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Abstract

Inflation is a substantial modification to the big bang theory, and supernatural infla-
tion is a hybrid inflation motivated from supersymmetry. In this thesis we carry out a
one dimensional numerical simulation to verify the untested analytic approximation of
Radall et al. The results show a good agreement for a wide range of parameters. We
also propose a new method for calculating density perturbations in hybrid inflation,
which shows an excellent agreement with the simulation in one dimension.
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Chapter 1

Hybrid Inflation

Inflation is the epoch when the energy density of the universe is dominated by the

potential energy of a scalar field. During this epoch, the scalar field is either trapped

in a false vacuum or slowly rolling down a hill, the energy density of the universe is

approximately constant, and the scale factor is exponentially growing with time.

Inflation was first introduced to solve the problem of magnetic monopoles pre-

dicted by Grand Unified Theories[3]. By adding an epoch of exponential expansion,

any unwanted relic produced before inflation will be diluted away. It was shown later

that inflation also provides an explanation for the flatness and the horizon problems

of the Standard Model of Cosmology. Recent measurements confirmed the prediction

of inflation for scale-invariant density perturbations and a flat universe.

However, inflation does face the naturalness problem: most inflation potentials

have small parameters, either to have the correct order of magnitude for the density

perturbations or to have enough e-foldings. One way to get over this difficulty is to

construct an inflation potential with small parameters that already existed in particle

physics so that we do not need to introduce new ones. This is the motivation for

Supernatural Inflation[7], a hybrid inflation model with a potential motivated from

supersymmetry. As with other hybrid inflation models, supernatural inflation does

not have a classical solution for the evolution of the scalar field, to which quantum

fluctuations can be treated as small perturbations. The authors of Supernatural

inflation suggested using root mean square of the scalar field as the classical value.
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We will validate the approximation by comparing with a Monte Carlo simulation.

Kristin Burgess in her Ph.D. thesis [2] has reached the conclusion that the analytic

approximation and the simulation are in good agreement provided that we rescale

both the amplitude and the wave number of the analytic calculation for density

perturbation by two factors of order 1. The aim of this thesis is to go one step further

by investigating the dependence of these factors on the model parameters.

1.1 Classical evolution

We will consider a scalar field in a fixed background de-Sitter space, with the scale

factor

a(t) = e Ht

where H is the Hubble constant during inflation. The scalar field <0 is described by

the Lagrangian density

Lp = eHt 2 _ -2HtV 2 2t (1.2)

In a typical single field inflation the mass term would be time-independent. In a

hybrid inflation, however, the mass term is controlled by the second scalar field which

acts as the switch to end inflation. We will consider the mass term of the form:

m2(t) = -m - (I(1.3)

We will set r = 4 in the simulation. The second scalar field is described by another

Lagrangian density but with fixed mass

LO = eHt [ 2 _ e-2Ht(VV) 2 - 2m j2 (1.4)

Note that the Lagrangian densities are defined up to additive constants. These con-

stants will be defined to have sufficient values for negligible variation of H during

inflation.
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The equations of motion are

$ + 3H - e- 2 H V2  =-T (1.5)

b+ H - e- 2 HtV2 -2 (1.6)

Using the slow-roll approximation for the 0 field, we get the evolution as:

0(t) = oce-(m /)(.7

The integration constant was chosen so that b = 'c and m 2(t) = 0 at t = 0. The

mass term for # becomes
2 2 [1_-rp rN] 18

m=- iM0 [ -1-8)

where we have defined

N Ht

P m0/H (1.9)

With the mass term (1.8), the scalar field # has two separate stages of evolution

" Oscillation N < 0, m2 > 0: The # field is trapped at its local minimum.

Classically, there will be no fluctuation, and # will stay at the same value even

when the potential flipped. Quantum mechanically, # will oscillate around the

minimum, and those quantum fluctuations will provide the initial deviations for

rolling down in the tachyon stage.

* Tachyon N > 0, m2 < 0: potential flipped, # has negative effective squared

mass and will roll down the potential hill until reaching a new minimum.

