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ABSTRACT

The purpose of this project was to investigate a key design parameter of a hopper popper:
the force it takes to "load," or invert, the popper. A hopper popper is an injection-molded
rubber toy in the shape of a hemispherical shell that stores elastic potential energy when
inverted. There is new interest for hopper poppers in projectile toys. However, the force it
takes to invert the popper can easily exceed what child can produce.

In the course of the study, tests were conducted on ten different hopper poppers to measure
the force and displacement of loading. Theoretical equations for the buckling of spherical
shells were then correlated to the data. It was found that the equations accurately predicted
the main variables in buckling, which are the Young's modulus of the material, the radius of
the popper, and the thickness of the shell.

Furthermore, the ability of a hopper popper to be bi-stable (invert and stay inverted) was
examined. It was found that the degree of curvature was the biggest factor in the stability of
poppers; the closer the curvature was to 180 degrees, the more stable a popper was when
inverted. Additionally, a more sophisticated brand of hopper poppers, known as Dropper
Poppers, was examined to see what makes them more impressive than ordinary poppers. It
was found that a hole of 0.14 inches in diameter helps these poppers stabilize when inverted
even though their curvature is only 150 degrees. The lower angle was found to reduce
inverting force because the normal force supplied to the bottom perimeter of the popper
had a perpendicular component that helped stretch the popper out as it was being loaded.

Finally, this thesis presents ideas for the future of hopper poppers. One is a mechanism
designed for a blaster, which uses the mechanical advantage of a lever arm to invert a popper.
Another is a design for new hopper poppers which could take less force to invert than a
normal hopper popper, but store the same elastic potential energy.

Thesis Supervisor: David Wallace
Tide: Associate Professor of Mechanical Engineering
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1 Introduction

1.1 Background

A hopper popper, or "popper," is an injection-molded rubber toy in the shape of a

hemispherical shell (Figure 1-1). It stores elastic-potential energy when inverted (Figure 1-2).

Certain hopper poppers are designed to be stable in their inverted state for a period of time.

Hopper Poppers are not a patented technology because they are easily producible (cut a ball

in half) and most physics professors are aware of their basic properties. There are several

versions of hopper poppers on the market today; such as the version at herodads.com

(Figure 1-3) and the Dropper Popper by Petra Toys, Inc. [7]

Figure A-1: The Dropper Popper in the Natural State [2, pp. 48]

Figure 1-2: The Dropper Popper in the Inverted State [2, pp. 48]
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Figure 1-3: Hopper Popper from www.herodads.com

1.2 Objectives

William J. Fienup and Barry Kudrowitz documented a new use of the poppers in designing

new projectile toys in their master's theses. They discovered that a popper could propel a

round foam ball a considerable distance when the popper goes from its inverted state to its

normal state (Figure 1-3).

Figure 1-4: Foam Ball Resting in an Inverted Hopper Popper [2, pp. 49]

Fienup and Kudrowitz went further to design a device called the Hand Popper, which is

currently being developed into a real product. A Hand Popper is a device that holds one

Dropper Popper and allows a user to load it with a ball by pressing the ball into the popper.

6
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The device has a trigger that lightly nudges the inverted popper back into its normal stage,

thereby shooting the ball out. The device passed all of Hasbro®'s safety tests.

The Hand Popper is a novel product, but it has one key drawback. In the words of

Fienup and Kudrowitz: "the greatest issue of concern was the force required to load the

popper."[2, pp. 16] The loading force on early iterations of the Hand Popper was as high as

341bs (Figure 1-4). The team found that high friction between the popper and the delrin

housing caused the popper to resist inversion and created a high loading force. When they

added talcum powder to lubricate the popper, it performed better, but still took 19lbs of

force to invert.

Operational Force Cornparision

3C00

X.0

30,0

* sketch Model Prototype
Elland PoppeiVi
0 Hand Popperv2
o Ha',d Po pporV2 with Taclum Powder Lubricant~

Figure 1-5: Operational Force Comparison [2, Pp. 16]
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The purpose of this thesis is to understand the loading force of a popper and what

design parameters influence it. This thesis examines and analyzes different kinds of poppers

- materials, shapes, and geometries - to see how loading force changes. Also, it analyzes

theoretical models for spherical buckling, a similar process to inverting a popper, to discover

whether the loading force can be predicted by equations.

1.3 Outcomes

The experiments done in this study reinforce the theoretical equations governing buckling in

spherical shells. The design parameters predicted to influence the buckling force - that is

Young's modulus, radius, and thickness of shell - were reflected in the measurements taken.

