
A Robust Simplex Cut-Cell Method for Adaptive High-Order

Discretizations of Aerodynamics and Multi-Physics Problems

by

Huafei Sun
B.A.Sc., University of Toronto (2007)

S.M., Massachusetts Institute of Technology (2009)

Submitted to the Department of Aeronautics and Astronautics 4

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2013

MASSACHUSETTS INST TUE
OF TECHNOLOGY

NOV 12 2013

LIBRARIES

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author..

Certified by .

Department of Aeronautics and Astronautics
n August 5, 2013

.77.
David L. Darmofal

Professor of Aeronautics and Astronautics
Thesis Supervisor

Certified byI
Robert Haimes

Principal Research Engineer
Thesis Committee

Certified by ..
V Qiqi Wang

Assistant Professor of Aeronautics and Astronautics

/1 , i Thesis Committee
Accepted by..............

Eytan H. Modiano
Professor f Aeronautics and Astronautics

Chair, Committee on Graduate Students

2

A Robust Simplex Cut-Cell Method for Adaptive High-Order
Discretizations of Aerodynamics and Multi-Physics Problems

by
Huafei Sun

Submitted to the Department of Aeronautics and Astronautics
on August 5, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Despite the wide use of partial differential equation (PDE) solvers, lack of automation still
hinders realizing their full potential in assisting engineering analysis and design. In partic-
ular, the process of establishing a suitable mesh for a given problem often requires heavy
person-in-the-loop involvement. This thesis presents work toward the development of a ro-

bust PDE solution framework that provides a reliable output prediction in a fully-automated
manner. The framework consists of: a simplex cut-cell technique which allows the mesh gen-
eration process to be independent of the geometry of interest; a discontinuous Galerkin (DG)
discretization which permits an easy extension to high-order accuracy; and an anisotropic
output-based adaptation which improves the discretization mesh for an accurate output
prediction in a fully-automated manner.

Two issues are addressed that limit the automation and robustness of the existing sim-

plex cut-cell technique in three dimensions. The first is the intersection ambiguity due to
numerical precision. We introduce adaptive precision arithmetic that guarantees intersection
correctness, and develop various techniques to improve the efficiency of using this arithmetic.
The second is the poor quadrature quality for arbitrarily shaped elements. We propose a
high-quality and efficient cut-cell quadrature rule that satisfies a quality measure we define,
and demonstrate the improvement in nonlinear solver robustness using this quadrature rule.
The robustness and automation of the solution framework is then demonstrated through a
range of aerodynamics problems, including inviscid and laminar flows.

We develop a high-order DG method with a dual-consistent output evaluation for el-
liptic interface problems, and extend the simplex cut-cell technique for these problems,
together with a metric-optimization adaptation algorithm to handle cut elements. This so-
lution strategy is further extended for multi-physics problems, governed by different PDEs
across the interfaces. Through numerical examples, including elliptic interface problems and
a conjugate heat transfer problem, high-order accuracy is demonstrated on non-interface-
conforming meshes constructed by the cut-cell technique, and mesh element size and shape
on each material are automatically adjusted for an accurate output prediction.

Thesis Supervisor: David L. Darmofal
Title: Professor of Aeronautics and Astronautics

3

4

Acknowledgments

I would like to express my gratitude to the many people who have made this thesis
possible. First, I would like to thank my advisor, Prof. David Darmofal, for giving
me the opportunity to work with him and for his inspiration and encouragement
throughout my graduate study. In addition, I would like to thank the other members
of my thesis committee, Bob Haimes and Prof. Qiqi Wang. Special thanks go to
Bob, for always being available to discuss all my questions and for always giving his
very honest advice on everything. I would also like to recognize Michael Aftosmis and
Prof. Krzysztof Fidkowski for providing critical feedback on the initial draft of this
thesis and for sharing their experience on different topics. I am also very grateful to
Dr. Steven Allmaras for his time devoted to ProjectX and for his help and insights
on my work along the way.

This thesis would not have been possible without the efforts of the entire ProjectX
team, past and present. I would like to thank them for their many contributions
that enabled this work: Chris, Garret, and Todd, for laying the foundation of what
ProjectX is today; Eric, JM, Laslo, and Masa, for their contributions to the ProjectX
codes, their constant willingness to help, and their many constructive suggestions and
insightful comments; Josh, for providing the bridge to the Boeing groups and for
always being there to set up my case files and geometry files; Julie, for always being a
teammate in good spirits about everything; Jun, Philip, and Steve 0, for bringing fresh
air to the team and for reminding me I've been here for too long. Special thanks go to
Masa, who has always been available for discussion on any topic, research related or
otherwise. I am indebted to him for all his help during my graduate study, especially
on improving my talks, my papers, and this thesis. Thank you, and I wish you all the
best for your academic career.

I would also like to thank everyone in ACDL for creating a productive yet fun
environment to conduct research: Cuong, David M, Hemant, Tarek, and Xevi, for
sharing their opinions and experience on a variety of topics covering both my research
problems and their fields of expertise; Abby, for very kindly tolerating me as her
officemate for one whole year; Xun, for being a close friend since my undergraduate
life and for bringing a lot of fun in and outside the lab; Andrew, for organizing many lab
events, especially those basketball games; Eric D, for always being responsive in fixing
my computer issues; and all other ACDLers, in particular, Chad, Chelsea, David L,
Han, Joel, Matt, Rui, and TC, for making my life in ACDL a lot richer. In addition,
Jean, Robin, Sue, and Meghan deserve recognition for their help in organization and
for quietly working behind the scenes.

I would also like to thank all my friends outside ACDL, which I apologize are too
many to name here, for all the parties, game nights, lunches, dinners, and travels
during these past few years. All of these made my life at MIT a lot more fun than
it might otherwise have been. Special thanks are directed towards all my friends in
Toronto, who always made my trips back to Toronto warm and memorable; you guys
are terrific.

5

Last but not least, I would like to thank my family - Dad and Mom - for their
perpetual and unconditional love and support. This has been a long and difficult road,
and I would not have been able to reach the end of this road without their support
and encouragement. I wish you all the happiness and health. In addition, I would like
to send my most sincere thanks to my wife, Lang Yang. I don't know how to fully
express my love and appreciation in words, but thank you for everything you have
done for me over the years, and thank you for always standing by me especially when
I was filled with doubts and frustrations. I love you, and look forward to continuing
our journey together.

Finally, I would like to acknowledge the financial supports provided by the Boe-
ing Company (technical monitor Dr. Mori Mani), NASA (NASA Award Number
NNX12AJ75A, technical monitor Dr. Harold Atkins), the NSERC Postgraduate Schol-
arships Program, and MIT AeroAstro Department through fellowships.

6

Contents

1 Introduction
1.1 M otivation
1.2 Thesis Objective .
1.3 Background .

1.3.1 Simplex Cut-Cell Method
1.3.2 Adaptive High-Order Discretization

1.3.3 Output-Based Error Estimation and Adaptation .

1.4 Thesis Overview .

2 Robust Intersection for Cut-Cell Mesh Generation
2.1 Background .
2.2 Intersection Overview .

2.3 Epsilon-Tweaking and Adaptive Precision Arithmetic . .
2.4 Efficiency Improvement
2.5 Results for Robustness and Efficiency

3 High-Quality Quadrature Rule for Cut Cells
3.1 Introduction
3.2 Criteria for Cut-Cell Quadrature Rule

3.2.1 Algebraic Degree
3.2.2 Quality Measure

3.3 Quadrature Point Selection
3.4 Integration of Basis Polynomials
3.5 Numerical Examples
3.6 Summary: Cut-Cell Quadrature Rule

. 19
. 19
. 19
. 22
. 23
. 26

29
. 30
. 33
. 34
. 37
. 42

43
. 43
. 46
. 46
. 48
. 52
. 56
. 57
. 59

4 Discretization, and Output-Based Error Estimation and Adaptation
4.1 Discontinuous Galerkin Method for Conservation Laws
4.2 Finite Element Solution Space for Cut Cells
4.3 Output Error Estimation .
4.4 Output-Based Adaptation .

4.4.1 Mesh Optimization via Error Sampling and Synthesis
4.4.2 Extension to Cut Cells .
4.4.3 R esults .

7

17
. 17

63
63
65
67
69
70
74
76

5 Aerodynamics Problems in Three Dimensions
5.1 Impact of Quadrature Rules
5.2 Robustness and Accuracy of the Solution Strategy

5.2.1 "Football", Inviscid, Subsonic
5.2.2 ONERA M6 Wing, Inviscid, Transonic
5.2.3 "Football", Inviscid, Supersonic
5.2.4 Cylinder, Laminar, Subsonic
5.2.5 Body of Revolution (NACA0012), Laminar, Subsonic

85
86
89
89
91
94
96
98

6 Scalar Elliptic Interface Problems 101
6.1 Overview of Unfitted Methods and High-Order Extensions 103
6.2 Discontinuous Galerkin Method for Interface Problems 105

6.2.1 N otations . 106
6.2.2 Mixed and Primal Formulations 107
6.2.3 Primal Consistency . 109
6.2.4 Numerical Fluxes and Final Discretized Form 110
6.2.5 Optimal Convergence . 111

6.3 Dual Consistency and Output Superconvergence 112
6.4 Cut-Cell Technique for Interface Problems 114
6.5 R esults . 116

7 Multi-Physics Problems 127
7.1 DG for Interface Problems: Systems of Elliptic Equations 127
7.2 DG for Interface Problems: Conjugate Heat Transfer 130
7.3 R esults . 132

8 Conclusions 135
8.1 Summary and Conclusions . 135
8.2 Future W ork . 137

A Notes on Cut-Cell Intersection Algorithm 139
A.1 Sign Computation for Algebraic Numbers 139
A.2 More on Efficiency Improvement . 141
A.3 Classification and Sturm's Sequence for Quartic Equations 144
A.4 Nearly-Duplicate Roots for Cubic Equations 145

B Cut-Cell Mesh Construction
B.1 Construction of Intersection Points (zerod Objects)
B.2 Construction of Intersection Edges (oned Objects)

149
150
154

B.3 Construction of Intersection Faces and Volumes (twod and threed Objects) 161
B .4 Parallelization . 162

8

C Notes on Cut-Cell Quadrature Rule
C.1 Quadrature Quality Measure
C.2 Parameterization of Conics

D Visualization of Cut Cells
D.1 Two Dimensions
D.2 Three Dimensions

E Governing Equations
E.1 Advection-Diffusion-Reaction Equation
E.2 Compressible Navier-Stokes Equations

E.2.1 Euler and Navier-Stokes Equation
E.2.2 Reynolds-Averaged Navier-Stokes Equations

F Discontinuous Galerkin Method and Solution Stra
F.1 Discontinuous Galerkin Discretization
F.2 Shock Capturing
F.3 Discrete Solution Strategy

165
. 165
. 167

171
. 171
. 172

173
. 173
. 174
. 174
. 175

tegy 179
. 180
. 182
. 183

G Proofs for Discretization of Interface Problems
G.1 Boundedness and Stability of DG Scheme for Interface Problems
G.2 Adjoint Formulation for Interface Problems

Bibliography

9

185
. . . 185
. . . 187

189

List of Figures

1-1 Example of cut-cell mesh . 20
1-2 Illustration of the autonomous output-based adaptive framework 24

2-1 Example intersection between a background tetrahedron and a quadratic-
patch surface . 34

2-2 Quadratic-patch representation of ONERA M6 wing and an example
background m esh . 36

2-3 Example intersection in patch reference space 37

3-1 Quadrature error vs. v/Q - 1 . 51
3-2 "Crown" shape in two dimensions, with 150 points selected from about

4000 points using (3.17) . 58
3-3 Quadrature quality measure and error for the "crown" shape 58
3-4 Curved element in three dimensions . 59
3-5 Quadrature quality measure and error for the curved element in three

dim ensions . 60

4-1 Illustration of linear shadow element options assuming a polynomial
m apping is not found . 67

4-2 Example of metric-mesh pair (Modisette [87]) 70
4-3 Example configurations together with the associated metric tensors

(Y ano [124]) . 72
4-4 Example of different configurations due to edge splits; configurations C1

and C3 have four cut elements, and C2 has three 75
4-5 Example of vertex layer numbers; computational domain is on top of

the embedded geometry denoted by the red line 77
4-6 Solutions to the advection-diffusion boundary-layer problem 78
4-7 Initial mesh for the advection-diffusion boundary-layer problem 78

4-8 Adapted mesh for the advection-diffusion boundary-layer problem with-
out interface introduced . 78

4-9 Adapted cut-cell meshes for the advection-diffusion boundary-layer prob-
lem with different interface shapes . 79

4-10 Adaptation history for the advection-diffusion boundary-layer problem 79
4-11 Mach number distribution for the RAE2822 subsonic RANS-SA problem 81
4-12 Initial meshes for the RAE2822 subsonic RANS-SA problem 81

11

4-13 Adaptation history for the RAE2822 subsonic RANS-SA problem . . . 81
4-14 Adapted meshes, iteration 8, with zoom-in for the blue-box regions;

RAE2822, subsonic RANS-SA . 82
4-15 Adapted meshes, iteration 20, with zoom-in for the blue-box regions;

RAE2822, subsonic RANS-SA . 83

5-1 "Football" geometry produced by revolving a quadratic curve 86
5-2 Mach number distribution on the "football" geometry, M,, = 0.3 87
5-3 Nonlinear convergence history on 25 meshes for discretization degrees

of p = 0 through p = 3; each line represents the history on one mesh . . 88
5-4 Quadrature quality Q for cut elements 88
5-5 Drag adaptation history for the "football" geometry, inviscid, M,, = 0.3 90
5-6 Initial and adapted meshes on the symmetry plane for the "football"

geometry, inviscid, M ,, = 0.3 . 90
5-7 Mach number distribution for ONERA M6 wing, Mo, = 0.8395, a =

3.06'; solution on the adapted mesh, p = 1, DOF = 800k 91
5-8 Initial mesh for ONERA M6 wing, M,, = 0.8395, a = 3.06 92
5-9 Adapted meshes for ONERA M6 wing, M,, = 0.8395, a = 3.06' 92
5-10 Adaptation history for ONERA M6 wing, M,, = 0.8395, a = 3.060;

reference value is obtained at p = 2, DOF = 2.5M 93
5-11 Pressure perturbation distribution for "football", inviscid, M,, = 1.8 . . 94
5-12 Initial and adapted meshes for "football", inviscid, Moo = 1.8 95
5-13 Adaptation history for "football", inviscid, MO, = 1.8; reference value

is obtained at p = 2, DOF = 320k . 95
5-14 Mach number distribution, cylinder, Re, = 50, MO, = 0.1 96
5-15 Initial and adapted meshes on the bottom plane, cylinder, Re, = 50,

M oo = 0.1 . 97
5-16 Adaptation history for cylinder, Re, = 50, MO, = 0.1; reference value

obtained from two-dimensional simulations 97
5-17 Mach number distribution, body of revolution (NACA0012), Re. =

5000, M oo = 0.5 . 98
5-18 Initial and adapted meshes on the symmetry plane, body of revolution

(NACA0012), Rec = 5000, Mco = 0.5 99
5-19 Adaptation history, body of revolution (NACA0012), Rec = 5000,

M = 0.5; reference value is obtained at p = 2, DOF 1.OM 99

6-1 Example interface problem and non-conforming mesh 102
6-2 Example of background elements cut into two elements, K(1) and K) . 11 5

6-3 Example cut element with equidistant quadrature points in the oriented
bounding box . 116

6-4 Example cut element converted to canonical element, with canonical
quadrature points . 116

6-5 Computational domain and primal solution of Example 1 for interface
problem s . 118

12

6-6 Example background mesh for Example 1 for interface problems 118
6-7 L2-error convergence for Example 1 for interface problems (h defined

as lN . 119
6-8 Adjoint solution for Example 2 for interface problems 119
6-9 Error convergence for Example 2 for interface problems 120
6-10 Adapted cut-cell meshes for Example 2 for interface problems 120
6-11 Computational domain and primal solution of Example 3 for interface

problem s . 121
6-12 Initial meshes for Example 3 for interface problems 122
6-13 Error convergence for Example 3 for interface problems 123
6-14 Adapted cut-cell meshes for Example 3 for interface problems 123
6-15 Primal solution for Example 4 for interface problems 124
6-16 Error convergence for Example 4 for interface problems 125
6-17 Adapted cut-cell meshes for Example 4 for interface problems 125

7-1 RAE2822 airfoil with cooling chambers 133
7-2 Temperature distribution, T/TOO . 133
7-3 Error convergence for the CHT case . 133
7-4 Initial and adapted cut-cell meshes for the CHT case 134

A-1 Example of a directed acyclic graph for (V'i7 + v/12) x (V/17 - v/1-) -5
(LEDA M anual) . 140

A-2 Sign computation for f given f and 6, where If - fI < 6 140
A-3 A test case with random background-edge intersection point 142
A-4 Detecting nearly-degenerate roots for cubic equations 147

B-1 Example intersection between a background tetrahedron and a quadratic-
patch surface . 150

B-2 Example where the intersection curve (shown as red line) lies completely
inside a patch face and a background face 152

B-3 Example of oned objects on patch edges 156
B-4 Example where null state of patch-edge oned object cannot be deduced

solely based on topology . 157
B-5 An example where the intersection curve between a patch and a back-

ground face has six zerod objects and three null embedded oned objects 158
B-6 Sorting points along conic sections . 160
B-7 A special case where determining the null state of embedded oned ob-

jects requires tangent computation . 160
B-8 Example where embedded oned objects are outside background face . . 161
B-9 An example partitioned background mesh, with one partition not in-

tersecting the geometry . 163

C-1 Example for conic parameterization . 170
C-2 Quadrature error for nearly-degenerate conic sections 170

13

D-1 Example for cut-cell visualization in two dimensions 171

14

List of Tables

2.1 Correctness and performance for cut-cell intersection 42

5.1 Number of quadrature points for the proposed rule 88

A.1 Efficiency of the two formulations for background-edge intersections . . 142

15

Chapter 1

Introduction

1.1 Motivation

Over the past several decades, numerical simulation has become an indispensable com-

ponent in engineering analysis and design, and has been considered by many the third

paradigm of scientific research, along with theory and experimentation. Being one

important aspect of numerical simulation, partial differential equation (PDE) solvers

have been widely used to analyze and study a variety of physical phenomena, ranging

from fluid dynamics to solid mechanics to electromagnetics. Due to both algorithm

development and increasing computational power, the complexity of problems - either

from geometry, or physics, or both - that can be simulated has increased dramati-

cally. However, despite the wide use of PDE solvers, lack of automation still hinders

realizing their full potential. In particular, the process of establishing a suitable mesh

for a given problem still often requires heavy person-in-the-loop involvement. This

involvement is extensive in two stages of the process: making the decision of where a

refined mesh resolution is needed, and generating a mesh that satisfies this decision

and at the same time respects the geometry in question.

The process of manually specifying mesh resolution is not only costly in terms of

person-hours, but also encounters great difficulties in leading to a reliable prediction

of engineering outputs. In the context of computational fluid dynamics (CFD) simula-

17

tions in the aerospace industry, the results from the AIAA Drag Prediction Workshops

illustrate the difficulties in. producing grid-converged results on even very fine meshes

that are carefully "hand-crafted" by experts [84]. More specifically, Mavriplis [84]

considered two families of meshes, and solved a transonic, turbulent flow over a wing

using an industrial-strength CFD solver. The two mesh families were generated inde-

pendently by NASA Langley and Cessna Aircraft Co., based on the best practices of

each organization. A difference of seven drag counts was observed on the finest meshes

of the two organizations, which had about ten times more degrees of freedom than

typically used in practice. This difference is significant, as one drag count translates to

four to eight passengers for a long-range passenger jet [48, 120]. Mavriplis concluded

that fully resolving all features in computational aerodynamics problems is infeasible

via successive global refinements of an arbitrary initial mesh. In other words, manu-

ally identifying all important features and specifying mesh resolution for an accurate

output prediction can be very challenging, if possible at all, even on a geometry that

is frequently encountered in practice.

Mesh adaptation provides a significant promise to reduce the amount of human

intervention and also to produce a more reliable output prediction. However, mesh

generation presents another barrier to an automated CFD simulation, especially when

multiple meshes with different resolution requests are required in an adaptive pro-

cess. In fact, mesh generation often represents the bottleneck in the CAD-to-mesh-to-

solution cycle, as demonstrated for example in the context of applying CFD in indus-

trial applications [40, 93]. For complex three-dimensional geometries in aerospace ap-

plications, generating a suitable mesh is particularly difficult, since highly anisotropic

elements are often desired on the geometry surface for a sufficient boundary layer res-

olution. In addition, as higher-order discretizations receive more and more attention

for CFD applications, elements on the geometry surface also have to be curved in

order to maintain the benefit of higher-order discretizations [15].

Another difficulty for mesh generation comes from engineering applications that

involve multiple materials separated by interfaces. These so-called interface problems

18

are often governed by PDEs with discontinuous parameters across the material in-

terfaces, or more generally, by different PDEs across the interfaces. Two examples

in the aerospace industry include conjugate heat transfer (CHT) problems and fluid-

structure interaction (FSI) problems. As the interface can be arbitrarily complex and

curved or even moving, generating a suitable mesh is even more demanding than for

a single-material problem. While the meshes on the two sides of the interface can

require vastly different resolutions, they may be also required to match each other on

the interface for a discretization method without special interface treatment.

1.2 Thesis Objective

The objective of this thesis is to develop a robust PDE solution framework that pro-

vides a reliable output prediction in a fully-automated manner, and to assess the frame-

work through a wide range of applications, including aerodynamics and multi-physics

problems. To be fully-automated, the framework must not require user interactions or

detailed previous knowledge at both mesh generation stage and solution stage; and to

be robust, the framework must be able to provide reliable solutions for a wide range

of geometries and physical conditions. The proposed solution framework incorporates

a simplex cut-cell technique, a high-order discretization, and an anisotropic output-

based adaptation. The motivation and background for each of these components are

presented in the following section.

1.3 Background

1.3.1 Simplex Cut-Cell Method

The difficulties for the mesh generation mechanics, including those imposed by high

anisotropy and curved geometries, motivate an alternative for a more automated and

robust meshing process: cut cells. For a cut-cell mesh, the mesh generation process

does not need to respect the geometry of interest. More specifically, a background

19

mesh is first generated on a box without conforming to the geometry, which is often

referred to as the embedded geometry. This background mesh then intersects with

the embedded geometry, and the part that is outside of the computational domain

is discarded, resulting in a cut mesh that has arbitrarily shaped elements inside the

computational domain. An example is shown in Figure 1-1. This technique effectively

simplifies the problem of meshing an arbitrary geometry to meshing a box, and hence

significantly improves the robustness and automation for mesh generation. However,

the discretization method now needs to account for the arbitrarily shaped elements

on the cut-cell mesh.

Background Mesh Cut Mesh

(a) Background mesh (b) Cut mesh, with embedded geometry

Figure 1-1: Example of cut-cell mesh

Purvis and Burkhalter were the first to consider the cut-cell method [102], where

they worked with the full potential equations on Cartesian background meshes. The

Cartesian cut-cell method was later used extensively in the CFD community for treat-

ing problems with complex boundaries; see for example [2, 69, 131]. One prominent

example is Cart3D [2], which is a three-dimensional solver for Euler equations and has

been shown capable of handling very complex geometries [90]. However, the usage

of Cartesian grids limits the achievable directions of element anisotropy, making the

discretization of arbitrarily oriented features inefficient.

Recently, a simplex cut-cell method was developed by Fidkowski and Darmofal

for embedded boundary problems in two and three dimensions [50]. They further

combined the method with a high-order discontinuous Galerkin discretization, and

20

represented the embedded geometries using cubic splines and quadratic patches in

two and three dimensions, respectively. However, the original algorithm suffered from

several weaknesses that limit the robustness and automation promised by the cut-cell

method:

1. intersection ambiguity due to limitations of numerical precision;

2. poor quadrature quality for cut cells of arbitrary shapes, resulting in poor con-

vergence behavior for nonlinear solvers;

3. small volume ratios between neighbor elements, causing inaccuracy and poor

conditioning.

Items 2 and 3 were investigated in two dimensions by Modisette [87]. In particular,

Item 2 was tackled by recognizing "canonical" shapes for three- and four-side cut

elements. However, extension of this approach to three dimensions is not trivial,

as will be discussed in more detail in Chapter 3. Item 3 was greatly mitigated by

merging the two neighbor elements together, and this approach is equally applicable

in three dimensions. In this thesis, we will demonstrate the limitations due to Items 1

and 2 in three dimensions, and propose solutions for these items to improve the overall

robustness of the method.

For interface problems, removing the constraint of being interface-conforming would

also greatly improve the robustness and automation of the meshing process. In fact,

many methods have been proposed on non-interface-conforming meshes, for example,

the immersed interface method [73], the ghost fluid method [47], and the immersed

finite element method [74]. A more complete literature review will be provided in

Chapter 6. However, these methods remain largely second-order accurate, and/or

extension to multi-physics problems with a more general interface coupling remains

non-trivial. As the cut-cell technique has shown success for problems with complex

boundaries, we will extend this technique to solve multi-material and multi-physics

problems in this thesis.

21

1.3.2 Adaptive High-Order Discretization

High-order methods are characterized by their ability to achieve higher fidelity at a

lower cost. In general, a discretization method has its error converging as E ~ 0(h'),

where E is some measure of error, e.g. L2-error, and h is some measure of mesh size.

High-order methods aim to improve the simulation accuracy by increasing the conver-

gence rate r, and in this work, high-order methods are those that achieve r > 2 (for

L 2-error). While these methods are known to provide a high convergence rate for

smooth problems, for problems with singularities, the convergence rate r is often lim-

ited by solution regularity. In order to realize the benefit of high-order methods for

these problems, the effect of singularities has to be controlled, by for example adaptive

meshes. A well-know example is the Poisson problem on an L-shaped domain, which

can be treated on graded meshes for better convergence [29]. For more complex prob-

lems with singularities, Yano et al. achieved high-order convergence by combining a

high-order discretization with adaptation in the aerodynamics context [128].

The finite element framework provides a conceptually easy path to high-order

methods by increasing the degree of basis polynomials. In this work, a discontinuous

Galerkin (DG) method is employed. As the DG method imposes element coupling and

boundary conditions only through face fluxes, it easily permits elements of arbitrary

shapes, which are needed for using non-geometry-conforming meshes. Further, the DG

method allows solution discontinuity across elements, and thus has an element-wise

compact support of basis functions.

The first DG method was introduced by Reed and Hill for scalar hyperbolic equa-

tions [103], and its error analysis was later provided by Johnson and Pitkdranta [65]

and Richter [104]. The method was extended for nonlinear hyperbolic problems by

incorporating Godunov's flux [28]. Cockburn and Shu and their co-authors com-

bined the DG spatial discretization with a Runge-Kutta explicit time integration for

non-linear systems of hyperbolic equations, and presented their method in a series of

papers [30, 32, 33, 35]. Separately, Allmaras and Giles presented a second-order DG

method for Euler equations [4, 5]. A review of the early development of DG methods

22

is provided by Cockburn et al. [31].

Independent of the development for hyperbolic problems, DG was also developed

for elliptic problems, beginning with the interior penalty methods [6, 9, 122]. More

recently, Bassi and Rebay developed a DG discretization of diffusive operator, known

as BR1 [16]. They later improved BRI and presented the so-called BR2 method [17],

which achieves stability for purely elliptic problems and recovers an element-wise com-

pact stencil. Cockburn and Shu generalized the BR1 method and introduced the local

discontinuous Galerkin (LDG) method [34]. It was then modified by Peraire and Pers-

son to recover an element-wise compact stencil, yielding the compact discontinuous

Galerkin (CDG) method [96]. A unified analysis of DG methods for elliptic problems

is provided by Arnold et al. [7].

1.3.3 Output-Based Error Estimation and Adaptation

Engineering applications often require an accurate prediction of certain output quan-

tities. Output-based adaptation provides an autonomous means to reduce the error

in an output to a specified level. The adaptive framework is illustrated in Figure 1-2,

where as inputs, a governing PDE, an output of interest, an error tolerance, and a

maximum allowable run-time are specified. From these inputs, the PDE is discretized

on an initial (typically coarse) grid, and the error in the output solution is estimated.

If the error and time tolerances are not met, the output error is then localized to

elements, and an adapted mesh is generated according to the localized error, e.g. by

refining the elements causing large errors. The whole process then repeats until either

the error tolerance is met or time is exhausted. The two key components in the adap-

tive framework are the output error estimation and the mechanics for improving the

mesh quality to reduce the output error.

23

" PDE
* PDE Solution

* Output Solve PDE Estimate P rror met

" Max error and output output error Time over 0 Output

* Error Estimate
" Max time Adapt

grid based
on error

Figure 1-2: Illustration of the autonomous output-based adaptive framework

Error Estimation

In the adaptive framework, error estimation serves two critical functions: (1) estimat-

ing the global error to assess the quality of the discretized solution, and (2) localizing

the error to elements and identifying the elements with large errors. A posteriori error

estimation techniques have been developed over the past decades for these purposes.

For instance, error estimates based on energy [3] and interpolation error [41] have been

used for adaptation. However, these methods generally fail for hyperbolic problems,

where upstream errors can propagate downstream [116].

More recently, output-based error estimation techniques have been developed.

These techniques estimate and localize the output error by explicitly incorporating

the dual problem associated with the output. The solution to the dual problem,

the adjoint, links local residuals to the output error, and hence identifies the regions

that are important for the accurate prediction of the output. In this work, the dual-

weighted residual (DWR) method proposed by Becker and Rannacher [18, 19] is used.

The method has been applied to a wide range of engineering applications; see for ex-

ample [10, 53].

Anisotropic Output-Based Adaptation

Given an error indicator, the goal of adaptation is to decrease the error by modi-

fying the discretization mesh. The DWR method provides a localized output error

24

for each element, which is sufficient for an isotropic output-based adaptation. For

example, a fixed-fraction strategy can be employed, where a fixed percentage of el-

ements that have the largest error are refined and those with the smallest error are

coarsened. However, the localized error alone does not provide enough information

for an anisotropic adaptation. Anisotropic information is often formulated as metric

tensor field, which contains the information of size and orientation of each element;

see for example [57, 121]. This field is taken as input by many anisotropic mesh

generators, for example, in BAMG [21, 59] and EPIC [85]. Therefore, an anisotropy

detection strategy that provides local metric tensors is also required in the adaptation

framework.

