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Abstract

Learning from demonstration provides an attractive solution to the problem of teach-

ing autonomous systems how to perform complex tasks. Demonstration opens au-

tonomy development to non-experts and is an intuitive means of communication for

humans, who naturally use demonstration to teach others. This thesis focuses on a

specific form of learning from demonstration, namely inverse reinforcement learning,

whereby the reward of the demonstrator is inferred. Formally, inverse reinforcement

learning (IRL) is the task of learning the reward function of a Markov Decision Process

(MDP) given knowledge of the transition function and a set of observed demonstra-

tions. While reward learning is a promising method of inferring a rich and trans-

ferable representation of the demonstrator's intents, current algorithms suffer from

intractability and inefficiency in large, real-world domains. This thesis presents a

reward learning framework that infers multiple reward functions from a single, unseg-

mented demonstration, provides several key approximations which enable scalability

to large real-world domains, and generalizes to fully continuous demonstration do-

mains without the need for discretization of the state space, all of which are not

handled by previous methods.

In the thesis, modifications are proposed to an existing Bayesian IRL algorithm

to improve its efficiency and tractability in situations where the state space is large

and the demonstrations span only a small portion of it. A modified algorithm is

presented and simulation results show substantially faster convergence while main-

taining the solution quality of the original method. Even with the proposed efficiency

improvements, a key limitation of Bayesian IRL (and most current IRL methods) is

the assumption that the demonstrator is maximizing a single reward function. This

presents problems when dealing with unsegmented demonstrations containing mul-

tiple distinct tasks, common in robot learning from demonstration (e.g. in large

tasks that may require multiple subtasks to complete). A key contribution of this

thesis is the development of a method that learns multiple reward functions from

a single demonstration. The proposed method, termed Bayesian nonparametric in-

verse reinforcement learning (BNIRL), uses a Bayesian nonparametric mixture model
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to automatically partition the data and find a set of simple reward functions corre-
sponding to each partition. The simple rewards are interpreted intuitively as subgoals,
which can be used to predict actions or analyze which states are important to the
demonstrator. Simulation results demonstrate the ability of BNIRL to handle cyclic
tasks that break existing algorithms due to the existence of multiple subgoal rewards
in the demonstration. The BNIRL algorithm is easily parallelized, and several ap-
proximations to the demonstrator likelihood function are offered to further improve
computational tractability in large domains.

Since BNIRL is only applicable to discrete domains, the Bayesian nonparametric
reward learning framework is extended to general continuous demonstration domains
using Gaussian process reward representations. The resulting algorithm, termed
Gaussian process subgoal reward learning (GPSRL), is the only learning from demon-
stration method that is able to learn multiple reward functions from unsegmented
demonstration in general continuous domains. GPSRL does not require discretiza-
tion of the continuous state space and focuses computation efficiently around the
demonstration itself. Learned subgoal rewards are cast as Markov decision process
options to enable execution of the learned behaviors by the robotic system and provide
a principled basis for future learning and skill refinement. Experiments conducted in
the MIT RAVEN indoor test facility demonstrate the ability of both BNIRL and GP-
SRL to learn challenging maneuvers from demonstration on a quadrotor helicopter
and a remote-controlled car.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

As humans, we perform a wide variety of tasks every day: determining when to

leave home to get to work on time, choosing appropriate clothing given a typically-

inaccurate weather forecast, braking for a stoplight with adequate margin for error

(and other drivers), deciding how much cash to withdraw for the week's expenses, tak-

ing an exam, or locating someone's office in the Stata Center. While these tasks may

seem mundane, most are deceivingly-complex and involve a myriad of pre-requisites

like motor skills, sensory perception, language processing, social reasoning, and the

ability to make decisions in the face of uncertainty.

Yet we are born with only a tiny fraction of these skills, and a key method of

filling the gap is our incredible ability to learn from others. So critical is the act of

learning that we spend our entire lifetime doing it. While we often take for granted

its complexities and nuances, it is certain that our survival and success in the world

are directly linked to our ability to learn.

A direct analogy can be drawn to robotic (and more generally autonomous) sys-

tems. As these systems grow in both complexity and role, it seems unrealistic that

they will be programmed a priori with all of the skills and behaviors necessary to

perform complex tasks. An autonomous system with the ability to learn from others

has the potential to achieve far beyond its original design. While the notion of a

robot with a human capacity for learning has long been a coveted goal of the artificial

intelligence community, a multitude of technical hurdles have made realization of such
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of a goal extremely difficult. Still, much progress has been and continues to be made

using the tools available, highlighting the potential for an exciting future of capable

autonomy.

1.1 Motivation: Learning from Demonstration in

Autonomy

As technology continues to play a larger role in society, humans interact with au-

tonomous systems on a daily basis. Accordingly, the study of human-robot interac-

tion has seen rapid growth [29, 34, 39, 47, 64, 85, 92]. It is reasonable to assume

that non-experts will increasingly interact with robotic systems and will have an idea

of how the system should act. For the most part, however, autonomy algorithms

are currently developed and implemented by technical experts such as roboticists and

computer programmers. Modifying the behavior of these algorithms is mostly beyond

the capabilities of the end-user. Learning from demonstration provides an attractive

solution to this problem for several reasons [6]. The demonstrator is typically not

required to have expert knowledge of the domain dynamics. This opens autonomy

development to non-robotics-experts and also reduces performance brittleness from

model simplifications. Also, demonstration is already an intuitive means of communi-

cation for humans, as we use demonstration to teach others in everyday life. Finally,

demonstrations can be used to focus the automated learning process on useful areas

of the state space [53], as well as provably expand the class of learnable functions

[97].

There have been a wide variety of successful applications that highlight the utility

and potential of learning from demonstration. Many of these applications focus on

teaching basic motor skills to robotic systems, such as object grasping [83, 89, 96],

walking [58], and quadraped locomotion [48, 73]. More advanced motor tasks have

also been learned, such as pole balancing [7], robotic arm assembly [19], drumming

[43], and egg flipping [67]. Demonstration has proved successful in teaching robotic

18



systems to engage in recreational activities such as soccer [4, 40, 41], air hockey [11],

rock-paper-scissors [18], basketball [17], and even music creation [32]. While the pre-

vious examples are focused mainly on robotics, there are several instances of learning

from demonstration in more complex, high-level tasks. These include autonomous

driving [2, 21, 66], obstacle avoidance and navigation [44, 82], and unmanned acro-

batic helicopter flight [23, 63].

1.2 Problem Formulation and Solution Approach

This thesis focuses on learning from demonstration, a demonstration being defined

as a set of state-action pairs:

0 {(si, ai), (S2, a2 ), ... , (SN, aN)

where 0 is the demonstration set, si is the state of the system, and a is the action that

was taken from state si. In the thesis, it is assumed that states and actions are fully-

observable, and problems associated with partial state/action observability are not

considered. The demonstration may not necessarily be given in temporal order, and

furthermore could contain redundant states, inconsistent actions, and noise resulting

from imperfect measurements of physical robotic systems.

Learning from demonstration methods can be distinguished by what is learned

from the demonstration. Broadly, there are two classes: those which attempt to learn

a policy from the demonstration, and those which attempt to learn a task descrip-

tion from the demonstration. In policy learning methods, the objective is to learn

a mapping from states to actions that is consistent with the state-action pairs ob-

served in the demonstration. In that way, the learned policy can be executed on the

autonomous system to generate behavior similar to that of the demonstrator.

Policy methods are not concerned with what is being done in the demonstration,

but rather how it is being done. In contrast, task learning methods use the demonstra-

tion to infer the objective that the demonstrator is trying to achieve. A common way
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of specifying such an objective is to define an associated reward function, a mapping

from states to a scalar reward value. The task can then be more concretely defined

as reaching states that maximize accumulated reward. This thesis focuses primarily

on the problem of reward learning from demonstration.

Reward learning is challenging for several fundamental reasons:

" Learning rewards from demonstration necessitates a model of the demonstra-

tor that predicts what actions would be taken given some reward function (or

objective). The actions predicted by the model are compared to the demon-

stration as a means of inferring the reward function of the demonstrator. The

demonstrator model is typically difficult to obtain in that it requires solving for

a policy which maximizes a candidate reward function.

" The demonstration typically admits many possible corresponding reward func-

tions, i.e. there is no unique reward function that explains a given set of observed

state-action pairs.

" The demonstration itself can be inconsistent and the demonstrator imperfect.

Thus, it cannot be assumed that the state-action pairs in the demonstration

optimize reward, only that they attempt to do so.

Despite these difficulties, reward learning has several perceived advantages over

policy learning. A policy, due to its nature as a direct mapping from states to actions,

becomes invalid if the state transition model changes (actions may have different

consequences than they did in the original demonstration). Also, a policy mapping

must be defined for every necessary state, relying on a large demonstration set or

additional generalization methods. A learned reward function, however, can be used

to solve for a policy given knowledge of the state transition model, making it invariant

to changes in domain dynamics and generalizable to new states. Thus, a reward

function is a succinct and transferable description of the task being demonstrated and

still provides a policy which generates behavior similar to that of the demonstrator.

This thesis focuses primarily on developing reward learning from demonstration

techniques that are scalable to large, real-world, continuous demonstration domains
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while retaining computational tractability. While previous reward learning methods

assume that a single reward function is responsible for the demosntration, the frame-

work developed in this thesis is based on the notion that the demonstration itself

can be partitioned and explained using a class of simple reward functions. Two new

reward learning methods are presented that utilize Bayesian nonparametric mixture

models to simultaneously partition the demonstration and learn associated reward

functions. Several key approximation methods are also developed with the aim of

improving efficiency and tractability in large continuous domains. Simulation results

are given which highlight key properties and advantages, and experimental results

validate the new algorithms applied to challenging robotic systems.

The next section highlights relevant previous work in the field of learning from

demonstration, and is followed by a more detailed summary of the thesis contribu-

tions.

1.3 Literature Review

The many methods for learning from demonstration can be broadly categorized into

two main groups based on what is being learned [6]: a policy mapping function from

states to actions, or a task description.

In the policy mapping approach, a function is learned which maps states to actions

in either a discrete (classification) or continuous (regression) manner. Classification

architectures used to learn low-level tasks include Gaussian Mixture Models for car

driving [20], decision trees for aircraft control [77], and Bayesian networks [44] and k-

Nearest Neighbors [78] for navigation and obstacle avoidance. Several classifiers have

also been used to learn high-level tasks including Hidden Markov Models for box

sorting [76] and Support Vector Machines for ball sorting [21]. Continuous regression

methods are typically used to learn low-level motion-related behaviors, and a few of

the many examples include Neural Networks for learning to drive on various road

types [66], Locally-Weighted Regression [22] for drumming and walking [43, 58], and

Sparse Online Gaussian Processes for basic soccer skills [41]. Actions are often defined
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along with a set of necessary pre-conditions and resulting post-conditions [33]. Some

examples include learning object manipulation [50], ball collection [94], navigation

from natural language dialog [51], and single-demonstration learning [36].

Of the learning from demonstration methods which learn a task description, most

do so by learning a reward function. In [7], the transition model is learned from

repeated attempts to perform an inverted pendulum task, and the reward function

(the task itself) is learned from human demonstrations. The demonstrations double

as a starting point for the policy search to focus the computation on a smaller volume

of the state space. Similar approaches approaches are taken in [28, 36, 93]. When the

transition function is assumed to be known (at least approximately), a reward function

can be found that rationalizes the observed demonstrations. In the context of control

theory this problem is known as Inverse Optimal Control, originally posed by Kalman

and solved in [16]. Ng and Russell cast the problem in the reinforcement learning

framework in [62] and called it Inverse Reinforcement Learning (IRL), highlighting

the fact that the reward function in many RL applications is often not known a priori

and must instead be learned. IRL seeks to learn the reward function which is argued

in [62] to be the "most succinct, robust, and transferable definition of the task".

There have since been a number of IRL methods developed, many of which use

a weighted-features representation for the unknown reward function. Abbeel and

Ng solve a quadratic program iteratively to find feature weights that attempt to

match the expected feature counts of the resulting policy with those of the expert

demonstrations [2]. A game-theoretic approach is taken in [90], whereby a minimax

search is used to minimize the difference in weighted feature expectations between

the demonstrations and learned policy. In this formulation, the correct signs of the

feature weights are assumed to be known and thus the learned policy can perform

better than the expert. Ratliff et al. [73, 74] take a max-margin approach, finding

a weight vector that explains the expert demonstrations by essentially optimizing

the margin between competing explanations. Ziebart et al. [99, 100] match feature

counts using the principle of maximum entropy to resolve ambiguities in the resulting

reward function. In [61], the parameters of a generic family of parametrized rewards
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are found using a more direct gradient method which focuses on policy matching with

the expert. Finally, Ramachandran and Amir [71] take a general Bayesian approach,

termed Bayesian Inverse Reinforcement Learning (BIRL).

All of the aforementioned IRL algorithms are similar in that they attempt to find a

single reward function that explains the entirety of the observed demonstration. This

reward function must then be necessarily complex in order to explain the data suffi-

ciently, especially when the task being demonstrated is itself complicated. Searching

for a complex reward function is fundamentally difficult for two reasons. First, as the

complexity of the reward model increases, so too does the number of free parameters

needed to describe the model. Thus the search is over a larger space of candidate

functions. Second, the process of testing candidate reward functions requires solving

for the MDP value function, the computational cost of which typically scales poorly

with the size of the MDP state space, even for approximate solutions [13]. Thus find-

ing a single, complex reward function to explain the observed demonstrations requires

searching over a large space of possible solutions and substantial computational effort

to test each candidate.

The algorithms presented in this thesis avoid the search for a single reward func-

tion by instead partitioning the demonstration and inferring a reward function for

each partition. This enables the discovery of multiple reward functions from a single,

unsegmented demonstration. Several methods have been developed that also address

the issue of multimodal learning from unsegmented demonstration. Grollman et al.

characterize the demonstration as a mixture of Gaussian process experts [41] and find

multiple policies to describe the demonstration. Also using a Bayesian nonparametric

framework, Fox et al. cast the demonstration as a switched linear dynamic system,

and infer a hidden Markov model to indicate switching between systems [35]. In Con-

structing Skill Trees (CST) the overall task is represented as a hierarchy of subtasks,

and Markov decision process options (skills) are learned for each subtask. [49]. Of

these methods, none attempt to learn multiple reward functions from unsegmented

demonstration.

Throughout the thesis, subgoals are used as simple reward representations to

23



explain partitioned demonstration data. The notion of defining tasks using a cor-

responding subgoal was proposed by Sutton et al. along with the options MDP

framework [88]. Many other methods exist which learn options from a given set of

trajectories. In [55], diverse density across multiple solution paths is used to dis-

cover such subgoals. Several algorithms use graph-theoretic measures to partition

densely-connected regions of the state space and learn subgoals at bottleneck states

[56, 81]. Bottleneck states are also identified using state frequencies [84] or using a

local measure of relative novelty [80]. Of these methods, most require large amounts

of trajectory data and furthermore none have the ability to learn reward functions

from demonstration.

1.4 Summary of Contributions

This thesis focuses broadly on improving existing reward learning from demonstration

methods and developing new methods that enable scalable reward learning for real-

world robotic systems. A reward learning framework is developed that infers multiple

reward functions from a single, unsegmented demonstration, provides several key

approximations which enable scalability to large real-world domains, and generalizes

to fully continuous demonstration domains without the need for discretization of the

state space, none of which are handled by previous methods.

The first contribution of the thesis is the proposal of several modifications to the

Bayesian IRL algorithm to improve its efficiency and tractability in situations where

the state space is large and the demonstrations span only a small portion of it. The

key insight is that the inference task should be focused on states that are similar to

those encountered by the expert, as opposed to making the naive assumption that

the expert demonstrations contain enough information to accurately infer the reward

function over the entire state space. With regard to the improvement of Bayesian

IRL, the thesis makes the following contributions:

* Two key limitations of the Bayesian IRL algorithm are identified. Foremost, it

is shown that the set of demonstrations given to the algorithm often contains
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a limited amount of information relative to the entire state space. Even so,

standard BIRL will attempt to infer the reward of every state. Second, the

MCMC sampling in BIRL must search over a reward function space whose

dimension is the number of MDP states. Even for toy problems, the number of

MCMC iterations needed to approximate the mean of the posterior will become

intractably large.

" A fundamental improvement is proposed which introduces a kernel function

quantifying similarity between states. The BIRL inference task is then scaled

down to include only those states which are similar to the ones encountered by

the expert (the degree of "similarity" being a parameter of the algorithm). The

resulting algorithm is shown to have much improved computational efficiency

while maintaining the quality of the resulting reward function estimate. If the

kernel function provided is simply a constant, the original BIRL algorithm is

obtained.

