the inlet
7 V=0 (2.29)
e At the wall
=20 (2.30)
e At the outlet



it can be noticed that no adjoint velocity or pressure goes into the domain from the
boundaries, so the only force driving the adjoint field is the right hand side of the
adjoint momentum equation, 2V - uV#. As the laminar viscosity p becomes smaller,
the forcing will become too small to distinguish from numerical oscillations. Based
on this assumption, the adjoint equations are reformulated.

Start by substituting (¥ — 2i) with v*

V- +V-4=0 (2.32)
i@ -Vo* —Vi-v* +Vqg+ V- uVor =0 (2.33)

Since i satisfies the continuity equation, we have

V.-v* =0 (2.34)
i - Vo* — Vi -v* +Vq+ V- uVor =0 (2.35)

And the adjoint boundary conditions become the following form accordingly

o At the inlet

- Vo =0 (2.36)
o At the wall
v* =0 (2.37)
e At the outlet
vv=-2i, ¢=0 (2.38)

In the new formulation the adjoint field is driven not by a forcing term but instead
by the adjoint velocity entering the channel outlet with the magnitude of 2u. The
overall adjoint field schematics are shown in Figure 2-9. Using the new formulation,
a set of new adjoint gradient results are obtained as

aj _ 1
ds  ds

] 5
/ (@ +20)- Ry +q- Re)dV + 5 (2.39)
Q
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Figure 2-9: Schematic of adjoint field governing equations and boundary conditions

The adjoint field v* and g is independent of the design variables s. Ry, Rp and g—i
are evaluated for each dimension of the design variables, but the computational cost
is trivial. Therefore, all gradients can be obtained at the cost of one flow solution

and one adjoint solution.

2.5 The Flow and Adjoint Solvers

The implementation of adjoint method requires in-depth knowledge of the flow solver.
For this reason, commercial CFD softwares were not used for this thesis and in-house
codes were developed and employed.

The flow solver used solves the continuity equation and unsteady Navier-Stokes
equations. The adjoint solver solves the unsteady version of the adjoint equations

derived in the previous section. The unsteady simulation is run until it reaches a
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steady state, determined by tolerances set for the flow field and adjoint field variation
during each time step. The numerical scheme in the solvers, which is almost identical
to that used in the code CDP [15] developed at Stanford University, uses second order
discretization in space and time. Details of the numerical scheme can be found in

[22, 21]
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Chapter 3

Adjoint Gradient Validation

In this thesis we use an axisymmetric incompressible laminar flow calculation as a
simplified scenario for the return channel optimization problem. A velocity inlet with
parabolic velocity profile is selected to reduce the loss from viscous dissipation near
the inlet. In contrast, a uniform inlet velocity profile with the same mean yields
nearly three times the loss in the flow field. A pressure outlet and non-slip walls are
also used as the boundary conditions for the flow field.

The laminar viscosity is set to the cell volume average effective viscosity based on
a compressible turbulent flow return channel calculation in ANSYS Fluent to provide
some connection to the actual situation. The effective viscosity field is shown in
Figure 3-1. The cell volume average effective viscosity is approximately 0.01 and the
inlet Reynolds number in the following calculations are therefore approximately 400.
The relevance of the solution obtained using the simplifications will be discussed in
the next chapter. This chapter focuses on validating the gradient results using an
adjoint calculation against gradients obtained by finite-difference calculation.

Axisymmetric test cases were first run at low Reynolds numbers (Rex4 and
Re~40). The adjoint gradients agree well with finite-difference gradients at those
low Re, and the detailed comparison is covered in the Appendix. The discussions
in this chapter covers the calculation at Re~400. 12 control points were evenly put
along the shroud, with another 12 control points along the hub. The nearest two

control points to the inlet and the outlet were frozen to ensured fixed inlet and outlet
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Figure 3-1: Effective viscosity field from an axisymmetric compressible turbulent flow
calculation in the return channel

geometry. Since numerically the roles of hub and shroud are the same in the flow
and adjoint calculations, only the gradient calculations for shroud control points are

shown.