Motivated by the fact that interpolation errors are closely related to solution Hes-

sian for linear interpolations, Peraire et al. [95] introduced an anisotropy detection

method based on estimating the Hessian of a scalar solution field. Venditti and Dar-

mofal [121] combined this technique (using the Hessian of the Mach number) with

the DWR method, and proposed an anisotropic output-based adaptation algorithm

for the compressible Navier-Stokes equations. Fidkowski and Darmofal [50] later gen-

eralized the idea to high-order discretizations based on high-order derivatives of the

Mach number. A variant of the strategy based on the jump in Mach number across

elements was proposed for quadrilateral elements with a DG discretization by Leicht

and Hartmann [72]. While these methods have been successful for anisotropic adap-

tation, the choice of Mach number is arbitrary, and more importantly, the anisotropy

of the adjoint is not taken into account.

Recently, Yano and Darmofal proposed the Mesh Optimization via Error Sampling

and Synthesis (MOESS) algorithm for anisotropic output-based adaptation [124, 127].

The algorithm casts the adaptation problem as a continuous constrained optimization

problem with the design variable being the metric tensor field M and the objective

function being the output error S. The sensitivity, E'[M] (OM), is approximated

through local error re-computation on different configurations due to edge splits for

each element. This strategy resolves the aforementioned shortcomings of the Hessian-

25

based methods, as it incorporates both primal and dual solution behaviors by directly

monitoring the output error, and treats low regularity features more robustly by re-

moving any a priori assumption on error convergence behavior. While this method

has been shown superior to the Hessian-based methods, it is not readily suitable for

elements of arbitrary shapes. This is because for those elements, the duality between

the metric and the mesh as well as the error sampling through local solves is not well

defined. In this thesis, we will extend this method to handle cut-cell meshes for both

embedded boundary and interface problems.

For multi-physics problems, which involve multiple sub-domains governed by dif-

ferent PDEs, an adaptive scheme needs to consider the entire coupled system and

employ appropriate mesh resolution on each sub-domain. For these problems, sev-

eral researchers have recently combined the DWR output error estimation with local

adaptive mesh refinement schemes [71, 105], and have demonstrated the framework

on (Cartesian) interface-conforming meshes for simple geometries. In this thesis, we

will demonstrate our anisotropic output-based adaptation scheme on simplex non-

interface-conforming meshes through a conjugate heat transfer problem.

1.4 Thesis Overview

This thesis presents work toward the development of a robust PDE solution framework

that provides a reliable output prediction in a fully-automated manner. In particular,

the framework consists of a simplex cut-cell technique, a high-order DG discretiza-

tion, and an output-based adaptation. The primary contributions of the thesis are as

follows.

" Development of a robust intersection algorithm for cut cells in three dimensions,

with an efficient use of adaptive precision arithmetic.

* Development of a high-quality and efficient quadrature rule for arbitrary shapes

in two and three dimensions, and demonstration of the robustness improvement

in nonlinear solvers using the proposed quadrature rule.

26

" Demonstration of the robustness and automation of the framework for a range of

three-dimensional aerodynamics problems, including inviscid and laminar flows.

" Extension of the MOESS adaptation algorithm to cut-cell meshes for embedded

boundary and interface problems.

" Development of a high-order discontinuous Galerkin method with a dual-consistent

output evaluation for elliptic interface problems, and demonstration of high-

order accuracy on non-interface-conforming meshes constructed by the cut-cell

technique.

" Extension of the elliptic interface strategy (as a monolithic approach) to multi-

physics problems, and demonstration through a conjugate heat transfer problem,

where output-based adaptation adjusts mesh element size and shape on each

material in a fully-automated manner.

The thesis is organized as follows. Chapter 2 presents the efficient use of adaptive

precision arithmetic for robust cut-cell intersections. Chapter 3 proposes a high-quality

quadrature rule for cut cells. Chapter 4 first provides the background of the DG dis-

cretization and the DWR output error estimation, and then extends the MOESS

algorithm to handle cut-cell meshes. In Chapter 5, we first show the impact of an

improved quadrature quality on the convergence behavior of the nonlinear solver, and

then demonstrate the robustness and automation of our framework through a range of

three-dimensional aerodynamics problems. Chapter 6 derives the DG method for el-

liptic interface problems, and extends the method to non-interface-conforming meshes

using the cut-cell technique. Chapter 7 presents the DG method for multi-physics

problems, and demonstrates the developed solution framework through a conjugate

heat transfer problem.

27

Chapter 2

Robust Intersection for Cut-Cell

Mesh Generation

While the cut-cell method simplifies the problem of meshing an arbitrary geometry to

meshing a box, a robust intersection algorithm is a fundamental requirement for the

method to be fully automated. For any input of a geometry definition and a back-

ground mesh that does not conform to the geometry, the algorithm has to always yield

a topologically consistent cut mesh that defines a valid tessellation of the computa-

tional domain. In Section 2.1, we briefly review the robustness issues in computational

geometry in general, and introduce adaptive precision arithmetic to overcome these

issues. Section 2.2 gives a brief overview of the intersection algorithm. In Section 2.3,

we show that an implementation with epsilon-tweaking is not sufficient for a robust

cut-cell construction, and demonstrate that using the adaptive precision arithmetic

does ensure intersection correctness but is unacceptably slow. Section 2.4 describes

the many techniques developed to make this arithmetic computationally affordable for

cut-cell intersections. Results are shown in Section 2.5 to demonstrate the robustness

and efficiency of the developed intersection algorithm. A detailed description of the

entire algorithm including pseudocodes is provided in Appendix B, with an emphasis

on how the adaptive precision arithmetic is used in every step of the intersection. Note

in this chapter, we assume the geometry definition represents an embedded domain

29

boundary. If the geometry represents an embedded interface instead, the developed

intersection algorithm is still applicable, but the cut mesh needs to be constructed on

both sides of the geometry.

2.1 Background

In computational geometry, most algorithms are designed and proven to be correct

in the context of assuming all arithmetic on real numbers is exact. When the exact

arithmetic is replaced by finite-precision arithmetic in implementation, for example

the IEEE standard 754 floating-point arithmetic, many geometric algorithms can lead

to unpredictable failures, including inconsistent or self-contradictory geometry struc-

tures. A geometric algorithm or implementation with such failures for certain inputs

is often called non-robust. In the context of cut-cell construction, a non-robust in-

tersection algorithm does not always return a consistent cut mesh, and thus would

eliminate the potential of full automation promised by the proposed PDE solution

strategy.

The difficulties in making geometric algorithms robust come from the fact that in

addition to numerical outputs, geometric algorithms also need to return combinatorial

structures that are consistent with the numerical outputs. Citing a notation used by

Yap [129], geometric computing can be decomposed into two parts:

Geometric Computing = Combinatorial + Numerical Computing.

The combinatorial part derives geometric relationship among geometric entities, for

example, it answers the question whether a point lies inside a given triangle. The

numerical part finds the numerical values of geometric entities, such as coordinates

of intersection points. One key step in the combinatorial part is to evaluate geomet-

ric predicates, which are conditional tests that branch the algorithm into different

topologies (or geometry structures), and only one of these topologies corresponds to

the theoretical result. The conditional tests almost always involve numerical calcula-

30

tions, and if all the calculations for every predicate are evaluated using exact arith-

metic, the algorithm will always be in a state equivalent to its theoretical counterpart.

The robustness of a geometric algorithm thus lies in every predicate being answered

correctly.

In an implementation, the predicate often involves comparing two numerical val-

ues. Without loss of generality, we can assume one of the values is zero, i.e. the

predicate needs to query the sign of certain expression based on some numerical input

f ((input)), and hence the key ingredient in robust geometric algorithms is a correct

sign computation. While we query the sign of f, we have only its approximation f

due to finite precision, where If - f I < 6 and 6 is defined by the precision involved.

Evaluating the predicate can therefore only be based on the approximation f. Unlike

numerical computation where the round-off errors in approximating f can be tracked

and quantified, the effect of round-off errors is often unpredictable for geometric com-

putation due to the combinatorial nature of predicates. A widely used method to

decide f > 0 given I, often named epsilon-tweaking, is based on an introduced cmagic:

f > 0 -> f > Emagic,

where Emagic is usually chosen by trial and error, i.e. it is adjusted until no catastrophic

output happens for the tested inputs. However, choosing an Emagic that works for any

input is tedious and non-trivial, if possible at all. As one incorrect sign computation

may result in a wrong topology, using epsilon-tweaking for many geometry problems

can lead to severe robustness issues. This will be demonstrated in Section 2.3 for the

cut-cell intersection problem.

For a couple of decades, significant research effort has been devoted to tackle the

robustness and reliability issues in computational geometry. Schirra [110] and Hoff-

mann [61] provide excellent overviews about the development in this field. One way

is to design geometric algorithms that can deal with imprecise inputs and calcula-

tions. A simple example is to represent every straight line by a tubular region with

31

thickness defined based on round-off errors. The result of this approach is not always

exact, i.e. same as the theoretical result, but consistency between the combinatorial

structures and numerical outputs is ensured. While this approach has shown success

for a small number of problems, for example intersection of polygons as demonstrated

by Milenkovic [86], there is no general theory on how to design geometric algorithms

with imprecision. Guibas provides a summary of current difficulties in pursuing this

route [55].

Another route toward robust geometric algorithms is through exact geometric com-

putation (EGC), where geometric predicates are always correctly evaluated. An obvi-

ous EGC approach is to compute every number involved in the predicates using exact

arithmetic. Note, however, that this does not require exact representations for all

numerical outputs in the algorithm. As numerical inputs are almost always rationals

given as floating-point numbers (or integers), an exact rational arithmetic can elim-

inate the robustness issue when operations involve only +, -, x, and +. However,

such an arithmetic is 10,000 times slower than floating-point arithmetic for a Delaunay

triangulation as reported in [68].

While computing every expression f for predicates using exact arithmetic is slow,

it is recognized that using its approximation f instead of f is sufficient for sign compu-

tation for most of cases. Failure occurs only in certain degenerate or nearly-degenerate

cases. Inspired by this fact, adaptive precision arithmetic has been developed, where

precision is refined to be just sufficient for the theoretical correctness of the geo-

metric algorithm. Shewchuk developed such an arithmetic using a multi-component

format for storing floating-point numbers [112], but his arithmetic supports only +,
-, and x, and our cut-cell intersection problem requires polynomial root-finding as

shown in Section 2.3. Yap and Dub6 [44] and Burnikel et al. [26] encoded adaptive pre-

cision arithmetic in the libraries CORE and LEDA, respectively. Both execute exact

sign computation with the help of separation bounds for algebraic numbers (roots of

polynomials with rational coefficients), and hence support root-finding for such poly-

nomials. Appendix A. 1 briefly introduces the representation of algebraic numbers and

32

their sign computation. In this work, the data type LEDA real is used for intersec-

tion. Although the correctness of sign computation is guaranteed using real, simply

replacing standard double precision type by real is not computationally affordable as

demonstrated in Section 2.3.

2.2 Intersection Overview

For three-dimensional applications in this work, curved surfaces are approximated by

patches of quadratic triangles, which are proposed for cut-cell applications in Fid-

kowski's work [49]. Each quadratic patch is defined based on a parametric mapping

from a unit reference triangle, via

6

x = #i(Xxi, (2.1)

where X E R2 is the coordinate in reference space, xi E R3 are the coordinates of

the six patch nodes (corner nodes plus edge midpoints) in physical space, and qi are

the quadratic Lagrange polynomials defined on the reference triangle. Quadratic-patch

representation guarantees a watertight geometry, and enables an analytical solution for

the intersection problem. Geometry slope discontinuities are present between patches,

but they can be controlled by refinement of the patches.

Starting with a quadratic-patch representation of the geometry and a simplex

background mesh, the intersection algorithm constructs the topology of the cut mesh.

An illustration is shown in Figure 2-1(a), where a background element intersects a

quadratic-patch surface. Figure 2-1(b) shows the wire-frame of the two resulting cut

elements, one of which is outside the computational domain and so not constructed

by the intersection algorithm. The skeleton of the algorithm is similar to Fidkowski's

implementation [49], which consists of four steps:

1. computation of intersection points, named zerod objects;

2. construction of intersection edges (oned objects) by ordering and connecting the

33

zerod objects;

3. construction of intersection faces (twod objects) by connecting the oned objects

into loops;

4. construction of cut elements (threed objects) by making the twod objects into

closed volumes.

Details of each step are provided in Appendix B, with an emphasis on our changes

to Fidkowski's implementation. Most of the changes are for numerical conditioning

concerns and for efficiency improvement when using adaptive precision arithmetic,

which will be introduced and discussed in the rest of this chapter.

zerode

B
oned

A

..... --. - -... erod4
zerod 3

... , zerod 5 zerod 2 oned,... Oned4

Pze rod.....

C

A

(a) (b)

Figure 2-1: Example intersection between a background tetrahedron and a quadratic-
patch surface

2.3 Epsilon- Tweaking and Adaptive Precision Arith-

metic

Because each step in the intersection algorithm is built upon the previous steps, a

correct construction of the zerod objects lays the foundation for the whole algorithm.

34

One major component in the zerod object construction is to find the intersection

points between tetrahedron edges and patches, for example, the intersection point P

between the edge AB and the patches in Figure 2-1(a). Let the edge be represented

by x = XA + t(XB - XA), and one quadratic patch is defined as in (2.1). Then the

problem is: find X, Y, and t such that

6

#i(X, Y)xi = XA - t(XB - XA) (2.2)

tE[0,1], XY>0, X+Y<1, (2.3)

which is a system of three quadratic equations in three variables and has an analytical

solution. The question whether (2.2) has a solution in the range of (2.3) represents a

geometric predicate that branches the algorithm into two different topologies. Only

one of them is valid, and hence answering this predicate correctly is critical. A simple

implementation is to solve (2.2) using an analytical formula (root-finding for cubic

equations involved) and verify the constraints (2.3) for the found roots with epsilon-

tweaking. Such an implementation is similar to that in the work of Fidkowski [49].

However, this method suffers from severe robustness issues. As an illustration, the

intersection algorithm is applied to a patch representation of ONERA M6 wing with

6500 quadratic patches as in Figure 2-2(a). The intersection is carried out for 15

similar background meshes, each of which has about 7000 tetrahedra and results in

about 1200 cut elements. Figure 2-2(b) shows one of the meshes. With the epsilon-

tweaking method, eight of the meshes cannot return a topologically valid cut mesh due

to incorrect evaluation of predicates, for example, the verification of the range (2.3).

The same algorithm is then implemented using LEDA real. One difficulty in using

real is the need to deal with transcendental functions, which are not supported for

algebraic numbers. The intersection curve between a plane and a quadratic patch is

a conic in the reference space of the patch, as proven in [49]. As an illustration, the

shaded twod object in Figure 2-3(a) is shown in the reference space of the parent patch

in Figure 2-3(b). Both onedi and oned2 result from an intersection between a plane

35

(a) (b)

Figure 2-2: Quadratic-patch representation of ONERA M6 wing and an example
background mesh

and a patch, and are conic sections in Figure 2-3(b). For each conic section, all the

zerod objects on it need to be ordered, and this needs a parameterization of the conic,
which often requires transcendental functions as in Fidkowski's implementation [49].

One fix is to use a rational Bezier representation for conics [101], but a much simpler

and more efficient method relies on the convex properties of conics. Johnston proved

that the order of points on a convex segment is the same as the order on the convex

hull formed by these points [66]. This effectively turns the ordering problem into

ordering on a convex polygon, which needs only orientation tests and enables the use

of LEDA real. Details are provided in the description of oned object construction in

Appendix B.2.

With transcendental functions removed, all the double numbers are changed to

LEDA real, and the entire intersection code is made "epsilon-free" by removing all

the Eagi,'s. The same tests on ONERA M6 wing are carried out, and each of the 15

background meshes returns a valid cut mesh. However, constructing each one of these

cut meshes takes even longer than the solution time of an inviscid transonic flow on

the wing using the ProjectX DG solver [13, 43, 51].

36

IEI

1.51
Zerod 7

oned3

zerod3

zerod
2

0.5 F

a

oned1

-0.5
zerod -0.5

(a) Physical space

Figure 2-3: Example intersection in

6

zerod
2

zerod5 ned1
on d2

zerod,

0 0.5 1 1.5

(b) Patch reference space

patch reference space

2.4 Efficiency Improvement

In the library of LEDA (or CORE), every algebraic number has its entire construction

history stored as a directed acyclic graph (DAG), whose internal nodes represent

arithmetic operations (e.g. +) and whose leaf nodes are the input numbers. Each

internal node is also stored with its round-off error, and a positive number known

as separation bound, which is used to ensure correct sign computation. More details

(including an example of DAG) are provided in Appendix A. 1, and separation bounds

derived for LEDA real are described in [25]. When the precision of the number needs to

be refined for sign computation, the whole DAG needs to be updated. Also, when the

number in the query is exactly zero, the precision required is much higher, especially

if root-finding and division are in the DAG as these operations have much looser

separation bounds. Therefore, for efficiency concerns, double precision arithmetic

should be used whenever possible, and if adaptive precision arithmetic has to be used,

it is important to:

(1) keep the construction history of every number simple;

37

zerod
5

oned2

1

(2) avoid polynomial root-finding (if possible);

(3) keep the degree of every algebraic number low;

(4) avoid asking for the sign of a number that is exactly zero (if possible).

Various techniques are developed to make the adaptive precision arithmetic affordable

for our cut-cell intersection problem. The key concepts are described in the rest of

this section, and more discussion is given in Appendix A.2.

Intersection Detection

The most computationally expensive step in the intersection algorithm is in solv-

ing (2.2), which governs the intersection between each pair of a background tetra-

hedron edge and a patch. As most of these pairs do not intersect, it is appealing to

quickly identify such a case without attempting to solve (2.2). Two tests are developed

for this purpose.

The first is a bounding-box test, where an axis-aligned bounding box (AABB) is

computed for each quadratic patch. Note the AABB is defined based on the extrema

of the patch in each coordinate direction. Possible overlap between the AABB and

a background tetrahedron edge (or face) is examined before attempting to solve the

intersection problem. The method of separating axis, see for example [45], is ap-

plied for this examination. This method is a simple and efficient way for determining

whether two convex sets intersect by projecting the two sets onto one or more lines.

Further, because AABB's are not tight even when computed exactly, round-off errors

are tolerable in this case. Thus, the bounding-box test is implemented using double

precision.

The second test is based on polynomial root-bounding. Because the system (2.2)

is linear in t, we can eliminate t easily and obtain a bivariate quadratic system in X

38

and Y. Let each equation in the system (2.2) be denoted by

6

Fd -- 5(X, Y)X - (xd + aAt) 0, (2.4)

where ad X x - xd, and d G {1, 2, 3} represents the dimension index of coordinates.

Let j denote the dimension for the largest ad, i.e. d arg max ad, then a biquadratic
d

system that has the same roots in X and Y as (2.4) can be obtained:

S1 (X, Y) adFmod(j+1, 3) - amod(j+1, 3)Fd = 0

S2 (X, Y) adFmod(j+2 ,3) - amod(d+ 2,3)Fd = 0

Note a mathematically equivalent formulation to Eq. (2.5) is

Fmod(d+1,3) _ amod(J+1,3) F = 0aJ

Fmod(d+2,3) - amod(d+2,3) F = 0

With adaptive precision arithmetic, this formulation can be prohibitively expensive

for certain degenerate cases due to the division operator, for which the separation

bound is less tight than for the other basic arithmetic operators [25].

As solving the system (2.5) requires root-finding for a polynomial that is at least

cubic, detecting possible roots without solving leads to a significant reduction in com-

putational cost. This is done by first computing the two Sylvester resultants of the

bivariate system, each of which is a univariate quartic polynomial and has the same

roots as the original system. This quartic polynomial is first classified based on its

number of real roots, and then Sturm's Theorem is applied to the resultants to detect

the existence of roots in [0, 1]. This whole process does not involve any root-finding

of polynomials. Further, the Sturm's sequence for a quartic polynomial can be ex-

pressed in terms of its discriminant and invariants, which are already computed for

its classification; see Appendix A.3. Description of Sturm's Theorem and definitions

of polynomial resultants can be found in algebra textbooks, for example, [130].

39

Conic-Conic Intersection

The obtained bivariate quadratic system (2.5) represents a conic-conic intersection

problem between the two conics S1 (X, Y) = 0 and S2 (X, Y) = 0. One way to solve

this intersection problem is to identify an S3 = aS + bS 2 that eliminates X 2 (or Y 2)

term. Then S3 is linear in X, and can be solved for X in terms of Y. This equation for

X is substituted into either Si or S2, yielding a quartic equation in Y. Another way

is to consider the conic pencil S3 = Si + pS2 and identify the parameter p that makes

S3 a degenerate conic. This involves solving a cubic instead of a quartic equation in A,

of which we need only one real root. 53 is then decomposed into one or two lines, and

the lines are then intersected with either Si or S2. Details can be found, for example,

in Art. 187 in [113]. Both methods were used in Fidkowski's implementation [49], and

do not differ in speed when implemented in double precision. However, in adaptive

precision, the second method is preferred as lower-degree polynomials are involved.

Note we attempt to intersect S3 with S1 or S2 only if S3 intersects with the reference

triangle; this is easily verified because S3 represents straight line(s). Further, the

choice of Si or S2 to intersect with S3 depends on the magnitude of A. For example,

when p is very small, S 3 will be nearly identical to Si, and intersecting them may

require a large amount of precision refinement.

Root-Finding for Cubic Equations

The most expensive step in solving the conic-conic intersection problem lies in solving

the cubic equation of p. While there are analytical formula for roots of cubic equations

(see for example [60]), the formula for the case with three distinct roots involves

complex numbers or trigonometric functions, which are not available for algebraic

numbers. In LEDA, the root for a cubic equation is represented using the diamond

operator for algebraic numbers [111], which applies Newton's method for root finding

whenever precision refinement is needed for sign computation. It is thus critical not

to query a duplicate or nearly-duplicate root for performance concerns. We can derive

expressions that relate the distance between two roots to the equation coefficients,

40

and thus identify and avoid a duplicate or nearly-duplicate root before solving the

equation. Furthermore, these expressions involve only the discriminant and invariants

of the equation, which are already computed for classifying the cubic equation. Details

are provided in Appendix A.4.

Validity of oned Objects

When oned objects along background tetrahedron edges are constructed (see oned3

and oned4 in Figure 2-1(b)), we need to determine their validity, where being valid

means inside the computational domain or on its boundary. This information can be

achieved by evaluating the inward patch normal at the intersecting zerod object (zerod4

in Figure 2-1(b)). This evaluation is a very expensive step because the coordinates

of the zerod objects are the roots of (2.2) and hence have a complex construction

DAG. Instead of performing this evaluation for every oned object, we evaluate the

validity of only one using this method, and the validity of very other background-edge

oned object can be deduced based on topology by traversing through each background

edge. Whenever an intersection point with an odd multiplicity is encountered when

traversing, the validity of the next oned object is switched from that of the current

one. For instance, traversing from oned3 to oned4 in Figure 2-1(b) encounters an

intersection point zerod4, and so these two oned objects must be on different sides of

the quadratic-patch geometry.

We also determine the validity of oned objects on patch edges and faces based

on the same principle when using the adaptive precision arithmetic. We rely on

topology information whenever possible instead of computing based on the coordinates

of intersection points, which can involve a large construction DAG. Construction of

each type of oned object is described in detail in Appendix B.2.

41

2.5 Results for Robustness and Efficiency

With all the techniques implemented for efficiency improvement, the testing results

for the 15 similar background meshes intersecting with the ONERA M6 geometry is

summarized in Table 2.1. The timing results represent the average time of intersecting

the 15 meshes (or the meshes that return a valid cut mesh in the case of using double

precision). The solution time is for an inviscid transonic flow on the same mesh using

the ProjectX DG solver [13, 43, 51]. The DG discretization has a polynomial degree of

p = 1, and the nonlinear solver starts from a converged flow solution on a similar mesh.

The flow has a freestream Mach number of 0.8395, an angle of attack of 3.06', and a

sideslip angle of 00. With the efficiency improvement, the intersection time represents

only a small fraction of the solution time on these coarse meshes. Furthermore, the

intersection code is parallelized by partitioning the background mesh, and almost a

linear speedup is observed. Note that the EGC guarantees the consistency between

cut topologies across partitions, and hence ensures a correct parallelized intersection

algorithm. Details of the parallelization implementation are provided in Appendix B.4.

Table 2.1: Correctness and performance for cut-cell intersection

Approximate fractionType Correctness o ouintm
of solution time

double precision 47% 0.1%
Adaptive precision 100% 400%

Adaptive precision with 100% 5%
efficiency improvement

42

Chapter 3

High-Quality Quadrature Rule for

Cut Cells

3.1 Introduction

As a cut-cell mesh can have arbitrarily shaped elements, a quadrature rule for each

of these elements and their faces is required in a finite element discretization. One

possible approach is to subdivide each cut element into possibly-curved simplices on

which standard quadrature rules can be applied. However, this approach cycles back

to the original problem of meshing an arbitrary (curved) domain. A more general

quadrature rule is thus needed: find a quadrature rule, {xq, Wq}, such that for an

integrand f(x), we have

flq

ff (x)dx ~: Wqf (xq), (3.1)
q=1

where Q is an arbitrary closed domain in two or three dimensions, and the choice

of {Xq, Wq} is independent of the function f(x). Because the whole solution strategy

is promised to be fully-automated, the generation of the quadrature rules needs to

be achieved in an automated manner. In addition, a high quadrature quality is also

required, since lack of integration quality has an adverse impact on the quality of

43

residual (and Jacobian matrix) evaluation for a finite element discretization. Such

impact can result in poor nonlinear solver convergence, especially when higher-order

polynomial approximation is employed. This will be demonstrated in Section 5.1 for

a discontinuous Galerkin discretization applied to aerodynamics problems.

Quadrature rules are typically deigned such that (3.1) is exact for every function

in the polynomial space Pd, which spans all polynomials of a (total) degree p in d

variables. The degree p is often referred to as the algebraic degree of the quadrature

rule:

Definition 3.1. A quadrature rule, {xq, Wq}, has an algebraic degree p if it is exact

for all polynomials of degree at most p but not exact for at least one polynomial of

degree p + 1.

Let {i} denote the basis functions of the space pI, where nb -dim pd. Then a

necessary and sufficient condition for a degree-p quadrature rule is (3.1) being exact

for each O':

(x)dx =E q (xq), i = 1, ... nb. (3.2)
q=1

Assuming we have means to compute f2 0j(x)dx, then (3.2) represents a polynomial

system of nb equations for (d + 1)nq variables: {Xq}i 1 and {Wq}I,1. Note when

nq > nb, this system is guaranteed to have solutions with each xq inside Q and each

Wq non-negative [37]. Cools [37, 38] provides excellent reviews on the construction

of quadrature rules based on (3.2), and classifies the existing methods into two main

approaches:

1. solve the system (3.2) directly, using for example Newton's method;

2. search for quadrature points at which a set of orthogonal polynomials vanish.

The first approach involves root-finding for polynomial systems, and often lacks ro-

bustness in converging an iterative solver. This approach is thus usually applied when

44

certain symmetry structure exists for the integration domain and can reduce the size

of the system (3.2); see for example [132] where quadrature rules are derived using

this approach on triangles and tetrahedra. Mousavi et al. [89] pursued this route for

arbitrary polygons without symmetry structures, but the method requires an initial

set of degree-p quadrature points, and the convergence of the Newton's method is

very sensitive on the choice of the initial points. For the second approach, it is well

known in one dimension that the n roots of a degree-n polynomial that is orthogonal

to all lower-degree polynomials lead to a quadrature rule of degree 2n - 1. However,

extension of this idea to higher dimensions encounters significant difficulty, even for

standard regions such as triangles. One main challenge is to construct a proper set of

(multivariate) orthogonal polynomials that has a sufficient number of common roots.

A review on the current state of the art and challenges for this approach can be found

in [36]. Therefore, neither approach is robust and/or computationally affordable for

cut-cell applications, where a quadrature rule needs to be derived for each cut element

in a fully-automated manner.

Another route to high-quality quadrature is through approximating the integra-

tion region by "canonical" shapes, for which high-quality quadrature rule is available.

For example, Modisette recognized certain cut elements in two dimensions through

parametric polynomial mapping over triangles and quadrilaterals [87]; Sommariva

and Vianello approximated an arbitrarily shaped two-dimensional domain using poly-

nomial splines [114]. However, in addition to the fact that these methods modify

the definition of the embedded geometry, their extension to three dimensions is non-

trivial. More specifically, when two faces that share a common edge are approximated

(by polynomial mappings), it is not easy to ensure the two approximated faces still

define a common edge. This can undermine the premise of quadratic-patch represen-

tation being watertight. The focus of this chapter is thus on deriving quadrature rules

for arbitrarily shaped elements without appealing to the "canonical" shapes. Another

method of approximating an integration domain is proposed by Natarajan et al., where

an arbitrary polygon is mapped into a unit circle through conformal mapping [91];

45

however, this method does not have an obvious extension to three dimensions either.

The objective of this chapter is to develop an algorithm that generates a high-

quality quadrature rule in an automated manner for each arbitrarily shaped element

in two and three dimensions. We first explore proper metrics for evaluating quadra-

ture quality, and propose two criteria in Section 3.2 for the cut-cell quadrature rule to

satisfy: algebraic degree and a defined quadrature quality measure. The quadrature

weights are computed to fulfill the criterion on algebraic degree, and the quadrature

points are selected to improve the quadrature quality as presented in Sections 3.3. Sec-

tion 3.4 describes how the integration of basis polynomials is evaluated, and numerical

examples are presented in Section 3.5. In Section 3.6, we summarize the entire algo-

rithm for generating the cut-cell quadrature rule. The proposed algorithm does not

rely upon any symmetry information or geometry approximation, and does not involve

high-order polynomial root-finding. Note, without loss of generality, we always assume

the integration domain has a unit volume in this chapter for presentation brevity.

3.2 Criteria for Cut-Cell Quadrature Rule

Before attempting to construct a quadrature rule for cut cells, we need to first define

metrics for assessing the quality of quadrature rules. In this section, we define two

such metrics, and propose two corresponding criteria for the cut-cell quadrature rule

to satisfy.