* A new acceptance probability is proposed similar to a cooling schedule in Sim-

ulated Annealing to improve speed of convergence to the BIRL prior mode.

Use of the cooling schedule in the modified BIRL algorithm allows the MCMC

process to first find areas of high posterior probability and focus the samples

towards them, speeding up convergence.

Even with the proposed efficiency improvements, a key limitation of Bayesian

IRL (and most current IRL methods) is the assumption that the demonstrator is

maximizing a single reward function. This presents problems when dealing with

unsegmented demonstrations containing multiple distinct tasks, common in robot

learning from demonstration (e.g. in large tasks that may require multiple subtasks

to complete). The second contribution of this thesis is the development of a method

that learns multiple reward functions from a single demonstration. With respect to

learning multiple reward functions, the thesis makes the following contributions:

* A new reward learning framework is proposed, termed Bayesian nonparametric

inverse reinforcement learning (BNIRL), which uses a Bayesian nonparamet-
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ric mixture model to automatically partition the data and find a set of simple

reward functions corresponding to each partition. The simple rewards are inter-

preted intuitively as subgoals, which can be used to predict actions or analyze

which states are important to the demonstrator.

* Convergence of the BNIRL algorithm in 0-1 loss is proven. Several compu-

tational advantages of the method over existing IRL frameworks are shown,

namely the search over a finite (as opposed to infinite) space of possible rewards

and the ability to easily parallelize the majority of the method's computational

requirements.

" Simulation results are given for simple examples showing comparable perfor-

mance to other IRL algorithms in nominal situations. Moreover, the proposed

method handles cyclic tasks (where the agent begins and ends in the same state)

that would break existing algorithms without modification due to the existence

of multiple subgoal rewards in a single demonstration.

" Two approximations to the demonstrator likelihood function are developed

to further improve computational tractability in large domains. In the first

method, the Real-time Dynamic Programming (RTDP) framework is incorpo-

rated to approximate the optimal action-value function. RTDP effectively limits

computation of the value function only to necessary areas of the state space.

This allows the complexity of the BNIRL reward learning method to scale with

the size of the demonstration set, not the size of the full state space. Simula-

tion results for a Grid World domain show order of magnitude speedups over

exact solvers for large grid sizes. In the second method, an existing closed-loop

controller takes the place of the optimal value function. This avoids having to

specify a discretization of the state or action spaces, extending the applicability

of BNIRL to continuous demonstration domains when a closed-loop controller is

available. Simulation results are given for a pedestrian data set, demonstrating

the ability to learn meaningful subgoals using a very simple closed-loop control

law.
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While BNIRL has the ability to learn multiple reward functions from a single

demonstration, it is only generally applicable in discrete domains when a closed-loop

controller is not available. A main focus area of the thesis is achieving scalable reward

learning from demonstration in real-world robotic systems, necessitating the extension

of the Bayesian nonparametric reward learning framework to general, continuous

demonstration domains. With respect to reward learning in continuous domains, this

thesis makes the following contributions:

" The Bayesian nonparametric reward learning framework is extended to general

continuous demonstration domains using Gaussian process reward representa-

tions. The resulting algorithm, termed Gaussian process subgoal reward learn-

ing (GPSRL), is the only learning from demonstration method able to learn

multiple reward functions from unsegmented demonstration in general contin-

uous domains. GPSRL does not require discretization of the continuous state

space and focuses computation efficiently around the demonstration itself.

" Learned subgoal rewards are cast as Markov decision process options to enable

execution of the learned behaviors by the robotic system and provide a prin-

cipled basis for future learning and skill refinement. Definitions of the option

initiation set, terminating criteria, and policy follow directly from data already

inferred during the GPSRL reward learning process. This enables execution of

learned subgoals without the requirement for further learning.

" A method is developed for choosing the key confidence parameter in the GPSRL

likelihood function. The method works by instructing the demonstrator to

execute a single maneuver several times, and doing a sweep of the parameter

to identify regions of under- and over-fitting. Furthermore, this method can be

used to quantify the relative skill level of the demonstrator, enabling comparison

between multiple demonstrators.

Since the broad focus of this work is to enable scalable reward learning from

demonstration, the final contribution of the thesis is to provide experimental results
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demonstrating the ability of the proposed methods to learn reward from demonstra-

tions in real-world robotic domains. With respect to experimental validation of the

methods presented herein, the thesis makes the following contributions:

" Quadrotor flight maneuvers are learned from a human demonstrator using only

hand motions. The demonstration is recorded using a motion capture system

and then analyzed by the BNIRL algorithm with action comparison. Learned

subgoal rewards (in the form of waypoints) are passed as commands to an

autonomous quadrotor which executes the learned behavior in actual flight.

The entire process from demonstration to reward learning to robotic execution

takes on the order of 10 seconds to complete using a single computer. Thus,

the results highlight the ability of BNIRL to use data from a safe (and not

necessarily dynamically feasible) demonstration environment and quickly learn

subgoal rewards that can be used in the actual robotic system.

" GPSRL is experimentally applied to a robotic car domain. In the experiments,

multiple difficult maneuvering skills such as drifting turns are identified from

a single unsegmented demonstration. The learned subgoal rewards are then

executed autonomously using MDP options and shown to closely match the

original demonstration. Finally, the relative skill level of the demonstrator is

quantified through a posteriori analysis of the confidence likelihood parameter.

1.5 Thesis Outline

The thesis proceeds as follows. Chapter 2 provides background material on the math-

ematical concepts that the thesis builds on. Chapter 3 presents several fundamental

modifications to the existing Bayesian IRL method to improve efficiency and tractabil-

ity in large domains. In Chapter 4, a new Bayesian nonparametric reward learning

framework is developed enabling the discovery of multiple reward functions from a sin-

gle demonstration. Chapter 5 offers several approximations to the BNIR.L likelihood

function that further enables scalability to large domains. In Chapter 6, the GPSRL
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algorithm is developed as a generalized, continuous extension of BNIRL. Chapter 7

provides experimental results demonstrating the application of BNIRL and GPSRL

to quadrotor helicopter and remote-controlled car domains. Finally, Chapter 8 offers

concluding remarks and highlights areas for future research.
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Chapter 2

Background

This chapter provides a background in the mathematical concepts that this thesis

builds upon. Throughout the thesis, boldface is used to denote vectors and subscripts

are used to denote the elements of vectors (i.e. zi is the ith element of vector z).

2.1 Markov Decision Processes and Options

A finite-state Markov Decision Process (MDP) [69] is a tuple (S, A, T, R, -Y) where

S is a set of states, A is a set of actions, T : S x A x S -+ [0,1] is the function of

transition probabilities such that T(s, a, s') is the probability of being in state s' after

taking action a from state s, R : S -4 R is the reward function, and - E [0, 1) is the

discount factor.

A stationary policy is a function Tr : S H- A. From [87] we have the following set

of definitions and results:

1. The infinite-horizon expected reward for starting in state s and following policy

7r thereafter is given by the value function V'(s, R):

V'(s, R) = E, E -YR(si) SO = s (2.1)
i=O

where si is the state at time i. Assuming state-based reward (i.e. rewards that

do not depend on actions), the value function satisfies the following Bellman
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equation for all s E S:

V'(s, R) = R(s) + -y T(s, -r (s), s')V'(s') (2.2)

The so-called Q-function (or action-value function) Q"(s, a, R) is defined as the

infinite-horizon expected reward for starting in state s, taking action a, and

following policy 7r thereafter:

Q"(s, a, R) = R(s) + -y T(s, a, s')V'(s') (2.3)

2. A policy -r is optimal iff, for all s E S:

7r (s) = argmax Q'(s, a, R) (2.4)
aEA

An optimal policy is denoted as 7r* with corresponding value function V* and

action-value function Q*.

There are many methods available for computing or approximating V* (and thus

Q*) when the transition function T is either known or unknown [13, 69, 87]. Through-

out the thesis, T is assumed known (either exactly or approximately). A principal

method for iteratively calculating the optimal value function V* when T is known

is called value iteration, an algorithm based on dynamic programming [10]. In value

iteration, the Bellman equation (2.2) is used as an update rule which provides a suc-

cessive approximation to the optimal value function V*. Let Vk be the estimated

value function at iteration k, then:

Vk1(s, R) = R(s) + maxZy T(s, a, s')Vk (s') Vs E S (2.5)
a

The sequence {Vk} can be shown to converge to V* under the same mild conditions

that guarantee the existence of V* [13]. In general, value iteration requires an infinite

number of iterations to converge. In practice, the algorithm terminates when the

maximum change in value from one iteration to the next is less than some threshold,
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i.e. when:

max Vk(s) - Vk-_(s)l <6 (2.6)

Value iteration is used throughout the thesis as a simple and reliable method for

calculating optimal value functions in relatively small domains. However, since value

iteration requires a sweep of the entire state space at each update, it is often imprac-

tical to use for larger domains. Many approximate methods exists that are based

on value iteration but avoid sweeping the entire state space. Two such approximate

methods (presented later in the thesis) are real-time dynamic programming [9] and

Gaussian process dynamic programming [27].

Many hierarchical methods have been developed which employ temporally-extended

macro actions, often referred to as options, to achieve complex tasks in large and chal-

lenging domains. An option, o, is defined by the tuple (Is, 7r0 , f30) [88]. I0 : S 0 {, 1}

is the initiation set, defined to be 1 where the option can be executed and 0 elsewhere.

T : S - A is the option policy for each state where the option is defined according to

I. Finally, i3, : S e [0, 1] is the terminating condition, defining the probability that

the option will terminate in any state for which the option is defined. Any method

which creates new skills (in the form of options) must define at least Io and 0. The

option policy 7ro can be learned using standard RL methods.

2.2 Inverse Reinforcement Learning

Inverse reinforcement learning (IRL)[62] is the problem of inferring the reward func-

tion responsible for generating observed optimal behavior. Formally, IRL assumes a

given MDP/R, defined as a MDP for which everything is specified except the state

reward function R(s). Observations (demonstrations) are provided as a set of state-

action pairs:

0 = {(si, ai), (S2, a 2 ), ... , (sN, aN)} (2.7)

where each pair Oi = (si, aj) indicates that the demonstrator took action ai while in

state si. Inverse reinforcement learning algorithms attempt to find a reward function
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that rationalizes the observed demonstrations, i.e. find a reward function R(s) whose

corresponding optimal policy -r* matches the observations 0.

It is clear that the IRL problem stated in this manner is ill-posed. Indeed, R(s)

c Vs E S, where c is any constant, will make any set of state-action pairs 0 trivially

optimal. Also, 0 may contain inconsistent or conflicting state-action pairs, i.e. (si, a,)

and (si, a2) where a, 7 a2 . Furthermore, the "rationality" of the demonstrator is not

well-defined (e.g., is the demonstrator perfectly optimal, and if not, to what extent

sub-optimal).

Most existing IRL algorithms attempt to resolve the ill-posedness by making some

assumptions about the form of the demonstrator's reward function. For example, in

[2] it is assumed that the reward is a sum of weighted state features, and a reward

function is found that matches the demonstrator's feature expectations. In [74] a

linear-in-features reward is also assumed, and a maximum margin optimization is

used to find a reward function that minimizes a loss function between observed and

predicted actions. In [71] it is posited that the demonstrator samples from a prior

distribution over possible reward functions, and thus Bayesian inference is used to

find a posterior over rewards given the observed data. An implicit assumption in

these algorithms is that the demonstrator is using a single, fixed reward function.

The three IRL methods mentioned above (and other existing methods such as

[53, 61, 90]) share a generic algorithmic form, which is given by Algorithm 1, where

the various algorithms use differing definitions of "similar" in Step 6. We note that

each iteration of the algorithm requires solving for the optimal MDP value function

V* in Step 4, and the required number of iterations (and thus MDP solutions) is

potentially unbounded.

2.3 Chinese Restaurant Process Mixtures

The algorithms developed throughout the thesis combine IRL with a Bayesian non-

parametric model for learning multiple reward functions, namely the Chinese restau-

rant process mixture model. The Chinese restaurant process (CRP) is a sequential
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Algorithm 1 Generic inverse reinforcement learning algorithm

1: function GENERICIRL(MDP/R, Obs. 0 1:N, Reward representation R(slw))

2: w(+) +- Initial reward function parameters

3: while iteration t < [ma do
4: V* +- Optimal MDP value function for reward function R(slw(t-))

5: <- Optimal policy according to V*

6: t) -- Parameters to make 7 more similar to demonstrations 01:N
7: end while

8: return Reward function given by R(slw(t-a))

9: end function

construction of random partitions used to define a probability distribution over the

space of all possible partitions, and is often used in machine learning applications

which involve partitioning observed data[65]. The process by which partitions are

constructed follows a metaphor whereby customers enter a Chinese restaurant and

must choose a table. In the analogy, tables are used to represent partitions, and

the Chinese restaurant has a potentially infinite number of tables available. The

construction proceeds as follows:

1. The first customer sits at the first table.

2. Customer i arrives and chooses the first unoccupied table with probability

.7 , and an occupied table with probability .c ,where c is the
i- 1+7 -1+I
number of customers already sitting at that table.

The concentration hyperparameter q controls the probability that a customer starts

a new table. Using zi = j to denote that customer i has chosen table j, Cj to denote

the number of customers sitting at table j, and Ji_1 to denote the number of tables

currently occupied by the first i - 1 customers, the assignment probability can be

formally defined by:

P(zi = Azi ..A_1) =+ (2.8)
. ~ji- J_+ I
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This process induces a distribution over table partitions that is exchangeable [37],

meaning that the order in which the customers arrive can be permuted and any par-

tition with the same proportions will have the same probability. A Chinese restaurant

process mixture is defined using the same construct, but each table is endowed with

parameters 0 of a probability distribution which generates data points xi:

1. Each table j is endowed with parameter 0j drawn i.i.d. from a prior P(0).

2. For each customer i that arrives:

(a) The customer sits at table j according to (2.8) (the assignment variable

Zi = j).

(b) A datapoint xi is drawn i.i.d. from P(xl0j).

Thus each datapoint xi has an associated table (partition) assignment z= j and

is drawn from the distribution P(x0j) '. The CRP mixture is in the class of Bayesian

nonparametric models, meaning that the number of resulting partitions is potentially

infinite. This property arises from the fact that, as new a customer arrives, there is

always a non-zero probability that a new table will be started. The ability of the CRP

mixture to model data which are generated from a random and potentially infinite

number of partitions is critical to the algorithms presented throughout the thesis.

2.4 CRP Inference via Gibbs Sampling

The CRP mixture from Section 2.3 describes a generative model for the data x, i.e.

the process by which each datapoint xi was generated. For the algorithms presented

in the thesis, the task will be to invert this process: given a set of observed data x,

infer each partition assignment zi = j, and the associated mixture parameters 0j.

Formally, this means inferring the posterior distribution over assignments and mix-

ture parameters given observed data, P(z, O|x). Bayes rule can be used to decompose

this posterior:

'It is noted that the CRP mixture is directly analogous to the Dirichlet process mixture, whereby
datapoints are generated directly from posterior draws of a Dirichlet process. CRPs are used through-
out the thesis for consistency.
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P(z, OIx) cx P(xlz, 0) P(z, 0) (2.9)

likelihood prior

where P(xlz, 0) is the likelihood of the data given the parameters and P(z, 0) is the

prior over parameters. Calculating the posterior distribution (2.9) analytically is not

possible in the general case where the likelihood and prior are non-conjugate [37].

Even when the mixture parameters 0 come from a finite discrete distribution (which

is the case throughout the thesis), exhaustive search for the maximum likelihood value

of each zi and Oj is intractable due to the combinatorial number of possible partition

assignments z. A tractable alternative is to draw samples from the posterior (2.9),

and approximate the desired statistics (e.g. the mode of the distribution) from a

finite number of samples.

Gibbs sampling [38] is in the family of Markov chain Monte Carlo (MCMC) sam-

pling algorithms and is commonly used for approximate inference of Bayesian non-

parametric mixture models [30, 60, 86]. The Gibbs sampler works under the assump-

tion that each target random variable can be tractably sampled conditioned on all of

the others (it samples one variable at a time while holding the others constant).

Algorithm 2 outlines the generic Gibbs sampling procedure for the CRP mixture

posterior (2.9). Note that the posterior variables to be inferred are sampled separately

while others are held constant, i.e. each zi is sampled in Step 17 and each 6O is

sampled in Step 10. The assignment sampling in Step 17 of the algorithm relies on

the exchangeability of the CRP mixture model by assuming that each xi is the last

datapoint to arrive. The posterior assignment probability p(zi = jI zi, Oj) is then the

direct product of the CRP prior (2.8) and the likelihood given the associated partition

parameters:

p(zi = ijzi, 0j) Oc p(zilz-i) p(xi 0) (2.10)

CRP likelihood

It is assumed that P(Ojx), the conditional of 0 given x, can be sampled.