In our toy model, which is constructed as a free field theory, the # field will roll down

forever. For ending inflation, instead of reaching a true minimum, the # field will

reach an ending value #end.
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1.2 Expansion in Modes

We will approximate space by a lattice so that the problem can be solved numerically

To make the calculations as efficient as possible, we work in one space dimension.

Although we are really interested in three dimensions, the one-dimensional model

will allow us to test the analytic approximation that will be described in Section 2.3.

Assume, therefore, that the space consists of a box of fixed coordinate length b, with

periodic boundary conditions with Q independent points. In the computer program,

the number of points Q will be chosen as a power of 2 (Q = 217) so that we can use

the Fast Fourier Transform algorithm to speed up the calculation.

X = --b (1.10)
Q

where 1 = 0, 1, ..., (Q - 1). And the wave number is

27r
k = b "(1.11)b

with n running from -Q/2 to (Q/2) -1. Because of the periodic boundary condition,

only one value of k on the boundary is needed.

The mode expansion of the scalar field is

1 1 [27r- 1/2 (Q/2)-l k i-U

#(x, t) = Y [2j [c(k)eikxu(k, t) + dt(k)e-iku*(k, t)]
/ b -/n=-Q/2

eikx [c(k)u(k, t) + dt(-k)u*(-k, t)] (1.12)
n=-Q/2

where c(k) and dt(k) are creation and annihilation operators. The canonical commu-

tation relation of the scalar field is

[O(X, t)7r(x', t)] = f or,2, (1.13)
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where

(1.14)wX(x) = --
M<b(X)

Using the normalization convention of u(k, t) as in [4] and [2], we can get the

commutation relations for the creation and annihilation operators as

[c(k)c t (k')] = [d(k)d t (k')]

[(k), dt (k')] = [c(k)c(k')]

= t6k,k'

= 0

(1.15)

(1.16)

Substituting the mode expansion back into the equation of motion, we get the equa-

tion for the modes

i + Hit + e- 2 Htk2 u = -mo(t)u (1.17)

Define new function and variable as

k a- _
H

u(k, t)

(1.18)

(1.19)- R(k, t)eo(kt)
2kH

then the equation of motion becomes

ft = -e + R[P2(1 - e-N) -k2 - 2 N] +

S=

k2 -2N

R
3 (1.20)

(1.21)
keN

At early time, the k term in equation (1.17) dominates over the mo(t) term and

the solution will be [4]

u(k, t) = 2 e~-N/2Z(Z)

where

(1.22)

Z = - e-N
H

11
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and Z(z) satisfies
d2Z dZ +z2 +Z z + Z2- - =0 (1.24)

At early time, the mode functions have the form

1 -
u(k, t) ~l eikeN (1.25)

2Hk

or in term of R and 0

R - 1 (1.26)

0 k Ie--N(.7

These equations will be used as the initial conditions for the differential equations

(1.20) and (1.21). For numerical calculation, given the values of R(k, t) and R(k, t),

we can always use the Runge Kutta method to evaluate the values of R(k, t + dt) and

R(k, t + dt). With the step size dt = 5 x 10-4 in units with H = 1, the error in AR/R

is less than 10-' for the entire rage of t. Some results from these integrations are

shown in Fig. 1-1. We can see that all the mode functions increase exponentially at

the same rate at late time, which is consistent with the asymptotic form of the mode

equations when N -- oo

R -b + R[p1 e (1.28)

0 (129)
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Chapter 2

Time Delay Method

Time delay is a method of calculating the primordial density perturbation[5],[6],[8].

At the end of inflation, the inflation field rolls down a hill in its potential energy

diagram toward its true vacuum value. Because of the quantum fluctuations, some

regions may reach the end of inflation earlier than others, and therefore have less

inflation.

This method has the advantage of being simple and intuitive, but it also has some

limitations:

" Valid only if H ~const during inflation.

" Valid only for single field inflation. However, we will make an attempt to use it

for hybrid inflation.