3.2.1 Algebraic Degree

A standard measure for quadrature quality is the algebraic degree p defined in Defi-

nition 3.1. The first criterion is thus:

Criterion 3.2. The cut-cell quadrature rule has a user-specified algebraic degree p,

and so satisfies Eq. (3.2), or written in matrix form:

Vw = b, (3.3)

46

where w E R fq is the vector of quadrature weights, V C R lbX" is the Vandermonde

matrix on quadrature points with Viq = /)(Xq), and b E Rfb has bi = f2 Oi(x)dx.

In this work, we achieve this criterion through manipulating only {wq}, while {Xq}

will be chosen based on the second criterion we propose. More specifically, given a

set of nq points, where nq > nb, we define {wq} through a projection of the integrand

f(x) onto the polynomial space pd: find F c Rnb such that

nq nb2

F = arg min cq Fi<i(Xq) - f (xq)) (3.4)
q=1 i=

where cq is the (approximate) volume of the Voronoi cell around Xq. This weighted

least-squares problem has a solution of

F = (VCVT) 1 VCf, (3.5)

where C E RlqXflq is a diagonal matrix with entries being cq, and f EC R fq has

fq = f(xq). The integral of the function f(x) is then approximated by the integral

of the projected polynomial:

f (x)dx ~ Fi~i(x)dx = FTb = fTCVT (VCVT) 1 b,

and we can define the quadrature weights as

w = CVT (VCVT) 1 b, (3.6)

which is independent of the integrand f (x). If the integrand f (x) belongs to the

polynomial space Pd, the projected polynomial will be equal to the integrand due

to (3.4), i.e. f(x) = En, Fiti(x), making (3.3) satisfied. Note this approach is

generalized from the derivation of quadrature weights in Fidkowski's work [49], where

cq was unity for every quadrature point.

47

One of the reasons that the algebraic degree has been a standard measure for

quadrature quality is that a smooth function f(x) has exponentially decaying spec-

tral expansion coefficients. By capturing the integral of its first p spectral terms, the

quadrature rule is expected to capture the integral of the function itself. Hence increas-

ing the quadrature degree p should lead to an exponential convergence of quadrature

error. However, one important aspect is overlooked in this reasoning. Although the

quadrature rule integrates exactly the first p terms, the rule may magnify the higher-

degree terms not captured, and may produce large errors that pollute the result. A

similar argument is also demonstrated in the work of Trefethen [119], which shows that

Clenshaw-Curtis quadrature is as competitive as Gauss quadrature even though it has

a lower degree for the same number of points. Thus, merely increasing quadrature

degree is not sufficient for a high-quality integration.

3.2.2 Quality Measure

For a general quadrature rule {xq, Wq}q 1, we define the quantity:

Q WTC-1w, (3.7)

where w is the vector of quadrature weights, and C is defined as in (3.5). In this

section, we first characterize the quadrature rule defined by (3.6) and discuss the

properties of Q, and then demonstrate Q can be a measure of quadrature quality for

this rule.

Let Xq represent a set of quadrature points {xq}Iq , and let {Xnq} _1 represent

a sequence of such sets. For a sequence that satisfies Assumption 3.3 given below,

Theorem 3.4 characterizes the asymptotic behavior of the quadrature rule (3.6). The

proof is provided in Appendix C.1.

Assumption 3.3. Let f(x) be a Riemman integrable function. For the sequence

48

{Xnq}n 1 of quadrature point sets Xn, = {Xq}q, we assume

lim cqf (xq) = f(x)dx,

where cq is the volume of the Voronoi cell around xq. We also assume a convergence

rate r > 0:

nq

cqf(xq) - f (x)dx O (n). (3.8)
q=1

Theorem 3.4. Let a set of quadrature points {xq} q 1 belong to a sequence {Xnq}

satisfying Assumption 3.3, and let the quadrature weights {wq} "n_1 be defined by (3.6).

Then we have the following:

1. the quadrature error converges to zero:

lim wqf (xq)= f (x)dx; (3.9)
q=1 f~~x

2. Q defined by (3.7) converges to one from above:

Q > 1, and lim Q = 1; (3.10)
nq-00

3. the quadrature weight for each point converges to the volume of its Voronoi cell:

lim wq = cq, Vq. (3.11)
nq +00

Wilson [123] and Huybrechs [63] also derived the quadrature weights {wq} in (3.6)

but from a different perspective, which will be presented later in Eq. (3.12). Both

authors discussed Item 3 of Theorem 3.4 in more detail. In particular, if {Cq} is

chosen such that the convergence rate r in (3.8) is higher, the quadrature rule defined

by {Wq} will also have the same higher rate for the convergence in (3.9). For uniformly

49

spaced points, with cq being the volume of Voronoi cell, we have r = 2 (for a sufficiently

smooth integrand); and the convergence rate for Q in (3.10) is observed to be 2r. A

numerical example defining {cq} by Simpson's rule in one dimension is demonstrated

in [63]. Although the quadrature rules defined by {Wq} and {Cq} have the same

convergence rate with respect to nq, the weight {wq} gives an algebraic degree p

regardless the choice of {cq}, and is interpreted as a higher-degree correction to {cq}

in [63, 123].

For any degree-p quadrature rule, we can bound the quadrature error using Q as

stated in the following theorem. The proof follows the proof for Theorem 4.1 in [119],

and is provided in Appendix C.1.

Theorem 3.5. For any degree-p quadrature rule, {Xq, W} 1 1, where p ; 0, we have

flq

Zwqf (xq) f (x)dx < C(1 + vQ),
q=1

where Q is defined in (3.7), and C is a constant based on the integrand f(x).

For the quadrature rule defined by (3.6), it is conjectured from numerical evidence

that a tighter bound in terms of Q = vQ - 1 exists for the quadrature error. Fig-

ure 3-1 shows one example, where we generate 1000 fifth-degree quadrature rules on

the domain [0, 1]. Each rule has nq = 15 nb quadrature points randomly sampled from

a uniform distribution, and quadrature weights computed from (3.6). We then apply

each rule to integrate a smooth function sin(7rx), for which the spectral expansion

terms decay exponentially, and the quadrature error can reflect whether the rule mag-

nifies the higher-degree spectral terms. Figure 3-1 plots the quadrature error versus

Q, and a strong correlation between the error (or its upper bound) and Q is observed.

As we also observe the quadrature error and Q converge to zero at the same rate as

nq increases, we expect a similar correlation for a higher nq as well. Further, even

though each rule in Figure 3-1 has the same algebraic degree, the error upper bound

varies almost three orders of magnitude. Therefore, in addition to achieving a specified

algebraic degree, we propose the second criterion for the cut-cell quadrature rule:

50

Criterion 3.6. The cut-cell quadrature rule needs to have a value of Q less than a

user-specified Qhreshold.

10

10 -3

10 -

C
10

10 * * *

10-7.

10-
10 10 10- 10

Figure 3-1: Quadrature error vs. \/Q - 1

As Q is a reasonable measure of quadrature quality, designing a rule with mini-

mum Q may be desirable. Such a rule corresponds to the solution of an optimization

formulation: given {xq}I, 1 , where nq > nb, find

W* = arg min w T C 1 w, subject to Vw = b, (3.12)
w

where C is defined in (3.5), and V and b are defined in (3.3). This optimization

formulation is also proposed in [63, 123], and has a unique closed-form solution. How-

ever, the optimal solution w* is in fact identical to the quadrature weights defined

by (3.6). This suggests that a decrease in Q has to be achieved in the choice of {Xq},

which will be discussed in Section 3.3.

Another common measure for quadrature quality is the positivity of quadrature

weights. A positive quadrature rule is one with all positive weights, and its existence

for an arbitrary domain was first proven by Tchakloff [118] when nq = nb. Davis

later provided another proof by proposing a construction method of such a rule [39],

but the method serves more as a mathematical proof than a practical construction

51

algorithm. Huybrechs [63] proposed an approach using non-negative least squares on

a large number of sample points. However, when the number of sample points is not

sufficient, the approach can lead to a (positive) rule that violates (3.2) and does not

even integrate a constant function exactly. Note that the quadrature weights defined

by (3.6) are in fact also positive for a sufficiently large nq due to Item 3 in Theorem 3.4.

3.3 Quadrature Point Selection

Given a set of quadrature points {xq}, let the quadrature weights be computed

from (3.6), then Q defined in (3.7) is equal to

Q({xq}) = bT(VCVT)-1b, (3.13)

which is independent of the chosen polynomial basis. For a given basis, b is indepen-

dent of {Xq}, and so Q in (3.13) decreases in general if {Xq} is selected such that the

matrix VCVT is better conditioned. While each column in V is for one quadrature

point and independent of other points, each entry cq in C corresponds to the volume

of the Voronoi cell around xq and relies on the choice of the entire set {Xq}. We

thus consider a simpler problem of choosing {Xq} to improve the conditioning of the

matrix VVT instead. A natural solution to this problem is the Fekete points, which

consist of a set of nb points that maximizes the absolute value of the determinant

of V. However, they are known analytically in only very few instances, for example

in a circle or a cube. Taylor et al. proposed a steepest ascent algorithm to find the

Fekete points in a triangle [117], but the method is not affordable if we need to find

a different quadrature rule for every cut element. In this work, we use the empirical

interpolation points developed by Barrault et al. [11], which are applied to polynomial

interpolation by Maday et al. [83] and named the magic points. In the rest of this

section, we first briefly review the construction of the magic points, and then prove

they are asymptotically equivalent to the Fekete points under certain conditions.

Let U denote a set of functions in L (Q), where the cardinality of U can be infinite.

52

The objective of the magic point construction is to find a space XM C L'(Q) and a

set of interpolation points {xi} i1 , such that the interpolation error IIU - IM [U LO(Q)

is small for any u E U, where dim(XM) = M, and the interpolant -EM : U - XM is

defined by

1M U (xi) = U(Xi), i = 1, ... ,M.

This is achieved through a greedy procedure. We first define u1 as

ul = arg max lUHLo(Q),

and define the first interpolation point by

xi = arg max lui(x).
xE?!

Then suppose that {xi} 1 has been chosen, the next interpolation point is determined

according to:

UM+1 = arg max 11U - -M[U] Lo-(Q), (3.14)
UEU

xM+1 = arg max UM+1(X) - IM[UM+1(x)1. (3.15)
xE11

In implementation, the set U is replaced by a set of monomials with a total degree

up to a specified degree n, denoted by W,; and the domain n is discretized using a

large number of (uniformly spaced) sample points, denoted by S. The optimization

problems (3.14) and (3.15) are then approximated by

UM+1 = arg max U - IM[U IL(Q) (3.16)
nEW'

xM+1 = arg max UM+1 (X) - iM [UM+1 (X) , (3.17)
xES

which are solved using an exhaustive search. The interpolant -EM is constructed by

53

solving for the coefficients { #j} i from

M

Im [u] = 1: j q (xi) = u (xi), I ,.. M, (3.18)
j=1

where the interpolation basis qj is defined during the greedy process of choosing ui

and xi:

U1

q, U, (X,)'

qm~l uM+1 - M UM+11 _1qM1 ~M +1 1 MM1]M;> 1.
UM+1(XM+1) -IM UM+11 (xM+1)'

Note the linear system (3.18) is lower triangular with unity diagonal (and hence in-

vertible) as proven in [83].

The point selection based on (3.15) is in fact equivalent to maximizing the absolute

value of the Vandermonde determinant, as stated in Lemma 3.7. We then present the

asymptotic behavior of the magic points in Theorem 3.9, assuming the set of sample

points S belongs to a weakly admissible mesh (WAM) defined in Definition 3.8; see [22]

for more properties of a WAM.

Lemma 3.7. The optimization problem (3.15) is equivalent to

XM+1 = arg max det(VfM1(X, ... , XM, X)) (3.19)
xEQ

where Vf .M+1(X1I, ...XM, x) E R(M+1)x(M+-1) is the Vandermonde matrix of the func-

tions {ui}l evaluated at the points {x }_ 1 U x.

Proof. From (3.18), there exists {ay , such that

M

IM[uM+1](xi) - Zajuj(xi) = uM+1(xi), i = 1, ... , M. (3.20)
j=1

This is because span{qi, ... , qm} coincide with span{u1 , ... , UM} as proven in [83]. We

54

then have for any x C n:

1'

uM+1 (xi)

uM+1 (XM)

uM+1 (X)
0

uM+1 (XM j= eu XM

UM±1(X1 - 1 ai ui xi

0

'LM±1 (XM -= ~ajuj (xM)

uM+1(X) - Z e!1 X

uM+1(X) - IM UM+11 X

where the first factor is equal to det(V~ig. (x 1, ..., XM)) , which is independent of x.

Therefore, the objective functions in (3.15) and (3.19) are the same up to a constant

factor, and so lead to the same point xM+1.

Definition 3.8. Let S, denote a set of points in Q, then a weakly admissible mesh (WAM)

is a sequence of such sets, {S,} _1, such that

IPLOO() 5 C(Sn) IPI Lo(Sn), np P,

where both C(Sn) and JSnJ grow at most polynomially with n.

Theorem 3.9. Let Wn-- {w1, ... , wN} represent a set of monomials in the order of

increasing total degree up to n, i.e. deg(wi) < deg(wj) < n for i < j. Let Sn denote a

set of points that belongs to a WAM defined in Definition 3.8. If we let the function

choice in (3.16) be simply uM+1 ~ wM+1, then the points selected from Sn using (3.17)

55

det(Vg}M+1 (x1, ... , XM, X))

=Idet

... UM(x1)

... UM(XM)

... UM(x)

... UM(X1)

... UM(xM)

... UM(x)

... UM(Xi)

... UM(XM)

ui(xi)

u1 (xM)

Ui(X)

ui(xi)

u1 (xM)

ui(x)

u1 (XM)

U, (XM)

= det

= det

will asymptotically lead to the Fekete points as n -- o.

Proof. Based on Lemma 3.7, the point selection from (3.17) is identical to that

from (3.19) with i being discretized by the same set of sample points S,. Further, the

optimization problem (3.19) is in fact the same as the definition for the discrete Leja

points presented in [23], which are proven to have the same asymptotic distribution as

the Fekete points when Wn and Sn satisfy the conditions stated in the theorem. El

3.4 Integration of Basis Polynomials

When we compute the quadrature weights from (3.6), we need to evaluate the vec-

tor b, which is the integration of the basis polynomials Oj's in Q. We follow the idea

in [49], that is, for each 4j, we define a vector function Gik, k = 1, ..., d, such that

ZkkeGik = 0j. Then we apply the divergence theorem:

I' r d] 'idx = j k G4dS (3.21)

where the surface integral is evaluated using the quadrature rule in the dimension

d -- 1. In this work, Gik is defined on the oriented bounding box of Q. For presentation

brevity, assume the bounding box is axis aligned: Xk E [Xmin xm], then Gik is defined

as

d min

G ~ ~~i =k -X - Xk)fGik = (Xk - XT" O#ij Xmax Xmn , k = 1, ...,I d,
j=1 k k

where each #i, is the Legendre polynomials defined on [0, 1], and its total degree is

smaller than (or equal to) the degree of the quadrature rule, i.e. E deg(i,) < p.

When we evaluate (3.21) on the surface of quadratic patches, the term far(-)dS

involves integration (of polynomials) along conics, which requires a parameterization

of conics. An overview of different conic parameterizations can be found in Chapter 7

of [101]. In this work, we choose the one with the property that a point sequence

56

from evenly spaced parameters forms a polygon that encloses the maximum inscribed

area [101]. However, this parameterization can be very sensitive to precision when

the conic shape is close to being a straight line. For such a conic, a polar represen-

tation [88] with respect to a carefully chosen origin is used. More details about these

two parameterizations are provided in Appendix C.2.

3.5 Numerical Examples

In this section, we demonstrate two examples where the quadrature points are selected

based on (3.16) and (3.17), and the quadrature weights are computed from (3.6)

for a specified degree p. The set W, in (3.16) initially consists of monomials with

a degree up to n = p. Let {ui 1 denote the M monomials that have been se-

lected based on (3.16). As M increases, the space spanned by {ui} 1 becomes

larger, i.e. span ({ui}L 1) D span ({ui}±j), and the objective function in (3.16),

11U - IM [U] Loo(Q), in general decreases for any u E W,. When M ~ IWa,1 this ob-

jective function can be (almost) machine precision for any u E W., making round-off

error affect the choice of uM+1 from (3.16). Therefore, we should always keep 1Wn1

sufficiently large compared to M. In this work, when M > 0.751Wnl, we enlarge the

set W, by increasing n by one. The set S in (3.17) consists of a large number of uni-

formly spaced points inside the integration domain. In this section, we intentionally

do not have any sample point on the domain boundary, because for a cut element, the

sample points are generated based on its bounding box, and are in general not on the

element boundary.

Example 1: "Crown" Shape in Two Dimensions

In this example, we consider a non-convex domain of a "crown" shape as shown in

Figure 3-2. In the figure, we also show 150 points selected using (3.17) from a sample

of about 4000 uniformly spaced points. After each point is added, we generate a fifth-

degree quadrature rule, and integrate a smooth function f(x) = sin(rx) sin(wy) in the

57

domain. Figure 3-3 shows the quadrature quality measure Q and the quadrature error,

both of which decrease with the number of quadrature points nq. The rate of decrease

for v/Q - 1 and (the upper bound of) the error is about the same. Furthermore, for

comparison, we also include the results from using uniformly spaced points, which

lead to a poorer quadrature quality both in terms of the measure Q and the error.

0.9 0

0.8 0 0 0

0

00.7 0

0 0 0 0
v o000 0 0

0.60
0

0 00.50

0. o o 0 00

0.30000

0.2-C0000 00 00000

0.1 0 00 0 0

0 0.2 0.4 0.6 0.8 1
x

Figure 3-2: "Crown" shape in two dimensions, with 150 points
4000 points using (3.17)

10 2
n

(a) Quality measure, V'Q

W10-1

0
cc

o0 -3*~10
U-

10 10 10 2
nqq

(b) Quadrature error

Figure 3-3: Quadrature quality measure and error for the "crown" shape

58

10

10 0

10-1

selected from about

- -- Uniform Points
- Magic Points

-0.89

10~ 2
10 1

- - -Uniform Points
- Magic Points

-1.29'

1 103

Example 2: Curved Element in Three Dimensions

This example has an integration region enclosed by the three coordinate planes and

the curved surface z = -x2- y2 + 1 as shown in Figure 3-4. The requested quadrature

degree is p = 6, and the number of basis functions is nb = (p + 1)(p + 2)(p + 3). The

number of sample points for (3.17) is 100nb, and the integrand is sin(wrx) sin(ry) sin(rz).

Figure 3-5 shows the decrease of Q and the error with nq.

1

0.8

0.6

0.4

0.2

0
0

1

0.5

x 1 0

Figure 3-4: Curved element in three dimensions

3.6 Summary: Cut-Cell Quadrature Rule

This section presents the entire algorithm for generating the cut-cell quadrature rule

in two and three dimensions. As input, we are given a specified (total) degree p, and a

quality threshold, Qthreshold, which is set to 5 in this work. Define n = dim'P, and let

Q denote an arbitrary cut element, and B, its oriented bounding box. Denote the set

of quadrature points by X, which is initially empty. The algorithm is given as follows:

1. Generate a set S of uniformly spaced sample points in Q, where ISI ~ 10 0 nb. This

59

10

102
n
n

q

(a) Quality measure, VQ -1

10

10'

10

1010 10 2
n

q

(b) Quadrature error

Figure 3-5: Quadrature quality measure and error for the curved element in three
dimensions

is achieved by populating points in B, and those outside T are discarded.

2. Let n = p, and let W, consist of monomials up to degree n.

3. Select one point x from S based on the formulation (3.16) and (3.17), and add

x to X.

4. If |XJ > 0.75|Wnj, increase n by one, and enlarge Wn to include the new mono-

mials.

5. If XJ ;> nb, evaluate the quadrature weights w for the specified degree p

from (3.6); the choice of basis functions and their integrations are described

in Section 3.4.

6. Compute the quality measure Q from (3.7).

7. If Q < Qthreshold or JXJ = ISI, return X and w as the quadrature rule; otherwise,

go to Step 3.

60

-Magic Points - Magic Points

103

10 0

10-

Note in the implementation of computing w from (3.6), we perform a QR factor-

ization on the matrix V/_CVT, so that we have

w = v/UQR-T b,

where /UiVT = QR. Further, we also need to compute cq, the volume of the Voronoi

cell around the point xq E X. This is approximated by counting the number of sample

points in S that are closer to xq than to any other x E X, that is, we define a set for

Xq:

Sx, = {S E S Ijq - S11 < HX -- S1, VX E X},

and cq is approximated by |SxqI/S.

61

Chapter 4

Discretization, and Output-Based

Error Estimation and Adaptation

In this chapter, we first review the discontinuous Galerkin (DG) method for general

conservation laws, and describe the choice of solution spaces for cut cells. We then

present the dual-weighted residual method proposed by Becker and Rannacher [18, 19]

for output error estimation. The adaptation scheme used in this work is the metric

optimization framework proposed by Yano and Darmofal [127], and we extend this

framework to handle cut cells.

4.1 Discontinuous Galerkin Method for Conserva-

tion Laws

This section reviews the DG method for general conservation laws. Let Q C Rd be an

open, bounded domain in a d-dimensional space, and I C R+ be the time interval

of interest. A general time-dependent conservation law in the domain Q expressed in

the strong form is given by

+ V . F (u, x, t) - V .- (u, VU, x, t) = S(u, Vu, x, t), Vx E Q, t E l, (4.1)
at

63

with the boundary conditions

B(u, F'(u, Vu, x, t) -f, x, t; BC) = 0, Vx E WQ, t E I, (4.2)

where u(x, t) : Rd x R+ -+ R' is the m-state solution vector. The inviscid flux F,

the viscous flux f7, and the source term S characterize the governing equations to

be solved. In this work, the governing equations considered include the advection-

diffusion-reaction equation and the Navier-Stokes equations, both of which have the

form of the conservation law given in Eq. (4.1). Definitions of these equations are

provided in Appendix E.

Let Th be a triangulation of the domain Q with non-overlapping elements, K, such

that Q UKET K. The DG discretization seeks a solution in a finite-dimensional

approximation space V,p:

Vh,p - {v C (L(Q)) m : v a gK C (PP(Kref)) m , VK C Th}, (4.3)

where PP denotes the space of p-th degree polynomials, and gK denotes the mapping

from the reference element Kref to the physical element K. Multiplying Eq. (4.1) by a

test function, v e V,p, and integrating by parts over every element leads to the weak

formulation of the conservation law, which reads as follows: find uh,p (, t) E V,p such

that

V 'l&hp + Rh,p(Uh,p, V) = 0, Vv E Vh,p. (4.4)
KETh

The semi-linear weighted residual lZh,p : V,p x V,p -+ R consists of three terms:

Zh,p (uh,p, V) = Zp (Uh,p, V) + h, (Uh,p, V) + 'h,p (h,p, v), (4.5)

where 7ZR,P, IZV, 7Zp denote the discretizations for the inviscid, viscous, and source

terms, respectively. In this work, we use Roe's approximate Riemann solver [106]

64

for the inviscid numerical flux, the second form of Bassi and Rebay (BR2) [17] for

the viscous discretization, and a mixed form of Bassi et al. [14] for the source term

with Vu dependence, which is asymptotically dual-consistent [92]. Boundary condi-

tions (4.2) are enforced weakly by appropriately setting the numerical fluxes on the

domain boundaries. For the Navier-Stokes equations, the boundary treatment follows

the work of Oliver [92]. Details of the discretization defined by (4.5) and also the

discrete solution strategy are provided in Appendix F. Note the particular treatment

for interface problems with material discontinuity will be presented in Chapter 6.

4.2 Finite Element Solution Space for Cut Cells

On a cut-cell mesh, let the background mesh be denoted by Th,b, which does not

conform to the embedded geometry and consists of simplices from the mesh generation

process. The mesh after the cutting process is named the cut mesh, and denoted by

Th, which consists of elements of arbitrary shapes along the geometry. These elements

are permitted in the DG scheme defined by (4.5), which requires only integrations on

each element K and its faces 9K; see Appendix F for details of each term in (4.5). In

consequence, we can apply the DG method on the cut mesh Th.

On a typical (high-order) boundary-conforming mesh, each element mapping gK

in (4.3) is often defined by a polynomial of degree q, i.e. gK E (pq(Kef))d. However,

such a well-defined mapping gK from a standard reference element often does not exist

for cut elements with arbitrary shapes. For these cut elements, we create a linear

shadow element in the physical space, and define the mapping gK from the reference

element to the shadow element. Because the shadow element is linear, gK defines an

affine mapping, and the polynomial basis functions in Kref will remain polynomials in

physical coordinates. In this work, the choice of the shadow element for each cut cell

K is based on the work of Modisette [87]. More specifically, we have three options as

listed below in descending order of preference. The hierarchy of these options is set

up in an effort to provide the best overlap between the shadow element and the cut

65

element.

1. If a non-singular polynomial mapping gK G (p(Krf))d is found for K, then K

can be treated as a "canonical" element (e.g. a high-order triangle defined by

the mapping gK), and the shadow element will be the linear portion of K. Note

this option has only been implemented for Kref being triangle or quadrilateral

in two dimensions.

2. If no such mapping is found, the parent background element Kb will be the

shadow element when the cut element accounts for more than 50% volume of

Kb; an example is the element A in Figure 4-1.

3. When the first two options are unavailable, the shadow element will be the

largest simplex in the oriented bounding box of the cut element; an example is

the element B in Figure 4-1.

On the cut mesh, an arbitrarily small volume ratio between two neighbor elements

can be produced, i.e. an arbitrarily small cut element can be next to a much larger

neighbor. The small volume ratio is detrimental to both solution accuracy and linear

system conditioning. A detailed analysis was conducted in [87], which also proposed

a merging technique to eliminate the issues caused by small volume ratios. More

specifically, let two neighbor elements with a small volume ratio be denoted by K1

and K 2, then we introduce a new merged element Kmerged = K1 U K 2 into the cut mesh

Th, and remove K1 and K 2. For the merged element Kmerged, the shadow element will

be the largest simplex in the oriented bounding box of Kmerged, i.e. the third from

the previous list of shadow element options. This merging process is repeated until

the volume ratio between any two neighbor elements is higher than some specified

threshold value. In our work, the same merging technique is also employed. Note

for interface problems, we allow merging of two elements only if they are in the same

sub-domain.

66

Reference Element

Cut Elements

K. 9K

Element A

KW

Element B

Figure 4-1: Illustration of linear shadow element options assuming a polynomial map-
ping is not found

4.3 Output Error Estimation

In this work, output error estimation is achieved using the dual-weighted residual

(DWR) method proposed by Becker and Rannacher [18, 19]. The method explicitly

incorporates the dual problem associated with the output, which links local residuals to

the output error. More specifically, let the output of interest be denoted by J = J(u),

where u E V denotes the exact solution to the governing PDE, and J(.) : V -+ R is

the output functional. Denote the DG solution by Uh,p satisfying

R7h,(Uh,p, v) = 0, VV E Vh,,, (4.6)

where Rh,p is the weighted residual from (4.5). The approximate output value com-

puted from Uh,p is denoted by Jh,p = Jh,p(uh,p), where Jh,p(-) : Vh,p -+ R is the discrete

functional.

67

Shadow Element

In the DWR method, the output error can be expressed as

Strue = J - h,p = -lZh,p(Uh,p,), (4.7)

where the adjoint solution 4' E W = V + V,p satisfies

Vw E W. (4.8)

Here, 1/,p[u, uh,p] :W x W - R and -'j~u, u :,] W -+ R are the mean-value

linearizations defined by

R'1,p[Ou + (1 - O)uh,p](w, v)dO

Y p [U, Uh,pl(W) 1 Jl,p [Ou + (1 - 0)uh,p](w)d6,

where R',p[z](-,.) and Jh,P[z](.) denote the Frechet derivative of Rh,p(,-) and J,p(-)

with respect to the first argument evaluated about the state z.

As Eq. (4.8) involves an infinite dimensional space W and also the exact solution u,

the adjoint solution 4 is in general not computable. In this work, we approximate 4
by 4h,p+1 in an enriched space Vh,p+1 D Vh,p, computed from linearization about nh,p:

h,P+1 [uh,p] (V, Oh,p+1) = Jh,p+l Uh,p (V), VV E Vh,p+1-

The output error is then estimated by

Strue ~'- -7h,p (Uh,p, ih,p+l). 49

For the purpose of adaptation, a localized error estimate is also defined for each

element K by

77K = Ah,p (Uh,p, Oh,p+ 11 K) 14.10)

68

Kh ,[U, Uh,p] W, V)) = Jh p [U, U,p] (W),

Rh~p [U, Uh,p] W, V) f 1

where K denotes the restriction on the element K. A conservative error estimate for

the output of interest is then obtained by the summation of the locally positive error

estimate:

T= r (4.11)
KE-h

Note that in Eq. (4.10), the residual is computed about p instead of p + 1 so that the

resulting error estimate is both globally and locally convergent; see [125] for a detailed

analysis.

4.4 Output-Based Adaptation

While the DWR method gives a localized output error for each element, the method

does not provide enough information for an anisotropic adaptation. Anisotropic in-

formation for a simplex element K can be formulated as a metric tensor MK, often

named as the implied metric of K, which is a symmetric positive definite matrix en-

coding the information of element size and orientation; see, for example, [57, 121].

While a collection of the metric tensors, {MK}KETh, provides a discontinuous tensor

field in the computational domain Q, a continuous representation {M (x) .EQ can also

be constructed [24, 80]. Given a mesh Th, the field {MK}KETh is uniquely defined;

on the other hand, given a metric tensor field (continuous or not), a family of non-

unique discrete meshes can conform to the given field. An example of metric-mesh

pair is shown in Figure 4-2. In the work of Loseille and Alauzet [80, 81], this family of

metric-conforming meshes is proven to have similar approximation properties with lin-

ear polynomials. An extension of their theory to higher-order polynomials is provided

by Yano [124], who further proved that the output error for the DG discretization is

also a function of the metric field. This lays the foundation for metric-based adap-

tation algorithms, which strive to decrease the output error (or interpolation error)

by manipulating the metric field. In this work, we extend the metric optimization

69

0.1 L___Mesh Gen.
009- Q

0.02 02

0.01 006-

-0.02 0 002 004 006 008 0.1 0.12 -0.02 0 002 0. 004 0.08 01 0.12

Metric Field Implied Metric Mesh

Figure 4-2: Example of metric-mesh pair (Modisette [87])

framework proposed by Yano and Darmofal [127] to handle cut-cell meshes.