Given that each sampling update of zi and Oj occurs infinitely often and some

mild conditions on the update probabilities are met [60], the resulting samples z)
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Algorithm 2 Generic CRP mixture Gibbs sampler

1: while iteration t < T do

2: for each observation xi c x do
3: for each current partition j(t) do

4: p(zi = jIz-i, Qj) <- Probability of partition j from (2.10)
5: end for
6: p(zi klz-i, Ok) <- Probability of new partition with parameter Ok - P(OI.i)

7: Zt < Sample partition assignment from normalized probabilities in lines 13-
16

8: end for

9: for each current partition j(') do

10: 0 <- Resample from P(Oj{xi : zi = j})
11: end for

12: end while

13: return samples z(1:T) and 0 (1:T), discarding samples for burn-in and lag if desired

and O(t) can be shown to form a Markov chain whose stationary distribution is the

target posterior (2.9). In other words, the samples (z(t), 0(t)) will converge to a sample

from (2.9) as t -+ cc.

In practice, for a finite number of iterations T, the chain will be dependent on

the initial state of the posterior variables and consecutive samples from the chain will

be correlated (not i.i.d.). To mitigate the effect of arbitrary initial conditions, the

first N burn-in samples are discarded. To mitigate correlation between samples, only

every nth lagged sample is kept, and the rest discarded. There is considerable debate

as to whether these ad-hoc strategies are theoretically or practically justified, and in

general it has proven difficult to characterize convergence of the Gibbs sampler to the

stationary Markov chain [75].

Figure 2-1 shows an illustrative example of Algorithm 2 applied to a Chinese

restaurant process mixture model where data are generated from 2-dimensional Gaus-

sian clusters. In the example, the data x E R 2 are drawn randomly from five clusters,

and the parameters to be estimated 0 = {p, E} are the means and covariance matrices

of each inferred cluster. The likelihood function from (2.10) is simply the unnormal-
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Figure 2-1: Example of Gibbs sampling applied to a Chinese restaurant process mix-
ture model, where data are generated from 2-dimensional Gaussian clusters. Observed
data from each of five clusters are shown in color along with cluster covariance el-
lipses (top). Gibbs sampler posterior mode is overlaid as black covariance ellipses
after 0,5,10,15,20, and 25 sampling iterations (top). Number of posterior mode clus-
ters versus sampling iteration (middle). Posterior mode log likelihood versus sampling
iteration (bottom).
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ized multivariate Gaussian probability density function (PDF), and P(O1x) is taken to

be the maximum likelihood estimate of the mean and covariance. Observed data from

the five true clusters are shown in color along with the associated covariance ellipses

(Figure 2-1 top). The Gibbs sampler posterior mode is overlaid as black covariance

ellipses representing each cluster after 0,5,10,15,20, and 25 sampling iterations (Fig-

ure 2-1 top). The number of posterior mode clusters (Figure 2-1 middle) shows that

the sampling algorithm, although it is not given the number of true clusters a priori,

converges to the correct model within 20 iterations. The posterior mode log likelihood

(Figure 2-1 bottom) shows convergence in model likelihood in just 10 iterations. The

CRP concentration parameter in (2.8) used for inference is r/ = 1. Nearly identical

posterior clustering results are attained for i/ ranging from 1 to 10000, demonstrating

robustness to the selection of this parameter.

2.5 Gaussian Processes

A Gaussian process (GP) is a distribution over functions, widely used in machine

learning as a nonparametric regression method for estimating continuous functions

from sparse and noisy data [72]. In this thesis, Gaussian processes will be used as a

subgoal reward representation which can be trained with a single data point but has

support over the entire state space.

A training set consists of input vectors X = [x 1 ,..., Xn] and corresponding ob-

servations y =[y, ... , y,] . The observations are assumed to be noisy measurements

from the unknown target function f:

y= f (Xi) + E (2.11)

where e ~ V(0, af) is Gaussian noise. A zero-mean Gaussian process is completely

specified by a covariance function k(., .), called a kernel. Given the training data

{X, y} and covariance function k(., .), the Gaussian process induces a predictive

marginal distribution for test point x,, which is Gaussian distributed so that f(x,) ~
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Af(y, o') with mean and variance given by:

ptt = k(X,, X) (K + o-iI) _y (2.12)

07f =k(x,, x,) - k(x., X) (K + oI) k(X, x.) (2.13)

where K c Rjn"X is the Gram matrix with K j = k(xi, xj).

Selecting a kernel is typically application-specific, since the function k(x, x') is

used as a measure of correlation (or distance) between states x and x'. A common

choice (used widely throughout the thesis) is the squared exponential (SE) kernel:

kSE(X, X') = V2 exp - (X - X )T A-l(x - x) (2.14)

where A = diag( [Ai, ..., An] ) are the characteristic length scales of each dimension

of x and v 2 describes the variability of f. Thus 0 SE {v,1 1, ... , Anx} is the vector of

hyperparameters which must be chosen for the squared exponential kernel. Choosing

hyperparameters is typically achieved through maximization of the log evidence:

logp(y X,O) log Jp(yIf (X), X, 0) p(f (X)|X, 0) df

= y (Kg +Uoj) y - log IKo + o-jI + c (2.15)

where c is a constant. Maximization of (2.15) w.r.t the hyperparameters involves un-

constrained non-linear optimization which can be difficult in many cases. In practice,

the optimization need only be carried out once for a representative set of training

data, and local optimization methods such as gradient descent often converge to sat-

isfactory hyperparameter settings [72].

The computational complexity of GP prediction is dominated by the inversion

of the kernel matrix in (2.12), and is thus 0(n') where n is the number of training

points. This is in contrast to parametric regressors (such as least squares) where the

complexity scales instead with the number of representational parameters. In prac-

tice, the system (K + oI) 1 y from (2.12) need only be solved once and cached for a
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given set of training data, reducing the complexity of new predictions to O(n2 ). Also,

many approximate GP methods exist for reducing the computational requirements

for large training sets [24, 70, 72].

As an example of the ability of GPs to represent complex functions with a small

amount of training data, Figure 2-2 shows Gaussian process approximations of an

arbitrary Grid World value function. The full tabular value function for a 40 x 40

Grid World MDP requires storage of 1600 values (Figure 2-2, upper left). A Guassian

process with a squared exponential kernel and 64 training points yields an average

error of 1.7% over the original grid cells (Figure 2-2, upper right). A GP with just

16 training points yields an average error of 3.5% (Figure 2-2, lower left). A GP with

3 training points manually placed at each of the three value function peaks yields

an average error of 5.9% (Figure 2-2, lower right). All kernel hyperparameters are

learned using 10 iterations of standard gradient descent of the evidence (2.15). These

examples demonstrate the ability of Gaussian processes (with appropriately selected

kernel functions and training points) to represent a complex function using orders of

magnitude fewer stored training points.

2.6 Summary

This chapter provided background in the mathematical concepts that this thesis

builds upon. In the next chapter, several fundamental modifications are made to

the Bayesian inverse reinforcement learning algorithm to improve its efficiency and

tractability in situations where the state space is large and the demonstrations span

only a small portion of it.
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Figure 2-2: Example of Gaussian process (GP) approximation of a Grid World value
function using the squared exponential kernel. The original 40 x 40 tabular value
function for an arbitrary reward function requires 1600 values to be stored (upper
left). A GP approximation with 160 training points (shown as black x's) yields an
average error of 1.7% (upper right). A GP with 16 training points yields 3.5% average
error (lower left), and a GP with just 3 training points yields 5.9% average error (lower
right).
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Chapter 3

Improving the Efficiency of

Bayesian IRL

Inverse reinforcement learning (IRL) is the subset of learning from demonstration

methods in which the reward function, or equivalently the task description, is learned

from a set of expert demonstrations. The IRL problem is formalized using the Markov

Decision Process (MDP) framework in the seminal work [62]: Given expert demon-

strations in the form of state-action pairs, determine the reward function that the

expert is optimizing assuming that the model dynamics (i.e. transition probabilities)

are known.

In the larger context of learning from demonstration, many algorithms attempt

to directly learn the policy (sometimes in addition to the model dynamics) using

the given demonstrations [6]. IRL separates itself from these methods in that it

is the reward function that is learned, not the policy. The reward function can be

viewed as a high-level description of the task, and can thus "explain" the expert's

behavior in a richer sense than the policy alone. No information is lost in learning the

reward function instead of the policy. Indeed, given the reward function and model

dynamics an optimal policy can be recovered (though many such policies may exist).

Thus the reward function is also transferable, in that changing the model dynamics

would not affect the reward function but would render a given policy invalid. For

these reasons, IRL may be more advantageous than direct policy learning methods
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in many situations.

It is evident that the IRL problem itself is ill-posed. In general, there is no single

reward function that will make the expert's behavior optimal [53, 61, 74, 99, 1001.

This is true even if the expert's policy is fully specified to the IRL algorithm, i.e.

many reward functions may map to the same optimal policy. Another challenge

in IRL is that in real-world situations the demonstrator may act sub-optimally or

inconsistently. Finally, in problems with a large state space there may be a relatively

limited amount of demonstration data.

Several algorithms address these limitations successfully and have shown IRL to

be an effective method of learning from demonstration [1, 61, 73, 74, 90, 99, 100]. A

general Bayesian approach is taken in Bayesian inverse reinforcement learning (BIRL)

[71]. In BIRL, the reward learning task is cast as a standard Bayesian inference prob-

lem. A prior over reward functions is combined with a likelihood function for expert

demonstrations (the evidence) to form a posterior over reward functions which is then

sampled using Markov chain Monte Carlo (MCMC) techniques. BIRL has several ad-

vantages. It does not assume that the expert behaves optimally since a distribution

over reward functions is recovered. Thus, the ambiguity of an inconsistent or uncer-

tain expert is addressed explicitly. External a priori information and constraints on

the reward function can be encoded naturally through the choice of prior distribution.

Perhaps most importantly, the principled Bayesian manner in which the IRL prob-

lem is framed allows for the algorithm designer to leverage a wide range of inference

techniques from the statistics and machine learning literature. Thus BIRL forms a

general and powerful foundation for the problem of reward learning.

As discussed below, the Bayesian IRL algorithm as presented in [71] suffers from

several practical limitations. The reward function to be inferred is a vector whose

length is equal to the number of MDP states. Given the nature of the MCMC

method used, a large number of iterations is required for acceptable convergence

to the mean of the posterior. The problem stems mainly from the fact that each

of these iterations requires re-solving the MDP for the optimal policy, which can be

computationally expensive as the size of the state space increases (the so-called "curse
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of dimensionality").

In this chapter, a modified Bayesian IRL algorithm is proposed based on the sim-

ple observation that the information contained in the expert demonstrations may

very well not apply to the entire state space. As an abstract example, if the IRL

agent is given a small set of expert trajectories that reside entirely in one "corner"

of the state space, those demonstrations may provide little, if any, information about

the reward function in some opposite "corner", making it naive to perform reward

function inference over the entire state space. The proposed method takes as input a

kernel function that quantifies similarity between states. The BIRL inference task is

then scaled down to include only those states which are similar to the ones encoun-

tered by the expert (the degree of "similarity" being a parameter of the algorithm).

The resulting algorithm is shown to have much improved computational efficiency

while maintaining the quality of the resulting reward function estimate. If the ker-

nel function provided is simply a constant, the original BIRL algorithm from [71] is

obtained.

3.1 Bayesian IRL

The following summarizes the Bayesian inverse reinforcement learning framework

[71]. The basic premise of BIRL is to infer a posterior distribution for the reward

vector R from a prior distribution and a likelihood function for the evidence (the

expert's actions). The evidence 0 takes the form of observed state-action pairs, so

that 0 = {(si, ai), (s 2 , a 2 ), ... , (sk, ak)}. Applying Bayes Theorem, the posterior can

be written as:

Pr(R|O) Pr(OR)Pr(R) (3.1)
Pr(O)

where each term is explained below:

9 Pr(RIO): The posterior distribution of the reward vector given the observed

actions of the expert. This is the target distribution whose mean will be esti-

mated.
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" Pr(OIR): The likelihood of the evidence (observed expert state-action pairs)

given a particular reward vector R. A perfect expert would always choose

optimal actions, and thus state-action pairs with large Q*(si, ai, R) would be

more likely. However, the expert is assumed to be imperfect, so the likelihood

of each state-action pair is given by an exponential distribution:

Pr(a Isi, R) e (3.2)
E 6aQ* (si,b,R)

bEA

where a is a parameter representing our confidence that the expert chooses

actions with high value (the lower the value of a the more "imperfect" the

expert is expected to be). The likelihood of the entire evidence is thus:

Pr(OIR) = ea ei Q* (si,ai,R)

ZbcA ea Ei Q*(si,b,R)

" Pr(R): Prior distribution representing how likely a given reward vector is based

only on prior knowledge. This is where constraints and a priori knowledge of

the rewards can be injected.

" Pr(O): The probability of 0 over the entire space of reward vectors R. This

is very difficult to calculate but is not be needed for the MCMC methods used

throughout the thesis.

For the reward learning task, we wish to estimate the expert's reward vector

R. One common way to determine the accuracy of an estimate is the squared loss

function:

LSE(R, f) = IR - R1 2  (3.4)

where R and R are the actual and estimated expert reward vectors, respectively. It

is shown in [71] that the mean of the posterior distribution (3.1) minimizes (3.4).

The posterior distribution of R must also be used to find a policy that is close

to the expert's. Given some reward vector R, a sensible measure of the closeness of

48



policy 7r to the optimal policy obtained using R is a policy loss function:

polcy = (, V*(R) - V(R)I p (3.5)

where p is a norm. It is shown in [71] that the policy which minimizes (3.5) is the

optimal policy obtained using the mean of the posterior (3.1).

Thus, for both the reward estimation and policy learning tasks, inference of

the mean of the posterior (3.1) is required. Markov chain Monte Carlo (MCMC)

techniques are appropriate for this task [5]. The method proposed in [71], termed

PolicyWalk, iterates as follows. Given a current reward vector R, sample a new pro-

posal R randomly from the neighbors of R on a grid of length 6, i.e. R = R except

for one randomly chosen s E S:

R(s) = R(s) + 6 (3.6)

{Pr(RJO)The proposal is accepted (R := R) with probability min 1, Pr(RO) where the

posteriors are given by (3.1) so that:

Pr(RjO) _ Pr(OjR)Pr(R) Pr(O) _ Pr(OIR)Pr(R) (3-7)
Pr(RJO) Pr(O) Pr(OIR)Pr(R) Pr(OIR)Pr(R)

The mean of the posterior is thus approximated by the empirical mean of R over all

of the iterations. Note that none of the normalizing constants are needed and thus

the likelihood and prior only need to be known to a constant. Here it is also noted

that finding Q* for the likelihood calculation requires the MDP to be solved using R,

and this must be done at every MCMC iteration. Solving the MDP each iteration is

typical among IRL algorithms and is computationally challenging [13], highlighting

the need to reduce the number of iterations to the extent possible.
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Figure 3-1: Room World MDP, showing the walls (maroon), zero reward (cyan), posi-
tive reward (dark blue), negative reward (yellow), and example expert demonstration

(red).

3.2 Limitations of Standard Bayesian IRL

In this section, a simple example is presented that illustrates some practical limita-

tions of the original Bayesian IRL algorithm from [71].

3.2.1 Room World MDP

"Room World", shown in Figure 3-1, is a 15 x 15 grid with walls that form five rooms.

The true reward function consists of a block of negative reward in the center room,

positive reward in the lower-left room, and zero reward elsewhere. The agent can
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choose from four actions (up, down, left, right). If "up" is chosen, the agent moves

up with probability 0.75, left or right each with probability 0.1, and stays in the

same cell with probability 0.05 (and similarly for the other actions). The agent is

not allowed to enter wall states. The discount factor is 0.93 and the magnitude

of rewards is 0.01. The "expert" executes the optimal policy found using the true

reward function. To simulate an imperfect expert, the optimal action is chosen with

probability 0.95, and a random action is chosen otherwise. The expert always starts

in the cell (x, y) = (10, 6). An example expert demonstration is shown in red in

Figure 3-1.