It was also shown that the Dropper Popper has specific designs that make it perform better

than the average hopper popper. This study should be useful to anyone interested in

designing with hopper poppers.
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2 Theory

2.1 Buckling of Spherical shells

For the elastic buckling of a uniformly compressed spherical shell under uniform pressure,

the buckling point is [10, pp. 496]:

2Eh2
PE= (1)

R2  3(1 v2)

where E: Young's modulus

V : Poisson's ratio

h : shell thickness

R : radius to the mid-surface of the shell

However, empirical tests in literature have found this model to over predict the true

buckling force by 4 0 0 % [5]. A more accurate empirical formula for spherical shells is:

Pr = 0.84ES Et (ha (2)

where Es,Et: secant and tangent modulus

ha : average thickness over a critical arc length Lc

RO : local radius to the outside surface of a shell over the critical arc length Lc
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The tangent and secant modulus are special material properties. Figure 2-1 shows how

they are defined.

Determination of Tangent
and Secant ModulI

/SecwI Moduilus

S&ran, e%

Figure 2-1: Stress-Strain Curve with Tangent and Secant Modulus [9]

The key parameters outlined in the theoretical equations are Young's modulus of the

material, thickness of the shell, and radius of the shell. The critical pressure is proportional

linearly to E, proportional to the square of h, and inversely proportional to the square of R.

2.2 Properties of Elastomers

Poppers are made of elastomers. Elastomers are a kind of material that can undergo very

large strains and bounce back to its original shape because its glass transition temperature is

below room temperature. There are some special properties of elastomers that should be

reviewed before analyzing the poppers in detail.

A stress-strain curve for an elastomer is not linear like for metals. It follows a Neo-

Hookean path, which means its Young's modulus varies with respect strain (Figure 2-1).

Additionally, elastomers are rate dependant. That is, the speed of loading changes the stress-

strain distribution. Figure 2-2 shows the load vs. elongation data for Vytaflex60 Liquid

10



Rubber with a 1/3 in/mmn load rate (solid line) and a 3 1/3 in/min load rate (dashed line).

Notice how the rubber strains with less force when it is loaded faster.

150

100.

.0

0/

0 1 2 3 4
elongation (in)

Figure 2-2: Load vs. Elongation of Smooth-On Vytaflex60 Liquid Rubber [1]

Another important elastomer property is the Muffin's effect. This is the stress softening

of a material with multiple load cycles. For example, if you strain a rubber by 20% and it

takes 40N, after a number of cycles the same strain will take less than 40N. The Mullin's

effect is important to keep in mind for poppers because they are being used for cyclic

loading. However, this is not very crucial because the poppers actually undergo little strain

and high deformations, and it has been proven that the Muffin's effect is less pronounced in

small strains. [4]

Elastomers also behave differently at different temperatures. However, for the purposes

of this thesis, those effects are considered negligible and Will therefore be ignored.
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3 Experiment

3.1 Selected Poppers

Several different hopper poppers were selected for experimentation based on size and

material. The first kind of poppers tested was the Dropper Poppers. There are two variants

of Dropper Poppers: red and green. The red ones are slightly stiffer than their green

counterparts, but they are both the same size. Figure 3-1 shows the dimensions of the

Dropper Poppers. Note that the Dropper Poppers are highly specialized. They have

approximately a 150 degree arc and a variable wall thickness that averages to 0.2 inches.

There is also a hole in the middle of the popper whose effects will be discussed later.

R = 0.94" Rai "t

R. = 1.11 " Full curvature =1500

n 2.18"

Figure 3-1: Dropper Popper Dimensions

The next popper was made by cutting a racquet ball in half (Figure 3-2). It is about as

thick as the Dropper Poppers, but has a larger radius of curvature and is exactly 180 degrees.

12



H = 1.2"=r

Figure 3-2: Home-made Popper

The last family of poppers is made from Smooth-On PMC-870 polyurethane rubber.

This material was originally chosen because it had the same durometer rating as the Dropper

Poppers. However, the durometer rating turned out to be an insufficient parameter for

identifying the material. Instead, a completely new kind of popper was made with completely

different properties. Although this was not what I was aiming for, the new poppers behaved

well and gave me good data.

Recess to allow excess
mold to escape

TOD I Bottom

Figure 3-3: Normal Dropper Popper Mold

To make the polyurethane poppers, a mold was designed in SolidWorks using a model

of a Dropper Popper (see Appendix A). The Mold (seen in Figure 3-3) was rapid prototyped

13

Jl

t = 0.2#1
0



in a stereo lithography printer. It features grooves to allow excess mold to escape and screw

holes to clamp the top and bottom together.