In addition, many anisotropic mesh generators take a prescribed metric tensor

field as input. In this work, we use the Bidimensional Anisotropic Mesh Genera-

tor (BAMG) [21, 59] developed by INRIA to generate all two-dimensional metric-

conforming meshes, and the Edge Primitive Insertion and Collapse (EPIC) [85] devel-

oped by The Boeing Company for three dimensions.

4.4.1 Mesh Optimization via Error Sampling and Synthesis

The adaptation scheme used in this work is the Mesh Optimization via Error Sampling

and Synthesis (MOESS) algorithm developed by Yano and Darmofal [127]. This sec-

tion briefly reviews the MOESS algorithm, in preparation for presenting its extension

to handle cut cells in Section 4.4.2.

The objective of mesh adaptation is to improve the triangulation Th for a better

output prediction. This can be formulated as an optimization problem, which is to

find the optimal triangulation Th*:

* = arg inf (7h) subject to C(Th) < doftarget, (4.12)

where S(-) denotes the error functional, and the cost functional C(.) measures the

70

number of degrees of freedom (DOF) on Th. As the triangulation Th is defined by

both the node locations and node connectivity, this continuous-discrete optimization

problem is in general intractable. Loseille and Alauzet proposed a continuous re-

laxation of this optimization problem [79], by appealing to the fact that the metric

field, A4 {M (x) },, controls the approximation properties of a metric-conforming

mesh. The relaxed problem reads as: find the optimal A4* such that

M* arg inf S(M) subject to C(M) < N. (4.13)

The cost functional C(M) is given by

C(M) = cV/ det(M(x))dx, (4.14)

where cp is a constant for each element dependent on the solution polynomial order.

As for the error functional 8(M), a locality assumption for the output error is made

in the MOESS algorithm. Under the assumption, each elemental error contribution qK

is a function of the elemental metric tensor: TJK = 7K(MK), and the output functional

8(M) in (4.13) can be expressed as

E(M) ~ K(MK)- (4.15)
KeTh

The local error function TK(MK) is in general not known analytically, and so a sur-

rogate model is constructed.

Local Error Sampling The construction of the surrogate model is achieved by

directly monitoring the elemental error change on different local configurations. More

specifically, for an element K, let {Cil}lonfg denote a set of new configurations, each

of which is due to splitting one or multiple edges of K. By convention, Co denotes

the original configuration. A metric M is associated to the configuration Ci based

on the metric tensors of elements on Cj; see Figure 4-3 for an example. On each

71

configuration Ci, a local problem is solved: find the local solution uh E Vh,,(C) such
that

Zip (n , v) = 0, Vv E V,p(Ci), (4.16)

where the local semi-linear form Ri,(, -) is from the DG discretization (4.5), and

prescribes the boundary fluxes on C, by assuming the solution on the neighbor elements

does not change. A localized error estimate corresponding to Ci is then computed:

C h,p p I)h,p+1 K) (4.17)

C

0
0

CECm
0,
0

Original

C1

Edge Split 1

C2

C2

Edge Split 2

C3

Edge Split 3

C4

Uniform Split

Figure 4-3: Example configurations
(Yano [124])

together with the associated metric tensors

Local Error Model Synthesis After collecting the set of metric-error pairs, {MC=, 1C.
a continuous local error model 'K(-) : Symj - + is then synthesized. More specif-

ically, the change in the metric tensor from Co to a new configuration Ci is measured

based on the affine invariant framework [94]:

SC log (M 1/2Mc.M ,/2) (4.18)

72

and the change in error is defined as

& = log (rci/c.) - (4.19)

The proposed error model in the MOESS algorithm has a form of

fK(SK) = tr(JKSK),

where the matrix Rk is synthesized from the pairs {Sc) f} , , and represents the

local error sensitivity with respect to the local element shape and size as argued

in [124]. The local error model is then in terms of S:

77K(SK) = qco exp(tr(RKSK)) (4.20)

Model Optimization Once the local error model is constructed, the optimization

problem (4.13) is then solved using a gradient-based method. In particular, the metric

field A4 is represented using the vertex values {MV}veV(Th), and the element metric

change SK is assigned based on the vertex value S, via an arithmetic average:

SK {Sv}vEV(K) (K)| S
vEV(K)

where V(K) denotes the vertices of K. Then the objective function in (4.13) (or

equivalently (4.15)) becomes

({SV}vEV(Th)) ~ 7K ({SV}V(K))
KETh

where the design variables are {Sv}vEv(Th). The gradient is computed by

[K (fsv vEV(K)) V(K)RK] 1 (4.21)
KEw(v)

73

where w(v) denotes the set of elements adjoining the vertex v.

4.4.2 Extension to Cut Cells

In this section, we extend the MOESS algorithm to handle cut elements with arbitrary

shapes. To achieve this, the goal of adaptation for a cut-cell mesh is defined to improve

the background triangulation Th,b. The optimization problem (4.12) becomes to find

the optimal Th*,b:

b = arg inf 6(Th,b) subject to C(Th,b) < dOftarget, (4.22)
Th,b

where &(bb) and C(Th,b) measure the error and DOF evaluated on the cut mesh T,

which is generated from intersecting Th,b and the embedded geometry. Following the

same approach as for problem (4.12), we consider a continuous relaxation of (4.22),

by assuming the metric field, A4 = {M(x)}xEQ, controls the discretization error of a

metric-conforming mesh that may not be geometry-conforming. The relaxed problem

has the same formulation as (4.13), but the error functional S(M) is approximated

by

E(M)~ Z 7Kb (MKb)
KbETh,b

where qKb is the sum of errors on all the cut elements generated from Kb, and is

assumed to be a function of MKb. Note TlKb is set to zero when Kb is outside the

computational domain.

Same as in Section 4.4.2, a local error model ,Kb (SKb) is constructed in the form

of (4.20) for each background element Kb. The matrix RKb, representing the local

error sensitivity, is again constructed through local error re-computation on different

configurations of Kb. On each configuration Ci, we first construct the cut elements by

intersecting Ci with the embedded geometry. Figure 4-4 shows an example of different

configurations due to edge splits of a background element. We then perform local

74

solve (4.16) on these cut elements, and evaluate the corresponding error estimate 7c,
from (4.17). The associated metric Mci is computed based on the metric tensors

of the split background elements on Ci. The changes in the error and the metric,

& and Sc, are computed from (4.19) and (4.18), respectively. The error model

oKb(SKb) is then synthesized from the collected samples { f n,,c, , and the same

optimization algorithm as before is applied to obtain a description of vertex-based

metric change, {Sv}vev(Thb).

(a) Configuration C1 (b) Configuration C2 (c) Configuration C3

Figure 4-4: Example of different configurations due to edge splits; configurations C1

and C3 have four cut elements, and C2 has three

Note for a background element Kb that intersects with the embedded geometry,

the error-metric relationship can be "noisy". The reason is as following: while the

error nKb is evaluated from the cut elements generated from Kb, the metric MKb

may not well represent the shapes of these cut elements. However, on many of the

intersecting background elements, the surrogate error model we construct still has a

valid error sensitivity information, ZKb . This is in particular true when the cut cell

occupies a large fraction of the volume of its parent background element. For instance

in Figure 4-4, if the underlying PDE solution has a thin anisotropic layer along the

embedded geometry (in the sub-domain above the geometry), the configurations C1

and C2 will likely have a lower error than C3 , and the surrogate error model with this

information will drive the optimization algorithm toward a better background mesh.

In addition, the optimization is based on the vertex-based metric description, where

75

the gradient for a vertex v is computed from an error-weighted average of the error

sensitivities in the surrounding elements as in (4.21). This vertex-based gradient will

therefore lead to an improved mesh, as long as not all the surrounding elements have

a poor-quality sensitivity information, JZKb.

On a cut-cell mesh for an embedded-boundary problem, the null elements outside

the computational domain Q do not have an associated error or error model. The

vertices surrounded by such elements, named as null vertices, are thus not considered

in the metric optimization problem (4.13). However, we still need to define metrics

on them, {MV}VEVnu1, for the purpose of generating an adapted background mesh.

These metrics can have an impact on the elements generated near the embedded

boundary, and so it is desirable to have {Mv}yVEnun similar to the optimized metrics

near the boundary inside the computational domain. On the other hand, filling the

null region with a large number of elements may slow down the mesh generation

process. Therefore, the metrics {Mv}VEVnul are assigned as follows.

We first assign a layer number L for each vertex on Th,b. Any vertex v on a

background element that has any fraction inside Q is assigned 12(v) = 0; then a vertex

v with C(v) = n > 0 means there is a path consisting of n edges on Th,b from a

layer-0 vertex to v. An example of layer numbers is shown in Figure 4-5, where the

computational domain is on top of the embedded geometry. The requested metrics

on layer-0 vertices are from the MOESS algorithm. For a vertex with 2 = n > 0, its

requested metric is set to be the barycentric average of the requested metrics on its

neighbor vertices with 1 = n - 1. Further, we apply a volume growth rate of 1.15

between the requested metrics for vertices on levels n - 1 and n.

4.4.3 Results

In this section, we present two numerical examples for the MOESS algorithm for

cut cells, and compare with the results on boundary-conforming meshes. In the first

example, we solve an advection-diffusion equation on a computational domain with

embedded interfaces of different shapes. The second example presents a subsonic,

76

0

AA 0

1

Figure 4-5: Example of vertex layer numbers; computational domain is on top of the
embedded geometry denoted by the red line

turbulent flow over a RAE2822 airfoil, which is treated as an embedded boundary

in the background mesh. Note the governing equation for this case is the Reynolds-

Averaged Navier-Stokes equations, with the Spalart-Allmaras turbulence model [115];

see Appendix E.2.2 for detailed description.

Example 1: Advection-Diffusion Equation, Arbitrary Embedded Interfaces

This example is taken from [127], where we solve an advection-diffusion equation with

a Peclet number of 10-3 on a rectangular domain. The solution has a boundary layer

along the bottom wall, shown in Figure 4-6(a). The output of interest is the heat

transfer across the bottom wall, and the associated dual solution is shown in Figure 4-

6(b). We first solve the problem with the MOESS algorithm on boundary-conforming

meshes. The DG solution polynomials have an order of p = 2. Figure 4-7 shows

the initial mesh, and Figure 4-8 shows the adapted mesh obtained from the MOESS

algorithm with a target DOF of 1800.

We then introduce interfaces of different shapes into the computation domain.

Note the PDE parameters on the two sides of the introduced interfaces remain the

same, i.e. the interfaces do not alter the PDE solution. On the other hand, arbitrarily-

shaped elements are created along the interfaces, and the MOESS algorithm for cut

cells is tested. The initial mesh is the same as in Figure 4-7, and the target DOF is

77

still 1800. Figure 4-9 shows the adapted meshes for each introduced interface (shown

in red line). It is seen that these meshes are similar to each other, and also similar to

the adapted mesh without interface in Figure 4-8. Figure 4-10 shows the adaptation

history, where all the cases have the same error convergence. Note the cut-cell cases

have slightly higher DOF because each background element on the interface is cut into

multiple cut elements.

(a) Primal solution (b) Dual solution

Figure 4-6: Solutions to the advection-diffusion boundary-layer problem

0.

-1.5 -1 -0.5 0 0.5 1 1.5

Figure 4-7: Initial mesh for the advection-diffusion boundary-layer problem

00

0.05

1 1.5 -0.

1

0.5

-1.5 -1 -0.5 0 0.5

(a) Adapted mesh

0 0.05 0.1 0.15

(b) Adapted mesh, zoom-in

Figure 4-8: Adapted mesh for the advection-diffusion boundary-layer problem without
interface introduced

78

0

0.2 0.2505

0.5

0.1

n fl!

-. 5 -1 -0.5 0 0.5 1 1.5 -0.05 0 0.05 0.1 0.15 0.2 0.25

(a) Interface shape 1

1

0.5

A
-1 -0.5

0.11

0.05

0 0.5 1 1.5 -d'05 0 0.05 0.1 0.15 0.2 0.25

(b) Interface shape 2

1 0.1-

).05

-1 -0.5 0 0.5 1 1.5 -05 0 0.05 0.1 0.15 0.2

(c) Interface shape 3

Figure 4-9: Adapted cut-cell meshes for the advection-diffusion boundary-layer prob-
lem with different interface shapes

No Interface
-- Interface 1

*Interface 2
-0-Interface 3

5 10

5 10
Adaptation Iteration

(a) Output Error indicator

2500

2000

1500
U-
0
0

1000

500

15 j0

+ No Interface
-- Interface 1

Interface 2
-- Interface 3

5 10
Adaptation Iteration

(b) DOF

Figure 4-10: Adaptation history for the advection-diffusion boundary-layer problem

79

10 0

0

C5

0.

10-2

10

06

10 41 15

............
....

I

f

1

-A5

- I 5

1

Example 2: RANS, RAE2822 Airfoil

In this example, we consider a subsonic, turbulent flow over a RAE2822 airfoil. The

freestream Mach number is M,, = 0.3, the Reynolds number is Re, = 6.5 x 106, and

the angle of attack is a = 2.31'. The Mach number distribution for this case is shown

in Figure 4-11. The MOESS algorithm is applied on both boundary-conforming and

cut-cell meshes. The DG solution has a polynomial degree of p = 2, and the target

DOF is 20k. The initial boundary-conforming mesh is an isotropic mesh, as shown in

Figure 4-12(a). This mesh is then used to make the initial cut-cell mesh, where we

move the boundary nodes on the airfoil into the null region by a small distance, and

triangulate the region using only these nodes. Figure 4-12(b) shows the initial cut-cell

mesh, which has essentially the same topology as the initial boundary-conforming one.

Figure 4-13 shows the adaptation history for 20 adaptation iterations. In the early

iterations where the elements in the boundary layer gradually transition to anisotropic

shapes, the cut-cell case has a higher error and takes a couple more adaptation iter-

ations for this transition. This is due to the fact that the local error model for some

cut cells does not result in a correct error to metric sensitivity. The adapted meshes

at iteration 8 are shown in Figure 4-14, where the boundary-conforming mesh has

a more appropriate anisotropy in the boundary layer. As the adaptation progresses,

both cut-cell and boundary-conforming cases reach the same error level, and both

capture the boundary layer with highly anisotropic elements, shown in Figure 4-15.

Note for adaptation at a higher DOF, we can start from the mesh adapted at a lower

DOF (if available), which usually already possesses an appropriate anisotropy. Start-

ing from such a mesh, the impact of the poorer-quality error model on cut elements

is decreased, and the boundary-conforming and cut-cell adaptation histories are even

more similar.

80

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Figure 4-11: Mach number distribution for the RAE2822 subsonic RANS-SA problem

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a) Boundary-conforming mesh

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

(b) Cut-cell mesh

Figure 4-12: Initial meshes for the RAE2822 subsonic RANS-SA problem

2

01
0

0

x 10

.5

2

.5-

1

.5
--- Boundary Conforming
-- Cut Cell

5 10 15 20 25 "0 5 10 15 20 25
Iteration

(a) Drag Error

Iteration

(b) DOF

Figure 4-13: Adaptation history for the RAE2822 subsonic RANS-SA problem

81

0.2

0

-0.2

0.2

0

-0.2

Boundary Conforming
102

10 a

10- _

w

S10-

10-6

10-7100

0.2

0.1 -

0-

-0.1

-0.2
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.08

0.07
-005

0.06

0.1
-0.1 F

-0.2
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.08

0.

-- 0.0

0.4 0.42 0.44 0.46 0.48 0.5 0.46 0.48 0.5 0.52 0.54 0.56

(b) Cut-cell mesh

Figure 4-14: Adapted meshes, iteration 8, with zoom-in for the blue-box regions;
RAE2822, subsonic RANS-SA

82

0.2

0.1

0

-0.1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.0& -0.04-

0.06
-0.06-lg

0.05

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.46 0.48 0.5 0.52 0.54 0.56

(a) Boundary-conforming mesh

0.2

0.1

0-

-0.1

-0.2
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.08
0.08 -0.04

0.07
-0.05

0.06
-0.06

0
0.0'38 0.4 0.42 0.44 0.46 0.48 0.5 0.46 0.48 0.5 0.52 0.54 0.56

(b) Cut-cell mesh

Figure 4-15: Adapted meshes, iteration 20, with zoom-in for the blue-box regions;

RAE2822, subsonic RANS-SA

83

Chapter 5

Aerodynamics Problems in Three

Dimensions

This chapter applies our solution framework to three-dimensional aerodynamic flows

governed by Euler and compressible Navier-Stokes equations; see Appendix E for a

description of these equations. In particular, Section 5.1 shows the robustness im-

provement for nonlinear solvers using the proposed cut-cell quadrature rule. Note in

this work, the nonlinear solver applies a pseudo-time stepping to march the solution

to a steady state using a backward Euler integrator; see Appendix F.3 for details. In

Section 5.2, we demonstrate the robustness and automation of our framework through

a range of aerodynamics problems, including subsonic through supersonic regimes.

Note the adaptation scheme in this chapter is based on a fixed-fraction strategy [128],

with anisotropy detection based on higher-order derivatives of the Mach number [50].

The MOESS adaptation algorithm has not been implemented for cut-cell meshes in

three dimensions. Generation of the (three-dimensional) background meshes is carried

out using the Edge Primitive Insertion and Collapse (EPIC) [85] developed by The

Boeing Company.

85

5.1 Impact of Quadrature Rules

As quadrature rules are typically designed to be exact for certain polynomials, quadra-

ture error is introduced in the residual evaluations for a DG discretization of Navier-

Stokes equations, for which the fluxes present non-polynomial functions (of the conser-

vative variables). Such error can result in poor nonlinear solver convergence, especially

when higher-order polynomial approximation is employed. This is demonstrated in

this section through an example of a subsonic, inviscid flow, where the geometry is a

body of revolution defined by

r=0.3x(1-x), y=rcos(O), z=rsin(), 0 < x < 1, 0 < 0 < 7r, (5.1)

and shown in Figure 5-1. This geometry is also considered in Fidkowski [49], and

is named "football" in this chapter. The flow has a freestream Mach number of

M,, = 0.3, an angle of attack of a = 0, and an sideslip angle of / = 0. Figure 5-2

shows the Mach number distribution for this flow.

Figure 5-1: "Football" geometry produced by revolving a quadratic curve

To examine the robustness of the nonlinear solver, we consider 25 similar back-

ground meshes obtained from the adaptation process. Adaptation results will be

discussed in Section 5.2. On each mesh, we attempt to solve the flow using polyno-

mial degrees of p = 0 through p = 3. At p = 0, we start the time-marching from a

uniform flow of freestream conditions; and at higher p, we start from the converged

86

Figure 5-2: Mach number distribution on the "football" geometry, M,, = 0.3

solution at p - 1.

Two sets of quadrature rules for the cut elements are considered. Both quadrature

rules have the same algebraic degree, six for elements and nine for faces. The first

consists of a set of uniformly spaced points inside each cut element (and face), with

quadrature weights computed from Eq. (3.6). The number of quadrature points is

about 2 nb, where nb is the dimension of the polynomial space for which the rule

integrates exactly. Figure 5-3(a) shows the nonlinear convergence histories on the 25

meshes, where the solver cannot converge on about a third of the meshes even for the

p = 1 discretization. The quadrature quality measure Q, defined in Eq. (3.7), is shown

in red in Figure 5-4. In the figure, each dot represents the quality on each cut element

on one of the meshes where the solver did not converge. Denote this mesh by Vail

As shown in the figure, several cut elements have a very large value of Q, resulting in

a poor quadrature quality. Similar distribution of Q is also observed on other meshes

with convergence difficulty.

The second quadrature rule considered is the cut-cell quadrature rule proposed in

Section 3.6. Although this rule has the same algebraic degree as the first rule, the

nonlinear solver converges on all the meshes for the DG polynomial degrees of p = 0

through p = 3 as shown in Figure 5-3(b). Figure 5-4 shows the quality measure Q
for each cut element on the mesh aI, and Table 5.1 lists the number of quadrature

points. With at most 1 .5nb points, every cut element achieves a quadrature quality

87

measure of Q < Qthreshold =5

10 20 30 40
Nonlinear solver iteration

100

10-2

-1 14

*0z 10~

2 10~

1052050 60 0 5 10 15 20 25
Nonlinear solver iteration

(a) Quadrature rule with uniform points,
nr ~ 2nb

(b) Proposed quadrature rule

Figure 5-3: Nonlinear convergence history on 25 meshes for discretization degrees of
p = 0 through p = 3; each line represents the history on one mesh

3

3

2

2

0 50 100
Cut element index

150

Figure 5-4: Quadrature quality Q for cut elements

nq Fraction of cut elements
nb nq 5 1 .25 nb 60%

1. 2 5nb < nq < 1 .5nb 40%
nfq> 1 .5nb 0%

Table 5.1: Number of quadrature points for the proposed rule

88

10 2

100

10-2

*0 ~
10

.9 10
0z

10 -

30 35 40

0 Rule with uniform points

5 * Proposed rule

00

0--

5-
0

0- 0

5-

0 0
00 0

5000 0 00 000% 0
0 0 oe

10010'

10' 2
0

1

1

5.2 Robustness and Accuracy of the Solution Strat-

egy

The main objective of this section is to demonstrate the robustness of the developed so-

lution strategy through simulations of three-dimensional aerodynamic flows. For each

presented case, the cut-cell method is applied on 100 to 200 adapted meshes, ranging

from a very coarse mesh with the geometry inside almost one background element, to

an adapted mesh with flow features resolved for an accurate output prediction. No

human intervention is involved in the process from the initial to the final mesh, includ-

ing the cut-cell intersection procedure and flow solves using DG polynomial degrees

of p = 1 and p = 2.

5.2.1 "Football", Inviscid, Subsonic

The first case to demonstrate the robustness of the solution strategy is the inviscid

subsonic flow over the "football" geometry presented in Section 5.1. The output

adaptation is performed upon drag. Solution singularities are present at the leading

and trailing tips of the football.

A fixed-DOF adaptation algorithm [128] is applied at several degrees of freedom

(DOF) for the DG polynomial degrees of p = 1 and p = 2. At each DOF, 20 adapted

meshes are generated and solved. For the total of 200 meshes, no human interaction

is involved from the initial to the final mesh. Figure 5-5 shows the adaptation history

with each dot representing one adapted mesh. The true drag value for this flow is

nearly zero, but not exactly due to the finite proximity of the domain boundaries.

Hence, the CD plotted in the figure also represents the error in CD. Note the reference

area for computing CD is the frontal cross-section area. Despite the presence of solution

singularities, the optimal output error convergence of h2P+l is observed for both finite

element degrees, and the p = 2 discretization is superior to p = 1 at all considered

DOFs and error levels. This is due to strong mesh gradings around the leading and

trailing tips achieved on the adapted meshes. Figure 5-6 shows the initial and the

89

adapted meshes on the symmetry plane zoomed at the geometry.

100

10'

10-2

103

10~-4

0

1 p=1
o p=2

13 a
. ciCh

0

-0.99

- -1.68

5k 10k 20k 40k 80k 160k
DOF

Figure 5-5: Drag adaptation history for the "football" geometry, inviscid, M,, = 0.3

(a) Initial Mesh

(b) Adapted mesh, p = 1, DOF = 80k (c) Adapted mesh, p = 2, DOF = 80k

Figure 5-6: Initial and adapted meshes on the symmetry plane for the "football"
geometry, inviscid, Moo = 0.3

90

5.2.2 ONERA M6 Wing, Inviscid, Transonic

This case presents an inviscid transonic flow over the ONERA M6 wing with M"' = 0.8395,

a = 3.060, and # = 0. The adaptation is based on drag. The Mach number distribu-

tion is shown in Figure 5-7, which is obtained from a cut-cell mesh of DOF = 800k

using p = 1 discretization. Appendix D describes the visualization of DG solutions on

cut-cell meshes.

Figure 5-7: Mach number distribution for ONERA M6 wing, M,, = 0.8395, a = 3.06';
solution on the adapted mesh, p = 1, DOF = 800k

For this case, the same fixed-DOF algorithm is applied. At each DOF, 15 meshes

are generated and solved for each p. The initial mesh is shown in Figure 5-8 together

with the Mach number solution using the p = 1 discretization on this mesh, where

the shock waves are not at all resolved. From the same initial mesh, the adaptation

using p = 1 and p = 2 lead to the adapted meshes in Figure 5-9, where all background

elements that intersect with the upper surface of the wing are shown. Again, the

process from the initial to the adapted meshes is fully-automated. On these adapted

meshes, the adaptation employs anisotropic elements along the leading and trailing

edges and along the wing tip, and has additional refinement for resolving the shock

91

waves. Note the anisotropic elements on the wing surface pose no issues to the cut-cell

intersection algorithm.

(a) Initial mesh (b) Mach number distribution, p = 1

Figure 5-8: Initial mesh for ONERA M6 wing, M.. = 0.8395, a = 3.06'

(a) p = 1, DOF = 800k (b) p = 2, DOF = 800k

Figure 5-9: Adapted meshes for ONERA M6 wing, M,, = 0.8395, a = 3.06'

Figure 5-10 shows the adaptation history for the drag coefficient CD, where the

planform area is used for computing CD, and the reference value is obtained using

a p = 2 discretization with DOF = 2.5M. Note this reference value may still have

a considerable error compared to the true CD value for this case. The output error

indicator is computed from (4.11), which is the agglomeration of the absolute value

92

of the elemental error estimate, and can overestimate the true output error. For this

case where the shock waves are the only dominant features for the output prediction,

the benefit of a higher-order discretization is not obvious, especially at lower DOFs.

This is consistent with the adaptation results for inviscid transonic flows in two dimen-

sions [126]. However, at a DOF of about 800k, the p = 2 discretization still appears

more accurate than the p = 1 counterpart, as all the adapted meshes for p = 2 predict

a drag value within 1% of the reference value.

Note for this case, the p = 2 results may be more accurate with the MOESS

adaptation. In particular, the requested element anisotropy using the p + 1 derivative

of the Mach number may have a very poor quality on the trailing edge, where the

solution presents an edge singularity and may not have a well-defined third derivative.

This is in fact reflected in Figure 5-9(b), where the elements on the trailing edge may

not have an optimal anisotropy. With a proper anisotropy detection, fewer DOFs

would be employed on the trailing edge, allowing more DOFs to resolve the shock

waves.

F_*_ 118 ,*_ 1
. p=1 eg p=1

p=2 1 p=2

117

10
C. 116

o ~CC
- 0

115-

C3114 +1% J

0113J

10'k 100k 200k 400k 800k
DOF DOF

(a) CD error indicator (b) CD

Figure 5-10: Adaptation history for ONERA M6 wing, M), = 0.8395, a = 3.06';

reference value is obtained at p = 2, DOF = 2.5M

93

5.2.3 "Football", Inviscid, Supersonic

This case has an inviscid supersonic flow over the "football" geometry with M, = 1.8,

a = 0, and /3 = 0. The output of interest is the pressure perturbation on the outflow

boundary: f 0u((P -- P)/P.)2dS. The distribution of the pressure perturbation is

shown in Figure 5-11.

Figure 5-11: Pressure perturbation distribution for "football", inviscid, M. = 1.8

Same as the previous cases, the fixed-DOF adaptation is applied, and about 200

adapted meshes are generated and solved. Figure 5-12 shows the initial and the

adapted meshes. The initial mesh is very coarse, and the geometry is inside almost

one single background element. The adapted meshes for both p = 1 and p = 2 focus on

resolving the shock propagation from the geometry to the outflow boundary. Figure 5-

13 shows the adaptation history. For this case where the shock propagation is the only

feature for the output prediction, the higher-order discretization is not more efficient

at the DOFs considered.

94

(a) Initial Mesh

(b) Adapted mesh, p = 1, DOF = 160k (c) Adapted mesh, p = 2, DOF = 160k

Figure 5-12: Initial and adapted meshes for "football", inviscid, M. = 1.8

- x10

p=2

gCI

a

10k 20k 40k 80k
DOF

(a) Output error indicator

160k

4+.0

4.55

4.5

CD 4.45

4.4

0 4.35

4.3

4.25

4.2

* P=1CP 1 1 p=21

-1*

ref

o a

-I
10kf 20 4k 0

10k 20k 40k 80k
DOF

(b) Output value

Figure 5-13: Adaptation history for "football", inviscid, M, = 1.8; reference value is
obtained at p = 2, DOF = 320k

95

10 0

S10

160k

5.2.4 Cylinder, Laminar, Subsonic

This case presents a laminar flow over a cylinder of radius r. The setup of this problem

is produced by extruding a two-dimensional case into the third dimension by r. The

baseline two-dimensional problem has a circle with a radius of r, at the center of a

rectangular box, which has a length of 1OOr in the flow direction, and 30r in the cross-

flow direction. The flow has a Reynolds number of Re, = 50 and a freestream Mach

number of M, = 0.1. For the extruded problem in three dimensions, we specify total

temperature, total pressure, and zero flow angles on the inflow boundary, and static

pressure on the outflow. A slip boundary condition is imposed on all the other walls

of the box, and an adiabatic no-slip condition is imposed on the cylinder. The Mach

number distribution for this case is shown in Figure 5-14, where a recirculation region

exists behind the cylinder.

Figure 5-14: Mach number distribution, cylinder, Re, = 50, Mz = 0.1

The output of interest is drag. Figure 5-15 shows the initial and the adapted

meshes. The initial mesh is a uniform mesh, and the adaptation employs anisotropic

elements for the boundary layer and the wake. To resolve these smooth features, the

p = 2 discretization needs many fewer DOFs than p = 1. The adaptation history

is shown in Figure 5-16, where the p = 2 discretization is superior for all DOFs

considered. The reference area for computing the drag coefficient is the frontal area.

96

(a) Initial mesh

(b) Adapted mesh, p = 1, DOF = 80k

(c) Adapted mesh, p = 2, DOF = 80k

Figure 5-15: Initial and adapted meshes on the bottom plane, cylinder, Re, = 50,

Mo = 0.1

10 k ,0k
20k 40k 80k 160k

DOF

(a) CD error indicator

1.092

1.09

1.088 -

1.086-

1.084-

1.082

1.08

1.078

1.076

-a

4'

0PO

0
- a

J

20k

aa

40k

(b) CD

80k 160k

Figure 5-16: Adaptation history for cylinder, Re, = 50, M" = 0.1; reference value

obtained from two-dimensional simulations

97

-a

0

ul
0

0

10

10

10

10-2

* p=1:
a p=2.