3.2.2 Applying Bayesian IRL

The Bayesian IRL algorithm presented in [71] is applied to attempt to learn the

reward function for the Room World MDP given a set of 100 expert demonstrations

shown in Figure 3-3. The reward vector is assumed to be composed of independently

identically distributed (i.i.d.) components, each with prior distribution:

Pr(R) = O.4e0OO1(R-Rmax). 2 + 0.4e-001(R-Rmin) 2 +e 0 .001(R) 2  (3.8)

as shown in Figure 3-2 (recall that the prior only needs to be known to a constant).

This prior reflects external knowledge that for any given state the reward is most

likely zero, and if not than will likely take the minimum or maximum reward value. 1

For the Room World MDP with 225 states, the policy loss (defined in Section 3.4)

converges after roughly 600 iterations as seen in Figure 3-4. Recall that each iteration

requires solving the MDP to find the optimal policy according to the proposed reward

function. While time can sometimes be saved by bootstrapping from the previous

solution, the number of MCMC iterations required for a more realistically-large state

space will quickly become prohibitive. There are two main reasons for this inefficiency,

each discussed below.

1Note that the ability of Bayesian IRL to impose a prior such as this effectively reduces the
ambiguity and ill-posedness of the IRL reward estimation problem by intuitively limiting the space
of possible reward functions.

51



Reward Function Prior
1.5

0~

Rmin 0 Rmax
Reward R

Figure 3-2: Reward function prior distribution (scaled).

Limited expert information: Foremost, in large state spaces, the set of expert

demonstrations given to the BIRL algorithm contains a limited amount of information

relative to the entire state space. Intuitively, it would be difficult to infer much about

the reward function in the upper-right room since there are no observed state-action

pairs near that area. Even so, standard BIRL will attempt to infer the reward of every

state. Empirically, the estimates in states far from any expert demonstrations tend to

"wander", slowing convergence of the posterior reward distribution as a whole. More

concretely, when a new proposal is drawn in which a far-away state is perturbed, the

effect on the likelihood of the evidence and the prior as a whole is very small. Thus

Pr(RO) ~ Pr(RIO) and the acceptance probability P( ~ 1, meaning that the

new proposal will most likely be accepted. As a result, the reward estimate at far-

away states will change frequently and in a way that is not affected by the evidence.

The efficiency of the algorithm suffers since it spends much of its time attempting to

infer the reward in states for which it has little expert evidence.

Exploration vs. exploitation: The MCMC algorithm must search over a re-

ward function space whose dimension is the number of MDP states. Even for toy

problems this can grow quickly, and as mentioned before the number of MCMC iter-

ations needed to approximate the mean of the posterior will become extremely large.

Simulated annealing is a method used to focus the sampled distribution around it's

maximum by using a modified acceptance probability of Pr(RIO) 1 where T is a
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decreasing "cooling schedule" [5]. While this method is typically used to estimate the

maximum of the posterior (MAP), it provides a "knob" to focus the samples on areas

of higher posterior probability essentially trading exploration of the full distribution

for exploitation of it's peaks. For high-dimensional reward spaces (i.e. MDPs with a

large number of states), this is necessary to reduce the number of samples needed to

converge to a high-probability area of the posterior.

3.3 Modifications to the BIRL Algorithm

This section describes two modifications to the original Bayesian IRL algorithm to

address the aforementioned limitations. The modified BIRL method is shown in

Algorithm 3 and explained below.

3.3.1 Kernel-based Relevance Function

It is unlikely that the observed expert demonstrations will span every state of the

MDP, or even provide a sparse covering of the entire state space for large problems.

Thus it is naive to assume that the reward function over the entire state space can

be accurately inferred. Instead, it would make intuitive sense to learn the rewards in

states "similar to" those encountered by the expert. The notion of similarity must

be rigorously defined, and for this a kernel function is used. Kernel functions are

commonly used in machine learning for exactly this purpose [79], and are defined as

the dot product of two feature vectors. A feature is a mapping from states to feature

space 4 : S - Rx, so that the corresponding kernel function is given by:

k(s, s') = 4)'(s) - 4 (s') (3.9)

While k(s, s') corresponds to a dot product of feature vectors, this dot product need

not be explicated. For instance, the popular radial basis kernel k(s, s') = e-IIsS'1/21 2

represents the dot product of an infinitely long feature vector [79]. The kernel function

is passed in as a parameter to the modified algorithm, and is used to define the state
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relevance function p : S " [0, 1]:

S k(s, s')

p(s) = sEO Z (3.10)

where 0 is the set of expert state-action pairs and Z = max p(s) is a normalizing
sES

constant. Intuitively p(s) is a normalized measure of how similar state s is to the set

of states encountered by the expert.

The state relevance p(s) is used in the modified BIRL algorithm shown in Algo-

rithm 3 as follows. To propose a new reward vector R, a state 9 E S is sampled

at random. The state is accepted with probability p(g), and the new reward vector

proposal is chosen such that R := R, except for fl(g) = R(§) i 6. If § is rejected, the

process repeats until a state is accepted. This process models the original BIRL al-

gorithm closely, except that now the reward search is focused more heavily on states

that are more similar to those encountered by the expert. In the trivial case of a

constant kernel k(s, s') = C (i.e. each state s is equally similar to all other states),

the original BIRL algorithm PolicyWalk from [71] is obtained.

The modified BIRL algorithm initializes the reward vector R to the maximum of

the prior. This is because the state relevance modification causes the algorithm to

effectively not infer the reward vector for states with a low relevance score, and thus

the reward in these states needs to be initialized to a reasonable value. The relevance

function can thus be thought of as a state-by-state measure of how much the expert

demonstrations will affect the reward estimate at that state.

3.3.2 Cooling Schedule

As discussed in Section 3.2, the original BIRL algorithm lacks the ability to trade

off exploration for exploitation in order to speed up convergence of the posterior.

To address this, a small modification to the acceptance probability is made. As in
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Algorithm 3 Modified BIRL Algorithm

1: function MODIFIEDBIRL(Posterior Pr(RO), MDP/R M, Kernel k, Cooling Sched. Ti, Step Size

6)

2: Initialize reward vector R to the max of the prior

3: (7r *, Q*) +- ValueIterat ion(M, R)

4: while iteration i < Imax do
5: Draw 9 c S at random, accept 9 with prob. p(g) from (3.10) or repeat
6: R +- R, except for R(s) = R(9) ± (
7: (-r*, Q*) <- Value Iterat ion(M, R, 7r*)

8: R -R and r* <- ir* with prob. min I(Pr(fIl/T
8: * min~1 Pr(RIO) j

9: end while

10: return R

11: end function

Simulated Annealing, the new acceptance probability is:

( Pr(RIO)
Paccept =mmn <1' Pr(RIO) (3.11)

where T is a cooling schedule (which is a function of iteration number i) passed into

the algorithm. As T decreases, the proposals will focus more heavily on areas of

large posterior probability (favoring exploitation). Selection of the cooling schedule

is left as a parameter, though there are many popular methods in the literature [5].

As will be shown in Section 3.4, the use of a simple decreasing cooling schedule in

the modified BIRL algorithm allows the MCMC process to first find areas of high

posterior probability then focus the samples towards them.

3.4 Simulation Results

To compare the performance of the original Bayesian IRL algorithm to the modified

BIRL method proposed in Section 3.3, the Room World MDP presented in Section

3.2.1 is used with the imperfect expert as described in Section 3.1 providing 100

demonstrations each of length 50 (shown in Figure 3-3). Four variations are compared:
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1. PolicyWalk BIRL: The algorithm exactly as presented in [71] with likelihood

given by (3.3), prior given by (3.8), a = 0.95, and 6 = 1/3.

2. PolicyWalk BIRL with Cooling: Same as above, but with the a cooling

schedule added as described in Section 3.3.2. The cooling parameter was set to

1/Ti = 25 + i/50 where i is the MCMC iteration number.

3. Modified BIRL with narrow state relevance kernel: BIRL with cooling

as above, but also using the state relevance function from Section 3.3.1. The

relevance kernel is a simple radial basis kernel that uses Euclidean distance as

the measure of similarity:

k(s, s') = e-Iis-' 12 / 2a2 (3.12)

with - = 0.1. Figure 3-3 (left) shows the corresponding state relevance given

the expert demonstrations (overlaid).

4. Modified BIRL with wide state relevance kernel: Same as above but

with a "wider" state relevance kernel defined using a = 1. This is shown in

Figure 3-3 (right), and compared to the narrower kernel above it has high value

over a wider set of states around the expert demonstrations.

Figure 3-4 compares the 0-1 policy loss for each of the four algorithms as a function

of the MCMC iteration number, averaged over ten episodes. At each iteration, the

current MCMC reward vector R is used to find the optimal policy 7r*, and the 0-1

policy loss is simply the number of expert state-action pairs that do not agree with

7r* (i.e. the number of times the expert made the wrong decision according to the

current reward function estimate). Policy loss is chosen as the measure of algorithm

performance over reward loss given the ill-posedness of the IRL problem to recover

the exact rewards.

Bayesian IRL with a cooling schedule (green triangles) is shown to converge

roughly three times faster than standard Bayesian IRL (blue line). Both losses reach

the same final value of roughly 500. Intuitively this is explained by the fact that the
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Figure 3-3: State relevance scores for a narrow RBF relevance kernel (left) and a wide
RBF relevance kernel (right). Cyan corresponds to zero and dark blue corresponds
to one. The set of 100 expert demonstrations are overlaid in red.

cooling schedule allows the algorithm to more quickly focus the samples on peaks in

the posterior reward distribution.

The modified BIRL algorithms, which make use of the relevance kernel (cyan

crosses and red dashed line), converge much more quickly (roughly ten times faster

than standard BIRL). This is a result of the inference being directed towards states

where there is more expert information instead of wasting time in irrelevant states.

In addition, the modified BIRL algorithms converge to about half the loss of original

BIRL, implying that the solutions not only converge faster but are also more accurate.

It is interesting to note the difference in performance between the two modified IRL

algorithms (one using the narrow kernel and one using the wide kernel). The algorithm

using the narrow kernel converges faster but to a larger steady-state loss; i.e. inferring

the rewards over less states yields faster convergence but restricts the algorithm's

ability to accurately explain the evidence. Intuitively this gives the algorithm designer

the ability to tradeoff accuracy for lowered computation time by varying the width

of the relevance kernel.
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Figure 3-4: The 0-1 policy loss versus number of MCMC iterations for the RoomWorld
example comparing original BIRL, BIRL with a cooling schedule, modified Bayesian
IRL with a narrow relevance kernel, and modified Bayesian IRL with a wide relevance
kernel.

3.5 Summary

This chapter presents two key modifications to the original Bayesian IRL framework

based on the observation that the information contained in the expert demonstrations

may not apply to the entire state space. The modifications are shown to reduce

convergence time substantially while maintaining solution quality. The proposed

methods allow the user to tradeoff computation time for solution accuracy by defining

a kernel function that focuses the inference task on states similar to those encountered

by the expert. If the kernel function provided is simply a constant, the original BIRL

algorithm from [71] is obtained.

Active IRL [53] is a related algorithm which also attempts to improve the efficiency

of BIRL by asking the expert for additional demonstrations in states where the policy

is most uncertain. While Active IRL is shown to improve performance, there are two

main drawbacks. First, Active IRL relies on the fact that the expert can be asked

for more information whereas in many situations this is not possible. Second, Active

IRL does nothing to improve the tractability of the initial solution (before the expert
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is asked for more demonstrations). Thus, like BIRL, Active IRL remains intractable

for large state spaces.
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Chapter 4

Bayesian Nonparametric Inverse

Reinforcement Learning

Of the many IRL algorithms developed [2, 53, 61, 71, 74, 90, 100] (including the two

BIRL methods from Chapter 3), all attempt to find one single reward function that

explains the entirety of the observed demonstration set. This reward function must be

necessarily complex in order to explain the data sufficiently, especially when the task

being demonstrated is itself complicated. Searching for a complex reward function is

fundamentally difficult for two reasons. First, as the complexity of the reward model

increases, so too does the number of free parameters needed to describe the model.

Thus the search is over a larger space of candidate functions. Second, the process

of testing candidate reward functions requires solving for the MDP value function,

the computational cost of which typically scales poorly with the size of the MDP

state space, even for approximate solutions [13]. Finding a single complex reward

function to explain the observed demonstrations consequently requires searching over

a large space of possible solutions and substantial computational effort to test each

candidate.

One potential solution to these problems would be to partition the observations

into sets of smaller sub-demonstrations. Then, each sub-demonstration could be

attributed to a smaller and less-complex class of reward functions. However, such a

method would require manual partitioning of the data into an unknown number of
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groups, and inferring the reward function corresponding to each group.

The primary contribution of this chapter is to present an IRL algorithm that

automates this partitioning process using Bayesian nonparametric methods. Instead

of finding a single complex reward function the demonstrations are partitioned and

each partition is explained with a simple reward function. A generative model is

assumed in which these simple reward functions can be interpreted as subgoals of the

demonstrator. The generative model utilizes a Chinese Restaurant Process (CRP)

prior over partitions so that the number of partitions (and thus subgoals) need not

be specified a priori and can be potentially infinite.

A key advantage of this method is that the reward functions representing each

subgoal can be extremely simple. For instance, one can assume that a subgoal is a

single coordinate of the state space (or feature space). The reward function could

then consist of a single positive reward at that coordinate, and zero elsewhere. This

greatly constrains the space of possible reward functions, yet complex demonstrations

can still be explained using a sequence of these simple subgoals. Also, the algorithm

has no dependence on the sequential (i.e. temporal) properties of the demonstrations,

instead focusing on partitioning the observed data by associated subgoal. Thus the

resulting solution does not depend on the initial conditions of each demonstration,

and moreover naturally handles cyclic tasks (where the agent begins and ends in the

same state).

4.1 Subgoal Reward and Likelihood Functions

This section describes the Bayesian nonparametric subgoal IRL algorithm. The fol-

lowing are two definitions necessary to the algorithm.

Definition 1. A state subgoal g is simply a single coordinate g C S of the MDP state

space. The associated state subgoal reward function Rg(s) is:

Rg(S) c at state g (4.1)
0 at all other states
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where c is a positive constant.

While the notion of a state subgoal and its associated reward function may seem

trivial, a more general feature subgoal will be defined in the following sections to

extend the algorithm to a feature representation of the state space.

Definition 2. An agent in state si moving towards some state subgoal g chooses an

action ai with the following probability:

P(a Isi, g) = 7r(aiIsi, g) e (4.2)

a

Thus 7r defines a stochastic policy as in [87], and is essentially our model of ra-

tionality for the demonstrating agent (this is the same rationality model as in [71]

and [8]). In Bayesian terms, it defines the likelihood of observed action ai when the

agent is in state si. The hyperparameter a represents our degree of confidence in the

demonstrator's ability to maximize reward.

4.2 Generative Model

The set of observed state-action pairs 0 defined by (2.7) are assumed to be generated

by the following model. The model is based on the likelihood function above, but

adds a CRP partitioning component. This addition reflects our basic assumption that

the demonstrations can be explained by partitioning the data and finding a simple

reward function for each partition.

The model assumes that an agent finds itself in state si (because of the Markov

property, the agent need not consider how he got to si in order to decide which action

ai to take). In analogy to the CRP mixture described in Section 2.3, the agent chooses

which partition ai should be added to, where each existing partition j has its own

associated subgoal gj. The agent can also choose to assign ai to a new partition

whose subgoal will be drawn from the base distribution P(g) of possible subgoals.

The assignment variable zi is set to denote that the agent has chosen partition zi,
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and thus subgoal g,. As in equation (2.8), P(zizi:i_1) = CRP(7, zi:i-i). Now that a

partition (and thus subgoal) has been selected for ai, the agent generates the action

according to the stochastic policy ai ~ 7r(ailsi, g.,) from equation (4.2).

The joint probability over 0, z, and g is given below, since it will be needed to

derive the conditional distributions necessary for sampling:

P(0, z, g) = P(OIz,g) P(z,g) (4.3)

= P(Ojz,g) P(z) P(g) (4.4)
N JN

= 7J P(oilgz ) P(ziIzi) H P(g) (4.5)

i1 likelihood CRP j prior

where (4.4) follows since subgoal parameters gj for each new partition are drawn

independently from prior P(g) as described above. As shown in (4.5), there are three

key elements to the joint probability. The likelihood term is the probability of taking

each action ai from state si given the associated subgoal gz,, and is defined in (4.2).

The CRP term is the probability of each partition assignment zi given by (2.8). The

prior term is the probability of each partition's subgoal (JN is used to indicate the

number of partitions after observing N datapoints). The subgoals are drawn i.i.d.

from discrete base distribution P(g) each time a new partition is started, and thus

have non-zero probability given by P(gj).

The model assumes that oi is conditionally independent of o0 for i # j given g,,.