" Requires an assumption of instantaneous ending of inflation. This approxima-

tion can be justified as follows: The characteristic time scale is not the Hubble

scale size, but the time for light to travel a wave length of the fluctuation modes.

But the modes that we are interested in, observable in the CMB, have already

exited the horizon many e-foldings before the end of inflation. So, even if the

transition of inflation takes a couple of Hubble times, it is still 20 order of

magnitude smaller than the characteristic time scale.
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2.1 Time Delay Definition

We will work in the de-Sitter background

ds 2 = -dt 2 + a(t ) 2 dx 2  (2.1)

where

a(t) = eHt (2.2)

The equation of motion for the scalar field in a de-Sitter background is

q+3H*= # + 2v 2  (2.3)
(o a

where

v2o = a20 (2.4)
Ox 2

The equation of motion (2.3) has a homogeneous classical solution o(t). The true

scalar field is of course a quantum field described by a feld operator, but we assume

that at suffciently late times the field is accurately modeled by a classical scalar field

which has small perturbations about the homogeneous classical solution. Thus we

write

O(x, t) = 0 (t) + 6#(x, t) (2.5)

Substituting the above expansion back into (2.3), we have the equation for the per-

turbation part

6q + 3H qy = - a2 q$ + 1V 2jo (2.6)a2  (2.6)

We want to understand the behavior of 60 at late time during inflation when the

Hubble parameter H is constant. As the scale factor a(t) grows exponentially, the

term proportional to 1/a 2 can be neglected and the equation for 60(x, t) becomes

&2v
6q +3H60 =- 26 (2.7)

O0
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If we introduce a new function X(t) = o, then taking a derivative with respect to

time on both sides of the equation for #o gives the equation for x.

a2V
5 + 3Hi = - (2.8)

where we ignore for the moment the explicit time-dependence that V(O) has for the

toy model of hybrid inflation that we are studying. With this proviso, equation

(2.8) is identical to the equation for 60. This second order differential equation has

two independent solutions, and the most general solution is a linear combination of

these two solutions with two free parameters. However, we can show that one of the

solutions is damped at late time. So, at late time 60(x, t) is proportional to 0, and

we call the parameter of proportionality 6r(x). Thus,

60(x, t) -> -6T(x)0o(X) (2.9)

The scalar field can now be rewritten as

#(x, t) = 0 (t) + 6(x, t)

= 0 0(t) - Sr(x)#o(t)

= 0o(t - 6T(x)) (2.10)

So we can consider the perturbed scalar field at different spatial points as the homo-

geneous classical solution, but with a spatially-dependent time delay in its evolution.

The above argument, however, is invalidated in our toy model by the explicit time

dependence of V(#), which leads to an additional term in Eq. (2.8). Nonetheless, the

time-dependent mass of Eq. (1.8) approaches the constant -mo at very late times,

2 N > 1, so the time-delay description will still be valid at these very late times.
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2.2 Proof That Time Delay Is Fixed

From the definition of time delay (2.9), we will need to show that ' ap-

proaches zero at late time

d ( )
dt 40

(2.11)

During inflation the scalar field will roll faster and faster, so one will only need to

show that the numerator approaches zero at late time.

Define the Wronskian as the numerator

W = 600- (2.12)

It follows that

W = -3HW (2.13)

Solution for the Wronskian is then

(2.14)W ~ e-3Ht

So the Wronskian falls off exponentially at late time, or in other words 0t) is
4o

time-independent at late time.

