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Abstract

The goal of this thesis is to develop a control strategy for airport operations that integrates the
management of arrivals and departures. The strategy is based on four central ideas: (1) the
objective of reducing aircraft flight times, taxi times and fuel burn, (2) the emphasis on developing
models using data from actual aircraft operations, (3) the need to be compatible with current air
traffic control procedures, and (4) the requirement to not adversely affect airport performance.
The scope of this work covers the airport surface and arrival airspace, which are two of the most
congested regions of the air transportation network.

A new approach is proposed for modeling airport surface operations. Drawing an analogy from
the field of network congestion control, the airport surface is assumed to be a network consisting
of major taxiways and their intersections. Posing the problem in this framework relaxes the re-
quirement of precisely predicting the taxi time of each aircraft, instead emphasizing the accurate
representation of the underlying stochastic processes. At the same time, it allows one to address the
issues of network stability and performance through analytical approaches. Based on this model
for surface operations, a control algorithm is developed for regulating the time of entry of aircraft
into the network. Simulations show that this strategy can significantly reduce surface congestion
and aircraft fuel burn without hampering airport performance.

The arrival airspace control algorithm presented in this thesis proposes a hybrid centralized
/ distributed algorithm for conflict detection and resolution. It combines distributed control in
low-density airspace with centralized control in high-density terminal areas. This approach has the
advantage of reducing ground infrastructure cost due to decentralization, while still operating at
an efficiency level close to that of a fully centralized control strategy. The arrival and departure
control algorithms are then combined to formulate an integrated strategy for managing airport
operations, significantly improving the separate gains that can be obtained from each component.

Thesis Supervisor: Hamsa Balakrishnan
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

"A commercial aircraft is a vehicle capable of supporting itself
aerodynamically as well as economically"

- William Stout,

Designer of the Ford Trimotor

The field of air transportation has been subjected to intense scrutiny over the last three decades,

due to a remarkable increase in demand. A steady growth in the volume of operations, coupled with

the slow growth in air transportation infrastructure, has led to a large increase in flight delays. The

economic cost of airspace and airport congestion is borne by the passengers as well as the airlines.

High and fluctuating fuel prices are an especially difficult challenge to airline profitability. A new

dimension to this challenge has been added by the emerging awareness about climate change and

the environmental cost of aviation. Government policies driven by public pressure and voluntary

initiatives have made many airlines and regulatory authorities declare their intention to move

towards carbon-neutrality. An obvious step towards achieving this objective is a reduction in the

amount of fuel consumed during aircraft operations. According to a commitment originally signed

in 2008 and reaffirmed in 2012, airlines are aiming to reduce fuel consumption by 1.5% per year up

to the year 2020 [1]. Current studies indicate that improving the effiency of the air transportation

system could reduce fuel consumption by 9 million tons per year, and CO 2 emissions by 28 million

tons per year [2]. It should be noted that these savings can be targeted in the near future, as

opposed to the longer term procedure of replacing old aircraft with new, more fuel efficient ones.

Flight delays in the National Airspace System (NAS) can be caused by several factors. Some
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Figure 1-1: [Clockwise from top left] Departure queues at (1) Runway 13 at LaGuardia Airport on
Aug 09, 2011, (2) Runway 04 at LaGuardia Airport on Aug 11, 2011, (3) Runway 22R at Boston
Logan International Airport on September 09, 2010. Visualization of actual surface surveillance
data using Google Earth1 .

kinds of delay are unavoidable, such as those due to severe weather conditions or maintenance issues.

However, approximately 12.5% of flight delays in the United States in 2012 were caused by traffic

volume in the vicinity of the airport [3]. The Federal Aviation Administration's Aviation System

Performance Metrics (ASPM) database estimates that annually, taxi-out delays (the difference

between actual and unimpeded taxi-out times) at major airports in the United States exceed 32

million minutes [4].

The delay problem is most acute in the region composed of the airport surface and the surround-

ing airspace, since it is the most constrained part of the air transportation network [5]. Inefficiencies

in this area lead to excess fuel burn, which can be reduced in two ways. Firstly, the total amount of

delay can be reduced by improving the efficiency of flight operations. Secondly, the distribution of

delay can be shifted such that the phase of flight that absorbs the most delay is that which burns

the least fuel. For example, delay absorbed on the ground requires less fuel than delay absorbed

Visualization of LaGuardia data courtesy of Melanie Sandberg.
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while airborne. Shifting the ground delay itself from active movement areas (where aircraft engines

are on) to inactive holding areas (where aircraft engines are off) can further decrease the amount

of fuel consumed.

Figure 1-1 shows three instances of long departure queues at LaGuardia Airport and Boston

Logan International Airport (BOS). The images depict operational data obtained from a surface

surveillance system, with green aircraft denoting departures and red aircraft denoting arrivals.

Queue formation is commonly seen at busy airports, during periods of high demand. Each aircraft

in the queue has its engines running and is consuming fuel at a significant rate. Even aircraft that

employ single-engine taxi procedures typically start all engines before they are in the departure

queue. The total fuel burn would be reduced if the surface traffic was spread out such that a

reasonable number of aircraft were in queue, others were taxiing towards the runway, and the

rest were waiting at their gates. The justification for this claim is based on studies of airport

performance as a function of the surface traffic levels.

Consider, for example, the relationship between the number of takeoffs per 15 min and the

number of active departing aircraft as shown in Figure 1-2. The x axis denotes the number of

active aircraft, i.e., those that have left their gates but have not yet taken off. It can be seen from

the figure that as the number of active aircraft increases, the takeoff rate increases. However, the

marginal increase in takeoff rate exhibits saturation. Limiting the number of active aircraft to a

reasonable number will thus reduce fuel consumption without adversely affecting airport perfor-

mance. While this idea is fairly obvious in theory, there are several subtleties that can jeopardize

their implementation in practical situations. The notion of a 'reasonable number' is somewhat

vague, and varies from airport to airport. In addition, it is necessary to operate within established

procedures and to understand the constraints imposed by existing infrastructure at airports. It

is also desirable to characterize the relationship between airborne terminal-area procedures and

aircraft ground movement, in order to maximize the potential reduction in fuel burn and emissions.

1.1 Challenges to improving airport operations

It has been estimated that 25% of all aviation emissions are produced in the Landing and Take-Off

(LTO) cycle of a flight, with taxi operations being the largest contributor in this phase [6]. Fuel

for taxi operations costs approximately 7 billion USD per year, and results in 18 million tons of
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Figure 1-2: Relationship between the average number of takeoffs in 15 min and the surface traffic
level at Boston Logan International Airport, when departures are taking place from Runway 22R
and arrivals are taking place on Runway 27 and Runway 22L.

CO 2 per year [6]. Analysis of operations in Europe has found that aircraft spend 10-30% of their

flight time taxiing, and that a short/medium range A320 expends as much as 5-10% of its fuel on

the ground [7]. Additionally, it has also been shown that significant surface congestion at some US

airports leads to taxi times as high as three times those when there is no congestion [8]. There are

two major reasons for the delays experienced at airports and in terminal airspace. The first cause is

the large number of aircraft occupying a limited region of space, both in the air and on the ground.

This problem is magnified by the existence of a second limitation: the largely legacy infrastructure

used for air traffic control. The basics of air traffic control have remained roughly the same since its

advent in the 1930s. The entire system is based on the use of radars for surveillance, paper flight

strips for keeping track of aircraft, and radios for communication. The aircraft being managed

by this system carry 2 1st century technology, but are still directed using standards defined in the

1960s. When new technologies such as those described in Section 1.2.4 are introduced, algorithms

that take full advantage of their potential need to be developed. At the same time, such algorithms

should also be compatible with legacy systems during the deployment period.

Any effort to reduce fuel burn and emissions in the vicinity of airports needs to overcome a

number of challenges. Safety is the overriding concern in air traffic management. Operational pro-

cedures are in place for each phase of a flight. These rules are sometimes deliberately conservative,
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in order to account for human error, surveillance uncertainties, communication lags as well as rare

events. It is not practical to propose radical changes to procedures and technology in order to

improve operational efficiency. While implementing unrestricted flight paths, or free flight, may

be desirable from the point of view of efficiency [9], its practical realization is still several years

away. In the meanwhile, it is important to introduce operational measures that improve efficiency

by merging new technologies with the existing airspace structure. Similar improvements can be

obtained on the airport surface by using new surveillance technology to reduce fuel burn, while re-

maining within the current procedural framework. Strategies that aim to achieve synergy between

new technology and existing procedures are the central focus of this thesis.

1.2 Related literature

Improving the efficiency of the air traffic management system has been the subject of research

for a considerable length of time. Traditional approaches to this problem focus on traffic flow

management (TFM) [10], airport slot controls [11, 12], airport/sector capacity estimation and

prediction [13, 14, 15, 16], delay estimation and prediction [17], and mitigation of weather impacts

[18]. These studies are strategic in nature, and are most relevant to the high-level design of the air

transportation system. For an impact on near-term efficiency, tactical modifications to operating

procedures are needed. The development of such methods is based on two important components:

the modeling exercise and the proposed implementation protocol.

There have been several studies in the past few years that have focused on airport operational

efficiency. Some propose efficiency improvements in the airspace surrounding an airport [19, 20, 21],

while others are specific to surface operations [22, 23, 24, 25]. The mathematical techniques used

to solve the formulations also vary, and draw from the fields of queuing theory, mixed-integer linear

programming and regression analysis. However, there does not appear to be any prior study that

provides an integrated approach to air traffic management near airports. The aim of this thesis is

to present such an integrated control strategy, one that has been developed from the bottom up

through the process of data analysis, operations modeling, mathematical formulation, simulation

and a proposal for practical implementation.
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1.2.1 Modeling of airport operations

Models of airport operations typically focus on one of two aspects: the airborne phase, or airport

surface movement. The most unrestricted form of airborne air traffic control is the free flight con-

cept, first formalized in 1995 [26]. This concept allows each aircraft to calculate its own optimal

trajectory based on information about surrounding traffic conditions. Several definitions of opti-

mality have been proposed in literature, including maximizing safety [27] and minimizing flight

times [19, 28, 29, 30]. However, the airspace and traffic models differ from one study to another,

and are rarely implementable in a practical scenario with current communication, computation and

operational constraints.

Prior literature on surface operations shows that taxi speeds, taxi routes and pilot behavior

are highly variable in this context. The total number of aircraft on the airport surface at any

one time is also relatively small. Due to these reasons, Eulerian (fluid) models which may be

used for airspace modeling [31, 32, 33] are not suitable for representing aircraft ground movement.

Most prior surface modeling approaches focus on microscopic models [34, 35, 36] or macroscopic

models [22, 23, 24, 25]. Microscopic approaches model the precise location and velocity of each

aircraft at all times, and control is implemented by specifying a time-based trajectory for each

flight. The primary drawback of such methods is that precise conformance to specified trajectories

is not possible given the current state of technology at airports. Macroscopic approaches to the

problem model aircraft taxi-out times as the outputs of an aggregate service process, frequently

using queuing theory. These approaches to the surface traffic management problem either make

simplifying assumptions to obtain analytical results, or else require numerical solutions. In addition,

a service process needs to be defined at every queuing node; it is typically assumed that queuing

occurs only at the runway and not on the taxiways [22].

Chapter 2 proposes a new modeling approach which falls broadly in the category of mesoscopic

models [37, 38]. The level of fidelity is high enough to highlight an airport's operational character-

istics [39, 40], but there is also a recognition of the stochastic nature of the processes involved. The

airport surface is assumed to be a network consisting of major taxiways (edges or links) and their

intersections (nodes). The problem is then analogous to the network congestion control problem

encountered in several other fields of research [41].
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1.2.2 Airport congestion management techniques

A review of proposed congestion mitigation methods for airports is presented in this section, cate-

gorized by the specifies of the problem addressed. Many of these methods utilize models of airport

operations similar to those described in Section 1.2.1.

Arrival airspace congestion

The emphasis in prior literature on airborne control algorithms has been on computing optimal

trajectories for free flight, with safety and efficiency as the objectives. Effective formulations that

aim to maximize safety in free flight are rare, due to the prohibitive computational requirements

associated with optimizing unconstrained aircraft trajectories. Even studies that focus on time-

optimality typically solve small-scale versions of the problem, since optimization formulations for

stochastic systems of realistic size quickly become computationally intractable [19, 20]. Therefore,

while maintaining the current airspace structure imposes somewhat stricter constraints on airspace

capacity, it is shown in [42, 43] that significant efficiency gains can still be obtained with this

approach without paying the accompanying computational penalty.

The development of the free flight concept has also encouraged a great deal of research in

conflict detection and resolution algorithms. These algorithms can be broadly classified into two

types, namely, centralized and distributed approaches. Distributed algorithms [29, 44, 45, 46]

are typically based on negotiations between aircraft to find optimal conflict resolution maneuvers,

or can be developed based on non-cooperative game theory. Free-flight approaches typically fall

into this category of algorithms. By contrast, centralized algorithms [19, 21, 28, 30] assume that

information is consolidated at a single central facility, which then solves for the optimal trajectories

for all aircraft. Information gathering is usually via ground radar systems, although recent papers

have considered the availability of ADS-B. An extensive overview of strategies for conflict resolution

can be found in [47].

At very short time-scales, conflict resolution is currently performed by on-board collision avoid-

ance systems such as the Traffic-alert and Collision Avoidance System (TCAS) [48, 49], or the

proposed Airborne Collision Avoidance System [50, 51]. These systems are tailored for short-range

collision avoidance, and not for long-range efficiency. While conflict resolution over a longer time-

scale is known to yield more efficient trajectories [52], current collision avoidance systems cannot
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easily be extended due to their limited range and poor performance in high-density airspaces [49].

An extensive body of literature is devoted to the scheduling of arrival operations. Examples of

this avenue of research include extensions to the FAA's Traffic Management Advisor [53], combined

scheduling of arrivals and departures [54], and the Center-TRACON Automation System (CTAS)

[55, 56] and its extensions [57]. These studies typically focus on optimal and conflict-free scheduling

of aircraft operations, but do not specifically keep track of real-time collision risk [53, 54, 57].

However, they do note that small changes in speed are a desirable method of implementing conflict

resolution maneuvers in high-density operations, as opposed to heading or altitude changes [57].

The arrival airspace control algorithm presented in Chapter 4 proposes a hybrid centralized

/ distributed algorithm for conflict detection and resolution. The proposed method for imple-

menting conflict resolution maneuvers is a change in flight speed, with holding patterns being

commanded when this is not possible. The algorithm combines distributed control in low-density

airspace with centralized control in the high-density terminal areas. This hybrid approach offers

the dual advantage of reduced ground infrastructure cost due to decentralization and the efficiency

of centralization.

Surface congestion

Current air traffic control (ATC) policy at most airports in the United States is to allow aircraft

to pushback from their gates as soon as they are ready for departure, and join the runway queue.

This results in large taxi times during periods of peak demand, as aircraft spend a large amount of

time waiting for their turn to take off [58, 59]. Better management of surface operations not only

offers a way of reducing this impact, but is integral to the future evolution of ATC architecture.

As such, it is one of the major objectives listed in the Federal Aviation Administration's plan for

improvement of operations in the NAS [60].

There have been several efforts in the United States and Europe to develop and implement

surface congestion management strategies, especially in the context of Airport Collaborative Deci-

sion Making (A-CDM). Examples include the field-testing of the Pushback Rate Control strategy at

BOS [61, 62], the Tower Flight Data Manager (TFDM) demonstration at Dallas Fort Worth (DFW)

airport [63], the field evaluation of the Collaborative Departure Queue Management concept at

Memphis (MEM) airport [64], the Ground Metering Program at New York JFK airport [65, 66],
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the human-in-the-loop simulations of the Spot and Runway Departure Advisor (SARDA) concept

at DFW [67], the trials of the Departure Manager (DMAN) concept [68] in Athens International

airport (ATH) [69], and the Airport Collaborative Decision Making (A-CDM) implementations at

London Heathrow (LHR), Frankfurt (FRA), Amsterdam (AMS), Helsinki (HEL) and Paris Charles

De Gaulle (CDG) Airports [70]. There has also been increased interest from major airports in Asia

(Bengaluru International Airport (BLR) in India, as well as China and Singapore [71]) on A-CDM.

The above surface management approaches can be broadly classified as aggregate approaches that

are implemented by the airport tower [61, 62, 63], airline-specific allocation approaches [64], and

aircraft-specific metering approaches 165, 66, 67, 68, 69, 70].

Largely driven by the availability of data, field demonstrations of airport congestion control

algorithms have traditionally focused on airline operations. Estimates of airport capacity are formed

using a combination of the Aviation System Performance Metrics (ASPM) [4] and the Airline

Service Quality Performance (ASQP) databases. These databases provide the times at which flights

pushback from their gates, their takeoff and landing times, and the gate-in times, as reported by the

airlines. ASPM also provides airport-level aggregate data, including records of runway configuration

use and counts of the total number of arrivals and departures in 15 min increments. However, the

level of detail in these approaches is insufficient to investigate other factors that affect surface

operations, such as interactions between taxiing aircraft, runway occupancy times and departure

queue characteristics.

A much-studied avenue of research in aggregate approaches to congestion control is the N-

Control algorithm and its variants. In its most basic form, it is an event-driven control strategy that

aims to maintain a constant level of traffic on the airport surface [37, 72]. The ideal implementation

procedure is to clear an aircraft for pushback at the instant of every takeoff. In this way, the

number of active aircraft remains steady. However, this method has two potential drawbacks.

Firstly, it greatly increases air traffic controller workload. They have to track both takeoff times

and pushback calls, tasks that are typically performed by separate controllers. Secondly, it is not

possible for ground crews at airports to be available for pushing an airplane without any notice. A

more practical version of the N-Control algorithm is Pushback Rate Control [61, 73]. This strategy

sets an upper limit on the number of pushbacks within a given time window, usually 15 minutes

long. While this strategy has been demonstrated to result in fuel savings, it is difficult to estimate
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its efficiency in this regard. A modified version of the N-Control algorithm is studied in Section

3.1, where its advantages and limitations are discussed in detail.

A much finer level of control can be achieved by algorithms based on microscopic models. In

these studies, optimal surface trajectories are usually calculated using integer or mixed-integer

programming. It has been shown that the potential taxi time and fuel savings are much greater

than those possible using aggregate approaches [361. However, these methods are very difficult to

implement in practice. Ground taxi is controlled manually by the pilots, and furthermore, the voice

communication channel between pilots and air traffic control is highly congested, making it difficult

to add the command and confirmation messages required for detailed control. Data communication

channels are still used only for basic functions, and voice confirmation is considered mandatory for

safety reasons.

The procedure presented in this thesis aims to allow for the feasibility of implementation,

while still achieving a significant fraction of the potential benefits indicated by microscopic models.

Posing the problem in the framework described in Chapter 3 relaxes the requirement of precisely

predicting the taxi time of each aircraft [74], instead emphasizing the accurate representation of the

underlying stochastic processes. At the same time, it allows one to address the issues of network

stability and performance through analytical approaches, and does not require the specification

of an explicit service process. Prior literature in related fields that employ similar techniques is

described in Section 1.2.3.

1.2.3 Network congestion control

The properties of networks have been studied in great detail, with some of the most important

basic results appearing in the 1950s [75, 76]. These studies addressed the problem of maximum

throughput in general network topologies, and are particularly useful for the purposes of Chapter

3. While solving for the maximum throughput in generic graphs is difficult, the airport surface

network has properties that reduce this complexity considerably. Detailed analysis pertaining to

maximum throughput and network stability is available in literature [77, 78].
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Urban Transportation Networks

Research into the properties and control of urban networks also goes as far back as 1956 [79], with

discussions about their capacity and demand management using tolls. A review of recent research in

the urban transportation network framework can be found in [80]. The focus in this field is mainly

on Geographic Information Systems (GIS) such as in-car satellite navigation. The objective of these

studies is to characterize the behavior of individual agents (vehicles) when they have different levels

of knowledge about the state of the network at any given time. There are a large number of entry

and exit points in a network consisting of roads. Therefore, these networks involve a very large

number of sources and sinks, and are generally solved using heuristics [81, 82] such as approximate

shortest path algorithms [83]. These algorithms are a useful reference for the problem described in

this thesis, but are not directly applicable. The focus of the airport congestion control problem is

on management of a handful of sources and sinks, with much more centralized information. The

control policies also need to account for the performance of the entire system, as opposed to only

individual users. The modeling of stochastic link travel times in an urban transportation context

has been studied earlier [84, 85]. Analytical results are obtained in these studies for certain classes

of travel time distributions.

Communication Networks

Communication networks also exhibit characteristics that are relevant to the problem at hand.

Specifically, the objective in communications is to transmit packets of information from source to

destination while avoiding the onset of congestion. This objective is compatible with the formulation

of the airport congestion control problem. The relevant properties of communication networks and

corresponding control policies are described in [86, 87, 88, 89]. In these studies, stable control

laws for the Transmission Control Protocol (TCP) are derived. The focus is on utilizing network

capacity while maintaining stability. The available information is assumed to be purely local in

nature, which is not a restriction that applies to the airport problem. An algorithm that uses more

detailed feedback is described in [90]. It also aims to maximize network utilization while minimizing

persistent queues.