Also, it can be verified that the CRP partition probabilities P(zilz-i) are exchange-

able. Thus, the model implies that the data 0 are exchangeable [37]. Note that this

is weaker than implying that the data are independent and identically distributed

(i.i.d.). The generative model instead assumes that there is an underlying grouping

structure that can be exploited in order to decouple the data and make posterior

inference feasible.

The CRP partitioning allows for an unknown and potentially infinite number

of subgoals. By construction, the CRP has "built-in" complexity control, i.e. its

concentration hyperparameter q can be used to make a smaller number of partitions
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more likely.

4.3 Inference

The generative model (4.5) has two sets of hidden parameters, namely the partition

assignments zi for each observation oi, and the subgoals gj for each partition j. Thus

the job of the IRL algorithm will be to infer the posterior over these hidden variables,

P(z, gJO). While both z and g are discrete, the support of P(z, gIO) is combinatori-

ally large (since z ranges over the set of all possible partitions of N integers), so exact

inference of the posterior is not feasible. Instead, approximate inference techniques

must be used. As summarized in Section 2.4, Gibbs sampling [38] is in the family of

Markov chain Monte Carlo (MCMC) sampling algorithms and is commonly used for

approximate inference of Bayesian nonparametric mixture models [30, 60, 86]. Since

the posteriors of both the assignments and subgoals are of interest, uncollapsed Gibbs

sampling is used where both the z and g are sampled in each sweep.

Each Gibbs iteration involves sampling from the conditional distributions of each

hidden variable given all of the other variables (i.e. sample one unknown at a time

with all of the others fixed). Thus the conditionals for each partition assignment zi

and subgoal gj must be derived.

The conditional probability for partition assignment zi can be derived as follows:

P(zeiz-, g, 0) Oc P(z , o I z-i, O-) (4.6)

= P(z Iza, g, O-i)P( IzZi, za, g, Oi) (4.7)

= P(z lz-i) P(oilzi, z-ig, O-i) (4.8)

=- P(z lz-i) P(oi~g2 ) (4.9)

CRP likelihood

where (4.6) is the definition of conditional probability, (4.7) applies the chain rule,

(4.8) follows from the fact that assignment zi depends only on the other assignments

z-i, and (4.9) follows from the fact that each oi depends only on its assigned subgoal

9zi -
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When sampling from (4.9), the exchangeability of the data is utilized to treat zi

as if it was the last point to be added. Probabilities (4.9) are calculated with zi being

assigned to each existing partition, and for the case when zi starts a new partition

with subgoal drawn from the prior P(g). While the number of partitions is potentially

infinite, there will always be a finite number of groups when the length of the data

N is finite, so this sampling step is always feasible.

The conditional probabilities for each partition's subgoal gj is derived as follows:

P(gyiz, 0) c P(O,1 g3 , z, Oi1 ,)P(g Iz, Or,) (4.10)

= , P(oi gzi) P(gjz, 0-j) (4.11)

= P(oi gQi) P(g) (4.12)

iEI3  likelihood prior

where (4.10) applies Bayes' rule, (4.11) follows from the fact that each oi depends only

on its assigned subgoal gz,, and (4.12) follows from the fact that the subgoal gj of each

partition is drawn i.i.d. from the prior over subgoals. The index set Ij = {i : zi = j}.

Sampling from (4.12) depends on the form of the prior over subgoals P(g). When

the subgoals are assumed to take the form of state subgoals (Definition 1), then P(g)

is a discrete distribution whose support is the set S of all states of the MDP. In this

chapter, the following simplifying assumption is proposed to increase the efficiency of

the sampling process.

Proposition 1. The prior P(g) is assumed to have support only on the set So of

MDP states, where So = {s E S : s = si for some observation oi = (si, ai)}.

This proposition assumes that the set of all possible subgoals is limited to only

those states encountered by the demonstrator. Intuitively it implies that during

the demonstration, the demonstrator achieves each of his subgoals. This is not the

same as assuming a perfect demonstrator (the expert is not assumed to get to each

subgoal optimally, just eventually). Sampling of (4.12) now scales with the number of

unique states in the observation set 0. While this proposition may seem limiting, the
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simulation results in Section 4.7 indicate that it does not affect performance compared

to other IRL algorithms and greatly reduces the required amount of computation.

Algorithm 4 Bayesian nonparametric IRL

1: function BNIRL(MDP/R, Observations 0, Confidence a, Concentration rI)

2: for each unique si E 0 do
3: Solve for and store V*(Rg), where g = si and Rg is defined by (4.1)

4: Sample initial subgoal glo) from prior P(g) and set all assignments z() 1
5: end for

6: while iteration t < tmax do

7: for each current subgoal g t1) do

8: Sample subgoal g)) from (4.12)
9: end for

10: for each observation oi E 0 do
11: for each current subgoal j() do
12: p(zi = jlz, 0, Rj) <- Probability of subgoal j from (4.9)
13: end for
14: p(zi = kjz, 0, Rk) +- Probability of new subgoal Rk drawn from P(g)

15: zt) +- Sample assignment from normalized probabilities in lines 12-14
16: end for

17: end while

18: return samples z(1:tmax) and g(1:tmax), discarding samples for burn-in and lag

19: end function

Algorithm 4 defines the Bayesian nonparametric inverse reinforcement learning

method. The algorithm outputs samples which form a Markov chain whose stationary

distribution is the posterior, so that sampled assignments z(T) and subgoals g(T)

converge to a sample from the true posterior P(z, g O) as T -+ oc [5, 38]. Note that

instead of solving for the MDP value function in each iteration (as is typical with IRL

algorithms, see Algorithm 1), Algorithm 4 pre-computes all of the necessary value

functions. The number of required value functions is upper bounded by the number

of elements in the support of the prior P(g). When Proposition 1 is assumed, then

the support of P(g) is limited to the set of unique states in the observations 0. Thus
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the required number of MDP solutions scales with the size of the observed data set

0, not with the number of required iterations. This is a perceived advantage in a

learning scenario when the size of the MDP is potentially large but the amount of

demonstrated data is small.

4.4 Convergence in Expected 0-1 Loss

To demonstrate convergence, it is common in IRL to define a loss function which in

some way measures the difference between the demonstrator and the predictive output

of the algorithm [61, 71, 74]. In Bayesian nonparametric IRL, the assignments z and

subgoals g represent the hidden variables of the demonstration that must be learned.

Since these variables are discrete, a 0-1 loss function is suitable:

L [(z, g), (2, Q)] ={0 if (, ) =(zg) (4.13)
1 otherwise

The loss function evaluates to 0 if the estimated parameters (2, ') are exactly equal to

the true parameters (z, g), and 1 otherwise. It must be shown that, for the Bayesian

nonparametric IRL algorithm (Algorithm 4), the expected value of the loss function

(4.13) given a set of observations 0 is minimized as the number of iterations T

increases. Theorem 1 establishes this.

Theorem 1. Assuming observations 0 are generated according to the generative

model defined by (4.5), the expected 0-1 loss defined by (4.13) is minimized by the

empirical mode of the samples (Z(1T), g(l:T)) output by Algorithm 4 as the number of

iterations T -+ oc.

Proof. It can be verified that the maximum a posteriori (MAP) parameter values,

defined here by

(Z, )= argmax P(z, g10)
(z,g)

minimize the expected 0-1 loss defined in (4.13) given the observations 0 (see [12]).

By construction, Algorithm 4 defines a Gibbs sampler whose samples (z(1:T), g(l:T))
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converge to samples from the true posterior P(z, g O) so long as the Markov chain

producing the samples is ergodic [38]. A sufficient condition for ergodicity of the

Markov chain in Gibbs sampling requires only that the conditional probabilities used

to generate samples are non-zero [59]. For Algorithm 4, these conditionals are defined

by (4.9) and (4.12). Since clearly the likelihood (4.2) and CRP prior (2.8) are always

non-zero, then the conditional (4.9) is always non-zero. Furthermore, the prior over

subgoals P(g) is non-zero for all possible g by assumption, so that (4.12) is non-zero

as well.

Thus the Markov chain is ergodic and the samples (z(lT), g(l:T)) converge to sam-

ples from the true posterior P(z, g1O) as T -+ oc. By the strong law of large numbers,

the empirical mode of the samples, defined by

(z,.) = argmax P(z, g1O)
(Z(l:T),g(1:T))

converges to the true mode (z, g) as T -+ oc, and this is exactly the MAP estimate

of the parameters which was shown to minimize the 0-1 loss.

It is noted that, given the nature of the CRP prior, the posterior will be mul-

timodal (switching partition indices does not affect the partition probability even

though the numerical assignments z will be different). As such, the argmax above is

used to define the set of parameter values which maximize the posterior. In practice,

the sampler need only converge on one of these modes to find a satisfactory solution.

The rate at which the loss function decreases relies on the rate the empirical

sample mode(s) converges to the true mode(s) of the posterior. This is a property

of the approximate inference algorithm and, as such, is beyond the scope of this

chapter (convergence properties of the Gibbs sampler have been studied, for instance

in [75]). As will be seen empirically in Section 4.7, the number of iterations required

for convergence is typically similar to (or less than) that required for other IRL

methods.
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4.5 Action Prediction

IRL algorithms find reward models with the eventual goal of learning to predict what

action the agent will take from a given state. As in Algorithm 1, the typical output

of the IRL algorithm is a single reward function that can be used to define a policy

which predicts what action the demonstrator would take from a given state.

In Bayesian nonparametric IRL (Algorithm 4), in order to predict action ak

from state Sk, a subgoal must first be chosen from the mode of the samples g =

mode(g(1:T)). This is done by finding the most likely partition assignment Zk after

marginalizing over actions using Equation (4.6):

Zk = argmax E P(Zi i, O = (sk,a) ) (.1
Zi a

where Z is the mode of samples z(1:T). Then, an action is selected using the policy

defined by (4.2) with -z, as the subgoal.

Alternatively, the subgoals can simply be used as waypoints which are followed in

the same order as observed in the demonstrations. In addition to predicting actions,

the subgoals in ' can be used to analyze which states in the demonstrations are

important, and which are just transitory.

4.6 Extension to General Linear Reward Functions

Linear combinations of state features are commonly used in reinforcement learning

to approximately represent the value function in a lower-dimensional space [13, 87].

Formally, a k-dimensional feature vector is a mapping D : S h-+ Rk. Likewise, a

discrete k-dimensional feature vector is a mapping D : S -> Zk, where Z is the set of

integers.

Many of the IRL algorithms listed in Section 2.2 assume that the reward function

can be represented as a linear combination of features. Algorithm 4 is extended to

accommodate discrete feature vectors by defining a feature subgoal in analogy to the

state subgoal from Definition 1.
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Definition 3. Given a k-dimensional discrete feature vector 4), a feature subgoal g(f)

is the set of states in S which map to the coordinate f in the feature space. Formally,

g(f) {s C S : <b(s) = f} where f E Zk. The associated feature subgoal reward

function Rg(f)(s) is defined as follows:

Rg(w(s) = ) s gf (4.15)
0, S g(f)

where c is a positive constant.

From this definition it can be seen that a state subgoal is simply a specific in-

stance of a feature subgoal, where the features are binary indicators for each state

in S. Algorithm 4 runs exactly as before, with the only difference being that the

support of the prior over reward functions P(g) is now defined as the set of unique

feature coordinates induced by mapping S through #. Proposition 1 is also still valid

should the set of possible subgoals be limited to only those feature coordinates in the

observed demonstrations, b(s1:N). Finally, feature subgoals do not modify any of the

assumptions of Theorem 1, thus convergence is still attained in 0-1 loss.

4.7 Simulation Results

Simulation results are given for three test cases. All three use a 20 x 20 Grid World

MDP (total of 400 states) with walls. Note that while this is a relatively simple MDP,

it is similar in size and nature to experiments done in the seminal papers of each of

the compared algorithms. Also, the intent of the experiments is to compare basic

properties of the algorithms in nominal situations (as opposed to finding the limits

of each).

The agent can move in all eight directions or choose to stay. Transitions are noisy,

with probability 0.7 of moving in the chosen direction and probability 0.3 of moving

in an adjacent direction. The discount factor -y = 0.99, and value iteration is used to

find the optimal value function for all of the IRL algorithms tested. The demonstrator

in each case makes optimal decisions based on the true reward function. While this is
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not required for Bayesian nonparametric IRL, it is an assumption of one of the other

algorithms tested [2]. In all cases, the 0-1 policy loss function is used to measure

performance. The 0-1 policy loss simply counts the number of times that the learned

policy (i.e. the optimal actions given the learned reward function) does not match

the demonstrator over the set of observed state-action pairs.

4.7.1 Grid World Example

The first example uses the state-subgoal Bayesian nonparametric IRL algorithm. The

prior over subgoal locations is chosen to be uniform over states visited by the demon-

strator (as in Proposition 1). The demonstrator chooses optimal actions towards each

of three subgoals (x, y) = {(10, 12), (2, 17), (2, 2)}, where the next subgoal is chosen

only after arrival at the current one. Figure 4-1 shows the state-action pairs of the

demonstrator (top left), the 0-1 policy loss averaged over 25 runs (top right), and the

posterior mode of subgoals and partition assignments (colored arrows denote assign-

ments to the corresponding colored boxed subgoals) after 100 iterations (bottom).

The algorithm reaches a minimum in loss after roughly 40 iterations, and the mode

of the posterior subgoal locations converges to the correct coordinates. It is noted

that while the subgoal locations have correctly converged after 100 iterations, the

partition assignments for each state-action pair have not yet converged for actions

whose subgoal is somewhat ambiguous.

4.7.2 Grid World with Features Comparison

In the next test case, Bayesian nonparametric IRL (for both state- and feature-

subgoals) is compared to three other IRL algorithms, using the same Grid World

setup as in Section 4.7.1: "Abbeel" IRL using the quadratic program variant [2],

Maximum Margin Planning using a loss function that is non-zero at states not vis-

ited by the demonstrator [74], and Bayesian IRL [71]. A set of six features #1:6 (s) are

used, where feature k has an associated state so,. The value of feature A at state s is

72



Observed Demonstrations

-a - L

-4- -

- -

Al- -

L4--

-- 4 I I

C:

0

0
.CL

10
X-position

50

45

(D40
CM

35

cc
30

25
LO

C14
20

0
-j 15

~10
5

0-1 Policy Loss

---- BN-IRL State

- - --B

- ..---- ....- ... -

-..... - .- .- - .-

10 15 20 0 20 40 60
X-position Iteration

Posterior Mode Subgoals
20

18

16

14

12

10

8

6

4

2

5

80 100

2015

Figure 4-1: Observed state-action pairs for simple grid world example (top left), where
arrows indicate direction of the chosen action and X's indicate choosing the "stay"
action. 0-1 policy loss for Bayesian nonparametric IRL (top right). Posterior mode
of subgoals and partition assignments (bottom). Colored arrows denote assignments
to the corresponding colored boxed subgoals.

73

20

C
0

0

18

16

14

12

10

8

6

4

2

-A-

-- 1

- -
-4I
-4---------------



simply the Manhattan distance (1-norm) from s to s0:

O~k (-) = 1 - '50k I 1 (4.16)

The true reward function is defined as R(s) = w'k(s) where w is a vector of

randomly-chosen weights. The observations consist of five demonstrations starting

at state (x, y) = (15, 1), each having 15 actions which follow the optimal policy corre-

sponding to the true reward function. Note that this dataset satisfies the assumptions

of the three compared algorithms, though it does not strictly follow the generative

process of Bayesian nonparametric IRL. Figure 4-2 shows the state-action pairs of

the demonstrator (top) and the 0-1 policy loss, averaged over 25 runs versus itera-

tion for each algorithm (bottom). All but Bayesian IRL achieve convergence to the

same minimum in policy loss by 20 iterations, and Bayesian IRL converges at roughly

100 iterations (not shown). Even though the assumptions of Bayesian nonparametric

IRL were not strictly satisfied (the assumed model (4.5) did not generate the data),

both the state- and feature-subgoal variants of the algorithm achieved performance

comparable to the other IRL methods.

4.7.3 Grid World with Loop Comparison

In the final experiment, five demonstrations are generated using subgoals as in Section

4.7.1. The demonstrator starts in state (x, y) = (10, 1), and proceeds to subgoals

(x, y) = {(19, 9), (10, 17), (2, 9), (10, 1)}. Distance features (as in Section 4.7.2) are

placed at each of the four subgoal locations. Figure 4-3 (left) shows the observed

state-action pairs. This dataset clearly violates the assumptions of all three of the

compared algorithms, since more than one reward function is used to generate the

state-action pairs. However, the assumptions are violated in a reasonable way. The

data resemble a common robotics scenario in which an agent leaves an initial state,

performsome tasks, and then returns to the same initial state.