2.3 Randall-Soijacic-Guth Approximation

The root mean square of the field can be evaluated as

#rms(t) = y-'(0q#(x, t)4*(x, t)0)

where 10) is the Bunch-Davies vacuum [1]

c(k)I0) = d(k)l0) = 0

17
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Using the mode expansion (1.12) from previous section, we get

rms(t ) = ( ~ eke-ik'x(0i (CkUk -+ dtku_ ,U, + dk'uk) 0)
k k'

1 ~ >jei(k-k')x uk 2kk'
k k'

1 R(k, t) 2  (2.17)

k

The scalar field # was originally trapped at the local minimum. When the potential

flipped over, it would roll down the hill with an initial velocity determined by quan-

tum fluctuations. Without the quantum fluctuations, this scalar field would stay for

arbitrarily long time at the point of unstable equilibrium. But once it starts to roll

down, its evolution can be treated as classsical, but with inhomogeneities determined

by the quantum fluctuations at earlier times. We want to consider this evolution as a

perturbation about a classical homogeneous solution. Following the approximation in

Randal et. al. [7], we will approximate the homogeneous solution by the root mean

square of the quantum field

#ciassicai(t) = #rms(t) (2.18)

The two point correlation function of the scalar field is

A#(k, t) = (010*(k, t)#(k, t) 0)

R(k t) (2.19)

The time-delay field is approximately

AO(k, t)AT(k) ~I...k. . ' (2.20)
qrms(t)

and evaluated at the end of inflation. The time derivative of the rms (2.17) is

1 R( k t)2-1 R( k' t)R(k' t)
O(k, t) = v (Z R k ) (, 'kI' (2.21)

( k)- /2
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Figure 2-1: RSG approximation for different sets of physical parameters.

Using the mode functions in the previous chapter, we can calculate the mode functions

at arbitrary value of k and t. Some examples of the analytic evaluation for the time

delay field are shown in Fig. 2-1.
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Chapter 3

Numerical simulation

3.1 Field evolution

The scalar field is a quantum field, and its evolution is a quantum process. We will

use random numbers to simulate the creation and annihilation operators in (1.12)

c(k) = a,+ia2

dt (k) = a3+ ia4  (3.1)

where a1 , a2, a3 , and a4 are random numbers with normal distribution of standard

deviation 1/"Vr. Each Monte Carlo realization of the vacuum corresponds to a par-

ticular set of random numbers. The vacuum expectation will be approximated by

taking the average over a large run with many different sets of random numbers. We

can see that the numerical process actually simulates the effect of quantum operators.

(0cI(k)c(k)|0) = ((a, - ia2)(ai + ia2 )) = (a, + a2) = 2(a 2 ) = 1 (3.2)

(Oct(k)c(k' # k)10) = ((ai - ia2)(a' + ia')) = 0 (3.3)

We are considering a toy model in which the scalar field # is a free field with quadratic

potential. Therefore, each mode can evolve independently of the others. Once we have

initialized a random value for the field, we can simply follow the evolution of that

20



numerical value until the end of inflation.

Having the mode functions at arbitrary time and wave number, we can evaluate

the scalar field at arbitrary time and space using the mode expansion. Consider the

first component of (1.12)

c(k)eikxu(k, t)

-1 Q/2-1

= S c(k) eiku(k, t) + E c(k) eikxu(k, t)
m=-Q/2 m=0

Q-1 Q/2-1

= 3 c(k) eikxu(k - Q, t) + E c(k)eikxu(k, t)
m=Q/2 m=0

(3.4)

where we have used

eikx = i(k-Q)x

and

(3.5)

27r
(3.6)

In the computer program, we used the value of b such that the maximum value

kmax = Q! = 512 in the units where H = 1. The numerical values of kmax was

chosen well beyon the position of the peak of the spectrum and should not have effect

on the numerical results.

Similarly for the second term

Q/2-1 Q/2-1

> dt(k)e-ikxu*(k,t) = 3 dt(k)eikxu*(-k,t)
m=-Q/2 m=-Q/2

Q-1 Q/2--1

= E dt(k)eikx*(k-Q,t)+ E dt(k)eikxU*(kt)
m=Q/2 m=0

(3.7)

21
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where we have used u(k, t) = u(-k, t). The mode expansion becomes

Q/2-1

E e kf (k, t) +
m=0

Q-1

Seikxf (k
m=Q/2

- Q t))

[c(k)e(k't) + dt (k)e-iO(k,'))]

If we define
f(k, t) m = 0...Q/2 -1

f(k -Q,t) m=Q/2...Q -1

27r )-1

#(X, t) = _ Y ix#0(k, t)
mn=O

(3.11)

This equation will be used in the computer program to calculate the ramdom real-

izations of the scalar field in x space.