Back-pressure algorithms first proposed in [91] and further developed in [92, 93] are a good

starting point when considering control algorithms for the airport network. These algorithms rely
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on the difference between queue sizes at successive nodes, and allow entry into the network on this

basis. In the present context, this 'back-pressure' is analogous to the number of active aircraft on

the airport surface. A detailed discussion of internet network control algorithms and stability is

available in [94, 95], and analysis formulations for wireless systems are developed in [96, 97, 98].

These studies also explore the fairness characteristics of different algorithms, which is of relevance

to the airport congestion control problem with its multitude of users and stakeholders.

Control of Manufacturing Processes

The scheduling and control of manufacturing processes deals with the production of a set of parts,

and the order in which they are processed by different machines. The real-time scheduling of

manufacturing processes is considered in [99, 100]. These studies use a decentralized approach to

control, while ensuring that scheduling decisions keep the system stable. It is shown that clear-

a-fraction policies, or policies where parts with the largest queues are processed first, stabilize all

acyclic systems. System performance measures that are relevant to this problem are considered in

[101]. A version of the control-point policy, which is very similar to the N-Control algorithm and

its variations [37, 61, 72], can be found in [102]. In addition to controlling entry into the network,

this work describes an algorithm that can also meter part production rates at intermediate points.

This is intuitively similar to the work of a ground controller at airports. The control-point policy

described in this work does not allow parts to pass beyond a control point if the excess of production

at that point over demand is too great. Since the only feasible control points at airports are the

gates, delaying aircraft pushbacks is analogous to metering part production. Finally, a detailed

survey of queuing approaches to manufacturing systems and the accompanying assumptions is

available in [103].

In summary, each of these separate fields provides useful insights into the airport congestion

management problem, as well as starting points for the development of a control strategy.

1.2.4 Emerging surveillance and navigation technologies

The algorithms and policies proposed in this thesis leverage upon two new technologies with air

traffic management applications. Airport Surface Detection Equipment, Model - X (ASDE-X) is a

surveillance system for the airport surface. Data from this system is used to build the aircraft taxi
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models presented in Chapter 2, for parameter estimation as well as for verification. The control

algorithm developed in Chapter 3 requires the number of active aircraft on the surface as an input.

This number can be calculated from ASDE-X data as an alternative to physical counting. The

second relevant technology referred to extensively is Automatic Dependent Surveillance - Broadcast

(ADS-B), which is a combination of satellite-based navigation and wireless communication. All

aircraft in controlled airspace in the United States will have to be equipped with at least a basic

version of this system by 2020, according to an FAA mandate [60]. The broadcast functionality

included in this system can be used to perform conflict detection and resolution in congested

airspace, as described in Chapter 4.

Airport Surface Detection Equipment, Model-X

Airport Surface Detection Equipment, Model-X (ASDE-X) is primarily a safety tool designed to

mitigate the risk of runway collisions [104]. It incorporates real-time tracking of aircraft on the

surface to detect potential conflicts and monitor conformance. There is potential, however, to

use the data generated by it for surface operations analysis [39, 40, 105] and modeling of aircraft

behavior. Reported parameters in ASDE-X include each aircraft's position, velocity, altitude and

heading. The update rate is 1 Hz for each individual flight track. The raw surface tracks are

processed for the purposes of this work using a multimodal unscented Kalman filter developed in

prior work [106]. ASDE-X data from Boston Logan International Airport, spanning a period of

three years from 2010 to 2012 is used in this thesis.

Automatic Dependent Surveillance - Broadcast

Automatic Dependent Surveillance - Broadcast (ADS-B) is a Next Generation Air Transportation

System (NextGen) surveillance and communication technology, in which aircraft broadcast on-

board flight information via a datalink to ground stations or other similarly equipped aircraft [107].

The position and velocity data is obtained using satellite navigation. An important consideration

for the deployment of ADS-B is its interaction with legacy infrastructure. Since it uses the same

bandwidth as the replies to Secondary Surveillance Radars (SSRs) [60], high aircraft and SSR

density near airports could result in interference and degraded surveillance performance. Therefore,

the control algorithm presented in this thesis is mated to a communication algorithm that tunes
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the transmission power of ADS-B for minimizing interference with radars [42].

1.3 Thesis contributions

The goal of this thesis is to develop a control strategy for airport operations that integrates the

management of arrivals and departures. The strategy is based on four central ideas: (1) The

objective of reducing aircraft flight times, taxi times and fuel burn; (2) The emphasis on developing

models using data from actual aircraft operations; (3) The need to be compatible with current air

traffic control procedures; and (4) The requirement to not adversely affect airport performance.

The major contributions of this research effort are:

Detailed analysis of airport operations

The algorithms presented in this thesis are based on analysis of operational data, including surface

surveillance (ASDE-X) and flight data recorders (FDR). The dynamics of congestion on the airport

surface are modeled and the parameters are tuned using empirical ASDE-X data. The FDR data

is used to estimate the fuel burnt by aircraft on the ground [108]. This estimate is an essential

component of the optimization framework described in Chapter 3.

Network model of airport surface operations

Analysis of empirical data reveals that aircraft movement characteristics vary greatly, depending

on their location on the airport surface. For example, aircraft near the terminals at the airport

taxi slower and are more likely to stop because of conflicts with other taxiing aircraft. On the

other hand, aircraft near the runway taxi at faster speeds when congestion levels are low, but stop

more frequently in the departure queue when congestion levels are high. In order to maintain these

distinctions in aircraft behavior, it is important to characterize aircraft movement based on the

taxiways they are on, and the amount of surface traffic at the airport. A network model of the

airport surface is a natural choice with these requirements. Major taxiways form the links in this

network, while their intersections form the nodes. Aircraft movement characteristics are captured

by the travel time distributions on each link [109]. Formulating the problem in a network congestion

control framework makes it possible to draw analogies with several related problems in literature,

such as the design of wireless networks, manufacturing processes and urban transportation systems.
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Additionally, this formulation is also independent of specific airports. Once the nodes and links are

selected and the relevant surface surveillance data is supplied to the algorithm, it automatically

computes the model parameters. This capability has been simulated and tested for airports other

than Boston Logan, which is the primary airport considered in this thesis.

Control formulation for managing departure operations

The airport congestion management algorithms published in prior literature are typically based on

operational targets such as maintaining a constant traffic level on the surface. The disadvantage of

such methods is that the primary objective of taxi time and fuel burn reduction is obtained as an

incidental benefit. There is no guarantee that the strategy being employed is near-optimal in terms

of fuel consumption. Additionally, the procedures for handling operational constraints such as gate

capacity are typically ad hoc. Unlike the 'black-box' functionality provided by these algorithms, the

control strategy proposed in this thesis directly targets the primary objectives. It also allows the

end-users (air traffic controllers) to tune the strategy depending on their preferences, with respect

to the relative importance given to fuel burn, airport performance and gate delay. The network

formulation is naturally amenable to a control strategy developed using dynamic programming

techniques [110]. Realistic constraints such as airport gate capacity and arrival/departure demand

can be integrated into the solution procedure [111], and the inputs required by the system are

currently available in the air traffic control tower.

Control algorithms for arrival airspace

Safety is the primary emphasis of control algorithms for airborne operations, and is harder to ensure

for the in-flight phase than for surface operations. Current air traffic control procedures for airport

arrivals are designed for radar surveillance with human supervision. However, the introduction

of satellite-based surveillance systems such as ADS-B in aircraft has made it possible to increase

airspace capacity without compromising on safety. Chapter 4 presents a control strategy for arriving

aircraft that utilizes on-board ADS-B technology and reduces congestion in the crowded airspace

around an airport [42]. It is proposed that aircraft can adjust their own velocity in order to

deconflict with other aircraft in the region. Information about the surrounding airspace is obtained

using ADS-B, and is based on realistic models of communication channel capacity and reliability.
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In addition to reducing the congestion in crowded airspace, the proposed method can also reduce

the dependence on expensive ground-based radars for surveillance. The maneuvers recommended

by the control algorithm can be implemented automatically, or can be provided in the form of

advisories to pilots.

Integrated control of arrivals and departures

Chapter 5 combines the control strategies for departure control and arrival control into a single

integrated framework. It describes how predictions of aircraft landing times can be used for real-

time tuning of the departure control strategy. Simulation of the integrated control strategy shows

that it increases the fuel burn savings in times of low arrival demand, while decreasing the number of

constraint violations when the arrival demand is high. Chapter 5 also describes the implementation

procedure for the ideas presented in thesis at a generic airport, starting from the modeling exercise

and ending with a proposal for practical demonstration.
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Chapter 2

Network Model of Airport Surface

Operations

As explained in Chapter 1, current models for airport operations fall into one of two categories.

They either form aggregate estimates of airport throughput, or require exact knowledge of the state

of each aircraft. In order to balance the need to include stochasticity in airport operations with

the desire to model the physical taxi process in greater detail, a new network-based model of the

airport surface is presented in this chapter.

2.1 Background

Stochasticity in airport operations is introduced by many different sources. Chief among these is

the dependence on human factors. Air traffic controllers, pilots, and ground crews all influence

the time taken for execution of each step in the departure process. Additional constraints can be

imposed by weather at the airport, in surrounding airspace and even at destination airports. These

may require aircraft to absorb delay on the surface, or introduce smaller increases in taxi times

while alternative flight routes are communicated to and accepted by the pilots. Because of these

factors, the network model presented in this chapter explicitly includes the stochasticity of aircraft

taxi times.
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2.1.1 Data used for parameter estimation and model testing

All the results presented in this chapter and pertaining to Boston Logan International Airport,

are based on surface surveillance data from the entire year 2011. Data from LaGuardia airport

is limited to only six weeks from June and July 2011. In instances where the data is split into

a training set and a testing set, the component days are selected randomly. In all figures in this

chapter, the predicted distributions are based on the training data set and are denoted by the term

model, while the distributions of the independent test data set are denoted by the term empirical.

2.1.2 Model structure

Figure 2-1 shows the set of runways and taxiways on the airport surface that are represented in

the network model. The taxiways form the links of the network, and their major intersections

are marked as the nodes. The taxi-out phase for an aircraft is defined to be from the time an

aircraft is first detected by the ASDE-X system to the time it starts its takeoff roll from the runway

threshold. Therefore, the potential source nodes in the network are the ones adjoining the gates,

while the sink / destination nodes are the runway thresholds. An abstraction of the resulting

model is shown in Figure 2-2. Note that Figure 2-2 (a) shows the union of the networks for all

possible airport configurations (allocations of runways to landings and takeoffs). In practice, only

one configuration is active at a time, and each aircraft has only one source node (gate) and one

destination node (runway). Figure 2-2 (b) shows the specific network for departures from Runway

27. In any specific configuration, aircraft maintain a flow from the terminal to the runway, and

generally do not taxi in cyclic paths. Consequently, the configuration-specific networks are directed

acyclic graphs with random link travel times. This acyclic nature is useful when analyzing network

capacity, as described in Section 3.2.3.

2.1.3 Analysis of empirical data

Aircraft on the surface taxi at fairly constant speeds, occasionally stopping because of other aircraft

crossing their path, or when about to cross an active runway. Notionally, the taxi-out process can

thus be classified into two modes: unimpeded taxi, and stopped. Figure 2-3 shows the procedure

adopted for determining the empirical distributions of travel times for each individual link. From

the instantaneous speed information in the data, the number of stops made by each aircraft on a
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Figure 2-1: Layout of the airport surface at Boston Logan. Nodes in the network model are marked
with white boxes.
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Figure 2-2: Abstraction of the network model.
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Figure 2-3: Flowchart for measuring empirical distribution of link travel times.
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Figure 2-4: Distribution of taxi speed over the links 1-+2 and 2-+3.

given link can be counted. A speed threshold is defined in order to count the number of stops.

From Figure 2-4, it can be seen that the typical taxi speeds of aircraft lie between 4 m/s (8 kts)

and 10 m/s (20 kts). There is another peak in the distribution below 1 m/s (2 kts). A stop is

therefore defined to be the number of instances when an aircraft's speed drops below 1 m/s on a

given link. In order to avoid over-estimation due to slow taxiing near this value, a speed of 4 m/s

has to be achieved between two logged stop events. A flight is defined to have passed unimpeded

through a link if the speed of that flight stays above the 1 m/s threshold at all times on that

particular link. The instances of unimpeded transit are used to generate the unimpeded taxi-time

distribution for each link. The flights that have a non-zero number of stops are used for estimating

the distributions for the number of stops and the duration of each stop. The taxi time left after

subtracting the stopped times from these instances is also used for estimation of the unimpeded

taxi time distribution, as shown in Figure 2-3. This ensures that the unimpeded distribution is not

biased towards the high-speed instances of link travel times.
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2.2 Model development

Based on the analysis of empirical data, aircraft taxi times can be modeled by a set of stochastic

processes. This section progressively develops the model, starting with the component random

processes and ending with the procedure for parameter estimation.

2.2.1 Random processes governing link travel times

There are three physical processes that govern the taxi time of an aircraft on each link in its path.

Firstly, the unimpeded portion of the travel time is a direct result of the length of the link and

the speed at which the aircraft moves. Secondly, the number of stops that an aircraft makes on

each link depends on the level of congestion on the airport surface. Finally, the total time that an

aircraft spends in the stopped mode depends on the duration of each stop. Three sets of theoretical

distributions are therefore needed in order to explain the empirical data. Based on an inspection

of the empirical distributions, the number of stops and the duration of each stop exhibit behavior

similar to geometric and exponential random variables respectively (Figure 2-5). In addition to

empirical observation, this behavior is also physically intuitive. It is reasonable to expect that

the probability of stopping N,1 times on link 1 decreases monotonically with the number of stops

N, 1 , and a similar argument can be made for the duration of each stop. The geometric and

exponential distributions are the two simple analytical models that exhibit these properties. While

this reasoning need not hold true for the links containing the departure queue (such as 5-+6 in

Figure 2-2), empirical data shows that the models are still valid for such links. As seen in Figure

2-5, the rate of decrease for link 5-+6 is slower but is nonetheless monotonic.

The empirical unimpeded taxi time distribution for each link shows a marked peak, as seen in

Figure 2-6. Several analytical probability distributions have this property, but are unsuitable for

this problem because of the asymmetry also exhibited by the unimpeded taxi time distribution.

There is a non-negligible probability of long taxi times on a link, but the minimum taxi times are

limited by the physics of aircraft motion. While Gaussian models have been proposed in prior

literature [112], they are unlikely to be good fits since the normal distribution is symmetric. The

quality of fit for three candidate theoretical models has been measured in this thesis: Gaussian,

log-normal and Erlang. The Kullback-Leibler (KL) divergence [113] is a natural measure of the

'distance' between two distributions, and is useful for comparison of the fit quality between each of
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these models and the empirical distributions.

Let the three model families be denoted G (Gaussian), L (log-normal) and E (Erlang) respec-

tively. Let XM represent the set of parameters for family M. For example, XG would consist of the

mean and variance for the Gaussian family. Then the optimal set of parameters x* for each model

family M is the one that results in the minimum KL divergence from the empirical distribution.

XM = arg min DKL(P||QM(Xw)),
XM

where DKL(P QM(xM)) is the KL divergence from the empirical distribution, P, to the theoretical

distribution, QM. The optimal distribution, QM (x*), is called the information projection of P on

QM, and is denoted by q% in Figure 2-9. It is now possible to compare the quality of fit possible

using the three model families by comparing the KL divergence of q*, q* and q* from P. For the

current problem, the Erlang family is consistently closest to the empirical distribution for all links

in the network. Therefore, the unimpeded taxi time distribution is modeled by an Erlang random

variable. Parameter estimation can now be carried out for each link in the network using the three

underlying random processes. Sample fits between empirical data and the theoretical models are

shown in Figures 2-6, 2-7 and 2-8 for various links in the network for Boston Logan.

It is worth noting that these estimates are based on ASDE-X data from 2011, and therefore

represent an average over all weather conditions and traffic levels. The variation of parameters

with airport congestion levels is investigated in Section 2.2.2.

2.2.2 Variation of parameters with surface traffic

There are two primary factors which can affect the movement of aircraft on the surface. The first

one is bad weather, which can potentially slow taxi operations, and also limit taxi route options in

the case of snow. However, quantifying the effect of weather is difficult. Firstly, the reporting of

weather is not consistent enough to obtain clear relations between severity and performance degra-

dation. Secondly, the same weather conditions at an airport can result vastly different operational

performance depending on local visibility and weather in the surrounding region. The variation

of parameters with weather is not within the scope of this thesis. It is recognized that the effect

can be significant, and the adaptive parameter estimation algorithm described in Section 3.2.8 can

compensate for some of this variation.
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Figure 2-9: Information projection of the empirical distribution P on three candidate model fam-

ilies. DG, DL and DE are the minimum KL divergence values from P to each family, and it is

consistently seen that DE < DL < DG.

The second factor that is known to affect taxi times is surface traffic. It is well known that taxi-

out times at airports increase with increased surface congestion, and this fact needs to be accounted

for by the model. The surface traffic level, k, is defined as the total number of departures that

have pushed back from their gates but have not taken off yet (this quantity is sometimes denoted

as N in prior literature [37, 61, 72]). The empirical data used in Section 2.2.1 can be divided based

on the traffic level k seen by each aircraft when it pushes back from its gate. Since data from

all of the year 2011 is included in this estimation process, there is a sufficient number of flights

corresponding to each value of k for the results to be reliable. Empirical evidence compiled from

this study shows that the unimpeded travel time parameters, ni and Al, as well as the stop time

parameter, pu, remain invariant with changes in k. The additional taxi-out time due to congestion

is accounted for by an increase in the stopping probability on each link, Pkl. The evidence also

shows that the average taxi time on each link increases approximately linearly with k. Sample plots

for Links 1-+2 and 4-+5 are shown in Figure 2-10 to illustrate these points. The plots show that a

significant number of data points are available between approximately k = 5 and k = 20. There is a

steady increase in average taxi times on the link when plotted against total surface traffic. Similar

behavior is exhibited by the other links in the network. Modeling this increase by a linear function

results in a physically intuitive and mathematically tractable formulation. In addition, Figure 2-13

corroborates the linearity assumption by analyzing the empirical data from a different standpoint.

The exact relationship between Pkj and k as indicated by this analysis is derived in Section 2.2.4.
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Figure 2-10: Variation of travel times over Links 1-+2 and 4-+5 with total traffic on the surface.
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2.2.3 Model for total taxi-out time from gate to runway

Based on the discussion in Sections 2.2.1 and 2.2.2, the travel time over a link 1 is modeled as,

Nsi

ti = tu'l + ts~l,4 (2.1)
i=i

Here, tu,l > 0 is the unimpeded travel time over the link 1, an Erlang random variable with order ni

and rate Al. N, 1 E {0, 1, 2, ...} is the number of stops on the link, modeled as a geometric random

variable with parameter Pkl E [0, 1], where k is the current level of traffic on the surface and 1 is

the current link. Finally, t8,,,i > 0 is the stationary time corresponding to the ith stop on link 1,

modeled as an exponential random variable with rate pl > 0. The values of t8 ,,i are assumed to be

independent and identically distributed (i.i.d.).

If the number of stops is N,, = 0, then tj = to,1 . Each instance of travel time on a link is

independent of all other instances, whether on the same link or on other links, conditioned on the

level of surface traffic. This observation is derived from empirical data, which shows that surface

traffic level as a whole has a greater influence on the taxi time of a given aircraft than aircraft in

the immediate vicinity (such as on the same link). Figure 2-11 shows that the average taxi time on

Link 1-+2 does not increase appreciably with the number of aircraft occupying the link, in contrast

to its variation with total traffic levels, as shown in Figure 2-10. The explanation for this is that

most departing aircraft on the surface taxi towards a common destination (the runway), and there

are few instances of interaction between successive aircraft on a given taxi path. The effect of the

few such instances is captured by conditioning on the total surface traffic level.

2.2.4 Variation of stopping probability on links with surface traffic level

It was shown in Section 2.2.2 that the increase in taxi times with k was linear, and this was

accounted for by an ,increase in PAl. The relation between Pkl and k can be derived by by taking

the expectation of both sides of Equation (2.1), and noting that N,, is independent of t8,I,i:

ni 1 ni Pkl 1 (E[ti I k]= - +E[N,k]-- - + - (2.2)
Al Al Al I - Pkl P1
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Table 2.1: Summary of physical processes and stochastic models in the taxi process

t1  Total taxi time on 1

tui Unimpeded time Erlang(ni, A,)

N,1  Number of stops geometric(pkl)
t,,i Duration of ith stop exponential(pli)

k Surface departure traffic level

X1  Dependence of PkI on k

Each additional aircraft on the surface adds a fixed time penalty to the expectation in Equation

(2.2). Denoting this penalty as a fraction X of the expected stop time -, it may be observed that

for an aircraft that pushes from its gate at a traffic level of (k + 1) instead of k,

ml Pkl 1 Xi
E[ti k + 1] + +

, I -P i PLi lPi
(2.3)

Comparing Equation (2.3) with Equation (2.2) evaluated at (k + 1), the following recursive rela-

tionship is seen:

Pk+1,i +PH
1- Pk+1,1 1- Pkl+ X.