Figure 4-3 (center) shows that the three compared algorithms, as expected, do not

converge in policy loss. Both Bayesian nonparametric algorithms, however, perform
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almost exactly as before and the mode posterior subgoal locations converge to the

four true subgoals (Figure 4-3 right). Again, the three compared algorithms would

have worked properly if the data had been generated by a single reward function,

but such a reward function would have to be significantly more complex (i.e. by

including temporal elements). Bayesian nonparametric IRL is able to explain the

demonstrations without modification or added complexity.

4.7.4 Comparison of Computational Complexities

BNIRL has two stages of computation:

" In the initialization stage, optimal action-value functions are computed for each

candidate reward state, i.e. for each unique demonstration state by Proposition

1. Since many methods exist for finding optimal action-value functions [13, 87],

the computational complexity of the operation will be referred to as O(MDP).

" In the sampling stage, each iteration requires assigning observations to a subgoal

reward. The complexity of each sampling iteration is

O(Nobs 1 log Nobs),

where Nos is the number of observed state-action pairs in the demonstration,

rq is the CRP concentration parameter, and r log Nebs is the expected number

of active subgoals in the CRP.

The overall complexities of each stage are not directly comparable since results

on the number of iterations required for Gibbs sampling convergence are not well

established [75]. However, in practice the first stage (calculating optimal action-value

functions) dominates the complexity of the overall algorithm.

As outlined below, other IRL algorithms calculate optimal action value functions

once per iteration. Since BNIRL calculates the optimal action value function at a

maximum of once per demonstration state, a rough complexity comparison can be
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made by comparing the number of times the MDP must be solved for each algorithm.

The following summarizes a complexity analysis given in each respective original work:

1. Abbeel IRL [1]: An upper bound on the number of iterations required to

guarantee feature count matching error j is given as 48k where k is theguarantee (1 - Y) 'ki h

dimension of the state space and 'y is the MDP discount factor. Each iteration

requires computation of an optimal action-value function.

2. Bayesian IRL [71]: The number of iterations required is related to the mix-

ing time of the MCMC method used. The chain is said to "rapidly mix" in

O(rT2d2 a22 1 log -) sampling iterations, where T is the dimension of the state

space, d is a bound on the reward magnitude, and a, 8 and E are parame-

ters. Each sampling iteration requires computation of an optimal action-value

function.

3. MaxMargin IRL [74]: While no analytical expression is given, convergence is

said to be sub-linear for a diminishing step-size rule which achieves a minimum

in error under a strong convexity assumption. As in the above two algorithms,

each iteration requires computation of an optimal value function.

Thus, the effective complexity of the other algorithms (the number of optimal

value functions that must be computed) scales with the number of iterations needed

for convergence. As shown above, the number of required iterations can depend on

many parameters of each algorithm. In BNIRL, the effective complexity is upper-

bounded by the number of unique states in the demonstration. This highlights a

fundamental computational difference of BNIRL versus previous methods.

To give an empirical sense of computation times for the example in Section 4.7.2,

Table 4.1 compares average initialization and per-iteration run-times for each of the

algorithms. These are given only to show general trends, as the Matlab implementa-

tions of the algorithms were not optimized for efficiency. The initialization of Bayesian

nonparametric IRL takes much longer than the others, since during this period the

algorithm is pre-computing optimal value functions for each of the possible subgoal
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locations (i.e. each of the states encountered by the demonstrator). However, the

Bayesian nonparametric IRL per-iteration time is roughly an order of magnitude less

than the other algorithms, since the others must re-compute an optimal value function

each iteration.

Table 4.1: Run-time comparison for various IRL algorithms.

Initialization Per-iteration Iter. to Total

(sec) (sec) Converge (sec)
BNIRL 15.3 0.21 10 17.4

Abbeel-IRL 0.42 1.65 10 16.9
MaxMargin-IRL 0.41- 1.16 20 23.6

Bayesian-IRL 0.56 3.27 105 344

The example which generated the data in Table 4.1 was selected for BNIRL to

perform comparably in overall runtime to Abbeel IRL such that a fair comparison

of initialization versus per-iteration runtimes can be made. This selection highlights

the fundamental performance tradeoff between BNIRL and the other IRL methods

compared. By Proposition 1, BNIRL limits the candidate subgoals to the states

observed in the demonstration. This proposition limits the potential complexity of

the reward representation, but it also places an upper-bound on the number of value

functions that must be calculated. In the compared IRL methods, the reward function

is parametrized and the algorithms iteratively search over a continuous parameter

space, computing a new value function at each iteration. In this case, no assumption

is made about the number of candidate reward functions (other than the reward

parameterization itself) at the cost of an asymptotic number of value functions to be

computed.

As a result of this fundamental difference in algorithmic structure, there are sce-

narios when BNIRL will perform computationally faster than the other methods, and

vice versa. In cases where the demonstration set is small and there are a large number

of demonstrator subgoals, BNIRL will generally execute faster since its computation

scales with the number of unique demonstration states and it has the ability to learn

multiple subgoal reward functions. The other IRL methods will generally execute

slower in this case, since they must search for a more complex representation. In
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cases where there is a large amount of demonstration data and there are not multiple

subgoals, BNIRL will generally execute slower since it must find a value function

for each unique demonstration state. The other IRL will generally execute faster

in this case, since their computation does not scale with demonstration size and a

less-complex reward representation is required.

4.8 Summary

This chapter proposed a new inverse reinforcement learning method which is able

to learn multiple reward functions from a single demonstration. The method uses a

Bayesian nonparametric mixture model to automatically partition the data and find

a set of simple reward functions corresponding to each partition. The simple rewards

are interpreted intuitively as subgoals, which can be used to predict actions or analyze

which states are important to the demonstrator.

The example in Section 4.7.2 shows that, for a simple problem, Bayesian non-

parametric IRL performs comparably to existing algorithms in cases where the data

are generated using a single reward function. Approximate computational run-times

indicate that overall required computation is similar to existing algorithms. As noted

in Section 4.3, however, Bayesian nonparametric IRL solves for the MDP value func-

tion once for each unique state in the demonstrations. The other algorithms solve for

the MDP value function once per iteration.

The loop example in Section 4.7.3 highlights several fundamental differences be-

tween Bayesian nonparametric IRL and existing algorithms. The example breaks

the fundamental assumption of existing IRL methods, i.e. that the demonstrator

is optimizing a single reward function. These algorithms could be made to properly

handle the loop case, but not without added complexity or manual partitioning of the

demonstrations. Bayesian nonparametric IRL, on the other hand, is able to explain

the loop example without any modifications. The ability of the new algorithm to au-

tomatically partition the data and explain each group with a simple subgoal reward

eliminates the need to find a single, complex temporal reward function. Furthermore,

80



the Chinese restaurant process prior naturally limits the number of partitions in the

resulting solution, rendering a parsimonious explanation of the data.
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Chapter 5

Approximations to the

Demonstrator Likelihood

Chapter 4 presented a Bayesian nonparametric inverse reinforcement learning (BNIRL)

algorithm to address the scalability of IRL methods to larger problems. The BNIRL

algorithm automatically partitions the observed demonstrations and finds a simple

reward function to explain each partition using a Bayesian nonparametric mixture

model. Using simple reward functions (which can be interpreted as subgoals) for each

partition eliminates the need to search over a large candidate space. Also, the num-

ber of partitions is assumed to be unconstrained and unknown a priori, allowing the

algorithm to explain complex behavior.

Results from Section 4.7 show that BNIRL performs similarly to a variety of

conventional IRL methods for small problems, and furthermore can handle cyclic

tasks which break the assumptions of the other methods. However, BNIRL (like

other IRL methods) still relies on computing the optimal MDP value function in order

to test reward function candidates. Calculating the optimal value function becomes

infeasible for large state spaces [87], thus limiting the applicability of BNIRL to small

problems.

The key contribution of this chapter is to offer several effective methods to avoid

computing the optimal MDP value function, enabling BNIRL to scale to much larger

problem domains. In the first method, we modify BNIRL to use a framework known
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as Real-time Dynamic Programming (RTDP) [9]. RTDP effectively limits compu-

tation of the value function to necessary areas of the state space only. This allows

the complexity of the BNIRL reward learning method to scale with the size of the

demonstration set, not the size of the full state space as in Chapter 4. Experimental

results are given for a Grid World domain and show order of magnitude speedups

over exact solvers for large grid sizes.

In the second method, we modify BNIRL to utilize an existing closed-loop con-

troller in place of the optimal value function. This avoids having to specify a dis-

cretization of the state or action spaces, extending the applicability of BNIRL to

continuous domains. Simulation results are given for a pedestrian data set, demon-

strating the ability to learn meaningful subgoals using a very simple closed-loop con-

trol law. In Chapter 7, the approximation is applied experimentally for a quadrotor

flight example which, if discretized, would require over 10" states. In the experiment,

quadrotor flight maneuvers are learned from a human demonstrator using only hand

motions. The demonstration is recorded using a motion capture system and then an-

alyzed by the BNIRL algorithm. Learned subgoal rewards (in the form of waypoints)

are passed as commands to an autonomous quadrotor which executes the learned

behavior in actual flight. The entire process from demonstration to reward learning

to robotic execution takes on the order of 10 seconds to complete using a single com-

puter. Thus, the results highlight the ability of BNIRL to use data from a safe (and

not necessarily dynamically feasible) demonstration environment and quickly learn

subgoal rewards that can be used in the actual robotic system.

5.1 Action Likelihood Approximation

The action likelihood (3.3) requires evaluation of the optimal action-value func-

tion Q*(si, aj, R,) which, in turn, involves computing the optimal value function

V*(s, R2,). This computation must be performed for each candidate reward function

R (most other IRL methods [2, 61, 71, 74, 90, 100] have the same requirement). Stan-

dard methods for finding the optimal value function, including value iteration and
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linear programming, scale polynomially with the number of states [13]. As a result,

an approximation for the action likelihood (3.3) is required in order to scale reward

learning to large problems. The following section describes two such approximations,

and the experimental results in Section 3.4 show that both scale well to large domains.

5.1.1 Real-time Dynamic Programming

One method of approximating the action likelihood (3.3) is to approximate the opti-

mal action-value function Q* itself. Approximating Q* given a fully-specified MDP

is a popular area of research known as approximate dynamic programming [13].

Real-time dynamic programming (RTDP) [9] is one such method particularly well-

suited to IRL. The basic premise of RTDP is to start with a set of sample states 5,

which is a small subset of the full state-space, i.e. S c S. Value iteration [87] is

then performed on the sample states to generate a value function which is defined

only over S. A greedy simulation is performed using V*(S) starting from some state

s C S. Each state encountered in the simulation (as well as any neighboring states)

is then added to 5, and the process repeats.

As an example of using RTDP in BNIRL, consider the Grid World domain shown

in Figure 5-1. The agent can move in all eight directions or choose to stay. Transitions

are noisy with probability 0.7 of moving in the chosen direction, and the discount

factor y = 0.99. The demonstration set 0 is denoted by arrows, indicating actions

chosen from each state.

The initial set of RTDP sample states 5 is chosen to be the set of states encoun-

tered in the demonstration 0, as well as any other states reachable in one transition.

Value iteration is performed on these states for an example candidate reward func-

tion, and the resulting value function is shown in Figure 5-1a. A random state s E Oi

is then chosen, and a greedy simulation is performed. All states encountered during

the simulation (as well as any other states reachable in one transition) are added to

S. The cycle repeats, and Figures 5-1b and 5-1c shows the progression of sample

states and corresponding value functions. The process terminates when the greedy

simulation fails to add any new states to S.
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Figure 5-1: Progression of real-time dynamic programming [9] sample states for the
Grid World example. The algorithm starts with the initial set (top) based on the

demonstration set (denoted by arrows), and uses greedy simulations to progressively
expand the set of sample states (middle and bottom) over which value iteration is
performed.
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As the figures illustrate, RTDP only adds states necessary to improve the quality

of the value function around O, thus avoiding unnecessary computation in remote

states. The net result is a reward learning algorithm that scales with the size of

the demonstration set 0, and is agnostic to how large the surrounding state space

may be. Experimental results in Section 3.4 show that BNIRL combined with RTDP

results in order of magnitude computation time decreases as compared to methods

which use exact value function solvers.

5.1.2 Action Comparison

Many learning scenarios involve demonstrations in a continuous domain. Before Q*
can be calculated with conventional techniques, the domain must be discretized. Even

for relatively simple domains, however, the discretization process can result in an

extremely large state space.

Take, for instance, the 2-dimensional quadrotor model shown in Figure 5-2. The

state-space is six-dimensional (two positions, one angle, and their time-derivatives).

Even using modest discretization intervals (1cm, lcm/s, 7r/16 rad, 7r/16 rad/sec)

would require over 1010 states to cover a 1-meter by 1-meter grid. This is unwieldy

even for approximate dynamic programming/model-based RL methods. Thus, trying

to approximate Q* for such domains quickly becomes infeasible.

An alternative to approximating Q* is to instead approximate the entire action

likelihood (3.3) itself. In words, (3.3) represents the likelihood that the demonstrator

took action ai from state si in order to maximize the subgoal reward R,. As defined

in (4.1), BNIRL subgoal rewards comprise a single positive reward for reaching some

coordinate in the state (or feature) space. Thus, approximating (3.3) would simply

require a measure of how likely action ai would be if the demonstrator wanted to go

from si to subgoal g,.

One method for approximating this likelihood would be to compare action ai with

the action aCL given by some closed-loop controller tasked with getting from si to g, .
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Figure 5-2: Two-dimensional quadrotor model, showing y, z, and 0 pose states along
with ', ., and 0 velocity states.

An approximate action likelihood in place of (3.3) would thus be:

P(OilRzi) = P(agIsi, zi) oc e-aIlai-GCL2 (5.1)

where aCL is the action given by some closed-loop controller attempting to go from

si to subgoal gz. It is noted that the scaling of the norm I Iai - aCL 112 is inconsequen-

tial, since probabilities are normalized in Step 15 of the BNIRL sampling procedure

(Algorithm 4).

The form of the closed-loop controller is problem-dependent, but in many cases

a simple controller can be easily synthesized (or already exists). Take, for example,

the 2-dimensional quadrotor in Figure 5-2. Let the states of the demonstration be a

set of observed poses si = (xi, zi, Oj) and the "actions" of the demonstration be the

corresponding set of observed velocities ai = (:i;, ii, 64). A simple controller simply

generates an action aCL that commands a velocity in the direction of the pose error

between si and g,,, i.e.:

aCL OC 9z; - si (5.2)

While this may seem like an overly-simple control law, it is used to generate pedestrian
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subgoal learning simulation results in Section 5.2.2 as well as experimental results in

Section 7.2 which demonstrate the successful learning of autonomous quadrotor flight

maneuvers from hand-held recorded demonstrations.

We see action comparison as a powerful method for approximating the likelihood

(3.3) for several reasons. First, the method requires no discretization of the state or

action spaces, as would be the case for methods which attempt to approximate Q*.

This makes the method well-suited for continuous domains. Second, calculation of

the control action aCL is typically extremely fast compared to calculating (or approx-

imating) an entire action-value function Q*. This allows for real-time reward learning

in many situations, as is shown in Section 7.2. Finally, the form of the closed-loop

controller can be refined based on the degree of knowledge of the expert, enabling

a trade-off between computational complexity and accuracy of the action likelihood

approximation.

5.2 Simulation Results

The following section presents experimental results which apply the two action like-

lihood approximations described in Section 5.1 to relatively large problem domains.

5.2.1 Grid World using RTDP

Consider the Grid World example presented in Section 5.1.1 (shown in Figure 5-1).

In order to test the scalability of the RTDP Q* approximation, the CPU run-times

of five different methods are compared: BNIRL using full value iteration, Abbeel

IRL (from [2], a representative conventional IRL method) using full value iteration,

BNIRL using RTDP, Abbeel IRL using RTDP, and BNIRL using parallelized RTDP.

In the parallel BNIRL case, the pre-computation of the required approximate value

functions is done on a cluster of 25 computing cores. The ability to compute value

functions in parallel is an algorithmic feature of the BNIRL algorithm (since the

number of reward function candidates is finite, see [57]). To the author's knowledge,

Abbeel IRL (as well as other conventional IRL methods [2, 61, 71, 74, 90, 100]) does
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not have a corresponding parallel implementation. Computation is performed on a

Pentium i7 3.4GHz processor with 8GB RAM. Implementations of each algorithm

have not been optimized, and results are only meant to demonstrate trends.