-1.01

-2.45 13a

- -- - ---

'

5.2.5 Body of Revolution (NACA0012), Laminar, Subsonic

This case presents a laminar flow over a geometry produced by revolving the NACA0012

airfoil. Note the airfoil is modified to be closed at x = 1. The flow conditions are

Re, = 5000, M,, = 0.5, a = 10, and / = 0. The output of interest is drag. The

Mach number distribution for this case is shown in Figure 5-17. For this case, a to-

tal of 150 meshes are generated and solved. Figure 5-18 shows the initial and the

adapted meshes. The initial mesh is so coarse that the geometry is inside almost one

background element, and the adaptation employs anisotropic elements to resolve the

boundary layer and the wake. Figure 5-19 shows the convergence history of the drag

coefficient CD, where the p = 2 discretization is superior to p = 1. The reference area

for CD calculation is the frontal area.

Figure 5-17: Mach number distribution, body of revolution (NACA0012), Re, = 5000,
Moo = 0.5

98

(a) Initial mesh

(b) Adapted mesh, p = 1, DOF = 160k

(c) Adapted mesh, p = 2, DOF = 160k

Figure 5-18: Initial and adapted meshes on the symmetry plane, body of revolution
(NACA0012), Re, = 5000, M, = 0.5

Z0

0
0-

10

10 0

10-1

10-2

10 -

20k 40k 80k 160k
DOF

(a) CD error indicator

Figure 5-19: Adaptation history, body of
0.5; reference value is obtained at p = 2,

0.645-

0.64

0.635 03

0.63 -

0.62 --- -- ~ --- ---

Jref

0.62 _-_-_

0.61 -

20k 40k 80k 160k
DOF

(b) CD

revolution (NACA0012), Re, = 5000, M, =

DOF = 1.OM

99

- * p=1I
0 p=2

- 0

0 93
- 0

-0.83

-1.85

Chapter 6

Scalar Elliptic Interface Problems

Many engineering applications involve computational domains with multiple materi-

als separated by interfaces of arbitrary shapes. These so-called interface problems are

often governed by partial differential equations (PDEs) with discontinuous parame-

ters across the material interfaces, or more generally, by different PDEs across the

interfaces. In this chapter, we consider elliptic interface problems defined by

N

-V - (KVu) = f in Q(i), (6.1)
i=1

U = UD on O,

where the computational domain 1= Uj Q) contains multiple interfaces E = Q i Q0)

as illustrated in Figure 6-1(a) for an example of two sub-domains. The coefficient i'

can be discontinuous across E. In addition, an interface condition (IC) is imposed:

[u] = a on E, [Vu - f] = b on E, (6.2)

where [z] -- z(-) - z(+) for any scalar field z, and z(and z(+) denote the restriction

of z on the neighbor sub-domains.

For general interface problems, generating an interface-conforming mesh can be

very time-consuming and can require a large amount of human interaction. Many

101

discretization methods have thus been proposed for using non-interface-conforming

meshes (also called unfitted meshes), where meshing does not have to conform to

the interface and so allows inner-element material discontinuity; an example is illus-

trated in Figure 6-1(b). However, these methods remain largely at most second-order

accurate, and reaching higher-order remains non-trivial.

(a) Example interface problem (b) Example non-interface-conforming mesh

Figure 6-1: Example interface problem and non-conforming mesh

In this chapter, we propose a high-order accurate method for elliptic interface

problems on unfitted meshes. Specifically, the solution strategy includes a high-order

discontinuous Galerkin (DG) discretization and a simplex cut-cell method. We first

derive the DG discretization in a unified form for elliptic interface problems on fitted

meshes, and show that no modification on the DG bilinear form is needed for interface

treatment. We then extend the method to unfitted meshes using the cut-cell tech-

nique, where the interface definition is completely separate from the mesh generation

process. No assumption is made on the interface shape (other than Lipschitz continu-

ity). We also combine our strategy with the adaptive scheme presented in Chapter 4

in order to control the effect of possible singularities induced by interface shapes,

e.g. corners. Through numerical examples, we demonstrate high-order convergence

for elliptic interface problems with both smooth and non-smooth interface shapes. A

dual-consistent output evaluation is also derived for the developed DG scheme, and

output superconvergence of ((hP) is observed.

102

6.1 Overview of Unfitted Methods and High-Order

Extensions

In this section, we briefly review the existing unfitted methods for interface problems,

and we discuss their potential for high-order extensions. These methods can be clas-

sified based on how the interface condition (IC) is imposed. Specifically, we classify

the methods as follows: 1) finite difference with different treatments of IC, 2) finite

element with IC strongly imposed, and 3) finite element and finite volume with IC

weakly imposed. We then introduce the cut-cell method as one belonging to the third

type in our classification, and highlight its potential for convenient extension to high-

order accuracy for complex interface problems.

Finite Difference

Finite difference schemes have been proposed when the interface E lies between grid

nodes. Peskin proposed the immersed boundary method (IBM) [107], where the

boundary of an immersed object is treated as a singular force along the boundary;

see [99] for a review of its applications. Second-order accuracy is shown in one di-

mension [20]. LeVeque and Li [73] then developed a second-order accurate method

for higher dimensions, namely the immersed interface method (IIM), in which the

interface jump condition (6.2) is incorporated into the local Taylor expansion; see [76]

for a review. Another popular approach is the ghost fluid method (GFM) [47], which

is also generally first-order. The key idea of the method is to extrapolate solutions on

one side of the interface into ghost cells or fictitious nodes on the other side.

Since the initial publications of the IIM and GFM methods, there have been several

researchers developing high-order extensions to these methods. One natural high-order

extension to the IIM method is to use (or approximate) the jump interface conditions

in higher derivatives of u [77, 133]. High-order methods using fictitious nodes were

also developed for elliptic interface problems [52, 134]. While these methods are at

103

least fourth-order accurate for smooth problems, they require a large stencil, and there

has been little progress in rigorous stability or convergence proofs for these methods

on interface problems.

Finite Element, Strong Imposition of IC

The immersed interface method has been extended to finite element discretizations,

and is often named the immersed finite element (IFE) method. The interface condi-

tion (6.2) is strongly imposed by modifying the basis functions. In one through three

dimensions, (6.2) is sufficient in defining a unique linear nodal basis as demonstrated

in [67, 74, 75], and the optimal a priori convergence rate is proven in each dimension.

Extending the IFE method to high order is intrinsically difficult. The first difficulty

lies in the fact that condition (6.2) alone is not sufficient in defining a unique high-

order basis [27]. Different constraints on the high-order basis functions have been

proposed [1, 27], mainly for one dimension. While it was observed that some choices

of the constraints lead to suboptimal convergence, it is unclear how to systematically

choose a correct set of constraints. The second difficulty is in constructing a basis

function when E has a complex shape in one element. The previous works for two

and three dimensions (e.g. [67, 74]) need to assume certain shapes on E, for example

intersecting each triangle only twice. When these assumptions are not met, it is

difficult, if not impossible, to construct even a linear basis.

Finite Element/Finite Volume, Weak Imposition of IC

Another approach for interface problems is to weakly impose the interface condi-

tion (6.2) while allowing the elements not to conform to E. Many methods belong to

this group, for example, a penalty method to impose (6.2) [8, 12, 58], a Lagrange mul-

tiplier method for an embedded boundary condition [54], and a mortar finite element

method [62]. Note for the last example, interface-conforming meshes are still required,

but they do not have to match from the two sides of the interface. These ideas are

the same as enforcing a Dirichlet boundary condition through penalties for elliptic

104

boundary value problems; see [7] for example. A second-order finite volume method

using Cartesian cut cells has also been developed for elliptic interface problems [64],

where the interface condition is imposed through numerical fluxes.

With the interface condition imposed weakly, only an integration along the inter-

face is needed. As a result, elements of arbitrary shapes are allowed in the scheme,

provided that integration can be performed on these shapes. Furthermore, no con-

straint from the interface condition needs to be imposed on the finite element basis

functions, and this facilitates the extension to a high-order basis in any dimension.

However, there has been little development on high-order finite element method for

interface problems with arbitrary interface shapes in two and three dimensions.

As the cut-cell technique has shown success for problems with complex boundaries

(see for example [2, 50, 69, 87, 131]), we extend the simplex cut-cell technique to

solving interface problems in our work. In particular, we combine the technique with

a high-order DG discretization, which easily allows weak imposition of the interface

condition (6.2). The key features of our solution strategy include:

" arbitrarily shaped elements enabled to handle complex interfaces;

* easy extension to high order;

" arbitrary anisotropy permitted by simplex elements.

6.2 Discontinuous Galerkin Method for Interface

Problems

In this section, we first derive the DG discretization in a unified form for elliptic

interface problems on fitted meshes. The consistency of the unified form is then

proven by imposing certain constraints on the numerical fluxes. We then choose our

numerical fluxes that satisfy these constraints. More specifically, we use the second

form of Bassi and Rebay (BR2) [17] for non-interface faces, and the construction of

numerical fluxes for interface faces is inspired by the work of Guyomarc'h and Lee [56].

105

For these choices, we show that in the bilinear form, the interface faces are in fact

treated exactly the same as for non-interface faces. At the end of this section, we

prove the stability and the optimal convergence of the scheme.

6.2.1 Notations

To derive a unified DG formulation for elliptic interface problems defined in Eq. (6.1)

and (6.2), we follow the notations and derivations in the work of Arnold et al. [7]. For

simplicity of presentation, we assume a homogeneous Dirichlet boundary condition is

imposed on &Q in this section, i.e. UD = 0. Define a triangulation Th of the domain Q

into non-overlapping elements K of characteristic size h. Denote all element faces by

IPA UK OK, and let the mesh be fitted, i.e. E c PA. Denote the set of non-interface

faces by IF FA\E, and the set of non-interface interior faces by IF, FA\(U aQ).
Further, we denote the set of faces of all elements in Q(') by FA UKCQ(i) aK, and the

interfaces on the boundary of Q(') by EM) - En f Q(). We then define r(') p()\E()

and F() A \ (

We define the space

and for DG discretization, we denote a finite-dimensional approximation space Vh,p on

Th by

Vh, - {v c L2 (Q) VK E PP(K), VK E Th},

and similarly, denote

V(') {v E L2 (Qi)) VIK E PP(K), VK c Q(M}.

In addition, the jump operator [and average operator {.} follow the definitions

in [7]. Specifically, on a non-boundary face e C FA\&Q, we define for an arbitrary

106

scalar function x and vector function y:

Ix - x-n- + x+n+)

{x} = I(x- + x+),2
1

{y}E (y-

where (.)~ and (.)+ denote the trace values on e of any quantity (-) evaluated for the

neighbor elements, K- and K+, and ft and n+ are the unit normal vector pointing

exterior to K- and K+, respectively. On a boundary face e E 0Q, we define

[Xj = Xin, y] y -ni

{x} = x, {y}=y,

where n denotes the unit normal vector pointing exterior to Q. Also, for any function

q C V + Vh,p, q(') denotes its restriction on Q(.

6.2.2 Mixed and Primal Formulations

We first rewrite Eq. (6.1) on each Q(') as two first-order equations:

(6.3)

(6.4)-V - (,(i)c(i)) = f(W.

Let uh E V,p and -h E [Vhp]d denote the DG solutions, and we follow the same

derivation in [7] but for each Q(i) separately, then Eq. (6.3) and (6.4) lead to the

107

Uo 0 = VUf0

mixed formulation on each Q('):

a W dQ = -

10)

(j)u() - VvdQ -h

u iV - TdQ + }ds + f {t' } Tlds

+ j UO) -Ti()ds
'M~i

}vds - KHJ(G){v}ds -

= Ff (vdQ,

(6.5)

ds

(6.6)

for arbitrary test functions T E [VC ld and v E Vh,) where n(is the unit normal

vector on EM pointing out of Q('), and f and iu represent the numerical fluxes. On

the interface E('), ft(') and KN(i) denote the numerical fluxes evaluated from the side

of Q W.

To derive the primal formulation, we first apply integration by parts on the right-

hand side of (6.5):

Vu W . TdQ + f(i) -U - {T}ds +

n) ds, VT E

f {GW -U }ds
rh

(6.7)

We then let T = r,()Vv in (6.7), and substituting into (6.6) gives the primal formulation

on each Q('):

Vu M . ,&z)VvdQ + () -U - {i&NVv} - {(i - dsKUr) >

+ J ({p)

+ J (p)

- }[xvv - [{} ds

- WV -(ds =
f (6d , Vv E V.8)

(6.8)

We then sum Eq. (6.8) over i, and the interface term f (.)ds can be combined into

the non-interface terms. This gives the discretized weak form of the interface problem

108

L)

LM>

Fon)
01(-rdQ

1(F>

+ (-- Uh)r -

- U M WVV

froi) (l~ - { T

on Q: find Uh E Vh,p such that

Bh,p(uhV) = h,p(V)

where

Bh,p(uh, v) = JVUh - ,VvdQ +

+ J A \ 19 Q

lh,p(V) = j fvdQ.

J rA

({z2 - Uh}[VV1" - [rZ]{v}) ds

To complete the primal formulation, we still need to express -h in terms of uh

We sum (6.7) over i, and define the lifting operators r : [L 2 (PA h4[ad and

: L2 (FA\Q) - hp]d:

r(o) - rdQ = - I -{T}ds,Tr
L (q) - Td = - q r ds, Vr E [Vhp],

(6.12)

then we obtain

O~h = Vuh - r(fl - Uh]) - l(Ii - Uh})- (6.13)

6.2.3 Primal Consistency

Let u be the solution to Eq. (6.1) and satisfy the interface condition Eq. (6.2). Let

the numerical flux U^ satisfy

f - u] = 0, {' - u} = 0 on e c rA, (6.14)

109

VV E Vh,p (6.9)

(6.10)

(6.11)

4

(f -~ Uhl - f re} -- f{K'~} - ovl ds

then Uh(U) = Vu from Eq. (6.13). If we further let i' satisfy

[G - Ku i = 0, on e E FA, (6.15)

then substituting the conditions (6.14) and (6.15) into (6.10) can easily prove the

consistency of the scheme. Also, note the jump conditions in (6.14) and (6.15) on E

are equivalent to

f] = an , [K] = b on E, (6.16)

which weakly imposes the interface condition Eq. (6.2).

6.2.4 Numerical Fluxes and Final Discretized Form

Eq. (6.9) defines a family of DG schemes, where consistency is guaranteed when ft

and i' satisfy (6.14) and (6.15) as discussed. In this section, we present one choice

of consistent numerical fluxes. On non-interface faces, we use BR2 [17] for numerical

fluxes:

f = {Uh}, ' = { [Vnh + rereG([h])]},

ft = UD = 0, no 4Vuh + TerT(hD)],

on e C]I,

on e E OQ,

where 7Te is a positive number on each face e E PA, and re(.) is the local lifting operator

defined by

re (#) - TdQ = - je0 - {T}ds, VT C [Vh,P]d

110

(6.17)

(6.18)

(6.19)

and Q' is the union of elements sharing the face e. On interface faces, e E E, we need

to modify Eq. (6.17) in order to satisfy condition (6.16). One natural choice is

(-) = f{uh} + 'a K0 = {[Vuh + ,ere(dhj - af(-))]} + li{ 2
{l+ Uh} - !a {o =' K[V'U, +ree~h - afi(-))]} - lbi-

where the terms ±a and ±bn(1) are also proposed in [56] for a particular form of

local DG method on interface problems, and re(.) is defined in (6.19). Substituting

these numerical fluxes into Eq. (6.9) gives the final discretized form:

Bh,,(uh, v) = VUh - rVvdQ - j ('hJ {KVV} + {jVuh}. v]) ds

:- je{kre([Uah)}. [vods (6.20)
eErA

hp (V) = fvdQ - (a{rVv} ft() - b{v}) ds - Rere (a n(-))}I - vds,
e EE e

(6.21)

where the bilinear form treats the interface faces exactly the same as non-interface

faces.

6.2.5 Optimal Convergence

Our choice of numerical fluxes leads to consistency of the scheme as discussed in the

previous sections. Further, because our bilinear form in Eq. (6.20) is identical to a

case without interface, the proof for boundedness and stability is very similar to the

proof in [7], and is shown in Appendix G.1. Optimal convergence then follows from

the consistency and stability, see [7].

111

6.3 Dual Consistency and Output Superconvergence

In this section, we prove a dual-consistent evaluation for common outputs, and the

dual consistency leads to output superconvergence for the developed DG scheme on

interface problems. Let Uh,p E Vh,p denote the DG solution, which satisfies

Bh,p(uh,p, v) - lh,p(V) = 0, Vv E Vh,p,

where Bh,p(-, -) and lh,p(-) are defined in Eq. (6.20) and (6.21), respectively. We are

interested in the output defined by

J = J(u)I g) udQ J gaVu - ids - j (-)u(-) - in(-)ds,

(6.22)

where gQ, gaQ, and g. are functions defined on Q, 9Q, and E, respectively. Denote the

approximate output value computed from Uh,p by Jh,p = Jh,p(uh,p) Jhl,p(Uii,p)+ J"p

where J,,(-) : Vh,p -* R is a linear functional. For a more accurate prediction of the

output value, the discrete evaluation Jh,p(uh,p) needs to be dual consistent, i.e. the

exact dual solution, 4' E W = V + Vh,p, needs to satisfy the discrete adjoint equation:

Bh,p(w, 4) - J,p (w) = 0, Vw E W. (6.23)

When Eq. (6.23) is satisfied, we can observe superconvergence for the output value as

proven in [53, 82].

In this work, we evaluate the output in Eq. (6.22) by

Jh,P(uh,p) 9 i)d(- [VUh,p ± eT fidsh,p . nds
ON eEaQ

S j9 f{ Vuh,p + 77ere (Uh,p - an)]} . - j gbds,
eE6

(6.24)

112

where the last term is for primal consistency, and qe and re(.) are defined in Sec-

tion 6.2.4. To prove dual consistency of Jh,p(uh,p) defined in (6.24), we first derive the

continuous dual problem, which is found to be

-V. (tV) = g() in Q(i),

= =aQ on aQ

' = n(-)

Vi (6.25)

(6.26)

(6.27)[rIV44 = 0 on E.

Detailed derivation is in Appendix G.2. Then from Eq. (6.20), we have

Bh,(w, /) = I Vw - tV4/dQ - IV -{KVV/} + { Vw} - HO/ds

(6.28)- I je{Ire()} s

where 4 is solution to Eq. (6.25) through (6.27), and so satisfies

S= ga on e E Q,

O1 = 0 on e (E IF, M = gEn on e E E.

Thus, applying integration by parts to the first term in (6.28) leads to

Bh,p(w,4) = - jwV - (KV) -j KVW - gaQnds - E jere(WD
eEaQ

- j{fVW} -gfi(-)ds - je{Kre ([w)} - g5n(-)ds.

Also, from Eq. (6.24), we have

S g iWd j , [Vw + nere[w)] . ga0 fids4()
- { [j Vw + r7ere(w]]} - gfi()ds.

eES

-g fids

Jhp(w) =

(6.29)

(6.30)

113

Combining Eq. (6.29) and (6.30) gives

Bh,p(w, b) - J,(w) = - zJ+ V . (r/VOW) dQ - 0,

where the last equality is because of (6.25), and this proves the dual consistency.

6.4 Cut-Cell Technique for Interface Problems

On a cut-cell mesh, the mesh generation process does not conform to the interface,

i.e. the interface definition is completely separate from the background mesh, which

is denoted by Th,b consisting of elements Kb. The interface then intersects with Th,b,

and cuts Th,b into separate parts {T()}, each of which completely lies inside one QW.

For example, Figure 6-2 shows a background element Kb cut by the interface into two

elements, KM and K(, lying completely in QM and Q(2), respectively. The mesh

after the cutting process is named a cut mesh, and denoted by Th = Ui'T,,), which

consists of elements of arbitrary shapes along the interface.

The DG discretization derived in Section 6.2 is applied on the cut mesh Th, and the

choice of the DG space for cut elements was presented in Section 4.2. While the derived

DG method has no assumption on physical dimensions, in this work we consider two-

dimensional interface problems. The mechanism of constructing a two-dimensional

cut mesh, as well as the quadrature rule generation, will be briefly described in the

rest of this section. Throughout this work, no assumption is made on the interface

shape (other than Lipschitz continuity). Note the techniques developed in Chapters 2

and 3 for three dimensions are also applicable to interface problems, but were not

implemented in two dimensions at the time of writing this chapter.

In this work, the interface geometry for two-dimensional problems is represented by

piecewise cubic splines as in [50, 87], and the orientation of each spline defines normal

vectors pointing into one QW. Given a cubic spline representation and a simplex

background mesh, the intersection algorithm constructs the topology of the cut mesh

114

Figure 6-2: Example of background elements cut into two elements, KM and K(2)

Th. The algorithm consists of first solving for all the intersection points between the

splines and every background edge, for example, points A and B in Figure 6-2. Then

the cut background edges are constructed, e.g. AC and AD in Figure 6-2. For each

cut background edge, we determine in which Q(') it lies, based on the orientation of

the splines. The final step consists of connecting the cut background edges and cut

splines into cut elements. The details of the intersection algorithm can be found in

the work of Modisette [87], where the main difference from this work is that Modisette

constructs cut elements on only one side of the interface, which is in fact the domain

boundary in his work.

As a cut-cell mesh can have arbitrarily shaped elements, a quadrature rule for

each of these elements and their faces is required in the DG discretization defined

in Eq. (6.20) and (6.21). For a cut element K in two dimensions, the quadrature

points xq are chosen to be equidistant points in the oriented bounding box of K but

lying inside K. An example is shown in Figure 6-3. The quadrature weights Wq are

calculated using the algorithm proposed in [50], which is based on minimization of

projection error on xq's. In addition, because most cut elements have three or four

sides, they can often be mapped to triangles or quadrilaterals, respectively, using high-

order Lagrange basis, as proposed in [87]. We can then employ standard integration

115

rules for the cut elements that are converted to these "canonical" shapes; and this

integration procedure is shown to be more efficient [87]. An example cut element

that can be converted to a high-order triangle is shown in Figure 6-4 together with

the quadrature points. Note when an element K on the interface F is converted

to "canonical" by a mapping gK, the interface geometry on 9K is in fact redefined

according to gK, and may not be the same as the original geometry. The information

of this redefinition has to be shared with the neighbors of K, so that two neighbor

elements still define the same common face.

Figure 6-3: Example cut element with Figure 6-4: Example cut element con-
equidistant quadrature points in the ori- verted to canonical element, with canon-
ented bounding box ical quadrature points

6.5 Results

In this section, we present four numerical examples that confirm the optimal order of

convergence for our scheme. The first two examples have a smooth interface, where

we demonstrate the optimal L2 -error convergence, and the superconvergence of dif-

fusive flux error. The latter two examples have solution singularities induced by the

interface shapes. We demonstrate that the effect of singularities can be controlled by

116

mesh adaptation, and output superconvergence can be achieved despite the present

singularities. Moreover, the last example presents a case of reaction-diffusion equation,

where an anisotropic feature exists along the interface. Note the adaptation scheme

is the MOESS algorithm presented in Section 4.4.

Example 1: L2-Error Convergence

This example is from [64], where the interface geometry is defined in polar coordinates

by r(6) = 0.32+0.05 cos(69), and the computational domain is [-0.75, 0.75] x [-0.75, 0.75]

as shown in Figure 6-5(a). The diffusivities are given by K(') - 1 and ,(2) = 10.

The source function, the boundary conditions, and the interface condition defined

in Eq. (6.2) are imposed such that we have an exact solution given by

e (X2 siny + y2) in Q() ,(6.31)

-(y2 + y2) in Q(2)

which is shown in Figure 6-5(b). This example is then solved on a sequence of uni-

formly refined background meshes, the coarsest of which is shown in Figure 6-6. Fig-

ure 6-7 shows the L2-error convergence for p = 1 through 4, and we do observe the

optimal convergence rate hP+l for each p. Note that the error reaches machine preci-

sion level on the finest mesh using p = 4.

Example 2: Diffusive Flux Error Convergence

This example demonstrates error convergence for heat flux defined in Eq. (6.22) with

gq = 0 and gaQ = 0, and confirms the discrete evaluation in Eq. (6.24) is dual-

consistent. The interface geometry and computational domain are the same as in

Example 1, and the exact solution u is also given by Eq. (6.31).

We let g. = sin 26, where 0 represents the angle with respect to the positive x-

axis. Figure 6-8 shows the adjoint solution for this case. The output-based adaptive

scheme is then applied for p = 1 and p = 3 at four different DOFs: 2k, 4k, 8k, and

117

(a) Computational domain

Figure 6-5:
problems

0

-0.2

-0.4

-0.6

-0.8

-1

(b) Primal solution

Computational domain and primal solution of Example 1 for interface

Figure 6-6: Example background mesh for Example 1 for interface problems

118

2

CM
-j

10-3

105

10-

10 -

10 -1

10-13

10-15L_
10 1 102

1 /h

Figure 6-7: L2-error convergence for Example 1 for interface problems (h defined as
N- 1/2)

elem/

16k. The error convergence is shown in Figure 6-9, where we see that the method

achieves output superconvergence rate of h2p or DOF-P for both p = 1 and p = 3.

The "DOF-optimal" meshes for p = 1 are essentially uniform, and those for p = 3 are

uniform in Q) and very coarsen in Q(2) because the true solution in Q(2) is quadratic

and can be exactly captured. Examples of these meshes are shown in Figure 6-10.

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Figure 6-8: Adjoint solution for Example 2 for interface problems

119

10-1 -P
-0-p =2-A- p =2

A P =3

.-
1.99

-2.99

- -3.99

-4.99

10 3

2k 4k
DOF

8k 16k 32k

Figure 6-9: Error convergence for Example 2 for interface problems

(a) p = 1, DOF = 8k (b) p = 3, DOF = 16k

Figure 6-10: Adapted cut-cell meshes for Example 2 for interface problems

120

100

10~2

-4
10

-1.11

-3.69

_A

+4Adaptive p = 1
-A- Adaptive p = 3

-

-
10-6

1-810 *

-10
1k

Example 3: Geometry-Induced Singularity

This section presents a case where the interface shape has corners, as shown in Fig-

ure 6-11(a). The computational domain is [-0.5,0.5] x [-0.5,0.5], and the interface

defines an L-shaped domain with top-left corner at [-0.25,0.25], bottom-right cor-

ner at [0.25, -0.25], and center at [0, 0]. The diffusivities are given by K(1) = 0.1

and ,(2) - 1. Homogeneous Dirichlet boundary condition and homogeneous interface

condition (a = b = 0 in Eq. (6.2)) are imposed, and the source function is

1

10

on Q(')

on Q(2)

The solution is shown in Figure 6-11(b). For this case, the output of interest is the

volume term in Eq. (6.22), i.e. gaQ = 0 and g. = 0, and the integral weight gQ = f,

which represents an interest only in Q(l). For such an output, the adjoint solution is

the same as the primal solution shown in Figure 6-11(b).

0.12

0.1

0.08

0.06

0.04

0.02

0

(a) Computational domain (b) Primal solution

Figure 6-11: Computational domain and primal solution of Example 3 for interface
problems

This case is first solved on a sequence of uniformly refined structured meshes that

are interface-conforming. The coarsest of these is shown in Figure 6-12(a). Figure 6-13

121

shows in dashed lines the error convergence on these uniformly refined meshes, where

the convergence rate for p = 3 is limited by the corner singularities. Note we also tried

to solve on a sequence of uniformly refined structured meshes that are not interface-

conforming. On such a sequence of meshes, the cut cell shapes on the interface are

different from one mesh to the next, and so the error does not converge at the expected

rate and hence is not shown. We will see that this "noise" due to arbitrary cut shapes

is not apparent on adaptive meshes.

The adaptive scheme is applied for both p's at different DOFs, starting from a

uniform unstructured mesh in Figure 6-12(b). For each DOF, 15 adaptation iterations

were carried out, and the average of the 5 last iterations at each DOF is shown in

Figure 6-13 as solid lines, where output superconvergence of hP or DOF-P is observed

for both p's. Further, the error of each of the 5 last iterations is also plotted, and it

is clear that the "noise" caused by arbitrary cut shapes on these adaptive meshes is

negligible. Figure 6-14 shows examples of the "DOF-optimal" meshes for p = 1 and

p = 3, where smaller elements are observed at all the corners, and the mesh grading

around corners is much stronger for p = 3.

(a) Initial mesh for uniform refinement (b) Initial mesh for adaptation

Figure 6-12: Initial meshes for Example 3 for interface problems

122

-9-Uni Refine p=
-A - Uni Refine p=
-4-*Adaptive p = 1,
-- Adaptive p = 3,

* Adaptive p = 1,
* Adaptive p = 3,

2k

Individual
Individual

4k
DOF

16k 32k

Figure 6-13: Error convergence for Example 3 for interface problems

(a) p = 1, DOF = 8k (b) p = 3, DOF = 16k

Figure 6-14: Adapted cut-cell meshes for Example 3 for interface problems

123

10

10-2

10-3

05 1

*6

1.04

-3.55

10-6

10~7

10~
1k 8k

-

~

-0.84 : -----

Average
Average

Example 4: Anisotropic Solution

In this example, we introduce a reaction term into our model PDE:

-V - (iVu) + u = f in Q(1 U Q(2),

so that the solution has an anisotropic layer along the interface E. The computational

domain and the interface are the same as in Example 3, and homogeneous Dirichlet

boundary condition and homogeneous interface condition are imposed. The diffusiv-

ities are rM = 10-4 and ,(2) = 1, and the source function is f = 1 in Q(l) U Q(2.

Figure 6-15 shows the solution, where a boundary layer exists along the interface.

For this case, the output is the volume integral defined in Eq. (6.22), i.e. g., = 0

and g. = 0, and the integral weight gQ = f so that the adjoint solution is the same

as the primal solution. The adaptation scheme is applied for p 1 and p = 3 at

different DOFs, starting from the mesh in Figure 6-12(b). Figure 6-16 shows the error

convergence, where output superconvergence is observed for both p's. Figure 6-17

shows the "DOF-optimal" meshes for p = 1 and p = 3, where we observe the adaptive

scheme employs strongly anisotropic elements along the interface.