Figure 3-4: Winged Dropper Popper Mold

Additionally, a mold for a winged hopper popper was made to test the idea proposed by

Fienup, W. J. and Kudrowitz, B [2, pp. 93] (Figure 3-4). The idea is that a popper with wings,

or a skirt, will give the user a mechanical advantage in loading as a lower force is applied over

a longer distance.

Figure 3-5: First Group of Polyurethane Poppers (1 a right, lb left)
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Figure 3-6: Second Group of Polyurethane Poppers (2a right, 2b left)

Figure 3-7: Close-up of Bubbles in Sample 2a

Figure 3-8: Third Group of Polyurethane Poppers (3a right, 3b left)

Figures 3-5, 3-6, and 3-8 show the three iterations of popper molds respectively. Each

batch is slightly different. The first group (1a and 1b) came out thicker than a normal hopper

popper because it was not clamped well and the top and bottom molds separated slightly

while curing. The second group (2a and 2b) came out somewhat weaker. The polyurethane

contained bubbles from air entrained while mixing and those bubbles led to significant gaps
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in material in the popper. Figure 3-7 shows a close-up of those bubbles. Vacuum bagging

during the curing process should remove the air bubbles. Finally, the third group came out

closest to the real Dropper Poppers.

3.2 Methods

Each popper was tested to see how much force it takes to invert it with a foam rubber ball.

The basic test setup is shown in Figure 3-9. A screw was fed through the hole in the popper

and then through half of a foam ball of radius 1.7in. Washers were put on the end of the

screw to help distribute the force and keep the screw from ripping through the foam ball. A

support was made from a steel ring and two nuts to oppose the motion of the popper (see

Figure 3-9).

The first set of tests was done on the Zwick/Roell Z2.5 machine. As you can see, two

arms were clamped to the screw, and then the machine pulled up to load the popper. The

loading rate was 50mm/min. The loading rate was not ideal because in practice poppers

would be loaded dynamically and we have seen that the rate of load affects the behavior of

elastomers. The load and displacement of the machine were measured by the load cell.

(a) (b)

Figure 3-9: Popper Test Apparatus Before Loading (a) and During Loading (b)
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Unfortunately, after half the tests were completed, the machine broke down. The setup

was then moved to the Instron 1125 machine to complete the tests (Figure 3-10). The data

from both machines are equally valid because the set-up was the same.

(a) (b)

Figure 3-10: Second Test Apparatus with Home-made Popper (a) and Winged Popper (b)

3.3 Results

Figure 3-11 shows the results of the ten tests conducted. The data points are plotted and

adjusted so that the displacements all start at zero. As you can see, it took more and more

force to invert the poppers up to a certain point after which the necessary force decreased.

The necessary force continued to decrease until the popper was completely inverted. A

breakdown of each plot individually can be seen in Appendix B.
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Force vs. Dispacement of Froni-Loaded Poppers
30

25 p

Dropper Poppers (red)

- - Polyurethane poppers
9 - (wings)

(no wings)

20 -

0 5 10 15 20 25 30 35 40 45
Displacement (mm)

Figure 3-11: Force vs. Displacement of Front-Loaded Poppers

In the first test, which was one of the red Dropper Poppers, it was placed it in a popper

holder to simulate real conditions (Figure 3-12). However, for subsequent tests the popper

was placed straight against the steel ring. The first test generated more jagged data around

the point of buckling, because the friction between the popper and the holder was very great

and resisted the inversion. When the force was great enough to counter the friction, the

popper would slip, and the load would quickly decrease.

Figure 3-12: The Dropper Popper Holder [2, pp. 50]
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The maximum forces measured and their corresponding displacements are listed in

Table 3-1. Additionally, the forces and displacements are ranked in Table 3-2.