This property describes a telescoping series and can be reduced to,

PkM __ P01 +ki

Pki l-Poi

Now solving for PkI as a function of k we get,

Pol + kX 1(1 - pol)

1 + kXj (1 - pol)

(2.4)

(2.5)

The various component physical processes and their stochastic models are summarized in Table

2.1.

2.3 Model verification

There are several tests that can be performed in order to verify the taxi time model presented

above. Since it is difficult to carry out standard statistical tests for a complex set of distributions
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such as the ones presented in Table 2.1, the model is tested using metrics such as consistency with

independent empirical data.

2.3.1 Consistency of estimated parameters

The consistency of parameter estimates for ni, Al and pl can be tested by looking at their variation

over independent sets of data. Note that these three parameters are independent of surface traffic

levels. Figure 2-12 shows the estimates for the unimpeded taxi parameters nj and Al, and the stop

time duration pl, for a subset of links. The presented data consists of seven months of ASDE-X data

from February to August 2011, consisting of an average of 587 departures per day. The parameter

estimation process has been carried out for one month of data at a time. The estimated values for

each link have fairly small standard deviations, with the exception of the unimpeded parameters

for link 8-+10. Further investigation reveals that the there is a significant deviation for link 8-+10

in only one month of data (April 2011), while the parameter estimates for the other six months are

close to each other. This anomaly is therefore believed to be due to a lack of sufficient data points

in that month.

2.3.2 Comparison of variable parameters with empirical data

A second check is to compare the variation of Pk1 with k as presented in Equation (2.5) with

independent empirical data. Figure 2-13 shows the comparison for two sample links, 5-+7 and

1-+2. It can be seen that the model-derived variation in Pk1 is consistent with empirical data. The

empirical probability of stopping depicted in the figure is based on a data set independent of that

used for the parameter estimation. It has been calculated by looking at the fraction of aircraft that

stopped on a link, as a function of the level of traffic on the surface when the aircraft entered the

link.

2.3.3 Comparison of taxi-out times conditioned on surface traffic levels

A comparison can also be carried out between the modeled and empirically measured taxi time

distribution on a link, as conditioned on the number of stops N,,. Figure 2-14 shows the results for

the link 1-+2. The theoretical distribution for taxi times conditioned on X,, = 1 can be calculated

by convolving the unimpeded Erlang distribution with the exponential distribution for the duration
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Figure 2-14: Comparison of travel time distributions conditioned on number of stops.

of stop. Similarly, the distribution for taxi times with 2 stops is the result of convolution between

the unimpeded Erlang and two exponential distributions. It can be seen from the figure that there

is good agreement between the theoretical prediction and empirical measurement in all three cases.

A brief observation can also be made about the dependence of the expected number of conflicts

(hence stops) on the surface, as a function of the surface traffic. Note that the model represented

in Equation (2.4) implies that the number of stops on the surface increases linearly with the traffic

level k. Since this is true for every aircraft, and the number of aircraft themselves is trivially linear

with respect to k, the total number of stops or conflicts on the surface increases quadratically with

k. This is in agreement with empirical observations made in prior literature [114].
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Figure 2-15: Comparison of full travel time distributions over different links in the network. The
dashed curves (model) are the distributions as predicted by the taxi time model, based on parame-
ters estimated using a training data set. The solid curves (empirical) are the observed distributions
in an independent test data set.

2.3.4 Comparison of full taxi-out time distributions on links

Finally, the complete theoretical taxi time distribution can be calculated by combining the dis-

tributions for all possible values of Naj. This computation is carried out numerically because of

the complexity of the analytical procedure. A sample comparison between the empirical and the

theoretical probability densities for taxi times on several links marked in Figure 2-1, is shown in

Figure 2-15. As before, the empirical distribution used is from a set of days independent of those

used for training the model. Similar matches are seen between the empirical data and the model

for all frequently used links.

2.4 Additional insights

The tuned values of distribution parameters for each link offer interesting insights into the opera-

tional characteristics of the airport. Some sample values are given in Table 2.2. For example, the

mean unimpeded travel time over each link, given by L, is an indicator of the length of link 1.Ast

This interpretation is supported by the parameter estimates, with long links tending to have higher
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Table 2.2: Parameter values for some sample links. A full list can be found in Appendix A. Note

that the quantity ! denotes the expected unimpeded time, while 2 is the expected taxi time

added for each unit increase in k.

Link Al ni [ li Po0 X 1

(sec- 1 ) (sec) (sec-1) (sec)

1-+2 0.24 20 83 0.020 0.20 0.03 1.5
2-+3 0.23 18 78 0.015 0.20 0.03 2.0
8-+3 0.23 19 83 0.017 0.15 0.02 1.2

4- 5 0.20 22 110 0.015 0.25 0.15 10.0
5--+6 0.10 12 120 0.015 0.50 0.45 30.0

unimpeded times than short links. In addition, the final links leading to runway thresholds, which

is when pilots finish the final checks before takeoff, generally have lower Al values than links deep

inside the network. This means that the model has recognized from the training data, that taxi

times on the links leading to the runway threshold tend to have greater variance than those near

the gates (the variance of an Erlang distribution is n). The parameters of the exponential random

variables offer insights into the trend of stop times on each link. Specifically, the quantity - is the

mean time of a stop on the link. This tends to be between 40 and 70 sec. Again, pI values tend to

be lower on the final links, which means that the links that contain departure queues have longer

stops than others. The effect of the surface traffic level on link travel times is seen by the ratio of

X1 to pi. Links near the terminals, such as 1-+2 or 2-+3, are affected to a much smaller extent

than those near the runways. Note that Table 2.2 implies that for an aircraft taking the taxi path

1 -+ 2 -+ 3 -+ 4 -+ 5 -+ 6, each unit increase in the surface traffic level increases its expected taxi

time by 43.5 sec.

2.4.1 Parameter estimation for the taxi-in process

The model for the taxi-in process is analogous to the one for taxi-out, with the time along each

link depending on the three random processes described in Section 2.2.1. The unimpeded time

distributions are quite close to those seen for departures (compare Figure 2-18 and Figure 2-6).

However, the stop times are shorter on average, and the stopping probabilities themselves are lower.

The full set of parameters is given in Appendix B. Note that in most runway configurations, arrival

taxi paths are different from the departure taxi paths apart from the links closest to the airport

terminals. Multiple taxiways are available on these links as well, thus ensuring that arrival taxi-in
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operations are largely separate from departure taxi-out operations. A comparison of the estimated

distributions and empirically measured ones is shown in Figures 2-16, 2-17 and 2-18 for a selection

of links. Note that the figures are representative of the quality of fit for all frequently used links,

and are not chosen on this basis.

2.4.2 Parameter estimation for LaGuardia airport

While Boston Logan International Airport is used as a demonstrative example throughout this

thesis, it is important to note that the methods proposed are extendable to any generic airport.

The estimation of parameters and calculation of control policies is fully automated, once the network
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Figure 2-18: Unimpeded time distribution for arrivals.

has been defined for a given airport. An illustrative example of this is shown in Figure 2-19, which

is the network as defined for LaGuardia airport in New York. The nodes are marked by white boxes

as in Figure 2-1. The parameter estimation process is the same as that described in Section 2.2.1,

and the resulting distribution fits are shown in Figure 2-20 for a sample set of links. The empirical

data depicted in the figure is independent of the data used for parameter tuning. The quality of

fit is seen to be good, which lends credence to the claim that the random processes postulated for

modeling taxi times are independent of the specific airport under consideration.
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Figure 2-19: Layout of the airport surface at LaGuardia airport. Nodes in the network model are
marked with white boxes.
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Chapter 3

Congestion Control of Departure

Operations

This chapter presents two control algorithms for calculating the optimal time of entry into the

network for each aircraft. The first algorithm aims to maintain a constant level of traffic on the

airport surface, while the second algorithm simultaneously balances the objective of reduced fuel

burn with the penalty of introducing gate delays and of adversely affecting airport performance.

The departure process at most airports starts with a flight plan clearance, which is relayed to the

pilots on first making contact with air traffic control. At Boston Logan, pilots are then requested

to contact the tower when the aircraft is ready for pushback: this happens when all passengers and

cargo have been loaded and the aircraft doors are closed [115]. The controller makes visual contact

with the aircraft parked at the gate, and ensures that the area around it is clear of obstructions

such as ground vehicles and other taxiing aircraft. He/she then clears the aircraft for pushback,

and assigns it a specific taxi route to the runway. A slightly different procedure is followed by

aircraft at Terminal A. These aircraft first contact a ramp tower for permission to pushback. Their

control is passed to the ATC tower when they reach the location marked as node 1 in Figure 2-1.

Other airports may have different divisions of responsibility between the ramp towers and the

ATC tower. However, it is important to note that each aircraft is controlled by a ramp or ATC

tower from the moment of pushback. It is operationally feasible to implement the control algorithms

presented in this chapter with some amount of coordination between the various tower facilities.

Several field trials are already in progress at many locations as described in Section 1.2.2, where the
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implementation protocols are similar but the methods for calculating control policies are different.

The advantage of the control algorithm presented in Section 3.2 is that it directly optimizes for fuel

burn and airport performance, instead of achieving these benefits indirectly. In addition, it also

adheres to operational constraints such as the gate capacity at the airport.

Through the remainder of this thesis, several terms are used in the context of applying the

departure control algorithm at airports. These terms are defined here for the sake of clarity. A gate

is a parking bay for aircraft attached to the airport terminal, where passengers board and deplane.

Pushback is the process of pushing an aircraft back from the gate, in preparation for taxi to the

runway. Aircraft do not start their engines until pushback is completed. Pushback delay is an

instruction given to an aircraft, delaying the start of its pushback process. The aircraft is supposed

to wait at the gate -until it is cleared for pushback. Finally, a pushback buffer is the number and

occupancy state of a collocated group of gates.

3.1 The kctrl algorithm: maintaining constant traffic levels

This section describes a control algorithm that aims to maintain a steady level of traffic on the

airport surface. It has been shown that regulating traffic on the airport surface to a well-chosen

level results in reduced taxi times without delaying takeoff times [61] . Since aircraft taxi times are

roughly proportional to their fuel burn [108], reduced taxi times result in fuel savings. Therefore,

this objective is a logical starting point for any new control strategy. Lessons learned from the

analysis of this control strategy are used to develop a more comprehensive algorithm, which is

described in Section 3.2. Note that both algorithms assume that control is exercised by changing

the time of entry of aircraft into the network, and the taxi routes after pushback are assumed to

be pre-defined.

3.1.1 Objective and implementation protocol

The objective of this control algorithm is to stabilize the airport traffic level at a user-defined

operating point. The idea is based on the N-control algorithms described in literature for airport

congestion control [72, 25, 23], which themselves are based on ideas such as the control-point policy

for manufacturing systems [102]. Control is exercised on the network described in Chapter 2 by

defining the time of entry of aircraft into the network. Aircraft are handled on a First-Come-First-
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Served basis, that is, aircraft are released from the gates in the same order that they call ready for

pushback. Gate delays are assigned one at a time, starting from the first aircraft due for release.

When this aircraft leaves its gate, a delay is calculated for the next aircraft and so on. In this

section, the assigned delay is a function of only the surface traffic level k.

It is important to note the similarities and distinctions between the N-control algorithm de-

scribed in prior literature, and the kctri algorithm described here. Both strategies have the same

goal, that of stabilizing the level of surface traffic to a user-defined level. However, the way in which

these strategies are implemented is different. The pure N-control algorithm [72, 25, 23] is an on-off

policy where the critical events are aircraft takeoffs. As soon as one aircraft takes off, the next

aircraft is allowed to pushback. This means that the strategy is predicated on past and present

events only, and provides no warning of the imminent release command to the pushing aircraft. The

Pushback Rate Control algorithm [61, 73] is a predictive algorithm in the sense that it forecasts the

number of takeoffs in the next few minutes, and produces a suggestion for the number of aircraft

that can be released in that time period. It does not specify the times at which individual aircraft

should be released, and instead employs somewhat conservative policies that ensure robustness to

such variations. The kctri algorithm presented and simulated in this thesis is also predictive in

nature. However, the pushback times that it calculates are much more specific, but limited to only

the next aircraft waiting to pushback.

3.1.2 Definition of control strategy

Consider a scenario where an aircraft calls ready to pushback at time t = 0. Now consider a

First-Come-First-Served (FCFS) algorithm that aims to minimize a weighted linear cost function

for the aircraft, composed of pushback delay u and expected taxi-out time E[tilk] from Equation

(2.3). That is, the cost function is Ck = a u + E[ti k], with a being a constant weighting factor. Its

relationship with the target traffic level is developed towards the end of this section. The control

value u that minimizes expected cost is given by

u = argmin E [au +t 1] argmin au+ -+ Pk
U> ag (au 1 -- Pk[pl P]

Su = arg min a u+ 1 r.77 + kPX1 (3.1)
U>O Pi
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where the last two steps follow from Equation (2.2) and by defining r7 = + - Po, . EquationAt Aj Po

(3.1) assumes that the aircraft's route follows links 1 = 11, 12, ... , ir, and that PkPI is the stopping

probability on link 1, when the projected surface traffic level after time u is kp. The expected

taxi time is thus also a function of u. The projected traffic level, k, can be calculated based on

the procedure outlined in Section 3.1.3. Since entry into the network is assumed to be FCFS, the

projected traffic level decreases as u increases (there can be no additional aircraft entering the

network while the first aircraft is waiting). It is shown later in Equation (3.9), that the expected

time between departures increases as kp decreases. Therefore, at some value of kp, the increase

in expected cost due to the first term in Equation (3.1) outweighs the decrease in cost due to a

smaller k, in the second term. The actual value of this 'target' kp is controlled by the weight a. In

the rest of this section, the target level of traffic is denoted by kctri-

3.1.3 Simplified model of departure process from the network

To calculate the optimal control policies, some simplifying assumptions about the departure process

need to be made. The following derivation will be helpful in providing intuition about the departure

process. Note that the highly simplified model works for this algorithm because projections about

the future are only carried forward up to the time of the next pushback. A more sophisticated

approximation procedure is required for the dynamic programming algorithm described in Section

3.2, where a much longer time scale of projection is required. For simplicity, first consider the single-

link network. For moderately large values of surface traffic k, it may be assumed that departures

from the link occur as exponential processes, one for each aircraft. The mean time of arrival of

each process is equal to the mean taxi time T11 + X1 . If there are k aircraft on the link, there

are k racing exponential processes. Using the memoryless property [116] and Equation (2.2), the

expected departure time of each aircraft (relative to the present time) is again given by r71 + kX,
Al

Consequently, the rate of each process is the inverse of this quantity, and the net departure rate

for k independent exponential processes is

1
Rk = k - aircraft per unit time. (3.2)

Since each departure from the link corresponds to an expected taxi time reduction of for theAl t
aircraft being assigned pushback delay, the instantaneous rate of decrease of expected taxi time
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with the control input u is given by

d Xdti = Rki ----
du Al

In order to target a certain level of traffic (say k = kctri), the value of the weight is chosen such

that the rate of reduction of expected taxi time is equal to the rate of increase of the term a - u,

when k = kctri. Since the term a - u increases at the constant rate a, the relationship between the

weighting factor a and the target traffic level kctri is

d X kctri 2X
a = ti Rkci - . (3.3)

du A 7pI 1 + kctrl A

3.1.4 Optimal control strategy

Since no new aircraft enter the link until the current aircraft pushes back, RkI is the rate of

decrease of the projected traffic level kp. It is therefore possible to find the optimal control u*

required to maintain a specific value of kp. An implicit assumption is that the exponential nature

of the departure process for each aircraft is maintained as this projected value evolves. If kP is the

projected traffic level,

d k

du + k X1l

u* = ni ln ,( + (kp(0) - kp(u*)) . (3.4)
kP(u ) 11

Since kp(O) is a known quantity (the current traffic level), the optimal control for each k = kp(O)

is defined by substituting kp(u*) = kctri in Equation (3.4). If the optimal value is negative, u is

assigned a value of zero, in order to obey the constraint u > 0. Note that this happens if and only

if k)(0) < kctri, which means that the control strategy calls for immediate pushback if the traffic

level is below the target value. If the current traffic level is above kctri, the pushback delay becomes

progressively larger with kp(0). Another point to note is that for every value of k = kp(O), there is a

unique control u* that is commanded. Thus there is a discrete (but infinite, since the possible values

of kp(0) are infinite) set of commanded control values that is generated by this control strategy.
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Figure 3-1: Variation of surface traffic levels seen in simulations of control algorithm for single link,
with kct.ri = 10. The assumed link parameters are listed at the top of the plot.

This property is used in Section 3.1.7, when considering the regulation characteristics of the control

strategy described above.

3.1.5 Simulation of single link networks

The control strategy developed above is demonstrated through simulations in this section for a

single-link network, and then for the full surface network of Boston Logan in Section 3.1.6. Since

the optinial control strategy as derived above relies on a number of approximations, it is necessary

to validate it using independent simulations. In Figure 3-1 and Figure 3-2, simulation results are

shown for a single-link network with the control values tu* defined by Equation (3.4). It is assumed

that there is an infinite buffer of aircraft waiting for release, and that the current traffic level is

known at all times. In addition, aircraft are released according to a First-Conic-First-Served (FCFS)

policy. From Figure 3-1, the average steady-state traffic level is seen to stabilize to kctri. Figure

3-2 shows that the average taxi times are close to the value of 105.5 sec predicted by Equation

(2.2) for the assmiined set of parameters. It is shown later in Equations (3.9) and (3.10) that the

average taxi time penalty imposed by the presence of a finite umuber of aircraft on the surface is

'1 . In this example, this evaluates to 6 sec more than the theoretical minimum inter-departure

times. This added average taxi time can be driven arbitrarily close to zero by increasing kctri.
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Figure 3-2: Variation of average taxi-out times seen in simulations of control algorithm for single

link, with kctri = 10. The assumed link parameters are listed at the top of the plot.

3.1.6 Simulation of the full airport network

Figures 3-3 and 3-4 show results from a simulation based on the full network abstraction of Boston

Logan airport. All departures are assumed to happen from Runway 27 (marked as node 6 in Figure

2-1). The relevant network is depicted in Figure 2-2. It is assumed that the pushback requests from

these aircraft appear at a rate based on the historical variation over a day, as derived from surface

surveillance data. The x-axis shows the local time at the airport. Each curve in Figure 3-3 (a)

plots the variation of simulated average traffic level in that 15 min interval over the course of the

day, for different values of kctri. In all the controlled cases, the algorithm successfully limits surface

traffic levels to the corresponding target values in times of high departure demand. Since the same

pushback schedule is used for all four tests, the total number of departures is the same when summed

over the whole day. The curve for unrestricted entry (or kctri = o) into the network clearly shows

the morning and evening demand peaks, with high levels of surface congestion during these times.

The cases with kctri = 15 and kctri = 20 mitigate this effect to a large extent, by delaying aircraft

at the gate during periods of excessive demand. Note that the traffic peaks become wider with

decreasing kctri, as the control algorithm takes longer to clear out delayed aircraft. For kctri = 10,

the peaks are so wide that they merge with each other, and the algorithm is unable to clear the

built-up demand until the end of the day. This value of kctri is too aggressive, as seen from the
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excessive pushback delays assigned in this case (Figure 3-4 (b)).

Practically, the choice of kctri may be made on a case-to-case basis for each airport. It should

be low enough to avoid gridlock on the surface, which leads to large and highly variable delays. At

the same time, it should be high enough to keep up with pushback demand and the throughput

capacity of the airport. For example, in the unrestricted case, a comparison of Figures 3-3 (a)

and 3-3 (b) shows that the peak traffic level is higher than the maximum departure rate from

the airport, leading to a buildup of traffic. For departures in this configuration, this maximum

sustained takeoff rate is between 15.5 and 16.0 departures every 15 min. Note that the two peaks

at 17 departures in Figure 3-3 (b) are due to takeoffs at the very start and end of the interval, and

are accompanied by dips in throughput in the adjoining intervals. The maximum departure rate

of around 16 aircraft per 15 min is rarely achieved by setting kctri = 10. This is because the supply

of aircraft is too low for 16 aircraft to reach the runway within 15 min on a sustained basis.

Once a feasible range of kctri is derived from such considerations, the value can be tuned by

deciding on the relative importance of one minute of taxi time reduction versus one minute of

pushback delay. The parameter a in the objective function (Equation (3.1)) determines the relative

weighting of taxi-out time reduction and pushback delay, assuming small perturbations from the

initial state. Its value varies slightly depending on an aircraft's source node, since the expected taxi

times are slightly different. Figure 3-4 (b) shows the average taxi-out times per 15-min interval by

time of day. We notice that during peak demand times, taxi-out times for the unrestricted case

can be as high as 24 min. By contrast, a value of kctri = 10 (which corresponds to an average value

of a = 0.45) results in average taxi-out times of around 12 min. Similarly, when kctri = 15 (average

a = 0.55), the algorithm regulates the system to the point where 1 min of additional pushback

delay is traded off for 0.55 min, or 33 sec, of taxi time reduction.