1

0.9
0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 6-15: Primal solution for Example 4 for interface problems

124

0-3
10 -

10

1-

10

10-

10-8
103 104

DOF

Figure 6-16: Error convergence for Example 4 for interface problems

(a) p = 1, DOF = 8k (b) p = 3, DOF - 16k

Figure 6-17: Adapted cut-cell meshes for Example 4 for interface problems

125

=0- 1
-A-p =3

-1.29

-3.23

10 5

Chapter 7

Multi-Physics Problems

In this chapter, we extend the framework developed in Chapter 6 to handle multi-

physics problems, which are interface problems governed by different PDEs across the

interfaces. Section 7.1 derives the DG method for interface problems with general

systems of (linear) elliptic equations, which have different parameters and different

number of unknown states across the interfaces. Section 7.2 extends the method to

conjugate heat transfer (CHT) problems. In Section 7.3, we demonstrate our adaptive,

cut-cell framework with the DG discretization through a CHT problem.

7.1 DG for Interface Problems: Systems of Elliptic

Equations

In this section, let the computational domain consist of only two sub-domains for

simplicity, = U u(2) , and the sub-domains are separated by an interface E. On

each Q(), the solution () E [H1(Q())]m() satisfies

-V - (A(')Vu(')) - f('), () = 0 on

where A(' is the diffusivity tensor, m() is the number of unknown states for U(0), and

we allow m) # M(. Without loss of generality, we assume m(> 1 and m(2) = 1 in

127

this section, and we define m _ m(') for notation simplicity. Assuming A(') has a full

rank, we impose the following interface conditions on E:

g(u(1)) = U(), (7.1)

h(A*)Vuu) - n() = -A* -j n,(2) (7.2)

B(u(1)) = 0, (7.3)

where the conditions are assumed to be linear in this section: g(u())) gTu(l),

h(A Vu () - n() = hT(A(l)Vu() - i)), and B(u(')) = B u(l). Conditions (7.1)

and (7.2) enforce solution continuity and flux continuity, respectively. Condition (7.3)

is for the full specification of u(on E, where B E Rmx(m-) has a rank of m - 1, and

each column of B is linearly independent of g E Rm and h E Rm.

For the DG discretization of this problem, the notations and derivations closely fol-

low those in Section 6.2. Recall the notations for different sets of faces: IF = UKCO(i)K,

A \E, and Fp Ij\OQ(). Denote the space:

vh {v E[L2(Q)m() : VK E [PP(K)]m(i), VK c Q()}.

Then the primal formulation on each Q('), i = 1, 2, is identical to (6.8), which is

restated here:

j Vu) - A(VvdQ + j - u {A(Vv} - { A I } -v ds

+ ({&2) - - ds

+ j ((A -u)AVv - Ao) - ds = j f(vdQ, Vv E V(')u(')A(')v -(i~ LMh,p~

(7.4)

Note Eq. (7.4) on each sub-domain Q(') has an interface term fE(.)ds. This term

involves the unknown 0) evaluated on the interface, which can represent a different

physical quantity for a different i. We then define the lifting operators based on (6.7),

128

which is restated:

I - - . TdQ
Qoo>)

j VuW. TdQ + fj(i) - {T}dS +jroi> h r-f >d

+ (t(i) - U)r - ii ds,

-U } Trds

VT E (7.5)

More specifically, we define r() (.), i)(.), and r (-) by

rZ ($) TdQ

;)O
l('(q) - TdQ =

= - $r f()ds

q Tjds,

VT E [Vh],

and Eq. (7.5) leads to

0- = Vu M - r(in)(Ti - Uth) - ()({j - Uh}) - rM (it(2) - Uf) (7.6)

As in Section 6.2.3, we require the numerical fluxes on E to satisfy the interface

conditions for primal consistency:

hT(Ao. n) = -A(2 . n(2) and BT(l) = 0,

based on which we have the following choices. The numerical fluxes fL(i), i = 1, 2, are

defined by solving the linear system

-(2) = g Tf(l) -

BTI(I) = 0

0.5(gTu + 2))

and A n.ii) i = 1, 2, are defined from

T(2) T (1)-A -n() - hT(c - n1)) - 0.5(hT(AAu)o-I -nil))
BT (Acx(- nil)) =B7()ol) - niu))

+ A(2)o-2) . ())

129

fou)
r)($) - TdQ = - j $ {T}ds,

L>

(7.7)

{ ,(7.8)

g Tftu) = t(2, I

where o< on a face e E E is defined by

VUh - rlerf e(- UhI. (7.9)

The local lifting operator r.'(-) is defined by:

r.(#) TdQ f = - j# (-)ds, VT e [VE(),

(i))h~

where Qe is the element in QW neighboring the face e. Note the linear systems

[gT; BT] and [hT; BT] are invertible as each column of B is linearly independent of

g and h.

7.2 DG for Interface Problems: Conjugate Heat

Transfer

Conjugate heat transfer (CHT) refers to the process of thermal interaction between

heat conduction on a solid body and heat convection in an adjacent fluid. Accurate

prediction of temperature and/or heat flux distribution in such a process is important

in a wide range of applications, for example, turbine blade cooling, aerodynamic heat-

ing for re-entry vehicles, and aircraft de-icing. This section applies the DG formulation

developed in Section 7.1 to the CHT problems (as a monolithic approach).

As in Section 7.1, we assume two sub-domains in the computational domain,

-= a U . The sub-domain Q(l) is governed by Navier-Stokes equations with

unknown 0) = [p, pu, pE]T, and Q(2) is governed by heat equation with unknown

U(2) = T. Both equations are described in Appendix E, and a description of the vis-

cosity tensor A for Navier-Stokes equations can be found in [78]. On the interface E,

we impose temperature continuity, heat flux continuity, and no-slip condition. More

130

specifically, the general interface conditions (7.1) through (7.3) become

T(u)) = U(2, (7.10)

yheat(U(1).) = _pheat(U(2)) . (2)(7.11)

u = 0, (7.12)

where T(.) is the temperature functional, Fheat =TVT is the heat flux functional,

and KT is the thermal conductivity. Note the main difference from (7.1) through (7.3)

is that the viscosity tensor A for Navier-Stokes equations is rank deficient. More

specifically, the viscous flux for these equations contains no mass diffusion, and the

conditions (7.10) to (7.12) alone do not fully specify u() on E.

The DG discretization for this problem has the same bilinear form as given in

Eq. (7.4), and the choice of numerical fluxes follows (7.7) and (7.8). Let {T} be the

average temperature on the interface E, {T} = 0.5(T l) + T). Then ft(, = 1, 2,

are defined by

Ph

n = 0 , and f(2)= {T}.

pI{T R

The fluxes A- - ni(, i = 1, 2, are defined by

(A(1 of" - nN~l)mass
Ao- (1 (A(1)or() - i(1))nornenturn

h T ~h0.5(Ajoj(1n))energy + (2) (2) (1n)

and Ao(fl 0.5 ((A or f)energy + K (2 - nh),

where the viscosity matrix A(') is evaluated at ft(l), and gh is the lifted viscous

flux defined in (7.9). Note that at &1), which satisfies the no-slip condition, the

term (A(1)uo,1) - fn(l))energy is the same as the heat flux, r n

131

We also need to define the inviscid numerical fluxes N() on the interface E. From

the side of Q(1), W() is computed using fi(1), and has only the pressure contribution

because (l) satisfies the no-slip condition. From the side of Q(2) governed by heat

equation, the inviscid flux (2) is zero.

7.3 Results

As a proof of concept, we demonstrate our solution strategy for conjugate heat trans-

fer in a laminar, external flow, where the geometry is a RAE2822 airfoil with cooling

chambers, as shown in Figure 7-1. The ratio of thermal conductivities at room tem-

perature is K(1)// 5 (2) = 10-3 . The conductivity r(1) relates to viscosity through Prandtl

number, and the viscosity changes with temperature according to Sutherland's law;

see Appendix E for more details. The conductivity r(2) is assumed to be constant.

The inflow conditions are M,, = 0.3, a = 2.31', and Re, = 104. Cooling is imposed

on the wall of the cooling chambers through a Robin boundary condition:

-KVT = h(T - T,),

where h is the convective heat transfer coefficient, and T, is the cooling temperature.

In this work, h = '(2) /c, and T, = 0.5T,,, where c is the airfoil chord length. Figure 7-2

shows the temperature distribution for this case.

The output of interest is the temperature on the airfoil, fairfoil TdQ, and the adap-

tive scheme is applied for p = 1 and p = 3 at three different DOFs. The error

convergence is shown in Figure 7-3, where we see that the method achieves output

superconvergence rate of h2P or DOF-P for both p = 1 and p = 3. The "DOF-optimal"

meshes for p = 1 and p = 3 are shown in Figure 7-4, where the adaptation automati-

cally adjusts the mesh on both sides of the interface for an accurate prediction of the

output. In particular, anisotropic elements are employed for the boundary layer, and

isotropic elements inside the airfoil. Also, a mesh grading is observed on the corners of

the cooling chambers, especially for the adapted meshes from the p = 3 discretization.

132

Figure 7-1: RAE2822 airfoil with cooling chambers

1

0.9

0.8

0.7

0.6

(a) On the aerodynamics side and on the airfoil

<

0.53 0.54 0.55 0.56 0.57 0.58

(b) On the airfoil only

Figure 7-2: Temperature distribution, T/TO

10 -

10

10-

10~6-
4k 8k

DOF
16k 32k

Figure 7-3: Error convergence for the CHT case

133

- - - - - - - - - -
-0.93

-3.00 -0

.-----------

(a) Initial mesh

(b) Adapted mesh, p = 1, DOF = 8k

(c) Adapted mesh, p = 3, DOF = 16k

Figure 7-4: Initial and adapted cut-cell meshes for the CHT case

134

Chapter 8

Conclusions

8.1 Summary and Conclusions

This thesis presents work toward the development of a robust PDE solution framework

that provides a reliable output prediction in a fully-automated manner. In particular,

the framework consists of a simplex cut-cell technique, a high-order DG discretization,

and an anisotropic output-based adaptation. The simplex cut-cell method is based on

the work of Fidkowski and Darmofal [50]. We significantly improved the robustness

and automation of their original algorithm in three dimensions by tackling two issues:

intersection ambiguity due to numerical precision, and poor quadrature quality for

cut cells. In addition, we derived a DG method for multi-material and multi-physics

problems, and extended the adaptive, cut-cell framework for these problems.

For the three-dimensional cut-cell intersection problem with the embedded ge-

ometry represented by quadratic patches, we demonstrated the robustness issues of

using standard double precision. We then introduced the adaptive precision arith-

metic provided by the LEDA library [26], which guarantees intersection correctness

but is computationally unaffordable. Various techniques were developed to improve

the efficiency of using the adaptive precision arithmetic. With the improvement, the

intersection cost represents only a small fraction of the flow solution cost in terms of

CPU time. In addition, the intersection algorithm was parallelized by partitioning the

135

background mesh, and almost a linear speedup was observed.

We proposed a high-quality and efficient cut-cell quadrature rule that satisfies a

quality measure we defined. More specifically, the quadrature points are selected based

on the idea of the magic points [83], which we proved are asymptotically the same as

Fekete points, and improve the quality measure. The quadrature weights are com-

puted based on a weighted least-squares problem to minimize certain projection error.

Through an aerodynamics problem, we demonstrated the improvement in nonlinear

solver robustness using the proposed quadrature rule. In addition, the proposed algo-

rithm does not rely upon any symmetry information or geometry approximation, and

does not involve high-order polynomial root-finding.

With the robust intersection algorithm and the high-quality cut-cell quadrature

rule, we demonstrated the automation and robustness of the solution framework

through a range of aerodynamics problems, including inviscid and laminar flows. For

each presented problem, the cut-cell method was applied on 100 to 200 adapted meshes,

ranging from a very coarse mesh with the geometry inside almost one background

element, to an adapted mesh with flow features resolved for an accurate output pre-

diction. No human intervention was involved in the process from the initial to the

final mesh, including the cut-cell intersection procedure and flow solves using DG

polynomial degrees of p = 1 and p = 2.

We then extended our solution framework for scalar elliptic interface problems. We

first derived the DG discretization in a unified form for these problems on fitted meshes,

and showed that no modification on the DG bilinear form is needed for interface

treatment. We then combined the cut-cell technique, so that the mesh generation

process becomes completely separate from the interface definition. No assumption was

made on the interface shape (other than Lipschitz continuity). We also extended the

MOESS adaptation algorithm [124] to handle cut cells for both embedded boundary

and interface problems. Through numerical examples, we demonstrated high-order

convergence on cut-cell meshes for elliptic interface problems with both smooth and

non-smooth interface shapes. A dual-consistent output evaluation was also derived

136

for the developed DG scheme, and output superconvergence was observed.

We then extended the framework to handle multi-physics problems, which are in-

terface problems governed by different PDEs across the interfaces. The DG method

was modified to account for more general interface conditions, and non-interface-

conforming meshes were used with the cut-cell technique. The framework was demon-

strated (as a monolithic approach) through a conjugate heat transfer problem, where

mesh element size and shape on each material are adjusted in a fully-automated man-

ner for an accurate output prediction.

8.2 Future Work

During the course of this work, we identified several areas for potential future research

as listed below.

Three-dimensional RANS simulations

With the significant improvements to the robustness of the cut-cell algorithm, simula-

tion of three-dimensional RANS equations on cut-cell meshes can be one potential fu-

ture work. If successful, this would significantly improve automation of the mesh gen-

eration process for aerodynamics problems on complex geometries. Two-dimensional

RANS simulations on cut-cell meshes have been demonstrated by Modisette [87].

Three-dimensional interface problems

While we only considered two-dimensional interface problems, our proposed framework

is extendable to three dimensions. In particular, the DG discretization developed for

interface problems and the adaptation framework have no assumption on dimensions.

The intersection and quadrature rule generation developed for embedded boundary

problems in this thesis are also applicable for interface problems, and the implemen-

tation will be considered in future.

137

Adaptation of quadratic patches

One source of numerical error that was not considered in this thesis is the quadratic-

patch approximation of the geometry surface, which is often represented by a CAD

model. This error can be more prominent if a higher-fidelity simulation is required,

using for example a higher approximation polynomial degree. One possible solution

is to identify the impact of this error on the output prediction through an adjoint

analysis. Then an automated adjustment of the quadratic-patch resolution can be

incorporated in the adaptive framework.

Extension to problems with moving geometries

While the applications in this thesis are mainly for aerodynamics and heat transfer,

the proposed PDE solution framework can be extendable to other applications gov-

erned by different PDEs. One particular interest is the extension to problems with

a moving boundary or interface, for example, the aeroelastic studies based on fluid-

structure interactions. While the cut-cell intersection will need to be carried out much

more frequently for such problems, a variety of other issues must also be addressed,

including adjoint analysis and output-based adaptation for unsteady (and possibly

chaotic) systems.

138

Appendix A

Notes on Cut-Cell Intersection

Algorithm

A.1 Sign Computation for Algebraic Numbers

In the library of LEDA [26] (or CORE [44]), every algebraic number has its entire

construction history stored as a directed acyclic graph (DAG), whose internal nodes

represent arithmetic operations (e.g. +) and whose leaf nodes are the input numbers.

Figure A-I shows an example of DAG, for the number (VY+VT2) x (V17- V12) -5.

Each internal node is also stored with the accumulated round-off error involved, and

a positive number known as separation bound used for sign computation, which will

be explained later in this appendix.

Let E represent an arithmetic expression with value f. With finite precision, let the

upper bound for round-off error be 6, i.e. If - fI < 6 where f is the approximated f.
The problem we want to solve is the sign of f given the value of f and 6. This can be

easily solved when f is not zero: if IfI > 6, then f and f have the same sign; otherwise

IfI < 6, we then keep refining the precision for f and hence reduce 6 until we have

fI > 6. An illustration is shown in Figure A-2. This problem is more complicated

when f = 0, as precision refinement for f will drive both f and 6 to zero.

In the case of f = 0, we then need the concept of separation bound to indicate

139

17 12

Figure A-1: Example of a directed acyclic graph for (v 17 + V12) x (V'i7 - v 12) - 5
(LEDA Manual)

f is identically zero. A separation bound sep(E) for the expression E with value f
is a positive number such that |f < sep(E) implies f = 0. A simple example of

separation bound on integer arithmetic is the number 1. For algebraic expressions,

separation bounds are always computable; see for example [25]. Therefore, if < < 6,

or equivalently If I < 26, we then keep refining the precision for f until we have either

IfI > 6 or 26 < sep(E). In the latter case, we then have IfI < 26 < sep(E), and then

f = 0 can be deduced.

Possible range of f
I 1 I I Bip

0 f4 f f4

(a) IfI > 6, then f and f have the same sign

Possible range of f

f-6 0 f f-6

(b) IfI < 6, then need to reduce 6 to compute sign(f)

Figure A-2: Sign computation for f given f and 6, where If - fI <6

140

A.2 More on Efficiency Improvement

Various techniques were developed to make the adaptive precision arithmetic afford-

able for the cut-cell intersection problem. Section 2.4 describes the key concepts while

this appendix provides additional discussion.

Background-Edge Intersection

As described in Section 2.3, an intersection problem between a background edge AB

and a quadratic patch {xi}_ can be formulated as in Eq. (2.2), which is rewritten

here: find X, Y, and t such that

6

Z i (X, Y)xi = XA + t(XB - XA) (A.1)
i=1

t C [0, 1], X, Y > 0 X + Y < 1.

The details of how this system is solved with the adaptive precision arithmetic are

described in Section 2.4.

Another formulation is to represent the background edge as the intersection line

between two planes (e.g. two adjoining background faces). Denote their normal vectors

by i and ii2 , respectively. Then in the patch reference space, the intersection curve

between each plane and the patch is given by

6

S (X, Y) -- i(X, Y)i - xA = 0, j = 1,2. (A.2)

The intersection point between the background edge and the patch is thus the solution

of the system S1 (X, Y) = 0 and S2(X, Y) = 0, which represents a conic-conic inter-

section problem. This formulation is the same as Fidkowski's implementation [49].

In this work, both formulations were implemented using the adaptive precision

arithmetic, where the conic-conic intersection problem is solved using the method

described in Section 2.4. Figure A-3 shows a test case where point A is fixed, the

141

intersection point P is uniformly sampled on the patch, and B is extended from the

line AP such that API = JBPJ. We then solve the intersection problem between AB

and the patch for 100 times using both formulations, and the difference in efficiency

is listed in Table A.1 1. The formulation from Eq. (A.1) is about two times faster,

as the coefficients for the system (A.1) have simpler construction DAG. Note the two

formulations have no difference in speed for double precision.

B

P

A

Figure A-3: A test case with random background-edge intersection point

Table A.1: Efficiency of the two formulations for background-edge intersections
Formulation Wall Clock Time (s)

Eq. (A.1) 0.96
Eq. (A.2) 2.01

Sorting Points Along Conic Sections: Branch Determination

As described in Section B.2, we need to sort a set of points, {Xj, Y _ along conic

sections. For conics with two branches, i.e. hyperbola and degenerate conics with two

lines, we need to first group the points onto each branch. For hyperbola, we first find

one of its asymptotes, aX + bY + c = 0; see Art. 174 in [113]. Then for each point

{Xj, Y}, we determine the branch according to the sign of aXi + bY + c.

'Wall clock time measured on an Intel Xeon 5570 processor at 2.93GHz. O/S: Ubuntu 11.04.

142

For degenerate conics with two lines, let the two lines be denoted by a1X + bjY + c1 = 0

and a2X + b2Y + c2 = 0. One way to determine which line has {Xj, Y} is to determine

whether a1Xj + biY + ci or a2Xi + b2Yi + c2 is zero. This leads to severe efficiency

issues as we query the sign of an expression that is identically zero and may have

a very complex construction DAG involving solutions from conic-conic intersections.

One alternative is to define for each {X, Y }:

A, = (a1Xi + biY + ci) + (a 2Xi + b2Yi + c2),

A2 = (a1 Xi + b1Y + c1) - (a2 Xi + b2Yi + c2).

Then A1 and A2 are neither zero, and if they have the same sign, {Xj, Y} is on the

line a 2 X + b2 Y + c2 = 0; otherwise, {Xj, Yi} is on a1X + bjY + c1 = 0.

Special Case for Linear Patches

When the geometry surface is planar, the quadratic patches defined by (2.1) reduce to

linear, and so does the system (2.2). While we can still use the method described in

Section 2.4, the conics in the system (2.5) will be straight lines. As all the coefficients

for quadratic terms are identically zero, querying their signs with the adaptive precision

arithmetic causes significant slowdown for the intersection algorithm. Therefore, as

an input to the intersection algorithm, we explicitly specify a patch is linear if the

geometry is planar, and assign all the quadratic terms to zero without computation.

Reuse of Data

In the whole intersection algorithm, we always try to reuse the variables whose preci-

sion has been refined. For example, the normal vectors of background faces (or conic

coefficients) are present in the construction DAG for many intersection points, and so

may have a refined precision. They should be reused when needed during the stage of

oned construction.

143

A.3 Classification and Sturm's Sequence for Quar-

tic Equations

Let a quartic equation be defined by

f(x) = ax4 - 4bx 3 + 6cx 2 - 4dx + e = 0. (A.3)

Without loss of generality, we assume a > 0 in this section. The classification of quartic

equations based on the number of real roots can be found in, for example, [46]. Using

the notations in [46], we define

W1 = ad - bc,

W2 = be - cd,

W3= ae - bd,

A, = A 3 - 27B 2,

A2= b2
- ac,

A 3 = C - bd,

T1= -W3A2- 3W2 + 9A 2 A 3,

T2= AW 1 - 3dB,

where A = W3 + 3A 3 and B = -dW 1 - eA 2 - cA 3 . Note a small typographical error

for T2 in [46]. All these terms are used in the classification of the quartic equation,

and we will see that its Sturm sequence can also be expressed using these terms.

Let P(x) be a polynomial in x. The Sturm sequence of polynomials is defined as

Po(x) = P(x), P1 (x) = P'(x)

Pn(x) = -rem(Pn- 2 , Pn-1), n > 2,

where rem(Pn- 2, Pn-1) denotes the remainder of Pn- 2 upon division by Pn-1 . The

sequence terminates at P once it is zero. The Sturm sequence of a general quartic

polynomials defined in (A.3), with A2 7 0 and T, # 0, can be derived to be

Po = ax4 - 4bx 3 + 6cx 2 - 4dx + e,

P 2 = -(3A 2x2 + 3W 1x - W3),a

P1 = 4ax 3 - 12bx 2 + 12cx - 4d,

4aA1A2
P3 = 2 (Tx + T2), P4- = 123A 2 ~

144

Because we need only signs of these polynomials, we redefine {P}i- 2 as

P2 = 3A 2x 2 + 3W 1x - W3 , P3 = Tx + T2 , P4 = A 1 .

There are several special cases:

* A 2 = 0, Wi # 0: the Sturm sequence terminates at P3 with

P2 = 3W 1x - W3, P3 = - 4aA,
27W 1

where the sign of P3 is the same as -A 1 W1 .

* A2 = 0, W1 = 0: the Sturm sequence terminates at P 2, with P 2 = W3;

* A2 # 0, T1 = 0: the Sturm sequence terminates at P3, with P3 = T2 .

A.4 Nearly-Duplicate Roots for Cubic Equations

For the conic-conic intersection problem described in Section 2.4, a cubic equation is

encountered, and only one real root is needed. In LEDA, the root for a cubic equation

is represented using the diamond operator for algebraic numbers [111], which applies

Newton's method for one specified real root (i.e. the smallest, the second smallest or

the largest). It is thus critical not to seek a duplicate or nearly-duplicate root due

to efficiency concerns. In this section, we develop methods to identify and avoid a

duplicate or nearly-duplicate root without solving the equation.

Let a cubic equation be defined by

ax+3 bx 2 + cx + d = 0.

As described in [46], the classification of the equation based on the number of real

145

roots uses these terms:

S = W2 - 4A 2 A 3), A 2 = b2 - 3ac, A 3 = C2 - 3bd,
3 7 (A. 4)

W =bc - 9ad, P = 2bA 2 - 3aW.

In this section, we always assume the cubic equation has three distinct real roots,

because we have analytical formula with only algebraic numbers otherwise.

Let a cubic equation (with three distinct real roots) be constructed by

(x-xo)(x-xo-a)(x-xo-l) =0, 3> a> 0,

which has roots: xO, xO+a, and xo + /. We can show that the discriminant A, defined

in (A.4) is related to the distance among the three roots by

A1 = a 2 0 2 (o - a) 2

Further, define t = a/0 E (0, 1), then t being close to 0 or 1 indicates the existence of

two roots that are close to each other, i.e. two nearly-degenerate real roots. We can

show that A 2 = a 2 + f 2 - a, and so derive the quantity:

A 1/ 3 (t 2
-t)2/3

A2 t 2 -t+1+

Figure A-4 shows the plot of A, and it is clear that A can be an indicator for the

magnitude of t; if A is below some specified threshold, we conclude there are nearly-

degenerate roots. Further, the indicator A involves only A, and A 2, the signs of which

have been determined when classifying the cubic equation.

When there are indeed two nearly-degenerate roots, the third root should be the

one we seek for using the diamond operator. Thus we need to identify the relative

position of the third root, i.e. whether it is the smallest or the largest. We can deduce

146

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0 0.2 0.4 0.6 0.8 1

Figure A-4: Detecting nearly-degenerate roots for cubic equations

this information based on the sign of P defined in (A.4), which can be derived to be

P = - 2 (a + 0)(t - 2)(2t - 1).

When the two nearly-degenerate roots are smaller than the third root (i.e. t is close

to 0), we have P < 0; and when the two nearly-degenerate roots are larger than the

third root (i.e. t is close to 1), we have P > 0.

147

Appendix B

Cut-Cell Mesh Construction

The cut-cell intersection algorithm constructs the topology of the cut mesh from a

simplex background mesh and a geometry defined by quadratic patches. The skeleton

of the intersection algorithm in this work is similar to Fidkowski's implementation [49].

Changes are made mainly for numerical conditioning concerns and for efficiency im-

provement to use the adaptive precision arithmetic, as discussed in Chapter 2. This

appendix provides the detail for each of the four steps in the intersection algorithm:

1. computation of intersection points, named zerod objects, or simply zerod for

brevity;

2. construction of intersection edges (oned objects or simply oned) by ordering and

connecting the zerod objects;

3. construction of intersection faces (twod objects or simply twod) by connecting

the oned objects into loops;

4. construction of cut elements (threed objects or simply threed) by making the

twod objects into closed volumes.

Note in this appendix, the adaptive precision arithmetic provided by LEDA real [26]

is used for all calculations unless otherwise stated.

149

An example of one single tetrahedron intersecting quadratic patches is illustrated

in Figure 2-1 in Chapter 2, and is shown here again in Figure B-1. For presentation

convenience, we define a background edge (or face) as an edge (or face) of a background

element, for example AB in Figure B-1(a) as a background edge, and ACB as a

background face. We also define a patch edge as an edge of a (quadratic) patch on

the geometry surface.

zerod7

B

oned 3

Fiur B Ei e e a rd n erodriB zerod 3
... zerod5 zerod 2 oned4

...... .. d. n e

all the intersecion points.(.e...objects)..A.hig-level.pseudocod.for.this.step.i

C

A

(a) (b)

Figure B-1: Example intersection between a background tetrahedron and a quadratic-
patch surface

B.1 Construction of Intersection Points (zerod Ob-

jects)

This section describes the first step of the intersection algorithm: computation of

all the intersection points (zerod objects). A high-level pseudocode for this step is

provided in Algorithm B.1, and details are in the rest of this section. Algorithm B.1

is decomposed into three parts based on the positions of the intersection points:

1. Find intersection points between all patch edges and the background mesh.

150

2. Find intersection points between all background edges and the geometry surface.

3. Detect cases where the intersection curve between a patch and a background

face lies completely inside the patch and the face, i.e. no intersection point

exists on the patch edge or the background edge. An example is illustrated in

Figure B-2(a). For such a case, we store two points on the intersection curve as

zerod objects.

Input: Background grid, quadratic-patch geometry
Output: zerod objects
/* Part 1: patch-edge intersection points
for each patch edge ep do

background face fb do
tersection detected by bounding-box test then

Solve the intersection points between ep and fb based on Eq. (B.2)
1

2: background-edge intersection points

for each background edge eb do
for each

if in

e S
end

end
e nd

/* Part 3:

patch face f, do

tersection detected by bounding-box test then
olve the intersection points between eb and fp based on Eq. (2.2);

Background-face-patch-face intersection points

for each patch face f, do
for each background face fb do

C <- intersection conic between f, and fb in the reference space of f,;
if C is an ellipse and C has no intersection point associated then

I Store the two extrema points of C as zerod objects

end
end

end
Algorithm B.1: Construction of zerod objects

151

for ea
if i

en
end

end

/* Part

*/

ch
.n

1.5r

- 0.5k

0

-05V -0.5

(a) Physical space

Figure B-2: Example where the intersection curve
inside a patch face and a background face

WON-

0 0.5 1

(b) Patch reference space

(shown as red line) lies completely

Part 1: Patch-Edge Intersection Points

We first find all the intersection points on patch edges, including those coincident with

patch vertices. This is achieved by solving an intersection problem for each pair of a

patch edge ep and a background face fb. Note these intersection points can also lie on

background edges or coincide with background vertices. Examples of the patch-edge

intersection points are zerod2 and zerod5 in Figure B-1(b).

For the pair of ep and fb, a bounding-box test is first performed using double

precision. Using the method of separating axis [45], we examine whether fb has an

overlap with the bounding boxes of the neighbor patches of ep. Note the bounding

box of a patch is defined based on the its extrema in each coordinate direction. We

then proceed to the intersection problem only if an overlap is detected.

Let the plane containing the background face fb be defined by its normal vector n'

and any point on the plane vo. The patch edge ep can be shown to be a planar curve

152

1.5

on1
zerod oner

zero

oned-

1

mapping from a unit segment, via

3

x(s) = Z4j(s)xj, (B.1)
j=1

where s E [0, 1] is the coordinate along the patch edge, 4''s are the quadratic Lagrange

polynomials defined on a unit segment, and xj's are the nodes defining the edge. Then

the intersection points satisfy

3

j(s)xj - VO -n = 0, (B.2)
j=1

which is a quadratic equation in s. We determine whether there are roots in [0, 1]

based on the equation coefficients, and then solve the equation if such roots exist.

Note for this simple quadratic equation, we can also directly solve for all the roots

and then determine the range. The speed difference is not significant except in some

rare cases (e.g. a tangent intersection point coincident with patch vertex). We then

find the physical coordinates of the intersection points from Eq. (B.1), and determine

whether these points lie inside the background face fb.