Table 3-1: Maximum Buckling Force and its Corresponding Displacement

Hopper Popper Max. force (lb) displacement (mm)

Red popperl 28.29 21.83

Red popper2 27.75 21.87

Red popper3 24.97 20.85

Green popper 22.58 18.4

Home-made popper 17.4 29

Polyurethane-la 25.1 21.5

Polyurethane-2a 11.35 16.8

Polyurethane-3a 12.3 18.5

Polyurethane-lb 27.7 33.5

Polyurethane-3b 19.75 35.5
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Table 3-2: Ranking of Data Points

Ranking of Max Force Ranking of Displacement

(easiest to hardest) (smallest to largest)

1 Polyurethane-2a Polyurethane-2a

2 Polyurethane-3a Green popper

3 Home-made popper Polyurethane-3a

4 Polyurethane-3b Red popper3

5 Green popper Polyurethane-Ia

6 Red popper3 Red popperi

7 Polyurethane-1a Red popper2

8 Polyurethane-lb Home-made popper

9 Red popper2 Polyurethane-lb

10 Red popperi Polyurethane-3b

As seen above, the maximum force required to buckle the poppers ranged from 12.3lbs

to 28.291bs. The rankings show that the first red popper sample took the most force to

invert, and the polyurethane-2a popper took the least force to invert. The displacement at

maximum buckling force occurred in one of three areas. This was due to the geometric

differences between the poppers. These results will be explained further in the next section.

20



4 Discussion

4.1 What did the Theory Predict?

The theoretical equations for spherical shell buckling generally predicted 4-5 times higher

buckling loads than were recorded. The reason for this discrepancy is mostly due to the fact

that hopper poppers are made of elastomers, and so the material properties are hard to

predict under these conditions. Furthermore, the equations of Timoshenko [10] and others

have been found to over-predict the buckling load, as discussed previously in Section 2.1.

In calculating the buckling loads, an approximate Young's Modulus was used. According

to Finite Element Analysis handbooks, the Young's modulus of rubber generally varies from

0.76 to 7.6 MPa. Assuming the load was over the cross sectional area of the foam ball,

equation (2) predicts the loading for the Dropper Popper to be at 371bs of force at a

minimum and 3741bs of force at a maximum. Given this relatively large range, it is clear that

the exact Young's modulus behavior is critical to getting a more accurate approximation.

4.2 Key Parameters

Even though the exact maximum buckling loads cannot be predicted precisely from these

equations, three key parameters can be identified and backed up with the data. These are the

Young's modulus, radius of curvature, and thickness of the popper. As mentioned earlier,

the critical pressure is proportional linearly to E, proportional to the square of h, and

inversely proportional to the square of R. For Young's Modulus, we see that in general the

polyurethane poppers took less force to invert than Dropper Poppers. We can attribute this

21



discrepancy to the fact that the polyurethane was noticeably softer than the Dropper

Poppers, hence a lower Young's modulus and lower buckling load point.

The only popper with a different wall thickness was the la and lb sample of

polyurethane poppers. The equations predict the loading force to be proportional to the

square of h, and we see here that the thicker poppers were approximately 40% harder to

invert than the other polyurethane poppers. In fact, the thicker poppers were 20% thicker,

or 0.24in.

Finally, the radius of the home-made popper was 0.2in greater than other poppers tested.

Although the exact Young's modulus is not known, by physical inspection, it was similar to

the Dropper Popper's. We see that for the home-made popper, the inverting force was less

that all the Dropper Poppers. This could be because it had a larger radius.

4.3 Detailed Look at Dropper Poppers

The Dropper Poppers are designed somewhat uniquely compared to the general hopper

popper. This section will look at distinct design aspects of the Dropper Poppers and how

they contribute to its stability and high performance.

First, Dropper Poppers have a hole of 0.14in in diameter through their center. It is

believed that this hole plays a role in the bi-stability of the popper. When the popper inverts,

the inside (now the outside) rubber around the hole stretches radially. This allows the rubber

to relax and therefore stabilize more. If the hole was not there, the rubber would pull itself

inward and be more likely to invert. In fact, Fienup and Kudowitz filled the hole of a

Dropper Popper in previous tests and found that the Dropper Poppers would no longer

stabilize in the inverted position.
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Figure 4-1: Highlight of Stretched Hole for an Inverted Dropper Popper

Stability proved to be an interesting topic because it affects the predictability in

applications, and so it was explored further. From experimenting with the poppers, it was

found that thickness, arc length, and material stiffness played a large role in popper bi-

stability. The greater the arc length, the more stable a popper would be in its inverted state.

This was seen in the home-made popper, which was completely stable in either normal or

inverted positions. Also, the thicker the popper, the less likely it was to be bi-stable. For

example, the la sample of polyurethane poppers was not stable at all when inverted. Finally,

it was found that the stiffer the material, the more stable it was in the inverted position. It is

believed that stiffer materials can resist pop-back buckling better than less stiff materials.

Overall, it is believed the radius does not affect stability and is just a scaling factor for

poppers.