3.1.7 Markov chain model with embedded control values

To analyze the effect of the control algorithm on the traffic level, it is useful to first consider the

single-link case. As noted earlier, a fixed delay is assigned to each state, based on the target traffic

level. Since departures from the link are stochastic, the state seen by the next aircraft to pushback is

a random variable. It is possible to calculate the probability mass function of this state conditioned

upon the previous state and the assigned delay. A Markov chain structure is seen to emerge, with
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Figure 3-6: Markov chain model for transitions under the proposed control strategy, if k > kctri.

the states corresponding to the traffic level seen by successive aircraft, and with known transition

probabilities between each pair of states. Figures 3-5 and 3-6 depict this structure, assuming that

the target traffic level is kctri = k - 1. For states at or below ketI, no delay is assigned according

to Equation (3.4), and the transition is deterministic. For states above kctri, the transitions are

stochastic.

3.1.8 Calculation of transition probabilities

Consider the scenario depicted in Figure 3-6, in which the current aircraft sees a traffic level of k.

Then, according to Equation (3.4), it is assigned a pushback delay

k X
* =rl IIIk- + (k - (k - 1))I.

From Equation (3.2), the Poisson departure rate from the link is given by R -= X, . Note that
rl+ i'll

a transition from state k to (k + 1) will occur if no aircraft depart from the link in time u*. The

probability density of the Poisson distribution results in the probability of this transition being,

(RAu+)) = = i . (3.5)0!

III a similar manner, the transition probabilities pij can be calculated for each pair {i, j}. The

chain may be truncated at a state kmiax sufficiently larger than Actri, such that the probability of

ever reaching state kinax is very low. The matrix of transition probabilities pi*j is nearly stochastic

for a sufficiently large value of kmax. Steady state occupation probabilities for A = 0,1,.. x
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are given by the left eigenvector of this matrix. For the given system, these steady state values

correspond to the proportion of traffic states seen by successive aircraft, when released according

to the control algorithm defined by Equation (3.4). As shown in Figure 3-7 for kctri = 10, these

theoretical values match well with fractional state occupancies observed during simulation runs.

The system is found to occupy one of the states kctri, kctri ± 1 and kctri ± 2 more than 95% of the

time.

Furthermore, the same result can be easily extended to more complicated networks. For the

network depicted in Figure 2-2, the expected taxi time for an aribtrary aircraft can be calculated

by taking a weighted average of the expected taxi times out of each source node. The weights

themselves can be proportional to the fraction of traffic supplied by each source node. By noting

that each component of the taxi-out process is still memoryless (geometric, exponential, or Erlang),

this exptected taxi time can be used to estimate the departure rate from the airport. Analogous

to Equation (3.2) we have,

1
Rk,C =k~ - x (3.6)

In Equation (3.6), C is the active runway configuration, S is the list of source nodes in the network,

p(i) is the fraction of traffic provided by source node i, and Pi is the taxi route from source node

i. Using Rk,C as the estimate for the Poisson rate of departures from the airport, the transition

probabilities can be calculated in an analogous fashion to Equation (3.5). While this is a more

crude approximation than for the single link case, a comparison with simulated fractional state

occupancy shows trends that are very similar to those in Figure 3-7. In this manner, the control

algorithm is able to regulate the traffic level to the desired target value.

3.1.9 Shortcomings of the kctri strategy

The kctri algorithm described in this section has the advantage of being simple to understand

and implement, but it has several inherent drawbacks. The most important challenge with this

method is the selection of a target surface traffic level. The tuning procedure for this number is

highly subjective, as described in Section 3.1.6. The value of kctri is not only influenced by the

layout of the airport, but also by the runway configuration being employed and other operational
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considerations. For example, certain runways might have less space for the formation of departure

queues than others, which limits the surface traffic level that can be acconnodated.

Additional drawbacks of this method include the loss of all link-specific information available

from the network model. For example, configuration- and airport-specific characteristics are em-

bedded in the estimated link travel time parameters in the form of stopping probabilities and

expected stop durations. Forcing a value of keiri on the airport neutralizes the potential uise of the

information in these parameters. A third problem with the algorithn is the mismatch between the

overall objective of implementing congestion control at airports, and the objective used for calcu-

lating the control policy. The overarching objective of airport congestion control is to reduce fuel

consumption, while the kctri algorithm merely tries to stabilize surface traffic levels. It would be far

more desirable to employ a control strategy that directly targets fuel burn reduction. Finally, an

operational constraint also limits the applicability of this algorithm at busy but space-constrained

airports. This is the availability of gates at the airport. Since delaying departures at the gate

increases average gate occupancy, it is possible for an arriving aircraft to be delayed because of the

lack of empty gates. This problem is not directly addressed by the kctri algorithm, and field demon-

strations of similar strategies generally use ad-hoc techniques to circumvent this problem [61]. The

issues discussed here are explained in greater detail towards the end of this chapter, where compar-

ative simulations are carried out between this algorithm and the dynamic programming algorithm

described in the next section.
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3.2 Control based on dynamic programming

Based on the discussion in the previous section, it is desirable to develop a control algorithm that

explicitly targets fuel burn reduction while limiting the adverse effect on airport performance. It

should also adhere to operational constraints such as gate availability at the airport and user-defined

levels of acceptable gate delay. For example, airline on-time reporting systems tag a flight as 'late'

if the aircraft leaves the gate more than 15 min after its scheduled departure time. Exceeding this

value of delay may be unacceptable for airlines as a result. Given the complex but information-rich

nature of the taxi-out process, the constraints on the problem, and the multi-objective optimization

requirement, a dynamic programming solution is the natural choice. This section describes the

development of the control strategy in detail, starting from an illustrative example of control on a

single link, and ending with the control strategy for the entire airport. As noted in Section 3.1.3,

the highly simplified model for the departure process cannot be employed here. A more accurate

estimate of the departure rate from the airport is derived below.

3.2.1 Markov process representation the taxi time model

Since the taxi time model presented in Section 2.2.3 is composed of memoryless random variables

(Erlang, geometric and exponential), it can be depicted as a Markov process. Note the difference

between the model presented in Section 3.1.7 and the one presented here. The former model was for

transitions between surface traffic levels when the control inputs were already defined. The model

being presented here is a representation of the basic taxi-out process. The model for a single link is

shown in Figure 3-8, where the taxi time is the time taken to move from state 1 to the destination

state D. States marked from 1 to nj form the unimpeded portion of the taxi time, with a transition

rate of Al each. Note that each state from 1 to (ni - 1) has only one outgoing transition. When the

first (ni - 1) of the n hops that compose the unimpeded portion have been completed, there are

two possible transitions. The system can enter the 'stop' state S with probability PH1 (and hence

rate Al Pkl), or it can directly enter the destination state D with probability (1 - P). State S has

a geometric number of self-transitions with probability PA.

Now consider the problem of modeling the departure process from the airport for a moderately

large traffic level k. This is equivalent to calculating the probability distribution of the number of

departures from the airport in a given period of time, with observations starting at a random time.
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Figure 3-8: Representation of the taxi-out model as a Markov process, for a single link. The

transition time for each state is exponential with rate Al or pl.. State D is the final state, when the

aircraft departs from the link.

The first step for calculating this quantity is finding the probability of the system being in state

i (i = {1, 2,. .. , nj, S}) when the observation starts. The solution procedure for Markov processes

is outlined in [116], where it is shown that the probability of the system being in each state is

proportional to the expected time spent in that state.

These expected occupancy times are depicted for the single link in Figure 3-9. There are ni

segments of length y (the unimpeded transitions), and one segment of length PH (the total

expected stop time). Consider the following step-wise procedure for estimating the expected time

to departure for an arbitrary aircraft already in the network, when the observation is also started

at an arbitrary time.

1. The total expected taxi time from gate to runway is given by Equation (2.2) and is equal to

\Al 1-pt,.I pfit).

2. The expected time spent in each unimpeded transition (for example, from state (i, - 2) to

('n - 1)) is .

3. From the two statements above, the probability of a random observer appearing when the

process is in an unimpeded state i c {1, 2, . . I.,} is,

Al

X, + kP1 1, -
4. U-p pr wr

4. Using siniilar logic, the probability of the observer appearing when the process is in state S
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is,
Pki _1_

1 - Pk 1 
T1 1 -Pkl Al

5. If the observer appears during an unimpeded transition out of state i, the expected time to

go is,
Pkl 1 n - i +1

tui = -+ , 1 1, 2, . .. , ni}.
1 - Pkl Al Al

6. If the observer appears in state S, the expected time to go (using the memoryless property)

is,

- Pkl 1 1
1 Pkl Pi [i

7. The combined expected time-to-go t av is the weighted sum of ni unimpeded transition terms

(each with probability pu) and one stopped transition term (with probability ps). The ex-

pression for tav is thus,

ni nf

tav = Putui +Ps ts = Pu tui + pS ts (3.7)
i=1 i=1

Since this time corresponds to each aircraft, the net departure rate for k aircraft is R 1  -.

The departure process from this link is approximately Poisson with rate R',. While this is a

more involved expression than Equation (3.2), it is a closer approximation to the actual rate.

The departure process from the airport is composed of aircraft that are at different points on

the surface and not necessarily just appearing at the source nodes. This means that the random

observer assumption is more valid than the assumption in Section 3.1.3, which said that the expected

remaining taxi time for each aircraft is equal to its total expected taxi time. A comparison of this

theoretical model (Poisson with rate R') with Monte-Carlo simulations of transition probabilities

is shown in Figure 3-10. The link parameters were nm = 20, Al = 0.4, pl = 0.02, pol = 0.1, and

Xi = 0.2. Note that two types of parameters are being varied in the different plots: the starting

traffic level as well as the assigned delay.

The Markov process representation for a two-link taxi path is shown in Figure 3-11. In this

case, the taxi time is generated by going through each state in Link 1, with a probability (1 - Pkl)

of skipping the state S1 . The process is repeated for state 2, following which the destination state
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Figure 3-9: Expected length of each segment in the single link model.
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Figure 3-10: Comparison of theoretical transition probabilities and simulation-generated transition
probabilities.

D is reached. The same model can be extended for multi-link paths, and the departure rate can

be calculated using the same method as for the single-link case.

3.2.2 Derivation of maximum link throughput

Minimizing the effect on airport performance is one of the stated objectives of the dynamic pro-

gramming formulation. Therefore, cost definition in the optimization problem should contain some

measure of the network throughput for the airport. Before deriving the maximum throughput of

the full network, it is necessary to find the maximum throughput of a single link 1. Initially, let the

link be capable of accommodating an infinite number of aircraft. Furthermore, let it be operating in
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Figure 3-11: Representation of the taxi-out model as a Markov process, for a path with two links.
The transition time for each state is exponential with rate Ai or pi. State D is the final state, when
the aircraft departs from the airport.

deterministic steady state, with the taxi time of each aircraft being equal to its expectation value.

Aircraft are distributed regularly along its length, with each departure from the link occurring after

a fixed time interval, and each arrival to the link happening at the same instant. If v is the arrival

rate to the link, under this assumption, a new arrival occurs every (}) sec. In steady state, the

number of aircraft on the link will be maintained at some value k. From Equation (2.3), note that

the (deterministic version of) taxi time on the link is given by

ni pol kXj kXj,
tki = E[tik + = ]X, + , (3.8)

Al (1 - po1)pIl mi i

where 77 is a constant comprised of the first two terms. During this time interval in which an aircraft

travels over the link, the k aircraft ahead of it depart from the link. Therefore, the inter-departure

time Atki is

tk1 'q, X1
Atki + .j (3.9)

kk i

The steady state traffic level k is the result of equating the inter-arrival interval (J) to Atki.

Consequently, the minimum inter-arrival interval that can be sustained by the link is (}) = ,

achieved as k -- oc. The maximum sustained throughput of link I is the inverse of this value, that

is,

0- M (v)nax = . (3.10)
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In the stochastic case, the average inter-departure times will be governed by the expectation in

Equation (3.8). The expectation operator goes through the same derivation as for the deterministic

case, which means that the result from Equation (3.10) holds for the stochastic case as well.

Relaxing the assumption of*infinite link capacity is also quite simple. Assuming the maximum

capacity of the link to be kmax, the minimum sustained inter-departure time as derived from

Equation (3.9), will be '71 + -. The maximum throughput will be the inverse of this quantity.
krnax tti

If the input rate to a link 1 is less than ul, the link can be referred to as being stable. Once the

maximum throughput values for each link are known, it is straightforward to derive the maximum

network throughput, using the mincut/maxflow theorem [75, 76]. Note that in general, simply

ensuring that each individual link remains stable does not ensure stability of the entire network

[99, 100]. However, it is known that for the special case of directed acyclic graphs, such stability is

guaranteed.

3.2.3 Derivation of maximum network throughput

The mincut/maxflow theorem [75, 76] states that the maximum capacity of a network is equal to

the maximum flow rate through the most constrained cut across the network. A cut with respect

to two terminals is defined to be "a set of branches such that when deleted from the network, the

network falls into two or more unconnected parts with the two terminals in different parts" [76]. In

a network containing a single link 1, there is only one possible cut and the maximum throughput

is thus trivially equal to al.

Figure 3-12 (a) shows a network with two sources and a total of three links. As indicated

in [77], multiple sources are handled by connecting a 'supersource' with infinite maximum link

throughput to the two source nodes 1 and 2. In this case, this supersource is denoted by E and

the extended network is depicted in Figure 3-12 (b). Any cut separates the network into two parts,

one containing E and the other containing the sink node 4. Let the link capacities on 1-+3, 2-+3

and 3-+4 be 0 13, 023 and 934 respectively. By assumption, the capacities of the links emanating

from E are ori = o2 = o. If aircraft are leaving source nodes 1 and 2 at rates v1 and V2, the

total flow rate restriction is given by,

Vi + V2 <; min (913 + 2 3 , J34, 013 + O2, 123 + 0lI, 023 + OE 2 , U13 + UrEi).
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(a) Actual network

(b) Extended network

Figure 3-12: Network with two sources, three links.

Since the values of a-l and OE2 are infinite, the first two terms are the only relevant ones inside

the minimization operator. The constraint is thus reduced to,

vi + v2 ; min (a 3 + 0-23, 0-34)-

In addition to the total capacity of the network, there is also a limit on the maximum traffic that

can be handled out of each source. Since the networks considered here are directed and acyclic, the

maximum traffic rate from each source can be calculated independently of the others by looking at

only the sub-network leading from one source to the sink. In cases where flow from one source can

be routed through another source such as in Figure 2-2, the calculations are more involved but still
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3

Figure 3-13: Network with one source, multiple links. All links in the cut L2 contain flows towards

the destination, while there are only two such links for L1. The maximum flow rate through this

cut is equal to (0-12 + 0-34)-

tractable. For the network shown in Figure 3-12, the additional constraints are,

vi 5 min (0-13, 034),

v 2 < min (0-23, 0-34)

In more complex networks such as the one in Figure 3-13, a maximum throughput of zero is

assigned to branches that contain flows towards the source nodes [76]. All other branches are

assigned their full throughput values. In Figure 3-13, it is assumed that the maximum throughput

of link 1-+2 is 0-12, and so on. The traffic rate generated by the source node 0 is assumed to be v.

The constraint on this value is given by,

v < min (0-01, 0-12 + 0-13, 012 + 0-34, 0-13 + 0-23 + 0-24, 034 + 024, 045).

If the input rate to any link is less than its maximum throughput, the link is said to be in a stable

condition. It should be remembered that the maximum throughput of link 1 is O = I. This fact is

used in Section 3.2.4 when defining stage costs for the optimal control problem. Furthermore, the

network stability analysis may be easily extended to handle multiple sources [117]. The proposed

implementation protocol in this work is to suggest pushback times to aircraft that are ready to

depart from their gates. In essence, the control variables are the times of entry of aircraft into the

network. Consequently, the control algorithm needs to assign a pushback time to each aircraft as

it calls ready, while ensuring the stability of the network.
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3.2.4 Cost definition

Any optimal control problem has two major components: the state definition and the cost definition.

Assume, for the moment, that the state of the airport is represented by the quantity 9. The exact

state definition depends on the formulation of the problem, and is discussed in Sections 3.2.5 and

3.2.6. The calculation of the optimal pushback policy for each state 9 requires the knowledge

of state transition probabilities and a definition of stage costs. The expected stage cost for the

sairport-aircraft system should account for three quantities: the fuel burn of each aircraft during

taxi-out, the fuel burn of auxiliary motors while an aircraft is parked at the gate, and any loss of

airport throughput because of the implementation of the control strategy. Note that the auxiliary

motors are used to drive on-board aircraft systems such as radios and air conditioning when the

engines themselves are not running. The cost is necessarily a function of the projected traffic level

k, at the assigned time of pushback, as defined by the current state 01 and the pushback delay

u. It is shown in subsequent sections that kp has a one-to-one correspondence with the state at

the time of pushback (92), and the transition probabilities from 01 to 02 (denoted by p 102 (u))

can be calculated using the method described in Section 3.2.1. With the above considerations,

the expected stage cost C for the system currently in state 01 on assigning a pushback delay u is

encapsulated in Equation (3.11).

C(91,u) ZPoio 2 (u) ci kp(92) + c2u+ kC32 ). (3.11)
02

As explained in Section 2.2.2, the expected taxi time increases linearly with the surface traffic

level at the time of pushback (kp). Thus the first term in Equation (3.11) is a measure of the

aircraft taxi time, and therefore also a measure of the fuel burn during taxi out [108]. The second

term captures the fuel cost of using auxiliary engines while at the gate. This cost is proportional

to the pushback delay u. The third term is proportional to the difference between the ideal run-

way performance and the actual expected performance, as defined by the expected time between

successive departures. This characteristic can be derived as follows. Since the total expected taxi

time varies linearly with kp,

lB [zE:ti] = ('E:q)+ (zn) k Al ,
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where P is the taxi path. Therefore, the average separation between successive departures at this

traffic level is,

E -lui t+ (3.12)

Analogous to the derivation in Section 3.2.2, the minimum inter-departure time for a given path

P is achieved as k, -+ oc. This value is equal to . The difference between this quantity

and Equation (3.12) is a measure of the increase in taxi times because of the presence of only a

finite number of aircraft on the surface. The quantity 1 can thus be scaled using the constant c3kp

to represent a time penalty. Since the first two terms in Equation (3.11) are also in units of time

(properly scaled by the constants ci and c2), the quantity ' can form the third term in the stage

cost definition. Note that the stage cost increases exponentially as kp(u) -+ 0 and tends to drive

any optimal policy away from states with very low traffic levels. This is a useful property, since

very low traffic levels may lead to an undesirable event where the runway is unused even though

there is high departure demand.

3.2.5 Control strategy for single links

It is logical to first develop the dynamic programming-based control strategy for a single link, and

then to extend the scope to the entire airport network. Consider the setup depicted in Figure 3-14.

Aircraft enter the network through the source node 1. This source is associated with a buffer, which

corresponds to its gate capacity. In this figure, the buffer capacity is shown to be equal to 4 gates.

Each gate in the buffer can be in one of three states: available (empty circle), occupied-inactive

(filled square) and occupied-active (filled circle). The aircraft that is next in the queue for pushback

is also occupied-active, but is denoted by a hashed circle. Available gates are empty, and can be

occupied by arriving aircraft. When an aircraft pulls into a gate, it becomes inactive for a period of

time, while it is being serviced. Once ready to leave, it calls the air traffic controller for permission

to pushback. The gate is then tagged as being active. The purpose of the control formulation is to

calculate optimal delays for aircraft that are active (ready for pushback). Aircraft are allowed to

pushback on a first-come-first-served (FCFS) basis. That is, pushbacks are approved in the same

order in which gates change from occupied-inactive to occupied-active. Only the first aircraft in the

FCFS order is assigned a precise delay; the next aircraft is assigned a delay when the first aircraft

leaves its gate.
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Aircraft are assumed to arrive into the buffer at a Poisson rate 0. The available buffer capacity

N is equal to the number of empty gates, and represents an implicit constraint on the delay assigned

to the current aircraft by being a driver of the probability of buffer overflow. In this problem, a

buffer overflow would occur if an arriving aircraft found no available empty gates (N = 0). Let -y

be the buffer overflow tolerance, or the maximum probability with which the capacity of the buffer

is exceeded during the current assigned delay of duration u. This is equivalent to the probability

of there being more than N arrivals in the Poisson process with rate / during time u. An estimate

of the arrival rate / can be used to determine the probability of this event as a function of the

proposed delay u. In addition to the available buffer capacity N, it has been shown in Section 3.2.4

that the surface traffic level k is an important driver of the optimal control strategy. Therefore,

the state representation 0, for the single-link network is given by O, {k, N}.