There exists a special case where the patch edge ep lies entirely inside the back-

ground face fb. Such a case is detected when all the coefficients of the quadratic

equation (B.2) are zero. For this case, the two vertices of ep are stored as zerod

objects.

Part 2: Background-Edge Intersection

We then find all the intersection points on background edges, including those coinci-

dent with background vertices. This is achieved by solving an intersection problem for

each pair of a background edge eb and a patch face f,. Examples of such intersection

points are zerodi and zerod4 in Figure B-1(b). Note a quadratic patch face can inter-

sect with a line for up to four times; see the work of Peters and Reif, who classified

all possible quadratic surfaces [100].

153

For the pair of eb and f,, a bounding-box test is first performed using double

precision. We examine whether the bounding box of the patch f, has an overlap with

the background edge eb, and we proceed to the intersection problem only if an overlap

is detected. The intersection problem is governed by the polynomial system (2.4),

and as described in Section 2.4, we convert the system into a bivariate quadratic

system (2.5). We then determine the existence of real roots in the range of [0, 1]2,
and solve the conic-conic intersection using the method discussed in Section 2.4. Note

this formulation is different from Fidkowski's implementation [49], and the efficiency

implication of this difference is discussed in Appendix A.2.

Part 3: Background-Face-Patch-Face Intersection

We then detect the case where the intersection curve between a patch and background

face lies completely inside the patch and the face, as shown in Figure B-2 for an

example. Such a case has an intersection conic that is an ellipse lying completely

inside the reference triangle of the patch and has no intersection points (zerod objects)

associated. To verify whether an ellipse is contained in a triangle, we inspect whether

its extrema points (points with maximum and minimum x-coordinate) are inside the

triangle. For data storage, we store the two extrema points as zerod objects as shown

in Figure B-2(b), which will be connected by oned objects.

B.2 Construction of Intersection Edges (oned Ob-

jects)

From the set of zerod objects, a set of oned objects is then built. For instance, in

Figure B-1, onedi links zerodi and zerod2 . A high-level pseudocode for the construction

of oned objects is in Algorithm B.2, which consists of three parts separated based on

the positions of the oned objects. Details of each part of the algorithm are given in

the rest of this section.

154

Input: Background grid, quadratic-patch geometry, zerod objects
Output: oned objects
/* Part 1: Patch-edge oned objects
for each patch edge ep do

Collect all zerod objects on ep;
Sort these zerod's based on their reference coordinates on ep;
for each two consecutive zerod objects, {zerodi, zerodi+1} do

Create an oned object, onedi, that links zerodi and zerodi+1
if onedi is outside computational domain then
I Remove onedi from the oned list;

else
I Find the index of background element (or face) that onedi lies in;

end
end

end

/* Part 2: Background-edge oned objects
for each background edge eb do

Collect all zerod objects on eb;
Sort these zerod's based on their reference coordinates on eb;
for each two consecutive zerod objects, {zerodi, zerodi+1} do

Create an oned object, onedi, that links zerodi and zerodi+1
if onedi is outside computational domain then
I Remove onedi from the oned list;

end
end

end

/* Part 3: Patch-face oned objects
for each patch face f, do

for each background face fb do
C <- intersection conic between fP and fb in the reference space of f,;
Collect all zerod objects on C;
Sort these zerod's on C by taking advantage of the convexity of C;
for each two consecutive zerod objects, {zerodi, zerodi+1} do

Create an oned object, onedi, that links zerodi and zerodi+1
if onedi is outside the reference triangle of f,

or onedi is outside of fb in the physical space then
I Remove onedi from the oned list;

end
end

end
end

Algorithm B.2: Construction of oned objects

155

Part 1: Patch-Edge oned Objects

We first construct the oned objects on patch edges. For each patch edge, we sort all

the associated zerod objects based on their reference coordinates on the edge, and each

two consecutive zerod objects form an oned object. The wire-frame of one cut element

in Figure B-1(b) is shown again in Figure B-3 with more patch-edge oned's denoted.

Then for each patch-edge oned, we need to determine its null state, i.e. whether it

is outside the computational domain. We then discard the null oned's; and for each

non-null oned, we need to determine which background element (or face) it lies in,

and this information will be used later for the construction of twod objects. For the

example in Figure B-3, we need to mark oned5 and oned8 as null, and mark oned6 and

oned7 as inside the only background element.

zerod,

dzerod zerod
zerod

..

o:Wed........... 8

zerod . oide

zerod8

Figure B-3: Example of oned objects on patch edges

To deduce the null state for each patch-edge oned, we start from a patch-edge

oned that intersects with a background face, for instance, oned5 in Figure B-3, which

intersects a background face at zerod5 . By evaluating the tangent vector of the patch

edge at zerod5 , we can determine the null state of oned5 . Then we traverse through

each patch edge, and deduce the null state of each other patch-edge oned based on

topology. For example, traversing from oned5 to oned6 encounters an intersection

point on a background face (with odd multiplicity), then these two oned objects have

to be in the two neighbor background elements (or on the two sides of the domain

156

boundary); traversing from oned to oned7 encounters no intersection point, and hence

these two oned's must be in the same background element. More logic is built into

the algorithm if an encountered intersection point happens to be on a background

edge or background vertex. There are still some cases, though rare, where tangent

information is required. Figure B-4 shows such an example, where a patch-edge oned

has both its endpoint zerod objects on background edges.

zrod,

Figure B-4: Example where null state of patch-edge oned object cannot be deduced
solely based on topology

Part 2: Background-Edge oned Objects

We then construct the oned objects on background edges, for example, oned3 in Fig-

ure B-1 (b). The zerod objects on each background edge are sorted and connected into

oned objects. We also need to determine the null state of each formed background-edge

oned, i.e. whether it is outside the computational domain. As described in Section 2.4,

the null state of one oned is first determined by evaluating the patch normal vector,

and the null state of each other oned can be deduced solely based on topology by

traversing through each background edge. Again, there are still some cases, though

rare, where the patch normal vector is required.

157

Part 3: Patch-Face oned Objects

We then construct the oned objects on patch faces, which are also named embedded

oned objects. In patch reference space, they are defined by conic sections, as shown

in Figure 2-3 in Chapter 2, where oned1 and oned2 are such examples. Thus, for the

conic defined by each pair of a patch face and a background face, we collect all the

associated zerod's, and we need to connect them in order. An example is shown in

Figure B-5, where we need to order six zerod's on one conic.

1.5

1-

zerod zerod
5 oned 5

0.5 -% onedoned% oe4

zerod o erod

z d zerod on

zerod n- zerod2

-0.5-0.5 0 0.5 1 1.5

(a) Physical space (b) Patch reference space

Figure B-5: An example where the intersection curve between a patch and a back-
ground face has six zerod objects and three null embedded oned objects

For conics with two branches (e.g. hyperbola), we first need to group the zerod's

into different branches. Achieving this efficiently using the adaptive precision arith-

metic is described in Appendix A.2. We then sort the points along each branch of

conic sections. As described in Section 2.3, this is done by exploiting the convexity of

conic sections without the need for their parameterizations. On a convex segment, the

order of points is the same as the order on the convex hull formed by these points [66].

Therefore, we can choose an origin to be the center of all the zerod's that need to be

ordered, and this origin is guaranteed to be inside the convex hull due to convexity

158

of the conic section. One example is shown in Figure B-6(a), with the six zerod's

from Figure B-5(b). Then the ordering of the points can be deduced based on the

angle of the vector pointing from the origin to each zerod. Note for conics that are

not closed, this algorithm is still valid, but one constructed oned will in fact connect

at an infinite distance. This does not cause an issue as this oned is certainly outside

the unit triangle and will be discarded when the null state of each oned is inspected.

One special case is when the conic is degenerate or nearly-degenerate, shown in

Figure B-6(b) for an example. A case is treated as nearly-degenerate if the angle

between the vector from for example zerodi to every other zerod is smaller than 0.5'.

Note this test is implemented in double precision. For such a case, choosing the

origin to be the center of all zerod's will lead to severe conditioning problems, and

consequently efficiency issues when we sort the zerod's using the adaptive precision

arithmetic. Instead, we first find the two zerod objects that are the farthest from each

other. Denote their coordinates by vo and vi, then the origin is chosen as

1 1
-(vo + vi) + -H1vi - vo 1fi,2 2

where nt is the unit vector such that i - (vi - vo) = 0.

After the zerod objects on the conic section are connected to oned objects, we

then determine the null state of each oned, i.e. whether it is outside the patch face,

or equivalently outside the unit triangle in the reference space. For the example in

Figure B-5(b), we need to determine that three of the six oned objects are null. Same

as for other oned types we have described, we first determine the null state of one

oned, then the rest can be determined based on topology. For instance, the null state

of oned1 has to be different from oned2 because of the intersection point zerodl. In

fact, null state of the first oned can also be deduced based on topology because a conic

can intersect a triangle only in a limited number of ways. Therefore, no arithmetic is

needed at all for this section except in some rare cases where a conic only intersects

at patch vertices. Figure B-7 shows such an example, where we need to compute the

159

0 0.5 1

(a) Example from Figure B-5(b)

0.8 F

0.6

0.4

0.2

0

1.5 -0.2 0 0.2

(b) Example of

0.4 0.6 0.8 1 1.2

nearly-degenerate conics

Figure B-6: Sorting points along conic sections

tangent vector at zerod2 for deducing the null states of the two adjoining oned objects.

0.8-

0.6-

0.4-

0.2-

0

I I
I

* I

I j

zerod\

zerod' - - - - zerod3
02 0 0.2 0.4 0.6

Figure B-7: A special case where determining the
requires tangent computation

0.8 1 1.2

null state of embedded oned objects

For certain cases, the embedded oned objects can be outside the background face,
and such oned objects are also marked as null. An example is the oned3 shown

in Figure B-8. Again, we determine the null state of one oned based on tangent

information, and march along the conic in the patch reference space to deduce the

160

0.5-

zerod5 zerod 4

zerod 6 zerod3

zerod zerod 2

I~L-0.
4,.5

zerodi

zerod 2-

zerod 3

zerod 4

1

1

rest oned's.

1 -

0.8- oned erod,
zer

0.6
onedl

zerod 3 2

0.4-
zero zerod3

0.2- oned 3

zerod 0 zerod 4

zerod
5

-0.2
0.2 0 0.2 0.4 0.6 0.8 1 1.2

(a) Physical space (b) Patch reference space

Figure B-8: Example where embedded oned objects are outside background face

B.3 Construction of Intersection Faces and Vol-

umes (twod and threed Objects)

After all the oned objects are constructed, they are then used to form the intersection

faces, referred to as the twod objects. There are two types of twod objects: on patch

face and on background face. For the patch-face type, we collect all the embedded

oned's in each background element, and connect them into one or multiple loops.

For the background-face type, we collect all the oned's on each background face, and

connect them into loops.

The last step in the intersection algorithm is to construct the intersection volumes,

namely cut elements. For each background element, we collect all the associated twod

objects, and join them to form closed volumes. Note each background element can

have multiple cut elements. A pseudocode for the construction of twod and threed

objects is given in Algorithm B.3.

161

At the end, all the intersection point coordinates and conic coefficients are con-

verted to double precision. They define the geometry of each cut element, and will

also be used to compute the associated quadrature rule.

Input: Background grid, quadratic-patch geometry, zerod objects, oned objects
Output: twod objects, threed objects
/* Patch-face twod objects
for each background element Kb do

Collect all embedded oned objects inside Kb and on its faces;
Connect these oned objects into loops, and store each loop as a twod object;

end

/* Background-face twod objects
for each background face fb do

Collect all oned objects on fb and on its edges;
Connect these oned objects into loops, and store each loop as a twod object;

end

/* threed objects
for each background element Kb do

Collect all twod objects inside Kb and on its faces;
Connect these twod objects into enclosed volumes, and store each volume as
a threed object;

end
Algorithm B.3: Construction of twod and threed objects

B.4 Parallelization

We parallelize the whole intersection algorithm, together with the quadrature-rule gen-

eration described in Chapter 3. Before partitioning, each background element is tested

for potential intersection based on its bounding box, and a large weight is assigned

if the test is positive. The background mesh is then partitioned using ParMetis [70],

which computes a partitioning such that the number of connections is minimized and

that each partition has approximately the same amount of weights. The quadratic-

patch definition of the geometry is copied to each processor, which then solves the

intersection problem on the partitioned background mesh. The cut topology is guar-

anteed to be consistent across partitions, because the adaptive precision arithmetic

162

ensures the cut topology on each partition to be equivalent to the theoretical result.

The cut mesh on each partition is then assembled on the root processor, and a

global cut mesh is constructed. This global mesh is used when we apply the merging

technique, which combines two (or more) cut elements into one element as explained

in Section 4.2. Also, if a partitioned background mesh has no intersection with the

geometry (e.g. Q3 in Figure B-9), we cannot easily determine whether the whole

partition is inside the computational domain without communicating with other par-

titions. For such a partition, this information is thus deduced after the global cut

mesh is constructed.

Figure B-9: An example partitioned background mesh, with one partition not inter-
secting the geometry

163

zz z

Appendix C

Notes on Cut-Cell Quadrature Rule

C. 1 Quadrature Quality Measure

This section provides proofs for the theorems stated in Section 3.2.2. Again, for

presentation brevity, we always assume the integration domain Q has a unit volume.

We first prove Theorem 3.4:

Proof. The proof for Item 3 of the theorem can be found in [63, 123], so we only prove

Items 1 and 2 here. Based on Assumption 3.3, Eq. (3.4) gives

F = lim F = arg min
nflq

0 0 F L
Fioi(x) - f (x))

which is the L2 projection problem of f(x) onto the space P]d. The solution F' thus

satisfies

f (x) P(x)dx = 49 F i(x) (x)dx, Vol E Pp.

Since a constant function is in Pd , we have

F(xnb
lim+0 Fi i (x) dx,

j f (x)dx =
F i(x)dx =

165

2

dx,

which proves Item 1.

From the definition of Q in (3.7), we have

nq I nW 1_ =W2 =1+(-c)2 >1,
q=1 q q=1 q

(C.1)

where the second equality uses the fact that

nrq nq

S W = 1, and E Cq = 1.
q=1 q=1

Note (C.1) shows that Q - 1 essentially measures the difference between {cq} and

{Wq}. For the weights {wq} defined in (3.6), this difference makes {wq} a degree-p

quadrature rule regardless of the choice of {Cq}. Further, for {wq} in (3.6), the value

of Q is given in (3.13):

Q =bT (VCVT)-1 b
-1

Zq cq0c (Xq) 2

=bT

Based on Assumption 3.3, Eq. (C.3) gives

lim Q = bT lim
fq-+0 = b l-q b,[

- bTM- b)

b

Eq Cq#1i(Xq)2

Eq cq4Oi(xq)Oj(xq)

(C.4)

where M is the mass matrix, i.e. Mij = f12 0i(x)oj (x)dx. As (C.2) is independent of

the basis polynomials, we can let {Vi} be a set of orthonormal basis with b1 (x) = 1.

166

Eq cqq#(xq)bj (xq)

(C.2)

(C.3)b.

Then M is the identity matrix, and b = [1, 0, 0, ...]T. Therefore, (C.4) gives

lim Q = 1.
Tw -+ao

The proof for Theorem 3.5 follows that for Theorem 4.1 in [119], and is given below.

Proof. Let f* IP' denote the best approximation of f
Let I(-) denote the integral f2(-)dx, and let Ip(-) denote

given degree-p quadrature rule {Xq, Wq}. Then we have

II(f) - I(f)

=K

= f - fp*o|(1 +5 E Wq)
q

- 11f - ffl0 0C)(1 + Q),

where the last inequality is due to

on Q with respect to 11 - ||2.

the approximation using the

2 2
1 1

I~qj /C/ - Wq~ J
q q q

C.2 Parameterization of Conics

This section reviews the parameterizations we use for integration of polynomials along

conics. For a general conic, we use the parameterization with the property that a point

sequence from evenly spaced parameters forms a polygon that encloses the maximum

167

I(f - fH*) - I(f - f *) 0

I1(f - f*)|I+|II,(f - f*)|I

If - f*||xo +(| Wg|||f - f*||xo

inscribed area [101]. More specifically, for an ellipse with a center 0, a semi-major

axis of a along X, and a semi-minor axis of b along Y, the parameterization is

C(u) = 0 + acosuX + bsinuY; (C.5)

similarly, a hyperbola is given by

C(u) = 0 - a cosh uX - b sinh uY; (C.6)

and for a parabola with a vertex 0, an axis X with a focal length a, a tangent

direction Y at the vertex, the parameterization is

C(u) = 0 + au2X + 2auY. (C.7)

This parameterization can be very sensitive to precision when the conic section is close

to being a straight line segment. This is demonstrated in the following test case, where

we compute the arc length of a circular arc centered at (u, u), u > 1, and passing by

(1, 0) and (0, 1), as shown in Figure C-1. As u increases, the arc approaches to a

straight line segment. The standard Legendre-Gauss integration rule of an order 39

is used in the parameter space. The dashed line in Figure C-2 shows the error using

this parameterization, and as the arc becomes close to being a straight segment, the

quadrature error rapidly increases.

In this work, a "nearly straight" conic section is detected by computing the angle

between the normal vectors at the end points, vo and v1 . If the angle is less than 50, we

use the polar parameterization described below; more details can be found on page 87

of [88]. With respect to an origin 0, let a general conic be

Ax2 + 2Bxy + Cy 2 + 2Dx + 2Ey + F = 0.

The polar representation can be found by substituting x = r cos 0 and y = r sin 0, and

168

we then obtain

1/r = T 1 sin6 + T2 cosO ± /T 3 sin20 + T4 cos 20 + T5 ,

where

E D DE-BF
T1 - T2 =-- T 3 =

F F' F 2

D 2 -AF-E 2 +CF D2 -AF+ 2 -CF
T4 2F 2

T 5 = 2F2-

The key in this parameterization is the choice of the origin. As we only use this

parameterization for sections that are nearly straight, the origin is chosen to be

1
0 -(vo + v) +||v1 -V1 lln,

2

where nt is a unit vector such that f - (vi - vo) = 0. The error for the previous test

case is in Figure C-2, which shows that this parameterization does not suffer when the

section is close to being straight. Note for a general conic that is not nearly degenerate,

choosing a proper origin point is not easy, and we still use the parameterization defined

in (C.5) through (C.7). More specifically, if the line from the origin to a point on the

conic section is tangent to the section, the parameterization can lead to a set of very

poorly spaced quadrature points.

169

0 0.5
x

Figure C-1: Example for conic parameterization

10 102 10 104 105

Figure C-2: Quadrature error for nearly-degenerate conic sections

170

r (u,u)

1
0.5[

- - - Standard parametrization
Polar parametrization

1010

10 11

10 2

10-13

10-14

1016
10

1

1

0

Appendix D

Visualization of Cut Cells

D.1 Two Dimensions

To visualize cut-cell meshes in two dimensions, each cut element is represented by a

polygon, whose vertices include all the zerod objects on the cut element. In addition,

each oned object on the spline geometry is divided by ten additional points, which

are evenly spaced in the parameter space of the spline. These additional points are

also included in the polygon vertices. The polygon is then triangulated, and the result

triangles are used for visualizing PDE solutions on the cut-cell mesh. One example of

the triangulated polygons for cut-cell visualization is shown in Figure D-1.

WV

(a) Background mesh and geometry (b) Cut cells represented by triangulated
polygons

Figure D-1: Example for cut-cell visualization in two dimensions

171

D.2 Three Dimensions

For cut-cell meshes in three dimensions, we only developed visualization of results on

the embedded geometry and on background boundary faces. More specifically, each

quadratic patch is split into regions enclosed by conic lines in the reference space. An

example can be found in Figure 2-3 in Chapter 2. For visualization, each of these

regions is approximated by a polygon, whose vertices are defined by all the zerod

objects on the region. The polygon is then triangulated in the reference space, and

each triangle is used for visualization. For background boundary faces, each cut face

is approximated by a polygon in the physical coordinate space, and the polygon is

triangulated for visualization.

172

Appendix E

Governing Equations

This appendix describes the governing equations considered in this work: the advection-

diffusion-reaction equation and the Navier-Stokes equations. They both have the form

of a conservation law defined in Eq. (4.1), which is written again:

0U+ V - (U,x, t) - V. -'(U, Vu, xt) =S(u, Vu, x, t), VxGE O t E ,at

where u(x, t) : Rd x R+ -+ R' is the m-state solution vector.

E. 1 Advection-Diffusion-Reaction Equation

For the advection-diffusion-reaction equation, the inviscid and viscous fluxes in the

i-th coordinate direction, and the source term are defined as

au
OFj=3u, .F4 j c xj S=' yu,

where /i is the advection velocity in the i-th coordinate direction, r is the diffusivity

tensor, and -y is the reaction coefficient. Note in this appendix, summation on repeated

indices is implied unless otherwise stated.

173

E.2 Compressible Navier-Stokes Equations

E.2.1 Euler and Navier-Stokes Equation

For the compressible Navier-Stokes equations, the conservative state vector is u = [p, pVj, pE]T,

where p is the density, v is the velocity in the j-th coordinate direction, and E is the

specific total internal energy. The inviscid and viscous fluxes in the i-th coordinate

direction are given by

poi 0

F = poVji + 6ijp , T Fi ij (E. 1)

pHvi Tjgj +nr _,l.

where p is the static pressure, H = E + p/p is the specific total enthalpy, T is the

temperature calculated from the ideal gas law, rIT is the thermal conductivity, and T

is the shear stress, for which a Newtonian fluid is assumed:

Tii=1tD + i +Oi A ,
x xi DXk

and p is the dynamic viscosity, and A = -2/3p is the bulk viscosity coefficient. The

pressure is related to the state vector by

p = (-Y - l)p E - 1vivi)

where -y is the ratio of specific heats. The dynamic viscosity is modeled using Suther-

land's law:

P = Pref (T) 1 5 Tref+Ts (E.2)
Tref T + Ts

unless otherwise stated. The thermal conductivity, rT, is related to p by the Prandtl

number, Pr, according to KT = cp-, where cp is the specific heat at constant pressure.

174

E.2.2 Reynolds-Averaged Navier-Stokes Equations

The Reynolds-Averaged Navier-Stokes (RANS) Equations are derived by temporally

averaging the Navier-Stokes equations with Favre averaging procedure. In this work,

the closure of the RANS equation is accomplished by the Spalart-Allmaras (SA) tur-

bulence model [115]. The specific form of the model is based on the work of Oliver [92],

where two modifications to the original SA model were made. The first is a general-

ization of the model to compressible flows, and the second is a set of modifications

intended to improve the robustness for higher-order simulations.

The conservative state vector for the RANS-SA equations corresponds to the mean

flow states, and is denoted by u = [p, pvj, pE, pj]T, where I/ is the working variable

for the SA model, and is algebraically related to the eddy viscosity, Pt:

pif'1, ;> 0

0, fv < 0

where

X3 x
/3 + C3

and v = p/p is the kinematic viscosity. The inviscid and viscous fluxes of the RANS-

SA system in the i-th coordinate direction are given by

pVj 0

£ R ANS
PVjVi + jijp = TAs

pHVj !rANS RANS&T

U 1

175

where the effective shear stress, TRAN , and the thermal conductivity, 1 TANa

TRANS [vi
T = (/ [k\ Oax,

+ ava) +±60 9Vk]

RANS

and the diffusion coefficient for the SA equation, q, is

x > 0

x < 0

P({ + X),

p(1 +X + 2),

The source term of the RANS-SA system is

0

0
S=

0

P - D+ Cb2Pa aCb2Po (
9Xk

Here, the production term, P, is

CblSPi,

Cb1 SpignI

X > 0

x < 0

where g, = 1 - f9,x 2 /(1 + x 2), fg, = 10', and

S ;> -c, 2 S

s(c 2 S+c'3S)
(C,3-2C,2) S-S

and S = 22;5Q0 is the

S < -c, 2 S

magnitude of the vorticity, Qjj = (ai - 2i), and the2axj ,

176

(Pr Prt

S +

=S +

near-wall correction term is given by

K2d2 with fv2 = 1 -
1+ xf~i

where d is the distance to the nearest wall. The destruction term, D, is given by

D=cwifW(d

- 1 2
{ CWI 2,

x > 0

x < 0

where

6 1/6

f. =g w36+cc) , g = r + cw 2 (r6 _ r),

The constants of the turbulence model are set to: Cbl = 0.1355, o- = 2/3, Cb2 = 0.622,

K = 0.41, cwi = CbI/K 2 + (1+ Cb2)/U, Cw2 = 0.3, C,3 = 2, cv, = 7.1, c,2 = 0.7, CO3 = 0.9,

and Prt = 0.9.

177

and r =gK2d2'

Appendix F

Discontinuous Galerkin Method

and Solution Strategy

This appendix describes the discontinuous Galerkin (DG) discretization and the dis-

crete solution strategy for the conservation law defined in Eq. (4.1), which is written

again:

U+ V -Fi(U, X, t) - V -.J '(U, VU, x, t) = S(u, Vu, x, t), Vx E Q, t E ,at

with the boundary conditions

B(u, F(u, Vu, x, t) - t, x, t; BC) = 0, VxG EQ, t E 1,

where u(x, t) : Rd x R+ -+ RI is the m-state solution vector, F', FJ, and S denote

the inviscid flux, viscous flux, and the source term, respectively. Note in this appendix,

the dependency of the fluxes and the source term on x and t are always implied, and

will not be explicitly stated.

179

F.1 Discontinuous Galerkin Discretization

The weak form from the spatial DG discretization reads: find u E Vh,p such that

Rh,p(Uh,p, V) = 0, Vv E Vh,p, (F.1)

where lZh,p : Vh,p x Vh,p --+ R consists of discretizations of the inviscid term, viscous

term, and the source term:

TZhp (Uhp, V) = DGv diceiztV) + the invsci V) + gRe)b

The DG discretization for the inviscid term is given by

h ,p(Uh,p, v) =

K E ThIK
-F(uh,p)dQ + I J(v+ - v-)TH(ug,, u- ; fn+)ds

eGF1

+ - V +Tfv -(up, ub(u +; BC); fi+)ds,
eEQ Je

where (.)+ and (-)- denote the trace values on the two sides of a face e, fn+ is the

normal vector pointing from + to -, and W and 7 1b are numerical flux functions

on interior and boundary faces, respectively. On boundary faces, the interior side is

always the + side by convention, and the boundary state, Lb, is in general a function

of the interior state and the boundary conditions. In this work, the numerical flux N

uses Roe's approximate Riemann solver [106]:

1(U, ; n+) = 1 ARoe n++ _ILh,PUhfl 2 hTIU,) hl 2 ~ Uh, u~p; fi±) I(Uh+, - Uhip),

where AROe is the flux Jacobian matrix computed at the Roe's mean state. The

implementation for the boundary conditions follows the work [92].

The viscous term is discretized according to the second form of Bassi and Re-

180

bay (BR2) [17]. Let the viscous flux have the form of

Ev(u, Vu) = A(u)Vu,

and then the semi-linear form for the viscous term is given by

K VvT -A(Uh,p)Vuh,pdQ

[{AT (uh,p)vv}T. [u, + . {A(uh,p)(Vuh,p + ire(r[uh,pD)}1 ds

[(fi+ -A TVV+) T (u -

+v+Tf1+ -Ab(Vub + ere((u+ - Ub)fl+)) ds,

where Ub = U (U +,; BC), Ab = Ab(Ub; BC), and VUb = Vub(Vu +; BC) are chosen

to specify the boundary flux according to the boundary condition. In addition, Tqe is

the BR2 stabilization parameter, re [Vhp(e)]d - [Vh,p]d is the local lifting operator

defined by

rT- r6 (#)dQ = - {}T - #ds, V#, 7 E [Vh,Pd,,

and Q' is the union of elements sharing the face e. The jump and average operators

for scalar function x and vector function y are defined as

i =_ x-n- + x+n+, yj - y- - n- + y+ n

{X} - + x+),2 y (y- + y+).

The source term is discretized using a mixed form of Bassi et al. [14], which is

asymptotically dual-consistent [92]. The semi-linear form is given by

Z,,(Uhp, v) =

KE -h
I vTS(uh,p, VUh,p - r+lob(Uhp)dQ,K

181

RvPp(Uhp, v) =

KETh

-z
eEF1

-z

where the global lifting operator rglob Vhp -+ [Vp is defined by

'K 7 T rglob(uh,p)dQ = -- {fZ uh,p ids
KE T K~r

- T - f(Uh,p - Ub)dS, V7 h,p]d.

Note the global lifting operator is related to the local lifting operator by

rglob(Uh,p) = r eUhpD + r e(n(Uhp - Ub)).
eEF eECQ

F.2 Shock Capturing

Shock capturing in this work uses the PDE-based artificial viscosity model developed

by Barter and Darmofal [13], with modifications by Yano [124]. In particular, a shock

indicator that measures the local solution regularity is used as a forcing term in an

diffusive PDE, which smoothly propagates the effect of discontinuity and generates a

smooth artificial viscosity field.

The jump-based shock indicator for element K is given by

SK(w) =log LK 2g(w)g(w)
(g(w±) ± g(W) J d

where g(w) is a scalar quantity defined from the PDE solution for detecting solution

discontinuity. To prevent addition of artificial diffusion in smooth regions or addition

of excessive viscosity, a filter originally developed by Persson and Peraire [97] is applied

to yield

0, SK SO(p) - S

SK (SK) 1 +sin SO)) P - AS <SK SO + AS

Smax, So(p) + AS < SK

182

with a polynomial-degree-dependent function So(p) and parameters AS = 0.5 and

Smax = 1.

The indicator SK(SK) then used as a source term in the artificial viscosity PDE:

aVart _=a (rh3 aVart) +I [- Ama(U)K(U) - art inQ
at axi T ax9 T P

7ij aVart CIC " (ninjHjj)(Vart, - Vart) on aQ. (F.2)
a xj 1min

Here, H(x) = M- 1/ 2 (x) is the generalized length scale based on the metric-tensor,

7rij = C2HikHkj is the diffusion coefficient, T = hmin/(CpAmax(U)) is the time scale

based on the maximum wave speed, Amax(U), hmin = mini Ai(H) is the minimum

(anisotropic) element size, and h = (det(H))l/d is the volume based element size. The

two constants are set to C1 = 3 and C2 = 5. The resulting artificial viscosity field,

Vart, is again filtered to remove artificial viscosity in smooth regions and to cap the

maximum viscosity.