3.2 The ending time

The condition for ending inflation is

#(X, tend(x)) = #end (3.12)

At each value of x, we solve the above equation and get tend(x), the inflation-ending

time for each value of x. The strength of fluctuations in the time delay tend(x) at a

given wave number k can be measured by

27rkk 1/2
(k) = (b(tend(k)tend(k))) (3.13)

where tend(k) is the Fourier transform of tend (x)

(3-14)tend(k) = -b S ikx tend ()
2 x

22
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f (k, t) = R(k, t)
27r v2 kb

(3.8)

0(k, t) =

then

(3.9)
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Figure 3-1: Compare the RSG approximation with the Monte Carlo simulation. The
rescaling parameters are krescaled = 2,2k, ATrescaled = 0.63AT.

The bracket in (3.13) is the vacuum expectation, or in the simulation it is average

over many different sets of random numbers.

3.3 Monte Carlo Simulation

As we have discussed in the previous chapters, the quantum fluctuations set the

initial values at the top of the hill for the scalar field to roll down. Without the

quantum fluctuations, the field would stay at the unstable equilibrium for an arbitrary

long time. If we look at an arbitrary time-slice when the field is rolling down, the

fluctuations are at the same order of magnitude as the field itself.

In our simulations, for each set of physical parameters, we run the simulation for

10000 times, which is sufficient to have the accuracy better than 10-2 when averaging
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Table 3.1: Change the physical parameters p and pg, with fixed product pp+

for the vacuum expectation. As we can see in Fig. 3-1, the RSG approximation is

at the same order of magnitude as the Monte Carlo simulation. Burgess has pointed

out in her thesis that the RSG approximation would be in very good agreement with

the simulation if we rescale AT and shift k, each by a factor of order 1. To find these

rescaling factors, we first define a rescaled-RSG time delay field as a function with

two parameters:

A-rescaled(k) = AArRSG(Bk) (3.15)

The total distance between this rescaled function and the simulation value can be

calculated as

D(A, B) Z [Asimulation(k) - ATrescaled(k)] 2  (3.16)
k

Then we will find the values of A and B such that D(A, B) is minimized.

To understand the behavior of the rescaling, we ran the simulation for a wide range

of physical parameters m and mo. It turned out that the amplitude rescaling A was

almost constant, stayed at 0.63 in the entire range of examined parameters, while the

wave number shifting factor B was more sensitive to the physical parameters.

We also noticed that not only the rescaling factors, but also the peak of the time

delay field and the time of ending inflation would be constant if we vary both two

physical parameters pp and o, in such a way that their product is constant as in

Table 3.1. This can be explained as the mass dependence of the equation of motion

for the mode functions

pg(1 - ePON) ~Op -iN + 2(pN)2 + -- ) (3.17)

24

pip pO A B 6 Tmax tend
1/22 18 0.6280 2.203 0.052 12.79
1/33 27 0.6280 2.203 0.052 12.71
1/55 45 0.6280 2.203 0.051 12.68
1/110 90 0.6280 2.203 0.051 12.66



Table 3.2: Compare our simulation results with Burgess' for p = 18 and pp = 1/22.

A B [ 6 rnax tend

0.450 0.629 2.821 0.0716 19.6
0.600 0.628 2.448 0.0617 15.9
0.818 0.628 2.203 0.0520 12.8
1.00 0.627 2.09 0.0460 11.1
1.28 0.626 1.982 0.0401 9.35
1.80 0.623 1.876 0.0331 7.45
3.00 0.620 1.770 0.0234 5.19
4.00 0.618 1.727 0.0192 4.24
5.00 0.617 1.704 0.0165 3.63
8.00 0.615 1.667 0.0120 2.63
11.0 0.614 1.649 0.00967 2.11
15.0 0.613 1.635 0.00784 1.71
20.0 0.613 1.628 0.00646 1.41
30.0 0.613 1.622 0.00492 1.07
50.0 0.613 1.614 0.00350 0.76

Table 3.3: Change the physical parameters with fixed ratio po/tp.