Technically, the surface traffic level k E Z>O, the set of non-negative integers. However, it is

assumed that k E {0, 1, 2, ... , kmax}, where kmax is a large but finite traffic level which is never

expected to be exceeded in operation. The available buffer capacity N is equal to the number

of empty gates and is a finite, non-negative integer. If Nmax is the maximum gate capacity of

the source, then 0 < N < Nmax. In addition, if N is the number of occupied gates (active

and inactive), N + N = Nmax at all times. Since both the arrival and departure processes at

the airport are stochastic, it is necessary to calculate the transition probabilities from one state

to another, given the assigned pushback delay. The transitions between the buffer states N are

relatively straightforward, since they are governed by a Poisson process of rate 3. Calculation of

the transition probabilities between surface traffic levels is described in Section 3.2.1.

The calculation of optimal policies is a straightforward operation. A Bellman equation can be

written for the infinite-horizon discounted cost problem using the states 0, and is given in Equation

(3.13). U is the set of allowable pushback delays, and is defined by the user. J(8 ) is the optimal

cost-to-go from state 0,. Finally, a is the discount factor, which defines the weight on future costs

with respect to the expected cost for the current transition. The infinite-horizon formulation is

chosen as an approximation to the relative time scales of assigned pushback delays and airport

demand variations. While pushback delays are of the order of a few minutes, demand variations at

busy airports occur over a period of a few hours. The discounted-cost structure of the formulation

provides numerical stability in the calculation of optimal policies [118]. In order to place sufficient
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emphasis on future costs, the value of a can be set close to 1. In this work, a = 0.99 unless

otherwise stated. Equation (3.13) can be solved directly using matrix inversion, thus yielding the

optimal policy u(O,1) and the optimal cost-to-go J(68,1).

J(0s, 1) = min C(0si, u) + aS pos10s,2 (u) J(O, 2 ) (3.13)
uEU 0s,2

Sample control policies can be calculated for the single-link case by defining values for the

relevant parameters in the problem. While the parameter values for the full airport model described

in Section 3.2.6 are derived from empirical data, the values in this illustrative case are arbitrary. It

is assumed that the buffer capacity is Nmax = 10 aircraft. Thus up to 10 aircraft can be parked at

any time. If an 1 th aircraft arrives to the buffer, the first active aircraft needs to push immediately.

With an overflow tolerance of Y = 5% and an arrival rate to the buffer of / 0.02, the optimal

policies are shown in Figure 3-15.

Note that the figure also shows the optimal policy calculated without consideration for the

available buffer capacity. This is equivalent to the assumption that the available buffer capacity is

N = oc. With respect to the state 6 = {k, N}, this modification has the effect of flattening the

cost structure along the N dimension. The infinite-capacity dynamic programming control policy

is thus a function of the same information that the kctri algorithm used: the surface traffic level k

only. Even when the buffer is nearly empty, the finite-capacity policy is more conservative than the

infinite-capacity one. While this is not a direct comparison with the kctri policy, it does show the

advantage of being aware of the gate capacity constraint. Even when the buffer is nearly empty, the

finite-capacity model is aware that assigning a large pushback delay to the current aircraft could

take the system into a state with high buffer occupancy. This would necessitate faster pushbacks

for subsequent aircraft, negating the fuel savings achieved by the current aircraft.

The effect of the buffer arrival rate on the control algorithm can be seen by comparing the

policies in Figures 3-15 and 3-16. It can be seen that the policies in Figure 3-16 are much more

conservative than those in Figure 3-15, as the buffer arrival rate has tripled to 0.06. Simulations

carried out for this case show the advantage of using the finite buffer formulation over the infinite

buffer formulation, as depicted in Figure 3-17. The finite-capacity policy only results in buffer

overflow in one instance, while the infinite-capacity policy does so quite often.
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Arrivals at rate 3 N 1, k = 2

Figure 3-14: Model for a single link with finite gate capacity. Empty circles are empty gates, filled
squares are occupied-inactive and filled circles are occupied-active. The circle with a one-sided
hash pattern marks the aircraft that is next in line for pushback, while the double-hashed circles
are aircraft that are already inside the network and are taxiing towards the runway at node 2.

Policy parameters:a = 0.99, p = 0.02
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Figure 3-15: Comparison of optimal policies for a single link. The discount factor is a = 0.99. and
the arrival rate to the buffer is 3 = 0.02.
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Policy parameters: x = 0.99, s = 0.06

Link parameters: N = 10, n = 20, X = 0.4, = 0.02, po = 0.1, X = 0.2
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Figure 3-16: Comparison of optimal policies for a single link.
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Figure 3-17: Simulation of the control strategy with and without consideration for the available

buffer capacity. The discount factor is a = 0.99, and the arrival rate to the buffer is 3 = 0.06.
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3.2.6 Control strategy for the full airport model

The single-link control strategy described above can be extended to the full airport model with some

modifications. Figure 3-18 shows the network model for departures from Runway 27, including the

gate capacities available at each source. Note that the depicted gate capacities are only illustrative

and are not quantitatively equivalent to the actual buffer sizes in the model. Figure 3-19 shows

a functional representation of the network model, with solid arrows denoting the physical flow

of aircraft and dashed arrows denoting flow of information. Since there are four sources in the

network for Boston Logan International Airport (Figure 2-2), there are four buffers in the model.

It is assumed that arriving aircraft have fixed destination buffers, but can occupy any gate within a

given buffer. The status of each gate is denoted in the same way as in Figure 3-14: available (empty

circle), occupied-inactive (filled square) and occupied-active (filled circle). Aircraft are allowed to

pushback on a first-come-first-served (FCFS) order for the entire airport. That is, the order of

pushback is independent of which buffer the aircraft are occupying a gate in. As before, the next

aircraft to pushback is denoted by a hashed circle in Figures 3-18 and 3-19.

The arrival process to the airport as a whole is assumed to be Poisson with a rate #. This

cumulative process is split into four Poisson processes with rate /3, one for each buffer. The total

rate 3 is estimated from historical data (average number of arrivals for the current time of day as

calculated using ASDE-X data) in this chapter. A better estimate of the rate of aircraft arrivals to

the airport can be obtained from the landing time predictions, and is described in Section 5.1. The

individual buffer arrival rates 3i are assumed to be proportional to the gate capacities Ni,max at

each terminal of the airport, with E3 = 3. For calculation of optimal policies, the buffer overflow

tolerance y is defined in an analogous fashion to the definition in Section 3.2.5. It is the probability

with which the capacity of at least one buffer is exceeded during the current assigned gate delay u.

As before, the optimal control calculation (for pushback delay u) is a function of the state of

the airport at the instant of calculation. The state in this case is defined by three quantities: the

level of surface traffic k, the set of available buffer capacities Si, and the source snext for which the

calculation is being carried out. The expected taxi time for a given aircraft depends on its taxi

route, and hence on the source Snext. The full state representation is # (k, S1,... , n,, next).

The modeled surface traffic level is capped at a large maximum value, with k E {0, 1, 2,... , kmax -

The control strategy is designed to operate at a level well below kmax in all circumstances. The
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13

26

Figure 3-18: Network layout for departures from Runway 27. Note that there are few alternate
taxi paths from each source. Empty circles are empty gates, filled squares are occupied-inactive
and filled circles are occupied-active. The circle with a one-sided hash pattern marks the aircraft
that is next in line for pushback, while the double-hashed circles are aircraft that are already inside
the network and are taxiing towards the runway at node 6.

Arrivals at rate 13

133 N 1  Controller Departure

Figure 3-19: Illustration of the departure control algorithm for calculating optimal gate delays.

available buffer capacities Ni are equal to the number of empty gates at each source and are finite,

non-negative integers. If Njmax is the maximum gate capacity of source i, then 0 X Ni < Ni,imax.

In addition, if Ni is the number of occupied gates (active and inactive), Ni + Ni Ni,max at all

times. The source Snext for which the calculation is being carried out can take values from the set

S, which contains a list of the source nodes in the network.

The calculation of transition probabilities in this formulation is more involved than in the

single-link case, but is helped by the independence of transitions between the different states. The

probability of transition between the source states snext is independent of delay i. If more than one

aircraft is ready for pushback, the transition is essentially deterministic. This is because the next

aircraft to be released is defined by the FCFS order and is already known to the control algorithm.
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If there is no aircraft currently ready for departure, it is assumed that the probability mass on each

source is proportional to its current gate occupancy. The transitions between the buffer states Ni

are relatively straightforward, since they are governed by Poisson processes of rate Oi. Calculation

of the transition probabilities between surface traffic levels is more involved due to the aggregate

nature of this part of the state. Aircraft that are already taxiing-out may be distributed randomly

on the airport surface at any time, and it is difficult to develop exact analytical expressions for the

remaining time to departure for each aircraft. Empirical estimates may be obtained using a Monte

Carlo simulation procedure with randomized pushback policies. However, this is a highly time-

intensive method. Approximate estimates of the transition probabilities for surface traffic levels

are instead obtained using the method outlined in Section 3.2.1. Noting that each component of

the full state # = (kI, , * .n., Snext) is independent of the others after conditioning on u, the

full transition probability is equal to the product of the transition probabilities for each component.

The full state definition 0 described above results in a very large number of states for a real-

istic airport. There are approximately 90 gates at Boston Logan, split into two terminals with a

capacity of 25 gates each and two terminals with a capacity of 20 gates each. A reasonable surface

traffic model would need to account for a maximum surface traffic level of at least 40 aircraft.

Combined with four possible sources for each aircraft, the total number of states exceeds 40 mil-

lion. Calculating optimal control policies for such a large number of states is prohibitively difficult.

Therefore, the size of the problem is reduced by using state aggregation. Note that the set of buffer

states Ai encapsulates the risk of buffer overflow, as a function of the assigned pushback delay. An

alternative parameterization of this risk is the maximum acceptable pushback delay assigned for a

given instance of {N 1, N2, ... }. The state can now be re-defined to be 0 = (k, Umax, Snext), with Umax

being the maximum pushback delay. The value of Umax is equal to that value of delay, at which the

probability of there being more than A, arrivals in at least one of the Poisson processes with rate

f3, exceeds -y. For ease of policy calculation, the resulting value of Umax can be rounded off and

mapped to a discrete finite set U. There is a unique mapping from the available buffer capacities

Ni to U, as a function of 'y and /i. Consequently, there is also a unique mapping from states #

to states 6. Transition probabilities P0102 (u) between the aggregate states 6 can be calculated by

summing over all the transitions 01 -+ 02 that correspond to transitions 61 -+ 62. Combined with

the stage cost definition developed in Sec. 3.2.4, it is possible to calculate the optimal pushback
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Figure 3-20: Optimal pushback delays at Boston Logan, calculated for departures from source 1.

The total airport landing rate 0 is assumed to be 0.011, or 1 aircraft every 90 sec.

policy u(01 ). A Bellman equation can be written for the infinite-horizon discounted cost problem

using the aggregate states 0, as shown in Equation (3.14). U(0 1) is the set of available pushback

delays for state 01 as constrained by u,,ax(01), J(01) is the optimal cost-to-go from state 01, and

a is the discount factor which defines the weight on -future costs with respect to the expected cost

for the current transition.

J(01) = min C(01' U) + a PO102(U) J(02 ) (3.14)
UEU(01) 02(14

The resultant optimal policies for aircraft leaving from source 1 are shown in Fig. 3-20. Each

curve is for a different value of maximum pushback delay Uiax. As the level of surface traffic

increases, the assigned pushback delay increases, up to the relevant value of maximum allowed

delay. Similar policies can be calculated for the three remaining source nodes. Note that the

number of states of type # mapping into each of these aggregate curves changes, depending on

the values assigned to ci, c2 , c3 , a and 7. However, once these quantities are defined, the control

algorithm only needs to know the current surface traffic level and the gate occupancy to calculate

the optimal pushback delay.
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3.2.7 Comparison of kctri and dynamic programming strategies

Figure 3-21 shows a comparison of the two methods for calculating control policies as described

in this chapter. The chosen level of kctri for the Boston Logan network is 20, while the dynamic

programming strategy is the same as the one depicted in Figure 3-20. At low traffic levels (k < 20),

the kctri strategy assigns zero delay to all aircraft. For higher traffic levels, it assigns delays based

on Equation (3.4). On the other hand, the dynamic programming strategy begins to assign small

delays at lower traffic levels. The maximum delay assigned is upper-bounded, unlike in the kctri

case. The gradual increase in assigned delays also ensures smoother changes in surface traffic levels,

as opposed to the abrupt ones in the kctri case.

The resulting operational characteristics for both strategies are compared in Figure 3-22. The

upper plot shows the traffic levels seen over the course of a simulation. It can be seen that the kctri

strategy, which is set to regulate the number of aircraft to 20, maintains a constant traffic level on

the surface. However, the drawback of this strategy is seen in the lower right plot in Figure 3-22.

With the delays assigned by the kctri strategy, the buffer capacity is exceeded several times. In

a real-world scenario, this would mean that a large fraction of arriving aircraft find all the gates

occupied, and are thus delayed. The presence of these aircraft on the airport surface also creates

operational complexity as they can block taxiways and alleyways required for the movement of

departing aircraft.

The advantage of the dynamic programming based control strategy can be noted by comparing

the traffic level and buffer occupancy shown in the lower left plot. It can be seen that when sufficient

gate capacity is available, the traffic levels for the dynamic programming strategy are lower than

those for the kctri strategy. However when one or more of the buffers are close to full, the dynamic

programming algorithm assigns smaller pushback delays, thus temporarily increasing the surface

traffic level. This behavior can be noted towards the end of the simulation. In this way, a balance

is struck between the fuel burn reduction obtained in times of low gate demand and the operational

requirement of ensuring the availability of empty gates for arriving aircraft to occupy.

3.2.8 Adaptive algorithm for unmodeled parameter variation

It was mentioned in Section 2.2.2 that the effect of weather on the parameters in the taxi time

model was difficult to quantify. The rollout algorithm described here can help with handling
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the uncertainty introduced by this modeling simplification. Rollout is a method for calculating

approximate control policies using dynamic programming [118]. The approximate cost-to-go is

calculated offline in this method, while the current stage cost is estimated online. This allows a

more accurate estimate of the current cost to be made, while the pre-calculated future costs allow

for fast computation.

For the current problem, it is reasonable to assume that the effect of severe weather is not

dependent on the surface traffic level. For illustrative purposes, consider only the single-link network

model as described in Section 3.2.5. The expected taxi time on link 1 when the current traffic level

is k can be calculated using Equations (2.2) and (2.5). Using the notation from Section 3.1.2, it is

given by

= Pol 1 k XE[tilk] = -+
Al I - pol yj Al

= T1 + k X

A-l

The portion of the expected taxi time independent of k is thus r7. In the following description, it is

assumed that the nominal value of r1 for link 1 is 1701. Because of weather conditions on a given day,

the actual value can vary around y0 l in a piecewise linear fashion. This behavior is a reasonable

model for severe weather, which usually lasts for a few hours at a time. The current value of n7i

can be estimated online, using past travel times over the link. The update equation for the current

estimate 4i is based on the error between current expected taxi time and the actual observed taxi

times, and is given by

_+ =i+ W(? + k(r) - tr,i). (3.15)

Here, the current estimate iz- is updated to a new value ^+ The latest information is assumed to

be available from the rth aircraft to depart from the link, while k(r) is the surface traffic level when

it entered the network, t,,l is its actual taxi time, and W is a gain that weighs current observations

against the past estimate of ij. Note that the last aircraft to depart from the link is not necessarily

the last aircraft to have pushed back. The latest available estimate of 71 is used for calculating

the pushback delay for each aircraft. The computation can be carried out by suitably varying

the coefficient c3 in Equation (3.11). This coefficient defines the weight on the loss of runway

throughput, and Equation (3.12) shows that it is proportional to 711. The online estimated current
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stage cost is a modified version of Equation (3.11) and is given by,

C3 111+-
C(6O,1, u)PO , ,2( 1c, kp( ,2) + C2 U + I .

k (,2 k,2))'r2'

The factor " increases the cost of throughput loss when aircraft are experiencing longer taxi
no7

times than the average. Instead of solving the full Bellman equation for calculating the exact

optimal policy, the online control policy can be calculated by assuming that the cost-to-go J(8 ,2 )

in Equation (3.13) is unchanged. The online minimization procedure is then a direct algebraic

comparison of the right hand side of Equation (3.13) evaluated at each feasible control value u

in the set U. It should be noted that the tuning of the weight W is highly subjective in this

algorithm. There are also several more update functions possible instead of the one proposed

in Equation (3.15). The theory of adaptive control is well suited to the consideration of these

functions, but is beyond the scope of this thesis.

89



90



Chapter 4

Control of Arrival Operations

Safety and efficiency are critical to the working of the air transportation system in general, but air-

borne flight management is much more safety-critical than airport surface operations. The airspace

today is divided into sectors, each of which has an air traffic controller who is responsible for man-

aging the traffic within it. Each aircraft receives specific instructions from the controller, and is

expected to follow these instructions as closely as possible. The compartmentalization of airspace

ensures the safe transit of all aircraft without putting excessive strain on the controllers, but fre-

quently results in congestion near the airport. This problem is caused by the lack of coordination

imposed by the division of airspace: since a controller cannot know the traffic situation in neigh-

boring sectors, the handoffs between sectors are essentially uncoordinated. In addition, the sectors

with the least available volume of airspace are the ones surrounding major airports. These sectors

thus handle the most traffic. This means that aircraft arrive almost unimpeded through the outer

airspace into the vicinity of the airport, but then spend a large amount of time orbiting in holding

patterns while waiting for landing clearance. A high number of aircraft in a relatively small volume

of airspace is a safety hazard, and also results in high fuel consumption because the aircraft have

to fly for longer times at low altitudes. Thus there is a significant performance loss associated with

current protocols.

Fully centralized management of arrival operations is desirable from an efficiency point of view.

An central facility with access to global information can calculate optimal 4-D trajectories for all

aircraft, eliminating the need for conflict detection and resolution. While this scenario is rightly

recognized to be unrealistic, it nevertheless denotes one end of the spectrum of possible control
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strategies. The other end of this spectrum is fully distributed control or free flight, as discussed in

Section 1.2.2. A realistic goal is to find a compromise between these two strategies, with distributed

control in sparsely traveled airspace and centralized control in congested airspace. In the airport

arrivals context, this means that aircraft are controlled by a central facility close to the airport,

and carry out their own conflict detection and resolution prior to entering this region of centralized

control. This chapter focuses on developing such a control strategy, with an explicit recognition of

the communications hardware and algorithms required for its implementation. It is shown that a

well-chosen boundary between the regions of centralized control and distributed control allows the

system to achieve efficiency close to the fully centralized case.

4.1 Characterization of arrival airspace

The current air traffic control architecture relies on ground-based radars to provide centralized

surveillance. Ground radars are very large structures that are expensive to deploy and need a sig-

nificant amount of maintenance [119]. Furthermore, these systems are subject to terrain blockage,

and cannot provide coverage in areas where there is no line-of-sight. Instead of relying on expen-

sive ground radar technologies, NextGen aircraft will have enhanced onboard sensing capabilities,

and will carry wireless communication platforms [107, 120]. Wireless communication systems can

operate beyond the line-of-sight constraints of radar, enabling longer-range aircraft detection.

4.1.1 Automatic Dependent Surveillance - Broadcast

Automatic Dependent Surveillance-Broadcast (ADS-B) is a NextGen surveillance and communi-

cation technology in which aircraft broadcast on-board flight information via datalink to ground

stations or equipped aircraft within range [107, 120]. The position and velocity data is obtained

using on-board satellite navigation systems. Two different types of services are offered by this

technology, called ADS-B Out and ADS-B In. ADS-B Out refers to the regular broadcasts of cur-

rent aircraft states made by the transponder on-board each aircraft (soon to be mandatory), while

ADS-B In refers to an optional receiver which can detect broadcasts from other aircraft or ground

stations.

Since ADS-B uses the same bandwidth as the replies to Secondary Surveillance Radars (SSRs),

high aircraft and SSR density near airports can potentially degrade the performance of both sys-
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tems. The communications algorithm used for the simulations in this chapter is taken from prior

collaborative work [42], and tunes the power of ADS-B transmissions in order to minimize inter-

ference with other ADS-B transponders and ground radars. Successful implementation of control

in the airspace requires message reception from one aircraft to another within a certain maximum

latency period (Section 4.2.6), and thus defines the constraints for the communications layer. For

the purposes of this thesis, it is sufficient to note that the utilized ADS-B transmission power is

high in the distributed control region in order to maximize range, while it is low in the centralized

region to minimize interference. Throughout this thesis, it is assumed that ADS-B transmissions

are of the broadcast type only. The control algorithms do not require any two-way communication

between aircraft. Instead, the distributed control algorithm ensures that computations carried out

independently on-board different aircraft are consistent with respect to each other. A detailed

description of this issue is given in Section 4.2.4.