3.1 Mesh Convergence Study

A mesh convergence study was first carried out to determine if the mesh was suffi-
ciently refined for flow field and adjoint field calculations. Three mesh files, denoted
as “regular mesh”, “fine mesh” and “finer mesh”, have 35136, 70272 and 140544 nodes
in the 2D domain respectively. The objective functions, finite-difference gradients and
adjoint gradients computed on all three mesh files are shown in Figures 3-2, 3-3 and
3-4. Both the objective function (< 1% change) and gradients (< 3% change) have
marginal change as the mesh is refined, implying the flow field and adjoint field cal-
culation have achieved mesh convergence. Later calculations use the “regular mesh”

as the computation mesh.
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Figure 3-3:
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Adjoint gradient mesh convergence
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Figure 3-4: Mesh convergence of the adjoint gradient

3.2 Component-wise Comparisons

From Equation 2.39, the adjoint gradient can be expressed as

8 e
ds  ds Jq

((* +2i) - Ry + q- Rp)dV + g—j (2.39)

The adjoint gradient consists of three components, the adjoint velocity component

1 -
- f (v* + 2@) - RydV (3.1)
dS 0
the adjoint pressure component
L RpdV (8:2)
and the geometry component
aJ
el 23
s (3.3)

In the residual forcing finite-difference calculation, the gradient is also made up
of three different components. The first is the velocity residual component, which

is the gradient computed when the residual forcing is applied to the Navier-Stokes
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equations on an unperturbed geometry

V-d=0 (3.4)
i-Vi+VP—V-uVi=Ry (3.5)

The second component is the pressure residual component, which is the gradient com-
puted when residual forcing is applied to the continuity equation on an unperturbed

geometry

V.-%=Rp (3.6)
- Vi+VP -V uVi=0 (3.7)

The third component is the geometry component, which is computed using the origi-
nal converged flow field and the perturbed geometry. The geometry component here
is the same as in the adjoint gradient.

Figure 3-5 shows the comparison of the adjoint velocity component and the ve-
locity residual component, Figure 3-6 shows the comparison of the adjoint pressure
component and the pressure residual component, and Figure 3-7 shows the compari-
son of the adjoint gradient and the finite-difference gradient. The three figures show
that even though the relative error at some points can be as large as 40% between
the adjoint gradient and the finite-difference gradient, they have the same signs and
trend with respect to control points. Therefore, the adjoint gradients are taken as

validated and useful to apply in the optimization process.
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Figure 3-5: Comparison of the adjoint velocity component and the velocity residual
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FD gradient vs. adjoint gradient
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Figure 3-7: Comparison of the adjoint gradient and the residual forcing finite-
difference gradient
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Chapter 4

Assessment of Optimization Result

4.1 Optimal Design for an Axisymmetric Incom-

pressible Laminar Flow

Using the components described in Chapters 2 and 3, an optimization case of an
axisymmetric return channel is performed at Re~400 starting from the baseline ge-
ometry shown in Figure 4-1 which is the optimized geometry from [1].

A total of 12 control points were on the shroud and another 12 on the hub. The
number of control points is a balance between the degrees of freedom for the geometry
deformation and the rate of convergence of the optimization. The two control points
on both the shroud and the hub nearest to the inlet and the outlet were frozen
to fix the inlet and outlet geometry. The actual optimization problem is thus 16
dimensional. The L-BFGS algorithm used in this thesis requires lower and upper
bounds for the design variables. The displacement of the 8 shroud control points
were therefore restricted to £250% of the channel width, and the displacement of the
hub control points were restricted to -150%~+250% of the channel width. The -150%

bound was set to prevent the diffuser and the vane hub sections from overlapping.

The convergence criteria is set such that convergence is considered achieved when
the objective function values from two consecutive optimization iterations are less

than 1% apart. Optimization runs were started from a number of different initial
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Figure 4-1: Schematics of flow field geometry, governing equations and boundary
conditions
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Figure 4-2: Optimization convergence history of objective function
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geometries, where control points were displaced from the baseline geometry rang-
ing from -150% to +250% of channel width at 50% channel width intervals before
optimization began.

Figure 4-2 shows the convergence history of the objective function during the
computation that produced the overall optimal design. The optimization converged
in 16 iterations and the objective function had an approximately 5% reduction from
the baseline geometry shown in Figure 4-1.