Figure 5-3a shows average CPU run-times of each method (lower is better) for Grid

World domains ranging from 100 to 1,000,000 states. For each domain size, demon-

strations are generated with a greedy controller starting and ending at randomly-

chosen states. As can be seen, both BNIRL and Abbeel IRL using full value iteration

become extremely slow for problems larger than 103 states (data points for 106 states

are not included, as they would take weeks to computing time). Methods using RTDP

are slower for small problem sizes (this is due to the extra time needed for simulations

to expand the set of sample states). However, beyond problems with 103 states, the

RTDP methods are roughly an order of magnitude faster than full value iteration.

Finally, the parallelized BNIRL method using RTDP shows significantly faster per-

formance than the non-parallelized version and Abbeel IRL with RTPD. This is due

to the fact that 25 computing cores can be used in parallel to calculate the necessary

value functions for the BNIRL sampling procedure.

To ensure that the RTDP Q* approximation does not affect the quality of the

learned reward function, Figure 5-3b shows the average 0-1 policy loss of each algo-

rithm (lower is better) for each grid size. The 0-1 policy loss simply counts the number

of times that the learned policy (i.e. the optimal actions given the learned reward

function) does not match the demonstrator over the set of observed state-action pairs.

As can be seen, using RTDP to approximate Q* does not have an adverse effect on

reward learning performance, as the loss for the RTDP methods is only slightly higher

than the full value iteration methods.

5.2.2 Pedestrian Subgoal Learning using Action Comparison

To demonstrate the ability of the action likelihood approximation to learn meaningful

subgoals using comparison to a simple closed-loop control law, pedestrian data from

the Edinburgh Informatics Forum Pedestrian Database [54] is analyzed. Figure 5-4

(top) shows a subset of pedestrian trajectories through a busy forum. In this example,
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the states si = (xi, yi) are the measured and sampled positions of the pedestrians,

and the actions ai = (ti, yi) are the corresponding post-processed velocities. The

closed-loop control law is taken to be the simple velocity controller in (5.2). BNIRL

is applied to the subset of 1,000 trajectory state-action pairs shown in Figure 5-4

(middle), where the trajectories start in the upper-right and typically go to one of

four main locations in the atrium. The approximate likelihood function (5.1) is used,

and the confidence parameter a = 10.

Figure 5-4 (middle) shows the learned subgoals in red. Despite the use of the very

simple control law in (5.2), the algorithm finds subgoals at each of four key locations

in the forum. An extra subgoal is found in the lower right, which is attributed to

noisy post-processed velocity data. Figure 5-4 (bottom) shows the number of learned

subgoals versus sampling iteration, indicating convergence in posterior mode after

roughly 400 iterations. The results demonstrate the ability of BNIRL with action

comparison to learn subgoals using noisy real-world data without the need to specify

an overly-complicated likelihood model or discretize the demonstration domain.

5.3 Summary

This chapter presented several effective methods to avoid computing the optimal

MDP value function, enabling BNIRL to scale to much larger problem domains. In

the first method, BNIRL is modified to use a framework known as Real-time Dynamic

Programming (RTDP) [9]. RTDP effectively limits computation of the value function

to necessary areas of the state space only. This allows the complexity of the BNIRL

reward learning method to scale with the size of the demonstration set, not the size

of the full state space as in Chapter 4. In the second method, an existing closed-loop

controller is used in place of the optimal value function. This avoids having to specify

a discretization of the state or action spaces, extending the algorithm's applicability

to continuous demonstration domains for which a closed-loop controller is available.

The simulation results presented demonstrate several fundamental improvements

over conventional IRL reward learning methods. BNIRL limits the size of the candi-
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Pedestrian Database [54] (top). Subset of pedestrian data with states (position) in
black and actions (velocities) in blue, along with learned subgoals in red (middle).
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tom).
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date reward space to a finite set, allowing for parallelized pre-computation of (approx-

imate) action value functions. This is shown to lead to order-of-magnitude computa-

tional speedups over previous methods. Also, the BNIRL likelihood function can be

approximated using action comparison to an existing closed-loop controller, avoiding

the need to discretize the state space and allowing for learning in continuous demon-

stration domains. Results from a noisy pedestrian dataset show promising subgoal

learning using a very simple closed-loop control law.
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Chapter 6

Gaussian Process Subgoal Reward

Learning

In this chapter, the Bayesian nonparametric inverse reinforcement learning (BNIRL)

method is generalized to handle fully continuous demonstration domains by using

Gaussian process reward representation and Gaussian process dynamic programming

[27] as a method of finding approximate action-value functions. Further, the option

MDP (skills) framework [88] enables execution of the learned behaviors by the robotic

system and provides a principled basis for future learning and skill refinement. In

Chapter 7, experimental results are given for a robotic car domain, identifying ma-

neuvering skills such as drifting turns, executing the learned skills autonomously, and

providing a method for quantifying the relative skill level of the original demonstrator.

6.1 Gaussian Process Subgoal Reward Learning

Algorithm

While the BNIRL algorithm (Algorithm 4) learns multiple reward functions, it is only

applicable in discrete domains. The method is extended to a continuous domain in

Section 5.1.2, but this extension relies on access to an existing closed-loop controller

which may not be available in general. This section presents the Gaussian process
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subgoal reward learning (GPSRL) algorithm, which learns Gaussian process subgoal

reward representations from unsegmented, continuous demonstration. The GPSRL

algorithm assumes two key inputs:

1. The demonstration set of state-action pairs, 0 {(si, ai), (s2 , a2 ), . . . , (sN, aN)-

The continuous demonstration must be measured and downsampled to the de-

sired time interval. Note that this is not the same as discretization of the con-

tinuous state space; it is instead sampling a continuous trajectory at finite time

intervals. As an example, the motion capture data used for the experiments in

Section 7.3 is sampled at 100Hz.

2. A state transition function, s' = f(s, a), which models the dynamics that gener-

ated the demonstration. Note that this is not a model of the demonstrator, just

a model of the state transition given an action. In general, reward learning ne-

cessitates a system model. If no model is available, many system identification

techniques exist which can learn a transition model.

The full GPSRL method is shown in Algorithm 5, comprising three main stages that

are explained in the subsections below. First, the set of candidate subgoal rewards

is constructed (lines 2-7). Next, Gaussian process dynamic programming is used

to approximate the optimal action-value function Q* for each candidate subgoal in

parallel (lines 8-10). Finally, approximate posterior inference is done using Gibbs

sampling (lines 11-19).

6.2 Subgoal Reward Representation

Since the demonstration space is assumed to be continuous, a subgoal reward at

a single coordinate of the state space (as in BNIRL [57]) is ill-defined. A subgoal

reward representation with broader support is achieved using Gaussian processes

(GPs). Each subgoal reward is simply a GP with one training point, GP(sg, r, kg) ,

where s. is the subgoal state, r is a positive scalar reward (the magnitude of which
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Algorithm 5 Gaussian Process Subgoal Reward Learning

1: Rg, Ssupp +- {}

2: for each demonstration state si E 0 do
3: if ||si -sI >C Vs E Ssup then

4: Ssupp- {Ssupp, si} > Build set of

5: Rs- {Rg, GP(si, r, k9)} > Build set of c

6: end if
7: end for

8: for each candidate subgoal RI E R 9 (in parallel) do

9: Q*(Rj) +- GPDP(Supp, Rj, f(s'Is, a)) >
10: end for

11: while iteration t < Niter do > Gibbs sampling of subg

12: for each observation oi c 0 do

13: for each current partition j(t) do

14: p(zi = jlz, 0, Rj) <- Probability of partition

15: end for
16: p(zi = klz, 0, Rk) +- Probability of new partitio

17: zf) +- Sample assignment from normalized prob

18: end for

19: end while

20: return mode of samples z(1:Niter) and associated subgo

support states for GPDP

andidate subgoal rewards

Gaussian process DP [27]

)al posterior assignments

j from (6.3)

n with Rk drawn from R,9

abilities in lines 13-16

al rewards Rj

is not critical to the algorithm), and kg(., -) is a kernel function. The GP spreads the

reward to the neighborhood around s, according to the kernel function kg.

As in BNIRL, a key assumption of GPSRL is that the set of possible subgoals

comes from the demonstration itself, avoiding a priori discretization of the state space

to generate a candidate subgoal reward set. The set of possible rewards R 8, is thus

the set of subgoal rewards corresponding to the sampled demonstration:

Rsg = { GP(s,'r, kg), Vs E O } (6.1)

To avoid redundant subgoals, the set is built incrementally such that a new subgoal

is not added if it is c-close to a subgoal already in R 8, (lines 2-7 of Algorithm 5). The

parameter c is thus chosen to scale the size of the candidate set of subgoal rewards,

and correspondingly the computational requirements of the GPSRL algorithm.
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6.3 Action Likelihood

Inferring reward requires a model for the likelihood of a given observation Oj, i.e. the

relative probability that the demonstrator takes action ai from state si, given some

subgoal reward Rj. A softmax likelihood based on the optimal Q* function is used

similar to (4.2), but requires a maximum in the denominator due to the continuous

action space:

exp ( yQ* (s, ail Ry) )
P(OjjRj) = p(ailsi, Rj) c<c x Q sa j (6.2)

max exp ( aQ (si, aIRl) )
a

Since the demonstration is not assumed to be optimal, a is a parameter that rep-

resents the expected degree to which the demonstrator is able to maximize reward.

In the limit as a -> oo, the demonstrator is assumed perfectly optimal. In the limit

as a -> 0, the demonstrator is assumed to choose arbitrary actions that do not at-

tempt to maximize reward. Thus a is a key parameter of the algorithm, and further

considerations for its selection are given in Section 7.3.1.

6.4 Gaussian Process Dynamic Programming

In order to compute the likelihood value in (6.2), the optimal Q* function is necessary.

In general, calculating the optimal value function for discrete systems is computation-

ally difficult, and even more so for continuous systems. This necessitates the use of

an approximate method, and Gaussian process dynamic programming (GPDP) [27] is

chosen for this purpose. GPDP generalizes dynamic programming to continuous do-

mains by representing the value and action-value functions with Gaussian processes.

Thus, the algorithm requires only a set of support states to train the value function

GPs, instead of requiring discretization or feature mapping of the state space.

GPDP is particularly well-suited for the task of approximating the Q* function

in (6.2) for several reasons. Foremost, the support points used to learn the value

function in GPDP come directly from the demonstration, i.e. Ssupport = {s : s E O}.

This effectively focuses computational effort only on areas of the state space that
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are relevant to the reward learning task. Also, the Gaussian process subgoal reward

representation from Section 6.2 is naturally compatible with the GPDP framework.

Finally, the output of the GPDP algorithm enables evaluation of the approximated

optimal action-value function Q* at any arbitrary state s via evaluation of a GP

mean, allowing for efficient calculation of the likelihood (6.2). Note that the max in

the denominator of (6.2) must be found numerically by evaluating Q* at several test

actions, which in practice are distributed uniformly between action bounds.

The computational complexity of Algorithm 5 is dominated by the GPDP calcu-

lation of Q*(R) for each candidate subgoal reward Rj E R,9 (lines 8-10). However,

this is easily parallelized on a computing cluster allowing for substantial savings in

computation time.

6.5 Bayesian Nonparametric Mixture Model and

Subgoal Posterior Inference

The GPSRL algorithm learns multiple subgoals reward functions from the demonstra-

tion set. To avoid the need to prespecify or constrain the number of learned subgoals,

a Bayesian nonparametric model is used similar to BNIRL. In the model, each state-

action pair in the demonstration 0 is assigned to a partition. The vector z C R101

stores partition assignments, so that zi = j implies that observation O = (si, ac)

is assigned to partition j. Each partition has an associated subgoal from the set of

candidate GP subgoal reward functions Rg. The posterior probability of assignment

zi to partition j is defined as follows (see [57] for a more detailed derivation):

p(zi = jjz, 0, Rj) cc p(zi = jlz_) p(OiI Rj) (6.3)

CRP prior (2.8) action likelihood (6.2)

where Rj is the GP subgoal reward corresponding to partition j. The CRP prior,

which encourages clustering into large partitions, is defined by (2.8). The action

likelihood term, which encourages similarity within partitions, is defined by (6.2).
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As summarized in Section 2.4, Gibbs sampling is a common choice for approximate

inference of Bayesian nonparametric mixture models [60]. Gibbs sampling exploits the

exchangeability of the model by sampling one conditional zi assignment at a time as if

it is the last datapoint to arrive, holding the rest constant. To sample zi, the relative

posterior probability (6.3) is calculated for each non-empty partition j, in addition to

a new partition randomly sampled from R,,. The probabilities are then normalized,

and a new assignment is sampled. After the desired number of sampling iterations,

the mode of the assignment vector z and the corresponding subgoal rewards Rj are

returned. The Gibbs sampling procedure comprises lines 11-19 of Algorithm 5.

6.6 Converting Learned Subgoals to MDP Options

Once subgoal rewards are learned using GPSRL they can be easily cast in the op-

tions MDP framework [88]. As summarized in Section 2.1, an option is defined by

the initiation set I, the option policy 7r 0, and the terminating condition /3,. For a

learned subgoal reward RI centered at subgoal state s,, the initiation set is defined

as those states which are E-close (where c is the parameter from Section 6.2) to a

demonstration state which is assigned to subgoal Rj by the GPSRL sampling step.

Since the approximate optimal action value function Q*(s, alRj) for subgoal reward

Rj is already calculated in the GPDP step of GPSRL, the option policy r, is simply

the corresponding optimal policy. Finally, the set of terminating states is simply the

set of states which are -close to sg:

I(Rj) {s E S: Is - sill < E, where si E 0 and zi = j} (6.4)

7ro(sIRj) A argmax Q*(s,aRj) (6.5)
a

#o (R ) I s c S : Ils - sgl| < E} (6.6)

The conversion of learned GPSRL subgoals into MDP options is validated ex-

perimentally in Chapter 7, in which RC car driving maneuvers are learned from

demonstration and executed by the autonomous system.
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6.7 Summary

This chapter extended the Bayesian nonparametric inverse reinforcement learning

(BNIRL) method developed in Chapter 4 to handle general, continuous demonstration

domains. Experimental results applying GPSRL are given in Chapter 7. Unlike

previous IRL methods ([2, 61, 62, 74, 100]), GPSRL learns multiple reward functions

and explicitly incorporates GPDP [27] as a method for operating in large, continuous

domains while retaining computational tractability.

The Bayesian nonparametric framework of GPSRL, specifically the use of Dirich-

let process mixtures to partition observations, is similar to that of Grollman et al.

[41] and Fox et al. [35]. However, neither of those other methods learns reward repre-

sentations of behavior and instead classify the demonstration by policy or dynamics.

Finally, GPSRL is similar to constructing skill trees (CST) [49] in that multiple

options (skills) are learned by segmenting a single demonstration. While CST also

learns a hierarchical structure of the overall task, it requires access to a reward signal.

Thus, GPSRL is complementary to CST in that it assumes unknown rewards (which

are learned) and instead requires a transition model.
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Chapter 7

Experimental Results

The broad focus of this thesis is to enable scalable reward learning from demonstra-

tion for real-world robotic systems. This section presents experimental results that

validate the use of BNIRL and GPSRL on experimental robotic hardware systems.

7.1 Experimental Test Facility

Experiments are performed in the MIT RAVEN facility, shown in Figure 7-1. The

Realtime indoor Autonomous Vehicle test ENvironment (RAVEN) enables rapid pro-

totyping and testing of a variety of unmanned vehicle technologies, such as adaptive

flight control, automated UAV recharging, autonomous UAV air combat, and co-

ordinated multivehicle search and track missions, in a controlled, indoor flight test

volume [42]. RAVEN utilizes an camera-based motion capture system to simultane-

ously track multiple air and ground-based vehicles, and provide accurate position,

attitude, and velocity information at rates up to 200 Hz. Measured vehicle infor-

mation is distributed to a group of ground computers on which learning and control

algorithms are executed. Control commands are then sent to the autonomous vehicles

via radio transmitter.
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Figure 7-1: RAVEN indoor test facility with quadrotor flight vehicles, ground vehicles,
autonomous battery swap and recharge station, and motion capture system.

7.2 Learning Quadrotor Flight Maneuvers from Hand-

Held Demonstration with Action Comparison

To test the action comparison likelihood approximation described in Section 5.1.2,

BNIRL is used to learn quadrotor flight maneuvers from a hand-held demonstration.