F.3 Discrete Solution Strategy

To obtain the discrete form of the discretized equation (F.1), a basis for the func-

tion space, Vh,p, is chosen. Denote this basis by {i} for i = 1, ..., N, and let

U E RN be the vector of expansion coefficients for the solution Uh,p E Vh,,, that is,

Up = 1 Uioi(x). Then the discrete form of (F.1) can be written as a system of

algebraic equations: find U such that

R9(U) = 0, (F.3)

where R,(U) is the discrete residual vector such that R,(U) = R1h,p(uh,p, #).

The system defined in Eq. (F.3) is solved using a pseudo-time continuation and

backward Euler time integration. Given a discrete solution U', the solution after one

183

time step, Uf+l, is solved from

Rt(Un+1) = M-(Un+l - Un) + R8 (U) = 0, (F.4)

where Mt is the mass matrix weighted by local time step AtK. The time step AtK

is based on a global CFL number: AtK = CFLg-, where hK is a measure of element

size, and AK is the maximum characteristic speed in K. A single step of Newton's

method is applied for Eq. (F.4) at each time step:

Un+1 = U- Mt +) R,(Un). (F.5)

The solution process is marched forward in time until ||R,(Un) 112 is smaller than a

user-specified tolerance. The CFL number is updated at each time step based on a

physicality check, and a line search based on the unsteady residual, Rt, is implemented

to improve the robustness of the continuation procedure [87].

The linear system in Eq. (F.5) is solved using a restarted GMRES algorithm [108,

109]. To expedite the convergence of the GMRES algorithm, the linear system is pre-

conditioned with an in-place block-ILU(0) factorization [43] with minimum discarded

fill reordering scheme [98]. For parallel applications, an additive Schwarz precondi-

tioner with overlap is used [42].

184

Appendix G

Proofs for Discretization of

Interface Problems

G.1 Boundedness and Stability of DG Scheme for

Interface Problems

This section proves boundedness and stability of the bilinear form Bh defined in

Eq. (6.20), which can also be written as

SVUh - KVvdQ - I (Uh] - {KVv} + {kVuh} - [v1) ds

+ S j re1,reUthD- re([v])dQ,
eCr A

where the local lifting operator re(.) is defined in (6.19). The proof is very similar

to the analysis in [7]. We define space V(h) -- Vh,, + (H2 (Q(1)) e H 2 (Q(2))), and we

define the following semi-norms and norms:

1,h =1,K,

K

v = ,h +

eErUE

E
K

h K + V1

185

Bh(uh, v) =

(G.1)

Boundedness

We show the boundedness of Bh with respect to 111-111:

Bh(w,v) Cb|||W|||||V|||, Vw,v E V(h).

We first bound Bh(w, v) by

Bh(w,v) <sup
Q

(4 Vw Vv d + I - {Vv} + {w} -V ds

+ 1: j0 7e re(q[w]. re(pvj) dQ)

and the term in the parentheses is bounded by Cj||wj| lv|| as proven in [7]. This proves

the boundedness (G.2).

Stability

In this section we prove the stability of the bilinear form:

Bh(v,v) > CS|Iv1112, Vv E Vh,p. (G.3)

From Eq. (G.1), we first write Bh(V, v) as

+ r(Hvb 2K Vv r(v)2 d
z,eGrA

where the lifting operator r(.) is defined in (6.12).

geometric mean inequality, 2ab <

bound (G.4) for any E > 0 by

J r7e re() 2,dQ,
(G.4)

Then we apply the arithmetic-

a2e + b2 /E, on the first term of (G.4), we can

(G.5)+inf 7e inf .
e Q

186

(G.2)

Bh(v,v) =

Bh(v,v) > inf (V11,h(1 - e) + (1 - 1/E) lr([vj)|, - sup r, - |r(vj) 11,

On triangular meshes, we have from [7]:

Vv c V(h).

Then for any E < 1, (G.5) can be further bounded by

S(1-\) Veh+ (3inf g(1-e1/c)-3supr'+/inf infQ)v*
Q Q e Q

Since we can choose E as close to 1 as possible, a sufficient condition for stability (G.3)

is

inf 7e > 3 supQ K
e infQ

Note this bound is very loose. A much tighter bound can be obtained by bounding

each elemental contribution in (G.4), which is found to be

supK K
Tle > 3 max ..

KEQe infK K

G.2 Adjoint Formulation for Interface Problems

In this section, we derive the dual problem of Eq. (6.1) and (6.2) with respect to the

output defined in Eq. (6.22). We first form the Lagrangian:

gaQVu - fids -I(u,)

f(i)) dQ, (G.6)
- 2 ((-(i) ui) -

where u satisfies Eq. (6.1) and (6.2). The dual problem is defined by

L'[u] (w, 0) = 0 V permissible w,

187

Bh (V, V) > inf K
0

9,,K(')Vu(') -fi(')ds

r(j) 112 < 31v 1,

i.e. w E W, and [w] = 0 and [KVwJ = 0 on E, and w = 0 on OQ. From Eq. (G.6),

we have

LMu
gQ) w()dcQ ganQVw - ids -

+ j O5()v. (i&(i)Vw(i)) dQ

I JW d- g 8 KVw - fids -
, u> Oan

+ (jan)

I

4z

x(Cjw) - l(') - wj x()v@(j)- fi(i ds

+ fw(Ov - (r(OVOWC) dQ

WM V (i.V@ + g/) d

+ g(()- g () (Vw2) - W (2) ds

+ 4VW(- gi(l))ds - w nVO]ds = 0 V permissible w.

Therefore, the continuous adjoint solution b satisfies

-V - (KVO) = g() in Q(i) Vi

= gaQ on OQ

11)1 = gjn(l), [xV@b = 0 on E.

188

L'[u] (w,0)

Bibliography

[1] Slimane Adjerid and Tao Lin. A p-th degree immersed finite element for
boundary value problems with discontinuous coefficients. Appl. Numer. Math.,
59(6):1303 - 1321, 2009.

[2] M. J. Aftosmis, M. J. Berger, and J. M. Melton. Adaptive Cartesian mesh
generation. In J. F. Thompson, B. K. Soni, and N. P. Weatherill, editors,
Handbook of Grid Generation. CRC Press, 1998.

[3] Mark Ainsworth and Bill Senior. An adaptive refinement strategy for hp-finite
element computations. Appl. Numer. Math., 26:165-178, 1998.

[4] S. R. Allmaras. A coupled Euler/Navier-Stokes algorithm for 2-D unsteady tran-
sonic shock/boundary-layer interaction. PhD thesis, Massachusetts Institute of
Technology, 1989.

[5] S. R. Allmaras and M. B. Giles. A second-order flux split scheme for the unsteady
2-D Euler equations on arbitrary meshes. AIAA 1987-1119-CP, 1987.

[6] D. N. Arnold. An interior penalty finite element method with discontinuous
elements. SIAM J. Numer. Anal., 19:742-760, 1982.

[7] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini.
Unified analysis of discontinuous Galerkin methods for elliptical problems. SIAM
J. Numer. Anal., 39(5):1749-1779, 2002.

[8] Ivo Babuska. The finite element method for elliptic equations with discontinuous
coefficients. Computing, 5:207-213, 1970.

[9] Garth A. Baker. Finite element methods for elliptic equations using noncon-
forming elements. Math. Comp., 31:45-59, 1977.

[10] Wolfgang Bangerth and Rolf Rannacher. Adaptive Finite Element Methods for
Differential Equations. Birkhduser Verlag, Basel, 2003.

[11] Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, and Anthony T. Pat-
era. An 'empirical interpolation' method: application to efficient reduced-basis
discretization of partial differential equations. C. R. Math. Acad. Sci. Paris,
339(9):667 - 672, 2004.

189

[12] John W. Barrett and Charles M. Elliott. Fitted and unfitted finite-element
methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal.,
7(3):283-300, 1987.

[13] Garrett E. Barter and David L. Darmofal. Shock capturing with PDE-based arti-
ficial viscosity for DGFEM: Part I, formulation. J. Comput. Phys., 229(5):1810-
1827, 2010.

[14] F. Bassi, A. Crivellini, S. Rebay, and M. Savini. Discontinuous Galerkin solution
of the Reynolds averaged Navier-Stokes and k-w turbulence model equations.
Comput. & Fluids, 34:507-540, May-June 2005.

[15] F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution
of the 2D Euler equations. J. Comput. Phys., 138(2):251-285, 1997.

[16] F. Bassi and S. Rebay. A high-order discontinuous finite element method for
the numerical solution of the compressible Navier-Stokes equations. J. Comput.
Phys., 131:267-279, 1997.

[17] F. Bassi and S. Rebay. GMRES discontinuous Galerkin solution of the com-
pressible Navier-Stokes equations. In Karniadakis Cockburn and Shu, editors,
Discontinuous Galerkin Methods: Theory, Computation and Applications, pages
197-208. Springer, Berlin, 2000.

[18] R. Becker and R. Rannacher. A feed-back approach to error control in finite
element methods: Basic analysis and examples. East- West J. Numer. Math.,
4:237-264, 1996.

[19] R. Becker and R. Rannacher. An optimal control approach to a posteriori error
estimation in finite element methods. In A. Iserles, editor, Acta Numerica.
Cambridge University Press, 2001.

[20] R. P. Beyer and R. J. Leveque. Analysis of a one-dimensional model for the
immersed boundary method. SIAM J. Numer. Anal., 29(2):332-364, 1992.

[21] Houman Borouchaki, Paul Louis George, Frederic Hecht, Patrick Laug, and
Eric Saltel. Delaunay mesh generation governed by metric specifications. Part I
algorithms. Finite Elem. Anal. Des., 25(1-2):61-83, 1997.

[22] L. Bos, J.-P. Calvi, N. Levenberg, A. Sommariva, and M. Vianello. Geometric
weakly admissible meshes, discrete least squares approximations and approxi-
mate Fekete points. Math. Comp., 80(275):1623 - 1638, 2011.

[23] Len Bos, Stefano De Marchi, Alvise Sommariva, and Marco Vianello. Comput-
ing multivariate Fekete and Leja points by numerical linear algebra. SIAM J.
Numer. Anal., 48(5):1984-1999, 2010.

190

[24] Frank J. Bossen and Paul S. Heckbert. A pliant method for anisotropic mesh
generation. In 5th Intl. Meshing Roundtable, pages 63-74, Oct. 1996.

[25] Christoph Burnikel, Stefan Funke, Kurt Mehlhorn, Stefan Schirra, and Susanne
Schmitt. A separation bound for real algebraic expressions. In Lecture Notes in
Computer Science, pages 254-265. Springer, 2001.

[26] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. The LEDA class real
number. Technical report, Max-Planck Institut Inform, 1996.

[27] Brian Camp, Tao Lin, Yanping Lin, and Weiwei Sun. Quadratic immersed
finite element spaces and their approximation capabilities. Adv. Comput. Math.,
24:81-112, 2006.

[28] G. Chavent and G. Salzano. A finite element method for the ID water flooding
problem with gravity. J. Comput. Phys., 42:307-344, 1982.

[29] A. T. Chen and J. R. Rice. On grid refinement at point singularities for h-p
methods. Internat. J. Numer. Methods Engrg., 33(1):39-57, 1992.

[30] B. Cockburn, S. Hou, and C. W. Shu. TVB Runge-Kutta local projection dis-
continuous Galerkin finite element method for conservation laws IV: The multi-
dimensional case. Math. Comp., 54:545-581, 1990.

[31] B. Cockburn, G. Karniadakis, and C. Shu. The development of discontinuous
Galerkin methods. In Lecture Notes in Computational Science and Engineering,
volume 11. Springer, 2000.

[32] B. Cockburn, S. Y. Lin, and C. W. Shu. TVB Runge-Kutta local projection
discontinuous Galerkin finite element method for conservation laws III: One
dimensional systems. J. Comput. Phys., 84:90-113, 1989.

[33] B. Cockburn and C. W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin finite element method for scalar conservation laws II: General frame-
work. Math. Comp., 52:411-435, 1989.

[34] B. Cockburn and C. W. Shu. The local discontinuous Galerkin method for time-
dependent convection-diffusion systems. SIAM J. Numer. Anal., 35(6):2440-
2463, December 1998.

[35] B. Cockburn and C. W. Shu. The Runge-Kutta discontinuous Galerkin finite
element method for conservation laws V: Multidimensional systems. J. Comput.
Phys., 141:199-224, 1998.

[36] R. Cools, I.P. Mysovskikh, and H.J. Schmid. Cubature formulae and orthogonal
polynomials. J. Comput. Appl. Math., 127(12):121 - 152, 2001.

191

[37] Ronald Cools. Constructing cubature formulae: the science behind the art. In
Acta Numerica. Cambridge University Press, 1997.

[38] Ronald Cools. Advances in multidimensional integration. J. Comput. Appl.
Math., 149(1):1 - 12, 2002.

[39] Philip J. Davis. A construction of nonnegative approximate quadratures. Math.
Comp., 21(100):578-582, 1967.

[40] W. N. Dawes, P. C. Dhanasekaran, A. A. J. Demargne, W. P. Kellar, and A. M.
Savill. Reducing bottlenecks in the CAD-to-mesh-to-solution cycle time to allow
CFD to participate in design. Journal of Turbomachinery, 123(11):552-557,
2001.

[41] L. Demkowicz, Ph. Devloo, and J. T. Oden. On an h-type mesh-refinement
strategy based on minimization of interpolation errors. Comput. Methods Appl.
Mech. Engrg., 53:67-89, 1985.

[42] Laslo T. Diosady. Domain Decomposition Preconditioners for Higher-Order
Discontinuous Galerkin Discretizations. PhD thesis, Massachusetts Institute
of Technology, September 2011.

[43] Laslo T. Diosady and David L. Darmofal. Preconditioning methods for discon-
tinuous Galerkin solutions of the Navier-Stokes equations. J. Comput. Phys.,
228:3917-3935, 2009.

[44] Thomas Dub6 and Chee-Keng Yap. A basis for implementing exact geometric
algorithms (extended abstract), 1993.

[45] David Eberly. Intersection of convex objects: the method of separating axis,
2001.

[46] Ioannis Z. Emiris and Elias P. Tsigaridas. Real algebraic numbers and polyno-
mial systems of small degree. Theoret. Comput. Sci., 409:186-199, December
2008.

[47] Ronald P Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-
oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid
method). J. Comput. Phys., 152(2):457 - 492, 1999.

[48] Krzysztof J. Fidkowski. A high-order discontinuous Galerkin multigrid solver
for aerodynamic applications. Master's thesis, Massachusetts Institute of Tech-
nology, Department of Aeronautics and Astronautics, June 2004.

[49] Krzysztof J. Fidkowski. A Simplex Cut-Cell Adaptive Method for High-Order
Discretizations of the Compressible Navier-Stokes Equations. PhD thesis, Mas-
sachusetts Institute of Technology, Department of Aeronautics and Astronautics,
June 2007.

192

[50] Krzysztof J. Fidkowski and David L. Darmofal. A triangular cut-cell adaptive
method for higher-order discretizations of the compressible Navier-Stokes equa-
tions. J. Comput. Phys., 225:1653-1672, 2007.

[51] Krzysztof J. Fidkowski, Todd A. Oliver, James Lu, and David L. Darmofal.
p-Multigrid solution of high-order discontiunous Galerkin discretizations of the
compressible Navier-Stokes equations. J. Comput. Phys., 207(1):92-113, 2005.

[52] Fr6ddric Gibou and Ronald Fedkiw. A fourth order accurate discretization for
the Laplace and heat equations on arbitrary domains, with applications to the
Stefan problem. J. Comput. Phys., 202(2):577 - 601, 2005.

[53] M. B. Giles and E. Siili. Adjoint methods for PDEs: a posteriori error analysis
and postprocessing by duality. In Acta Numerica, volume 11, pages 145-236,
2002.

[54] Roland Glowinski, Tsorng-Whay Pan, and Jacques Periaux. A fictitious domain
method for Dirichlet problem and applications. Comput. Methods Appl. Mech.
Engrg., 111(34):283 - 303, 1994.

[55] Leonidas J. Guibas. Implementing geometric algorithms robustly. In Ming C.
Lin and Dinesh Manocha, editors, Applied Computational Geometry Towards
Geometric Engineering, volume 1148 of Lecture Notes in Computer Science,
pages 15-22. Springer Berlin Heidelberg, 1996.

[56] Gregory Guyomarc'h, Chang-Ock Lee, and Kiwan Jeon. A discontinuous
Galerkin method for elliptic interface problems with application to electropo-
ration. Comm. Numer. Methods Engrg., 25(10):991-1008, 2009.

[57] Wagdi G. Habashi, Julien Dompierre, Yves Bourgault, Djaffar Ait-Ali-Yahia,
Michel Fortin, and Marie-Gabrielle Vallet. Anisotropic mesh adaptation: to-
wards user-independent, mesh-independent and solver-independent CFD. part
I: general principles. Internat. J. Numer. Methods Fluids, 32:725-744, 2000.

[58] Anita Hansbo and Peter Hansbo. An unfitted finite element method, based on
Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech.
Engrg., 191(4748):5537 - 5552, 2002.

[59] F. Hecht. Bamg: Bidimensional anisotropic mesh generator, 1998.
http: //www-rocql . inria. fr/gamma/cdrom/www/bamg/eng . htm.

[60] Don Herbison-Evans. Solving quartics and cubics for graphics. In Alan W.
Paeth, editor, Graphics Gems V, pages 3-15. Academic Press, San Diego, CA,
USA, 1995.

[61] Christoph M. Hoffmann. Robustness in geometric computations. Technical
report, Purdue University, 2001.

193

[62] Jianguo Huang and Jun Zou. A mortar element method for elliptic problems
with discontinuous coefficients. IMA J. Numer. Anal., 22(4):549-576, 2002.

[63] Daan Huybrechs. Stable high-order quadrature rules with equidistant points. J.
Comput. Appl. Math., 231(2):933-947, 2009.

[64] Hua Ji, Fue-Sang Lien, and Eugene Yee. An efficient second-order accurate
cut-cell method for solving the variable coefficient Poisson equation with jump
conditions on irregular domains. Internat. J. Numer. Methods Fluids, 52(7):723-
748, 2006.

[65] C. Johnson and J. Pitkiranta. An analysis of the discontinuous Galerkin method
for a scalar hyperbolic equation. Math. Comp., 46:1-26, 1986.

[66] J. Johnstone. The sorting of points along an algebraic curve. PhD thesis, Cornell
University, 1987.

[67] R. Kafafy, T. Lin, Y. Lin, and J. Wang. Three-dimensional immersed finite
element methods for electric field simulation in composite materials. Internat.
J. Numer. Methods Engrg., 64(7):940-972, 2005.

[68] Michael Karasick, Derek Lieber, and Lee R. Nackman. Efficient Delaunay tri-
angulation using rational arithmetic. ACM Trans. Graph., 10:71-91, January
1991.

[69] Steve L. Karman. SPLITFLOW: A 3D unstructured Cartesian/prismatic grid
CFD code for complex geometries. AIAA 1995-0343, 1995.

[70] George Karypis. Parmetis: Parallel graph par-
titioning and sparse matrix ordering library, 2006.
http://glaros.dtc.umn.edu/gkhome/views/metis/parmetis.

[71] Mats G. Larson, Robert Sderlund, and Fredrik Bengzon. Adaptive finite element
approximation of coupled flow and transport problems with applications in heat
transfer. Internat. J. Numer. Methods Fluids, 57(9):1397-1420, 2008.

[72] Tobias Leicht and Ralf Hartmann. Anisotropic mesh refinement for discontinu-
ous Galerkin methods in two-dimensional aerodynamic flow simulations. Inter-
nat. J. Numer. Methods Fluids, 56:2111-2138, 2008.

[73] Randall J. LeVeque and Zhilin Li. The immersed interface method for elliptic
equations with discontinuous coefficients and singular sources. SIAM J. Numer.
Anal., 31(4):1019-1044, 1994.

[74] Z. Li, T. Lin, Y. Lin, and R. C. Rogers. An immersed finite element space and
its approximation capability. Numer. Methods Partial Differential Equations,
20(3):338-367, 2004.

194

[75] Zhilin Li. The immersed interface method using a finite element formulation.
Appl. Numer. Math., 27(3):253 - 267, 1998.

[76] Zhilin Li and Kazufumi Ito. The Immersed Interface Method: Numerical Solu-
tions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied
Mathematics). Society for Industrial and Applied Mathematic, Philadelphia,
2006.

[77] Mark N. Linnick and Hermann F. Fasel. A high-order immersed interface method
for simulating unsteady incompressible flows on irregular domains. J. Comput.
Phys., 204(1):157 - 192, 2005.

[78] Eric Hung-Lin Liu. Optimization and validation of discontinuous Galerkin code
for the 3D Navier-Stokes equations. Master's thesis, Massachusetts Institute of
Technology, Department of Aeronautics and Astronautics, January 2011.

[79] Adrien Loseille and Frederic Alauzet. Optimal 3D highly anisotropic mesh adap-
tation based on the continuous mesh framework. In Proceedings of the 18th
International Meshing Roundtable, pages 575-594. Springer Berlin Heidelberg,
2009.

[80] Adrien Loseille and Frederic Alauzet. Continuous mesh framework part I: Well-
posed continuous interpolation error. SIAM J. Numer. Anal., 49(1):38-60, 2011.

[81] Adrien Loseille and FReddric Alauzet. Continuous mesh framework part II: Val-
idations and applications. SIAM J. Numer. Anal., 49(1):61-86, 2011.

[82] James Lu. An a Posteriori Error Control Framework for Adaptive Precision
Optimization Using Discontinuous Galerkin Finite Element Method. PhD thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts, 2005.

[83] Yvon Maday, Ngoc Cuong Nguyen, Anthony T Patera, and George SH Pau. A
general, multipurpose interpolation procedure: the magic points. Comm. Pure
Appl. Math., 8(1):383-404, 2009.

[84] D. J. Mavriplis. Results from the 3rd Drag Prediction Workshop using the
NSU3D unstructured mesh solver. AIAA 2007-256, 2007.

[85] Todd Michal and Joshua Krakos. Anisotropic mesh adaptation through edge
primitive operations. AIAA 2012-159, 2012.

[86] Victor Milenkovic. Robust polygon modeling. Computer-Aided Design, 25:546-
566, 1993.

[87] James M. Modisette. An Automated Reliable Method for Two-Dimensional
Reynolds- averaged Navier-Stokes Simulations. PhD thesis, Massachusetts In-
stitute of Technology, Department of Aeronautics and Astronautics, September
2011.

195

[88] Forest Ray Moulton. An introduction to celestial mechanics. Dover Publications,
1984.

[89] S. E. Mousavi, H. Xiao, and N. Sukumar. Generalized Gaussian quadrature
rules on arbitrary polygons. Internat. J. Numer. Methods Engrg., 82(1):99-113,
2010.

[90] Scott M. Murman, Michael J. Aftosmis, and Stuart E. Rogers. Characterization
of space shuttle ascent debris aerodynamics using CFD methods. AIAA 2005-
1223, 2005.

[91] Sundararajan Natarajan, Stephane Bordas, and D. Roy Mahapatra. Numeri-
cal integration over arbitrary polygonal domains based on Schwarz-Christoffel
conformal mapping. Internat. J. Numer. Methods Engrg., 80:103-134, 2009.

[92] Todd A. Oliver. A Higher-Order, Adaptive, Discontinuous Galerkin Finite El-
ement Method for the Reynolds-averaged Navier-Stokes Equations. PhD thesis,
Massachusetts Institute of Technology, Department of Aeronautics and Astro-
nautics, June 2008.

[93] C. Peniguel. Heat transfer simulation for industrial applications: needs, limita-
tions, expectations. Internat. J. Heat Fluid Flow, 19(2):102 - 114, 1998.

[94] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A Riemannian framework
for tensor computing. Int. J. Comput. Vision, 66(1):41-66, 2006.

[95] J. Peraire, M. Vahdati, K. Morgan, and 0. C. Zienkiewicz. Adaptive remeshing
for compressible flow computations. J. Comput. Phys., 72:449-466, 1987.

[96] Jaime Peraire and Per-Olof Persson. The compact discontinuous Galerkin
(CDG) method for elliptic problems. SIAM J. Sci. Comput., 30(4):1806-1824,
2008.

[97] Per-Olof Persson and Jaime Peraire. Sub-cell shock capturing for discontinuous
Galerkin methods. AIAA 2006-0112, 2006.

[98] Per-Olof Persson and Jaime Peraire. Newton-GMRES preconditioning for dis-
continuous Galerkin discretizations of the Navier-Stokes equations. SIAM J.
Sci. Comput., 30(6):2709-2722, 2008.

[99] Charles S. Peskin. The immersed boundary method. In Acta Numerica, pages
479-517, 2002.

[100] Jrg Peters and Ulrich Reif. The 42 equivalence classes of quadratic surfaces in
affine n-space. Comput. Aided Geom. Design., 15(5):459 - 473, 1998.

[101] Les A. Pieql and Wayne Tiller. The NURBS Book (Monographs in Visual Com-
munication). Springer, 2 edition, 1996.

196

[102] James W. Purvis and John E. Burkhalter. Prediction of critical Mach number
for store configurations. AIAA Journal, 17(11):1170-1177, 1979.

[103] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport
equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory,
1973.

[104] G. R. Richter. An optimal-order error estimate for the discontinuous Galerkin
method. Math. Comp., 50:75-88, 1988.

[105] Th. Richter. Goal-oriented error estimation for fluid-structure interaction prob-
lems. Comput. Methods Appl. Mech. Engrg., 223-224:28 - 42, 2012.

[106] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. J. Comput. Phys., 43(2):357-372, 1981.

[107] Charles S and Peskin. Numerical analysis of blood flow in the heart. J. Comput.
Phys., 27(3):220 - 252, 1977.

[108] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856-869, 1986.

[109] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, 1996.

[110] Stefan Schirra. Robustness and precision issues in geometric computation. In
J. R. Sack and J. Urrutia, editors, Handbook of Computational Geometry. North
Holland, 1999.

[111] Susanne Schmitt. The diamond operator for real algebraic numbers. ECG
Technical Report ECG-TR-243107-01, Effective Computational Geometry for
Curves and Surfaces, 2003.

[112] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Technical report, Carnegie Mellon University,
1996.

[113] Charles Smith. An Elementary Treatise on Conic Sections. Macmillan, New
York, 1893.

[114] Alvise Sommariva and Marco Vianello. Gauss-Green cubature and moment
computation over arbitrary geometries. J. Comput. Appl. Math., 231:886-896,
2009.

[115] Philippe R. Spalart and Steven R. Allmaras. A one-equation turbulence model
for aerodynamics flows. AIAA 1992-0439, January 1992.

197

[116] Endre Siili and Paul Houston. Adaptive finite element approximation of hy-
perbolic problems. In T.J. Barth, M. Griebel, D. E. Keyes, R. M. Nieminen,
D. Roose, and T. Schlick, editors, Lecture Notes in Computational Science and
Engineering: Error Estimation and Adaptive Discretization Methods in Compu-
tational Fluid Dynamics, volume 25. Springer, Berlin, 2002.

[117] M. A. Taylor, B. A. Wingate, and R. E. Vincent. An algorithm for computing
Fekete points in the triangles. SIAM J. Numer. Anal., 38(5):1707-1720, 2000.

[118] V. Tchakaloff. Formules de cubatures mechaniques ' coefficients non negatifs.
Bull. Sci. Math., 81:123-134, 1957.

[119] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM
Rev., 50(1):67-87, 2008.

[120] John C. Vassberg, Mark A. DeHaan, and Tony J. Sclafani. Grid generation
requirements for accurate drag predictions based on OVERFLOW calculations.
AIAA 2003-4124, 2003.

[121] D. A. Venditti and D. L. Darmofal. Anisotropic grid adaptation for func-
tional outputs: Application to two-dimensional viscous flows. J. Comput. Phys.,
187(1):22-46, 2003.

[122] M. Wheeler. An elliptic collocation-finite element method with interior penalties.
SIAM J. Numer. Anal., 15:152-161, 1978.

[123] M Wayne Wilson. Discrete least squares and quadrature formulas. Math. Comp.,
24(110):271-282, 1970.

[124] Masayuki Yano. An Optimization Framework for Adaptive Higher-Order Dis-
cretizations of Partial Differential Equations on Anisotropic Simplex Meshes.
PhD thesis, Massachusetts Institute of Technology, Department of Aeronautics
and Astronautics, June 2012.

[125] Masayuki Yano and David Darmofal. On dual-weighted residual error estimates
for p-dependent discretizations. ACDL Report TR-11-1, Massachusetts Institute
of Technology, 2011.

[126] Masayuki Yano and David L. Darmofal. Case C1.3: Flow over the NACA 0012
airfoil: Subsonic inviscid, transonic inviscid, and subsonic laminar flows. First
international workshop on high-order CFD methods, 2012.

[127] Masayuki Yano and David L. Darmofal. An optimization-based framework for
anisotropic simplex mesh adaptation. J. Comput. Phys., 231(22):7626-7649,
September 2012.

198

[128] Masayuki Yano, James M. Modisette, and David Darmofal. The importance of
mesh adaptation for higher-order discretizations of aerodynamic flows. AIAA
2011-3852, June 2011.

[129] Chee K. Yap. Towards exact geometric computation. Comput. Geom., 7(12):3
- 23, 1997.

[130] Chee Keng Yap. Fundamental Problems of Algorithmic Algebra. Oxford Univer-
sity Press, 1999.

[131] David P. Young, Robin G. Melvin, Michael B. Bieterman, Forrester T. Johnson,
Satish S. Samant, and John E. Bussoletti. A higher-order boundary treatment
for Cartesian-grid methods. J. Comput. Phys., 92:1-66, 1991.

[132] Lingbo Zhang, Tao Cui, and Hui Liu. A set of symmetric quadrature rules on
triangles and tetrahedra. J. Comput. Math., 27(1):89-96, 2009.

[133] Xiaolin Zhong. A new high-order immersed interface method for solving el-
liptic equations with imbedded interface of discontinuity. J. Comput. Phys.,
225(1):1066 - 1099, 2007.

[134] Y.C. Zhou, Shan Zhao, Michael Feig, and G.W. Wei. High order matched inter-
face and boundary method for elliptic equations with discontinuous coefficients
and singular sources. J. Comput. Phys., 213(1):1 - 30, 2006.

199