4.1.2 Proposed system architecture

The proposed two-dimensional system architecture is depicted in Figure 4-1. While the airspace in

reality is three dimensional, the concept of merging streams of air traffic remains invariant. The

geometric treatment in this chapter is equally valid for the three-dimensional case, but is much

easier to illustrate in two dimensions. The system is composed of an inner region of centralized

control where aircraft are under the direct authority of the airport, and a distributed control region

for aircraft farther out. The centralized zone is assumed to be circular, but can be of any shape

without affecting the development of the control strategy. The double-hashed circles are aircraft

approaching the airport at the center of the centralized zone. Aircraft C1 to C5 receive instructions

from the airport, while aircraft D1 to D1O carry out their own conflict detection and resolution.

The solid lines in the figure denote standard arrival procedures, which are published paths followed

by all arriving aircraft. Designated intersections of two or more arrival paths in the airspace are

known as fixes, while the straight-line paths between two fixes are called links. Minimal procedural

modifications are desirable for easy implementation and large-scale deployment of new control

algorithms, and hence the structure of the airspace is assumed to be the same as it is at present.

The development of the control strategy assumes that all aircraft are equipped with ADS-B

Out as well as ADS-B In. This is a reasonable assumption to make, considering the mandate for
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Figure 4-1: Overview of the model for arrival airspace. The airport is at the center of the figure.
The distributed algorithii is in effect outside the circular region around the airport. Aircraft within
the circular region receive connands from the central facility (airport).

all aircraft to be equipped with ADS-B Out by 2020 [60]. The case of mixed equipage in terms of

ADS-B In is addressed in Section 4.2.7. In the ADS-B standard, each aircraft transmits position

and velocity messages at the rate of 2 messages per second using a simple randoin access nechanism

[107]. The transmission power is variable, anld is tuned in order to minimize interference with other

ADS-B transponders and ground radars using the method described in [42]. The centralized control

algorithm calculates optimal velocities for all aircraft based oi their last known state information.

In the distributed zone, each aircraft uses an adaptive channel access algorithm [42] to minimize

the State Update Interval (SUI), that is, the time between two successful state vector reports. An

upper bound on the maximum allowable SUI based on simple kinematic relations is derived in

Section 4.2.6.

4.2 Development of control strategy for arrivals

This section develops a control algorithm that minimizes the flight times of aircraft from the time

of appearance at the periphery of the airspace around an airport, to their eventual landing at
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the airport. The primary control variable in this formulation is a change in aircraft velocity. A

minimum separation requirement between each pair of aircraft is imposed for safety. Trajectory

modifications (holding patterns) are avoided as far as possible in order to maximize safety [121].

An aircraft is sent to a holding pattern (an elliptical trajectory designed to introduce separation

between aircraft) only if no feasible velocity is found to resolve a projected conflict. The proposed

control algorithm can either be automatically implemented by the aircraft involved in a potential

conflict, or provide conflict resolution advisories to the pilot and the controllers.

4.2.1 Geometry of engagement between a pair of aircraft

The relative geometry between a given pair of aircraft depends on the links that they currently

occupy. Broadly, any two links in the illustrative network shown in Figure 4-1 can be classified as

being paired or unpaired. Two links are said to be paired if they lead to the same fix, otherwise they

are said to be unpaired. This distinction is important when considering the separation requirement

between aircraft. If two aircraft are on paired links, the point of closest approach between them

may occur before the merge point.

The distance of closest approach is based on the relative velocity and initial positions of the two

aircraft. The geometry of such a scenario is depicted in Figure 4-2, which shows a top-down view

of two aircraft A and B approaching a merge point. Aircraft A is moving towards the merge point

with velocity VA and aircraft B is doing so with velocity VB. Without loss of generality, let aircraft

A be reaching the merge point earlier than aircraft B. The angle between the two links is 6. The

initial relative position of aircraft A with respect to B in the horizontal plane is (xo, yo), with fo

denoting the vector x0 i + yo i. The velocity vectors are given by VA VA cos i - VA sin 6 j and

VB = VB t. Let the relative velocity be given by Vr = VA - VB, and let the angle between fo and V.

be 6r. Note that 6 r decreases with an increase in VA, but increases with an increase in VB. Finally,

let f be the relative position of A with respect to B after time t. Then the evolution of f is given

by,

f = fo + vr t. (4.1)
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Figure 4-2: Geometry for calculating the distance of closest approach (Plan view).

The modulus of F is given by.

I..2 = (To + f'r t) - (To + 0r t)

= ' -o + 21() -L v7 t + 'vi -v,.t.

Taking the derivative with respect to time and equating the result to zero, the time of closest

approach tc is given by.,

t ( = -- r (4.2)

If this value is less than the time at which aircraft A is projected to reach the mierge point, the

point of closest approach is before the merge point. Note that the value of t, may be negative if

the geometry dictates that the point of closest approach has already been crossed, and the distance

between A and B is imionotonically increasing. This happens when 6r < I, since it means that

cos 6, > 0. For the acute-angled case, the point of closest approach has already passed. Combining

Equations (4.1) and (4.2), the relative position of A with respect to B at the point, of closest

approach is given by,

( 'ro -ir

Taking the (lot product of r with itself gives the magnitude of the distance of closest approach.
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r2 sin 2j,

7-, = rsin 6r (4.3)

Evidently, the distance of closest approach is governed by the initial separation between the aircraft

and the angle between their velocity vectors. Note that there are two cases that result in the same

value of r, in Equation (4.3), one with 6r > I and the other with 6r < !. As discussed above, only

the obtuse-angled case is interesting since it results in a future point of closest approach. Let the

required minimum separation between any pair of aircraft in the airspace be smin. This generates

a geometric constraint on the minimum value of sin 6r. Since the sinusoid is a decreasing function

for obtuse values of 6r, Equation (4.4) imposes a constraint on the maximum value of 3,..

r 2 sin 2j, > S2 sin 6" > Smin 4)
0 n mn n r(

Note that the distance at initial approach should be more than smin for this relation to be relevant.

Also note that r is an invariant vector, while the relative position vector slowly becomes horizontal

as A approaches the merge point ahead of B. Therefore, the value of 6. decreases monotonically

after initial contact. The point of closest approach occurs when 6r =. If the initial value of

J.. is less than E, the distance between A and B increases monotonically. Finally, VB should be

as large as feasible while still maintaining separation, in order to minimize the time taken by the

combination of A and B to clear the merge point. Since 6r increases monotonically with vB, this

means that vB is maximized when Jr satisfies the constraint in Equation (4.4) with equality. Note

that the relation is satisfied by two values of 6r, of which the obtuse angle is the optimum point.

The constraint in Equation (4.4) is not active when the initial 3,. is less than ', and also when the

point of closest approach is projected to be beyond the merge point. In this case, aircraft A will

have already turned away from B along the common link leading out of the merge point. In such

cases, the relevant constraint is that of maintaining a minimum distance of smi,, at the merge point.
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4.2.2 Optimal velocities for a pair of aircraft

Consider the setup shown in Figure 4-2. Aircraft A is initially at a relative position (xo, yo) with

respect to B. It is also a distance dA,o from the merge point, while B is at a distance dB,o from

the merge point. Let the two aircraft be traveling at velocities VA,o and VB,o respectively. An

optimization problem can be set up to calculate the final commanded velocities VA,f and VB,f that

minimize the time at which both aircraft clear the merge point. This derivation deals only with

calculating the system-optimal velocities. The methods by which the centralized and distributed

control algorithms arrive at these values in real-time are described in Sections 4.2.5 and 4.2.4.

Assuming as before that B is the trailing aircraft within this pair, the time at which both

aircraft clear the merge point is given by the time at which B reaches the merge point, dBo. This
VB,f

is the objective function for the problem. The order of precedence between A and B (calculated

by separate means) can be imposed by constraining VA,f to be at least as large as vA,o. The flight

envelope of the two aircraft can be captured by the maximum and minimum velocities that they can

fly at. Note that the velocity of A is already lower-bounded. Therefore, the only relevant physical

constraints are set by A's maximum velocity VA,max and B's minimum and maximum velocities

VB,min and VB,max. The final constraint is imposed by the minimum separation requirement between

A and B. This can either take the form of Equation (4.4), or be equal to Smin. In general, it can be

represented by an upper bound on vB,f as a function VA,f, dA,o and dB,o. Note that the function

f increases monotonically with vA,f, as explained in Section 4.2.1.

mm dBo (4.5)
VA,f,VB,f VB,f

S.t. VA,f VA,O, VB,f VB,max

VA,f VA,rnax, VB,f > VB,min (Feasibility)

VB,f < f(vA,f, dA,o, dB,o). (Separation)

We can now set up the Lagrangian for the formulation in Equation (4.5), and find the Karush-

Kuhn-Tucker necessary conditions for optimality [122, 123]. Letting Oi be the Lagrange coefficients
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and Tr be the slack in the inequalities,

L = dB,0 + '1 (vA,f - VA,O - T1 ) + 02 (vA,f - VA,max + T2 ) +'03 (vB,f - VB,max + 73)
VB,f

+ V)4 (vB,f - VB,nin - T4
2 ) + 05 (VB,f - f(VAf, dA,0, dB,0) + T -

Finding the gradient of L and setting it equal to zero gives the necessary conditions for optimality.

dL df
=VA 01 + 7P2 - 05 dVJ= 0 (4.6)

dvA,f +'/-''5dvA,f

dL dBIo
- 2 +'03+'04+ 05=0- (4.7)

dVB,f VBf

The derivatives with respect to oi give back the inequality constraints.

VA,f - VA,O - 2 0, (4.8)

VA,f - VA,nax + T= 0, (4.9)

VB,f - VB,max + T = 0, (4.10)

VBf - VB,min - T4 = 0, (4.11)

VB,f - f(VA,f,dA,o,dB,o) + T5 0 (4.12)

The complementary slack conditions are produced by taking derivatives with respect to Ti.

'1/1 TI. =102 T2 = 03 73 ='4T4 = 0'5T5 = 0.

While there are several potential solutions to this system of equations, it so happens that feasible

solutions are obtained in only two cases. These cases are enumerated below.

Case 1: '05 = 0

Assuming that 05 = 0 allows 7, to be non-zero, according to the complementary slack conditions.

This means that the minimum separation constraint imposed by f(vA,f, dA,o, dB,o) is not active.

The following description shows that this is only optimal when aircraft B is so far behind aircraft

A that it cannot cause a conflict even by flying at its maximum velocity. Notice that combining
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5 = 0 and Equation (4.6) results in the requirement 01 + Vb2 = 0. However, Equations (4.8) and

(4.9) combined with the complementary slack equation imply that 01 and /2 cannot be non-zero

at the same time (since it is not possible to have VAf = VA,O = VA,max in general). Therefore,

'1 = 02 = 0 which means that vA,f can take any value between VA,O and VA,max. Similarly putting

0 = 0 in Equation (4.7) results in,
dBo

03 + 4 =2
VB,f

Since '03 and 04 also cannot be non-zero at the same as implied by Equations (4.10) and (4.11),

one of them must be zero and the other equal to . With the complementary slack equations,

this implies that vBf is equal to either VB,min or VB,max. Noting that the Karush-Kuhn-Tucker

conditions are valid at all extrema, a simple value substitution shows that vB,f = VB,nmax minimizes

C while the other value maximizes it. In summary, when the separation between A and B is large

enough so as to not result in a conflict under any feasible velocities, it is optimal for B to fly at its

maximum velocity with A flying at any feasible velocity.

Case 2: 0b5 - 0

Similar arguments as before can be used to find the optimal solution when 05 $ 0. Note that this

implies that the geometric constraint on VB,f is active. At the same time, Equation (4.6) implies

that the sum of V)1 and '02 is non-zero. Since they cannot both be non-zero, either $1 or '?2 must

be equal to zero. Consequently, one of T1 and T2 must be equal to zero and thus vA,f = VA,O or

VA,f = VA,max. Since f(vA,f, dA,o, dB,o) is known to be monotonically increasing with VA,f, the

solution that minimizes the Lagrangian is obviously given by vA,f = VA,max with vB,f satisfying

Equation (4.12) without any slack. Thus when A and B are expected to reach the merge point close

to each other, the optimal solution is for A to fly as fast as possible while B satisfies the minimum

separation constraint with equality.

4.2.3 Optimal velocities for multiple merging aircraft

The optimal velocity calculations described in Section 4.2.2 can be extended seamlessly to the

multiple aircraft case. The first extension is to the case of three aircraft. Two sample scenarios

are depicted in Figure 4-3 for the types of engagements possible in this case. Note that the order

of precedence is A-B-C in Figure 4-3 (a), while it is A-C-B in Figure 4-3 (b). However, once this
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Figure 4-3: Possible geometries for multiple merging aircraft.

order is defined by the imethod described in Section 4.2.4, the calculation of optimal velocities is

straightforward. Without, loss of generality. let the order be given by A-B-C. There is no restriction

on which of the two links is occupied by any of the three aircraft. The numinum separation

requireiment is imposed on B with respect to A, and on C with respect to both A and B. The

Lagrangian in this case is given by,

-- 'O (Qf-P -T
2) + 2)' +v~=-aix H -+'(PB, -=_ Bmax + )

- " (.fj -- Bwin - Tr) + 05 (VCj' - 'VC,max + T) + (c.f - 1 - T()

+ 07 ('n .- f (VAj, d Ao, (io) + '1/ 8 ('7c j - f (v A, dA,0 (1C,0) + T)

+ <@q ('uc; - f (en j, d13,0, do.) - ) . (4.13)

The optimal values for v'e,, 'vB,f and vcf can be calculated using the same method as for a pair of

aircraft, and yields similar results. If the three aircraft are sufficiently close to each other so as to

activate the separation constraints in the last three terms of Equation (4.13), the optimal velocity

for aircraft A is v j A,iax. Aircraft B and C satisfy the separation constraint to the preceding

aircraft with equality. This result greatly simplifies the optimization procedure for multiple aircraft.

If the optimization is carried out in a pai'rwise fashion in the order of prece(Cd'rce, the resulting

velocities are optimal. If there are n, aircraft ordered (1, 2, . . . , i, . , n1), the optimal velocity for

aircraft i can be calculated by solving the two-aircraft problem with aircraft (1, 2,.. . , i - 1).
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4.2.4 Distributed control strategy

The mathematical formulation for the calculation of optimal velocities can be implemented as

described in this section and the next. The distributed region requires autonomous calculation of

the aircraft's own optimal velocity. Unlike the centralized algorithm, the distributed protocol uses

only local information received from ADS-B transmissions. Consider a scenario where aircraft C in

the distributed region receives an ADS-B broadcast from aircraft B for the first time. If aircraft B

is ahead of aircraft C on the same path, it has precedence over C by default (there is no overtaking

on the same path). If they are on merging paths, the conflict detection and resolution protocol

observes the relative geometry between the two aircraft. Assume that aircraft B is closer to their

eventual merge point and is flying at a velocity lower than its declared maximum velocity. Aircraft

C cannot know why aircraft B is not flying at maximum velocity, but is aware of the possibility

of information asymmetry in the distributed control region. For example, consider the scenario

depicted in Figure 4-4. Aircraft B may be flying at less than its maximum velocity in order to

avoid a conflict with aircraft A. However, aircraft C is out of range for broadcasts from aircraft A.

It receives an indication of potential traffic in front of aircraft B only by noting that B is not flying

at its maximum velocity. Based on this assumption, the distributed algorithm concedes priority to

aircraft B.

If aircraft B is flying at its maximum velocity when aircraft C receives its broadcast, the pairwise

order is based on the projected arrival times of both aircraft at their eventual merge point. If aircraft

C projects itself as arriving before B at the merge point, it only notes the presence of B but does not

adjust its velocity. If it projects that aircraft B will arrive at the merge point first, it computes a

new velocity for itself based on the pairwise algorithm in Section 4.2.2. If B is also is the distributed

control region, it carries out a complementary set of calculations on detecting C for the first time.

Even if aircraft B is under centralized control, it does not affect the computations carried out by

aircraft C. Finally, in addition to the detection of a new aircraft, an aircraft recalculates its velocity

if there is a change in state (link, velocity or hold) of another aircraft already being tracked. Since

each pair of aircraft decides on a mutual order at the merge point, a unique ordering of all aircraft

heading to a given merge point is developed.
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A

C

Figure 4-4: Information asymmetry in the distributed zone. The dashed arcs represent range of

ADS-B transmissions. Aircraft B is visible to both A and C, but aircraft A and C are not visible

to each other.

4.2.5 Centralized control strategy

Each aircraftI moves towards the airport through the distributed control region, eventually entering

the region of centralized control. This boundary may be defined by the range of groundl radars

located near the airport., or by the presence of ADS-B ground stations connected to the airport (as

explained in [107]). Note that the update rates for secondary surveillance radars are in the 4.8-12.0

see range, while ADS-B updates happen at an average interval of 0.5 sec [42]. Combined with the

cheaper cost of deploying and maintaining ground-based ADS-B receivers, the use of ADS-B as

the primary method of surveillance is highly attractive. This does not, however, mean that radar

surveillance is obsolete. In addition to providing a backup to the ADS-B system, radars are also

the only means of positive surveillance in the airspace. While aircraft can be detected by primary

radars independently of their transponder status, ADS-B relies completely on transmissions from

aircraft. This is a possible security risk which can be handled using the methods outlined in [43].

Once an aircraft has been detected by the central facility, it no longer needs to carry out its own

confiict detection and resolution for efficiency purposes. It is expected that its collision avoidance

systems such as TCAS are still active. The status messages transmitted by ADS-B Out are assumed

to include the aircraft's estimated position, velocity, feasible velocity range and intended arrival

path. Part of this information is included ill the standard ADS-B message. The remaining is

assumed to be embedded iii the empty bits available for miscellaneous purposes, as available in the

ADS-B specifications [107]. Note that these state updates can also be carried out by a combination
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of secondary surveillance radars and voice communications with the accompanying added latency.

The* central facility calculates velocities for all aircraft in the centralized zone by estimating

the current state of the airspace, based on the last known location and velocity of each aircraft.

Expected landing times are calculated for each aircraft, and the priority order is established ac-

cording to these predictions. Conflict detection is carried in a pairwise fashion for each pair of

aircraft, starting with the aircraft that has the highest priority. Resolution maneuvers (if required)

are commanded for the aircraft that are lower in the priority order. Consequently, an aircraft

that is ith in the priority order for landing could have up to (i - 1) downward adjustments of its

commanded velocity while the control algorithm is processing data. If the commanded velocity is

less than the least feasible velocity for that aircraft, it is commanded to enter a holding pattern.

Once the computation is completed, the final velocity and / or hold commands are transmitted

to each aircraft. With current technology, these commands can be relayed by voice or datalink.

Since the time horizon to a possible conflict is expected to be of the order of several minutes,

making manual speed adjustments is feasible. In the future, it might be possible to communicate

instructions directly to the aircraft's flight management system.

The pairwise conflict resolution procedure is described in Section 4.2.2. If successive aircraft are

on paired links, the optimal velocities are calculated by solving the problem formulated in Equation

(4.5). If they are on unpaired links, the algorithm allows for a minimum separation of smin at their

projected merge point. If two successive aircraft are on the same link, a separation of sm-ij is ensured

at all times, subject to the physical velocity constraints of each aircraft. If no feasible velocity is

found for an aircraft, it is sent to a holding pattern, and resumes its original trajectory after a

period of 2 min. Finally, optimal velocities are recalculated for the entire centralized region based

on two trigger events: the entry of a new aircraft into the zone of centralized control, or the start or

end of a holding pattern by at least one aircraft. The rest of the time, the central facility operates

in passive monitoring mode.

4.2.6 Constraint on communication performance

The State Update Interval (SUI) of the communications system is defined to be the time between

two successful state vector reports delivered from one aircraft to another. For the two-aircraft case,

it is possible to derive the maximum SUI that allows conflict resolution to take place without the
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Figure 4-5: Setup for derivation of naxinium allowable SUI.

necessity of holding patterns. Let the system consist of two aircraft A and B as shown in Figure

4-5. Aircraft A is scheduled to cross the merge point before aircraft B. Both aircraft have received

ADS-B broadcasts from each other. and are flying at their optimal velocities eai and v8 1 as

derived in Section 4.2.2. One simplifying assumption made in the following derivation is that both

aircraft can make instantaneous changes to their velocities. Additionally, it is assumed that there

is no error in the estimation of position and velocity. Uncertainty in state estimation can lbe easily

added later, as explained in Section 4.2.7.

The maximum allowable SUI that retains network stability is derived below. It is assumed that

aircraft arriving earlier at the merge point have higher priority, and that they can change their

velocities unconstrained by the aircraft behind thei. Suppose aircraft A, flying at velocity ,Aj,

and B, flying at uB,! (Figure 4-5) have previously made contact, while at distamices d 10 and duo

from the merge point, aid aircraft A has priority. Aircraft A now reduces its velocity to c'§ < ('

while at a distance dA. from the merge point. Aircraft B, which is at distance d 3 ,t from the merge

point, needs to adiust its own velocity to maintain separation with aircraft A. Nominally, aircraft

A would reach the merge point after a further tine t = _, which is changed to t'4 - ;> "t.