25

k Burgess' simulation Current Simulation
0.0156 0.0059 0.0058
0.0234 0.007 0.0071
0.0312 0.0083 0.0082
0.0935 0.0143 0.0143
0.125 0.0165 0.0164
0.382 0.0282 0.0283
0.502 0.0324 0.0321
0.666 0.0364 0.0365
0.88 0.0409 0.0412
1.52 0.0488 0.049
2.01 0.0512 0.0512
2.66 0.0517 0.0517
3.51 0.0499 0.0501
4.63 0.0466 0.0462
6.10 0.0416 0.0414
8.05 0.0358 0.0356
10.6 0.0298 0.0302
14.0 0.024 0.0239
18.5 0.0189 0.0187
24.4 0.0146 0.0144
32.2 0.0111 0.0109



is a function of pepp when N ~ 0. So the density perturbations are determined by

the initial fluctuations of the field # at the time when the potential flips sign.

3.4 The Direct Integration Method

The Monte Carlo simulation can accurately describe the evolution of the scalar fied

and evaluate the time delay. However, the amount of numerical work makes it ex-

tremely difficult to expand to a realistic 3-dimensional system. In this section we will

introduce a new method of evaluating the time delay field with excellent agreement

with the Monte Carlo simulation in 1-dimensional system.

As we have discussed at the end of chapter 2, the equations for the asymptotic

behavior of the mode functions were (1.28) and (1.29). So we can write

u(k, t --+ o) ~ eAtu(k) (3.18)

where A can be defined as
_ qrms(t )A = rms(t) (3.19)

#rms (t)
Then we have the approximate expression for the scalar field at late time is

I0(X7 t) 12 = I0(X7 to) 12 e2AHRt (3.20)

where t = to + 6t and to satisfies

o2st) =#2, (3.21)

Solving for the time of ending inflation, we get

6t(x) = log (7 to)1) (3.22)
2A#rms (to)
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If we rescale the scalar field by its root mean square O(x, t) = -( t) then
OrMS (t)

1
of= 2A lg|~ ,t)2

We will evaluate the time-delay field in x space

(6t(x)6t(O)) = _ (log I (x, to)12 log I (O, to)12)

where the bracket () denotes the vacuum expectation. Rewrite the complex scalar

field as

O(x, t)

O(R, t)

= X 1 + iX 2

= X 3 + iX 4

(3.25)

(3.26)

where Xi's are real. The vacuum expectation can be written as the integration over

the jointly Gaussian distribution of four random variables,

(F[X]) = d exp{ -- XTE-X}F[X]
1) J ~(2wr)2/detE 2

(3.27)

where

dX = dX 1dX 2dX 3 dX 4

Eij = (XiX,)

The mode expansion of the scalar field <(x, t) can be written as

X1 = 1N(x) + q*(x)2 ) *

X2t 14 x) - ($()
2iLJ

(3.28)

(3.29)

(3.30)

(3.31)
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We can get the components of the matrix E as

1 1
Ell = E22 = -( (X) *(X)) = -

= =2 2

E12= E21 = )+ q$*(4i1

In the end, we will get the variance matrix as

2

z

0 A0 1
2

x)q$*(x)) = 0

where

A = (X 1 X 3) = (X 2 X 4) = 1b Ift(k, to) 12eikx

and

Equation (3.24) becomes

_1

(6t(x)6(0)) = 4I2 IdX 1 dX 2dX 3dX 4 log(X2

(27r)2[i - A2] g

1exp{- 4[1 _ A2] [X + X 3+X X4 -

+X) log(X2 + X4)