First, the maneuver is demonstrated by motioning with a disabled quadrotor heli-

copter (Figure 7-2a) while the pose and velocities of the quadrotor are tracked and

recorded by the motion capture system down-sampled to 20Hz (Figure 7-2b). In this

case, states are positions and actions are velocities. Using the 2-D quadrotor model

described in Section 5.1.2 and the closed-loop controller action comparison likelihood

defined by (5.1) and (5.2), the BNIRL algorithm is used to generate an approximate

posterior distribution over the demonstrator's subgoals. Figure 7-2c shows the mode

of the sampled posterior, which converges to four subgoals, one at at each corner of the

demonstrated trajectory. The subgoals are then sent as waypoints to an autonomous

quadrotor which executes them in actual flight, thus recreating the demonstrated
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trajectory. Flight tests are conducted in the RAVEN indoor testbed [42] using the

flight control law described in [25]. Figure 7-2d plots the hand-held trajectory against

the autonomous flight, showing a close matchup between the demonstration and the

resulting learned behavior.

To demonstrate the ability of BNIRL to handle cyclic, repetitive demonstrations,

Figure 7-3 shows a cluttered trajectory where the demonstrator moves randomly be-

tween the four corners of a square. Overlayed are the four subgoals of the converged

posterior, which correctly identify the four key subgoals inherent in the demonstra-

tion.

Figure 7-4a shows another example, this time where the demonstrated trajectory

is a flip. As shown in Figure 7-4b, the BNIRL algorithm using action comparison

likelihood converges to posterior subgoals at the bottom and the top of the trajectory,

with the quadrotor being inverted at the top. The subgoal waypoints are executed

by the autonomous flight controller and the actual flight path is overlaid on Figure

7-4a, again showing the matchup between demonstrated and learned behavior.

Finally, it is noted that the BNIRL sampling process for the three examples above

takes roughly three seconds to converge to the posterior mode. This is due to the

fact that evaluation of the closed-loop control action in (5.1) is fast, making BNIRL

suitable for online reward learning.

7.3 Learning Driving Maneuvers from Demonstra-

tion with GPSRL

This section presents experimental results demonstrating the ability of GPSRL to

learn driving maneuvers for an RC car. Demonstrating and learning such maneuvers

is typically challenging due to highly non-linear tire slip dynamics which are difficult

to model or predict. The demonstration state vector consists of the body velocities

Xb and yo, heading rate ', and wheel speed w. Learned subgoals can thus be specified

as a GP trained in this 4-dimensional state space. Actions consist of the steer angle
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Figure 7-2: A human demonstrator motions with a disabled quadrotor (a), while
an indoor motion capture system records and downsamples demonstration (b). The
BNIRL algorithm with action comparison likelihood converges to a mode posterior
with four subgoals, one at each corner of the demonstrated trajectory (c). Finally,
an autonomous quadrotor takes the subgoals as waypoints and executes the learned
trajectory in actual flight (d).
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Demonstration vs. BNIRL Posterior Mode
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Figure 7-3: A cluttered trajectory in which the demonstrator moves randomly be-
tween the four corners of a square is shown in black. The BNIRL posterior mode
is shown in red, which consists of four subgoals, one at each corner of the square as
expected.

6 and commanded wheel speed w, (motor torque to the drive wheels is then set

by an inner-loop PI controller on wheel speed). Figure 7-5 shows the RC car used

in the experiment along with a diagram of states and actions. Demonstrations are

performed via manual remote-controlled operation with a joystick. States Xb, yb and

/ are measured with a motion capture system sampled at 100Hz, and wheel speed

w is measured onboard with an optical encoder and transmitted wirelessly at 100Hz.

The transition model f required for GPDP (Section 6.4) is taken from a basic model

of car dynamics with wheel slip [95], with model parameters identified from test data.

The squared exponential kernel (2.14) is used for all GPs, with parameters opti-

mized to local optima using gradient ascent of the log evidence. The CRP concen-

tration parameter r = 0.001 is used for all experiments. While detailed discussion of
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selecting this parameter is omitted, empirical findings indicate that subgoal learning

results are not particularly sensitive to 'r.

Figure 7-6 (left) shows a 30-second demonstration which includes straight-line

driving, standard left/right turns, and advanced drifting turns. The GPSRL algo-

rithm is applied with a = 25, and convergence to six learned subgoal rewards is

attained within roughly 200 sampling iterations. Figure 7-6 (right) shows the six

subgoal state locations, where arrows represent the body velocities Xb and yb, the

rotation of the rectangle represents heading rate /, and wheel speed w is omitted for

clarity.

The learned subgoals correctly identify the six basic maneuvers from the demon-

stration: stop, drive straight, left turn, right turn, left drifting turn, and right drifting

turn. The trajectory is color-coded to show the partition assignments of the demo

states to the six learned subgoals (Figure 7-6, left). Note that the Bayesian nonpara-

metric model from Section 6.5 is not biased towards clustering contiguous trajectory

segments, yet the posterior mode assignments shows that contiguous segments are

indeed clustered into appropriate subgoals, as would be expected.

To explore the behavior of GPSRL as more demonstration data is added, ten more

30-second human-controlled demonstrations were recorded with the demonstrator in-

structed to include the same types of behavior as in Figure 7-6. Figure 7-7 shows

the number of subgoals learned as each new demonstration is added, averaged over

25 trials, with the confidence parameter again set to a = 25. The number of learned

subgoals does not increase arbitrarily with more demonstration data, and stays within

two standard deviations of six learned subgoals from the single demonstration case.

7.3.1 Confidence Parameter Selection and Expertise Deter-

mination

The confidence parameter a has a direct effect on the posterior distribution (6.3) and

thus the number of subgoals learned from a given demonstration. Since a represents

the expected degree to which the demonstrator is able to maximize reward, there is
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thus no analytical method for choosing the parameter. Even so, small or large values

of alpha produce consistent trends in the number of learned subgoals. In the limit as

a -+ 0, the demonstrator is assumed to choose arbitrary actions that do not attempt

to maximize reward. This leads to the discovery of a single partition since the entire

demonstration can be explained as noisy or suboptimal actions towards any arbitrary

subgoal. In the limit as a -+ oc, the demonstrator is assumed perfectly optimal. This

leads to a larger number of learned subgoals since any noise or mistakes present in

the demonstrated actions will be treated as completely intentional, and the resultant

state will likely be added as a subgoal.

Figure 7-8 (left) shows a demonstration of the RC car that consists of a mixture

of right-handed turns of three distinct turning radii. This demonstration was inten-

tionally created so that there are three unambiguously "true" subgoals. Figure 7-8

(right) shows the number of learned subgoals for a logarithmic sweep of a averaged

over 50 trials, with 1500 sampling iterations per trial. As expected, there is a range

of a < 10 through which only one subgoal is discovered. For 10 < a < 60 the number

of subgoals discovered is within two standard deviations of the true value (three),

showing that there is a relatively large range of suitable parameter settings. For

a > 60 the algorithm discovers more subgoals as expected, since noisy state-actions

are interpreted as intentional.

The confidence parameter can also be used in the opposite way to quantify the

level of "expertise" of the demonstrator. Consider instead if the demonstration in

Figure 7-8 came from a demonstrator who was instructed to execute the same turn

many times. If this were the case, the different turning radii would then be attributed

to the sub-optimal execution of the maneuver. The numerical level of expertise of

the demonstrator could then be found by sweeping the value of a until more than

one subgoal is consistently discovered - in this case a = 10. Aside from serving as

an indicator of expertise, this value of a could then be used as a starting point to

interpret future demonstrations which may contain more than one subgoal.
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7.3.2 Autonomous Execution of Learned Subgoals

Once subgoal rewards are learned, they can be converted to options as presented in

Section 6.6. Figure 7-9 shows a comparison of demonstrated maneuvers (from the

original demonstration in Section 4.7.1) to the autonomous execution of the corre-

sponding learned subgoal option for three of the six learned subgoals (colors cor-

respond to Figure 7-6). The autonomously executed maneuvers match the original

demonstration closely, even though no additional learning was performed beyond the

GPDP step in Algorithm 5.
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Figure 7-4: A hand-held demonstrated quadrotor flip is shown in black (a). The
BNIRL posterior mode in this case converges to two subgoals, one at the bottom and
one (inverted) at the top of the flip trajectory (b). An autonomous quadrotor takes
the subgoals as waypoints and executes the learned trajectory in actual flight, shown
in red (a).

6:

(A)

Xb

Yb.

Figure 7-5: RC car used for experimental results (left) with optical encoder, bat-
tery, radio modem, and reflective markers for motion capture. Diagram of car state
(right) with body velocities 4b and yb, heading rate b, wheel speed w, and steering
command 6.
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Figure 7-6: Thirty-second manually-controlled demonstration trajectory (top) start-
ing in upper-left and ending in lower-middle. Six learned subgoal state locations

(bottom), where arrows represent the body velocities Xb and yb, the rotation of the

rectangle represents the heading rate 1/, and the wheel speed w is omitted for clarity.
Learned subgoal labels ("Left turn", etc.) added manually.
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Figure 7-7: Number of subgoals learned versus the total length of demonstration data
sampled, averaged over 25 trials. The number of learned subgoals does not increase
arbitrarily with more demonstration data, and stays within 2-C of the six learned
subgoals from the single demonstration.
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Chapter 8

Conclusions and Future Work

This thesis has presented several contributions which improve existing reward learn-

ing from demonstration methods and developed new Bayesian nonparametric reward

learning frameworks that enable scalable reward learning for real-world robotic sys-

tems.

In Chapter 3, several modifications to the Bayesian IRL algorithm were presented

to improve its efficiency and tractability in situations where the state space is large

and the demonstrations span only a small portion of it. Contributions in this chapter

included:

" The identification of key limitations of the Bayesian IRL algorithm which hinder

computational tractability for large domains.

" A fundamental improvement of the algorithm which takes as input a kernel

function that quantifies similarity between states. The resulting algorithm is

shown to have improved computational efficiency while maintaining the quality

of the resulting reward function estimate.

* The development of a new acceptance probability similar to a cooling schedule

in Simulated Annealing, enabling an effective trade-off between exploration and

exploitation in the reward inference process. Use of the cooling schedule in

the modified BIRL algorithm allows the MCMC process to first find areas of
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high posterior probability then focus the samples towards them, speeding up

convergence.

In Chapter 4, a method was developed that learns multiple reward functions from

a single demonstration, enabling reward learning from unsegmented demonstrations

containing multiple distinct tasks which are common in robot learning from demon-

stration. Chapter 5 offered several approximations to the demonstrator likelihood

function to further improve computational tractability in large domains. Contribu-

tions in these chapters included:

" The Bayesian nonparametric inverse reinforcement learning (BNIRL) frame-

work, which uses a Bayesian nonparametric mixture model to automatically

partition the data and find a set of simple reward functions corresponding to

each partition. Several computational advantages of the method over existing

IRL are shown, namely the search over a finite (as opposed to infinite) space of

possible rewards and the ability to easily parallelize the majority of the method's

computational requirements.

" Simulation results are given which show the method's ability to handle cyclic

tasks (where the agent begins and ends in the same state) that would break ex-

isting algorithms without modification due to the existence of multiple subgoal

rewards in a single demonstration.

" The development of two approximations to the demonstrator likelihood func-

tion. In the first method, the Real-time Dynamic Programming (RTDP) frame-

work is incorporated to approximate the optimal action-value function, and

simulation results for a Grid World domain show order of magnitude speedups

over exact solvers. In the second method, an existing closed-loop controller

takes the place of the optimal value function, and simulation results are given

for a pedestrian data set demonstrating the ability to learn meaningful subgoals

using a very simple closed-loop control law.
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In Chapter 6, the BNIRL framework was extended to general, continuous demon-

stration domains with the use of Gaussian process reward representations. Contribu-

tions in this chapter included:

" The Gaussian process subgoal reward learning (GPSRL) algorithm, which is the

only learning from demonstration method able to learn multiple reward func-

tions from unsegmented demonstration in general continuous domains. GPSRL

does not require discretization of the continuous state space and focuses com-

putation efficiently around the demonstration itself.

" Incorporation of the Markov decision process options framework to enable exe-

cution of the learned behaviors by the robotic system and provide a principled

basis for future learning and skill refinement.

" The development of a method for choosing the key confidence parameter in

the GPSRL likelihood function. The method can also be used to quantify the

relative skill level of the original demonstration enabling comparison between

multiple demonstrators.

Finally, Chapter 7 provided experimental results which validate the use of BNIRL

and GPSRL for reward learning from demonstration on robotic hardware. Contribu-

tions in this chaper included:

9 Application of BNIRL to learn Quadrotor flight maneuvers from a human

demonstrator using only hand motions. Learned subgoal rewards (in the form

of waypoints) are passed as commands to an autonomous quadrotor which exe-

cutes the learned behavior in actual flight. The entire process from demonstra-

tion to reward learning to robotic execution takes on the order of 10 seconds to

complete using a single computer, highlighting the ability of BNIRL to use data

from a safe (and not necessarily dynamically feasible) demonstration environ-

ment and quickly learn subgoal rewards that can be used in the actual robotic

system.

119



* Application of GPSRL to a robotic car domain. In the experiments, mul-

tiple difficult maneuvering skills such as drifting turns are identified from a

single unsegmented demonstration. The learned subgoal rewards are then exe-

cuted autonomously using MDP options and shown to closely match the original

demonstration. Finally, the relative skill level of the demonstrator is quantified

through a posteriori analysis of the confidence likelihood parameter.

8.1 Future Work

There are several extensions to the contributions presented in the thesis which could

serve as areas of future work. These include improved posterior inference procedures,

sparsifying demonstration trajectories to improve computational efficiency, learning

more complex reward representations, and adding the ability to identify multiple

demonstrators.

8.1.1 Improved Posterior Inference

Since both BNIRL and GPSRL rely on approximate inference of a Bayesian nonpara-

metric mixture model, the inference procedure itself has a large effect on the computa-

tional properties of the algorithm. As presented in Chapters 4 and 6, straightforward

Gibbs sampling is used for its algorithmic simplicity and ubiquity in the literature

[45, 59, 60].

Several improvements to the Gibbs sampling method exist and can be applied

to the reward learning algorithms in this thesis. These include the use of auxiliary

variables for non-conjugate models [26] and efficient collapsed Gibbs sampling [68, 98],

though the latter would require the derivation of a conjugate posterior distribution. A

family of variational inference methods also exist which have been applied to Bayesian

nonparametric models [15, 46, 91]. While these methods are promising, the reward

learning posterior would have to be modified to make it compatible with variational

methods. Future work could explore these options in an effort to improve the efficiency

of the sampling step of the Bayesian nonparametric reward learning framework.
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8.1.2 Sparsification of Demonstration Trajectories

Since the computational complexity of the sampling procedure scales with the amount

of demonstration data to be analyzed, another method for improving algorithmic

efficiency is to sparsify the demonstration trajectories. A straightforward method for

reducing the amount of demonstration data would be to remove state-action pairs

which are above some threshold of similarity. Such a process would resemble the

method for reducing the number of subgoal candidates in Section 6.2, but applied to

the entire demonstration set.

A more principled Bayesian method for reducing the amount of demonstration

data could use the Gaussian process framework to represent trajectories instead of

tabular storage of each observed state-action pair. This would require learning a

Gaussian process which maps demonstration states to the observed actions taken.

While such a representation would obviously be an approximation of the true obser-

vations, many GP sparsification methods exist [24, 52, 70] which could greatly reduce

the memory and computational requirements of the reward learning framework in

cases where there is a large amount of demonstration data.

8.1.3 Hierarchical Reward Representations

Throughout the thesis, subgoal reward functions are utilized as a basic representation

which is easily learned and interpreted. The Bayesian nonparametric reward learn-

ing framework could be generalized to more complex representations. Of particular

interest in the literature are hierarchical Bayesian nonparametric models [3, 14, 31].

While typically more difficult to infer, these models offer a method of learning a more

complex hierarchical posterior structure which may better explain demonstrations

with nested tasks. In analogy to constructing skill trees of MDP options [49], hierar-

chical representations could learn a tree of reward models, where the tree structure

is inferred from the demonstration data.
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8.1.4 Identifying Multiple Demonstrators

While much of the thesis has focused on learning multiple reward functions from

a single demonstrator, the framework can also be extended to additionally identify

multiple demonstrators from a set of observed trajectories. In this scenario, it is

likely that individual demonstrators will perform the same overall tasks but do so

in potentially different ways. The reward learning framework would then need the

ability to not only learn the overall tasks, but differentiate between demonstrators

within those tasks.

As a result, such an extension would likely leverage a hierarchical representation as

discussed above. In the learned hierarchy, parent nodes would represent common tasks

while the children of these nodes would represent the various ways which individual

demonstrators perform the tasks. The learned structure would then provide insight

into the commonalities and differences between different demonstrators solving the

same task.
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