Two other design aspects of the Dropper Popper are its 150 degree radius of curvature

and its round bottom that contacts the surface as seen in Figure 4-2. We can see that because

the radius of curvature for Dropper Poppers is less than 180 degrees, some of the normal

force from the surface upon loading is in the outward normal direction. This helps invert the

23



popper because stretching the material decreases the local elastic modulus and facilitates

buckling. That is also why it is easier to invert a Dropper Popper by hand. The 180 degree

counterpart does not have that advantage because none of the normal force is transmitted

outward.

Hopper Popper (<7r)
& round surface contact

Hemisphere Shell (nr)

& flat survace contact

1,I

tt

Figure 4-2: Force Vectors for Poppers of Different Arc Lengths and Surface Contacts

Furthermore, the round bottom of the Dropper Popper allows the surface contact to roll

and move the popper outward, thus increasing the component of normal force in the

outward direction. For the flat surface counterpart, we see that it cannot roll and that friction

opposes outward sliding between the popper and surface. Friction is also an issue with the

Dropper Popper, but to a lesser extent.

4.4 New Ideas

The polyurethane popper with wings was one new idea explored. This did not turn out to be

as good a performer as hypothesized. The poppers with wings took 50-100% more force to

24
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invert than their non-winged counterparts. It is believed that grabbing the popper by a skirt

restricts outward motion and gives it properties similar to those of the 180 degree shell in

Figure 4-2. Additionally, grabbing the popper by the skirt provides less normal force than

straight surface contact because a percentage of resistance to the load force is going into

deforming the material in the skirt right around the circumference of the popper body.

Another new idea explored was a loading mechanism that could be integrated into

Nerf@ products. Figure 4-3 shows one current blaster on the market.

Figure 4-3: The Nerf@ Ball BlasterTM [2, pp. 99]

The proposed new loading mechanism consists of three steps: (1) initial configuration,

(2) inverting the popper, (3) hitting the trigger and destabilizing the popper (Figure 4-4). This

design has not been tested, but here is how it would work. A long rod would be attached to

the hopper popper via the hole in the middle. A loader on the gun would be rotated, such

that on rotating, it would pull back the hopper popper and invert it. The loader would have a

torsion spring reset itself. When the popper is inverted, a trigger would internally push the

popper and supply enough force to destabilize it and release the elastic potential energy. This

design allows you to use a hopper popper that takes a lot of force to invert because you get
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the mechanical advantage of the loader. This means you can use stronger poppers that shoot

the ball further. Also, you can use completely bi-stable poppers because you can provide a

decent restoring force from your trigger.

step I

step2 - ----

step 3 ..+....+......

Figure 4-4: Sample Blaster with New Loading Mechanism
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5 Conclusions

5.1 Outcomes

Overall, both theoretical equations were found to be insufficient at predicting exact loading

force, but good at predicting dimensional analysis based on three parameters: Young's

modulus, the radius of the popper, and the shell thickness. With detailed material data and

more tests, one can find ways to fit the equations to the data and use it to predict the loading

force for a family of future hopper poppers.

The experiments in this study correlated with theoretical predictions. This gives credence

to the model. In addition, finer design elements of Dropper Poppers were examined to see

how they affected bucking load and bi-stability. This study met the original objectives, which

were to understand the key parameters in inverting a hopper popper.

5.2 Future Considerations

Figure 5-1: Future Popper Design to Try

Hopper poppers have a lot of potential in projectile toys. It is time to design poppers of

specific kinetic energy densities. Also, future work should be done on popper loading

devices that give users a mechanical advantage. This way, poppers that store a lot of elastic
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potential energy and are hard to invert can be used. Additionally, tests should be conducted

on poppers that have a complex curvature. How would a popper behave if it was made of

the cross-section seen in Figure 5-1? Would it be easier to invert? Would it pop back with

the same force as a normal hopper popper?
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Appendix A: SolidWorks Models

Figure A-1: Cross-Section Model of Dropper Popper

Figure A-2: Model of Dropper Popper with Skirt [2, pp. 93]

Figure A-3: Cross-Section of Normal Dropper Popper Mold
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Figure A-4: Cross-Section of Winged Dropper Popper Mold

Appendix B: Additional Plots
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Force vs. Dispacement of Front-Loaded Poppers
30

25

20-

15

10

5

0 5 10 15 20 25

Displacement (mm)
30 35 40

Figure B-2: Force vs.
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Figure B-3: Force vs. Displacement Curve Highlighting the Home-made Popper
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Force vs. Dispacement of Front-Loaded Poppers
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Figure B-5: Force vs. Displacement Curve Highlighting the Winged Polyurethane Poppers (1b is top)
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