4(X 1 X3 + X 2 X 4 )A}

Changing the variables to polar coordinates

X, =r 1 cos 01

X2 = rl sin 01

X3 = r 2 cos 0 2

X 4 = r 2 sin0 2

28

(3.32)

(3.33)

(3.34)

(3.35)

iL(k, t) = u(k, t)
Orms(t)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)



27r 127r
(6t(X)6(0)) = A2J

dod00
ridr 0 r 2dr 2  1

(27)2[i - A2]

exp{- 4 1 2 + r2 - 4Ar 1 r 2cos]}

where 6 = 01- 02. Changing variables again

r = r4

r2 =)r

equation (3.37) becomes

log(ri)log(r2 )

Cos

sin

(6t(x)6(0)) =
I 2- 7

(27r) [ 1- A2] A2
dO 17/2

d0 do cos # sin #$
00

r 3 dr log(r cos log(r sin #)

exp{- 1 - 2 [r 2 (1 - 4A cos 0 sin 0 cos 6)]}

(3.45)

The integration over r can be done analytically

00

r 3dr log(ar) log(br) exp(-cr 2 )
0

( 82 [ - 2 )- + - - 2 log ab(y - 1 + log c) + 4 log a log b + log c(2-y - 2 + log c)]

(3.46)

where

a cos#

b sinq#

c 4  2 (1 - 4A os sin # cos 0)

-y a0.577215664901532
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(3.44)

(3.47)

(3.48)

(3.49)

(3.50)
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Figure 3-2: Compare the direct integration method with the Monte Carlo simulation.
The parameters are po = 18 and yp = 1/22.
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Consider the special case

(6t(0)6t(0)) = 4 2  27(l) exp{- X + X)} log 2 (X2 + X2) (3.51)

Changing variables lead to

(ot(0)Ot(0)) = dO f rdre-- [logr 2]2

4A2 w

= 8 rdre-r2 [log r]2

= (,2 + 2)(3.52)
4A2  6

The integration (3.45) will give us the time delay field in x-space. The corre-

sponding k-space time delay field was plotted in Fig. 3-2 along with the Monte Carlo

simulation for reference. The difference between the two results is about 1%, which

can be think of as the limit of the convergence of the Monte Carlo simulation. It

would be possible to reduce the difference by increasing the number of runs in the

Monte Carlo simulation.

3.5 Variation of the time delay field

From the previous sections, we have seen that the both the time delay field and the

mean ending time depend only on povg, but not po/pv,. Since we have investigated

a wide range of physical parameters, it would be possible the see the pattern of the

dependence. Define a new parameter as

POVO =(3.53)

The dependence of the ending time tend and the time delay peak 6 Tma, on ( can be

fitted as

6Tm.(() = a(' (3.54)
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Figure 3-3: The mean ending time.

where

a 0.045 (3.55)

b ~ -0.60 (3.56)

and

tend(() = cd (3.57)

where

c 11.2 (3.58)

d ~ -0.70 (3.59)
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Figure 3-4: The peak of the time delay fields.
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3.6 Conclusions

The time delay field calculated from the simple approximation proposed by Randall

et. al. shows a very good agreement with that of the Monte Carlo simulation up to a

rescaling in the amplitude and a shifting in the wave number both by factors of order

1. This is the same conlcusion as Burgess but with wider range of mass parameters

po and p,. We also noticed that the time delay field only depends on the product

but not the ratio of the two mass parameters. By varying this product from 0.45 to

50, we can have the peak of the time delay field changing from 0.072 to 0.004.

The Monte Carlo simulation is a powerful tool to investigate the evolution of

the fields in 1-dimensional systems, but very difficult to expand to 3-dimensional

due to an enormous computational requirement. By integrating over the probability

distribution of the scalar field, the direct integration method can accurately produce

the result of the Monte Carlo simulation in the asymtotic regime when all mode

functions increase with time at the same rate independent of k. The direct integration

method is very suitable for 3-dimensional expansion since the probability distribution

integration has the same form, with the only parameter dependence arising from the

two point function A(x).
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