Thus aircraft B needs to extend its own flight time by an amount equal to (t4 - tL). Let F , denote

the maxinium allowable SUI after which aircraft B can receive an update from aircraft A, and still

not have to enter a holding pattern. In other words, aircraft B flies at its original velocity for a

further time F, at which time it receives the velocity update from aircraft A. It. then slows to

'Bii umtil aircraft A is at the merge point. At this time, aircraft B needs to be the same distance
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away from the merge point, as it would have been in the original scenario. Let this distance be

denoted by dB,f. Then the total distance covered by B during the time t' is,

dB,t - dB,f = VB,f A + VB,min dA,t - FA) (4.14)
VA/

Up to time of msg reception
After msg reception

The same distance would have been covered by B in time tA if aircraft A hadn't changed its velocity,

dA t
dB,t - dB,f = VB,f dA-t (4.15)

VA,f

Comparing Equations (4.14) and (4.15) yields,

___, d A,t
dB,t - dB,f = VB,f L'A ± VB,min (,' - rA VB,f

( VA VAJf

Simplifying the above equation, the maximum allowable SUI for communication from aircraft A to

aircraft B is,
dAt dA~t

VBf - VB,min
VA A(4.16)

VB,f - VB,min

Equation (4.16) suggests that as dA,t decreases, that is, as aircraft A approaches the merge point,

it needs to broadcast any velocity updates with lower latency. It also suggests that if aircraft

B is already flying at its minimum speed (vB,f = VB,min), then the only feasible v' is equal to

vA,f, that is, aircraft A cannot slow down without causing aircraft B to enter a holding pattern

to maintain separation. The flip side of this insight is to consider the nominal case where aircraft

A flies at its original speed, vAf = v'. Equation (4.16) then implies that FA = At. Aircraft AA VAJf

only needs to transmit an update when it reaches the merge point, supporting the assumption that

control computations need only be rerun when aircraft transition from one link to another. For any

V< A,f, the maximum allowable SUI is less than A , that is, there must be an update before

aircraft A arrives at the intersection. This pairwise result can be extended to the case of several

aircraft. The communication constraint on aircraft A is the minimum of all the allowable SUIs, as

imposed by pairwise calculations with respect to all other aircraft in the airspace.
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4.2.7 Challenges to control implementation

While the algorithm described so far is likely to work well under ideal conditions, there are several

issues to overcome before it can be implemented in practice. These potential issues and their

solutions are described below.

Asynchronous state updates

Due to stochastic transmission times and possible packet loss, state updates between two aircraft,

or between an aircraft and the central facility are asynchronous in general. The consistency of

control computations can be ensured by including the time stamp of broadcast within each ADS-B

message. This feature allows the estimation of the current state of each aircraft based on its last

update. It also reduces the likelihood of inconsistent calculations in the distributed algorithm by

guarding against a mismatch caused by the clocks on board two aircraft not being synchronized.

As long as all aircraft use the transmitted time stamps for state estimation, computations will be

consistent regardless of the accuracy and latency of each message.

Uncertainty in state estimation

Uncertainty, both in state measurement and in velocity, is also a challenge to practical implemnenta-

tion. The proposed algorithm can account for uncertainty by appropriately buffering the minimum

separation constraint. Once the error model for state measurement has been defined, it is possible

to calculate a confidence interval for the actual position and velocity of each aircraft. The control

algorithm can then ensure that a conflict cannot occur in the worst case scenario.

Guarding against deadlock

A scenario may arise where two aircraft are projected to reach their merge point at exactly the

same time. In this case, the asynchronous nature of ADS-B transmissions proves beneficial. The

distributed control algorithm is set to give precedence to the other aircraft in case of deadlock.

Since it is very likely that one aircraft receives a state update before the other, it will already have

slowed down by the time the other aircraft begins its computations. Even if message delivery is

nearly simultaneous and both aircraft reduce their own velocities, a small time difference between

the adjustments will be sufficient to resolve the deadlock in the next computation cycle.

107



Mixed equipage and uncooperative behavior

The control algorithm also gives precedence to non-cooperative aircraft in the airspace, which

could be present because of a lack of ADS-B equipage, equipment failure, or some other on-board

emergency. Actual non-cooperative behavior can be differentiated from message reception failure

by using the SUI to calculate the probability of no messages being received by the aircraft in a

given time window.

4.3 Simulations of control strategy

The simulation results presented in this section are based on a model of the Los Angeles Interna-

tional Airport (LAX) Terminal Radar Approach and Control (TRACON), depicted in Figure 4-6.

This location was chosen because of the availability of Performance Data Analysis and Reporting

System (PDARS) data for the Southern California sector. Using this data, it is possible to empir-

ically measure the traffic rates on various arrival routes, thus providing more realistic simulation

results. Operational flight data from this region was also used to verify that the published routes

were followed accurately. An equivalent model for the approach procedures to Boston Logan Inter-

national Airport (BOS) is used in Chapter 5, and is depicted in Figure 5-1. For both LAX and BOS,

the airspace model was generated from published Standard Terminal Arrival Routes (STARs).

Simulation procedure

Once the layout of arrival paths has been defined for a given airport such as LAX in Figure 4-6 or

BOS in Figure 5-1, the simulator generates aircraft on the periphery of the modeled airspace. For

the LAX simulations presented in this section, the PDARS data is useful for defining the rate of

incoming traffic and also its distribution along the different arrival paths. Since the generated air-

craft are several hundred miles away from the airport, it is assumed that they are initially flying at

their maximum feasible velocity. Aircraft-to-aircraft and aircraft-to-ground communication, such

ADS-B broadcast rates, the accompanying range of transmission and the probability of message

loss is modeled using the methods described in [42]. The control algorithm is constrained by the

best performance that the communications layer is able to deliver. In the distributed zone, aircraft

perform their own conflict detection and resolution. An aircraft detects its own entry into the
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centralized zone when its broadcast reaches the central facility for the first time, thus prompting

the central facility to start issuing commands to it. The aircraft then switches to following cen-

tralized control commands. In the simulation, it is assumed that these commands are implemented

instantaneously and automatically. However, this is not a greatly restrictive assumption, since the

resolution maneuvers are generated several minutes in advance while even manual implementation

of the commands should take no more than a few seconds. When holding patterns are commanded

in the simulation, they are implemented in the form of trajectories orthogonal to the current link

that the aircraft is on: one minute outbound and one minute inbound, with the aircraft resuming its

flight from the same point that it left the link from. The simulation is seeded by Poisson processes

for traffic generation on the periphery, with the rate for each route being defined using historical

data. In the following discussion, the net traffic generation rate is denoted by 3', and the average

time between two aircraft appearing on the periphery by .

Effect of different radii of centralized control on holding patterns

Holding patterns in the airspace are an indicator of congestion and instability within the network.

These holds are necessary when a pure velocity change by an aircraft cannot guarantee satisfaction

of the minimum separation constraint. In dense traffic, one holding pattern typically causes a

cascade of holding patterns upstream, affecting a large section of the airspace. Figure 4-7 shows

the generation of holding patterns for three different radii of centralized control. Each simulation

is run with the same schedule of arrivals at the periphery of the airspace. Note that there are two

bursts of arriving traffic as highlighted in the lower left plot. The distributed control algorithm is

efficient enough to carry these aircraft through the outer part of the airspace. However once they

enter the congested central part of the airspace (after an approximate flight time of AT as marked

in the figure), they necessitate hold commands in all three cases. When the centralized radius is

small, the more efficient centralized control algorithm is unable to recover from the first burst of

traffic before the second burst arrives. Therefore, the number of holding patterns exhibits unstable

behavior. For larger radii of centralized control (65 nm and 110 nm), recovery can be seen. Note

also that the number of active aircraft in the airspace for the latter two cases is nearly the same -

a centralized radius of 110 nm does not have an advantage over the smaller radius of 65 nm in this

regard.
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Comparison of control performance for different scenarios

Figure 4-8 shows the average number of holds commanded per hour for traffic loads -I- = 45 sec, 65

sec and 90 sec, as a function of the radius of the centralized region. The reduction in the number of

holds on moving from a radius of 65 nm to 110 nm is seen to be quite small. As the traffic arrival

rate increases, there is a much more marked change in moving from a 30 nm radius to a 65 nm

radius.

Trends in total traffic in airspace for different scenarios

Figure 4-9 further emphasizes the unstable nature of the network for high traffic rates and small

centralized zones. It shows a time series of traffic for two different sizes of the centralized zone.

Centralized control applied to the larger region (110 nm) is seen to stabilize the traffic in all three

cases = 45, 65 and 90 sec. On the other hand, the smaller region (30 nm) cannot cope with higher

traffic loads, and experiences a continuous increase in the number of active aircraft in the airspace,

most of which have been delayed in the central region. While holding patterns are generated in

bursts, low to moderate traffic loads allow the airspace to recover and resume smooth operations.

However, traffic accumulates if more holds are generated before this recovery is complete, as can

happen with high traffic loads.

Performance comparison with current ATC procedures

Current air traffic control procedures rely heavily on human supervision, and are difficult to model

exactly. However, it is reasonable to assume that aircraft are only deconflicted up to the next

merge point, and downstream conflicts are resolved as they emerge. Figure 4-10 compares this

approach to the proposed control strategy for 1 = 65 sec. It shows the average amount of time

required by aircraft at the periphery to land at the airport. Since all the simulations start with

an empty airspace model, the initial flight times for all cases are similar (approximately 2.75 hrs).

However, as time progresses and the airspace congestion increases, the difference in performance

becomes significant. The proposed control algorithm performs significantly better than the current

operations for all values of the central radius. Increasing the radius of the centralized region

increases the efficiency of the control algorithm up to a point (seen to be at 65 nm for the current

model), beyond which the marginal benefits are minimal.
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Decreasing the radius of the centralized zone reduces the number of ground radars near a

terminal area and the associated ground infrastructure cost. However, a smaller centralized zone

degrades both communication and control performance. An arbitrarily large region of centralized

control not only entails large costs, but also fails to show significant improvement in performance.

The traffic density far away from an airport is small enough for the distributed control algorithm

to perform nearly as well as the centralized algorithm. In the simulations presented in this section,

it appears that a centralized radius of 65 nm is sufficient for attaining a major portion of these

benefits. The optimal size of the centralized region can be determined for other locations using

similar methods.

Performance degradation with measurement uncertainty

As stated in Section 4.2.7, measurement uncertainty can be handled by suitably padding the min-

imum separation requirement. For example, it may be assumed that the error in position and

velocity measurement is independent and Gaussian with a known standard deviation. Optimal

velocities for each aircraft pair can be calculated by assuming that the leading aircraft is flying

slower and is farther from the merge point than its measured position and velocity. Similarly, it

can be assumed that the trailing aircraft is flying faster and is closer to the merge point than its

measurement. Note that the priority order is still calculated based on measurements: this ensures

that the computations on board both aircraft are consistent. By solving for the optimal veloci-

ties in this worst-case scenario, a conflict can be avoided with a certain user-defined probability.

This solution necessarily makes the control algorithm more conservative than for the deterministic

case. For example, a trailing aircraft in a paired merge may be asked to enter a holding pattern

to increase separation, while this would not have been necessary in the deterministic case. An

idea of the resulting performance degradation can be obtained by measuring the number of holding

patterns commanded per unit time, and also the total traffic level in the simulation. These results

are presented in Table 4.1 for a traffic generation rate of = 90 sec.
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Position Unc.

(one std. dev., nm)
0.1
0.1
1
1
1

Velocity Unc.

(one std. dev., kts)
0
1
2
3
5

Table 4.1: Variation in performance with position and velocity uncertainty.
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Chapter 5

Integrated Control of Arrivals and

Departures

The preceding two chapters have described the control algorithms for departures on the surface

(Chapter 3) and arrivals in the approach airspace (Chapter 4). The purpose of this chapter is to

combine the two algorithms into a single, integrated strategy for managing airport operations. This

proposed strategy is described in Section 5.1. A logical procedure for formulating and calculating

the integrated control algorithm for a generic airport is described in 5.3.

5.1 Combining the arrival and departure algorithms

This section develops the integrated control strategy for arrivals and departures, using Boston Logan

International Airport (BOS) as an example. The arrival paths around BOS for landing on Runway

33L are shown in Figure 5-1. This runway is commonly used for arrivals when departures are using

Runway 27 [124]. The layout depicted in Figure 5-1 is thus complementary to the departure control

policy developed in Section 3.2.6. The modeled airspace is a circle around the airport with a radius

of 475 nm. A major assumption in the development of the model is the absence of interaction

with other airports in the vicinity. This is not a realistic assumption to make for BOS, but is

useful in developing the control algorithms described in this thesis. While a more realistic model

is required for calculating the optimal policies for actual implementation, the simplifications used

in this chapter allow the algorithm to be demonstrated without the effect of externalities. With
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this objective in mind, the arrival traffic at BOS originating from nearby airports such as those in

the New York area is instead generated on the periphery of the modeled airspace. Unlike the case

of LAX where the split of incoming traffic could be based on operational data, the split at BOS is

based on the estimated from various regions of origin.

Based on simulation runs of the model depicted in Figure 5-1, it is possible to obtain an estimate

of the airspace capacity. This can be done by testing the model at various traffic generation rates

3', and noting the landing rate # at the airport. If the incoming traffic rate results in a stable

airspace network, steady state is achieved with 1 = 3'. The throughput of the airspace model can

be characterized by plotting an analogous curve to that in Figure 1-2. The number of arrivals at

the airport as a function of the number of airborne aircraft within the modeled airspace is shown

in Figure 5-2. A reasonable estimate of the steady state achieved in this case, is an average of 10

aircraft every 15 min. This is equivalent to an average separation of 90 sec between landings, and is

equal to the traffic generation rate. This means that the rate .1 = 90 sec is feasible for the current

airspace layout. In the case of the BOS model with arrivals on Runway 33L, the maximum capacity

happens to be 1 aircraft every 70 sec. Note that the capacity estimate may not correspond to the

real-world airspace capacity of the Boston TRACON, because of the simplifications listed above.

Should an accurate estimate of the capacity be desired, a similar setup can be simulated but with

more realistic traffic characteristics. For the purposes of this thesis, it is sufficient to develop an

idea of the maximum rate at which the airborne portion of the model is likely to deliver aircraft

to the airport surface. This estimate informs the set of policies that are calculated offline for the

departure control algorithm.

Based on the range of possible landing rates 1, a set of departure control policies can be

calcilated offline. The policy used in real-time is selected from this set of policies as a function

of the number of expected arrivals over a fixed time horizon. This ensures that the best possible

fuel savings are obtained for that current arrival rate 1, as explained in Section 3.2.6. The risk of

gate conflict is concurrently minimized. The control policy is more aggressive (assigns larger gate

delays) when the expected 1 is low, and vice versa.
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Av. interval between generation of two aircraft (min)
00:00 - 06:00 8.3
06:00 - 10:00 1.0
10:00 - 18:00 1.6
18:00 - 21:00 1.0
21:00 - 00:00 6

Table 5.1: Rates used for generation of arriving traffic at the periphery of the modeled airspace.

5.2 Performance evaluation

The integrated control strategy for departures and arrivals and departures is evaluated in this

section through simulation. A bespoke discrete event simulator has been developed for this purpose.

The simulator propagates aircraft from the periphery of the arrival airspace, through the taxi-in,

gate service and taxi-out processes, to the instant of takeoff.

5.2.1 Simulation procedure

The arrival airspace model described in Section 4.1.2 and the surface taxi model described in

Section 2.2.3 are the primary components of the combined arrival/departure simulation procedure.

The schematic is shown in Figure 5-3. Incoming airborne traffic is generated at the periphery of

the airspace, and is propagated to the airport. In the following simulations, the rate of traffic

generation is Great Lakes and Canada (01-02 in Figure 5-1) 10%, Great Circle Transatlantic (03)

5%, Southern Europe (04) 5%, Other international flights and US East Coast (05-06-07) 40%,

Midwest and US West Coast (08-09) 40%. The airport predicts landing times for all aircraft that

are within broadcast reception range, i.e., aircraft in the centralized control region. These landing

time predictions are fed to the departure control algorithm, which also adds predictions of the

taxi-in times and forms an estimate of the imminent arrival rate to each buffer, 03. These arrival

rates, in combination with the departure surface traffic level k, drive the pushback control policy.

The surface traffic simulation separately generates actual taxi-in and taxi-out times for arrivals and

departures respectively.

Aircraft in the arrival airspace are assumed to be using approach paths for landing on Runway

33L at the airport, as shown in Figure 5-1. The surface movement simulator includes aircraft

taxiing in to their gates after landing, gate occupancy at the airport, as well as aircraft taxiing

out to Runway 27 (node 6 in Figure 2-1). This runway has been chosen because it is used for
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Figure 5-3: Schematic of the combined control algorithm and simulation procedure.

departures at Boston when aircraft are arriving on Runway 33L (node 7 in Figure 2-1). The four

source nodes at the airport (nodes 1, 2, 3 and 8 in Figure 2-1) have capacities of 25, 20, 25 and 20

gates respectively. This results in a total of 90 gates at the airport. For the purpose of this work,

all gates at a given terminal are assumed to be equivalent, that is, an arriving aircraft can park at

any gate at its assigned terminal. This assumption is convenient for demonstrating the proposed

algorithm, but is not accurate in reality as each airline has access to only a specific subset of gates

at a terminal. The current formulation can accommodate this level of fidelity by defining separate

nodes and corresponding buffers for each set of gates owned by an airline.

5.2.2 Simulation results

A simulation of one day's operations at Boston Logan is shown in Figures 5-4 and 5-5. Aircraft

appear at the periphery of the airspace as a variable rate Poisson process. The governing rate

is piecewise linear, and is based on the historical average seen for various times of the day. The

uppermost plot in Figure 5-4 shows that the peak morning demand appears at the periphery of the

airspace at approximately 03:00 local time, consisting mainly of transcontinental and transatlantic

traffic. These aircraft reach the airport just before 06:00, when the number of landings increases

to about 10 aircraft every 15 min. This corresponds to an average separation of 90 sec between

successive landings. The surface simulator then propagates these arrivals through the airport

network to their gates, based on the taxi time model described in Section 2.2.3. A gate service
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time for each arrived aircraft is generated from a uniform distribution between 30 and 45 min. The

choice of this distribution is based on the general turnaround times seen for commercial aircraft

in empirical studies such as [125]. During this time, the gate is marked occupied-inactive. Once

servicing is completed, the aircraft is ready for pushback and the gate is marked occupied-active.

The occupied-active gates are assigned pushback delays on a first-come-first-served basis.

After pushback, the simulator propagates each aircraft to Runway 27 for departure. As seen

in Figure 5-4, the morning departure demand trails the arriving one by a period of approximately

45 min. The average departure rate at the airport is also seen to stabilize at 10 aircraft every

15 min. The middle plot shows the average taxi times for arrivals and departures, as generated

by the simulator. Since arriving aircraft are not subject to the higher traffic levels (shown in the

bottom plot) seen by departures, average arrival taxi times are significantly lower than departure

taxi times. This is consistent with empirical data. An interesting feature of Figure 5-4 is the spike

in the departure traffic level seen in the bottom plot at 20:00. This can be correlated with the gate

occupancy plotted in Figure 5-5. A disproportionately large number of aircraft arrive at sources

2 and 3 just before 20:00, pushing the gate occupancy close to the maximum limit. The control

algorithm responds by releasing aircraft with very small gate delays, thus temporarily increasing

the surface traffic level. This behavior is a useful feature of the proposed control algorithm, where

surface congestion is balanced against the risk of buffer overflow.

5.2.3 Effect of control strategy on taxi-out times

As explained at the beginning of this paper, current airport procedures allow pushbacks at pilots'

discretion, which means that each aircraft can leave the gate as soon as its servicing is completed.

Therefore, the effect of using the proposed control strategy can be evaluated by carrying out different

simulations on the same 'pushback ready' schedule. The first simulation assigns zero pushback delay

to all aircraft. The second simulation assigns pushback delays to each aircraft, as calculated by

the departure control algorithm. Finally, the third simulation also incorporates information about

expected arrival times of aircraft to each buffer.

A comparison of the distribution of aircraft taxi-out times seen in the three simulations, is shown

in Figure 5-6. The base schedule used in this figure is the same as that generated in Section 5.2.2. It

should be emphasized that this schedule reflects the pattern and volume of demand empirically seen
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day's simulation.
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Figure 5-6: Comparison of the distribution of taxi-out times for three different control strategies.

at BOS. It can be seen that the frequency of long taxi-out times is greatly reduced by the control

strategy, which results in substantially lower taxi-out times. Incorporating predictions of arrival

times further lowers the taxi-out times, by allowing the control algorithm to be more aggressive

when the arrival rates are low. The mean taxi-out time reduction per aircraft in this simulation

is 0.85 min for the departure control algorithm. Using arrival information further reduces the

mean taxi-out time by 0.75 min per aircraft. Using the procedure described in [108], the estimated

fuel burn reduction per medium-sized aircraft is 12.5 kg (4.5 gallons) for the departure control

algorithm, and a total of 22.5 kg (8 gallons) per aircraft after including arrival information.