Figure 4-3 shows the difference between the baseline and optimal design geome-
tries. Again note that the “baseline” geometry is the optimized geometry of reference

[1]. The change in velocity field is given in Figure 4-4 which compares the veloc-

0.3
--- Baseline
0.25 - Optimal
>
0.2
1 L Il I L 1 1 I L L L | L L L 1
0.1 0.15 0.2

>

Figure 4-3: Comparison of baseline design (red) and optimal design (blue)

ity magnitude of baseline and optimal geometry. Figure 4-5 shows the normalized
deformation in axial and radial directions from baseline to optimal geometry. The im-
proved design has a more stretched shroud in the diffuser and return bend sections,
and a slightly widened and straightened vane section. The deformation generally

agrees with the design guidelines in [9], such as increasing the axial extent of the
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Figure 4-4: Velocity magnitude field of baseline (left) and optimal (right) geometry,
normalized against inlet mean velocity
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Figure 4-5: Geometry deformation from baseline to optimal design, normalized
against inlet width. Left: axial deformation, right: radial deformation
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return bend.
For the incompressible laminar flow, the normalized entropy generation field is
shown in Figure 4-6, and the stagnation pressure field normalized against inlet dy-

namic pressure is shown in Figure 4-7. The modification mainly reduces the loss

Normalized Entropy Generation Normalized Entropy Generation Difference
0.05 0.2 0.35 0.5 0.65 0.8 0.95 0 002 004 006 008 01

Baseline Optimal

Figure 4-6: Incompressible laminar low normalized entropy generation of the baseline
(left) and optimal (middle) geometry, and their difference (right)

from flow separation on the shroud in the diffuser section, and on the hub of the
return bend. The velocity gradient along the channel width is slightly reduced in the
vane near the outlet, and a small amount of loss reduction is also obtained in this

region.

4.2 Design evaluation in an Axisymmetric Com-
pressible Turbulent Flow

The previous optimization was done for an incompressible laminar flow and it is not
clear whether the geometry is an improved design for a compressible turbulent flow.

To address this question, the optimal design was used in a compressible turbulent
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Figure 4-7: Incompressible laminar flow stagnation pressure normalized against inlet
dynamic pressure, of the baseline (left) and optimal (middle) geometry, and their
difference (right)

flow calculation in ANSYS Fluent with the same conditions in [1]. The flow has an

inlet Mach number of 0.66 and an inlet Reynolds number of around 300000.

The compressible turbulent flow fields for both the baseline and optimal geometry
are shown in Figure 4-8. The normalized entropy generation field is shown in Figure 4-
9, and the stagnation pressure field normalized against inlet dynamic pressure is shown
in Figure 4-10. The modification of the optimal design makes the flow separation
happen earlier on the shroud in the diffuser section but shrinks the separation region,
thus reduces the entropy generation. On the hub near the exit of the return bend
and in the vane, the stagnation pressure drop is also reduced in the optimal design.
Compared with Figure 4-6 and 4-7, the incompressible and compressible calculations
both show that the baseline geometry has higher losses (i) on the shroud in the diffuser

section and (ii) on the hub in the return bend than the optimal design.

Using the objective definition in [1], namely the stagnation pressure loss normal-
ized by inlet dynamic pressure, the optimal design has gained approximately 11%

further loss reduction in the compressible turbulent flow calculation than the base-
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Figure 4-8: Compressible turbulent flow normalized velocity field of the baseline (left)
and optimal (right) geometry
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Figure 4-9: Compressible turbulent flow normalized entropy generation of the baseline
(left) and optimal geometry (right)
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Figure 4-10: Compressible turbulent flow stagnation pressure normalized against inlet
dynamic pressure, of the baseline (left) and optimal geometry (right)

line geometry which is the optimized geometry in [1]. The result indicates that the
incompressible laminar flow calculation may be able to predict trends in computed
performance, but it must be admitted that the quantitative effects of compressibility

effects and turbulence modeling are unknown.
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Chapter 5

Summary and Future Work

5.1 Summary

e An automated gradient-based optimization process using adjoint method has
been constructed for centrifugal compressor return channel loss reduction. The
methodology includes a domain-integral objective function that reflects the en-
tropy generation in the flow field and a generalized geometry parametrization

and manipulation algorithm based on free-form deformation.

e The method is based on axisymmetric incompressible laminar flow, for which
the appropriate adjoint equations and boundary conditions were derived for the
internal flow problem. The adjoint-based gradient calculation was also validated

against finite-difference calculations.

e The objective function evaluation, adjoint-based gradient calculation and the

geometry deformation have been connected with a quasi-Newton method, L-

BFGS.

e An optimal design was proposed through the optimization process after explor-
ing a much larger number of designs than previous research. The proposed
geometry achieved an approximately 5% performance improvement for an ax-

isymmetric incompressible laminar flow.
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e An axisymmetric compressible turbulent flow computation was used to asses
the proposed geometry at the actual conditions. The computation showed an

11% performance improvement from a previously optimized design.

e The incompressible laminar flow simplification thus has potential to provide
useful trends for design optimization, although it is still necessary to assess the

quantitative effects of compressibility and turbulence modeling.

5.2 Future Work

The adjoint calculation in this thesis has been limited to axisymmetric incompressible
laminar flows. Adjoint calculations have been successful for compressible turbulent
flow and a main target for future work is the inclusion of compressible turbulent flow
calculation capability, which requires implementing the adjoint method in a RANS
solver.

As discussed in [1] the impeller, the return channel and the 90° need to be opti-
mized as a whole. Therefore, another recommendation is to apply the adjoint-based
optimization process to a full compressor stage.

An aspect of adjoint method that has not been investigated in depth is the ro-
bustness of the adjoint equation and adjoint boundary condition formulation, and
its influence on the stability and accuracy of the solution. This is especially crucial
to internal flow problems as they tend to be sensitive to the choice of flow field and

adjoint field boundary conditions.
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Appendix A

Validation of Adjoint Gradients at

Low Reynold Numbers

Before proceeding to the Rex<400 study in Chapter 3, a few cases were run at lower
Reynolds numbers using the adjoint formulation given in Equations 2.18 and 2.19.
The Reynolds numbers were lowered to 4 and 40 by raising the laminar viscosity.
Since in these Reynolds numbers the viscous dissipation dominates the losses and flow
separation is absent, the cases can only serve as test cases. However, the comparison
between the low and high Re cases led to the adjoint equation reformulation, so it is

still helpful to include the low Re results in this appendix.
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0.000
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~0.005

—0.010

~0.015

6 7 8

6 7 8 ) : T
Control point Control point

(a) Gradient results (b) Relative error

Figure A-1: Comparison of the adjoint gradient and the residual forcing finite-
difference gradient
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Figure A-1 shows the comparison of the adjoint gradient and the finite-difference
gradient at Re=z4, and the relative error between the adjoint gradient and the finite-
difference gradient. It can be seen that the relative error is within 1.5%.

Figure A-2 shows the comparison of the adjoint gradient and the finite-difference
gradient at Rea40, and the relative error between the adjoint gradient and the finite-
difference gradient. The adjoint gradient is not as accurate as in the Re~4 case, but

the relative error is still within 9%.
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Figure A-2: Comparison of the adjoint gradient and the residual forcing finite-
difference gradient

The optimization process is also checked using the low Re calculations. An opti-
mization case was run at Re~40 by moving 8 control points on the return channel
shroud. A total of 12 control points were aligned on the shroud and another 12 on
the hub. The two control points on both the shroud and the hub nearest to the inlet
and the outlet were frozen to fix the inlet and outlet geometry. The displacement
of the 8 shroud control points were restricted to £50% of the channel width. The
convergence criteria is set such that the convergence is considered achieved when the
objective function values from two consecutive optimization iterations are less than
1% apart.

Figure A-3 shows the convergence history of objective function during the opti-
mization run. The objective function had an approximately 77% reduction.

The optimal design from this optimization case is shown in Figure A-4. Essentially
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Figure A-3: Optimization convergence history of objective function

the optimizer widened the channel as much as possible to slow down the flow and
reduce viscous dissipation. This result is not particularly helpful for the actual return

channel design, but has been a good test case to check the optimization process.
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Figure A-4: Comparison of the baseline and optimal geometry at Re=z40
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