A comparison of the average taxi-out times and frequency of gate conflicts seen for the three

strategies is given in Table 5.2. These averages are calculated over 10 simulation days, with all

three control strategies using the same pushback schedule for a given simulation run. The buffer

overflow tolerance y is set to 5%. It can be seen that the departure control strategy reduces

mean taxi-out times per aircraft at Boston Logan by 5.2%. The departure control strategy with

arrival information reduces taxi-out times by 10.2% compared to current procedures. Since holding

aircraft at the gate increases the buffer occupancy, we see an increase in the number of gate conflicts

(instances of buffer overflow). The fraction of aircraft with gate conflicts is well within the tolerance

level -y. This added conservativeness could be because of the simplifying assumptions made while

calculating state transition probabilities in Section 3.2.1. It should also be noted that including

arrival information reduces the number of gate conflicts by 30% in addition to the reduction in
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Control Av. taxi time Average gate % flights with
strategy (min) conflicts in 24 hrs gate conflicts

Pilot's discretion 17.2 14 0.5%
Dep. control only 16.3 33 2.7%
With arrival info 15.4 24 1.9%

Table 5.2: Comparison of taxi-out times and frequency of gate conflicts. The averages are calculated
over 10 simulation runs. The buffer overflow tolerance is -Y = 5%.

mean taxi-out times. Depending on user preference, the expected number of gate conflicts can be

traded off with the reduction in taxi-out times, using the tolerance level y.

It is important to note that the actual values of the various savings presented here, are specific

to simulations of one configuration at Boston Logan International Airport. These values will change

based on the runway configuration, the airport, and the simulation assumptions, but the principle

behind the increase in efficiency will remain invariant.

5.2.4 Effect of control strategy on takeoff delay

As stated before, one major objective of the control strategy is to not increase aircraft takeoff times

beyond those attained using current procedures. This will ensure that the benefits of reduced fuel

burn are not at the cost of airport performance. Figure 5-7 shows the distribution of simulated

takeoff delay under the two control strategies. Here, takeoff delay is the difference between the

takeoff time under a pushback control strategy and the takeoff time under current procedures. It

can be seen that the relative takeoff times are distributed equally on both sides of zero takeoff delay.

The differences are therefore likely to be due to random error only. Over the course of one day's

simulation, the mean takeoff delay is in fact negative. This means that on average, aircraft are

taking off earlier than they do under current procedures. The average decrease in takeoff times is

0.37 min and 0.62 min under departure control without and with arrival information respectively.

5.3 From modeling to implementation: A summary

The last four chapters have provided a detailed description of the logical steps involved in the

implementation of congestion control at airports. Boston Logan International Airport has been

used as a representative example throughout the development. The aim of this section is to provide

a concise description of the entire process involved with implementing the proposed strategy at a
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Figure 5-7: Comparison of the distribution of takeoff times relative to those attained using current
procedures. Note that all three cases (current procedures, departure control only, and combined

arrival/departure control) are based oi simulations. Large differences in taxi times could arise in a
few cases due to the stochasticity of the underlying processes, and the overall distribution is more

significant than individual outliers.

new location. The schematic of this proposed strategy is shown in Figure 5-8. Note that the arrival

control strategy can be implemented independently of the departure control strategy, but not vice

versa. However, the departure control strategy only depends on the arrival control strategy to the

extent of receiving estimates of the expected arrival rates. These rates can also be estimated using

other means. Both strategies can thus be implemented stand-alone or in a combined fashion.

Control of airborne arrivals

The procedure for instantiating the arrival strategy is depicted in the top half of Figure 5-8. The

offline simulation portion in the top-left quadrant is necessary for two reasons. Firstly, it can be

used to estimate the capacity of the airspace as it is currently laid out. This capacity estimate

is used by the departure control algorithm for generating policies that can handle the range of

potential landing rates at the airport. Secondly, the simulation procedure can also be used to

compute the number and locations of ADS-B ground stations required for managing the arrival

traffic.

For modeling the arrival airspace more accurately, the model presented in Section 4.1.2 should be

modified to handle all the different runway configurations that may be in regular use at the airport.

Each arrival runway may have different arrival procedures depending on orientation, airspace layout

and inter-dependence with other airports [126]. The effect of airports in close vicinity can also
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Figure 5-8: Schematic of proposed combined control strategy for arrivals and departures.
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include the generation of arrival traffic within the modeled airspace. This traffic will also exhibit

climbing and descending trajectories, and the control algorithm will need to be modified slightly

tQ include the possibility of vertical separation in addition to horizontal separation standards. The

basic structure of the strategy remains unchanged if the different altitude 'layers' are deconflicted

separately. It should be noted that aircraft that are separated vertically are not a factor for

the control algorithm, but are significant for the communications algorithm. Similarly, airborne

departures affect the communications algorithm but are not a direct factor for the control algorithm.

These routes are usually separated from the arrival routes in terms of heading or altitude. A detailed

study of their impact on the system is described in [42].

Once the airspace structure is modeled, the constraints imposed by minimum separation re-

quirements can be introduced. Note that both the separation standards and the allowed mini-

mum/maximum velocities can change depending on flight altitude and proximity to the airport.

Another factor which may change the separation standard is the possibility of multiple runways

being used for arrivals, especially for simultaneous parallel approaches. Since the pairwise conflict

resolution algorithm is solved repeatedly by the proposed control strategy, changing the constant

terms in these constraints depending on location should not pose major challenges. The introduc-

tion of position and velocity uncertainty is also desirable in order to obtain realistic estimates from

the model. This problem has been addressed in Section 4.3 and in [43], where it is shown that

uncertainty can be accounted for by suitably padding the minimum separation value smiu. The

extent of the added separation is a function of the level of uncertainty. The final piece required for

completing the offline portion of the arrival control strategy is an estimate of the expected rates of

incoming traffic seen along each of the possible arrival paths. This can be obtained from historical

data and/or scheduled flight data.

Control of surface movement

The lower half of Figure 5-8 illustrates the procedure for developing the departure control strategy.

The nodes and links of the network can be defined using insights from surface surveillance data.

Estimating the importance of taxiways and intersections in terms of usage levels, is generally not

possible using only airport maps. Air traffic controllers tend to develop preferences for certain taxi

routes depending on an aircraft's departure fix, likelihood of being affected by traffic management

129



initiatives, and so on. Viewing surface surveillance data from as many days as possible helps pick

out the most heavily loaded taxiways. Gate allocations for the different airlines operating at the

airport are also an important factor in developing the surface network. The model developed in

Section 2.1.2 contains only one node per airport terminal, with the assumption that all gates at a

given terminal are equivalent. For a more realistic model, the ownership/leasing of gates by certain

airlines, as well as aircraft size restrictions will need to be taken into account. This will result

in additional source nodes at each terminal, with corresponding buffers. With this change, the

usefulness of the aggregation method described in Section 3.2.6 becomes even more pronounced.

Just as additional nodes may be required to represent the sources in the network, there may

also be more than one sink node. This can happen in the case of multiple departure runways.

The only configuration at Boston Logan where more than one departure runway is used for jet

aircraft is (4R, 4L 1 9, 4R), where runways 9 and 4R are used for departure. Figure 2-1 marks

these runways by nodes 14 and 15 respectively. It can be seen that the departure thresholds are

very close together, with the result that the taxi routes used by aircraft heading to these runways

are largely the same. Therefore, the taxi time parameters as well as their dependence on surface

traffic levels remain unchanged. At airports where the taxi routes to different departure runways

are greatly separated, some modifications may be necessary for modeling the variation of stopping

probability with surface traffic. In particular, it should be ascertained whether a single value of

surface traffic is sufficient for explaining the variation in taxi times. It might be necessary to split

the traffic level by departure runway, if the networks are largely independent.

Finally, the calculation of optimal departure policies can be carried out based on the method

outlined in Section 3.2.6. The choice of allowable control (pushback delay) values can be defined

using a combination of simulations and operational constraints. The maximum allowable might be

set to a large value for the initial policy calculations. The highest value used for typical operations

can be determined using simulations, since this will be driven by the gate capacity and arrival

rates for the given airport. Once this is determined, the higher values of allowable delay can be

eliminated for simplicity. A constraint might also be imposed by user preferences, if the airlines

are unwilling to accept delays greater than a certain value.
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Protocols for implementation

With the policies pre-calculated and the control algorithm in place, it remains to define the protocols

for implementation in real-world situations. In this context, the departure control algorithm can

be implemented sooner and with fewer modifications to current procedures than the arrival control

algorithm. Controlling arrivals using the procedures outlined in Chapter 4 first requires significant

penetration of ADS-B technology. This is expected to take place by the year 2020 [60]. In addition

to the mandatory ADS-B Out technology, a sufficient number of aircraft should also be equipped

with ADS-B In for the control strategy to deliver benefits. The proposed protocol is able to account

for some fraction of non-equipped traffic as explained in Section 4.2.7, but it is reasonable to expect

that significant benefits can be delivered only when the majority of aircraft are equipped with ADS-

B In. This is especially true in the distributed control region, where it is not possible for air traffic

controllers to transmit commands via voice communication.

Assuming that every aircraft flying near a major airport is equipped with ADS-B Out and that

a large majority is also equipped with ADS-B In, the arrival control strategy can be implemented in

a few different ways. The most efficient and simultaneously the longest term idea is to implement

both the distributed and centralized algorithms automatically, with the pilots only performing a

supervisory role. This will require significant advances in technology as well as extensive testing

for safety. On a near term basis, the on-board or centralized computations can be implemented

automatically, and the velocity commands can be delivered via data-link and cockpit displays to

the pilots. This implementation can be very similar to current TCAS technology. As explained in

Chapter 4, the time scales are favorable enough for the generated recommendations to be imple-

mented within a time period of several seconds, enough for human pilots to process the advisories

and make suitable velocity adjustments.

The departure control algorithm can be similarly implemented on a fully or partially automated

basis. The fully automated procedure would require the air traffic controller to log a change in

gate status (free / inactive / active) depending on unfolding events (pushback, pull-in and push-

ready call respectively). In case of a push-ready call, the control algorithm would then measure the

number of active departing aircraft and the current gate status based on a surface surveillance data

feed. The expected arrival rate can be fed in based on predictions from the arrival control algorithm.

Even if this is unavailable, a reasonably reliable estimate of the expected number of arrivals over
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a small time horizon (typically the next 15 min) is already available to traffic managers in the

control towers of most busy airports [127]. The control algorithm would then deliver a pushback

delay recommendation which could be transmitted to the aircraft by voice or data-link. Based on

the Collaborative Decision Making (CDM) efforts already in place at several airports, this level of

automation is expected to be achievable with current technology. Alternatively, the current traffic

level, gate occupancy and expected arrivals can be fed in manually into a hand-held device by an

air traffic controller, as has been implemented in an earlier study at Boston Logan airport [73].
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Chapter 6

Conclusions

6.1 Summary

The goal of this thesis was to develop a paradigm for the management of aircraft operations in and

around airports, with the focus on making the strategy feasible for practical implementation in the

mid- to long-term. The objective of the control strategy was to reduce aircraft fuel consumption, as

well as congestion on the airport surface and in arrival airspace. At the same time, it was required

to satisfy constraints on system performance and safety. The proposed methodology introduced

several novel ideas to the realm of surface congestion control, chief among which was modeling

the airport surface as a network. This was enabled by the availability of surface surveillance

data from the Airport Surface Detection Equipment (ASDE-X) system. For the first time, a

detailed model of airport operations could be developed. This included an explicit consideration

for the physical events constituting the taxi process. The departure control algorithm also included

relevant constraints such as limited gate capacity at the airport. Since the problem was nonlinear

and was constrained, the optimal control policies were calculated using dynamic programming. An

additional state aggregation procedure was introduced, in order to enable fast policy calculation.

The arrival control algorithm combined the communication and control aspects of air traffic

management, and proposed a strategy for improving terminal airspace operations. It was assumed

that the primary communications system would be Airborne Dependent Surveillance Broadcast

(ADS-B). The hybrid centralized/distributed strategy was shown to have performance compara-

ble to fully centralized strategies, while requiring significantly lesser ground infrastructure. The
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strategy can be implemented by transmitting commands over a data-link and displaying them as

advisories to pilots, thus potentially allowing near-term implementation in the real world. An inte-

grated control strategy was then described, that combined the management of arrival airspace and

surface operations. This strategy creates a synergy between the various aspects of airport opera-

tions, with departures being released from their gates as a function of surface congestion as well

as expected aircraft arrival rates. A balance is struck between the objective of fuel burn reduction

and the constraint imposed by airport gate capacity.

Simulations showed that the control strategy could substantially reduce aircraft taxi times and

fuel burn. An average of 10% reduction in taxi times as compared to current procedures was noted.

This corresponds to a 3.5 min reduction in taxi-out time per aircraft, equivalent to 10 gallons of

aviation fuel (Table.5.2). At the same time, the implementation requires only the knowledge of

the surface traffic level and the gate occupancy at each terminal. Both these quantities are easily

obtainable in real-time. It is thus postulated that the proposed control strategy will be an effective

tool for reducing aircraft fuel burn, without adversely affecting airport performance.

It is important to note that the actual values of the various savings presented in Chapter 5, are

specific to simulations of one configuration at Boston Logan International Airport. These values will

change based on the runway configuration, the airport, and the simulation assumptions. However,

the fundamental mechanism of airport efficiency improvement will remain invariant. Given the

layout of the arrival airspace, the taxiway system on the surface, and a sufficient amount of surveil-

lance data, the modeling and control procedure presented in this thesis is potentially applicable to

any airport or runway configuration.

6.2 Future research opportunities

The focus of thesis has been on the application-oriented development of control algorithms. Con-

sequently, there are several future research directions that can be pursued in the realm of practical

implementation of these ideas. There are also opportunities for extending the theoretical approaches

presented for modeling and control policy calculation.
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Improvements to arrival airspace model

The implementation plan described in Section 5.3 contained elements that are not present in the

current formulation. These additions will help to reduce the uncertainty in the expected perfor-

mance of the control strategy. For the control of arrival airspace, an extension of the basic method

to include interaction with nearby airports is likely to be useful. This entails the addition of a third

dimension to the modeled airspace, as well as including aircraft that first appear in the middle of

the region rather than the periphery.

Departure control for multiple runway configurations

For departure control, the most obvious extension is to multiple departure runway instances. De-

pending on the independence between the two (or more) runways, different measures of surface

traffic levels could be necessary. As explained in Section 5.3, the runways in the (4R, 9 1 4L, 4R)

configuration at Boston are so tightly coupled that no modification is necessary to the current taxi

model. However, this is unlikely to hold true for locations such as Dallas Fort-Worth or Atlanta

Hartsfield, where the taxi paths to the two runways are largely separate.

Inclusion of weather effects

It was noted in Section 2.2.2 that weather can have a significant effect on aircraft operations, both

in the air and on the ground. The current formulation handles weather uncertainties by including

them in the stochastic models or by adaptive methods such as the one described in Section 3.2.8.

However, there is an opportunity to include weather more explicitly in the predictive models.

Coordinated arrival / departure runway operations

An interesting extension that involves both the arrival and departure control strategies, is to intro-

duce the possibility of coordinated runway operations. The current implementation assumes that

arrivals and departures are controlled separately, with their interactions captured by the stochastic

process representations. Some of the stochasticity can be reduced by explicitly coordinating arrivals

and departures on crossing runways.
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Higher fidelity simulation algorithms

The current version of the arrival/departure simulation is sufficient for estimating the average

savings in taxi time / fuel, but there is scope for improving the fidelity in this simulation. In

particular, if a single day's operations are to be simulated exactly, it will be necessary to include

explicit overtaking constraints, runway occupancy times, etc.

Large-scale stability analysis for arrival airspace

The stability results presented in Section 4.2.6 focus on the two-aircraft system, with the assumption

that all conflict resolution is to be carried out in a pairwise fashion. This is a reasonable assumption

to make for current and/or moderately elevated levels of traffic. However, the simulations presented

in Section 4.3 show that there is a cascade effect in the onset of holding patterns for high traffic

levels. In order to analytically estimate the maximum capacity of arrival airspace as it is currently

set up, it will be necessary to develop a more comprehensive stability analysis for the full network.

This will enable a case to be made for airspace restructuring as and when necessary.

Effect of uncertainty on the potential benefits offered by the control algorithms

Many of the extensions that have been proposed in this section are focused on reducing the un-

certainty in aircraft operations. It is important to remember that this is a realistic goal only for

the type of uncertainty that is introduced due to modeling assumptions. In the case of aircraft

operations, some of the uncertainty is inherent in the process itself. In this case, the focus should be

on accurate quantification of its properties. This is the core principle of the proposed methodology

for modeling and control of airport processes.

The extensions proposed in this section will improve upon both aspects of stochasticity-dependent

inefficiency. Better models of the arrival airspace and of the effect of weather on airport operations

will help to characterize the inherent stochasticity in airport operations, while improved simulation

procedures will provide more accurate estimates of potential benefits. Following these avenues of

research is likely to be a worthwhile pursuit.
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Appendix A

Parameter Values for Departures at

BOS

The purpose of this appendix is to include all the parameter values for the network model repre-

senting Boston Logan International Airport. Note that these values are used for departures only.
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Table A.1: Unimpeded Erlang rates Al

End* 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17

Start i
1 0.24
2 0.23 0.20 0.22 0.24 0.20

3 0.14 0.46 0.22
4 0.20 0.15 0.14
5 0.10 0.10
6

8 0.23 0.23 0.15 0.10 0.06
9 0.15 0.15
10 0.08 _

11
12 0.12
13 0.30 0.21
14

15
16 0.22 0.23
17 0.11 _

Go
1~



Table A.2: Unimpeded Erlang order nj

End-+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start 4

1 20

2 18 23 14 21 14
3 11 15 22

4 22 19 12
5 12 12

6
7
8 19 30 15 18 8
9 18 18
10 9
11
12 25
13 9 15
14
15
16 14 8
17 9 9



Table A.3: Exponential rate for stop times pl

End-+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start 0

1 .020
2 .015 .005 .018 .014 .011
3 .020 .010 .012

4 .015 .005 .013
5 .015 .015
6
7
8 .017 .01 .008 .017 .020

9 .009 .008
10 .010
11
12 .010
13 .020 .015
14
15
16 .009 .012

17 .010 .005



Table A.4: Link stopping probability with no surface traffic, pol

End-+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start 4

1 0.20

2 0.20 0.22 0.10 0.24 0.24

3 0.15 0.10 0.20
4 0.25 0.31 0.10
5 0.50 0.50
6
7
8 0.15 0.20 0.26 0.40 0.50

9 0.38 0.42

10 0.25
11
12 0.50
13 0.50 0.42

14

15
16 0.65 0.50
17 0.15 0.75



Table A.5: Sensitivity to surface traffic, Xi

End - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start .

1 0.03
2 0.03 0.07 0.03 0.14 0.05

3 0.10 0.01 0.05
4 0.15 0.14 0.26
5 0.45 0.45

6
7
8 0.02 0.06 0.31 0.50 0.60

9 0.44

10 0.40

11
12 0.40

13 0.08 0.22

14
15
16 0.13 0.08

17 0.16 0.25



Appendix B

Parameter Values for Arrivals at BOS

The purpose of this appendix is to include all the parameter values for the network model represent-

ing Boston Logan International Airport. Note that these values are used for arrivals only. Since

arrival traffic is usually limited, it is not possible to get statistically significant estimates of the

sensitivity of the number of stops to arrival traffic. Therefore, only the mean stopping probabilities

for each link are listed in this appendix.
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Table B.1: Unimpeded Erlang rates Al

End -* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start j

2 0.26 0.22

3 0.28 0.25

4 0.25 0.23 0.35

5 0.25 0.22

6
7 0.25

8 0.28

9 0.17 0.20 0.15

10 0.18 0.13

11 0.16 0.10

12 0.14

13 0.31 0.30
14 0.33

15 0.33 0.10

16 0.29
17 0.24



Table B.2: Unimpeded Erlang order ni

End-s 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Start 4

1
2 20 15
3 20 19
4 11 29 19
5 19 22

6
7 23
8 21

9 30 23 30
10 30 30
11 11 5
12 13
13 14 15
14 10
15 30 5
16 27
17 15

c-A1



Table B.3: Exponential rate for stop times p,

End-+ 1 2 3 4 5 6 79 10 11 12 13 14 15 16 17

Start _

1
2 .018 .009
3 .015 .015

4 .020 .019 .012

5 .014 .013

6
7 .019

8 .010
9 .017 .014 .021
10 .033 .010

11 .011 .012

12 _ .015

13 .030 .007
14 .018

15 .015 .014

16 .014

17 .014



Table B.4: Average link stopping probability

End -+ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1617

Start _

2 0.18 0.15
3 0.10 0.14

4 0.21 0.16 0.10
5 0.12 0.11

6
7 0.17.
8 0.15
9 0.18 0.21 0.17
10 0.18 0.46

11 0.22 0.31
12 0.14

13 0.08 0.18
14 0.07 0.11

15 0.13

16 0.18
17 0.41
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